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Abstract

This thesis is concerned with methods for option pricing that we investigate both the-
oretically and numerically. The first main part interprets option prices as solutions to
partial integro differential equations (PIDEs). Focusing on exponential Lévy models, we
implement a numerical tool for solving PIDEs using a Galerkin finite element approach
that is flexible in the driving asset process. Many numerical examples provide evidence
for the numerical feasibility of the method. Furthermore we establish a stability and con-
vergence analysis for PIDEs with time-inhomogeneous operators of Garding type. The
second part of the thesis applies Chebyshev polynomial interpolation to option pricing
by interpreting option prices as functions of option and model parameters. A numer-
ical implementation of the pricing interpolation technique illustrates the method and
emphasizes the gain in efficiency. The third part combines the empirical interpolation
algorithm of Barrault et al.| (2004) with Fourier based option pricing by interpolating
associated Fourier integrands. Theoretical findings are numerically validated. Further
numerical studies highlight the appealing features of the method, especially in higher
dimensional parameter spaces. Additionally, the recursive nature of the interpolation
operator is resolved which renders the method numerically accessible for the interpola-
tion of multivariate Fourier integrands, as well.

Zusammenfassung

Die vorliegende Arbeit beschéaftigt sich mit Methoden zur Optionspreisbewertung in the-
oretischer und numerischer Hinsicht. Der erste Teil der Arbeit betrachtet Optionspreise
als Losungen von partiellen Integro-Differentialgleichungen (PIDEs). Mit besonderer
Beriicksichtigung von exponentiellen Lévy-Modellen wird ein numerisches Tool zur Lo6-
sung solcher PIDEs implementiert, das sich durch eine grofte Flexibilitdt beziiglich des
treibenden Lévy-Prozesses auszeichnet. Viele numerische Beispiele unterstreichen die
numerische Umsetzbarkeit der Herangehensweise. Zudem wird eine Stabilitéts- und Kon-
vergenzanalyse flir PIDEs mit zeitinhomogenem Operator, der eine Garding-Ungleichung
erfiillt, hergeleitet. Der zweite Teil der Arbeit verwendet die Chebyshev’sche Interpo-
lationsmethode zur Optionspreisbewertung. Optionspreise werden dazu als Funktio-
nen von Options- und Modellparametern behandelt. Eine numerische Implementierung
der Methode unterstreicht den resultierenden Effizienzgewinn. Der dritte Teil kom-
biniert schliefslich die Empirische Interpolation von Barrault et al.| (2004) mit Fourier-
Techniken zur Optionspreisbestimmung durch die Interpolation der zugehérigen Fourier-
Integranden. Theoretische Ergebnisse der Untersuchung werden numerisch validiert.
Weitere numerische Studien heben die attraktiven Eigenschaften der Methode hervor,
insbesondere im Hinblick auf Parameterrdume hoéherer Dimension. Zudem wird der
rekursive Aufbau des Interpolationsoperators aufgelost und die Interpolation so auch
der Anwendung auf multivariate Fourier-Integranden numerisch zugénglich gemacht.
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1 Introduction

Option pricing is a key task in mathematical finance. The statement itself seems clear
and unambiguous at first, yet it offers a variety of interpretations with equally manifold
consequences to mathematical finance.

Speculation and risk appetite interpret options as means to benefit from market behav-
ior. Anticipated developments of the economy like ups and downs of exchange rates or
cyclically recurring events with economic impact like central bank chair meetings provide
an opportunity for financial profit from occasions that might otherwise be insignificant
to individual interest. In this interpretation, options suddenly give financial value to
originally unrelated events and option pricing becomes a sophisticated gambling instru-
ment.

A different interpretation emphasizes the contribution of options in enabling other trad-
ing activities. Market participants engaging in mutual trading activities cherish the
ability of options to seal sources of risk that threaten their primary commercial transac-
tions. Here, option pricing enables trade and supports a running economy.

Capturing the market in terms of model assumptions and an associated parametrization
fosters a third interpretation. Equipped with option pricing tools, a parametrized mar-
ket model not only yields prices of financial instruments but also allows a description
of the current state of the real world economy that it portrays. Risks that prevail in
the markets are thus mirrored by the parameter values of the simulating model. In this
perspective, option pricing methods not only map parameter values to option prices but
implicitly provide a link between observed option prices and the current state of the
economy. Option pricing routines then drive the calibration of market models and carry
out the first step for risk measurement and risk assessment purposes.

Each interpretation provokes its own reaction by financial mathematics. Speculation
identifies market behavior that it intends to benefit from and stimulates the development
of mathematical valuation methods for respective sophisticated financial instruments.
Hedging purposes require the capacity to provide options that exhaustively capture all
relevant sources of risk and obtain prices for them. Finally, risk management purposes
demand reliable quantification of risk, a requirement which translates into option pricing
methods that yield precise results and and maintain trustworthy numerical routines.

The actual interpretation thus matters indeed and guides research in different directions.
In this thesis we follow the third interpretation. We adopt the view that a market and the
structure of its movements can be described by model assumptions and associated param-
eters, a view that is emphasized by the expression parametric option pricing or POP in
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1 Introduction

short. The literature on parametric option pricing has largely followed the seminal work
of |Carr and Madan (1999)) and [Raible| (2000). It has thus almost exclusively been de-
voted to the development of algorithms based on fast Fourier transforms, see [Lee| (2004)),
Lord, Fang, Bervoets and Oosterlee (2008), Feng and Linetsky| (2008), Kudryavtsev and
Levendorskii (2009), [Boyarchenko and Levendorskii (2014). Furthermore, we refer to
Sachs and Schul (2010), Cont, Lantos and Pironneau (2011) and Haasdonk, Salomon and
Wohlmuth (2012) that apply the so-called reduced basis method to parametric option
pricing in finance. Prices of financial products are thus functions which link parameters
describing both the current condition of the market and the characteristics of the product
to the prices of the instrument. As sketched above, this link applies in both directions.
On the basis of a parametrized model, the pricing method of choice yields option prices
which match the observed market valuation whenever the model parametrization matches
the current state of the market. In return, observed option prices in the market serve as
reference points for calibrating the parametric model to market reality. A model aligned
to observed market reality then facilitates risk assessment. Reliable risk quantification,
however, requires reliable pricing tools.

Mathematical finance faces several challenges of theoretical and numerical nature in es-
tablishing that reliable link between market reality and its model equivalent. First,
the theoretical frameworks need to comprise the capabilities for thorough error control.
Proper risk assessment relies on theoretical error bounds and convergence results to
justify its claims. The requirements to option pricing approaches thus go beyond the
deployment of pure concepts but rather additionally expect estimates on the errors in-
evitably occurring when those concepts are applied practically. Second, the approaches
that prevail in theory must maintain numerical feasibility. Risk measurement techniques
operate on actual data retrieved from the market and are implemented numerically. To-
day’s numerical limitations thus restrict the set of solution approaches to the option
pricing problem even though it might be unlimited in theory.

Theoretical concepts and numerical implementations in mathematical finance have come
under additional distress in recent years. With the crisis of 2007-2009 hitting the global
economy, neglected sources of risk in the markets had become visible. As a consequence,
models have grown considerably in complexity in order to better reflect the observed
market reality. Considering a few examples we mention stochastic volatility and Lévy
models as well as models based on further classes of stochastic processes. See for instance
Heston| (1993)), Eberlein, Keller and Prause (1998), Duffie, Filipovi¢ and Schachermayer
(2003), Cuchiero, Keller-Ressel and Teichmann (2015) for asset models and see |[Eberlein
and Ozkan| (2005), Keller-Ressel, Papapantoleon and Teichmann (2013), Filipovi¢, Lars-
son and Trolle (2014) for fixed income models. Given these developments, the model
of Black and Scholes (1973) and Merton| (1973)) that had originally initiated mathemat-
ical finance today comes across like an anecdotal special case in that expanded model
universe.

Increases in model complexity naturally resonate in the respective numerical implementa-
tions. While the Black&Scholes model allowed for (semi-)explicit formulas for European

12



1 Introduction

plain vanilla options, a whole new generation of pricing tools has been developed to
numerically process the advancements on the theoretical side. These pricing tools fall
into three distinct main families. A first family contains Monte-Carlo techniques. Here,
market movements are simulated path-wise and option prices are derived by taking av-
erages over the simulated option payoffs for each path. The idea of this approach is
very appealing given the wide applicability of the method concerning both models and
options. At the same time, the method suffers from comparably low accuracy and slow
runtimes. A second family consists in the collection of Fourier techniques. Option pric-
ing based on the Fourier transform has been intensively studied and applied in recent
years. The approach that had been pioneered by |Stein and Stein (1991)) and Heston|
for Brownian models unveiled a great flexibility in terms of capturing a large
class of models and option types. Fourier pricing of European options in Lévy and the
large class of affine jump models has first been developed by |Carr and Madan/ (1999),
Raible (2000) and Duffie et al| (2000). There is a large and further growing literature
on Fourier methods to price path dependent options and we refer to |Boyarchenko and|
Levendorskii| (2002b), [Feng and Linetsky| (2008), Kudryavtsev and Levendorskii| (2009),
Zhylyevskyy| (2010), [Fang and Oosterlee| (2011), Levendorskii and Xie| (2012), Feng and|
(2013)) and [Zeng and Kwok| (2014) in this regard. Additionally consider Eberlein,
Glau and Papapantoleon (2010) for a general framework and analysis. For plain vanilla
options, Fourier integration combines the advantages of theoretically and numerically
proven efficiency with implementational ease. Yet the restriction to plain vanilla options
excludes many products of American type that are in general more liquidly traded in
the market and would thus be the preferred choice for example for the purpose of model
calibration. Finally, a third family comprehends the partial integro differential equations
(PIDE) approach. Here, option prices are interpreted as solutions to partial differential
equations additionally containing an integral term, see [Hilber et al. (2013), Hilber et al.|
(2009), Dang et al. (2016)), |[Eberlein and Glau (2014) and others for an overview over
PIDE theory as such. Numerical solutions to PIDEs based on finite difference schemes
are proposed for example in |Cont and Voltchkova (2005)), Fakharany et al.| (2016)), |Co-|
clite et al.| (2016)), |Chen and Wang| (2015) and |Company et al| (2013). For solution
schemes relying on the finite element method we refer to Matache et al.| (2004)), Matache]
et al] (2005b), Matache et al| (2005a) and Winter| (2009). [Lin and Yang| (2012) and
[Florescu et al] (2014) describe numerical solutions to PIDEs based on other schemes.
While the PIDE method provides a great flexibility in terms of both models and options,
the implementation of numerical PIDE solvers is rather sophisticated, indeed.

In summary we observe, that each of the three methods conveys a certain appeal which
in return comes at a certain cost. Fast runtimes are paid by limited flexibility while an
extensive scope of applicability corresponds to numerical expenses. In this thesis we try
to resolve that seeming contradiction. We aim at

e exploiting the flexibility that option pricing techniques offer
e cnsuring numerical feasibility of pricing methods especially in terms of runtimes

e developing error control measures wherever possible

13



1 Introduction

We will pursue these goals in a two-step approach. In a first step, we focus on the
flexibility that a special class of partial differential equations offers and study its potential
for option pricing in detail. That class is the family of PIDEs, where the differential
operator is allowed to contain an additional integral term that accounts for the modeling
of jumps in the trajectories of market asset. Jumps are the characteristic feature of
Lévy model theory which can indeed be cast in PIDE terms and which will provide
examples that make the abstract model framework concrete. As we have indicated
earlier, however, the flexibility that PIDE theory offers to option pricing carries a burden
in numerical terms in turn. Numerical runtimes of PIDE solvers often fall short of the
high expectations and practical needs of the industry. Therefore, in a second step, we
focus on the expectation of fast numerical runtimes and the desire for efficient numerical
schemes expressed by the industry. A first approach to improving numerical runtimes
easily connects to arbitrary pricing methods thus including PIDE solvers, as well. A
second approach that we investigate for fast and efficient option pricing will be taylored to
Fourier pricing in particular. In both steps we balance thorough theoretical investigations
with extensive numerical case studies. Neither theory nor implementation shall seem
neglected throughout this thesis.

Before we are able to present our main results, Chapter 2] briefly surveys basic elements of
the theories that this thesis relies on. Furthermore, it presents a variety of asset models
that will serve as examples throughout the numerical studies done in this manuscript.

In Chapter [3| we consider prices u as solutions to partial integro differential equations

atu + Au = f,
u(0) = g,

with a model specific operator A and an initial condition g that depends on the payoff
profile of the option. We address the issue of finding solutions to PIDEs both theoret-
ically and numerically. Introducing the Galerkin method serves both ends. Interpreted
as a theoretical concept it provides a solution framework that is compatible with the
functional analysis behind PIDE theory. Interpreted as an algorithmic guideline it de-
scribes a numerical implementation for a PIDE solver. In the chapter we illustrate this
duality. After a theoretical description of the method we take the Merton model as an
example and implement a pricing tool based on the finite elements method (FEM). In a
third step, we exploit Fourier techniques to resolve the model dependence of that FEM
solver rendering it accessible to a variety of asset models simultaneously. Many numer-
ical studies enrich the topics of the chapter. It closes with a major proof on stability
and convergence for approximate solutions of time dependent PIDEs. The contents of
this chapter appear in (Gaf and Glau (2016) and parts of the implementation support
the studies in Burkovska et al.| (2016).

In the subsequent Chapter [d we shift our focus to improving numerical runtimes of
option pricing methods in general. To this end we introduce the Chebyshev polynomial
interpolation method for option pricing, a technique using the well understood Cheby-
shev polynomials, see Platte and Trefethen (2008) and Trefethen| (2013). The method
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1 Introduction

interprets an option price as a function of model and option parameters. It demands
option prices at prespecified nodes in the parameter space P and interpolates prices for
arbitrary parameters p € P inbetween,

M Np
Price? ~ I (Price"))(p) = Z . Z Cljtrnrin) L riin) (D) peP,
Jj1=0  jp=0

wherein c(;, . ;) are parameter independent, precomputed coefficients and T;, . ;.)
are model independent Chebyshev polynomials. The Chebyshev method thus builds on
arbitrary option pricing tools but reduces their application to providing prices at the
prespecified nodes that the interpolation is built on. Pricing then consists in assembling
a weighted sum with known coefficients and polynomials that are easy to evaluate thus
improving pricing runtimes tremendously. Under certain smoothness conditions on the
underlying price we state an exponential convergence result for the algorithm. The
contents of the chapter are also presented in (Gafs et al. (2016).

Chapter [5] pursues a similar objective. Tayloring the capacity of the empirical magic point
interpolation method by |Barrault et al.| (2004)) and the results of Maday et al. (2009))
to Fourier pricing, we achieve a significant gain in efficiency and numerical runtimes
in option pricing. The resulting magic point integration method interpolates Fourier
integrands by achieving their separation into parts that depend on the parameter p € P
and parts that depend on the integration variable alone,

M
Price? = Iy (h)(p) := Z hp(z;)AH%(z) dz, peP.

The sum in the interpolator Z,; thus consists of parameter independent integrals that are
computed beforehand and parameter dependent coefficients that are cheap to evaluate.
Pricing has again turned into the evaluation of a sum. By exploiting the structure of
the model specific Fourier integrands, the algorithm detects those local nodes in the
parameter space P that explain the structure of all parametrized Fourier integrands at
a given precision, globally. Enjoying this flexibility renders the algorithm less affected
by the curse of dimensionality that other methods suffer from. We state theoretical
conditions for exponential convergence of the algorithm. Numerous case studies and
pricing examples validate and illustrate our theoretical claims empirically. In the context
of pricing, the method is presented in|Gak et al. (2015), as well. The general applicability
for parametric integration is furthermore demonstrated in |Gaf and Glaul (2015]).

In the appendix we gather supplementary material for the main chapters sketched above.
An integration technique for oscillating integrands that we encounter in Chapter [3] is
presented in Appendix [A] Properties of the empirical interpolation method being the
key ingredient for the pricing algorithm of Chapter [5| are stated in Appendix [B] Finally,
a proof of Gronwall’s lemma in a version crucial to our convergence result at the end of

Chapter [3]is provided in Appendix [C]
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1 Introduction

Research aims at pushing boundaries of knowledge further into the unknown. Yet any
research must acknowledge its own limitations. The discipline it is located in, the topics
within this discipline that it devotes itself to and the process in itself eventually determine
that special spot that individual research occupies. As naturally as that spot emerges
and as inevitable as the process leading to it seems, research should be prepared to
answer the question of which purpose it serves. Research questions arise from various
observations and occasions and hence the answers to that question might be as diverse
as individual research is.

In this thesis we investigate aspects of parametric option pricing. We pursue thorough
theoretical investigations, propose numerical implementations that meet practical needs
and embed our results into thorough error control regimes. In this regard the diffuse
noise from a collapsing global economy in 2007 that echoes until today was the question
we encountered and we offer our results as parts of an answer.
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1 Introduction

We briefly summarize the main contributions of this thesis.

Chapter 3

Chapter 4

Chapter 5

First, we introduce a method for solving pricing PIDEs using a finite ele-
ment approach that is highly flexible in the model choice and numerically
feasible. We implement the method using mollified hat functions and
splines as basis functions and empirically confirm theoretically prescribed
convergence rates. In the second part of the chapter we generalize sta-
bility and convergence results for approximate solutions to PIDEs of [von
Petersdortf and Schwab) (2003)) to time-dependent bilinear forms of Gérd-

ing type.

These contributions are separately presented in |Gal and Glau (2016]) and
support the studies in Burkovska, Gaf, Glau, Mahlstedt, Mair, Schoutens
and Wohlmuth (2016). Parts of this chapter also appear in |Gafs and Glau
(2014).

We apply the Chebyshev interpolation method of Trefethen| (2013) to
option pricing. Interpreting the characteristic function of a Lévy model as
a function of the model parameters, we derive areas in the parameter space
that these functions are analytic on thus providing examples that fulfill
theoretical requirements for exponential convergence of the method. We
perform thorough numerical studies that validate the theoretical claims
of exponential convergence and emphasize the gain in efficiency.

These contributions are separately presented in Gaf, Glau, Mahlstedt
and Mair (2016).

We apply the empirical interpolation method of |[Barrault et al.| (2004) to
option pricing. For a variety of Lévy models we derive conditions on the
parameter space that guarantee the existence of a strip of analyticity of
the associated characteristic function. We present a variety of numerical
studies that validate theoretical claims of exponential convergence of the
method and emphasize its suitability for the approximation of option
prices in several free parameters in the one-asset case. In the second part
of the chapter we resolve the recursive nature of the interpolation operator
and thus provide the possibility to apply the method numerically feasibly
for pricing options on several assets, as well.

These contributions are separately presented in Gaf, Glau and Mair (2015)
and |Gaf and Glau/ (2015)).
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2 Preliminaries

In this chapter we gather some elementary concepts and results that the main parts of
this thesis rely on. The following sections of this chapter are by no means exhaustive
regarding the topics they present. Yet, they aim at providing a theoretic overview
containing the most important cornerstones necessary for a full understandings of the
main concepts that the following chapters investigate.

2.1 Fourier theory

The first section in this preliminary chapter is devoted to Fourier theory. The Fourier
transform has been extensively studied, see Bracewell| (1999) for an introduction. Today,
the transform lies at the heart of many applications in statistics and beyond. Appendix 1
of Kammler (2007) provides an idea of the rich scope of Fourier analysis.

The following definitions set up the Fourier transform framework that we shall use in
this thesis. Since there are different various of Fourier transforms we emphasize that all
Fourier related content of this work traces back to the concept of the Fourier transform
as outlined by the following Definition

Definition 2.1 (Fourier transform)
Let f :RY — R be an integrable real valued function, f € L'(R%). We define denote by

f or F(f) the Fourier transform of f, defined by

fo =Fn© = [ ¢ f@de, veer? (2.1)

In (2.1), the bilinear form (-,-) denotes the Euclidian scalar product.

Under certain conditions, an integrable function f can be reconstructed by inverting
the associated Fourier transform. The following lemma provides an inversion theorem
for smooth functions in one dimension, d = 1, that we cite from [Stein and Shakarchi
(2003)).

Lemma 2.2 (Fourier inversion)
Let f : R — R be the Fourier transform of a function f € S(R), where

SR)={f € C®R)| sup z|" | fD(z)] < 00, for every k,1 > 0},
zeR
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2 Preliminaries

the so called Schwartz space. Then the relation

1 ey~
f@) = g [ e OF©d veer (22
(2m)? Jpa
holds.
Proof
We refer to the proof of Theorem 1.9 in |Stein and Shakarchi| (2003]). O

When the function f in expression is taken to be a probability density function,
the respective integral can be cast as an expected value. In this sense, Fourier analysis
is easily linked to probability theory. Thus, unsurprisingly, Fourier transforms for many
probability density functions have been derived and analyzed. The following lemma gives
the Fourier transform of the normal distribution as an example.

Lemma 2.3 (Fourier transform of the Normal density)
Let f*7 be the density of the univariate Normal distribution N (u, o) with expected value
u € R and standard deviation o > 0,

7 () = \/21? /R exp (-W) de. (2.3)

The Fourier transform f/l‘\(’ = F(f™°) of f* exists and is given by

Fro () = et 3 (2.4)
for all £ € R.
Proof
See Theorem 15.12 in Klenke (2008). O

The Fourier transform possesses many convenient properties that we exploit heavily
throughout this theses. The following lemma collects some of these properties.

Lemma 2.4 (Properties of the Fourier transform)
Let y € R? and a € R\{0} be given and let f,g € L*(R?). Define f, = f(- —y) and
f*= f(a"). Then, the following equalities hold.

i) The Fourier transform of f shifted by y computes to

~ ~

f,&) = fE),  veeR™

ii) The Fourier transform of f with its argument scaled by a computes to

Fi(e) = Qf(s/a% vE € RY
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iit) The Fourier transform of a convolution is given by the product of the two individual
Fourier transforms,

— ~

(f*9)(&) = f(&)g(&),  VEeR™

Proof
i)-ii) Elementary calculations.

iii) With f,g € LYR?), also f *x g € L'(R?). The Fourier transform of the convo-
lution thus exists. Inserting the definition of both the Fourier transform and the
convolution we derive for ¢ € R?

F© = [ € (f19) @) s
= /Rd &) [ S 09w) dy} dz.

By applying Fubini’s theorem twice and with the substitution z = x — y we have
L | [ sa-namas|a= [ ] €50 o) day
R4 R4 Rd JR4
= [ [ e g dzay
R4 JR4
= / &2 f(z)dz / Y g(y) dy
Rd

R4

~

= f(€)9(5),

which proves the claim. O

Remark 2.5 (Dampening)
When a function f : R — R is not integrable, f ¢ L'(RY), its Fourier transform doesn’t
exist. Yet, if there exists n € R such that

fo(z) = ) f(2), Vz € RY, (2.5)

is in LY(RY), we can derive the Fourier transform of fn and thus introduce the concept
of a generalized Fourier transform.

