
Technische Universität München

Fakultät für Mathematik

Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik

A Polyhedral Analysis of Start-up Process Models in
Unit Commitment Problems

Matthias Silbernagl

Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:

Prüfer der Dissertation:

Prof. Dr. Michael Ulbrich

1. Prof. Dr. Peter Gritzmann

2. Prof. Dr. Alexander Martin

3. Prof. Dr. Thomas Hamacher

Die Dissertation wurde am 11.07.2016 bei der Technischen Universität München
eingereicht und durch die Fakultät für Mathematik am 30.10.2016 angenommen.

Abstract
This work investigates mixed-integer start-up models in Unit Commitment problems.

We consider the costs and the power trajectories caused by a start-up.
After a polyhedral analysis of the start-up cost function, we present two families of

models based on different approaches: The first type of formulations explicitly captures
the temperature of a power plant and models the typical inversely exponential start-up
costs. The second type of formulations classifies each start-up by binary variables,
allowing arbitrary costs and power trajectories. The practical relevance of both models
is experimentally demonstrated using data of the German power system.

Zusammenfassung
Diese Arbeit untersucht die gemischt-ganzzahlige Modellierung von Startvorgängen

in der Kraftwerkseinsatzplanung. Betrachtet werden dabei die durch einen Start
verursachten Kosten und Verläufe der Stromproduktion.

Nach einer polyedrischen Analyse der Startkostenfunktion stellen wir zwei Familien
von Modellen basierend auf unterschiedlichen Ansätzen vor: Die erste Art von For-
mulierungen modelliert den Temperaturverlauf eines Kraftwerks explizit und bildet
damit die typischen invers exponentiellen Startkosten ab. Die zweite Art von For-
mulierungen typisiert Startvorgänge durch Binärvariablen und erlaubt dadurch beliebige
Kosten und Produktionsverläufe. Die praktische Relevanz beider Modelle wird durch
Experimente anhand von Daten des deutschen Kraftwerkparks nachgewiesen.

i

Contents

1 Introduction 1
1.1 Technical and Economical Background 4
1.2 Mathematical Background . 6

1.2.1 Nomenclature . 7
1.2.2 Unit Commitment Reference 8
1.2.3 Computational Complexity . 13

1.3 Foundations of Start-up Modeling . 15
1.3.1 Start-up Notation . 16
1.3.2 Epigraphs of Start-up Costs Functions 18
1.3.3 Start-up Types . 22

1.4 Contribution . 23
1.4.1 Summary . 27

1.5 Acknowledgments . 30

2 H-Representations of the Epigraphs of Start-up Cost Functions 31
2.1 The Start-up Costs in a Single Period 32

2.1.1 The Existing Step-wise Start-up Cost Model 32
2.1.2 A Geometric Interpretation . 34
2.1.3 Lifted Start-up Cost Inequalities 36
2.1.4 An H-Representation . 39
2.1.5 The Convex Extension LCUti of DCUti 45
2.1.6 Redundancy and Approximations of Start-up Costs 46

2.2 The Summed Start-up Costs . 52
2.2.1 Lifting Inequalities . 53
2.2.2 Notation for Binary Trees . 57
2.2.3 The Binary Tree Inequalities 62
2.2.4 Sufficiency of the BTIs . 73
2.2.5 Separation . 77

2.3 The Start-up Costs in All Periods . 80
2.3.1 Composite Start-up Cost Inequalities 81
2.3.2 Facets . 83

3 The Temperature Model 91
3.1 A Physical Interpretation of the Start-up Costs 92

iii

Contents

3.2 An H-Representation for Integral Operational Schedules 96
3.2.1 Correctness for Integral Operational Schedules 99

3.3 The Temperature Polyhedron . 102
3.3.1 Equivalency to the Summed Start-up Cost Epigraph 106
3.3.2 Separation . 115

3.4 Generalization of Temperature Development 119

4 Start-up Types 123
4.1 The Network Flow Interpretation . 124
4.2 The Start-up Flow Polyhedron . 127
4.3 The Start-up Type Polyhedron . 129

4.3.1 Valid Inequalities . 131
4.3.2 Integral Operational Schedules 132
4.3.3 Fractional Operational Schedules 134
4.3.4 Separation . 138

4.4 Start-up and Shutdown Indicators . 140
4.5 Comparison of Start-up Cost Models 144

4.5.1 The Existing Start-up Type Models 145
4.5.2 The Epigraph of the Start-up Costs in a Single Period 145
4.5.3 The Temperature Polyhedron for Integers 150
4.5.4 Conclusion . 151

5 Numerical Experiments 153
5.1 The Scenarios . 153
5.2 The Models . 155
5.3 Integrality Gap . 156
5.4 Computational Performance . 159

6 Summary and Outlook 165
6.1 Summary . 165
6.2 Modeling the Start-up Process in the Temperature Model 166
6.3 The Epigraph of Start-up Costs in All Periods 169
6.4 Minimum Downtime and Start-ups . 171

A Finding Cartesian Trees 179

iv

Chapter 1

Introduction

The end of the 19th century saw the birth of the first local power systems. Over mere
50 years, these local systems evolved into networks spanning whole geographic regions.
They became and remain indispensable to modern society [Hug93].

To keep a power system in balance, its power plants are coordinated to constantly
meet the electricity demand, at substantial costs. Due to inherent strengths and
weaknesses of different electricity production technologies, highly heterogeneous power
plant fleets have been developed. The arising complexity provides ample opportunity
for optimization and leads to the natural question “how should a power system be
operated?” Part of this question—the day-to-day scheduling of electricity generating
units—is commonly known as the family of Unit Commitment (UC) problems.

Despite more than a century of research, this problem family is far from being solved.
Moreover, the structure of the problem has recently been shifted by the introduction
of renewable energy sources in significant quantities. The production of the prevalent
renewable energy sources, wind and solar energy, is inherently volatile, aggravating
the task of keeping electricity production and demand in balance. As a consequence,
conventional units need to change production level and start-up more often, resulting
in a higher share of start-up costs among the total costs. Hence, accurate models of
start-ups, and in particular of start-up costs, become a priority.

The main results presented in this work are two novel families of start-up cost models,

• the temperature formulations represented by P temp (joint work with René Bran-
denberg and Matthias Huber [SHB16; BHS]), and

• the start-up type formulations culminating in P δ (based on the start-up types
introduced in [Muc66]).

As demonstrated by numerical experiments on real-world models of the German
Power system (see Chapter 5), these new formulations significantly improve both
solution time and integrality gap compared to the state-of-the-art approaches in [CA06]
(denoted by P tex) and in [SBB10] (denoted by P δex).

The new formulations are capable of solving problems about twice as large as P δex
in the same time to the same optimality tolerance (see Fig. 1.1). The gap to P tex is
even more pronounced, which was already shown in [MELR13b]. The computational

1

Chapter 1 Introduction

performance of all formulations except P temp depends strongly on the approximation
tolerance of the start-up costs - in the case of Fig. 1.1 a tolerance of CUtol = 10% is
used. In contrast, the temperature formulation P temp by design models the typically
assumed exponential start-up cost function (1.3.1) without approximation.

The superior computational performance of the new formulations can be explained
by their much lower integrality gap. In our experiments, the median integrality gap is
decreased down to one third of that of P δex (see Fig. 1.2). Note that if unapproximated
start-up costs are modeled (i. e. CUtol = 0%), then the integrality gaps of P δ and
P temp are equal.
These improvements stem from our thorough polyhedral analysis of the epigraphs

of the start-up cost functions and the start-up types. Apart from the computational
progress, our results analytically compare the tightness of all formulations regarding
the modeled start-up costs (see Fig. 1.3). In particular, we prove the conjecture of
[MELR13b] that P δex models a stronger lower bound on the start-up costs than P tex.

Our contribution is organized in four chapters which, after introducing the necessary
background in the following sections, is laid out in detail in Section 1.4. We give a
short overview here:
Chapter 2 starts by analyzing the start-up cost epigraphs, which leads to

• a linear, irredundantH-representation of the epigraph of the start-up cost function
in a single period with a linear separation algorithm in Section 2.1 (joint work
with René Brandenberg and Matthias Huber [BS14; SHB16]),

• an exponential H-representation of the epigraph of the start-up cost function
summed over all periods, which is irredundant in the general case and possesses

0 48 96 144 192 240 288 336 384 432 480 5280
2
4
6
8

10
12
14

modeled periods T

so
lv
ed

in
st
an

ce
s

P tex P δex P temp P δ

Figure 1.1: Number of solved instances in 15 minutes to an optimality tolerance of 1%,
showing that the state-of-the-art models P tex and P δex are dominated by the newly
introduced P δ and P temp in most cases. P tex, P δex, P δ approximate the start-up
costs with a tolerance of 10%.

2

a linear separation algorithm in Section 2.2 (joint work with René Brandenberg
and Matthias Huber [BHS16]), and

• an exponential class of facets of the epigraph of the start-up cost function
combined for all periods in Section 2.3.

By explicitly modeling the temperature of a unit, Chapter 3 provides the extended
formulation P temp of the epigraph of the summed start-up costs with O(T) variables
and O(T 2) inequalities. Only O(T) of these inequalities are necessary to model the
start-up costs correctly, while the remaining O(T 2) inequalities tighten the linear
relaxation and can be separated in O(T) (joint work with René Brandenberg and
Matthias Huber [SHB16; BHS]). As shown in [HS15], the temperature formulations
can be extended to incorporate the start-up process (see Section 6.2).

0% 5% 10% 20% 0% 5% 10% 20% = CUtol
13%

25%

50%

100%

200%

400%

217% 212% 200%

158%

100%

33% 33%
39% 46%

39%

P tex P δex P temp P δ

Figure 1.2: Integrality gap relative to the state-of-the-art P δex with start-up costs approximated
to different tolerances CUtol for P tex and P δ. The newly introduced models P temp

and P δ (red) outclass the existing formulations P tex and P δex.

P δ, P temp

P δex

P tex

Figure 1.3: Venn diagram comparing the tightness of the formulations regarding the sum of
the start-up costs. P δ and P temp model the same bound on the total start-up
costs, which is higher than the bound of P δex and P tex. All subset relationships are
strict in general.

3

Chapter 1 Introduction

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000

1990

2000

2010

2035

Yearly Electricity Production [TWh]

Figure 1.4: Historical and projected electricity production assuming different government
policies (blue: historical, red: current policies, yellow: expected future policies,
green: policies limiting global temperature increase to 2°C) [Int12] 1

State-of-the-art start-up process models classify each start-up as one of S types (cf.
[SBB10]). By interpreting these types as flows in a particular network, Chapter 4
significantly tightens and generalizes these models such that the resulting polyhedron P δ
with O(ST) variables and O(T 2) inequalities is an extended formulation of the epigraph
of the start-up costs in all periods. The start-up costs are modeled correctly by O(ST)
of these inequalities, and the remaining inequalities tighten the linear relaxation and
can be separated in O(T 2). The start-up process models from [SBB10] still apply to
these start-up types.
Chapter 5 compares our models experimentally to the state-of-the-art using data

of the German Power system. At the hands of scenarios of the years 2011 and of 2025,
it substantiates the earlier theoretical results: The new extended formulations P temp,
P δ outperform the existing formulations both in terms of solution time and integrality
gap.

1.1 Technical and Economical Background
From 1990 to 2010, the world-wide electricity production has increased by 80%. De-
pending on government policies, the production is expected to grow by another 50% to
90% until 2035, mainly driven by the development of newly industrialized countries
and the electrification of transport (see Fig. 1.4). As of 2010, electricity supplies 24% of
the final energy demand, with increasing tendency. So, efficient power plant operation
is highly relevant from both an economical and environmental point of view [Int12].