Definition 2.6 (Generalized Fourier transform)
Let f : RT — R and n € R? such that f, = e f e LY(RY). We call

Fa€) = eI f(6),  VEER! (2.6)
the generalized Fourier transform of f. We sometimes write
Jo = F(-— ). (2.7)

We call n € R? such that fn € L'(R%) a dampening constant and the term elm) g
dampening factor of f.
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The following theorem introducing Parseval’s identity will be a crucial cornerstone of
this thesis. It allows computing the integral of a product of functions by integrating
the product of the two respective Fourier transforms, instead. The value of this identity
for practical applications becomes evident, when numerical integration of functions is
concerned which are difficult to evaluate but posses a Fourier transform in closed form
at the same time.

Theorem 2.7 (Parseval’s identity)
Let f,g € L*(R?). Then we have the identity

b = [ gt de = g | Flerae)ac

which is called Parseval’s identity.

Proof
See Equation (10) on page 187 in |[Rudin| (1987). O

Parseval’s identity of Theorem draws our attention to integrability properties of
Fourier transformed functions. While a function f might be difficult to evaluate, its
Fourier transform f might be easy to evaluate, but difficult to integrate. The next
remark expands on this issue.

Remark 2.8 (On the relation between smoothness of f and decay of f)

There is an interesting relation between the smoothness of a function and the rate of
decay of its Fourier transform. Let f € C™(R) and () = %f € LY(R). Then, the
Fourier transform of f exists. By repeated integration by parts it can be expressed in
terms of f by

Fe) = [ e ) da
— (_j i€x p(n—1)
“@/Re £V (@) da
Sy /R €% f(x) da

= (=i&)"F(€)
for all ¢ € R. The Fourier transform of a function in L'(R) is also in L'(R). Conse-

quently, f(n) = (—z)”]? € L'(R). We conclude that f decays faster to zero than |&|™
diverges to infinity for |{| — too. In the same manner, decay properties of the Fourier
transform of a function translate into smoothness properties of the function itself.

(2.8)

Relation ([2.8) of Remark will have a material impact with regards to numerical
implications in Chapter
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2.2 Lévy process theory

We have already briefly touched upon the relation between Fourier analysis and proba-
bility theory in the remarks preceding Lemma [2.3 above. In this section we introduce a
class of distributions, or rather a class of stochastic processes, that can even be charac-
terized in Fourier terms, that is the class of Lévy processes. The majority of asset models
that we consider in this thesis falls into this class. Models contained therein share the
property that the log-asset process is modeled by a Lévy process. We therefore introduce
the fundamental definitions and results of Lévy process theory in the following. We begin
by citing |Sato| (2007)) for the definition of a probability space and a Lévy process.

Definition 2.9 (Lévy process)
We call a d variate stochastic process (L¢)i>0 on a probability space (2, F,P) a Lévy
process if the following conditions are satisfied.

i) For any choice of n > 1 and0 <ty <ty < --- < tp, random variables Ly,, Ly, — Ly,
Lyy — Ly, ..., Ly, — Ly are independent (independent increments property)

n—1

ii) Lo =0 a.s.

ii1) The distribution of Lsyy — Ls does not depend on s (temporal homogeneity or sta-
tionary increments property)

iv) It is stochastically continuous

v) There is Qo € F with P(Q) = 1 such that for every w € Qo, Li(w) is right-
continuous in t > 0 and has left limits in t > 0.

With (L)¢>0 being a Lévy process, the random variable Ly for ¢ > 0 belongs to the large
class of infinitely divisible distributions. Such distributions and thus also Lévy processes
can be beautifully characterized via their Fourier transform.

Lemma 2.10 (Fourier transform of a Lévy process)
Let (Lt)t>0 be a Lévy process on R?. Let t > 0 arbitrary but fiz. The characteristic

function E of the random variable Ly is defined as
Li(&) =E[¢'M)],  vEeR, (2.9)

and there exists a cumulant generating function 6 such that the characteristic function
of Ly can be represented by

Li(§) =€, veeR? (2.10)

with 6 given by

0(i€) =i(e.b) — 56 o€ + [ 6 1-ie RGP, VEeRY  (211)

R4
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with ¢ € R¥™4 o symmetric, positive semi-definite matriz, a drift term b € R? and a
Borel Lévy measure F' satisfying

F({0}) =0, /Rd min{1, |y|*} F(dy) < oo, (2.12)

and for some cut-off function h : R* — R that is a bounded measurable function with
compact support and

h(z) == (2.13)
in an environment of the origin.
Proof
Confer the proof of Theorem 8.1 in |[Sato (2007)). O

Due to its significance to Lévy theory, the triplet (b, o, F') characterizing a Lévy process
through its cumulant generating function in (2.11]) is given a name by the following
definition.

Definition 2.11 (Characteristic triplet)
Let (Lt)t>0 be a Lévy process. We call the triplet (b,o, F') of Lemma |2.10} the character-
istic triplet of the Lévy process (Lit)i>o-

Note that the characteristic triplet of a Lévy process depends on the cut-off function h
in . Given an additional property that not all Lévy processes share, the cut-off
function can be replaced and the cumulant generating function can be rewritten in the
sense of the following remark.

Remark 2.12 (Disregarding the cut-off function)

Let (Lt)t>0 be a Lévy process with characteristic triplet (b,o,F'). Identity of
Lemma [2.10 states the general form of the cumulant generating function of a Lévy pro-
cess. If the Lévy measure F' additionally satisfies

/ |z|F(dz) < 0o (2.14)
lz[<1
we may use the zero function as cut-off function, h = 0, leaving us with
~ 1 4
0ie) =i(e.B) - 5(6o€) + [ (0 D@y, veeR,  (215)
R4
with an appropriately adjustedg e R? given by

b=b— /R [ h()F(dy) (2.16)

and thus an equivalent characteristic triplet (b,o, F') with the zero function as cut-off
function, compare Remark 8.4 in|Sato, (2007).
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We will need to extend the domain of the characteristic function of a Lévy process to
parts of the complex plane. This extension is well-defined under the assumptions of the
following theorem taken from Sato (2007)).

Theorem 2.13 (Exponential Moments)
Let (Ly)¢>0 be a Lévy process on R with characteristic triplet (b, o, F). Let

C= {c eR? | el P(dx) < oo} . (2.17)

lz|>1
i) The set C is convex and contains the origin.

i) ¢ € C if and only if E[e!*1)] < oo for some t > 0 or, equivalently, for everyt > 0.

i) If w € C? is such that R(w) € C, then

1
Y(w) = (b,w) + 5 (w, ow) +/ (e =1 — (w, h(y))) F(dy) (2.18)
Ra
is definable, E[|e{""L*)|] < oo, and

Efje!t]] = e, (2.19)

Proof
For a proof confer the proof of Theorem 25.17 in Sato, (2007). U

We are now equipped with the quantities needed to introduce the notion of the symbol
of a Lévy process. It will become clear later in the thesis that this concept builds a
bridge from Fourier representations of Lévy processes to the theory of partial (integro-)
differential equations.

Definition 2.14 (Symbol of a Lévy process)
Let (Ly)i>0 be a Lévy process on R with characteristic triplet (b,o, F). The symbol
AR — C of the Lévy process (Li)¢>0 is defined by

AQ) = ile0) + 5606 — [ (exp(-ile) ~ L+ilE M) F(dy)  (220)

n

for all € € R,
The symbol A of a Lévy process is a crucial quantity in this thesis. As pointed out in
Glaul (2015) one may show that there exists a constant C' > 0 such that

A <O+ €l)?,  vEeR? (2.21)

The notion of a symbol, however, is not exclusively reserved for Lévy processes. Indeed,
other measurable functions satisfying inequalities in the fashion of (2.21]) are called sym-
bols as well and establish a link between the roots of these quantities in Fourier theory to
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the topic of partial (integro-)differential equations. To properly generalize the concept
of symbols, we first need to cite the definitions of the Schwartz space S(R?) from [Eskin
(1981), that we have already encountered in the special case of d = 1 in Lemma
above.

Definition 2.15 (The Schwartz space S(R%))

The space S = S(R?) is defined as the totality of all infinitely differentiable functions
@ in the d-dimensional space R such that o(z) and all derivatives %gp(x) with multi-
index p = (p1,...,pa) of nonnegative integers decrease more rapidly than any negative

power of ||z as ||z|| = y/2? + - + 22 — 0.

Eberlein and Glau| (2011)) extend the notion of a Schwartz space to the weighted Schwartz
space.

Definition 2.16 (The exponentially weighted Schwartz space S,(R?))
Forn € RY [et

Sy(RY) = {u € C*R?,C) [[|ull,y,,, < 00, ¥m € No} (2.22)
with
el = He<’7">s0Hm, (2.23)
wherein for every m € Ng the norms ||-||,, are defined by
]l = sup sup (1 + |2[*)™[DPp(z)]. (2.24)
|p|<m zeRd

We denote the dual space of Sy(R?) by S;(R?).

Following |[Eskin| (1981)) and |Glau (2015]), we define the general notion of a symbol A :
R? — C and connect it with the concept of pseudo-differential operators.

Definition 2.17 (The class Sg and related pseudodifferential operators)

Let (Asejo,r)) be a family of measurable functions A : [0,T] x R? — C satisfying with
a€ (0,2 and 0 < B <«

|A(€)] < C1(1 +[|€]1%)*/2, vVt € [0,T),€ € RY,

2.25
R(A(€)) = Coll€]|* — C5(1 + ||E1P)P72, vt e [0,T],6 e RY, (2:25)

for some C1,Co € RT and C3 > 0 independent of t € [0,T]. Each function A; is called
a symbol. We denote the set of functions satisfying ([2.25) by S°. With t € [0,T], the
operator A; defined on S(RY) by

A= 55 /R (AQuE)eT e g, vu e S(RY), (2.26)

is called pseudodifferential operator with symbol A;.
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Definition 2.18 (Sobolev index )
Let A be a symbol. Following Glay, (2015) we call the parameter o € (0,2] of (2.25|) the
Sobolev index of symbol A or the order of the associated operator A, respectively.

Remark 2.19 (On the symbol and the Fourier transform of a Lévy procegs)
Let (Lt)t>0 be a Lévy process with characteristic triplet (b, o, F'). Considering Lemma|2.1()
and Definition [2.1], we note that the associated symbol A satisfies the relation

AQ) = ile.) + 5(606) = [ (exp(-il6n) ~ L+ iGN Fldy)  (220)

= —0(-i¢)
= —0i(=¢)).

Thus, we realize an interesting connection between the Fourier transform of a Lévy pro-
cess, its cumulant generating function and the symbol in the sense that

Ly(€) = exp(th(i€)) = exp(—tA(—¢)),

for all £ € RY.

2.3 Some Lévy asset price models

We present a selection of asset models of Lévy type that will accompany us throughout
the whole thesis. Some of these model introductions are taken from Gaf et al.| (2015). In
what follows we denote by Q the parameter space that the model as such is defined on.
In later chapters, we will consider these models on possibly restricted parameter spaces
Q C Q only, which is the reason for this minor notational inconvenience. Throughout
all model introductions, the constant » > 0 denotes the risk-free interest rate. Each
model is driven by an appropriately chosen Lévy process (L{)i>0, ¢ € Q. The asset price
process is then given by

Sy = Spelt, Sy >0, VteRT, (2.28)

where (2.28) is understood componentwise when a d-variate model is concerned. For
each model we state the characteristic function of L1, T € T, for some chosen time

horizon 7 and ¢ € Q that is
orq(z) = @(z) = E[e<iz’LqT>], z e R (2.29)

In finance, the characteristic function of a Lévy process is a useful quantity in
pricing, as we will see in the next section. To this end, however, the drift b of the process
must be adjusted for the discounted asset process (Soe_”*Lg)tzo to become a martingale.
This is ensured by the so called drift condition. Let r > 0 denote the risk-less interest
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rate and (b, o, F) the triplet of (L{);>¢ in (2.29)), then the requirement for the discounted
asset process of (2.28)) to be a martingale is equivalent to

/ eF(dy) < oo (2.30)
ly[>1

with the drift b being set to

0.2

b=r— 5 /R(ey —1—h(y))F(dy), (2.31)

compare for example |Achdou and Pironneau (2005). We present some typical examples
for such exponential Lévy models below.

2.3.1 Multivariate Black&Scholes model

The famous model of Black and Scholes| (1973)) marks the big bang of mathematical
finance and earned its two inventors the Nobel price. The model allows the modeling
of asset-price movement, albeit on an elementary level from today’s point of view. A
volatility parameter of the log-asset price process — and additional covariance parameters
in the multivariate case — suffice to set up the mathematical model. More precisely, the
d-variate Black-Scholes model is driven by a d-variate Brownian motion. The parameter
space of the model solely consists of values determining the underlying covariance matrix
o € R™? which is symmetric and positive definite. For a concise representation of the
parameter space, we define Q as

Q = {q € RUD/2| det(o(q)) > 0} c RUHD/2 (2.32)
with the function o : R4@+1)/2 _, Rdxd defined by

J(Q)ij = q(max{i,j}—1) max{i,j}/2+min{s,j}» i,J € {1? B d} (233)

By construction, o(g) is symmetric. The characteristic function of the process L%, T € T,
q € Q, driving log-returns in the model is then given by

or4(z) = exp (T(i(b. 2) - %(z, 02))). (2.34)

for all z € R? with drift b = b(q) € R? adhering to the no-arbitrage condition ([2.31))

1
b;=r— 5011, 1€ {1,...,d}. (2.35)
Note that for each ¢ € 8) given by (2.32), the characteristic function of the d-variate
Black&Scholes model is analytic in z on the whole of C¢. Figure displays some asset
price trajectories (St);e(o,1) in the univariate Black&Scholes model for various values of

o€ Q.
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2.3.2 Univariate Merton jump diffusion model

Black&Scholes Model Trajectories

1.3 F
o =0.05
o=0.2
1.2 o=0.35
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\5-3-4/ i<, fl NI .~ A
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0.8

Figure 2.1 Three asset price trajectories in the univariate Black&Scholes model for
different parameter sets with Sp = 1 and r = 0.03.

2.3.2 Univariate Merton jump diffusion model

In the univariate case, the Merton Jump Diffusion model by naturally
extends the Black&Scholes model to a jump diffusion setting. The logarithm of the asset
price process is composed of a Brownian part with variance ¢2 > 0 and a compound
Poisson jump part consisting of normally N (a, 3?) distributed jumps arriving at a rate
A > 0. The model parameter space is thus given by

0 ={(c,0,B,)) € R* xR x R} x R*} c R (2.36)

and the characteristic function of Lf, with T € T, ¢ € ) computes to

0-2 2 ; 52 2
o1,4(2) = exp <T <z’bz -5 + A <e”°‘2z - 1>>> , (2.37)

for all z € R, with no-arbitrage condition ([2.31)) demanding

2 2
8

b:r—UQ—/\<ea+2—1>. (2.38)

As in the univariate Black&Scholes model, for each ¢ € Q and T > 0, the characteristic
function @7, of the Merton model is holomorphic. In Figure we simulate three
trajectories of the Merton jump diffusion model. Both the structural proximity to the

Black&Scholes model and the distinguishing jump feature are clearly visible.
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Merton Model Trajectories
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16 0=035A=3,a=0.1,§=0.2
15}
14}

3

= 13

b

<]

I n
121 M/\ M\,\M‘ WM\N’”

11f ]
1 &.‘w**w»

09

08 1 1 1 1 1 1 1 1 1 |

Figure 2.2 Three asset price trajectories in the Merton model for different parameter
sets with Sy = 1 and r = 0.03.

2.3.3 Univariate CGMY model

Another well known Lévy model that we consider is the univariate CGMY model by
(Carr et al.| (2002). This class is also known as Koponen and KoBoL in the literature, see
also [Boyarchenko and Levendorskii| (2002a) and as tempered stable processes. With the
model parameter space given by

0 ={(C,G,M,Y) e Rt xR} xR x (1,2)|(M —1)" e R} C R%, (2.39)

the associated characteristic function of L1, with T € T, g € Q computes to
¢1,4(2) = exp (T'(ibz + CT(-Y)
(M —iz)Y — MY +(G+i2)" —GY])),

for all z € R, where I'(+) denotes the Gamma function. For no-arbitrage pricing we set
the drift b € R to

b=r—CI(-Y)[(M-1)" - MY +(G+1)¥ -G"]. (2.41)

(2.40)

2.3.4 Univariate Normal Inverse Gaussian model

Another Lévy model we present is the univariate Normal Inverse Gaussian (NIG) model.
The parameterization consists of 6, > 0, 3 € R, with a? > 42. The model parameter
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NIG Model Trajectories

135 L 0 =00-01La=15 =1

6=0286=02 a=2 8=—05
13k 0=015,5=001,a=2, =05
1.25 F >

Figure 2.3 Three asset price trajectories in the NIG model for different parameter sets
with Sop = 1 and r = 0.03.

set Q is thus given by
Q={(0,0,8) eRT xRT xR| a® > % a® > (3 +1)*} C R%. (2.42)

The characteristic function of L%, for this model is given by

or14(2) = exp (T (ibz +90 (\/&2 — Va2 — (B +iz ))) (2.43)

forT €T, qc¢€ @, wherein the no-arbitrage condition requires
b=r—§ <\/a2 —Var—(B+1) ) (2.44)
The second condition in , a? > (B + 1)%, guarantees b € R. Figure displays

three sample paths of the NIG model. Graphically, the pure jump characteristic result
in paths consisting of dots rather than connected lines.

2.3.5 Multivariate Normal Inverse Gaussian model

The NIG Lévy model exists in a multivariate version. Then, the parameterization con-
sists of §,a > 0, B € RY A € R¥™9 symmetric with det(A) = 1 and o? > (8,AB). The
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2.3.5 Multivariate Normal Inverse Gaussian model

model parameter set Q is thus given by

Q={(5,a,8,)) € Rt x Rt x R? x RU¢+D/2
|a? > (8, A(N)B), det(A(N)) =1, (2.45)
o > {((B+e), AN(B+e)), Vie{l,...,d}} C R2Hd+d

where ¢; = (0,...,0,1,0,...,0) for all i € {1,...,d} and wherein we define the function
A : RU@+1)/2 _, Rdxd by

A(N)ij = Nmax{ij}—1) max{i,j}/24min{ig}>  &J € {1,...,d}. (2.46)

The characteristic function in the d variate NIG model is given by

01.4(2) = exp <T <¢<b, 2) + (5<\/a2 —(B,AB) — /a2 — (B +iz, A(B + iz))))) (2.47)

with T € T, q € Q. In a multivariate model, the no-arbitrage condition (2.31) must
hold componentwise and thus requires

bi=r—6(Va? = (B,A8) — Vo> —{(B+e). AB + <)) (248)

foralli € {1,...,d}. Equivalently to its univariate version, the third condition in ,
a® > ((B+e), A(B+e)) for all i € {1,...,d}, guarantees b € R Note that for d = 1,
we have A = 1 and the expression for the d variate characteristic function for the NIG
model collapses to its unvariate counterpart. For notational convenience when dealing
with the univariate model in numerical experiments, later, however, we decided to split
the introduction of the model in the two cases d =1 and d > 1.

2.4 Parametric option pricing with Fourier transform

Combining Fourier theory of Section 2.1 with Lévy theory of Section [2:2]in general and
invoking the Lévy models we presented in the preceding Section [2.3| in particular now
allows us to introduce the main concepts and prerequisites for option pricing based on
the Fourier transform. The approach of pricing options using Fourier concepts has been
initiated by [Stein and Stein| (1991)) and Heston (1993) and has gained tremendous success
in both academia and industry alike. A special emphasis on Lévy models and related
models in Fourier pricing has been taken by Carr and Madan! (1999), Raible (2000) and
Duffie et al.| (2000)) to which we refer for an in-depth analysis of the matter.

We have given the following introduction into option pricing with Fourier transform
methods in |Gak et al.| (2015) already where we compute option prices of the form

Price” T4 .= E[fx (L1)] (2.49)
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with parametrized payoff function fx : R? — R and a parametric Fp-measurable R?-
valued random variable X7 for payoff and model parameters K € K C RPY T €T C
RP2 g € Q c RP3 denoting D = Dy + Dy + Ds. Furthermore, let

p=(K,T,q) € P where P=KxT x Q.

In order to pass to the pricing formula in terms of Fourier transforms, we impose the
following exponential moment condition for n € R?,

E[e_<”’X%>] <oo forall (T,q)eT xQ, (Exp)

which allows us to define for every (T,q) € T x Q the extension of the characteristic
function of X4 to the complex domain R? + 47,

o1q(2) = E[e*XD)], forall » = € +in, € € RY (2.50)
We further introduce the following integrability condition
x> e (x), € = org(€ +in) € LYRY) for all (K, T,q) € P. (Int)

As indicated above, the Fourier representation of option prices traces back to the pio-
neering works of (Carr and Madan| (1999) and Raible| (2000). The following version is an
immediate consequence of Theorem 3.2 in [Eberlein et al.| (2010).

Proposition 2.20 (Fourier pricing)
Let n € R? such that (Exp) and (Int) are satisfied. Then for every (K,T,q) € P,

‘ 1 —~
Price®T1 = (2n)d /]Rd-&-' fr(=2)pr,4(2) d2. (2.51)
in

Typically, that is for the most common option types, the generalized Fourier transform
of fx is of the form . ‘
frx(2) = K*T°F(2) (2.52)

for every z € R? + in with some constant ¢ € R and a function F : R? 4 in — C. Then
the option prices (2.51)) are indeed parametric Fourier integrals of the form

1 .
Price®T1 = o) /Rd ‘ e_z<z’1°g(K)>KCF(Z)SOT,q(Z) dz. (2.53)
+in

As a first step in the numerical evaluation of (2.53)) we employ an elementary symmetry
and obtain

/Rd+z'n ]/CI\((_Z)SOT,q(Z) dz =2 /R+><Rd1+in ?R(f;((—z)sgﬂq(z)) dz, (2.54)

which reduces the numerical effort by half.
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Lemma 2.21 (Generalized Fourier transform of European vanilla options)
Let g : R — R(J)r be the payoff profile of a Furopean option, that is

g(z) = (" — K)T, Vr € R, (2.55)
for the European call option and
g(z) = (K —e")*, Vo € R, (2.56)

for the European put option, respectively. In both payoff profile functions, K € RT
denotes the strike price. Then, the generalized Fourier transform computes to

Kié+n+1
F =g (&) = — . 2.57

wherein we choose

n< —1, for the call option, and (2.58)

n >0, for the put option, '
for the generalized Fourier transform to exist.
Proof
The lemma is proved by a straight-forward calculation. (]

The structure of the Fourier transform of the payoff profiles of univariate plain vanilla
European options extends to the multivariate case as well, as the following lemma demon-
strates.

Lemma 2.22 (Generalized Fourier transform of European call on d assets)
The payoff profile of a call option on the minimum of d assets with strike K € RT is
defined as

fr(x) = (e Ne™2 A---Ne" — K)7T (2.59)

for x = (z1,...24)" € RL With weight value n € R, n; < —1, for all j € {1,...d}, the
generalized Fourier transform of the multivariate fx is

_K1+Z‘f:1(izj+nj)

(2 +in) = (-1)¢ :
" [15=; (izj +my) (1 + 30 (i + nj))

(2.60)

Proof
The result is taken from Example 5.7 in [Eberlein et al.| (2010). O
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2.3.5 Multivariate Normal Inverse Gaussian model
2.5 Sobolev spaces

Fourier theory has presented itself as an established theoretical framework for option
pricing. By Proposition [2:20, option prices based on the stochastic nature of stock
movements are expressed in terms of expected values and transformed to Fourier inte-
grals. Recalling the seminal paper of |Black and Scholes (1973), however, we understand
that the pricing problem has initially been embedded in the theory of partial differential
equations, a field that seems totally unrelated at first sight.

Yet, these two theories are just two different perspectives on the same problem. The first
main chapter of this thesis will consider option pricing through the lens that it has been
originally discovered with, that is the theory of partial differential equations. As we shall
see in the following chapter, for solutions to partial differential equations in finance to
exist, the notion of differentiability needs to be weakened. For a univariate, real-valued
function f, the classic or strong derivative at x € supp(f) C R is given by the limit
Flz) = ai ()= lm 1G&F hf)b —J@) (2.61)

h—0
z+h € supp(f)

so it exists. By this definition, however, the function ¢g : R — R, defined by

wo(z) = (1= [z]) - Ty
is not differentiable at x € {—1,0, 1} because the limit does not exist for these values.
The choice of ¢ as an example for a function not differentiable everywhere might appear
random right now. Yet, precisely functions of this kind will play a key role in the theory
of solving partial differentiable equations in the next chapter, both theoretically and
numerically. The concept of differentiability must thus be widened until it contains
functions like g, as well.

We thus introduce the new concept of so called weakly differentiable functions which in a
second step will constitute function spaces that solutions to partial differential equations
in finance live in. We follow Seydel (2012) in defining the concept that generalizes the
classic understanding of a derivative.

Definition 2.23 (Weak derivative)
Let Q C R™ and let

C3P(Q2) = {v € C(Q) | supp(v) is a compact subset of QA}.

For a multi-index o = (a1, ..., o) with a; € Ng for all i € {1,...,n} define

o] = a;. (2.62)
i=1
With o a multi-index we call

N olel
(_D U)(.’L‘l,...,xn) = mv($l7...,xn) (263)
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the partial derivative of v of order |a|. Let u: Q — R be a real-valued function. If there
exists w € L*(Q) with

/ uD% dz = (—1)l / wov dz, for all v e CF°(Q), (2.64)
Q Q

we define D*u = w the weak derivative of u with multi-index a. Sometimes we also call
D%y the derivative of u in distributional sense.

From Definition 2:23] we understand that weak differentiability is not a pointwise property
like strong differentiability is but rather a global property that acts on integration against
test functions. Having Definition 2:23]at hand, we can now build up new function spaces
and introduce the notion of Sobolev spaces.

Definition 2.24 (Sobolev spaces HF)
Let Q C R™ and k € Nyg. We define the Sobolev space

H5(Q) = {v e L*(Q)| D*v € L*(Q) for |a| < k}, (2.65)

with D% being the weak derivative of Definition |2.23. For a < b € Q we define the
subspace HE(a,b) C H¥(Q) by

HE(a,b) = {v e H*(Q)|v(a) = v(b) = o} . (2.66)

For the upcoming definition of fractional Sobolev spaces H®, s € RT, we follow |Glau
(2010).

Definition 2.25 (Fractional Sobolev spaces H*(R%))
Let s € RY. We define

H3(RY) = {v € §'(R?) | F(v) € Lipo(RY), such that 0] g gga) < oo} , (2.67)

wherein F(v) denotes the Fourier transform of v, see Deﬁm’tion and the norm ||-|| zs
s given by

[l g (may = \//Rd IF)(©P (1+[¢)*de, Vo e S'(RY). (2.68)

We call the space H*(RY) a fractional Sobolev space of order s.

Definition 2.26 (Fractional Sobolev spaces ﬁs(a, b))
For s € RT and a < b € R we define by

H*(a,b) = {v € H*(R) | v|g\(ap = 0} (2.69)

a subspace ﬁ[s(R) C H*(R) of the fractional Sobolev space of Definition .
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Definition 2.27 (Sobolev space H'(2))
The space H'(Q) denotes the space of functions u € L?(Q) that possess a weak derivative
(of first order) in L?(). The scalar product of H(S)) is defined by

(u, V) () := (Ou, Ov) 12(0) + (U, V) [2(Q) = /Qau(x)av(x) dz + /Qu(x)v(x) dz. (2.70)

Consequently, the norm of the space, ||| g1 (q) s given by

ull 1) = /(W) 10, (2.71)

for all w € HY ().

Even though Sobolev spaces contain functions that are not even differentiable in the
strong sense, they maintain a close relationship to infinitely smooth functions in the
strong sense, as the following theorem emphasizes.

Theorem 2.28 (C*°(Q2) N H(Q) dense in H(R))

The intersection of C*(Q) with H'()), C°°(Q) N HY(Q) is dense in H().

Proof
The claim follows from Theorem 3.5 in [Wloka (2002)) where a proof is provided. g

Definition 2.29 (H}(2))
The completion of the space CG°(Q) in the norm ||-[| g1 (q), is denoted by HE(Q),

HL(Q) = Oy e, (2.72)

In the Fourier section above, we have already encountered the idea of exponentially
weighting non-integrable functions with an appropriately chosen value 1 € R? to achieve
integrability of the transformed result. There, the weighting approach aimed at making
Fourier pricing accessible to plain vanilla European call and put options, the payoff func-
tions of which lack integrability and can thus not be Fourier transformed. The following
definition extends the weighting approach to Sobolev spaces that we have just intro-
duced. In the context of pricing plain vanilla European call and put options, weighted
Sobolev spaces will be as important to PDE theory as the generalized Fourier transform
has been to Fourier pricing. We give the respective definition following |Eberlein and
Glau/ (2011)).

Definition 2.30 (Weighted Sobolev-Slobodeckii space H, (R9))
Let s € R and n € R, The weighted Sobolev-Slobodeckii space H;(Rd) is defined by

Hi(RY) = {u € SH(RY) | H.F(e<’7">u)

< oo} (2.73)
with the scalar product
(u,v) g = (F(el™ ), F(e™)v)) ., (2.74)
with
() = [ ORI +1€D* de. (275

37



2.3.5 Multivariate Normal Inverse Gaussian model
2.6 Other concepts

This final section of the preliminary chapter summarizes some other concepts that we will
encounter within the thesis. We begin by stating some definitions concerning Banach,
Hilbert and related spaces. The section closes with a repetition of other elementary
definitions. Stating them now in the preliminary section will later allow us to present
our main results without unnecessary distractions.

We state the definition of a Banach and a Hilbert space that we took from |Grossmann
et al.| (2007).

Definition 2.31 (Banach space)
Let U be a linear space endowed with a norm ||-||; : U — R that is a mapping with the
following properties

i) |lull; >0, for allu e U, |lully =0 u=0,
@) || Aully = |Allully, forallueU, X\ eR,
i) Ju -+ vlly < lully + lolly,  for all w,v € U.

The space U endowed with the norm ||-||;; is called a normed space. A normed space is
called complete if every Cauchy sequence (ug)g>1 C U converges in U. Complete normed
spaces are called Banach spaces.

Definition 2.32 (Hilbert space)
Let H be a Banach space. If the norm |-||,, in the space is induced by the scalar product

(9n:HXH—=R,
lully = V{uw,wyn,  VueH, (2.76)

we call the space H o Hilbert space.

Definition and Theorem 2.33 (Separability of Hilbert spaces)

Let H be a Hilbert space. If H is finite dimensional, then it is separable, that is it contains
a countable dense subset. If H is infinite dimensional, it s separable if and only if it has
an orthonormal basis.

Proof
Consider the proof of Theorem 3.52 in Rynne and Youngson| (2000)). U

The next few definitions and results build on the Hilbert space theory and prepare it for
the notion of solution spaces to partial differential equations in finance.

Definition 2.34 (The space L?(0,T;%H))
For each Hilbert space H we define the function space L*(0,T;H) by

T
L*0,T;H) = {u:[0,T] = H| /0 Ju(t)]7,dt < oo} (2.77)
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2.3.5 Multivariate Normal Inverse Gaussian model

We take the definition of a Riesz basis from |Christensen| (2013).

Definition 2.35 (Riesz basis)
Let H be a Hilbert space. A Riesz basis for H is a family of the form (U ey)r>1, where
(ex)k>1 1s an orthonormal basis for H and U : H — H is a bounded bijective operator.

We follow page 15 from Arendt et al|(2011) and give the following definition.

Definition 2.36 (The space C"([0,T];H))

Let H be a Banach space and T > 0. We denote by C([0,T];H) the vector space of all
continuous functions f: [0,T] — H. Withn € N we denote by C™([0,T];H) the vector
space of all n times differentiable functions with continuous n-th derivative, that is the
space of all functions f such that for all k € {0,...,n — 1} the limits

Frm = ling At
t+Ate[0,T]

exist for all t € [0,T] with f©, ..., f) being continuous and the convention f© = f.

We cite the following Definition from page 15 of |Arendt et al| (2011).

Definition 2.37 (Absolute continuity of a function)
Let a < b € R and let X be a Banach space. Let f : [a,b] — X. We say that f is
absolutely continuous on [a,b] if for every e > 0 there exists 6 > 0 such that

Dol = flallx <e (2.78)
i€l
for every finite set {(ai,bi)}icr, I C N, |I| < oo, of disjoint intervals in [a,b] with
Ziel(bi — ai) < 9.

Consider also Chapter VII in Elstrodt| (2011]) on the notion of absolute continuity. It is
well known that absolute continuity is a weaker concept than continuous differentiability
as far as functions on compacts are concerned. In other words, continuous differentiability
of a function defined on a compact interval implies absolute continuity as the following
lemma demonstrates. We give a short proof for the reader’s convenience.

Lemma 2.38 (Absolute continuity of continuously differentiable functions)
Let f : [a,b] = X with |a|,|b] < co and X a normed vector space and assume f to be
continuously differentiable. Then f is absolutely continuous on |[a, b].

Proof
Let € > 0. With f being continuously differentiable, f’ is continuous and as a function
defined on a compact set it is thus bounded. Let

M = xlél[i?i] Hf'(m)HX (2.79)
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Choose § < ¢/M. Now choose an arbitrary finite set {(a;, b;)}icr of disjoint intervals in
la,b] with ), ;(b; — a;) < 6. Without loss of generality we may assume a; < b; for all
t € I. Then

STUF®) = Flaly =

el el

f(bi) — f(ai)

bi—ai

’ (bi—a;) <MY (bi—a;) <e (2.80)
X iel

which proves that f is absolutely continuous on [a, b]. O

We introduce the notion of the Bochner integral strictly following Definitions and The-
orem 24.6 in Wloka/ (2002)).

Definitions and Theorem 2.39 (Bochner integral)
Let H be a separable Hilbert space.

i) Let E denote the set of finitely valued functions x : S — H. E is a linear set and
E CLY(S,H). If v € E we define

/S:U(s) dm(s) = > a;m(B;), (2.81)
=1

where im(z) = {x1,...,2,,0} and B; = 2~ (z;) fori € {1,...,n}. The integral is

linear and
‘/m s)dm(s
S

—71 .
ii) We write BY(S,H) = EY SN and call BY(S,H) the set of Bochner integrable
functions. If x € BY(S,H) there exists a sequence (Tn)n>1, Tn € E for alln > 1,
with ©, — x in LY(S;H) as n — co. We put

/ x(s)dm(s) = nh_}r{)lo Zn(s)dm(s). (2.83)
S S

S/SH:U(S)Hdm(s) (2.82)

In the theory of real-valued functions that are differentiable, Taylor’s theorem links
the evaluation of a differentiable function to a weighted sum of its derivatives and a
remainder term that can be expressed in a (Riemann) integral form. Using the Bochner
integral of Definitions and Theorem [2:39] the theorem extends to functions mapping real
values to Hilbert spaces. The Taylor theorem for these Hilbert space valued functions
will be central to the error and convergence analysis of approximate solutions to partial
differential equations in finance, later.

Theorem 2.40 (Taylor’s theorem)
With n € N, T > 0 and H a separable Hilbert space, assume f € C™([0,T];H). Let
to € [0,T] and At > 0 such that to + At <T. Then

L, OFA (g + At — )" !
A iy (n)
f(to + At) kzzj o ) (to) AtF + /to T ™ (s)ds (2.84)

holds.
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Proof

Assume first that n = 1. With f being continuously differentiable on a compact interval,
Lemma yields that f is absolutely continuous. We may thus apply Proposition 1.2.3
in (Arendt et al., [2011) which gives

to+At
fto+ 80— ft) = [ 1) ds (285)
to
and thus confirms formula (2.84)) for n = 1. For general n € N, taking ([2.85)) as induction
assumption, the claim now follows from induction using integration by parts. O

We will derive approximate solutions to partial differential equations numerically by a
so-called finite element approach. The method consists of an iterative scheme that is
driven by two key matrices. When we investigate the method more closely, the two core
matrices will usually have be of a so-called Toeplitz structure in the sense of the following
definition.

Definition 2.41 (Toeplitz matrix)
Let M € RV*N be q real valued matriz. We call M a Toeplitz matrix if there exists a

set {U_(N—1)s-++»V-1,0,01,--.UN-1} C R such that
Vo V1 V2 c+r UN-1
v_q vy U1
M= oy R
V-1 Vo V1
U (N-1) - V-2 V-1 Vo

We sometimes also say M has a Toeplitz structure.

We state Holder’s well known inequality which will contribute significantly in Chapter [3]
during the derivation of stability and convergence results of approximate solutions to
partial (integro) differential equations.

Theorem 2.42 (Holder’s inequality)
Let f,g € LY(R) be real valued integrable functions. Let p,q € (1,00) with % + % =1.
Then the inequality

[ir@nan< ([ If(w)lpdx>1/p (/ |g<x>|qu>1/q.

holds.

Finally, recall the definition of a Bernstein ellipse as introduced by |Bernstein! (1912).
It describes an ellipse in the complex plane with foci at £1, as the following definition
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Figure 2.4 A Bernstein Ellipse B([—1, 1], ¢) with foci —1, 1 and ellipse parameter ¢ > 1.
The semimajor a, is part of the real line, the semiminor b, is part of the complex line.
Here, A denotes the distance from either of the two foci to the center of the ellipse. For
the ellipse parameter p, the identity o = a, + b, holds.

states. In Chapter [4], the ellipse will characterize areas of analyticity of functions that
we approximate with an interpolation approach. Therein, we reserve the flexibility of
reshaping the classic Bernstein ellipse to a more general one in order to capture more
individual areas of analyticity that the functions we approximate possess.

Definition 2.43 ((Generalized) Bernstein ellipse)

We define the Bernstein ellipse B([—1, 1], 0) C C with parameter o > 1 as the open region
in the complex plane bounded by the ellipse with foci &1 and semiminor and semimajor
axis lengths summing up to o. We set the origin as the center and set the semimajor
azxis to lie on the real axis. Based on the concept of the Bernstein ellipse we define for
b < b € R the generalized Bernstein ellipse by

B([ba b]v@) = T[Q’E] OB([_171]79)7 (286)

where the transform UK C — C is defined for every z € C as

b—b b—-1b

um (z) =b+ ;(1 — ?R(z)) +1

3(2). (2.87)

Additionally, for an arbitrary set Z C R, we define the generalized Bernstein ellipse by
B(Z, ) := B([inf Z,sup Z], o). (2.88)

We call o > 1 the ellipse parameter of the (generalized) Bernstein ellipse.

A Bernstein ellipse is depicted in Figure 2.4 The figure also depicts the relation between

the ellipse semimajor a, and the semiminor b, in comparison to the location of the ellipse

foci. The sum of the two ellipse axis lengths determines the ellipse parameter o. The
following remark states the relations between these quantities for later reference.
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Remark 2.44 (Ellipse semiminor and semimajor)
Let B([—1,1], 0) with 0 > 1 be a Bernstein ellipse with semimagjor a, and semiminor b,
satisfying ap +b, = 0. Let A be the difference from either of the two foci of an ellipse to

the center of the ellipse, then
A= ,/af, — bg (2.89)

holds. In a Bernstein ellipse, A = 1. From this, the well known relations

ety o, _e-
[ 9 ’ o 2

1
0

(2.90)

immediately follow.
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3 PIDEs and option pricing

This chapter addresses some aspects of the theory of partial integro-differential equations
in the context of finance and beyond. In abstract terms, we are considering problems of
form

atu + Au = f,
u(0) = g,

for so-called partial integro-differential operators A. Confronted with such a problem
many questions naturally arise. Is there a function u that solves the problem? Is it
unique? Is this v numerically accessible, or can we only dispose of it in theory? Are
there methods to approximate u and how accurately are they? Do they converge?

Some of these questions address purely theoretical aspects of the problem. Others con-
cern rather numerical issues and are answered in algorithmic terms. Still others cannot
be assigned to either of these two categories but lie in the intersection where PIDE theory
and numerical concepts blend.

This ambiguity draws through the whole chapter. On the one hand, it challenges the
reader by confronting him with separate fields neither of which can be omitted in the
derivation of numerical solutions that rest on solid theoretical grounds. On the other
hand, it provides two perspectives onto the same problem that complement each other
and foster extensive understanding.

Similarly, the contents of the following sections do not fall into strictly separated cat-
egories. Some have a strong theoretical focus, some emphasize numerical implications
and some address the intersection of both realms.

We therefore highlight the four main sections in this chapter and briefly comment on
their main emphasis. In Section [3.1I]we present the theoretical framework of PIDE theory.
The sections answers the question of existence and uniqueness of solutions u to problems
as above and introduces the function spaces that a solution w lies in. The consecutive
Section [3.2] illustrates the bridge from the theoretical problem to a numerical solution
approach. It provides the theoretical foundation that approximate numerical solution
schemes rely on. Section [3.3]is devoted to the development of a numerical solver for the
PIDE of the well known asset model by Merton| (1976). It implements the theoretical
steps taken in the sections before and makes the theory explicitly comprehensible. Then,
Section abstracts from the Merton model and presents a very general framework for a
FEM solver that easily adapts to many different models. After that, Section [3.5|compares
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3 PIDEs and option pricing

all implementations empirically by presenting empirical order of convergence studies for
several FEM implementations and a variety of models. Finally, Section [3.6| reconciles
the numerical approximation with the solution provided by theory by deriving stability
and convergence results in very general terms.

3.1 Existence and uniqueness of (weak) solutions to PDEs

Let us state the main interest of this chapter more concisely. We are interested in finding
solutions u : [0, 7] x R? — R to problems of the form

Oyu + Agu = f, for almost all ¢ € (0,T)

u(0) = g (31)

with A = (-At)te[QT] a time-inhomogeneous Kolmogorov operator, a source term or right
hand side f :[0,T] x R? — R and an initial condition g : RY — R.

Existence and uniqueness of such solutions u and the properties of the spaces that they
live in depend heavily on the properties of the operator A as well as of properties like
smoothness of the two functions f and g.

A well known example for a PDE in the form of (3.1) is the so-called heat equation,

2

0
Oyu — CQ@u =0, for almost all t € (0,7)

u(0) = g,

(3.2)

with ¢ € R+, g € C°(R). By a Fourier approach one derives the solution u €
CH2(R*,R) given by

1

/ e e UG dE,  V(ta) R xR (3:3)
R

with g the Fourier transform of g, see Cannon and Browder| (2008)).

The function u defined by solves the heat equation of problem pointwise. It
is also called a strong solution, since it interprets the differential operator in the PDE in
the strong sense of as stated in the preliminary chapter above. Differentiability
of this kind is indeed a strong property. In finance, we can not expect such strongly
differentiable solutions to PDEs to exist, let alone smooth ones like v above. Think
for example of the nondifferentiable payoff profiles of call and put options that lead to
initial conditions g ¢ C§°(R) which affects the regularity of u accordingly. Consider in
this context |[Eberlein and Glau| (2014)) for an approach deriving solutions in the form
of to PDEs in finance.

Consequently, the notion specifying the solution to a PDE must adapt to this issue of
regularity.
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One way of adjusting the concept of a solution to a PDE is pursued by the theory of
viscosity solutions. Let us briefly touch upon this first possibility in the following before
moving on. In [Bardi et al. (1997)), an analysis of viscosity solutions to PDEs of second
order is provided. The authors analyze scalar-valued functions u : 2 — R that solve
partial differential equations in the general form of

F(x,u, Du, D*u) = 0 (3.4)
on the open set €2 in the sense of the following definitions taken from Bardi et al.| (1997)).

Definition 3.1 (Upper and lower semicontinuous envelope)
Let u : 2 — R. The notions of the upper semicontinuous envelope u* and the lower
semicontinuous envelope u, of u are given by

u(z) = 1im¢80up{U(y) ry € ly—zf <r}

ux(z) = 1ilj}¢i0nf{U(y) ry e ly—z[<r}

and u is upper semicontinuous if u = u* and u is lower semicontinuous if u = us.

Definition 3.2 (Viscosity solution)

Let S(N) be the set of real symmetric N x N matrices and F of be a function
F:QxRxRV xSN) = R with F(x,r,p,X) < F(z,r,p,Y) for Y < X with the
ordering X <Y, if (X&,&) <(YE,€) for all € € RN, and let further F be nondecreasing
in the second argument. Then wu is a viscosity subsolution (supersolution) to PDE
in S if it is upper (lower) semicontinuous and for every ¢ € C%(Q) and local mazimum
(minimum) point T €  of u — ¢ we have

F(Z,u(T), Dp(T), D*p()) <0
(F(@, u(@), Dp(z), D*p(T)) 20).

And finally, u is called a viscosity solution to (3.4)) if it is a viscosity subsolution and a
viscosity supersolution.

We have encountered two different concepts in interpreting the notion of a solution to
PDEs or PIDEs, respectively, the first one being the strong solution, the second one
being the viscosity solution and further concepts exist as well. The fact that we actually
have a choice in selecting a solution scheme to solve PIDEs fuels the suspicion that the
eventual decision critically depends on the features that we expect from that solution
scheme and the subsequent solution itself. Let us highlight the main goals that we pursue
in deriving solutions to PIDEs. These are

i) possibility for thorough error control
ii) algorithmic accessibility

iii) numerical feasibility
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A scheme that provides all these features is the Galerkin method which is based on the
notion of weak differentiability. It powerfully combines a theoretical concept with an
algorithmic translation that opens the method to numerically feasible implementations.
At the same time it offers error control methods that manage to monitor inaccuracies
inevitably arising from those numerical schemes. In order to be able to apply the Galerkin
method we need to weaken the idea of differentiability of a function by replacing the
strong derivative by a more general concept. The new notion of a derivative does no
longer take effect in a pointwise fashion. Instead, weak differentiability acts on integration
against test functions. Preparing our introduction of the associated idea of a weak
solution, we cite Definition 17.1 of a Gelfand triplet from Wloka, (2002).