1Based on IEA data from “Renewable Energy Medium-Term Market Report 2013” © OECD/IEA 2013,
IEA Publishing, and from “World Energy Outlook 2012” © OECD/IEA 2012, IEA Publishing; modified by
Matthias Silbernagl. License: http://www.iea.org/t&c/termsandconditions/

4

http://www.iea.org/t&c/termsandconditions/

1.1 Technical and Economical Background

The last decade has seen an unprecedented increase in electricity production from
renewable energy sources. Globally, the production has increased from 3.5 TWh in
2006 to 4.9 TWh in 2012, and is projected to reach 6.9 TWh in 2018. Approximately
half of the growth can be attributed to volatile energy sources, i. e. mainly wind and
solar energy (see Fig. 1.5) [Int13].

200
6
200

7
200

8
200

9
201

0
201

1
201

2
201

3
201

4
201

5
201

6
201

7
201

8
0

2,000

4,000

6,000

Ye
ar
ly

El
ec
tr
ic
ity

Pr
od

uc
tio

n
[T

W
h] hydropower bioenergy geothermal wind solar

volatile
generation

Figure 1.5: World renewable electricity production [Int13] 1

When electricity from volatile energy sources is available, it is given preference due to
policy (e. g. in the European Union) and due to low production costs. Consequentially,
the remaining electricity producers need to keep the power network stable by providing
the residual demand, i. e. the difference between demand and renewable production.
As observable in the example of Germany (see Fig. 1.6), the relative volatility of the
residual demand increases with increasing production from wind and solar. Therefore,
the minimal residual demand, which is called the base load, decreases drastically.

Due to these changes in base load, many thermal units, i. e. nuclear, lignite, coal, gas,
and biomass units, which have been designed for essentially uninterrupted operation
are forced to shut down and start up regularly [KSH13]. Depending on the time that
such a thermal unit has been offline before a start-up, the downtime, the unit executes
a well-defined sequence to start up, following a specific power trajectory and incurring
substantial costs, mainly due to the needed fuel and wear&tear caused by thermal
stress [SBB10]. Given its significant impact on the operation of units and the resulting
costs, it is essential to model the time-dependent start-up process and costs accurately
and efficiently.

5

Chapter 1 Introduction

Fri Sat Sun Mon Tue Wed Thu
0

20

40

60

80
D
em

an
d
[G

W
]

demand residual demand 2007 projected residual demand 2025

Figure 1.6: Total and residual demand in an exemplary week in Germany. Demand data for
2007 is provided by ENTSO-E [ENT]. Electricity production from solar and wind
energy is extrapolated from installed capacity and production in 2014, projected
capacity in 2025 and NASA weather profiles [Rie+11]. For comparability, all
values are scaled to a yearly consumption of 520 TWh.

1.2 Mathematical Background

The roots of the Unit Commitment (UC) problem lie in the Economic Dispatch problem,
where a certain demand needs to be distributed among a predefined set of online units
at minimal cost, subject to operational constraints. Due to its complexity and non-
linearity, this problem is initially solved by heuristic methods. As early as 1934
however, the so-called approach of “equal incremental rates” is presented in [SS34],
which introduces an optimality condition representing a special case of the (yet to be
published) Karush-Kuhn-Tucker conditions.
Enabled by the recent breakthrough in mixed integer programming (MIP) due to

Gomory [Gom58], in 1962 [Gar62] extended the Economic Dispatch problem by the
question which power plants should be online in which periods, thereby introducing
the Unit Commitment problem (sometimes also referred to as the Unit Commitment
and Economic Dispatch problem). To this end, the Economic Dispatch problem is
simplified and linearized, loosing considerable detail.

The subsequent research saw the restoration of most of this detail, accompanied by
a notable increase in modeled facets made possible by the inclusion of the commitment
decisions. These results have been achieved using solution techniques ranging from
(Meta-)Heuristics to Dynamic Programming, Lagrangian Relaxation, and MIP (see

6

1.2 Mathematical Background

[SF94; Pad04]). Due to its modeling flexibility and its ability to control the quality of
the solution, MIP has emerged as the favored approach in recent years (see [SPO05;
Ott10]).
The operational and economic constraints used in the literature vary heavily de-

pending on the focus of the respective publication. We utilize a commonly used subset
consisting of

• minimal and maximal production constraints,

• ramping constraints, i. e. constraints on the change of the production level,

• minimum up- and downtime constraints,

• affine linear production costs,

• start-up costs, and

• start-up production.

After summarizing the MIP, Subsection 1.2.2 gives a detailed account of the chosen
constraints. The start-up costs and production, which are the main research interest of
this work, are discussed separately in Section 1.3.

1.2.1 Nomenclature

The modeled time range is split into T consecutive periods of non-negative lengths
L1, . . . ,LT , indexed by the set {1, . . . , T}. To accommodate adaptive discretizations
with period lengths based on the required level of detail, e. g. with shorter periods during
working hours and longer periods during night, the period lengths may differ. While all
proposed formulations explicitly consider non-homogeneous period lengths, the existing
approaches summarized in this section are presented assuming L1 = . . . = LT = 1 for
the sake of simplicity.
The set I denotes electricity generating units which can be controlled. Virtually

non-controllable units like wind and solar units are excluded from the optimization
model: they merely change the demand by a constant term, and possibly introduce
uncertainty. Each of the controllable units has an individual set of parameters (see
Table 1.1) and is modeled using the variables in Table 1.2.

Regarding the notation, the term [a..b] denotes [a, b]∩Z, and the shortcut [b] denotes
[1..b]. Note that we generally use superscripts as in “xt” for the period index t and
subscripts as in “xi” for all other indices.

7

Chapter 1 Introduction

Parameter Domain Scale unit Description
Dt Q≥0 MW Demand
Lt Q>0 h Period length
Pi Q≥0 MW Maximal production in online state
Pi Q≥0 MW Minimal production in online state
RUi Q≥0 MW/h Maximal production increase in online state
RDi Q≥0 MW/h Maximal production decrease in online state
SUi Q≥0 MW Maximal production increase at start-up
SDi Q≥0 MW Maximal production decrease at shutdown
Ai Q≥0 costs/MWh Cost increase per MWh of production
Bi Q≥0 costs/h Fixed costs in online state
CDi Q≥0 costs Shutdown costs
UTi N periods Minimal uptime
DTi N periods Minimal downtime
POTi Q≥0 periods Uptime before start of modeled time range
PDTi Q≥0 periods Downtime before start of time range
PUti(s, t′) Q≥0 MW Start-up production, type-dependent
CUti(l) Q≥0 costs Start-up costs, downtime dependent

Table 1.1: Parameters of the Unit Commitment problem

Variable Domain Scale unit Description
vti {0, 1} Operational state
yti {0, 1} Start-up indicator
zti {0, 1} Shutdown indicator
pti R≥0 MW Production

Table 1.2: Variables of the Unit Commitment problem

1.2.2 Unit Commitment Reference

Objective function:

min
∑
i∈I

∑
t∈[T]

(
Aipti + Bivti + CDizti

)
+ Start-up costs

8

1.2 Mathematical Background

Operational State and Indicators:

vti , yti, zti ∈ {0, 1}, i ∈ I, t ∈ [T]
yti − zti = vti − vt−1

i , i ∈ I, t ∈ [2 .. T]

y1
i − z1

i = v1
i −

{
0 if PDTi > 0,
1 else,

i ∈ I

Production and Production Limits:

pti ∈ R≥0, i ∈ I, t ∈ [T]
Pivti ≤ pti ≤ Pivti , i ∈ I, t ∈ [T]

pti ≤ pt−1
i + RUivt−1

i + SUiyti,i ∈ I, t ∈ [2..T]
pti ≥ pt−1

i − RDiv
t
i − SDizti, i ∈ I, t ∈ [2..T]

Minimal Up- and Downtime:

UTi−1∑
l=0

yt−li ≤ vti , i ∈ I, t ∈ [UTi..T]

DTi−1∑
l=0

zt−li ≤ 1− vti , i ∈ I, t ∈ [DTi..T]

v1
i = . . . = vUTi−POTi

i = 1,i ∈ I with POTi > 0
v1
i = . . . = vDTi−PDTi

i = 0,i ∈ I with PDTi > 0

Demand: ∑
i∈I

pti + SP = Dt.t ∈ [T]

Operational State and Indicators

The defining feature of the Unit Commitment problem is the operational state of each
unit,

∀ i ∈ I, t ∈ [T] : vti ∈ {0, 1},

where vti = 1 iff unit i is committed to be online in period t. Already in [Gar62], the
operational state is paired with the start-up indicator yti and the shutdown indicator zti,

∀ i ∈ I, t ∈ [T] : yti, zti ∈ {0, 1}, (1.2.1)

with yti = 1 iff unit i starts up in period t and zti = 1 iff unit i shuts down in period t.

9

Chapter 1 Introduction

These indicators are derived from the operational state by

∀ i ∈ I, t ∈ [2 .. T] : yti − zti = vti − vt−1
i , (1.2.2)

∀ i ∈ I : y1
i − z1

i = v1
i −

{
1 if PDTi = 0,
0 else.

(1.2.3)

By themselves, these equations allow solutions with vt−1
i = vti and yti = zti = 1. This

is prevented by the inequalities

∀ i ∈ I, t ∈ [T] : yti ≤ vti ,
∀ i ∈ I, t ∈ [T] : zti ≤ 1− vti .

which are dominated by the minimum up-/downtime inequalities, see (1.2.6) and
(1.2.7) below.

In [CA06], the UC problem is modeled without yi and zi, resulting in improved
solution times due to a smaller number of binary variables. This conclusion is negated
in [OAV12], where a similar model including the indicator variables is found to be
superior, which is partially explained by a possible improvement in the used MIP solver
CPLEX. Furthermore, the minimum up-/downtime and ramping inequalities can be
tightened using yi and zi.

We use the indicator variables

• in the extended formulation of the minimum up-/downtime (1.2.6) and (1.2.7),
• in the ramping inequalities (1.2.4) and (1.2.5), and
• in the time-dependent start-up costs presented in Chapter 3, Section 4.4, and

Subsection 4.5.2.

Production and Production Limits

The electricity production of a unit is modeled by the non-negative variable pti,

∀ i ∈ I, t ∈ [T] : pti ∈ R≥0.

Each unit has a certain online capacity Pi , which is generally modeled as

∀ i ∈ I, t ∈ [T] : pti ≤ Pivti .

Note that we consider neither a varying maximal production due to environmental
factors (e. g. temperature, humidity) nor the possibility of exceeding the maximal
production for short time periods.
Most units have a minimal online production Pi, typically in the range of 0.4Pi to

0.8Pi , which is enforced by

∀ i ∈ I, t ∈ [T] : pti ≥ Pivti .

10

1.2 Mathematical Background

Units which do not have this restriction, e. g. hydro units, are modeled using Pi = 0.
The production level of a unit may not change arbitrarily. The parameters RUi

and RDi denote the maximal speed when increasing / decreasing the production level
of an operating unit. For example, a unit with RUi = 50MW/h is able to increase
it’s production level from 120MW to at most 170MW in one hour. Two additional
parameters SUi and SDi denote the maximal production level at start-up and before
shutdown, respectively.

In [AC00], these constraints are modeled as

∀ i ∈ I, t ∈ [T] : pti ≤ pt−1
i + RUivt−1

i + SUiyti, (1.2.4)
∀ i ∈ I, t ∈ [T] : pti ≥ pt−1

i − RDiv
t
i − SDizti. (1.2.5)

Minimal Up- and Downtime

At start-up and shutdown, a fossil-fuel unit produces more exhaust gas than allowed
during regular operation. To limit the extra pollution, such units are restricted from
starting up and shutting down too frequently. Typically, this is enforced by a minimum
uptime UTi and minimum downtime DTi, meaning that unit i may not be online for
less than UTi consecutive periods and offline for less than DTi consecutive periods.

For each unit i, the resulting polyhedron of feasible operational schedules

PUDT
i := conv

{
vi ∈ {0, 1}T fulfilling the minimum up- and downtime

}
,

may have an exponential number of facets, which are described by the alternating
up/down inequalities presented in [LLM04].
We use an extended formulation of PUDT

i presented in [RT05], which models the
min up-/downtime constraints by the linear class of turn-on and turn-off inequalities,

∀ i ∈ I, t ∈ [UTi..T] :
UTi−1∑
l=0

yt−li ≤ vti , (1.2.6)

∀ i ∈ I, t ∈ [DTi..T] :
DTi−1∑
l=0

zt−li ≤ 1− vti . (1.2.7)

The pre-model uptime POTi and downtime PDTi are respected by introducing the
trivial inequalities

∀ i ∈ I with POTi > 0, t ∈ [UTi − POTi] : vti = 1,
∀ i ∈ I with PDTi > 0, t ∈ [DTi − PDTi] : vti = 0.

11

Chapter 1 Introduction

Demand

The electricity produced by each unit is transported to the electricity consumers via a
power network. The interconnections of such a network have limited capacities and can
restrict the set of feasible production schedules of units. However, current electricity
markets do not take the power network into consideration when determining the market
price and selecting successful bids.
Following recent publications regarding the start-up process [CA06; MELR13b;

MELR13a; SBB10], we do not model the power network and enforce solely that
demand and production meet,

∀ t ∈ [T] :
∑
i∈I

pti + SP = Dt. (1.2.8)

SP is a placeholder for the start-up production in some models, which is considered in
Subsection 1.3.3. Models without start-up production use SP = 0.

Production and Shutdown Costs

The overall costs consist of production costs cpti, shutdown costs cdti, and start-up
costs. ∑

i∈I

∑
t∈[T]

(
cpti + cdti

)
+ Start-up Costs.

The start-up costs are represented by the place-holder “Start-up Costs”, and discussed
in Section 1.3.

We model the production costs as in [Muc66], where each unit incurs fixed costs Bi
while online and variable costs Ai per unit of production,

∀ i ∈ I, t ∈ [T] : cpti := Aipti + Bivti .

Due to the affine linearity, the total costs per unit of production decrease with
increasing production (see Fig. 1.7).
The shutdown costs are generally modeled as constant costs CDi incurred at each

shutdown,
∀ i ∈ I, t ∈ [T] : cdti := CDizti.

Both production and shutdown costs are linear expressions of the variables pti, vti ,
and cdti, and their definition is substituted in the objective function,

∑
i∈I

∑
t∈[T]

(
Aipti + Bivti + CDizti

)
+ Start-up Costs.

12

1.2 Mathematical Background

Pi Pi Pi Pi

100
200
300
400
500
600

pti

fuel need

10%

20%

30%

40%

pti

efficiency

Figure 1.7: Fuel need and efficiency of a typical thermal unit. Note the non-zero y intercept
of the fuel need function resulting in the curvature of the efficiency function.
The unit has a maximal production Pi,t = 220 MW, a minimal production
Pi,t = 110 MW (50%), and respective efficiencies of 39% and 31%.

1.2.3 Computational Complexity
The Unit Commitment problem is a well-known NP-complete problem in the weak
sense (see e. g. [Tse96; GZP03]) and, to the best of our knowledge, no proof of strong
NP-completeness has been published. The weak NP-completeness is typically proved
by using only a single period and units with a single feasible production level, i. e.
Pi = Pi , effectively yielding the NP-complete partition problem. Units with Pi = Pi
however do not occur in real-world instances. So, one may restrict the UC problem
such that Pi ≤ (1− ε)Pi without hurting its practical applicability, but invalidating
this proof.

The complexity of the UC problem does not stem only from the difficulty of matching
the demand, but from the difficulty of matching the demand with maximal efficiency.
The efficiency of a hydrothermal unit depends both directly on the production level
and indirectly on the preceding start-up costs. We give a proof relying on a varying
production efficiency.

Proposition 1.1 For UC problems, it is weakly NP-complete to decide whether a
solution with costs of at most C ∈ Q exists.

Proof. Let n, e1, . . . , en ∈ N be given. The NP-complete partition problem is to decide
whether there exists E ⊂ [n] such that∑

i∈E
ei =

∑
i∈[n]\E

ei.

The existing proof constructs a UC problem with demand D = 1/2
∑
i∈[n] ei and

Pi = Pi = ei, such that the problem is feasible iff such a set E exists. In the following,

13

Chapter 1 Introduction

we relax the minimal production to Pi = 0, but choose the production efficiency such
that production costs of C := ∑

i∈[n] ei are only possible iff such an E exists.
We model the units I := [n] with parameters

• production limits Pi := 0, Pi := ei,
• variable production costs Ai := 1, and
• fixed production costs Bi := Pi .

The number of periods is T = 1 and we hence drop the period index t. We define the
demand as D := 1/2

∑
i∈[n] ei and C := ∑

i∈[n] ei = 2D.
Since only a single period is considered, ramping and minimum up-/down times are

not relevant, and the UC problem degenerates to

min
∑
i∈[n]

(Aipi + Bivi)

pi ≤ Pivi, i ∈ [n]∑
i∈I

pi = D,

vi ∈ {0, 1}, i ∈ [n]
pi ∈ R≥0, i ∈ [n].

Note that the production costs are bounded by

Aipi + Bivi = pi + Pivi ≥ 2pi,

and that Aipi + Bivi = 2pi iff pi = Pivi. Summing over all units, the demand induces
costs of at least ∑

i∈[n]
(Aipi + Bivi) ≥

∑
i∈[n]

2pi = 2D = C,

and a solution of the UC problem has costs C iff pi = Pivi for each unit i.
The remainder of this proof follows the existing approach closely: The optimal

solution of a UC problem has costs C iff

1
2
∑
i∈[n]

ei = D =
∑
i∈[n]

pi =
∑
i∈[n]

Pivi =
∑
i∈E

Pi =
∑
i∈E

ei

with E := {i ∈ [n] | vi = 1}. Since this is equivalent to∑
i∈E

ei =
∑

i∈[n]\E
ei,

E is a solution to the partition problem. So, the UC problem is at least as hard as the
partition problem, and since it clearly lies in NP, it is NP-complete. 2

14

1.3 Foundations of Start-up Modeling

1.3 Foundations of Start-up Modeling

As in the majority of the existing literature, we allow two operational states for a unit,
online and offline, and do not consider intermediate states such as synchronization,
soaking, desynchronization, banking, as well as transient interruptions. Hence, we
define a start-up as the transition from offline to online state. Its main characteristics
are the incurred costs and the preceding production, both of which depend on the
downtime (cf. Fig. 1.8). Note that [SBB10] shows how to introduce the additional
states in the start-up type model presented in Chapter 4.

1 2 3 4 5 6 7 8 9 10

Pi

Pi

start-up production

pi

vi
1

t

start-up time start-up
downtime

Figure 1.8: A start-up in period 9 after 7 offline periods, preceded by a typical start-up
production spanning periods 5–8.

As shown in the numerical experiments in Chapter 5, the integrality gap and the
computational performance of a UC formulation strongly depend on the quality of
the lower bound on the start-up costs. Moreover, virtually every UC formulation
since [Gar62] models the start-up costs, while the start-up production has only been
introduced recently, e. g. in [SBB10]. Hence, we concentrate our theoretical analysis
on the start-up costs, and demonstrate the effectiveness of our models with start-up
production experimentally.

In this section, we

• give the basic notation and parameters of start-ups in Subsection 1.3.1,
• establish the start-up cost epigraphs and their importance to start-up cost

modeling in Subsection 1.3.2,
• describe how the start-up production is modeled in the literature in Subsec-

tion 1.3.3, and
• summarize our contribution to start-up models in Section 1.4.

15

Chapter 1 Introduction

1.3.1 Start-up Notation

Start-up Cost Notation

When starting up, a unit incurs costs which increase with the downtime. These start-up
costs are usually characterized as “exponential” (see e. g. [WW96; ZG88; MHV12;
EHG11; RR91; PE10; AC00; MELR13b]) and defined as

CUi(L) =
{
CUfixed

i + (1− e−λiL)CUvar
i if L > 0,

0 else,
(1.3.1)

where CUfixed
i denotes the fixed costs, CUvar

i denotes the maximal variable costs, and
λi determines how fast the start-up costs converge to CUfixed

i + CUvar
i with increasing

downtime L (cf. Fig. 1.9).

L

costs

CUfixed
i

CUvar
i

CUi(L)

Figure 1.9: Typical exponential start-up cost function of a thermal unit

The term “exponential” refers to the variable start-up costs (1− e−λiL)CUvar
i , which

increase inversely exponential towards the maximum value CUvar
i . Their characteristic

development is caused by the exponential decay of the unit’s temperature, which needs
to be offset by heating.
Note that this definition of the start-up costs is an idealization and neglects such

factors as the ambient temperature and air humidity. For this reason and to include
non-exponential start-up costs, we restrict the class of admissible functions as little
as possible. Specifically, we consider increasing functions in Sections 2.1 and 2.3 on
single/all start-up costs, concave functions in Section 2.2 on the summed start-up costs,
and strictly increasing functions in Chapter 4 on start-up types (i. e. on categorizing
start-ups by the preceding downtime). Only the temperature model in Chapter 3 is
limited to exponential start-up costs.

16

1.3 Foundations of Start-up Modeling

We expect the variable start-up costs of a unit i ∈ I to be given as a non-negative,
increasing function CUi depending on the non-negative downtime length L, with
CUi(0) = 0 and CUi(L) > 0 for all L > 0:

∀ i ∈ I : CUi : R≥0 → R≥0, L 7→ start-up costs after downtime L. (1.3.2)

To match the discretization of the modeled time range into T periods of lengths
L1, . . . ,LT , we also discretize the start-up cost functions such that CUti(l) denotes the
costs of a start-up in period t after l offline periods. To this end, we define the function
OLt(l) as the downtime in that situation, that is

∀ i ∈ I, t ∈ [T], l ∈ [0 .. t−1] : OLt(l) :=
l∑

j=1
Lt−j +

{
PDTi if l = t− 1,
0 else.

(1.3.3)

The case distinction differentiates between the case where the downtime lies com-
pletely within the modeled time range and the case where it stretches to include the
pre-model downtime PDTi. The corresponding start-up costs CUti(l) are

∀ i ∈ I, t ∈ [T], l ∈ [0 .. t−1] : CUti(l) := CUi(OLt(l)). (1.3.4)

Start-up Production Notation

In preparation of a start-up, a unit increases its production following a specific power
trajectory (cf. Fig. 1.8). In thermal units, the main purpose of this procedure is to
increase the temperature in a controlled manner while limiting the amount of material
tensions due to temperature gradients. Hence, the power trajectory, and in particular
its duration, depend on the preceding downtime analogously to the start-up costs.