Definition 3.3 (Gelfand triplet)
Let V' be an (anti)reflexive Banach space and H a Hilbert space. Suppose V. — H and
1

that the embedding i is continuous, injective and that imi is dense in H. Leti : H — V*
be continuous and injective and imi' dense in V*. Altogether we have

Ve Ho VY (3.5)

where both embeddings i, 1" are continuous, injective and have dense images in H and
V*. A scheme of this kind is called a Gelfand triplet. For notational convenience we
omit the symbols i and ' from here on.

Based on Definition and Definition we define the solution space W'(0,T;V, H)
for special choices of separable Hilbert spaces V and H.

Definition 3.4 (The solution space W(0,T;V, H))
Assume separable Hilbert spaces V. and H which together with V*, the dual space of V,
form a Gelfand triplet,

Ve H=H" —V" (3.6)

We define the solution space W1(0,T;V, H) by
W0, T;V,H) = {u € L*(0,T;V) | du € L*(0,T; V*)}, (3.7)

wherein the time derivative Oyu is meant in the distributional or weak sense of Defini-
tion [2.23.

Before we can state the notion of a weak solution, we introduce a notion of associating
an operator A with a bilinear form.

Definition 3.5 (Bilinear forms with associated operators)
Let (at)iefo,1) be a family of bilinear forms a : [0, T]xV xV — R that are measurable in t.
We say that this family of bilinear forms, is associated with linear operators A; : V. — V*
if for almost all t € [0, T

(Agu, v)y=xy = a(u,v) (3.8)

holds Yu,v € V.
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With these tools we are now able to introduce the notion of a weak solution to prob-
lem (3.1). Analogously to Definition 1 in|Glau (2016) we give the following definition.

Definition 3.6 (Weak solution)
Let V., H be separable Hilbert spaces which together with V*, the dual of V', form a
Gelfand triplet,

Ve HEYH V",

Let f € L?(0,T;V*) and g € H. Then we call u € W(0,T;V, H) a weak solution to
problem (3.1)), if for almost every t € (0,7T)

(Gru(t), v)m + ar(u(t),v) = (f(t), v)v=xv (3.9)

holds for all v € V, where for each t € [0,T] a; is the bilinear form associated with
operator Ay and if additionally

li —u(t = 1
i lg = u(®)] =0 (3.10)

for t converging to zero from above holds as well. Then for every v € V and x €

C5e([0,T) we have

T T T
- / (u(t), ) (t) dt + / ae(u, 0) (1) dt = / @), vhvoax®dt, (3.11)
0 0 0

which we state here for later reference.

Under certain conditions, unique weak solutions v € W*(0,T; V, H) to partial differential
equations exist. We cite the classic result from Wlokal (2002).

Theorem 3.7 (Existence and uniqueness of weak solutions)

Let 0 <T < oo. Let Ve H < V* be a Gelfand triplet with separable Hilbert spaces V
and H over R. Let a : [0,T] x V xV = R, (¢,¢,9) — at(p, ) be a bilinear form that
satisfies the following three conditions.

i) The mapping (t, p, V) — ai(p, 1) is a measurable mapping on [0, T] for fized v, €
V.

ii) There exists a constant o > 0 independent of t, such that

(o, )| < allellyllvlly,  VE€[0,T] and Vo, € V. (3.12)

ii1) There exist constants B > 0 and A > 0 independent of t such that

ar(p,0) > Blelly = Al%, Ve [0,T) and Yo, € V. (3.13)
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3 PIDEs and option pricing

Further, let (At)te[o,T] be defined via the relation (3.8)). Then there exists a unique weak

solution uw € W(0,T;V,H) to the linear parabolic problem (3.1]).

Additionally, the operator L relating the pair (f,g) € L*(0,T;V*) x H to that unique
weak solution w € W'(0,T;V,H) of the linear parabolic problem 1 a linear and
continuous mapping,

L:L*0,T;V*)x H— WY0,T;V, H).

Proof
For a proof of the theorem we refer the reader to the proof of Theorem 26.1 in Wloka
(2002). O

Remark 3.8 (On the existence and uniqueness regult)

Actually, the existence and uniqueness result of Theorem (3.7 also holds under more gen-
eral assumptions. In conditionfor example, the bilinear form may map to C instead
of R. Then, the left side of the inequality is replaced by R(a¢(p,)). We decided to focus
on the real-valued case, however, since it lays out the scope for option pricing purposes.
In the error and convergence analysis section later, Conditions and will play a
most prominent role.

Remark 3.9 (Existen¢e and uniqueness result for Lévy models)

The claim of Theorem |3.7 comprises partial differential equations from many model
classes. In |Eberlein and Glau (2011)), the authors translate the result to the class of
Lévy models. To that extent they transform the assumptions of the theorem into require-
ments onto the characteristic triplet (b,o, F') of the underlying process and even allow
for time-dependence of that triplet. Theorem 5.3 in|Eberlein and Glau (2011) then yields
the claim of existence and uniqueness of weak solutions to problems of form in the
Lévy model case.

Theorem 3.10 (Feynman-Kac)

Let (Lt)¢>0 be a (time-homogeneous) Lévy process. Consider the PIDE where A, =
A is assumed to be the operator associated with the symbol of (Lt)i>0 and f = 0. Assume
further the assumptions (A1)-(A3) of Eberlein and Glau (2011) to hold. Then (3.1))

possesses a unique weak solution
1 ) 2mdy 712 (md
we WHO,T; HYA(R?), L2(RY)) (3.14)

where o > 0 is the Sobolev index of the symbol of (Li)>0 and n € RY is chosen according
to Theorem 6.1 in |Eberlein and Glau (2011). If additionally g, € L' (R%), then the
relation

w(T —t,z) =E[g(Lr—t + x)] (3.15)
holds for all t € [0,T], z € R%.

Proof

The result is proved in [Eberlein and Glau| (2011) and follows from Theorem 6.1 therein.
Their claim applies beyond the scope of time-homogeneous Lévy processes and includes
so-called time-inhomogeneous PITAC processes, as well. U

50



3 PIDEs and option pricing

The analysis of Feynmac-Kac theorems in the fashion of Theorem [3.10, which link
stochastic quantities via their expected value to the solution of PIDEs, is a topic of
its own. In the context of finance, where u is the price of an option with payoff profile ¢
in an asset model driven by a stochastic process (L¢):>0, this link opens a second access
to the classic pricing problem. Either one solves the associated PIDE or one computes
the expected value. Depending on the given model and option, the one or the other way
might be better suited to determine the option price. For a thorough investigation of
the Feynman-Kac formula we refer the reader to the recent publication of |Glau (2016),
where the result is derived for Lévy processes with discontinuous killing rate.

3.2 The Galerkin method

By now, we have introduced the core definitions and theorems of the classic theory of
partial differential equations in an abstract framework. We now know that solutions to
PDEs exist under certain conditions and we have introduced the spaces that they live
in. For practical use of these solutions, however, for example for pricing or calibration
purposes, we also need numerical representations of these solutions. In general, the
solution spaces we have considered so far are infinite dimensional. Clearly, a numerical
solution can not provide such richness. Instead, its numerical means are limited to finite
dimensionality. We thus have to transform the original, infinite dimensional problem to
a finite dimensional, approximative setting. We consider the pricing PDE

dwu(t, z) + (Au) (t,x) + ru(t,z) = 0, V(t,z) € (0,T) xR

u(0,z) = g(x), Vx € R. (3.16)

The time-homogeneous operator A carries the model information. We state the operators
A in for some well known time-homogeneous univariate asset models from the
Lévy class. Since a Lévy model is identified by its characteristic triplet (b, o, F'), so is
the operator A of the associated PIDE, which is in general given by

(AF) (2) = ~b0, () — 50°0unf (2)
- /R (F(x+ 2) — f(2) — Ouf(@)h(z)) F(d2),

for all f € C§°(R) and = € R, see for example Eberlein and Glau (2011). Here, we
are only interested in the operator representation of each model. For a more detailed
overview we refer the reader to|[Papapantoleon| (2008). In the general Lévy model frame-
work, the operator A as stated in contains an integral term. The respective PDE
is more precisely a partial integro differential equation, PIDE. The following examples
offer an overview over the operators of some well known Lévy models.

Example 3.11 (Black&Scholes (BS) model)
In the BlackéScholes model of |Black and Scholes (1973), the log-asset price process is
modeled without jumps. The Brownian part drives the model exclusively. Therefore, we

(3.17)
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3 PIDEs and option pricing

have F = 0. The operator of the BlackéScholes PDE thus reduces to setting

o >0, F=0 (3.18)
in (3.17). The drift term b is set to
(3.19)

for martingale pricing.

Example 3.12 (Merton model)

The model of Merton| (1976) enriches the Brownian part from the BlackéScholes model
by a jump part. The log-asset prices process thus consists of a Brownian motion together
with a compound Poisson process with independent normally N'(«, %) distributed jumps
arriving at a rate A > 0. From this, the characteristic triplet (b, o, F) is derived as

A z— a)?
Jan? exp <—(2B2)> dz, (3.20)

o >0, F(dz) =

with drift set to

1, 82
b=r— 50~ A <e°‘+2 - 1> , (3.21)

as required by the no-arbitrage condition.

Example 3.13 (CGMY model)
The CGMY model by |Carr et al| (2002) is a so-called pure jump model. In contrast to
the Merton model, jumps do not arrive discretely in time. Instead, in each finite time
wnterval, infinitely many jumps occur. The model inherits its name from the parameter-
1zation

C>0, G>0, M>0, Ye(,2). (3.22)

The characteristic triplet determining the operator A is given by

exp(—Mz) exp(Gz)
o > 0, F(dZ) = CTI}-Z>O dz + CW1Z<O dZ, (323)
with drift term b
1
b=r— 502 —CT(=Y) [(M - 1) = MY +(G+1)Y - GY] (3.24)

by the no-arbitrage condition.

Example 3.14 (Univariate Normal Inverse Gaussian (NIG) model)
Finally, we present the NIG model by Barndorff-Nielsen (1997). With

0 >0, a >0, B eER (3.25)
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3 PIDEs and option pricing

and the parameter condition o > (B2, the characteristic triplet is given by

o >0, F(dz) = exp(ﬁz)é—aKl(a\z\) dz, (3.26)

7|z|

wherein K1 denotes the Bessel function which for = € RT0 allows the representation

Ki(z) :/ e~#osh(®) cogh(t) dt, (3.27)
0

see Chapter VI in|Watson (1995). The drift term b is set to

b=r— %02 —9 (\/a2 — B2 —+a2—(B+ 1)2) (3.28)

to satisfy the no-arbitrage condition.

This reduction is achieved by the so-called Galerkin method that we introduce now. It
consists of several steps that we discuss one by one. The identification of these steps that
we present below is in major parts taken from Section VI.1 in |Glau| (2010)) and inspired
by |Zeidler| (1990)). They lead from the general PIDE to a numerically tractable
approximative scheme that we consider in the next section with the Merton model as a
specific example. The transition steps are the following.

i) Modification to a problem with fast decaying solution.

We will not solve problem directly. One of the main obstacles that pre-
vents an immediate numerical solution is the unbounded spacial domain of prob-
lem (3.16)). This unbounded domain needs to be reduced to a bounded on. As
a preparation for this localization, we modify problem to a new problem
which we know to possess a solution that rapidly decays to zero as x — too.
This adjustment prepares step where the motivation of this modification will
be clarified. In order for the modification to result in a new the solution to which
quickly decays to zero, we subtract a function v that we know to approximately
mimic the behavior of u for large absolute values of x € R. The modification of this
step [i)| thus consists in subtracting ¢ from w and considering the resulting problem
for ¢ = u — v given by

Op(t,x) + (AP) (t,x) + ro(t,x) = f(t,x), V(t,z) € (0,T) xR

6(0,2) = gu(x),  VrER, (3.29)

where gy (x) = g(x) — (0, z) for all z € R and the right hand side f is given by

ft,2) = = (0 (t, @) + (AP) (L, ) + (L, ).

The solution u to the original problem (3.16|) can easily be restored by u = ¢ + 1.
We establish the properties that 1 needs to provide, later, where we will present
some examples, as well.
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3 PIDEs and option pricing

ii) Localization to a boundary value problem.
At first glance, the modification of the original problem to the modified
problem complicated the derivation of numerical solution. Yet, now that
we know ¢ to decay to zero for |x| — oo, we may cut the domain R to a finite
interval (a,b) and assume the solution to the cut domain problem to be equal to
zero outside of that interval. We denote the solution to the cut domain problem
by ¢. Instead of we thus now and consider

xo(t,z) + (A9) St,ac) + rgi(t,:n) f(t, z), V(t,z) € (0,T) x (a,b)

B(t,a) = B(t,b) = 0, vt € (0,7), (3.30)

(0, 2) = gy(z), Vx € (a,b),

wherein g4 = gy and where the right hand side remains unchanged.

iii) Weak formulation of the resulting problem.
Solution ¢ to problem still lives in the same function space as solution u
to the original problem We thus now cast problem in an appropriate
functions space setting which reflects our restriction of the infinite domain R to the
finite domain of interest (a, ). Choosing an appropriate Gelfand triplet guarantees
a weak solution v € W(0,T;V, H) to the localized problem (3.30))

o+ Av+rv=f,

o(0) = g, (3.31)

where V' and H build on the finite domain (a, b) and are assumed to be separable
Hilbert spaces. The actual choices of V and H depend on the properties of the
operator A and thus on the regularity that is required for a weak solution v to
exist.

iv) Variational formulation.
We make the meaning of the weak formulation of problem explicit. This
step serves again as a preparatory step for the discretizations soon to follow. A
function v € W(0,T;V, H) solves the weak problem of step if v satisfies
the initial condition as a limit in H and if

T T T
- / (0(t, ), @) du(t) dt + / a(v(t, ), @)u(t) dt + 7 / (o(t, ), Q) (t) dt
0 0 0
T
=—<—/O (W(t,-), ) nO(t) dt (3.32)
T T
+ [ et [ e dt)

for all v € C§°(0,T) that serve as test functions with respect to the time domain
and for all p € V' that serve as test functions with respect to the spacial domain.
In (3.32)), the weak derivatives with respect to time have been transfered to the
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3 PIDEs and option pricing

test function v, the expression for the right hand side f has been resolved and
a(-,-) denotes the bilinear form associated with the operator A in the sense of

Definition 3.5

Space discretization.

In general, the solution v € W1(0,T;V, H) to problem lives in a Hilbert space
of infinite dimension. Clearly, we will not be able to capture its infinite dimen-
sionality numerically. Instead, we choose a sequence of finite dimensional Hilbert
spaces Vp, n € N, with V,, C V for all n € N and reformulate problem
on these subspaces. A finite set of n € N basis functions suffices to span each
subspace V,, which thus renders numerical solutions schemes applicable. By as-
sumption in step the space V is separable.We choose a countable Riesz basis
{¢1, 92, p3, ...} of V. Since by virtue of the Gelfand triplet V' is dense in H, there
exists a sequence (hy,)pen With

P — gl/)’(a,b)
in H and h, € V,, = span{gogn),goén),...,@%n)} for each n € N where <p§j) €

{p1,02,¢3,...} for all i < j € N. The approximation v, € W(0,T;V,, H N V,)
of v and h,, are thus given by

v (t) := Z Vk(n) (t)gpl(:), hy = Z oz]gn)gol(cn). (3.33)
k=1 k=1

By its definition in (3.33)), for each n € N, v, is given as a linear combination of
basis functions go,(cn), k€ {1,...,n}, of V;,. These basis functions are weighted by
time dependent weights. Consequently we have for each ¢ € (0,7 that v,(t) €

V. Considering the consequences of this reduction in dimensionality we now face

instead of finding v in (3.32)) the new problem of finding v,, € W(0, T; Vy,, H N V;,)
such that

T T T
_/ <'Un(t> ')a(P>H8tV(t) dt + / a(vn(ta')aso)y(t) dt+7“/ (’Un(t, ')a(p>HV(t) dt
0 0 0
T
(- [ wepnamoa (3.34)
0
T T
# [ oo [ our )
0 0
for all v € C§°(0,T) and for all test functions ¢ € V,. By assumption, the
bilinear form a(-,-) satisfies conditions fi1)| and with respect to the space V. As
a consequence, so does the bilinearform aly; xy;, with respect to V,,. The classic
Theorem thus guarantees the existence and uniqueness of a weak solution v, to

the variational problem (3.34) for each n € N. Additionally, the sequence (vy,)n>1
converges to the solution v of the infinite dimensional original problem ({3.32)) in
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the sense that

. 2 . .
v, — v in L*(0,T;V), (nax lon(t) —v(t)]lz — O, (3.35)

see Theorem 23.A and Remark 23.25 in Zeidler| (1990).

Matrix formulation.
For ¢t € (0,T") we can represent each v, (¢, ) using the basis functions of V,,,

n
vt ) =S Vi)™, (3.36)

k=1
with ¢ dependent coefficients Vi(t), k& € {1,...,n}. A matrix representation
of (3.34) arises. Let n € N arbitrary but fix. All operators in (3.34]) are linear.
Therefore, using only the basis function (pg.n), j€{l,...,n}, of V, as test functions

does not result in a loss of generality. It allows, however, transforming (3.34]) into
a matrix form. We get

Zath (o) 790§n) VH + ka (e )790§n))

k=1
- n (3.37)
+r Y Vi o) = Ei(0),
k=1
Vi(0) = oy, kEe{l,...,n},
with appropriately chosen ay, k € {1,...,n}, to approximate the initial condition
and wherein for j € {1,...,n}
Fi(t) = = ((@b(t, ), 05" + a(t, ), o) + (), o)) (3.38)
7 t ’ a ’ 80] r s ) 90] . .
We rewrite (3.37)) in matrix notation by
MV(t)+AV(t) = F(t), for almost all t € [0, 77,
(3.39)
V(0) = a,

wherein F(t) = (Fi(t),...,F,(t)) and equivalently o = (aq,...,a;,)" and the
central matrices M € R™"™ and A € R"*™ are given by

Ajp, = a(go,i ma; >> +rie, " a, V1< jk<n. (3.41)

We call M the mass matriz and A the stiffness matriz. To solve problem (|3.39))

we thus now need to determine the time dependent vector
V(t) = (Vi(t),..., Va(t)) (3.42)

that satisfies the ODE therein.
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3 PIDEs and option pricing

vii) Time discretization.
We have reduced the dimensionality in space. Equally, we now discretize
with respect to time to receive a so-called fully discretized problem. To this end
we choose M € N and set up a time grid

O=tog<ti1 <---<ty="1T. (3.43)

We introduce the notation V¥ := V(t¥), k € {0,..., M}, and AtF = tF+1 — ¢k
ke {0,...,M —1}. We choose a 6§ € |0, 1], approximate the time derivative by a
finite difference approach and get from (3.39) the fully discrete scheme

k+1 _ yk
Mu+Avk+9:Fk+9, ke{0,...,M—1}

Aty (3.44)

VY= q,
with

VAR — gVl L (1 — o) vk ke{o,...,M -1},
FFHO = g (1 -0)FF,  ke{0,...,M—1}.

Different values of 6 € [0, 1] result in variations in stability of the numerical pro-
cedures as we shall see later. Typically, we set § = 1/2, yielding the so-called
Crank-Nicolson scheme.

The matrix-vector formulation in the fully discretized scheme links the solution
V¥ at time grid point t* to the solution V**1 at time grid point t*+1 The initial
condition provides the values for V° € R™. Thus, rewriting and sorting by
exponent we get the relation

(M + AtFgA) R+ = (M ~ A1 - 0)A> VE 4 FRHO
for k € {0,..., M — 1}, which is equivalent to
VAL = (M + AthA) ! <<M N e)A) vE F’f+9) , (3.45)

for k € {0,..., M — 1}. By iteratively applying (3.45)), the solution to (3.44]) on
the whole space-time grid is derived.

Remgrk| 3.15 (On the fully discrete solution)

Steps I impose several layers of approximation on the original problem .
Loosely speaking they first introduce a discretization in space, and a discretization in
time, thereafter. When the PIDE is discretized in space, at the end of step|v)| we cite the
convergence result of |Zeidler| (1990) for the semi-discrete approzimate solution
that is still continuous in time. Convergence results for the fully discrete approximate

solution V¥, k € {0,..., N}, in (3.45) are provided in Section .
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3.3.1 The model

Steps to provide us with the theoretical background to set up a numerical Galerkin
solver to solve pricing PIDEs of type (3.16)). For an actual implementation of the method

we need to decide on basis functions wkn), k€ {1,...,n}, spanning the solution spaces,
a European payoff profile g and a pricing model represented by the PIDE operator A.
The core challenge then lies in calculating the key numerical ingredients, those being
the mass matrix M € R™"™ as defined in , the stiffness matrix A € R™" as
defined in , and the right hand side F' € R™ of . We consider the numerical
difficulties arising from these quantities in the next section, taking the pricing problem
of a European plain vanilla option in the Merton model as an example.

3.3 A FEM solver for the Merton model using hat functions

In this section, we build an actual Galerkin solver for pricing plain vanilla options in an
elementary yet well known Lévy jump diffusion model. The computational steps that
follow reflect the theoretical steps of the abstract framework of Section [3.:2l We consider
the Merton model as an example.

3.3.1 The model

We briefly stated the Merton jump-diffusion asset model of Merton| (1976]) in Fourier
terms in Section [2.3.2] Throughout the rest of this chapter, it will serve as the ex-
ample that the numerical PIDE solver being developed in this chapter will be based
on. Let us therefore highlight its features in more detail. Consider a stochastic basis
(Q, F, (Ft)t>0, Q). In the Merton model, the price process (St)¢>0 of the underlying asset
is modeled by

S, = Spel, (3.46)

with Sp = €™ > 0 being today’s value of the underlying, and wherein (Lt)¢>o is a
Lévy jump diffusion process composed of a drift b € R, a Brownian part ¢ > 0 and
a compound Poisson distributed jump part with jump intensity A > 0 and Normally
N (a, B?) distributed jump sizes,

Nt
Li=0bt+ oW+ ) X, (3.47)

=1

wherein (W;)¢>0 is a standard Brownian motion and X; ~ N («, 5%), for all i € N. The
Brownian motion (W3);>0, the Poisson process (N¢)i>p and the normally distributed
random variables are independent from another. From we read off the the triplet
(b, 0, F) that characterizes the model. The Lévy measure is given by

exp <—W> dz. (3.48)

F(dz) =\ 25

1
\/ 27132
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3.3.2 Pricing P(I)DE

In order to determine the drift value we consider the no-arbitrage condition. The process
(St)t>0 defined in ([3.46|) discounted by the constant risk-free interest rate » > 0 must be
a martingale under Q, such that

et = Eglelt] = (=) vt >0, (3.49)
holds. By the definition of the cumulant generating function 6 in (2.11)) of Lemma
the identity (3.49) holds if

r=0(i(—i)) =b+ %a2 + /R(ey — 1)F(dy), (3.50)

where we set the cut-off function to zero, h = 0, by Remark 2.12] Note that we may
choose the ¢ argument of the cumulant generating function to be complex by Theo-
rem [2.13] In accordance with the no-arbitrage condition stated in generality by iden-
tity , the drift b is thus set to

0.2

ber/R(eyl)F(dy)

TP <exp (W) - 1) (3.51)

:r—a;—)\<exp<a+ﬁ;>—1>,

which completes the triplet (b, o, F'). Figure displays a typical asset price trajectory
(Soexp(Lt))i>0 in the Merton model for ¢ € [0, 1].

3.3.2 Pricing P(I)DE

The Merton model introduces the forward pricing PIDE

ou+Au+ru=0 in (0,7) xR

u(0) =g inR, (3.52)
where by the operator takes the form
(AN(@) = <80, (@) = 50°0.01(2) = [ (@ +3) = Fla) P(d) (3.53)

for all f € C5°(R), with (b, o, F) the characteristic triplet from above. In Section [3.1] we
underlined, that the existence and uniqueness of (weak) solutions to PIDEs of form
depend on the choice of the solution space W1(0,T;V, H) yielded by the Hilbert spaces
V and H that generate a Gelfand triplet together with V*, the dual of V. In Section (3.2
we have taken several theoretical steps that demonstrated how to simplify a PIDE of
form to an approximate problem that is numerically tractable. Now we want to
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3.3.2 Pricing P(I)DE

Merton Model Trajectory

1.14 m“
L2k o =0.15 A= 2.5, a=0.02, 5:0.03|
L1F

1.08

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
t

Figure 3.1 A single asset price trajectory in the Merton model. The Brownian compo-
nent is parameterized by ¢ = 0.15. Jumps arrive at a rate of A = 2.5 with expected value
a = 0.02 and standard deviation § = 0.03. The asset price process starts at Sp = 1. The
constant riskless interest rate is set to r = 0.03.
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3.3.2 Pricing P(I)DE

focus on the actual numerical implementation of the rather theoretical perspective of
the previous two sections. We thus do not explicitly state the various solution spaces as
we put those abstract simplification steps into concrete terms. As usual, however, we

chose
H = L*(R), or respectively H = L*(a,b). (3.54)

The pricing of classic European options requires the notion of weighted Sobolev spaces
to determine V and V*, consider Definition 2:30] Weighted Sobolev spaces have also
played a role in Theorem where they were needed to link the solution to a PIDE of
type to an expected value via a Feynman-Kac approach. We thus emphasize, that
weighted Sobolev spaces are crucial for the theoretical framework required for a unique
weak solution to to exist. Nevertheless, from here on we focus on implementational
issues and thus try to avoid direct contact with the functional analysis in the background
wherever possible. We recommend [Eberlein and Glau (2011)) for the proper treatment
of the underlying spaces.

The numerical objects that we need in order to numerically approximate the weak solu-
tion to the Merton pricing PIDE ([3.52)) almost all depend on the bilinear form associated
with the operator. The operator A of (3.53) yields a time-homogeneous bilinear form

:—b/ Orip(z x)dx

-5 /R (Orai(2) () da

- /R (/R(SD(”U +y) — so(w))F(dy)> Y(z) dx
+r [ et as

(3.55)

defined for all ¢,7 € C§°(R). The bilinear form a(-,-) of ( is continuous as a
mapping from Hg(R) x H}(R) — R. As such, it has a umque extensmn to an associated
bilinear form a : H}(R) x H}(R) — R given by

a(p,) = —b / (Beip(2)) ¥(x) da
+57° [ @rpl@) (0,0(a)) da
-/ ( [+ - @(x))F(dy)> b(x) da
R R

+r /R (@) de,

(3.56)

for all o, € H}(R), where the transition from (3.55) to (3.56) is achieved by applying
integration by parts in the first summand. We proceed with the bilinear form a(-,-)

of (5.

61
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1_
; \V
oLt

a Xl X2 X3 X4 X5 XG X7 X8 X9 X10 Xll X12 X13 X14 X15 b

Figure 3.2 A plot of N = 15 hat functions ¢;, i € {1,..., N}, spanning the bounded
domain (a,b) as given by Definition on an equidistant grid. For them to better
distinguish, g is highlighted.

3.3.3 Basis functions: The hat functions

In accordance with step [ii)|of the abstract scheme in Section , we limit the unbounded
spacial domain R of the Merton pricing PIDE problem to a bounded domain (a,b) C R.
On this bounded domain we establish a finite set of basis functions that span the finite
dimensional space with respect to the spacial variable z. Key ingredients of a numerical
PIDE solver depend heavily on the choice of basis functions. In this implementation we
choose the well known hat functions as basis functions.

Definition 3.16 (FEM hat functions)
Let N € N and a < b € R. Assume an equidistant grid Q = {zo,z1,...,TN,TN4+1} ON
(a,b) with mesh fineness h > 0,

a:x0<x1<~--<xN<a;N+1:b, (3.57)

with x; = a+ih for alli € {1,...,N 4+ 1}, then the N hat functions p;, i € {1,..., N},
are given by

x — X .
oo = (1-E2 2 1 0 M, (3.58)
with derivative in the distributional or weak sense of Definition [2.23 given by
) L, x € (x; — h, x,
9 (2 = 3.59
63380 ( ) { —h_l, x € (ZL‘i, T; + h), ( )

forallie{1,...,N}.

Clearly, the hat functions of Definition |[3.16| are piecewise linear as Figure illustrates.
Later, we will also need the Fourier transform of the hat functions on an equidistant
grid. This is provided by the following lemma.
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Lemma 3.17 (Fourier transform of hat functions)

Assume N € N and let ¢;, i € {1,...,N}, be the hat functions on an equidistant grid
{z1,...,xn} with grid fineness h > 0 as introduced in Definition . Denote by g the
hat function associated with the origin,

po(z) = <1 - |Z|> Ljs/<h; (3.60)

with appropriately scaled support, supp g C [—h,h]. Then, the characteristic function
of hat function yj, j € {1,...,N}, is given by

Bi6) = <G e), (3.61)
for all € € R, where
Bl = g3 (1 = cos(éh), (3.62)
for all € € R.
Proof

The derivation of the characteristic function of g is a straightforward calculation,

vo(¢) /Re wo(z) dz
0 h
:% —h(h + x)e’f”” dz + % /0 (h— ac)e’fx dz
h h
:% (/0 he ™% + he® dz + /0 —ze BT _ gt dm)
h h
:% <2h/0 cos(§x)dx — 2/0 x cos(éx) d:c>
_2 h [1 Sin(ﬁx)] ' _1 [€xsin(Ex) + cos(Ex))!
h £ o & 0
:% (Z(sm(gh) —0) - ;(éhsin(gh) + cos(¢h) — (0 + 1)))
2 2
= Sin(eh) — g7 (€hsin(Eh) + cos(ch) — 1)
:;h(l — cos(&h)).

From this we deduce with ¢; = ¢o(- — ;) and by property [i)| of Lemma that the
characteristic function of ¢; is given by

5 (6) = %955 8),

for all £ € R and for all j € {1,..., N}, which proves the lemma. O
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3.3.4 Mass and stiffness matrix - an explicit derivation

3.3.4 Mass and stiffness matrix - an explicit derivation

As we have seen in Section [3.2] the key ingredients of a numerical solver are the mass
matrix M and the stiffness matrix A. They drive the so-called time stepping scheme
of or , respectively, that iteratively derives the fully discrete solution on the
space-time grid. Both matrices depend on the choice of basis functions ¢;, i € {1,..., N},
spanning the finite dimensional solution spaces built on Vi.

Lemma 3.18 (Mass matrix for hat functions)

Let N € N, and assume N hat functions ¢;, i € {1,..., N}, spanning a bounded domain
given by an equidistantly spaced grid with mesh fineness h > 0. Then the mass matriz
M € RN*N given by

M;j = / pj(@)pi(z)dz,  i,j€{l,...,N}, (3.63)
R
computes to
4 1 0 0
1 4 1
h
M=<1o 0l (3.64)
1 4 1
0 1 4
with M € RN*N,
Proof
The entries of the mass matrix M are derived by elementary calculations. U

Mass matrix entries M;; for i, h € {1,..., N}, as defined by are only nonzero when
the domains of the associated basis functions ¢; and ¢; overlap. Therefore, the mass
matrix M of is a sparse matrix when the underlying grid is populated by finitely
supported hat functions and the degree of sparsity grows in N, as M; ; # 0 if and only
of i —j| <1

The derivation of the stiffness matrix is a lot more involved. We recall the definition of
the stiffness matrix in Equation (3.41) as

Aij = alej, i) + g, 0idm, 4,5 €{l,...,N}h

We split up the stiffness matrix A € RV*Y into several parts that we compute individ-

ually,
A=AW 4 AC) 4 AB) 4 4™ (3.65)
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3.3.4 Mass and stiffness matrix - an explicit derivation

where

AP = <o [ (ws@) el (3.66)

Ag) = %02 / ;U%(w)gccpi(x) dz (3.67)
4% = / [ erla+9) = @) Fan)eta) da (3.68)
Ay = (3.69)

for 4,57 € {1,..., N}, where we implicitly use H = L?(a,b) as set in . The stiff-
ness matrix carries the information describing the behavior of the underlying asset price
process as represented by the characteristic triplet (b, o, F'). Especially the existence of
a Lévy measure F' carrying jump information, F'(dy) # 0, in general complicates the
derivation of (semi-)explicit formulas of the stiffness matrix considerably. Section
where we stated the Lévy measures F' of some well known models, underlines the chal-
lenge of numerical integration with respect to Lévy measures.

Yet, for the Merton model we will derive (semi-)explicit formulas for the stiffness matrix
entries, including the jump part A ) in - We will analytically solve the integrals in

Al(]), k € {1,2,3,4}, until explicit formulas are derived or until the expressions depend

on integrals with respect to the Lévy measure F' that the following Lemma can solve.

Lemma 3.19 (Important integrals with respect to F(dy) in the Merton model)
Let F(dy) be the Lévy measure of the Merton model,

1 (y — a)2>
exp | — d 3.70
V2 P ( 22 Y ( )
with « € R, B € RT and A € RT. Then we have the following identities,

iF(dy) )\erf<\[§> (3.71)

— 00

F(dy) = A

Let c € R, then

Jom o= (3 () - e (552)). 57
and

T

[ w-erpan) = S (Var (la— o+ 8 et

)

—00

(a—y)?

—2B(a—2c+x)e 262 >, (3.73)
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05

erf(x)
o

05}

Figure 3.3 The erf function as given by (3.76)) in Lemma , evaluated over z € [—3, 3].

further

xT

/ (y = o)*F(dy) = 2\;\% (\/ﬂ(c —a)((a —¢)* + 3% erf (i/;;‘)

—0o0

(a—=x)?

+2B8e” 282 (a? 4 3c? — 3c(a+x) +28% + 2 + ax)), (3.74)

and finally

/ ! F(dy) = —%eoﬁ% erf (W) . (3.75)

In all identities (3.71)—(3.75)), erf denotes the so called error function,

erf : R — (—1,1),

defined by
2 T
erf(z) = / e 1 dt, Vz € R. (3.76)
VT Jo
Proof
All integrals have been solved using http://www.wolframalpha.com and performing
elementary transformations on the results. O

A plot of the erf function is depicted in Figure [3.3]
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3.3.4 Mass and stiffness matrix - an explicit derivation

Remark 3.20 (erf and normal distribution)
The relation between the erf function and the cumulative distribution function of the
standard normal distribution is obvious,

erf(z) = \/27? /Ow e dt = \/% /0\/51" e_é dt
— 9 {@0,1 (v2z) - @0,1(0)}

= 2(1)0’1 (\@[B) — 1,

where ®,, ;> denotes the cumulative distribution function of the normal distribution with
expected value ;1 € R and standard deviation o € RT.

We begin the derivation of the individual parts A%, k e {1,2,3,4}, of the stiffness
matrix A of (3.65)).

(AS.)) Elementary calculations result in

yielding the matrix

0 -1 0 0
10 -1
A(l):%b 0 e
10 -1
0 1 0

with b as in (3.51)).

(Al(?)) Elementary calculations result in

yielding the matrix

2 1 0 0
-1 2 -1 . :
A<2>:%02 o - ol (3.77)
-1 2 -1
0 0 -1 2

67



3.3.4 Mass and stiffness matrix - an explicit derivation

Figure 3.4 Two types of overlap have to be distinguished during the derivation of AS’)

in (3.78)). On the left, y is such that h < |z; — (z; — y)| < 2h, while on the right, y is
such that |z; — (x; —y)| < h. Whenever |z; — (x; —y)| > 2h, there is no overlap and the

respective integral (3.80)) is equal to zero.

(AS.’)) We compute A®) of (3-68).
AD =~ [ [ oite+0) = i) Playyea) s

— _//(goj(ery)—cpj(a?))%(l’)dQTF(dy)
R JR

-~ [| [ o+ natorac| ran+ [ | [ estoretarac]| pan
_ /]R [ /R i@ + y)ei() dx} F(dy) + M. (3.78)
Let now y € R and 7,5 € {1,..., N} fix such that
y<w—m & m<z—y (3.79)

and consider [ ¢;j(x+y)pi(x)dz. Then, by the definition of the hat functions ¢;,
i€ {1,...,N}, in Definition we have

[ osta+veita)da
R

[z — (2; — )| |z — xi]
_/]R<1_h] Ho—(@—yl<n (1= =77 ) Lo—aif<n 42

The integral (3.80)) is nonzero only if the two functions in the integrand overlap,
which is the case if |z; — (x; — y)| < 2h. Then, two different kinds of overlapping
have to be distinguished, see Figure [3.4]

Define d = x; — ;. Then, by some tedious but elementary calculations, (3.80))

(3.80)
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3.3.4 Mass and stiffness matrix - an explicit derivation

computes to

2h — |y —d|)?
/ ej(x +y)pi(z) dr = Lpojy_aj<on [(6"}12”}
R
X X , (3.81)
3 2
+ Ljy—q<n {%ﬂy —d|” - E'y —d|* + 3h] .

Concerning the indicator functions in (3.81)) we find that

Lhcjy—ai<on = 1 =y € (d+h, d+2h]U[d = 2h, d—h), (3.82)

ﬂ|y—d|§h =1 <:>y € [d—h, d"—h]

We use the intervals of , where the indicator functions in are Nonzero,
to integrate [ ¢;j(x+y)pi(x)dx with respect to the Lévy measure v of the Merton
model. Until now, all derivations have been conducted independently of the model
represented by the Lévy measure. At this point, the derivations depend on the
model. We derive

/R/R@j(:wr y)pi(x)de F(dy) = /Rﬂh<ly—d|§2h [W] F(dy)

1 1 2
1 — |y —d|? — |y —d|* + h|F(dy).
%/g y_dgh[thly "=y —dl”+ 5 ] (dy)

We integrate both summands in (3.83)) separately. For the first we find
(2h — |y —d|)®
/R Lh<|y—dj<2n [6h2 F(dy)

1 d—h d+2h
= G2 ( /d 72h(2h +y—d)’F(dy) + /d . (2h — (y — d))3F(dy)> (3.84)

(3.83)

deh d+2h
— gz ([ o= @=2mpran - [0 - @ mpran)

—2h d+h

For the integration of the second summand in (3.81]) we have

1 1 2
1 — |y —d? - ~ly—d*+Zh| F(d
/R|yd|<h {%Qly "= ly !+3] (dy)

1 d+h 5 1 d+h ) ) d+h
L I / ly— dPF(dy) + 2h / F(dy)
2h% Jy_ h Jan 3 Ja—n

— 2%2 (/dd+h(y — d)*F(dy) — /ddh(y - d)3F(dy)>

1 d+h ) B 2 d+h
S AU CI R T )
d—h d—h
All the individual integral values in ([3.84]) and (3.85]) are now provided by Lemma(3.19|

This finishes the derivation of [ [¢ ;(z +¥y)@i(x) dz F(dy) in (3.78) and thereby
also the computation of the third part of the stiffness matrix A as given by (3.68)).

(3.85)
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3.3.5 The right hand side F' - a Fourier approach

(AZ(;L)) For the final part of the stiffness matrix, A® there is nothing left to do. By
definition,
4
Az(]) = TMZ‘J‘,

so the forth part of the stiffness matrix A is given by the definition of the mass

matrix in (3.63)).

3.3.5 The right hand side F' - a Fourier approach

As the goal of this implementation is to derive prices of plain vanilla European call
and put options, the solution to pricing PIDE will not possess zero boundaries.
Linear combinations of classic hat functions, however, can only represent functions with
zero boundaries (where we will not pursue the concept of special hat functions that
are basically half hats associated with node x¢ or 41, respectively, that circumvent
this restriction. We direct the reader to Chapter 5.2 in [Seydel (2012)) for these special
basis functions, instead). Consequently, the original Merton pricing PIDE needs to be
transformed to a new problem which we assume to be equal to zero at the boundaries of
the bounded domain (a,b). We have seen the theoretical concept of the enforcement of
Dirichlet zero-boundaries in Section and in Steps|i) and [ii)[therein. For the numerical
implementation, we need to decide on a specific function v to subtract from the solution
to the original problem. The choice of this function depends first and foremost on the
payoff profile of the option that we derive prices for.

For plain vanilla European call and put options, there are standard boundary conditions
in the literature see Example 15.5 in Hull| (2015). These are inherited from the price
value V¢ of a call option and the price value V¥ of a put option that behave for |z| — oo
and |z| — 0 as

VY (x,t) =0, xr — —o0, t€[0,T] (3.86)
VO (r,t) = e® — Ke ™, xr — +o0, t € [0,7] '
for call options and
VP(x,t) » Ke ™ —¢”, r — —o0, t €[0,T]
(3.87)

VP (x,t) =0, x — 400, t €[0,T]

for put options. In Figure (3.5 we assess the accuracy of these boundary conditions in

the Black&Scholes model. For the localization of the pricing PIDE (3.52)) to a bounded
space-time region (0,7") X (a,b) with a < log(K) < b€ R and T > 0, a function ),

¥ [0,T] x [a,b] — oo, (3.88)
to subtract would need to fulfill

on(tv a) =0, Vt € [07 T]a

3.89
VO(t,b) = e — Ke™™, vt € 10,7, (3.89)
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s European call boundary precision 5 European put boundary precision
1077 1077

abs. err. at a=-2.5
rel. err. at b=2.5

-10 |
10 /

abs. err. at b=2.5
rel. err. at a=-2.5

- —
2 2
3 g
10—15 L
102 ’ ’ ’ ’ ' 10%°
1 12 14 16 18 2 1 12 14 1.6 18 2
time to maturity ¢ time to maturity ¢

Figure 3.5 Precision study of the classic boundary conditions for European call (left)
and put options (right). We compare v defined according to or , respectively,
to prices of the Black&Scholes model generated by Matlab’s blsprice routine. We set
r =0.05, K =1, 0 = 0.3 and evaluate European call and put prices for S§'** = e with
b =25 and SP" = ¢ with a = —2.5 for time to maturity values of ¢ € [1,2]. With
values for r and o being rather large and |b| and |a| being rather small, both model as
well as grid parameters have been chosen rather conservatively. Results in more realistic
settings are even better than the depicted ones.

for call options and
VP (t,a) = Ke ™ —e?, vt € (0,71,

3.90
WP (t,b) =0, vt € [0, 7], (390
for put options. Naive choices for both European options are
el T —rt\+t
t,x) = (e — Ke ,

WP (t, ) = (Ke ™ — ex)+.

Both candidates in ((3.91)) fulfill the boundary conditions (3.89)) and (3.90)), respectively.

However, we do not want to repeat tedious calculations of the kind we encountered in
the derivation of semi-explicit expressions for entries of the stiffness matrix. Instead,
we intend to apply a Fourier approach and compute the entries of the right hand side
F € RY numerically. As we shall see below, for the application of this approach we
need not only a closed expression of the function v which we subtract frorAn the original
problem, but additionally a closed expression of its Fourier transform ¢. For better
numerical tractability, we require a fast decay of [1)(§)| for [§| — oo. The smoother 9, the
faster [| decays, compare Remark Consequently, due to the kink at z = log(Ke™"")
for all t € [0,T], both 1% (-,t) and " (-,) are only continuous, but not continuously
differentiable and thus already lack elementary smoothness. We thus need different
functions v to subtract that not only fulfill the appropriate boundary conditions (|3.89)
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3.3.5 The right hand side F' - a Fourier approach

or (3.90) but that are also as smooth as possible. This additional requirement rules out

naive candidates like (3.91). As we have seen in ({3.38]), the right hand side in vector
notation is given by F(tF) = (Fy(t¥), ..., Fx(t*)) € RY for each t* on the time grid with
F;(-),je{l,...,N}, given by

F= - /R (@rp(t, ) + (A)(t, 2) + 1ib(t,2)) () de (3.92)

for all j € {1,...,N}.

In contrast to the integrals in the stiffness matrix, we intend to avoid solving the integral

in (3.92)) analogously to derive the right hand side F. Instead, we follow Eberlein and
Glaul (2011) by invoking Parseval’s identity of Theorem in a way that we call the
symbol method.

Lemma 3.21 (The symbol method)
Let A be the symbol of a Lévy process given by the characteristic triplet (b, o, F'). Denote

by A : C°(RY,C) — C=(RY, C) the pseudodifferential operator associated with symbol A.
Furthermore, denote by a : C5° x C5° — C the bilinear form associated with the operator
A. Letn € R, If

i) the exponential moment condition
/ =) p(da) < oo (3.93)
lz|>1

holds for all ' € sgn(n")[0, |n'(] x --- x sgn(nd)[(), |77d|] and

ii) there exists a constant C; > 0 with

[A(2)] < Co(1+ [|z[))* (3.94)
for all z € U_,, where
Up=U_p % xU_pa (3.95)
with U_; = R — isgn(n?)[0, [n’]),
then a(-,-) possesses a unique linear extension a : Hy /2 Ha/2 — C which can be written
as
1 , —_—
o) = oy [, A€ = in)(e —in)i(E —in) de (3.96)
for all p, 9 € H,?/2(]Rd).
Proof
The proof can be found in [Eberlein and Glau| (2011) using Theorem 4.1 therein and
Parseval’s identity [2.7] O

72



3.3.5 The right hand side F' - a Fourier approach

Lemma [3:2I] enables us to avoid considering the operator A for evaluating the associated
bilinear form and use the belonging symbol A, instead. Let us observe the effect of
Lemma on the derivation of the right hand side Fj, j € {1,..., N} for our numerical
FEM solver for the Merton model.

With this identity, we are able to derive the right hand side (F});e,.. vy in terms of
Fourier transforms. Consider a smooth function ¢ : [0,7] x R — R such that ¥(t) €

HS*(R) for all t € [0,T] for some n € R. With ¢ € [0, T,
Fi(t) = — / (@it 2) + (AD)(t, 2) + rp(t, 2) 9 () da
R (3.97)
- ( /R Bui(t, )3 () da + /R (AG)(t, 2)p;(x) da + 1 /R b(t,2)p;(x) dx).