While the start-up time TUi(L) is typically assumed to increase inversely exponential
(cf. Fig. 1.10), the production during start-up is modeled as either constant or linearly
increasing in the literature (see e. g. [SBB10; MELR13a]).

We expect the start-up time to be given by a non-negative function TUi

TUi : R≥0 → R≥0, L 7→
{
start-up time if L > 0,
0 else.

In the discretized time range of our model, the start-up time in period t must
be expressed as a number of preceding offline periods s. We define the start-up
time TUti(l) in period t after l preceding offline periods such that the discretization
error

∣∣OLt(TUti(l))− TUi(OLt(l))
∣∣ is minimal,

∀ t ∈ [T], l ∈ [t− 1] : TUti(l) := min
{
s ∈ [1 .. t−1]

∣∣∣OLt(s) ≥ TUi(OLt(l))− 0.5
}
.

17

Chapter 1 Introduction

L

TUi(L)

Figure 1.10: Exemplary start-up time TUi(L) of a thermal unit, which increases inversely
exponential with the preceding downtime L.

The start-up production in period t caused by a start-up in period t′ after l preceding
offline periods is denoted by PUti(t′, l). Following the discretization of the start-up
time, we model it as a linear function with values from PUi to PUi,

PUti(t′, l) =


(
PUi − PUi

)Lt′−TUt′i (l) + . . .+ Lt

Lt′−TUt
′
i (l) + . . .+ Lt′−1

+ PUi if t′ − TUt′i (l) ≤ t < t′,

0 else,
(1.3.5)

where the term
Lt′−TUt

′
i (l) + . . .+ Lt

Lt′−TUt
′
i (l) + . . .+ Lt′−1

is chosen to increase linearly from 0 in period t = t′ −TUt′i (l)− 1 (which is not part of
the start-up time) to 1 in period t′ − 1.

1.3.2 Epigraphs of Start-up Costs Functions

As noted, the operational state of a unit is modeled by the variables vti ∈ {0, 1}, where
vti = 1 iff unit i is online in period t. Deriving the start-up costs in each period t from
these variables yields the discrete start-up cost functions

∀ i ∈ I, t ∈ [T] : DCUti : {0, 1}T → R≥0, vi 7→
{
CUti(olt(vi)) if vti = 1,
0 else,

(1.3.6)

where
olt(vi) := max

{
l ∈ [t− 1]

∣∣ vt−1
i = . . . = vt−li = 0

}
. (1.3.7)

18

1.3 Foundations of Start-up Modeling

In Fig. 1.11 this relationship is depicted for an exemplary operational schedule. Note
that ol and OL follow the notational convention of l and L to denote numbers of
periods in lower case and time lengths in upper case.

0 1 1 1 1 0 0 0 1 0PDT = 2
t1 2 3 4 5 6 7 8 9 10

v

DCU2(v) = CU2(1) = CU(3)
DCU9(v) = CU9(3) = CU(3)DCU5(v) = 0

Figure 1.11: Start-up costs incurred for an exemplary operational schedule v ∈ {0, 1}T (green)
with T = 10 uniform periods (L1 = . . . = LT = 1). The first start-up takes place
in period 2, with costs DCU2(v) of CU(3) due to the preceding offline period
with length L1 = 1 and the pre-model downtime PDT = 2. The only other
start-up costs are incurred in period 9, after three offline periods with a total
length of L6 + L7 + L8 = 3.

Using DCUti, any Unit Commitment problem with start-up costs can be written as

min
{
c(v1,...,v|I|, d) +

∑
i∈I

∑
t∈[T]

DCUti(vi)
∣∣∣∣ (v1,...,v|I|, d) ∈ F

}
, (1.3.8)

with additional variables d ∈ Rn, feasible set F⊂{0,1}T |I|×Rn, and objective func-
tion c. In the presented Unit Commitment problem, d is a placeholder for the electricity
production p, startup/shutdown indicators y, z and cost variables cp, cd; F models
production limits, ramping limits, minimum up-/downtime, demand, and costs. Recog-
nize that even if the objective c is linear, the extended objective is non-linear due to
DCUti.

Since the domain {0, 1}T of DCUti is finite, the convex hull of its epigraph,

conv(epi(DCUti)) = conv
({

(vi, cuti)
∣∣∣ vi ∈ {0, 1}T , cuti ≥ DCUti(vi)

})
= conv(V t) + pos(uT+1),

(1.3.9)

is a polyhedron with recession cone pos(uT+1) (where uT+1 denotes the unit vector in
the direction of the last coordinate cuti), and with vertices

V t =
{
(vi,DCUti(vi))

∣∣ vi ∈ {0, 1}T}.

19

Chapter 1 Introduction

So, using the variables cuti, the minimization problem (1.3.8) may be rewritten as

min


c(v1,...,v|I|, d) +

∑
i∈I

∑
t∈[T]

cuti :

(vi, cuti) ∈ conv(epi(DCUti)), i ∈ I, t ∈ [T]
(v1,...,v|I|, d) ∈ F


. (1.3.10)

If c is affine linear and F is expressible in a mixed integer program (MIP), then the
minimization problem (1.3.10) is a MIP as well, since the polyhedron conv(epi(DCUti))
may be modeled using its V-representation in (1.3.9) (see [DW60]). Note that due to
the 2T vertices of conv(epi(DCUti)), this representation is exponential.

In addition to modeling the start-up costs, conv(epi(DCUti)) also acts as a reference
formulation: It models the best-possible lower bound on the start-up costs cuti which
can be achieved using inequalities of the shape

cuti ≥
∑
t∈[T]

αtvti + β with αt, β ∈ R, (1.3.11)

if the set of feasible solutions F meets the condition (1.3.14) given in the following.
In fact, by definition of the epigraph, the constraint “(vi, cuti) ∈ conv(epi(DCUti))”

dominates each inequality (1.3.11) that fulfills

∀ vi ∈ {0, 1}T : DCUti(vi) ≥
∑
t∈[T]

αtvti + β. (1.3.12)

An inequality (1.3.11) that is valid for the minimization problem (1.3.10) satisfies

∀ (v1,...,v|I|, d) ∈ F : DCUti(vi) ≥
∑
t∈[T]

αtvti + β. (1.3.13)

Condition (1.3.12) is stronger than (1.3.13), since F may exclude some operational
schedules vi ∈ {0, 1}

T for unit i (cf. Fig. 1.12). If we however assume that

∀ ṽi ∈ {0, 1}T ∃ (v1,...,v|I|, d) ∈ F with vi = ṽi, (1.3.14)

then both conditions are equivalent, and so the constraint “(vi, cuti) ∈ conv(epi(DCUti))”
dominates all valid inequalities of shape (1.3.11).
The functions DCUti are not mutually independent, e. g. DCUt−1

i (vi) > 0 implies
DCUti(vi) = 0. So, stronger lower bounds may be deduced on combinations of multiple
start-up costs cuti. Using the discrete start-up cost functions of all periods,

DCUi : {0, 1}T → RT≥0, vi 7→ (DCU1
i (vi), . . . ,DCUTi (vi)),

20

1.3 Foundations of Start-up Modeling

we may replace the condition

(vi, cuti) ∈ conv(epi(DCUti)), i ∈ I, t ∈ [T]
in (1.3.10) by

(vi, cui) ∈ conv(epi(DCUi)), i ∈ I,

thus tightening the lower bound on the start-up costs. Analogous to conv(epi(DCUti)),
“(vi, cui) ∈ conv(epi(DCUi))” dominates each inequality∑

t∈[T]
γtcuti ≥

∑
t∈[T]

αtvti + β

which is valid for (1.3.10).
Virtually all Unit Commitment models in the literature minimize the (unweighted)

sum of the start-up costs. So, in place of DCUi, it suffices to consider the summed
start-up cost functions

DCUΣ
i : {0, 1}T → RT≥0, vi 7→

∑
t∈[T]

DCUti(vi).

Replacing

(vi, cui) ∈ conv(epi(DCUi)), i ∈ I,
in (1.3.10) by

(vi, cuΣ
i) ∈ conv(epi(DCUΣ

i)), i ∈ I,

DCU2(0, 0)=0 DCU2(1, 0)=0

DCU2(0, 1)=1

DCU2(1, 1)=0

v1

v2

cu2
i

cu2
i ≥ v2

i − v1
i

cu2
i ≥ 0

F = {(0, 0), (0, 1), (1, 0), (1, 1)}

v1

v2

cu2
i

F = {(0, 0), (0, 1), (1, 0)}

cu2
i ≥ v2

i

Figure 1.12: The lower boundary of conv(epi(DCU2)) (left) and of conv(epi(DCU2|F)), i. e.
restricted to the schedules F = {(0, 0), (0, 1), (1, 0)} (right). Note that due to
the restriction to F , the two inequalities describing the lower boundary in the
left figure are replaced by a single tighter inequality in the right figure.

21

Chapter 1 Introduction

and therefore minimizing over cuΣ
i yields the same lower bound on the sum of the

start-up costs as min∑t∈[T] cuti in conv(epi(DCUi)). Yet conv(epi(DCUi)) remains
interesting due to its extended formulation presented in Chapter 4 based on start-up
types (cf. Subsection 1.3.3).
While condition (1.3.14) is not met in typical Unit Commitment problems, most

notably due to minimum up- and downtime, conv(epi(DCUti)), conv(epi(DCUΣ
i)), and

conv(epi(DCUi)) nonetheless provide goalposts against which every start-up model
should be compared. Several of the proposed formulations achieve the same bounds
as the start-up cost epigraphs, in contrast to all existing formulations. Moreover,
Section 6.4 points out how to tighten some of these models if a minimum downtime is
enforced.

1.3.3 Start-up Types

To model the characteristics of the start-up process, [SBB10] extends the so-called
start-up types introduced in [Muc66]: the start-ups of each unit are subdivided in a set
of types, e. g. hot, warm, and cold start-up type, and each type possesses a specific
start-up time and a power trajectory.
This subdivision is performed by partitioning the possible offline lengths [0 .. t−1]

in each period t into intervals Lt0, . . . ,LtSt , such that all offline lengths l ∈ Lts belong to
the same start-up type s ∈ [St]. Each type s is represented by a variable δts ∈ {0, 1},
where δts = 1 iff the unit starts up in period t after l ∈ Lts offline periods. Using
these variables, modeling the properties of each start-up becomes straightforward. In
particular, the start-up costs equal∑

t∈[T],s∈[0..St]
CUti

(
minLts

)
δts,

where CUti
(
minLts

)
represents the costs of start-up type s.

Furthermore, the start-up production in period t can be expressed as∑
t′∈[t+1..T],s∈[St]

PŨti(t′, s)δt
′
s ,

where PŨti(t′, s) denotes the start-up production in period t due to a start-up in
period t′ of type s, and approximates the values PUti(t′, l) with l ∈ Lt′s . Thus, the
power trajectories at start-up are introduced in our UC model from Section 1.2 by
redefining the demand equation (1.2.8) as

∀ t ∈ [T] :
∑
i∈I

pti +
∑
i∈I

∑
t′∈[t+1 .. T]
s∈[St′]

PŨti(t′, s)δt
′
i,s = Dt. (1.3.15)

22

1.4 Contribution

While the start-up types are able to model all characteristics of a start-up, they are
beneficial even when only modeling start-up costs. In comparison to the state-of-the-art
model not based on start-up types, [MELR13b] demonstrates experimentally that the
start-up type model is computationally more efficient due to a superior integrality
gap.

1.4 Contribution

Subsection 1.3.2 shows that the start-up costs in a UC problem can be modeled using the
V-representations of the start-up cost epigraphs conv(epi(DCUt)), conv(epi(DCUΣ)),
or conv(epi(DCU)). Unfortunately, the V-representations are of exponential size, since
each v ∈ {0, 1}T induces a vertex (v,DCUt(v)), (v,DCU(v)), or (v,DCUΣ(v)) of the
respective epigraph. Therefore, the principal aim of our work lies on finding (extended)
formulations of the start-up cost epigraphs. In particular, we improve the start-up type
formulation introduced in [Muc66], which is a promising approach to model start-up
costs and production.

As we consider the units individually, we drop the index i in the following.
The main results are laid out in four chapters:

• Chapter 2 derives a linear H-representation of conv(epi(DCUt)), an exponen-
tial H-representation of conv(epi(DCUΣ)), and an exponential class of facets
of conv(epi(DCU)) (joint work with René Brandenberg and Matthias Huber,
partially published in [BS14; SHB16; BHS16]).

• Chapter 3 introduces the temperature model, an extended formulation of the
epigraph conv(epi(DCUΣ)) with O(T) variables and O(T 2) inequalities. It is
based on explicitly modeling the temperature of a unit and can be complemented
to include a start-up production (joint work with René Brandenberg and Matthias
Huber, partially published in [SHB16; BHS]).

• Chapter 4 presents the start-up type model, an extended formulation of the
epigraph conv(epi(DCU)) with O(T 2) variables and O(T 2) inequalities which
significantly tightens the approach in [SBB10].

• Chapter 5 demonstrates numerically that the above models outperform the
existing formulations both in terms of integrality gap and solution time.

After elaborating on each of these chapters in the following, we summarize our
contribution in Subsection 1.4.1 by giving an overview of the existing and newly
introduced formulations, and the separation algorithms and formulation relationships
presented in this work.

23

Chapter 1 Introduction

Chapter 2: Epigraphs of Start-up Cost Functions

Chapter 2 exploits the structure of the discrete start-up cost function DCUt to analyze
the epigraphs conv(epi(DCUt)), conv(epi(DCUΣ)), and conv(epi(DCU)).
In [CA06], the enclosing polyhedron P tex of conv(epi(DCUt)) with O(T) inequali-

ties is proposed, which models the start-up costs correctly for integral operational
schedules v ∈ {0, 1}T . This suffices since v ∈ {0, 1}T is enforced by the integrality
constraints of the MIP, but only provides a weak bound on the start-up costs for
fractional v ∈ [0, 1]T . Hence, the linear relaxations considered in the MIP solution
process provide only poor lower bounds, causing slow convergence of the optimality gap.
We tighten the inequalities of [CA06] in Section 2.1, introducing a H-representation
of conv(epi(DCUt)) with O(T) inequalities (see Theorem 2.8) which decreases the
integrality gap significantly.
In practice, the number of inequalities in P tex is usually reduced by modeling an

approximation of the start-up cost function. We apply this approach to conv(epi(DCUt))
and present an algorithm which derives an approximation leading to a model of minimal
size for any tolerance CUtol > 0 (see Proposition 2.14).

Section 2.2 applies an iterative lifting to conv(epi(DCUΣ)) starting from the trivial
inequality cuΣ ≥ 0, deriving the resulting inequalities analytically. It shows that
in general, the facets on the lower boundary of conv(epi(DCUΣ)) have a one-to-one
relationship to binary trees of size T (see Theorem 2.37): for each v ∈ [0, 1]T , it
pin-points the Cartesian tree (cf. [Vui80]) of v as the binary tree corresponding to the
facet which defines the value LCUΣ(v) (see Corollary 2.35).
Based on this characterization, we derive a generally irredundant but exponential

H-representation of conv(epi(DCUΣ)) whose inequalities can be separated in linear
time using the Cartesian tree algorithm given in [GBT84] (see Proposition 2.39). While
modeling conv(epi(DCUΣ)) in a cutting plane approach is impractical due to slow
convergence and numerical problems, this separation algorithm is the basis for the
separation of the practically relevant formulation P temp presented in Chapter 3.

Section 2.3 generalizes the inequalities of conv(epi(DCUt)) to an exponential class of
facet-inducing inequalities of conv(epi(DCU)), showing that in general any H-repre-
sentation of conv(epi(DCU)) is exponential (see Proposition 2.49). While Section 2.3
does not derive an H-representation of conv(epi(DCU)) itself, Chapter 4 presents an
extended formulation of conv(epi(DCU)) which provides a starting point to find the
facets of conv(epi(DCU)) (see Section 6.3).

Using their polynomial separation algorithms, the Ellipsoid method solves optimiza-
tion problems over conv(epi(DCUt)) and conv(epi(DCUΣ)) in polynomial time (see e. g.
[Sch98]). Remember however that we are interested in the Unit Commitment problem,
including for example the constraints reviewed in Section 1.2. Therefore, the following
sections study the formulations P temp and P δ which lead to better computational

24

1.4 Contribution

performance than conv(epi(DCUt)) and conv(epi(DCU)) when used as part of a UC
problem.

Chapter 3: The Temperature Model

As described in Subsection 1.3.1, the start-up costs are typically modeled by an expo-
nential start-up cost function CU(t) = Ae−λt +B, which is caused by the exponential
decay of the temperature of a unit during downtime. By explicitly modeling a unit’s
temperature and heating, Chapter 3 introduces two new formulations:

• P̂ temp models the start-up costs correctly for v ∈ {0, 1}T using O(T) variables and
O(T) inequalities (see Theorem 3.13). Its integrality gap is typically considerably
lower than that of the the state-of-the-art formulations leading to a superior
computational performance (see Sections 5.3 and 5.4).

• The additional O(T 2) residual temperature inequalities defined in (3.3.1) fur-
ther decrease the integrality gap, yielding P temp. Building on the results on
conv(epi(DCUΣ)) in Section 2.2, we show that P temp is an extended formulation
of conv(epi(DCUΣ)) and derive a linear-time separation algorithm for P temp (see
Theorems 3.26 and 3.33), which proves to be computationally competitive.

Section 3.4 generalizes the temperature approach from a linear formulation to a
convex formulation and thereby extends the representable start-up cost functions by
a class of non-exponential functions. At the same time however it shows that the
temperature approach only results in linear formulations for exponential start-up cost
functions CU(t) = Ae−λt +B (see Proposition 3.35).
Finally, Section 6.2 (based on [HS15]) points out that these formulations can be

extended to model the underlying heating limitations of each unit, therefore including
specific start-up time functions and power trajectories.

Chapter 4: Start-up Types

As introduced in Subsection 1.3.3, the current state-of-the-art model P δex from [SBB10]
models start-ups by classifying each start-up as one of S start-up types. Chapter 4
characterizes these start-up types as optimal flows in a special network flow model (see
Proposition 4.3), allowing us to tighten P δex:

• By interpreting the inequalities of P δex as combinations of flow inequalities, tighter
inequalities are derived. The resulting formulation P̂ δ (see Eq. (4.3.8)) is of
the same size as P δex (O(ST) variables and O(ST) inequalities) but models a
significantly tighter lower bound on the start-up costs.

• Generalizing the inequalities of P̂ δ leads to the even tighter formulation P δ in
(4.3.10) with O(ST) variables and O(T 2) inequalities. These inequalities can be

25

Chapter 1 Introduction

separated in time O(T 2) (see Theorem 4.13), effectively evaluating each inequality
in O(1) despite its O(ST) non-zero coefficients. Furthermore, we show that in
the edge case S = T , P δ degenerates into the flow polyhedron P f in (4.2.5) with
O(T 2) variables but only O(T) inequalities.

As demonstrated by the numerical experiments in Chapter 5, P̂ δ and P δ are compu-
tationally superior to P δex, even when modeling the start-up production.

The network flow interpretation furthermore allows to transfer fundamental results
of combinatorial optimization:

• By applying the total unimodularity of network flow programs to the polyhe-
dron P f , we prove that P f is an extended formulation of conv(epi(DCU)) (see
Theorem 4.5), and

• by using the Min-Cut/Max-Flow theorem, we show that P f and P δ are equiva-
lent under projection (see Theorem 4.10), and thereby that P δ is an extended
formulation of conv(epi(DCU)), too.

Even surpassing the tightness of conv(epi(DCU)), Section 6.4 details how the formu-
lations P δex, P̂ δyz, P δ, and P f can be further tightened in the presence of minimal up-
and downtimes inequalities.

Finally, Section 4.5 considers the step-wise models P tex and conv(epi(DCUt)) in the
framework of network flows. Using the start-up and shutdown indicators, we derive the
formulation P yz in Eq. (4.5.4) with the same modeling approach as conv(epi(DCUt))
but the same solution structure as P δex. This allows us to highlight the differences
between conv(epi(DCUt)), P δex, and P δ in the network flow framework (see Fig. 4.8).
In particular, we prove that P δex models a tighter bound on the start-up costs than
P tex (see Proposition 4.19, Proposition 4.18), which has already been conjectured in
[MELR13b] based on numerical experiments.

Chapter 5: Numerical Experiments

Chapter 5 compares the presented start-up formulations numerically by modeling the
German power system, both with and without start-up production. The experiments
corroborate the proved relationships: The novel formulation P̂ temp and P̂ δ in general
have a considerable lower integrality gap than the existing P tex and P δex, and are in turn
consistently outperformed by P temp and P δ.
This advantage translates directly into a better computational performance, as is

demonstrated by examining the number of solved instances in a certain time frame.
Again, P̂ temp, P temp, P̂ δ, and P δ outperform the existing models significantly. Inter-
estingly, the gap between P̂ temp, P temp and between P̂ δ, P δ, respectively, is minor,
with P̂ temp even dominating P temp in some cases.

26

1.4 Contribution

1.4.1 Summary
Figure 1.13 gives an overview of the novel formulations (red), the existing state-of-the-
art formulations (blue), and their relationships uncovered in this work (red).

start-up
types

conv(epi(DCUt))
H-representation

P tex in [CA06]

⊃

conv(epi(DCU))
class of facets

P δ
pr
oj
→ =

P̂ δ

⊃

P yz

←
pr
oj

⊃

P δex in [SBB10]

proj↔⊂

←proj=

epi(LCU1,...,LCUT)

←
pr
oj
⊃

←
pr
oj
⊃

conv(epi(DCUΣ))
H-representation

proj→=

P temp

pr
oj
→ =

P̂ temp

⊂

applied to
all periods

Figure 1.13: Comparison of the start-up cost models, partially under projection (“proj”). Blue
nodes denote state-of-the art models, nodes and set relationships in red denote
our contribution presented in this thesis. Green marks formulations with start-up
types, which can be used to model the start-up process. The combination of
(v, cut) ∈ conv(epi(DCUt)) for all periods t is denoted by epi(LCU1, . . . ,LCUT).
Note that the proposed formulations both dominate the state-of-the-art and
model all three start-up cost epigraphs.

As shown, for each of the existing formulations we present a superior formulation,
and model all three start-up cost epigraphs,

• either directly in the case of conv(epi(DCUt)),
• by the extended formulation P δ in the case of conv(epi(DCU)),
• or both directly and by the extended formulation P temp for conv(epi(DCUΣ)).

A list of all formulations, their source, and their number of variables and inequalities is
given in Table 1.3. It should be highlighted that we have tightened each of the existing
formulations without increasing their respective number of variables and inequalities:
conv(epi(DCUt)) tightens P tex and P̂ δ tightens P δex.