We consider the three parts in (3.97)) individually. In the last summand we use appro-
priate dampening to apply Parseval’s identity of Theorem and get

/w(t,x)goj(m) dz = /e"xw(t,x)e"xgpj(x) dx

R R
- )/ Fle (- 0)OF (e o (D)@ dE (398)
= 5 [ Il 0©F 5@ d

By the same means we get for the first summand in (3.97)) that

[ ouitt.aye@ e = 5 [ o 0©F e (3.99)

Finally, for the second summand we have by applying the symbol method of Lemma[3.2]]

to (3.92)) that
1

[ antae ) de = 5o [ A€—indloE -z, O (@100

where A denotes the symbol of the Merton model.

Example 3.22 (Symbol in the Merton model)
In the Merton model where 0 >0, A >0, a € R and 8 > 0, the symbol computes to

A(€) = Amerton(g) = 30252 +igh— A (e*mf*%/ﬁiz - 1) (3.101)
for all £ € R.

We see from Example that the symbol of the Merton model appears to be numer-
ically accessible. Consequently, the symbol A for the Merton model is very suitable for
numerical integration, as is 1 given that the function v itself is smooth enough. In this
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3.3.5 The right hand side F' - a Fourier approach

case, solving the integral in (3.100]) is numerically accessible — in stark contrast to the
respective integral in (3.97)).

The following remark summarizes the numerical requirements on .

Remark 3.23 (Empirical criteria for 1)

Consider a pricing PIDE for a European plain vanilla option with payoff profile
g with weak solution u € W(0,T; H,?/Q(R), L2(R)) for some weight n € R that shall be
numerically approzimated on a space time grid in [a,b] x [0,T]. Assume @) € Hf;/Z(R)
that (approximately) matches the boundary conditions on the boundaries of the space-time

grid i.e. for the call option (3.89)) and for the put option (3.90). Then 1 is numerically
suitable for the purpose of localizing the pricing PIDE (3.52)) if

i) 1 is quickly evaluable on the region [a,b] x [0,T] and
i) the integral

By = 5= [ (B0~ in.0) + A€~ m)C(E — in) + (e — in.0) Ty (O d€

can be numerically evaluated for all j € {1,...,N}.

Criterium allows retransforming the solution of the localized problem into the solution
of the original pricing PIDE, while criterium grants the numerical derivation of the
right hand side F € RY.

In the following two subsections we will analyze two candidates for ¢ that match the
criteria of Remark [3.23

A first suggestion for ¢ consists in using Black&Scholes prices as functions in x =
log(So) € [a,b] and time to maturity ¢ € [0, T for localization of the pricing PIDE (3.52)).
We express the price of a Furopean option with payoff profile fx in the Black&Scholes
model in terms of (generalized) Fourier transforms using Proposition and define v
accordingly, as the following lemma explains.

Lemma 3.24 (Subtracting Black &Sch prices)

Let n € R such that Conditions (Fxp|) and (Ind) of Proposition|2.2() are satisfied. Choose
a BlackéScholes volatility o> > 0 and for European options set ry = r with v > 0 the
prevailing risk-free interest rate. Define 1 to be the associated BlackéScholes price,

wuﬁvzw“W@aﬂ=éﬂ%*“;Lééaﬁa—@+wmwﬁ”@+wmd& (3.102)

™

wherein fix = g, the initial condition and A the symbol of the associated operator A

in (3.16). Then, the right hand side F : [0,T] — RN takes the form

E@z%AOw—wﬂﬂw—M@—W>

Fr (€ —in)exp (=t (ry + AP0 (€ —in))) §5(€ + in) €. (3.103)
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12 . .
13X 1012 Call boundary precision 00 Put boundary precision
1257
5 abs. err. at a=-3.5 5 1 abs. err. at b=3.5
5 12t rel. err. at b=3.5 g 10 rel. err. at a=-3.5
115}
L L L " " 10-12
1 12 14 16 18 2 1 12 14 1.6 18 2
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Figure 3.6 Precision study of the boundary conditions for European call (left) and put
options (right) now given by . We compare 9 X ®g 5p—05 or ¥ X (1 — Py 50=0.5),
respectively, to prices of the Black&Scholes model. Equivalently to Figure [3.5] we set
r =0.05, K =1, 0 = 0.3 and evaluate European call and put prices for Sj'#* = e®max
and Sgli“ = e®min_ [n contrast to Figure the absolute values of zpin, and Tpmax have
to be increased to xpin = —3.5 and xymax = 3.5 to achieve comparable accuracy.

forallje{l,...,N}.

Proof

In order to derive the right hand side, we need to represent ¢ in Fourier terms. Since
for call and put options, ¥ ¢ L'(R), we compute the (generalized) Fourier transform of
1 or the Fourier transform of 1, respectively. We get

Uyt @) = PP (8, )

_ et L /R 7 Fre(— (€ + im))prs (€ + i) A& (3.104)

2T

= e”""tzi /R e i (€ — in)eyy ™ (—(€ — im)) €.

s

The integral in (3.104)) is a Fourier (inversion) integral. Hence,

—

Un(E,t) = e Fre (€ — i)y (—(€ — i)
= e_wtf;((f —in) exp (ftAbS’W (& —in)) (3.105)
— Fr(& —in)exp (=t (ry + AP0 (€ —in))),

where we used the relation between the characteristic function and the symbol of a
process, confer Remark [2.19] Next, we prove that

CIR H —~
() = 2 0n(t,€) (3.106)
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for almost all ¢ € [0, T]. For notational convenience we assume r = 0 and K =1 for the
proof of (3.106]). Let 0 < ¢ < T" and define I. = [e, T]. Thus, the claim (3.106|) holds, if

0 ® [ s |
[ [ Rt~ inebs(~( — in) dzdo
R R

5 (3.107)
= [ [ e = in) b (~(e — in) dzda,
R R
which holds if
0 —izx T . bs .
5 | ¢ fi(z —in)eis(—(2 —in)) dz
R (3.108)

i B .0 .
= [ R = i) b (e - i)z, Ve eR
R

Fix x € R. The integrand on the left of (3.108]) is integrable for all ¢ € I. and it
is differentiable for all z € R. Furthermore, the integrand on the right of (3.108) is
bounded by a function A independent of ¢ € I, since

—izz 7 N S .
e iz = im) oty (= (2 m))‘

=t = iy (- = ) = e = ?) s e - )|

~

| in) (10— i)+ 502~ )

1 .

IN

2

~ 1
fi(z —in) <z’b<z —in) + =0 (z — in)2>
_ _1 2,2 _ 1 2.2
tér[lgz?)}]exp( t(bn 501 ) exp( €502 )
= h(z)

wherein b € R is the risk neutral drift chosen according to from Section in
the preliminary chapter. The upper bound derived in is integrable, h € L'(R).
We may therefore apply Lemma 16.2 from Bauer| (1992) which validates identity
and thus proves identity for all ¢ € I.. Since € can be chosen arbitrarily small,
identity holds almost everywhere on [0,7]. We may thus exchange integration
and differentiation and get

—

0 0 —~

awn(@?: aTﬂn(t’f)
= (€ —in) (= (ry + AP7% (€ —in))) exp (—t (ry + AP0 (€ —in)))
= — (ry + AP7 (€ — i) dy(t,£).

(3.110)
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3.3.5 The right hand side F' - a Fourier approach
Finally, since /"™ € Hy / 2(]R), we have analogously to identity , that
J R O o (e R S e GECCRIR)
So, collecting our results, for ¢ = ¥P>"¢ we arrive at

B0 = = [ (G0 e+ A=) (ea) 4 o)) (o) da

1 s
T o )y <_ (ry + AP (€ — i) Y7 (1, €)
+ A€ — i)y (1,€)
+rgy T <£,t)>so/j\n<£>d§
= or [ (=) (A0 =i - A - i) o (T @) a
R

— % i <(T¢ —r) 4 (AT — A) (¢ - in))

Fre(€ = in)exp (=t (ry + A™70 (€ — in)) ZE +im) dg, (3.112)

which proves the claim. O

For the choice of 7 in Lemma/[3.24] consider Proposition[2.20[or Lemma[2.21] respectively,
for plain vanilla European options. The candidate 1) = ¥P>"¥ matches the criteria of
Remark It is quickly evaluable, since functions for yielding Black&Scholes prices
are implemented in many code libraries. Also, the integral in is numerically
accessible, since the integrand decays fast.

Remark 3.25 (rg¢ = 0 for American options)

Choosing 1 to be BlackéScholes prices does not only suit the case of Furopean plain
vanilla options but American ones, as well. Only the value of ry needs to be adjusted.
When no dividends are paid, the price of an American call options is equal to the price
of a European call option. In this case, the Lemma applies identically. For put options,
however, the boundary conditions change when an American put instead of a Furopean
put is considered. Then, the boundary conditions coincide with those of a Furopean put
when interest rates are assumed to be equal to zero,

VE (2,t) = K — €°, T — —00,
‘;’”( ) (3.113)
Vim(z,t) — 0, T — +00,

confer also Chapter 11 in |Hull (2015). Consequently, for American options, choose

ro =0 in (3.102).
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3.3.5 The right hand side F' - a Fourier approach

A major disadvantage of choosing ¥ = 1”>"¥ however, lies in the fact that neither j €
{1,...,N} nor t € [0,T] can be separated from the integrand in (3.103]). Consequently,
Fi(t*),j€{1,...,N}, k€ {1,..., M}, must be numerically evaluated on each grid node
individually. This results in significant numerical cost. We therefore present a second
candidate for 1 that avoids this issue.

Lemma 3.26 (Subtracting Quasi-Hockey stick multiplied by Normal)
Let oy, > 0. In the European option case set vy = r, with r > 0 the prevailing risk-free
interest rate. Define ¥ in the call option and Y in the put option case by

V(L x) = (e" — Ke ™) &(z), (t,x) €10, T] x [a,b],

p . (3.114)

w (t,$) = (Ke_rw - eac) (1 - q)(.ilf)), (t,.ﬁ[)) € [OaT] x [a7 b]a
where ® denotes the cumulative distribution function of the normal N (0, 03}) distribution.
Furthermore, in the call option case choose n < —1 and n > 0 in the put option case.
Then, the right hand side F : [0,T] — RY is given by

V(e —i -
= % </R (Ate—in)+1)* ié§+ (77(747:;)1))@(5 im) ¢

V(€ —in)

_e—r¢tK/IR(r—r¢+A(f—i77)) e

@i (€ +in) d€)7 (3.115)

forallj €{1,...,N} witht € [0,T], where A is the symbol of the associated operator A
in PIDE ([3.52)) and with

- 1

() = exp (- 503¢ ).
the Fourier transform of the normal N (0, ai) density derived in Lemma .

Proof

We consider the call option case, first. To derive the expression for F; in (3.115) we
need to compute the Fourier transform of (the appropriately weighted) 1. We choose
1 < —1 arbitrary but fix and ¢ € [0, T] arbitrary but fix and compute for K =1,

—

P& (t,)(€) = /Reiéxe”x (e" —e ") &(z) da

(3.116)
= / eiéze(nﬂ)xfb(x) dz — e_“ﬁt/ e’fl’e”wfb(x) dz.
R R
We take the first integral in (3.116]) and get by applying integration by parts
/ M VTH (1) dx = / eI )Z P (1) da
R R
(3.117)

i(€—i(n+1))z +oo i(€—i(n+1))z

e (&
—®(x — / e Em— N x)dz,
iE+m+1) ] R+ + D)’ )
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3.3.5 The right hand side F' - a Fourier approach

where

@) = 5-a) e

denotes the density of the normal A(0, aw) Since 7 < —1, the non-integral part
in m ) tends to zero as x — +oo. Furthermore, by I’'Hopital’s rule we have

Jm TP (z) = Lam exp ( _(I) E:;)_f_ 1)z)
= lim fN(x)
a=—00 —(n+ 1) exp (— (7 +1)x) (3.119)
1 1

Hence, the non-integral part in (3.117)) is equal to zero and we have
A 1 o
i€ )T () dp = — L / i(€=in+1)e N (1) 3190
e“%e x)dx : e x)dz, .
/R (@) i€+ (n+1) Jr (@) ( )

which can be expressed in terms of the Fourier transform of the normal distribution
yielding

N .
/ eifze("""l)x@(x) de = — f (§ i(n + 1)) (3.121)
R i€+ (n+1)
Equivalently, we obtain for the second integral in (3.116))
N .
/eifzenzq)(m) do— _ & —m) (3.122)
R i€+
Assembling these results we find
- Nt it _
iE+m+1) i+
As in the proof of Lemma we exchange differentiation and integration and get
0 o0 0 = Y (i)
S5 (46 = G (D) = —rye S (3124)

We thus have
RO = -5 | (@’(s,w+A<s—in>@<g,t>+r@<s,t>) NG
_ 1 (_W Y ()

21 Jp i€ +n
: (€~ i(n+1) —rtf (E—in) | \=
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3.3.5 The right hand side F' - a Fourier approach

from which we deduce by splitting the integral

V(g —i -
ij:;( [ =m0 ES T D ac

V(€ —in)—

—e‘”’t/R(r—m—i-A(f—in)) g soj(£+z‘n)d£> (3.125)

with )
() = oxp (-502¢°).

For the put option case we choose as defined in ([3.114)),

wp(m,t) = (Ke*’"‘/’t — ex) (1—®(x))

— (ex _ Ke—rwt) (q)(x) _ 1) ) (3126)
Since P 9
o (2@) —1) = o-0(z), VzeR (3.127)

—

the computations for 71)? follow along the same lines as they do for the call and we get
the relation

Uy (t,)() =9F(t)(€), V(€ €[0,T] xR, (3.128)
for n set to some n > 0, which proves the claim. O

Remark 3.27 (Computational features of ¢ and )

While ¢ serves as localizing function for the call option case, ' can be used in the
put option case. Both candidates are based on their "naive” counterparts in but
avoid the lack of differentiability with respect to x in x = log(Ke™™) fort € [0,T]. As a
consequence, both Y and Y are very smooth functions and thus fulfill the requirements
collected in Remark when oy, is chosen small enough. Additionally, the two integrals
m do not depend on the time variable t € [0,T] and thus need to be computed only
once for each basis function pj. This results in a significant acceleration in computational
time compared to the suggestion 1 = 1*7% of Lemma .

We implemented the FEM solver as sketched above in MATLAB and conducted a study
of the empirical order of convergence. The results of this study can be found in Section [3.5]
below.

We have also tested the implementation in a project analyzing a method commonly
used by practitioners for model calibration purposes. Clearly, our implementation as
outlined above is designed with European options in mind. As such, it is a valuable
tool for calibrating the Merton model to European option prices in the market. Yet,
practice argues that American options are traded more liquidly and thus would offer a
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3.3.5 The right hand side F' - a Fourier approach

more favorable source for reference prices in model calibration. Calibrating a model to
American prices, however, depends on the ability to derive American model prices for
a vast amount of model parameter constellations within a reasonable amount of time
which is typically numerically unfeasible. Therefore, some practitioners take American
option prices that they observe in the market, strip off the component that represents
the price for the American feature and calibrate their models in a European fashion
to quasi-European prices that result from that transformation. This method is known
as De-Americanization. Its effect on pricing and calibration is studied extensively in
Burkovska et al.| (2016 to which our implementation contributed the results with regards
to pricing call and put options in the Merton model.

3.4 A general FEM solver based on the symbol method

Section [3-3] has provided us with a FEM solver capable of deriving European call and
put option prices in the Merton model. The key ingredients of the solver have been
analytically derived. Let us emphasize our two main findings from that exercise. First,
the analytic treatment of the Lévy measure presented a serious challenge during the
computations. Especially the double integral term and the Lévy density required lengthy
and tedious consideration. Second, the actual computations we performed are closely tied
to the Merton model. Naively setting up a FEM solver for different models in the same
way would put us in the position of having to adapt all of our Merton-specific calculations
with respect to the Lévy measure of the new model. These two findings underline that
our first approach above can hardly be generalized to other models without serious
computational efforts for each new model individually.

Consequently, in this section we approach the calculation of FEM solver components
differently. In Section Parseval’s identity of Theorem[2.7 has enabled us to compute
the right hand side by numerical integration of the Fourier transforms of the involved
quantities. We have seen that in the course of this transformation, dealing with the
operator of the underlying model has vanished while the associated symbol appeared
in the calculations, instead. In stark contrast to the operator, the symbol of a Lévy
model is numerically accessible in many cases and we will present several examples in the
following. This feature nourishes the hope of being able to renounce the treatment of the
operator alltogether by shifting the focus to its Fourier counterpart, the symbol, instead.
Investigating this shift in perspective, this section aims at establishing a numerical FEM
solver framework that

i) provides flexibility in the choice of the asset model and thus
ii) avoids tedious individual consideration of different models but still

iii) maintains numerical feasibility.
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3.3.5 The right hand side F' - a Fourier approach

As we will see, achieving these core aims comes at a certain cost. While considering the
FEM solver components in Fourier space will be highly advantageous regarding some
aspects, it will also pose new challenges regarding others. More precisely, while shifting
our perspective to Fourier spaces solves the problem of having to consider the operator,
at the same time it leaves us with new numerical challenges concerning the choice of
basis functions. The contents of this section that focuses on the symbol method also
appear in (Gaf and Glau| (2016)).

Before we consider these new challenges, let us state the core lemma of this section.

Lemma 3.28 (Symbol method for bilinear forms)
Let A € S% be a univariate symbol as introduced in Definition [2.17 and let A be the
associated operator in a PIDE of form . Further, let a(-,-) be the associated bilinear
form. If there exists a constant ¢ > 0 such that

a(,0) < cllull oz [0l orzyy Vv € CR(R), (3.129)
then the bilinear form possesses a unique linear extension
a: HYA(R) x H*(R) - C. (3.130)

Assume further for N € N a set of functions ¢g, p1,...,oN € H§/2(R) and constants
x1,...,oN € R, such that for alli e {1,...,N}

vi(z) = oz — ), Vr € R,
holds. Then we have

a(gr, 1) = ;r/ﬂ%A(ﬁ)e"g(xl‘“) 20(6)[? de. (3.131)

forall k,l € {1,...,N}. If additionally

RIA©) = RA(-E)  and  S(A(©) = ~S(A(-0), (3132)
then | oo
ateron) == [ R (@) (o) ag (3.133)

forallk,le{1,...,N}.

Proof
Due to property [i)|in Lemma [2.4

0i(6) = (6. (3.134)
Since @; € HS/Z(R), for all i € {1,..., N}, the identity (3.131]) follows from Theorem 4.1

and Remark 5.2 and the lines thereafter in |Eberlein and Glau| (2011]), see also page 68
in |Glau/ (2010). The second claim (3.133)) is then elementary. O

82



3.3.5 The right hand side F' - a Fourier approach

Remark 3.29 (On the symbol method for bilinear forms)

Lemma|3.28 provides an appealing formula to derive the values of all entries in the stiff-
ness matriz (Aij); jequ,.. Ny 1t offers an alternative to explicitly considering the effect of
the operator A on the basis functions that we presented in Section[3.5.4) Instead, it ex-
ploits the availability of the associated symbol A that often contains the model information
wm an explicit and numerically pleasing way, as the following examples show.

Corollary 3.30 (Symbol method for stiffness matrices)

Let A € S° be a univariate symbol associated with the operator A of a PIDE of form .
Denote by p; € LY(R), i € {1,..., N} the basis functions of a Galerkin solving scheme
associated with an equidistantly spaced grid Q = {x1,...,xN} possessing the property

vi(z) = oz — ), Vo € R, (3.135)

for some pg : R — R. Then, the stiffness matric A € RN*N of the scheme can be
computed by

1 ; —
Ay =5 [ A G dg (3.136)
2T R
forallk,le{1,...,N}.
Proof
The proof is an immediate consequence of Lemma, |3.28] O

Earlier, we introduced operators A and the characteristic triplets (b, o, F) of some well
known asset models. In Example [3:22] we have already seen the symbol of the Merton
model. The following examples present the symbols of the remaining models introduced
before.

Example 3.31 (Symbol in the Black&Scholes (BS) model)
In the univariate BlackéScholes model, determined by the Brownian volatility o > 0, the
symbol is given by

1
A(g) = A™(9) = igb+ 5o°¢, (3.137)
with drift set b to
b=r——o (3.138)
as seen in Example[3.11]

Example 3.32 (Symbal in the OGMY| model)
In the CGMY model of |Carr et al| (2002) with ¢ > 0, C > 0, G > 0, M > 0 and
Y € (1,2), the symbol computes to

A() = ATH(E) = igh + 0%
—CT(-Y) [(M +i&)Y — MY +(G-i&)" —G¥], (3.139)
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for all € € R, with drift b set to
1
b=r— 502 —CI(-Y) [(M - 1) = MY +(G+1)" - GY] (3.140)

for martingale pricing.

Example 3.33 (Symbol in the NIG model)
With o0 >0, « >0, B €R and § > 0 such that o > B2, the symbol of the NIG model is
given by

A(6) = A™I(¢) = %0252 +igh— 6 (\/a2 — Va2 = (B —if) ) (3.141)

for all £ € R with drift given by

b—rffa <\/a2 —Va2—(B+1) > (3.142)

Corollary 3.34 (Deriving the BS stiffness matrix using the symbol)

Denote by r > 0 the prevailing constant risk-free interest rate. Consider the pricing
PDE of the univariate BlackéScholes model, that is with operator A given by
Ezample [3.11]  Consider the numerical implementation of a FEM solver assuming the
hat functions @;, i € {1,...,N}, of Deﬁm’tionfor some N > 0 as basis functions on
an equidistant grid with fineness h > 0. Then the respective stiffness matriz A € RN*N
s given by

Ajj = 7rh2 / & cos(Eh(j —4))(1 — cos(&h))* d€

- % A gs sin(€h(j —0))(1 — cos(€h))* d€ + rMy;  (3.143)

for alli,j € {1,...,N}, where M € RN*N s the model-independent mass matriz given

by Lemma[5.18

Proof
The stiffness matrix A is given by the bilinear form a(-,-) : H§/2(R) X HS/Q(]R) - R
with a = 2, associated with the operator A by

Ayj = alpj, pi) + rM;;.

Let ¢p be the hat function centered over the origin with supp gy C (—h,h), as de-
fined in (3.60). Since the Black&Scholes symbol A = AP fulfills condition ([3.132) of

Lemma [3.28, we have
1 [ VO
alpr) = [ R (AP [FO de.

Inserting the formula of @y from Lemma and AP from (3.137) of Example
yields the claim. O
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Remark 3.35 (Toeplitz structure of stiffness matrix)

The mass matriz M is a Toeplitz matrix given that the basis functions are defined on
an equidistant grid and possess property (3.135)). We observe that the values of the
integrals in Equation i Corollary only depend on the value of j — i €
{—=(N—=1),...,—1,0,1,...,N — 1}. This means, that each individual diagonal of A is
determined by only one single value in the sense of Definition 2.1 Consequently, the
stiffness matriz is a Toeplitz matriz, as well. Thus, for its numerical derivation only
2N — 1 instead of N? integrals have to be computed. This feature is lost, if the grid that
the basis functions populate is not equidistantly spaced.