27

Chapter 1 Introduction

Formulation Source Variables Inequalities
P f (4.2.5) O(T 2) O(T)
P δ (4.3.10) O(ST) O(T 2)
P̂ δ (4.3.8) O(ST) O(ST)
P δex [Muc66] O(ST) O(ST)
P yz (4.5.4) O(ST) O(ST)
epi(LCU1, . . . ,LCUT) Theorem 2.8 O(T) O(ST)
P tex [CA06] O(T) O(ST)

epi(LCUΣ) Theorem 2.36 O(T) O(2T)
P temp Definition 3.17 O(T) O(T 2)
P̂ temp Definition 3.4 O(T) O(T)

Table 1.3: All start-up cost formulations considered in this thesis with source and number
of variables and inequalities. The formulations are split in groups concerning
epi(LCUt)/ conv(epi(DCU)) and epi(LCUΣ), ordered by decreasing tightness.

We analyze all relationships between these formulations, as represented by the Venn
diagram in Fig. 1.14. For each of the set relationships, we provide an example where
the subset is proper. The relationships are listed with a reference to proof and example
in Table 1.4.

conv(epi(DCU)), P δ, P f
conv(epi(DCUΣ)), P temp

P̂ δ

P yz, P δex

conv(epi(DCUt)) applied for all t

P tex applied for all t

P̂ temp

Figure 1.14: Venn diagram of the projections of all formulations to conv(epi(DCUΣ)). All
subset relationships are strict in general. Note that since P̂ temp is only defined
for exponential start-up costs and since in that case P̂ δ = P δ, P̂ temp is shown
as containing P̂ δ.

28

1.4 Contribution

Relationship Source

conv(epi(DCU)) proj= P δ Corollary 4.11
P δ (P̂ δ P δ (P̂ δ by P δ = πfδ(P f) and Eq. (4.3.9)
P̂ δ (P δex P̂ δ ⊂ P δex by Proposition 4.16,

P̂ δ 6= P δex by the example in Fig. 4.7
P δex

proj= P yz Proposition 4.18
P yz (epi(LCU1, . . . ,LCUT) P yz (epi(LCU1, . . . ,LCUT) by Proposition 4.19,

P yz 6= epi(LCU1, . . . ,LCUT) by the example in
Fig. 4.8

epi(LCU1, . . . ,LCUT) (P tex epi(LCU1, . . . ,LCUT) ⊂ P tex by Eq. (2.1.3),
epi(LCU1, . . . ,LCUT) 6= P tex by the example in
Fig. 2.2

epi(LCUΣ) proj= P temp Theorem 3.26
P temp (P̂ temp P temp ⊂ P̂ temp by definition, P temp 6= P̂ temp by

Proposition 3.14

P̂ temp
proj
6⊂ P tex (4.5.9)

P δex
proj
6⊂ P̂ temp (4.5.10)

Table 1.4: List of relationships between formulations and references to their proofs. The strict
relationships (hold in general, but may be reduced to ⊂ in special cases.

Accompanying each of the tightened formulations, we provide a separation algorithm
which improves over the naive algorithm by enumeration (see Table 1.5). To the best
of our knowledge, not faster separation algorithms were presented for the existing
formulations.

Formulation Inequalities Naive separation Separation
P δ O(ST) O(S2T 2) O(T 2) (Theorem 4.13)
epi(LCU1, . . . ,LCUT) O(ST) O(ST 2) O(T 2) (Proposition 2.9)
epi(LCUΣ) O(2T) O(T2T) O(T) (Proposition 2.39)
P temp O(T 2) O(T 2) O(T) (Theorem 3.33)

Table 1.5: Start-up cost formulations with number of inequalities and running times of the
separation by enumeration and the separation algorithm provided in this work.

29

Chapter 1 Introduction

1.5 Acknowledgments
I thank my co-authors Dr. René Brandenberg and Matthias Huber for the enjoyable
and effective collaboration on our joint publications [BS14; SHB16; HS15; BHS16],
which are part of Chapters 2 and 3 and Section 6.2. I express my sincere thanks to Dr.
René Brandenberg for countless hours of fruitful discussion, his experienced guidance,
and invaluable comments on drafts.
I am gratefully indebted to my supervisor Prof. Gritzmann for his stimulating

comments and insights which have greatly improved this manuscript, and for his trust
and support in the past six year. His excellent lectures have sparked my interest in
integer optimization.
I express my sincere gratitude to my co-author Matthias Huber and his supervisor

Prof. Hamacher. Any impact of this work in the engineering community is owed to
their contribution to experiments, modeling, and data fueled by their experience with
real-world power modeling. I am grateful to the International Graduate School for
Science and Engineering (IGSSE) for sponsoring the cooperation between our chairs.

I take this opportunity to thank Statoil ASA for their collaboration in a two-year
joint research project, and in particular my project colleagues Patrick Blomquist, Paul
Andrew Holtom, Øystein Klokk, and Christophe Roth Maingourd for sharing their
insight into power markets.
I would like to thank my colleagues at the faculty of mathematics for creating an

open and inspiring atmosphere. I am especially grateful to Paul Stursberg, Dr. Philipp
Ahlhaus, and Dr. Felix Schmiedl for many motivating exchanges on our research.

Finally, I thank my wife Jasmin for her unending patience and support, my parents
and my brother for their support and encouragement, and my sons for putting everything
into perspective.

30

Chapter 2

H-Representations of the Epigraphs of
Start-up Cost Functions

The volatility of renewable electricity production forces thermal units to start-up more
often. This is true not only for gas units, which traditionally have the task to cover
peak load, but also for coal units which were designed to supply base load. In the
light of the increasing penetration of renewables, it is necessary to model start-up costs
more accurately.
This chapter is dedicated to start-up cost functions of a single unit i ∈ I. In the

context of the Unit Commitment problem, start-up costs need to be minimized. We
therefore analyze the epigraphs of the functions of

• the start-up costs incurred in an individual period (Section 2.1, joint work with
René Brandenberg and Matthias Huber partially published in [BS14; SHB16]),

• the summed start-up costs of all modeled periods (Section 2.2, joint work with
René Brandenberg and Matthias Huber published in [BHS16]), and

• the function of all individual start-up costs (Section 2.3).

One of the prevalent models in the literature was presented in [CA06], and based on
a piece-wise linear description of the start-up costs proposed in [NR00]. Building on
this formulation, we derive a linear-size H-representation of each of these individual
costs, thereby improving our understanding of the start-up cost function (Section 2.1).
However, the individual start-up costs are typically used to derive the sum of the

start-up costs, which is then minimized as part of the objective function. By considering
these summed costs, the integrality gap can be reduced substantially. In Section 2.2,
we present a generally irredundant, exponential-size H-representation of the epigraph
of this summed start-up cost function and give a linear, exact separation algorithm.
This result provides the theoretical framework for the temperature model in Chapter 3,
which is equivalent to the epigraph of the summed start-up costs and relies on its
separation algorithm.
Section 2.3 focuses on the epigraph of the function of all individual start-up costs,

for which it identifies an exponential-size class of facet-inducing inequalities.

31

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

2.1 The Start-up Costs in a Single Period
This section presents joint work with René Brandenberg and Matthias Huber [BS14;
SHB16]. We consider the discrete start-up cost function DCUt, defined in (1.3.6) as
the start-up costs incurred in period t of a given operational schedule v,

∀ t ∈ [T] : DCUt : {0, 1}T → R≥0, v 7→
{
CUt(olt(v)) if vt = 1,
0 else,

(2.1.1)

where olt(v) denotes the number of offline periods prior to period t,

olt(v) := max
{
l ∈ [t− 1]

∣∣ vt−1 = . . . = vt−l = 0
}
.

By tightening an existing formulation, we gain a generally irredundant, linear-size
H-representation of the convex hull of its epigraph, and an exact separation algorithm
with time complexity O(t).

2.1.1 The Existing Step-wise Start-up Cost Model
Based on a piece-wise linear representation of the start-up cost function presented in
[NR00], [CA06] introduces a formulation to model start-up costs which depend on
the preceding downtime. The necessary inequalities emerge naturally when explicitly
modeling the epigraph of DCU.
As seen in the introduction, in a minimization problem the start-up costs of unit i

can be modeled as
∀ t ∈ [T] : (v, cut) ∈ epi(DCUt).

This constraint on v and cut is equivalent to the nonlinear inequality

∀ t ∈ [T] : cut ≥ DCUt(v),

which by definition is again equivalent to

∀ t ∈ [T] with vt = 1 : cut ≥ CUt(olt(v)).

Since the start-up cost coefficients CUt(l) are increasing, the bound on cut remains
unchanged if offline lengths l ≤ olt(v) are considered as well,

∀ t ∈ [T], l ∈ [0 .. t−1] with vt = 1, vt−l=...=vt−1=0 : cut ≥ CUt(l).

Finally, by canonically rewriting the binary condition on the operational schedule v,
we get the generalized constraints as presented in [CA06],

∀ t ∈ [T], l ∈ [0 .. t−1] : cut ≥ CUt(l)
(
vt −

l∑
j=1

vt−j
)
. (2.1.2)

32

2.1 The Start-up Costs in a Single Period

1 1 0 0 1
t1 2 3 4 5

1
v

CU5(0) ·
(

+v5
)

= CU5(0)

CU5(1) ·
(

+v5
)

= CU5(1)

CU5(2) ·
(

+v5
)

= CU5(2)

CU5(3) ·
(

+v5
)

= 0

CU5(4) ·
(

+v5
)

= −CU5(4)

−v4

−v3 − v4

−v2 − v3 − v4

−v1 − v2 − v3 − v4

cu5 ≥

Figure 2.1: Start-up cost inequalities proposed in [CA06] and based on [NR00]. The third
constraint provides the correct bound on the start-up costs cu5 (marked blue).
The bounds by the first two constraints are lower due to their lower start-up
cost coefficients CU5(1) and CU5(2). Since v2 = 1, the sums marked in red that
include “−v2” are greater than or equal v5, and hence the bounds by the last two
constraints are non-positive.

The expression in parenthesis, vt −∑l
j=1 v

t−j , is 1 iff the considered unit starts up in
period t after being offline in periods [t−l .. t−1]. Otherwise, the term is less or equal
to 0. Figure 2.1 visualizes the idea behind these constraints.

So, the existing step-wise start-up cost polyhedron P tex,

P tex :=
{

(v, cu) ∈ [0, 1]T × RT
∣∣∣ (v, cut) fulfills (2.1.2) for t

}
,

correctly models the epigraph of the start-up cost function DCUt for integral v ∈{0,1}T ,

epi(DCUt) = P tex∩ (ZT×R) =
{

(v, cu) ∈ {0, 1}T ×RT
∣∣∣ (v, cut) fulfills (2.1.2) for t

}
.

If we relax the integrality of v, this is no longer true in general. More precisely, if
the start-up cost function DCUt is not constant, then the convex extension LCUt of
DCUt is not described accurately,

∀ t ∈ [T] with DCUt(t−1)>DCUt(1) > 0 :
epi(LCUt) = conv(epi(DCUt)) (P tex.

(2.1.3)

For a given period t ∈ [T] with DCUt(t − 1) > DCUt(1) > 0, which implies t ≥ 3,
we can see this by considering the point v ∈ [0, 1]T (cf. Fig. 2.2) with

v := (0, . . . , 1/2︸︷︷︸
t−2

, 0, 1︸︷︷︸
t

, 0, . . . , 0)

33

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

which is uniquely representable as the convex combination 1/2(v′ + v′′) with points

v′ := (0, . . . , 0 , 0, 1 , 0, . . . , 0)
v′′ := (0, . . . , 1︸︷︷︸

t−2
, 0, 1︸︷︷︸

t

, 0, . . . , 0)

Thus, the smallest value cut such that (v, cut) ∈ conv(epi(DCUt)) is

cut = 1
2(CU(t− 1) + CU(1)) > max

{
CU(1), 1

2CU(t− 1)
}
,

but on the other hand (v,max{CU(1), 1
2CU(t− 1)}) fulfills (2.1.2) for each t ∈ [T].

fractional vector v ∈ [0, 1]5

0 0 0
1⁄2

1

t0 0 01 1v′′

t

integral vectors v′, v′′ ∈ {0, 1}5

0 0 0 0 1v′

t

1/2

1/2

Figure 2.2: Convex combination v = 1/2v′ + 1/2v′′ of v′ = (0, 0, 0, 0, 1) and v′′ = (0, 0, 1, 0, 1),
leading to LCU5(v) = 1/2DCU5(v′) + 1/2DCU5(v′′) = 1/2CU5(4) + 1/2CU5(1). P tex
only models a start-up cost of max{1/2CU5(1), 1/2CU5(1)}.

In the following, we tighten the model P tex to an H-representation of epi(LCUt).

2.1.2 A Geometric Interpretation

Our goal of finding an H-representation of epi(LCUt) amounts to deducing the facets
on the lower boundary of epi(LCUt). If we project these facets to the convex hull [0, 1]T
of the domain of DCUt, we gain a partition of [0, 1]T which fully describes the facets
(see Fig. 2.3).

This observation reveals a geometric interpretation of the subsequent results in
Subsection 2.1.4, which lead to an H-representation of epi(LCUt):

1. Proposition 2.2 lists the vertices v ∈ {0, 1}T contained in the projection to [0, 1]T
of each facet.

2. Corollary 2.3 expands on the above proposition by describing a subset of the
edges of each facet.

3. Lemma 2.7 finally gives the facet appertaining to each v in [0, 1]T .

34

2.1 The Start-up Costs in a Single Period

Graph of DCU2

DCU2(0,0)

DCU2(0,1)

DCU2(1,0)

DCU2(1,1)

Facets on lower
boundary of epi(LCU2)

Projection of
facets to [0, 1]2

(0,0)

(0,1)

(1,0)

(1,1)

Figure 2.3: By projecting the facets of the convex hull of the epigraph of DCU2 : {0, 1}2 → R
to the convex hull of its domain [0, 1]2, we gain a partition of [0, 1]2.

For a function f : {0, 1}T → R, one would expect that in general the partition of
[0, 1]T induced by the facets of conv(epi(f)) consists of simplices. A simplex contained
in [0, 1]T has a volume of at most n

n/2

n!2n (see e. g. [GK94]): therefore Ω(2n) simplices
are required to partition [0, 1]T . Hence, conv(epi(f)) is expected to have at least an
exponential number of facets.

As we show in the following however, epi(LCUt) in general has only T facets on its
lower boundary, which are induced by T inequalities with parameters l ∈ [0 .. T−1]
(see (2.1.2) and Theorem 2.8). This is explained by the structure of DCU, which
results in partitions of [0, 1]T where the volume of the subset corresponding to a given
parameter l ∈ {0, . . . , t− 1} is independent of the dimension T ≥ l + 2 (see Fig. 2.4).

(0,0) (1,0)

(0,1) (1,1)

l = 0

l = 1

(0,0,1)

(0,1,0)

(1,0,0)(0,0,0)

(0,1,1)

(1,1,0)

(1,1,1)

l = 0

l = 1l = 2

Figure 2.4: Partition of the cube [0, 1]T corresponding to the facets of epi(LCUt) for parame-
ters t = T = 2 (left) and t = T = 3 (right). Note that the volume of the facet
for l = 0 (green) equals 1

2 for both T = 2 and T = 3. Furthermore, the facet for
l = T − 1 is a simplex with orthogonal corner (0, . . . , 0, 1) in both cases.

35

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

The reason hereof is that the value DCUt(v) only depends a subset of the coordinates
of v ∈ {0, 1}T . If we have vt = vt−l−1 = 1 for some l ∈ [0 .. t−2], then all ṽ ∈ {0, 1}T
with

∀ t′ ∈ [t−l−1 .. t] : ṽt
′ = vt

′

have the same start-up costs, DCUt(v) = DCUt(ṽ).
Hence, the number of vertices (v,DCUt(v)) with the same costs DCUt(v) = CUt(l)

increases exponentially with T − l. For example for parameters T = 8, t = 7, and
l = 3, Fig. 2.5 lists 8 schedules with the same start-up costs which, as we see in
Proposition 2.2, lie on the same facet.

0 0 1 0 0 0 1 0w0

0 1 1 0 0 0 1 0w1

1 0 1 0 0 0 1 0w2

1 1 1 0 0 0 1 0
t1 2 3 4 5 6 7 8

w3

0 0 1 0 0 0 1 1w4

0 1 1 0 0 0 1 1w5

1 0 1 0 0 0 1 1w6

1 1 1 0 0 0 1 1
t1 2 3 4 5 6 7 8

w7

Figure 2.5: Operational schedules wj of vertices (wj ,DCUt(wj)) with the same start-up costs
DCU7(wj) = CU7(3) and lie on the same facet.

2.1.3 Lifted Start-up Cost Inequalities

By rewriting the constraints (2.1.2) of the existing start-up cost model as

∀ t ∈ [T], l ∈ [0 .. t−1] : cut ≥ CUt(l)vt −
l∑

j=1
CUt(l)vt−j ,

an alternative interpretation suggests itself. The right-hand side of each of these
constraints reaches its maximum for vt = 1 and vt−1 = . . . = vt−l = 0, i. e. if the unit
starts up in period t after at least l offline periods. If the unit is online in a single
period t− j with j ∈ [l], the start-up costs are “taken back”, i. e. the right-hand side is
reduced to 0 or less.
This is evident in Fig. 2.1, where the right-hand side of the constraint for l = 3 is

0 since v2 = 1. However, the unit does incur start-up costs, such that the constraint
would still be valid with a right-hand side of CU5(2). Hence, the coefficient of v2 could

36

2.1 The Start-up Costs in a Single Period

be lifted, i. e. increased such that the resulting constraint dominates the original one
and remains valid. This idea leads to the inequalities

∀ t ∈ [T], l ∈ [0 .. t−1] : cut ≥ CUt(l)vt −
l∑

j=1

(
CUt(l)− CUt(j − 1)

)
vt−j , (2.1.4)

which we call lifted start-up cost inequalities. In the remainder of this section, we prove
that they are valid and induce all non-trivial facets of the epigraph of the start-up cost
functions LCUt.

Proposition 2.1 For each t ∈ [T], the lifted start-up cost inequality for t is valid for
epi(LCUt).

Proof. Since epi(LCUt) = conv(epi(DCUt)), it suffices to show that the inequality is
valid for each point (v, cut) ∈ epi(DCUt). If vt = 0, no start-up costs are incurred in
period t. Thus,

cut ≥ DCUt(vt) = 0 = CUt(l)vt︸ ︷︷ ︸
=0

−
l∑

j=1
(CUt(l)− CUt(j − 1))︸ ︷︷ ︸

≥0

vt−j .

If vt = 1, then the unit was offline for the preceding olt(v) periods, and the start-
up costs by definition equals CUt(olt(v)). Since CUt(l) increases with l, for each
l ∈ [0 .. olt(v)] we have

cut ≥ DCUt(v) = CUt(olt(v)) ≥ CUt(l)vt −
l∑

j=1

(
CUt(l)− CUt(j − 1)

)
vt−j︸︷︷︸
=0

,

and for each l ∈ [olt(v)+1 .. t−1],

cut ≥ DCUt(v) = CUt(olt(v)) = CUt(l)vt −
(
CUt(l)− CUt(olt(v))

)
vt−ol

t(v)−1︸ ︷︷ ︸
=1

≥ CUt(l)vt −
l∑

j=1

(
CUt(l)− CUt(j − 1)

)
vt−j . 2

By considering the inequalities in the last proof, we can readily identify the points
which fulfill a certain lifted start-up cost inequality with equality, and thus lie on the
face of epi(LCUt) induced by this inequality. We start with the vertices of epi(LCUt)
in the following proposition.

Proposition 2.2 For each t ∈ [T], l ∈ [0 .. t−1], a vertex (v,DCUt(v)) of epi(DCUt)
fulfills the lifted start-up cost inequality for t and l with equality, if one of these cases
applies:

a) vt = 0 and vt−1 = . . . = vt−l = 0.

b) vt = 1 and ∃ olt ∈ [0 .. l−1] with vt−j =
{

1 if j = olt + 1
0 else

for j ∈ [l].

c) vt = 1, vt−1 = . . . = vt−l = 0, and l = t− 1 or vt−l−1 = 1.

37

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

Proof. For each vertex (v,DCUt(v)) of epi(DCUt) to which on of the above cases
applies, it holds that

• DCUt(v) = 0 if the point matches case a),

• DCUt(v) = CUt(olt) if case b) applies, and

• DCUt(v) = CUt(l) if the point corresponds to case c).

If the point (v, cut) ∈ epi(DCUt) matches cases a) and c), substituting its values of
vt−l, . . . , vt−1 into the right-hand side of the lifted start-up cost inequality results in
cut ≥ CUt(l)vt, which is fulfilled with equality.

If the point (v, cut) ∈ epi(DCUt) matches case b), substituting gives

CUt(l)vt −
(
CUt(l)− CUt(olt)

)
vt−ol

t−1 = CUt(olt) = cut. 2

The integrality of the coordinates vt′ with t′ ∈ [t− l − 1]∪ [t+1 .. T] is not necessary
for the correctness of the last proof. We can therefore extend the last result to describe
certain edges of the facets In fact, the convex combinations of all vertices of epi(DCUt)
which correspond to the same case in Proposition 2.2 and have the same start-up costs
spans all such partially fractional points. Naturally, these points still lie on the same
face of epi(LCUt).

Corollary 2.3 For each t ∈ [T], l ∈ [0 .. t−1], a fractional point (v, cut) ∈ [0, 1]T ×R
lies on the face of epi(LCUt) induced by the start-up cost inequality for t and T , if one
of these cases applies:

a) vt = 0, vt−1 = . . . = vt−l = 0 and cut = 0.

b) vt = 1, ∃ olt∈ [0 .. l−1] with vt−j =
{

1 if j = olt + 1
0 else

for j ∈ [l], cut=CUt(olt).

c) vt = 1, vt−1 = . . . = vt−l = 0, l = t− 1 or vt−l−1 = 1, and cut = CUt(l).

Of course, all convex combinations of these points again lie on the same face.
The requirements laid out in Proposition 2.2 can be visualized in form of a matrix,

such that a point (v, cut) ∈ [0, 1]T × R fulfills the requirements iff they match a row of
this matrix (cf. Fig. 2.6). Stars match any value.
It is easy to check that the set of all points (v, cut) ∈ [0, 1]T × R has an affine

dimension of T .

Corollary 2.4 For each t ∈ [T], l ∈ [0 .. t−1], the lifted start-up cost inequality for t
and l induces a facet of epi(LCUt).