Algorithm 1 A symbol method based FEM solver
Choose equidistant space grid z;, ¢ € {1,..., N}
Choose basis functions ¢;, i € {1,..., N}, with ¢;(z) = po(x — x;) for some ¢
Choose equidistant time grid Tj, j € {0,..., M}
procedure COMPUTE MASS MATRIX M
Derive the mass matrix M € RV*N by
My = [ o1(x)er(z) de, Vk,le{l,...,N}
procedure COMPUTE STIFFNESS MATRIX A
Derive the stiffness matrix A € RV*Y by plugging the symbol A of the chosen
model into the following formula and computing
9: Ay = & [o A(E) @20 |5(9) 1 d¢,  Vk, 1€ {1,...,N}

10: using numerical integration

11: procedure RUN THETA SCHEME

12:  Following the suggestions by Lemma [3.24] or Lemma [3.26] for plain vanilla Euro-
pean options choose a function v to subtract from the original pricing problem
to obtain a zero boundary problem and retrieve the respective basis function
coefficient vectors ak eRN kecdo0,...,M}

13: Choose an appropriate basis function coefficient vector V! € R matching the
initial condition of the transformed problem

14: Derive the right hand side vectors F¥ ¢ RN, k € {0,..., M}, as defined in

Lemma or Lemma matching the choice of v

15: Choose 6 € [0,1] and run the iterative scheme

16: for k=0:(M —1)

17: VEHL = (M + At A) =L (M — At (1 — 0) A) VF 4 FFH6)
18: end

19: procedure RECONSTRUCT SOLUTION TO ORIGINAL PROBLEM

20: Add previously subtracted right hand side 1 to the solution of the transformed
problem by computing

21; VE=vE4+g" kelo,..., M}

22: to retrieve the basis function coefficient vectors 17’“, k€ {0,..., M}, to the orig-
inal pricing problem
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Algorithm [I] summarizes the abstract structure of a general FEM solver based on the
symbol method. By plugging the symbol associated to the model of choice into the
computation of line [J of the algorithm, the solver instantly adapts to that model. In
other words, only one line needs to be specified to obtain a model specific solver for
option pricing. As Examples[3.31] [3.32] [3.33] and others emphasize, the symbol exists in
analytically (semi-)closed form for many models, indeed. Algorithm [1] thus provides a
very appealing tool for FEM pricing in practice. Model specific computations that we
had encountered earlier for the Merton model have become unnecessary.

3.4.1 Numerical aspects

By now we have seen two alternative ways to compute the stiffness matrix A. The
derivation in Section required the consideration of the Lévy measure F'. Taking the
Merton model as an example we understood that long and tedious calculations may come
with this approach. Section offered a different solution. By expressing its entries in
terms of Fourier transforms, Corollary [3.30] displayed a formula for the stiffness matrix
values that accesses model information not via the operator but via the related symbol,
instead. Many examples have shown, that explicit formulas for the symbol exist for
many interesting models.

From a numerical perspective, however, new challenges arise. Basis functions with
bounded support alleviate numerical integration as they limit the area within the in-
tegration range that supporting nodes are distributed over. This is the case for classic
hat functions ; since supp ¢; C [z; — h, x; + h]. Transitioning into Fourier space, how-
ever, comes at the cost of numerical integration on an unbounded domain, since the
support of ¢; is not bounded in R, supp p; = R, see Figure [3.7

As an example, Figure[3.8|displays some stiffness matrix integrands for the Black&Scholes
model in Fourier terms. More precisely, we show several integrands of A € R¥* in the
representation provided by of Corollary Each integrand is evaluated for a
different value of j — i over three different subintervals taken from the unbounded inte-
gration range. In the Fourier approach of calculating the stiffness matrix 4 € RV via
the respective symbol, the integrands of A;; would have to be numerically integrated for
all j —i e {—(NV-1),...,-1,0,1,..., N — 1}. The larger |j — i|, however, the more
severe the numerical challenges for evaluating the integrand, as Figure [3.8| demonstrates.
All integrands illustrated therein decay rather slowly. Additionally, oscillations increase
in [j —i|. In combination, these two observations seriously threaten a numerically re-
liable evaluation of the integral. With increasing values of |j — i|, the oscillations of
the integrand accelerate and the number of necessary supporting points for accurate
integration soars. In this toy example of the Black&Scholes model, pointing out the
challenging integration of the stiffness matrix integrand for large values of |j — ¢| might
not be very convincing, since we know the stiffness matrix entries to be equal to zero
for |j —i| > 1. For Lévy jump models, however, the stiffness matrix is in general fully
populated and these oscillations have to be dealt with, indeed. In the following section
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Figure 3.7 Graph of g, the Fourier transform of the hat function ¢ centered over the
origin, evaluated over three subintervals of R™. The mesh is chosen with h = 1. The
oscillations and the rather slow decay to zero complicate numerical integration with high
accuracy requirements considerably when @q is involved.

we investigate the influence of inaccurately calculated stiffness matrix entries onto the
accuracy of option prices.

3.4.2 An accuracy study of the stiffness matrix

Using the classic hat functions as basis functions we thus have to accept that severe
numerically challenges are attached to the computation of the 2N — 1 entries of the
stiffness matrix A € RY*Y via the Fourier approach of Corollary due to heavily
oscillating integrands. Investigating how material these challenges are, we conduct an
empirical study of the propagation of integration errors in the stiffness matrix and their
influence on the accuracy of the derived option prices. We have already performed a
similar study of this kind in |Gak and Glau| (2014)) wherein the results are presented in
more detail. We choose the Black&Scholes model parametrized by ¢ = 0.2 modeling
price movements of a stock in a market with interest rate r = 0.01, where we price a
put option with strike K = 1 and maturities T € [0, 3] for current values of the stock
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Figure 3.8 The first integrand of A;; in for several values of j — ¢. The grid
of the hat functions spans the interval [—5,5] with 150 equidistantly spaced inner nodes
and grid fineness h = 0.0662. A Black&Scholes solution on this grid would thus be
represented by the weighted sum of 150 hat functions. We observe that oscillations of
the integrand increase in the value of |j — 1|.
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So € [Smin, Smax] With Spin = 0.01 and Spax = 10. We set the number of involved
FEM hat functions to NV = 150, resulting in a mesh with 150 inner grid nodes and mesh
fineness h = 0.0464. We know the mass matrix of the Black&Scholes model to be

4 1 0 --- 0
L 1 4 1
MZE 0 0 GRNXN,
: .1 4 1
o --- 0 1 4
and the stiffness matrix to be given by
A=A» =AW 4 A@) 4 0 e RV, (3.144)
where
0 -1 0 0 2 -1 0 0
1 0 -1 -1 2 -1
1 o? 0?1
A(1>:2<r—2> 0 0o |, A®==1o 0
: 1 0 -1 . -1 2 —1
o --- 0 1 0 o -+ 0 -1 2

With these matrices we set up a theta scheme, § = 0.5, and derive Black&Scholes put
option prices. The resulting pricing surface is depicted in Figure [3.9] Since we can
solve the integrals determining the entries of the stiffness matrix A € RV*Y explicitly
in the case of the Black&Scholes model, we know their true value and can simulate how
the resulting pricing surface is affected by inaccuracies that might occur when these
integrals are solved numerically, instead. To this extent we take the correct stiffness
matrix given by and distort each of its entries randomly at different positions
D € N after the decimal point by adding EZ-D = 10~P—Yg; with random ¢; € (=1,1) for
ie{-(N-1),...,—-1,0,1,..., (N — 1)} onto the (side) diagonal i of Matrix A. Each
individual (side) diagonal of the original stiffness matrix is thus affected evenly, keeping
the Toeplitz structure of the matrix intact. Since the value of A;; is only determined
by the value of j — ¢, this distortion mimics the influence that integration inaccuracies
would have.

So, for D € N we define the distorted stiffness matrix by

A(ﬂs‘cort =A =+ ‘€D € RNXN? (3145)
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Option price surface

option price

Figure 3.9 Pricing surface of a put option with strike K = 1 in the Black&Scholes
model with parameter ¢ = 0.2 and interest rate » = 0.01. The space grid consists of
N = 150 equidistant inner nodes with mesh fineness h = 0.0464. Only a part from the
whole surface spanning from Sy, = 0.01 to Spax = 10 that prices were computed for is
shown. The considered maturities range from T, = 0 to Tax = 3.

with
€0 €1 g9 - cee EN-1
E_1 €0 €1
E_9 g1
€1 €2
g1 €0 €1
8—(N—1) .. .. ... 6_2 6_1 EO
with uniformly distributed ¢; € (—1,1),7 € {—(N—-1),...,—1,0,1,...,(N—1)}, that are

drawn independently from each other. Using these distorted stiffness matrices Aéjistort

for different values D € N, we derive again price surfaces of the put option in the
Black&Scholes model and compare the difference between the prices coming from the
distorted stiffness matrix Agswrt € RVXN to the prices from the intact stiffness matrix
A € RNXN_ The results are shown in Figure We observe that the absolute price
differences decrease almost linearly in D. An accuracy of D = 3 corresponds to integra-
tion results that are exact up to the third digit after the decimal point. Pricing resulting
from stiffness matrices computed with such a low integration accuracy are unacceptable.
The respective pricing errors observable in the top left corner of Figure indicate
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abs. price diff.

abs. price diff.

abs. price diff.

Figure 3.10 Absolute price differences resulting from a distortion of the stiffness ma-
trix A. True and distorted prices describe the market value of a put option in the
Black&Scholes model parametrized equivalently to the setting of Figure We com-
pare the price surfaces coming from a theta scheme using the stiffness matrix A given
by to the respective pricing surface when A is replaced by Agstort’ the distorted

version of A as defined in (3.145)), for different values of D € N. The influence of the
distortion decreases in D.
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relative errors of several hundred percent points. With more precise integration results,
the error decreases in D until highly appealing pricing results are achieved for D = 7 and
beyond. The magnitude of the pricing error resulting from a distorted stiffness matrix
emphasizes the necessity of being able to derive the stiffness matrix entries as accurately
as possible. This poses a serious challenge to the numerical integration routines that
have to handle strongly oscillating and slowly decaying integrands which we have seen
in Figure [3.8 Yet, this problem of numerical integration of oscillating integrands has
drawn attention by research for a long time. One example for an integration routine of
approximating the integral

b
Wi = / f(z) cos(cz)de, a<beR, ceR (3.146)

is so called Filon’s formula, see Abramowitz and Stegun| (2014) for details. Unfortu-
nately, Filon’s approach focuses on the oscillation alone while lacking an emphasis on
the integration of decaying functions. Consequently, b < oo is required which thus rules
out an immediate application of the approach for our purposes, where coming back to
our Black&Scholes model example expressions of the form

o0
V2:/ ggj)dx, 2<keN (3.147)
0

for oscillating functions g in the sense that Jp > 0 such that g(x) = g(z+p) for all z € RT
are considered. In Appendix [A] and Lemma therein, we present an integration
algorithm for expressions of the form tailor-made for the integration of that
special class of decaying functions exhibiting the oscillatory behavior we observed above.
Numerical experiments study the approximation power of the algorithm in detail.

Yet, stiffness matrix integrals in general can not be cast in terms of expression . In
some cases, a periodic behavior of the nominator is missing, in others the order of decay
is not equal to an integer value. In these cases, again individual integration algorithms
would be required which is exactly what the symbol method tries to avoid. Therefore, in
the following section we take a different approach to arrive at stiffness matrix integrals
that allow a feasible numerical evaluation.

3.4.3 New choices for the basis functions

Previously we had presented a Finite Element implementation for pricing European plain
vanilla options in the Merton model using the well known classic hat functions as basis
functions. As we have seen, the existence of a jump part with Lévy measure F' in the
operator A renders the derivation of the stiffness matrix numerically challenging. While
the Merton model still allows quasi-explicit formulas for the stiffness matrix entries, this
is in general no longer the case when more involved Lévy jump models are considered.
Therefore we analyized the possibility of accessing the jump information in the Fourier
space, instead. Then, the model information is represented by the symbol instead of
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the operator, a quantity that is available in closed form in many cases. As a negative
consequence of this shift into the Fourier space, however, we now have to integrate terms
involving the Fourier transform of the considered FEM basis functions. In the case of
classic hat functions, this translates into the necessity of integrating slowly decaying,
heavily oscillating integrands. Classic hat functions therefore appear hardly compatible
to the symbol method approach. Let us therefore investigate two alternative choices for
FEM basis functions.

3.4.3.1 Mollified hat functions

Hat functions are piecewise linear functions. While being continuous they are not con-
tinuously differentiable everywhere and thus lack smoothness on an elementary level
already. This lack of smoothness translates into a slow decay of their Fourier transform,
compare Remark [2.8] A fast decay of the Fourier transform, however, is one of the cru-
cial features that basis functions need to possess in order to become eligible in a symbol
method based FEM implementation.

Due to its lack of smoothness, the classic hat function is thus ruled out as a FEM basis
function candidate in such an implementation and needs to be replaced by an alternative.
It is well known, however, that convolution with a smooth function has a smoothing effect
on the function that the convolution is applied to. Our first basis function alternative
will therefore be a classic hat function smoothed by convolution.

Definition 3.36 (Mollifier)
A smooth function m € C®(RY), m : RY — R is called mollifier, if it fulfills

i) Jgam(z)dr =1,

i) il_l)l(l) me(x) = il_]% Eidm (%) = 6(x), where § is the Dirac delta function and

ii) m has compact support, m € C3°(R?).

Convoluting certain functions f with a mollifier m results in very smooth functions fxm
in the sense of the following lemma.

Lemma 3.37 (Mollifying a function)
Let m € C®(R) be a univariate mollifier and f € CJ(R) a continuous function with

compact support. Then the mollfied f, denoted by f * m, is infinitely smooth, f*xm €
C>(R).

Proof
The claim is a direct consequence from Theorem E.25 in Schilling] (2005). i
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Example 3.38 (Standard mollifier)
A standard example of a mollifier m : R — R(J{ is given by

1 1

= ——r ), <1,

m(z) = CeXp< 1—\$I2> =1 (3.148)
0, otherwise,

with the normalization constant defined by C' = [p m(x) dz.

Let us investigate, how the standard mollifier of Example [3.38| operates on both smooth
and non-smooth functions. We define

fl 1T = :H-|x‘<27

1
A 3)1

f3 T = 908:1('%)7
fa:x = m(x),

so f1 is a piecewise constant function, fs is a piecewise linear function, f3 is the clas-
sic hat function centered over the origin as defined in and fy is the mollifier of
Example m itself. We apply the standard mollifier m defined in of Exam-
ple to each of these functions by convolution. Figure [3.11| shows the graph of each
fi, 1 € {1,2,3,4}, together with f;*m, the convolution of that function with the standard
mollifier. The smoothing effect is clear to see.

Mollifying functions has a smoothing effect on them. By Remark [2.8] smoothness of a
function translates into decay rates of its Fourier transform. Lemma [3.30| presented a
method to derive stiffness matrix entries in Fourier space. In the respective formula,
the Fourier transform of the basis functions was needed. When hat functions are used
as basis functions, however, we face numerical challenges since the Fourier transforms
of hat functions oscillate heavily and decay rather slowly. Hat functions smoothed by
mollifiers thus appear as interesting candidates to replace the classic hat functions as
basis functions in a Finite Element implementation.

Before we can test the suitability of mollified hat functions as basis functions, however,
we want to control the influence of the mollifier on functions it is applied to. Simply
applying m to the hat function might distort it too strongly. After all, in Figure 3.17]
the mollified hat function is hardly distinguishable from the mollified mollifier.

Remark 3.39 (The mollication parameter ¢ > 0)
Let m : R — R be a mollifier in the sense of Definition|3.36. Define for e > 0

me(z) = —m (—) , Vo € RY.

We call € the mollification parameter of m. The function m® is still a mollifier. The
parameter € > 0 requlates the smoothing influence on the function that the mollifier is
applied to. For decreasing values of € the smoothing influence decreases, for increasing
values of €, the smoothing influence increases.

94



3.4.3 New choices for the basis functions
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Figure 3.11 The effect of the classic mollifier defined in Example on four exemplary
functions f;, i € {1,2,3,4}, defined in (3.149)). The first two functions are not even
continuous, the third one is not differentiable. After mollification, however, they all
appear smoothed. Note two interesting observations. The mollifier leaves piecewise
linear function parts unchanged when they are long enough (f1, f2). At the same time,
it might further mollify functions that are already smooth (fy).

Introducing the mollification parameter € of Remark we gain control over the molli-
fication influence. In choosing € > 0 smaller, the mollified function gravitates towards its

untreated counterpart. Both are identical in the limit, as the following lemma shows.

Lemma 3.40 (Convergence of mollified functions)
Let f : R? — R be continuous. Let m be a mollifier in the strict sense of Definition |3.36

with support in the unit ball, supp m C B|1|’H (0) with respect to some norm. Then fxm® —
f uniformly as € — 0 on any compact subset K C R?.

Proof

The proof is taken from |Loftin

2010

, see also

Showalter

i

2010

, Chapter II, Lemma

1.2). By assumption, K C R is compact. Therefore, there exists r > 0 such that

K C BJ«H‘(O). The continuous function f is uniformly continuous on the compact set

BMI(O). Choose € > 0. There exists § > 0 such that for z,w €

BMl(O) we have with

|z —wl|| < §also |f(z) — f(w)| < & Now choose ¢ € (0, min{1,d}).
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Let z € K c BI'(0). Then,

|(f +m®)(2) = [(2)| =

flz —y)m®(y)dy — f(=)
Rd

-y dy - [ famw) dy'
Rd Rd

< / @ — 1) — F@)|me(y) dy. (3.150)
Rd

Since suppm = Bi(0) and m® = lm(-/e), suppm® = BQ'H(O). Thus, continuing
in (3.150]) we get

T y) — f(y)lm(y) dy (3.151)
LU

/ fla-
BIM(0)
/3"H 5 gm*(y) dy

[ Ve =) = rwlm )y =
<

g,
which proves the claim. O

The mollification parameter ¢ and the claim of Lemma[3.40]are powerful tools in smooth-
ing the nondifferentiable hat functions. Before the smoothed functions can be deployed,
however, we need to derive their Fourier transform.

The Fourier transform of the convolution of two integrable functions is given by the
product of the two individual Fourier transforms as Property in Lemma shows.
In theory, this provides the link from using smoothed hat functions as basis functions
to the numerical derivation of the stiffness matrix entries. The Fourier transform of
the classic mollifier, however, is not known in closed form. Its numerical evaluation
is thus challenging, especially when integration of the mollifier is concerned. Recently,
Johnson| (2015)) has expanded on the issue of evaluating m approximately, emphasizing
the numerical difficulties involved.

Classic mollifiers or the standard mollifier of Example [3.38] at least thus don’t suit our
needs. We therefore mollify with a different class of functions that display very similar
mollification effects. Following Proposition and Definition 2.14 in|Alt|(2011)) we introduce
the definition of a Dirac sequence.

Definition 3.41 (Dirac sequence)
We call a sequence (My)ren, mi € L*(R?) for all k € N, a Dirac sequence, if

i) mp >0, Vk e N,
i) [gamp(z)de =1, and
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ii1) if for all o > 0 we have the convergence

/ my(x)dz — 0,
R\ B,(0)

for k — oo.

Again by Proposition and Definition 2.14 in |Alt| (2011) we have the following remark.

Remark 3.42 (Dirac ¢)
Let m € LY (RY) with

m >0 and / m(z)dr = 1. (3.152)
Rd

Analogously to Remark[3.39 define

1 .
.1/
e = g (E) (3.153)
Then for each o > 0 we have
mf(x)dzr =1 and / m(z)dz — 0, (3.154)
R4 RH\ B, (0)

for e — 0. Consequently, for each null sequence (ex)ren the sequence (M )ken S a
Dirac sequence in the sense of Definition [3.41]

Definition generalizes the notion of a (positive) mollifier as defined in Definition [3.36]
Each sequence of (m®*)gen, mer = a;dm(-/sk), with m a positive mollifier, m : R — R,
is a Dirac sequence.

Example 3.43 (A Dirac sequence based on the Normal distribution)
We present an example for a Dirac sequence. Define

[N

1 P

M Gaussian(T) = e 2. 3.155
Gaussmn( ) \/% ( )
Define further
~ 1_ .
maGaussian = gmGaussian (g) . (3156)

With (eg)ken a null sequence we call (M, ... Yren a Gaussian Dirac sequence.

A Gaussian Dirac sequence as given by Example can be used for mollification of
(non-smooth) functions, as well. For that matter, we take

~ 1_ .
mSGaussian = gmGaussian <g> (3157)
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of Example and apply Mg, sian t0 the classic hat function by convolution for dif-
ferent values of £ > 0. As in the case of mollifiers, the value of € governs the degree of
the smoothing effect on the function that mg, ., 15 applied to. Figure shows the
results of mollifying classic hat functions using the Dirac sequence of Example[3.43] Due
to the smoothing effect of a Dirac sequence, we use the term mollifier in this context, as
well, even though a Dirac sequence does not necessarily fulfill the requirement of compact

support of Definition [3.36]

Corollary 3.44 (Fourier transform of Gaussian mollifier)
The characteristic function of the Gaussian mollifier is known in closed form,

— 1
m%’aussian(g) = exp <_2€2§2) ) (3158)

and exhibits exponential decay, which is the reason why this mollifier is especially inter-
esting for our purposes.

Proof
Since Mg, ., 15 identical to the density of a normally N (0,£2) distributed random
variable, the claim is a direct consequence of Lemma [2.3] O

Analogously to Lemma [3.40] we also have a convergence result for functions f mollified
by a Dirac sequence.

Lemma 3.45 (Convergence of mollification with a Dirac sequence)
Let 1 < p<oo. Let f € LP(R?) and (ms)ren be a Dirac sequence. Then

Frimg— f (3.159)
in LP(R?) for k — oo.
Proof
See the proof of Satz 2.15 in Alt (2011)). O

We state an analogous result to Corollary [3.34] with mollified hat functions as basis
functions.

Corollary 3.46 (Black&Scholes stiffness matrix with mollified hat functions)
Consider the pricing PDE of the univariate BlackéScholes model, that is a PDE of
form (3.52)) wherein the operator A is parametrized following Example with r > 0

and o > 0. Consider a numerical FEM solver and assume N > 0 mollified hat functions
O = Qi * MG gussians Vie{l,...,N} (3.160)

on an equidistant grid with grid fineness h > 0 as basis functions, wherein My ,,csian
denotes the Gaussian mollifier of Example [3-]3 with mollification parameter € > 0.
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Figure 3.12 A comparison between the classic hat function g with h = 1 as defined
in (3.60) and the mollified hat function ¢f = @o * MG, eian fOF Several values of € €
{0.05,0.15,0.3} using the Gaussian mollifier of Example

Then the respective stiffness matriz A € RN*N s given by

202

i =

/0 écos(ih(j —1)(1 - COS({h))Qe—EQEQ d

_ %(T — %(72) ; ;Sin(fh(j —i))(1 - COS(§h))26—82§2 de (3.161)
dr (=1 o »

T 7rhr2/0 g cos(Eh(j —1))(1 — COS(éh))26 13 de,

foralli,je{l,...,N}.

Proof
The result is proved analogously to Corollary [3.34} using

/E o~ ~g
¥o = $0 MGaussian

by property of Lemma . The Fourier transform mg, ., is given by Corol-
lary [3.44) O

Figure displays the integrand in (3.161)). The integrand is evaluated on three subin-
tervals of the semi-infinite integration region. The grid setting is identical to the one
of Figure Instead of classic hat functions their mollified counterparts have been
employed as basis functions using the Gaussian mollifier of Example [3:43] as smoothing
influence. Even with just a slight mollification influence, ¢ = 0.05h, the decay of the
integrand accelerates. For moderate values of ¢ = 0.3h the integrand decays to zero
rapidly.

99



3.4.3 New choices for the basis functions

%103 e-Mollified Integrand of A%, i —j =0 %103
4 T T T T T T T T T 2
""""""" — — —e=0.05h
oL . T T e e e =0.3h 14
- ~ -
-~ N~
R S
0 el 1 1 1 ] FRRAEREIY i WS | ] 0
0 10 20 30 40 50 60 70 80 90 100
13
% 10™ e-Mollified Integrand of Afj, 1—7=0 %107
3 T LI T T T T T T T 3
i — — —2=005h
2 L e—m— e =0.3h 2
1} -7 Tl 11
- - =~ ~
ok — 1 ] ] ] e 1 e R 1 1 0
10 110 120 130 140 150 160 170 180 190 200
13
10720 e-Mollified Integrand of A%, i — j =0 1017
l T T T T T ‘I T T T 2
— — —e=0.05h
A —0.3h
05F "~ S 41
: ~
~
~
~ ~
0 - ] [l | ] ] L_——I—"_—I—__I—_"O
1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100
13

Figure 3.13 The integrand of A;; in (3.161)), the stiffness matrix of the Black&Scholes
model with mollified hat functions as basis functions for the main diagonal entry, j—i = 0.

We have implemented the symbol method using mollified hat functions as basis functions
for several models and have conducted an empirical order of convergence study that
we present at the end of the chapter. The results confirm that mollification is not
only theoretically interesting but empirically solves the problem of lacking numerical
integrability, as well. Mollifying the hat functions has thus proved to be numerically
advantageous.

But let us consider the theoretical consequences, as well. The Fourier transform of a
smoothed function decays faster than the Fourier transform of the original function itself.
The integrals in the stiffness matrix thus become feasible. In our FEM implementation,
the non-smooth hat functions span a finite dimensional subspace of the solution space
of the underlying PDE. But smoothing a function changes it. Therefore, smoothing the
hat basis functions changes the spaces they span.
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Figure 3.14 Graph of 3/0%, the Fourier transform of the mollified hat function (g centered
over the origin, evaluated over three subintervals of R*. The mesh is chosen with h = 1
and the mollification parameter is set to € = 0.3h. The oscillations and the rather slow
decay to zero that we observe in Figure [3.7] where the Fourier transform of the classic
hat function is displayed, have vanished completely.

In other words, the discretization in space by mollified hat functions might not fall into
the scope of step of Section . Principally, there are two ways to deal with this
modification theoretically.

i) Investigate the function spaces that are spanned by mollified hat functions

ii) Treat mollified hat functions as classic hat functions and interpret the contribution
of mollification to the algorithm’s quantities as a numerical inaccuracy that is
addressed by error control methods separately

The appeal of possibility[i)|lies in the straightforwardness with which the situation would
be assessed. The mollification takes effect on the level of the basis functions and modifies
them immediately. Investigating the basis properties of the resulting functions from a
theoretical point of view would address mollification directly instead of avoiding that
confrontation. At the same this, the approach could be cumbersome as the theoretical
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effect of mollification is rather severe, for example regarding the support of the mollified
hat functions which is infinite in theory.

Possibility avoids the issue by viewing the effect of mollification not as a theoreti-
cal adaptation but rather as a purely numerical influence, instead. The theoretically
expected values of the algorithm’s output, for example the stiffness matrix, would thus
still be based on the classic hat functions. Independently from the accuracy of the ap-
plied numerical integration routine, however, the actual result of the derivations would
deviate due to the effect of the mollifier. That difference in the respective quantity would
be interpreted as a kind of commonly observed numerical noise that one tries to measure
and control. In this regard, the mollification parameter € becomes the trigger of the
numerical disturbance the influence of which can be limited and reduced by shifting &
closer to zero. The actually chosen value of the parameter would then result from a com-
promise between feasible integrability and desired accuracy of the output. The challenge
of this approach would consist in investigating whether this compromise can be reached
in all cases of interest. In jvon Petersdorff and Schwab (2003]), the authors provide a
framework with which that kind of noise control could be achieved.

Both of these possibilities might stimulate further research to reconcile (mollified) hat
functions with the challenges arising from the Fourier aspect of the symbol method. On
the other hand, the problem could be avoided in the first place, if we abandoned the hat
functions alltogether and turned to already smooth basis functions, instead. This will
be the motivation for the next section on splines.

3.4.3.2 Splines

After our analysis of the hat functions we now investigate a second, well-established class
of finite element basis function candidates by considering cubic splines. Spline theory
is a well-investigated field that applies to a much broader context than we consider
here. We refer the reader to [Schumaker| (2007) for thorough introduction and overview.
In this section, we focus on the following facts. Splines are smooth basis functions.
Their Fourier transform is accessible and the theory of function spaces they span is well-
established. As such, they offer a very interesting alternative to non-differentiable hat
functions by avoiding theoretical challenges regarding their deployment in the algorithm
while maintaining the promise of numerical feasibility at the same time.

We give the definition of the Irwin-Hall cubic spline that inherits its name from the
related probability distribution.
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Figure 3.15 A plot of N = 15 spline functions ¢;, i € {1,..., N}, as given by Defini-
tion [3.48| on an equidistant grid. For convenience, yg is depicted in orange. Note that in
contrast to hat functions, the support of an inner spline function does not only overlap
with the supports of two but six neighboring splines.

Definition 3.47 (Irwin-Hall cubic spline)
We define the univariate Irwin-Hall spline ¢ : R — RT by

(z +2)3 , 2<z< -1
13z —622+4 , -1<z<1
T)=— - 3.162
OREE P L (3.162)
0 , elsewhere

for all x € R. The spline ¢ has compact support on [—2,2] and is a cubic spline.

Definition 3.48 (Spline basis functions on an equidistant grid)

Choose N € N. Assume an equidistant grid Q = {z1,...,xn}, x; € R for all i €
{1,..., N}, with mesh fineness h > 0. Let ¢ be the Irwin-Hall spline of Definition .
Forie{l,...,N} define

vi(z) = p((x — ) /h), Vz € R.

We call p; the spline basis function associated to node 1.

Figure[3.15]displays a set of Irwin-Hall spline basis functions as defined by Definition [3.48]
The functions cover a real domain [a,b] C R equidistantly.

For a given equidistant grid consisting of N € N grid nodes, the set of associated splines
©1,---,pnN given by Definition and illustrated by Figure [3.15] constitutes the com-
plete basis which our approximate solution relies on. We are well aware that in the
literature often the set of Irwin-Hall basis function splines contains additional functions
associated with the fringes of the domain, that the discrete grid spans, for the pur-
pose of providing more flexibility concerning boundary conditions. Yet, this flexibility
comes with the numerical cost that those additional basis function again lack elemen-
tary smoothness in terms of differentiability and even continuity which disqualifies their
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deployment for our purposes. Furthermore, this additional flexibility could not even
be appreciated in our setup, as we will again transform the PDEs we consider to zero
boundary problems, anyway. The issue of omitting spline basis functions that do not
belong to the set described by Definition has also been investigated theoretically
and numerically in |Zimmermann (2016). The numerical studies therein confirm that
flexibility regarding boundary conditions of Dirichlet or Neumann type or with respect
to higher derivatives can be neglected for the options we consider here and thus validate
our approach. Thirdly, constraining the set of basis functions in such a way that each
function can be transformed into another one by a mere horizontal shift preserves ad-
vantageous properties regarding the derivation of the associated Fourier transforms as
the following two results demonstrate.

Lemma 3.49 (Fourier transform of the Irwin-Hhll spline)
Let ¢ be the Irwin-Hall cubic spline of Definition|3.41. Then its Fourier transform @ is
given by

o(&) = 534 (cos(28) —4cos(§) + 3) (3.163)

for all £ € R.

Proof
Elementary calculations yield

15(6) = 4 /R €7 () d

—1 2
= / (x4 2)3e%% dx + / 3|z — 622 4 4)e® dz + / (2 — z)%e " dx

1
—2 1 1

—1 1
= 2/ (z + 2)3 cos(éx) dx + 2/ (323 — 62 4 4) cos(Ex) da.
—92 0

Standard integration rules lead to

43(¢) = ; [€(2 +2) (2(x +2)? — 6) sin(€x) + 3 (2(z + 2)% — 2) cos(Ex)] "~
+ ;4 [€ (€2 (32 — 622 + 4) — 18z + 12) sin(€x) + 3 (%2 (3z — 4) — 6) cos(€x)]T—,

= ;4 (3(£% —2) cos(€) + 6 cos(2€) — 3(£2 + 6) cos(€) + 18)

= 524 (—6cos(&) + 6 cos(28) — 18 cos(&) + 18)

= ? (cos(28) —4cos(€) + 3).
Consequently, 5

o(&) = ¢l (cos(2€) —4cos(§) +3),

which finishes the proof. O
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Corollary 3.50 (Fourier transform of spline basis functions)

Choose N € N. Assume an equidistant grid Q = {z1,...,zn}, x; € R for all i €
{1,..., N}, with mesh fineness h > 0 and let p; be the spline basis function associated
with node i as defined in Definition [3.48 Its Fourier transform is given by

5i(6) = eifxi};g(cos@ﬁh) — dcos(¢h) +3)
for all € € R.

Proof

Denote by (g the scaled spline function centered over the origin,

wo(x) = p(z/h), (3.164)

where ¢ is the Irwin-Hall spline of Definition With property [ii)| of Lemma we

compute

Po(&) =h@(&h)

:(;]5)4((303(25]1) — 4 cos(&h) + 3)
:hggl(cos(%h) —4cos(&h) + 3).

Exploiting property [i)| of Lemma shows the claim. O

Figure [3.16] illustrates the decay of the Fourier transform derived by Lemma [3.49] or
Corollary [3.50] respectively. Recalling the respective Figure [3.7] where the analogous
situation for Fourier transform of the classic hat function had been shown together with
Figure[3.14] that display the oscillatory decay of the Fourier transform of the hat function
after mollification we observe that the Fourier transform of the Irwin-Hall spline falls in
between those two.

Finally, Figure [3.17] provides a visual overview over the Fourier transforms of all three
basis function candidates that are the classic hat functions, the mollified hat functions
and the cubic splines of [rwin-Hall type. When all three Fourier transforms are displayed
together, those of the mollified hat function and the Irwin-Hall splines can hardly be
distinguished and appear to attain zero value very quickly, while the oscillations of the
Fourier transform of the classic hat function endure over the whole displayed domain. In
Remark we established a connection between smoothness of a function and the speed
of decay of its Fourier transform. Figure[3.17indeed serves as an impressive reminder.

In the previous section, Corollary presented the formula for the stiffness matrix
entries in the Black&Scholes model with mollified hat functions as basis functions. The
following corollary translates that result to the situation when splines are used as basis
functions, instead.
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Figure 3.16 Graph of ¢g, the Fourier transform of the Irwin-Hall spline function ¢
centered over the origin, evaluated over three subintervals of RT. The mesh is chosen
with A = 1. Oscillations and decay rate of the function lie inbetween those displayed in

Figure 3.7 and Figure [3.14]

Corollary 3.51 (Black&Scholes mass and stiffness matrix with splines)
Consider the pricing PDE of the univariate Black&Scholes model, that is a PDE of

form wherein the operator A is parametrized following Fxample with r > 0
and o > 0. Consider a numerical FEM solver and assume N > 0 Irwin-Hall spline
functions on an equidistant grid with grid fineness h > 0 as defined in Definition[3.48 as
basis functions. Then the respective mass matrizc M € RV*N s given by

[e.9]

My, = % ; cos(&(xy — xl)); (cos(2¢h) — 4 cos(€h) + 3)2 de¢ (3.165)

and the stiffness matriz A € RV*N computes to

Ay, = 5 h6/ & cos(&h(k — 1)) (cos(2¢h) — 4 cos(ER) + 3)2 dé

9 1 2) & 517 sin(éh(k — 1))(cos(2¢h) — 4 cos(Eh) + 3)* d¢ (3.166)
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Figure 3.17 Graphs of the Fourier transforms of all basis function candidates presented
in this section, evaluated over three subintervals of RT. The mesh is chosen with h = 1,
the mollification parameter is again set to ¢ = 0.3h.

foralli,je{l,...,N}.

Proof
The mass matrix is derived by applying Parseval’s identity of Theorem [2.7|and then using
the characteristic function of the Irwin-Hall spline derived in Lemma/|3.49] The expression
for the stiffness matrix entries is derived analogously to the proof of Corollary [3.34 O

We have implemented a symbol method based FEM solver using Irwin-Hall spline func-
tions as basis functions and conducted an empirical order of convergence study. The
results are presented in the next section.

3.5 Implementation and numerical results

The previous sections have outlined the necessary consecutive phases in setting up a
Finite Element solver for option pricing. In a first step, using the Merton model as an
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example, the key ingredients of such a solver have been analytically calculated. During
the derivation we faced serious limitations regarding the generalizability of that ap-
proach. Therefore, in a second step, we introduced the symbol method which considers
all components of the FEM solver in Fourier space, instead. There, components are
based on the symbol instead of the Lévy measure and become numerically accessible.
Many examples of asset models for which the associated symbols exist in analytically
closed form have deemed this alternative approach being worthwhile to pursue. At the
same time, however, smoothness of the FEM basis functions became a critical issue which
ruled out further working with the classic hat functions that we had considered, before.
In a third step, we therefore investigated two examples of basis functions that manage
to combine smoothness and numerical accessibility. Mollified hat functions and splines
were introduced as promising examples to construct a symbol method based FEM solver
with.

This section will put that promise to the test. In addition to the hat function based
FEM solver for the Merton model we implemented the symbol method for both mollified
hats and splines. The FEM solver with hat functions is tailored to the Merton model
and can not easily be generalized to other asset models. In stark contrast, the symbol
method enjoys the flexibility of being able to easily plug in the symbol of any Lévy
model for which it is available in analytically closed form. The model restriction of
that first implementation thus disappears. Instead of having to restrict ourselves to the
Merton model, we could therefore enhance the model scope of our symbol method based
implementation to additionally comprise the NIG and the CGMY model with virtually
no additional implementation effort. In this regard, the method impressively underlines
its appeal for applications in practice where the suitability of a model might depend on
the asset class it is employed for. An institution that needs to maintain pricing routines
for several asset classes will thus cherish the flexibility that the symbol method offers,
recall Algorithm [I]in this regard which sketches the implementation of a general, symbol
method based FEM solver that easily adapts to various models.

Finally, we conduct an empirical order of convergence study. We consider the univariate
Merton, CGMY and NIG model and investigate the empirical rates of convergence for
the different implementations as Table [3.1] summarizes.

For each model and each implemented basis function type enlisted in Table we con-
duct an empirical order of convergence study using the pricing problem of a call option
with strike K = 1 as an example, thus considering the payoff function

g(x) = max(e” —1,0). (3.167)
In each study we compute FEM prices for Ny basis functions, with
Ny=1+2F  ke{4,...,9} (3.168)

resulting in N4 = 17 basis functions in the most coarse and Ng = 513 basis functions in
the most granular case. On each grid, the nodes that basis functions are associated with
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Implemented basis functions

Model Symbol Parameter choices
Hats Mollified hats Splines
o = 0.15, a = —0.04,
Merton Example B=02. \ =3 v v v

C=0.5, G = 23.78,

CGMY Example M=2724, Y =1.1 g ‘
a=12.26, f=-5.77,
NIG Example 5 =052 v ’

Table 3.1 An overview of the models considered in the empirical order of convergence
analysis and their parametrization. For these models, the symbol method is implemented
and tested for both mollified hat functions and splines. In addition, we investigate the
empirical convergence rate for the Merton model using classic hat functions as basis
functions in a classic implementation disregarding the symbol method. In all models,
the constant risk-less interest rate has been set to r = 0.03.

are equidistantly spaced from another and the basis functions always span the space
interval Q@ = [—5,5]. The time discretization is kept constant with Niime erid = 2000
equidistantly spaced time nodes spanning a grid range of two years up until maturity,
thus covering a time to maturity interval of

[Tl, TNtime]? with T1 =0 and TNtime = 2. (3169)

For each k € {4,...,9}, the resulting price surface constructed by N} basis functions
in space and Ngjme = 2000 grid points in time is computed. A comparison of these
surfaces is drawn to a price surface of most granular structure based on the same type
of basis function. We call this most granular surface true price surface. It rests on
Niwe = Nip = 1+ 21 = 2049 basis functions in space and Nijme grid points in time
spanning the same grid intervals as above, that is Q@ = [—5,5] in space and [0,2] in
time, respectively. The underlying FEM implementation is thus based on distances hyye
between grid nodes that basis function are associated with of
h(molliﬁed) hat _ ( . (_5))/(2 + 211) ~ 00049’

true

hsplines _ (5 - (_5))/(4 + 211) ~ 0.0049, (3170)

true

Atirge = 2/(2000 — 1) & 0.001

in space and time, respectively. Note that all space grids are designed in such a way that
the log-strike log(K) = 0 is one of the space nodes. For each model and method and
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Figure 3.18 Results of the empirical order of convergence study for the Merton model
with classic hat functions. Refer to Table for the chosen parametrization of the
model. Additionally, part of a straight line with (absolute) slope of 2 is depicted and
serves as a comparison.

each k € {4,...,9}, the (discrete) L? error ;2 is calculated as

Ntime Ntrue 2
er2(k) = | Attrue - Ptrue - Z Z (Pm'cetme(i,j) - Pricek(z',j)) ,
i=1 j=1
wherein Pricege(?, j) is the value of the true pricing surface at space node j € {1,...,1+

211} and time node i € {1,...,2000} and Price(i, ) is the respective, linearly interpo-
lated value of the coarser pricing surface with only N basis function nodes. Figure [3.1§|
illustrates the results for the first implementation, the taylormade approach for the
Merton model using the classic hat functions as basis functions. Similarly, Figure [3.19]
summarizes the results of the six studies of empirical order of convergence in the Merton,
the NIG and the CGMY model in a symbol based implementation once using mollified
hats and once using splines as basis functions.

In each implementation and for all considered models, the (discrete) L? error decays
exponentially with rate 2. We thus precisely achieve an empirical rate of convergence
that we would theoretically expect, as the upcoming Section [3.6] will explain in detail.
This is especially remarkable for the mollified hat functions that are not FEM basis
functions in a strict theoretical sense. Our numerical results may thus motivate further
research on these functions and their appealing numerical features in Fourier space.
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Figure 3.19 Results of the empirical order of convergence study for the Merton, the NIG
and the CGMY model using mollified hats (left pictures) and splines (right pictures) as
basis functions. All models are parametrized as stated in Table[3.1] Additionally, part of
a straight line with (absolute) slope of 2 is depicted in each figure serving as a comparison.
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3.6 Stability and convergence analysis

When an approximate finite dimensional solution to a PDE shall be obtained, two ques-
tions naturally arise.

i) Is the numerical scheme deriving the solution stable?
A numerical scheme is said to be stable, if its solution normed in a certain way is
bounded by the equivalently normed right hand side of the scheme and its initial
condition up to multiplication with a constant that is independent of the discretiza-
tion itself. In other words, the solution to a numerically stable scheme is bounded
by the input data.

ii) Does the finite dimensional solution converge to the true solution?

The precision of a solution to the numerical scheme should increase when the un-
derlying mesh grids in space and time become finer. Only then can we expect
error control. In fact, the larger topic of convergence separates into several indi-
vidual questions. Does the solution converge polynomially or even exponentially?
Which rate of convergence does it exhibit? How can the normed difference be-
tween the true solution and its approximation be expressed as a function of the
mesh parameters?

In this final section of the chapter we want to assess these two questions. The frame-
work that we consider for this task is kept very general. Not only do we consider PDEs
with operators independent of time like the Black&Scholes PDE. Instead, our analysis
comprises the time-inhomogeneous case, as well, and thus allows the stability and con-
vergence analysis of approximate solutions to time-dependent problems. In this regard,
the analysis below extends the work done by von Petersdorft and Schwab (2003)) to the
time-inhomogeneous case.

The group of PDE problems, however, can not only be separated along their dependence
on time. Additionally, all PDE problems can be segregated along a different characteristic
of the operator. In the classic existence and uniqueness result on weak solutions to PDEs
that Theorem presented, the bilinear form a(-,-) associated with the operator A;
needed to satisfy, among other requirements, that there exist constants 5 > 0 and A > 0
independent of ¢ such that

ar(p,0) > BllollE = N[wl3, YVt e[0,T) and Y, ¢ € V. (3.171)

Concerning the sophistication of stability and convergence analysis it will mean a sig-
nificant difference, whether the constant A > 0 in is actually zero or not. For
vanishing A, the associated PDE is called coercive. For this case, the results in|von Peters-
dorft and Schwab| (2003) provide stability and convergence results for time-homogeneous
problems. For nonnegative A values, the PDE problem is called of Géarding type. When
PDEs with A > 0 are concerned, however, standard approaches to stability and conver-
gence analysis fail and the proofs of these claims become a lot more involved. In finance,
this is especially unsatisfactory, since PDE problems in the realm of option pricing are
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usually of Garding type and thus require the consideration of the general case of A > 0.
A popular shortcut to avoid this issue is to transform the original PDE problem of Gard-
ing type into a PDE problem that is coercive and then apply the discretization steps on
the basis of the transformed problem. By this approach, however, the link between the
original problem and the discrete scheme is lost. Claims regarding stability and conver-
gence only apply to the transformed problem and do not extend to the original pricing
PDE, as such. We will illustrate this issue in more detail, later.

In this section, we derive stability and convergence results that apply to PDEs with
time-inhomogeneous operator of Garding type. We begin by extending the results of [von
Petersdorff and Schwab| (2003)) to time-inhomogeneous problems focusing on coercive
PDEs exlusively. On the basis of these results, we extend the scope of our findings in a
second major step to fully general time-inhomogeneous problems of Garding type.

Consider again the problem of finding solutions u : [0, 7] x R? — R to a problem of the
form
ou + A = f, for almost all ¢ € (0,7

w(0) = ¢ (3.172)

with A = (A¢)iepo,r) @ time-inhomogeneous operator of order a4 € (0,2] as introduced
in Definition a source term or right hand side f : [0,T] x R — R and an initial
condition g : R* — R.

The next few definitions introduce the notation that we use throughout the rest of the
section.

Definition 3.52 (Semi-discrete weak solution)
Let V', H be separable Hilbert spaces and the dual V* of V' be given that form a Gelfand
triplet,

Ve H=H"-V"

and let Vi, C V be a finite dimensional subspace of V.. Let f € L?>(0,T;V*). Then we
call up, € W0, T; Vi, H) a semi-discrete weak solution to problem (3.172)), if for almost
every t € (0