38

2.1 The Start-up Costs in a Single Period

∗ ∗ 0 0 ∗ ∗ 0
0 0 1 1 CUt(0)

0
0

∗

∗ 1 0 0 1 ∗ ∗ CUt(l)

v1
vt−l−1

vt−l
vt−1

vt
vt+1

vT cut

Case b

Case a

Case c

only if l < t− 1 only if t < T

Figure 2.6: Patterns of the points fulfilling the lifted start-up cost inequality for t and l with
equality.

2.1.4 An H-Representation

Having proved that the lifted start-up cost inequalities induce facets, we proceed by
showing that these inequalities (and the trivial inequality 0 ≤ vt ≤ 1) already suffice
to separate all points outside epi(LCUt) from epi(LCUt). To this end, we bring the
right-hand sides of these inequalities into relation.

Proposition 2.5 For each t ∈ [T] and l ∈ [t− 1], it holds that

rhst(l) = rhst(l − 1) +
(
CUt(l)− CUt(l − 1)

)(
vt −

l∑
j=1

vt−j
)
,

where rhst(l) denotes the right-hand side of the lifted start-up cost inequality with
parameter l.

Proof. For each t ∈ [T] and l ∈ [t− 1], the right-hand side of the respective lifted
start-up cost inequality can be reorganized to

rhst(l) = CUt(l)
(
vt −

l∑
j=1

vt−j
)

+
l∑

j=1
CUt(j − 1)vt−j .

39

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

The claimed equality holds since

rhst(l) = CUt(l)
(
vt −

l−1∑
j=1

vt−j
)

+
l−1∑
j=1

CUt(j − 1)vt−j −
(
CUt(l)− CUt(l − 1)

)
vt−l

= CUt(l − 1)
(
vt −

l−1∑
j=1

vt−j
)

+
l−1∑
j=1

CUt(j − 1)vt−j
}

rhst(l − 1)

+
(
CUt(l)− CUt(l − 1)

)(
vt −

l−1∑
j=1

vt−j
)
−
(
CUt(l)− CUt(l − 1)

)
vt−l

= rhst(l − 1) +
(
CUt(l)− CUt(l − 1)

)(
vt −

l∑
j=1

vt−j
)
. 2

Starting from rhst(0) = CUt(0)vt, this recursive relation of rhst(l) leads to an
alternative formulation of the lifted start-up cost inequalities.

Corollary 2.6 For each t ∈ [T], l ∈ [0 .. t−1], the lifted start-up cost inequality (2.1.4)
equals

cut ≥
l∑

j=0

(
CUt(j)− CUt(j − 1)

)(
vt −

j∑
k=1

vt−k
)
, (2.1.5)

defining CUt(−1) = 0 for convenience.

We use the relationship of the right-hand sides to analyze how the bound on the
start-up costs for a certain vector v ∈ [0, 1]T changes in dependence of l. Since the
start-up cost function CUt is increasing, the term CUt(l)− CUt(l − 1) is non-negative
for all l ∈ [0 .. t−1]. The sign of the change of the right-hand side for increasing l thus
depends solely on the term vt −

∑l
j=1 v

t−j ,

rhst(l) = rhst(l − 1) +
(
CUt(l)− CUt(l − 1)

)(
vt −

l∑
j=1

vt−j
)


≥ rhst(l − 1) if vt −

l∑
j=1

vt−j ≥ 0,

≤ rhst(l − 1) if vt −
l∑

j=1
vt−j ≤ 0.

The term vt −
∑l
j=1 v

t−j decreases with increasing l. So, there exists a pivotal value
of l until which the right-hand sides increase, and from which on the right-hand sides
decrease (not necessarily strictly). The lifted start-up cost inequality with this pivotal l
thus dominates the other inequalities for this particular v ∈ [0, 1]T . This idea leads to
the following lemma.

40

2.1 The Start-up Costs in a Single Period

Lemma 2.7 For each t ∈ [T] and (v, cut) ∈ [0, 1]T × R, choose ol ∈ [0 .. t−1] s.t.

ol∑
j=1

vt−j ≤ vt ≤
ol+1∑
j=1

vt−j , (2.1.6)

defining v0 = 1 for notational convenience. Then (v, cut) lies in epi(LCUt) iff the lifted
start-up cost inequality for t and ol is fulfilled.

Proof. Before starting with the main proof, it should be noted that such a length ol
exists, but is not necessarily unique. The variable v0 is defined such that the condition

vt ≤
ol+1∑
j=1

vt−j

is certainly true for ol = t− 1. At the same time, the condition

ol∑
j=1

vt−j ≤ vt (2.1.7)

is trivially fulfilled for ol = 0. So, the last ol ∈ [0 .. t−1] for which (2.1.7) holds must
also fulfill (2.1.6) and is thus a feasible choice.

We prove the statement by determining the unique c̃ut ∈ R such that (v, c̃ut) lies on
the boundary of epi(LCUt), and comparing cut and c̃ut. To this end we decompose
(v, c̃ut) into a convex combination of points (wj ,DCUt(wj))

• lying on the facet of epi(LCUt) induced by the lifted start-up cost inequality for
t and ol and

• with start-up costs known from Corollary 2.3.

The idea of this decomposition is visualized in Fig. 2.7.
For ol < t− 1, we require the technical coefficient µ fulfilling

µ
(ol∑
j=1

vt−j − vt + 1
)

+ vt −
ol+1∑
j=1

vt−j = vt−ol−1.

If vt = 1 and ∑ol
j=1 v

t−j = 0, this is trivially fulfilled by µ := 0, and else by

µ :=
∑ol+1
j=1 v

t−j − vt∑ol
j=1 v

t−j − vt + 1
.

41

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

t

v1

v2

v3

v4

v5
1

fractional vector v ∈ [0, 1]5

ol = 3

vectors wjfactors λj andconvex combination:

1− vt µ

vt −
ol∑
j=1

vt−j · µ1 1

vt−3 · µ 1 1

vt−2 · µ 1 1

vt−1 · µ 1 1

=

Figure 2.7: Decomposition of a fractional vector v ∈ [0, 1]5 into a convex combination of
vectors wj known to lie on a single facet (with appropriate start-up costs cut).
The facet is induced by the lifted start-up cost inequality with t = 5 and ol = 3.
The term µ is a technical term as stated in the proof of Lemma 2.7.

Because of (2.1.6), µ lies in [0, 1].
Using this coefficient, define the vectors w0, . . . , wol+1 ∈ [0, 1]T as

wl
′

0 =


0 if l′ ∈ [t−ol .. t],
µ if l′ = t− ol− 1,
vl
′ else.

wl
′

ol+1 =


0 if l′ ∈ [t−ol .. t−1],
1 if l′ ∈ {t, t− ol− 1},
vl
′ else.

∀ j ∈ [ol] :

wl
′
j =


0 if l′ ∈ [t−ol .. t−1] \ {t− j},
1 if l′ ∈ {t, t− j},
µ if l′ = t− ol− 1,
wl
′ else.

The respective convex combination coefficients are λ0, . . . , λol+1 with

λ0 := 1− vt, λj := vt−j , λol+1 := vt −
ol∑
j=1

vt−j .

42

2.1 The Start-up Costs in a Single Period

It is easy to verify that the coefficients λj lie in [0, 1] (using (2.1.6)) and sum up to 1.
We prove that v is the convex combination of the above vectors with the above

coefficients by coordinate-wise comparison, again following the idea shown in Fig. 2.7:

∀ t′ ∈ [T] \ [t−ol−1 .. t] :
ol+1∑
j=0

λjw
t′
j =

ol+1∑
j=0

λjv
t′ = vt

′
,

∀ t′ ∈ [t−ol .. t−1] :
ol+1∑
j=0

λjw
t′
j = λt−t′ = vt

′

ol+1∑
j=0

λjw
t
j =

ol+1∑
j=1

λjw
t
j =

ol+1∑
j=1

λj = vt,

ol+1∑
j=0

λjw
t−ol−1
j = µ

ol∑
j=0

λj + λol+1 = µ
(ol∑
j=1

vt−j − vt + 1
)

+ vt −
ol∑
j=1

vt−j = vt−ol−1.

The start-up costs for these vectors are DCUt(w0) = 0 and DCUt(wj) = CUt(j − 1)
for all j ∈ [ol + 1]. So, the analogous convex combination of the start-up costs equals

c̃ut =
ol+1∑
j=1

λjCUt(j − 1).

By Corollary 2.3 the points (w0, 0), (w1,CUt(0)), . . . , (wol+1,CU
t(ol)) lie on the

facet of epi(LCUt) induced by the lifted start-up cost inequality for t and ol. Hence,
their convex combination (v, c̃ut) also lies on the same facet. By definition of the
epigraph,

LCUt(v) = c̃ut =
ol+1∑
j=1

λjCUt(j − 1).

In conclusion, (v, cut) ∈ epi(LCUt) iff cut ≥ LCUt(v) = c̃ut, which is true iff (v, cut)
fulfills the lifted start-up cost inequality for t and ol. 2

It should be noted that the length ol as used in the last lemma is the generaliza-
tion of olt(v) as defined in (1.3.7) for the fractional situation. If v is integral, then
condition (2.1.6) is always fulfilled for the number of offline periods olt(v) preceding
period t.
Lemma 2.7 implies that each point (v, cut) ∈ [0, 1]T × R which fulfills all lifted

start-up cost inequalities is contained in epi(LCUt). Since these inequalities are also

43

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

valid for epi(LCUt) by Proposition 2.1, they form an H-representation of epi(LCUt)
(together with the trivial inequalities).

Theorem 2.8

epi(LCUt) =


(v, cut) ∈ RT+1 :

cut ≥ CUt(l)vt −
l∑

j=1

(
CUt(l)− CUt(j − 1)

)
vt−j , l ∈ [0 .. t−1]

0 ≤ vt ≤ 1, t ∈ [T]

.

As a result, we can separate epi(LCUt) by considering the lifted start-up cost
inequalities. Since there are t such inequalities with Θ(t) non-zero coefficients, the
canonical algorithm has a running time of Θ(t2). By exploiting the relationship of the
right-hand sides (Proposition 2.5) this can be improved to the linear-time separation
algorithm 2.1.1.

Algorithm 2.1.1: Separating a given point from epi(LCUt)
Input : (v, cut) ∈ [0, 1]T × R
Output : (v, cut) ∈ epi(LCUt), or a separating inequality

1 l← 0;
2 vΣ ← vt;
3 rhs← CUt(0)vt;

4 while l < t− 1 and vΣ > vt−l−1 do
5 l← l + 1;
6 vΣ ← vΣ − vt−l;
7 rhs← rhs + (CUt(l)− CUt(l − 1))vΣ;

8 if cut ≥ rhs then
9 return (v, cut) ∈ epi(LCUt);

10 else
11 return (v, cut) can be separated from epi(LCUt) by

cut ≥ CUt(l)vt −
l∑

j=1

(
CUt(l)− CUt(j − 1)

)
vt−j ;

Proposition 2.9 For each t ∈ [T] and each (v, cut) ∈ [0, 1]T × R, Algorithm 2.1.1
either confirms that (v, cut) ∈ epi(LCUt), or finds a lifted start-up cost inequality
separating (v, cut) from epi(LCUt) in O(t).

44

2.1 The Start-up Costs in a Single Period

Proof. The correctness of the algorithm can be affirmed by noting that before and
after each iteration of the while-loop on lines 4–7, it holds that

• vΣ = vt −
∑l
j=1 v

t−j , and
• rhs equals the right hand side of lifted start-up cost inequality for t and l.

The while-loop is executed until either l = t − 1 or vt ≤ ∑l+1
j=1 v

t−j . Thus, after
this loop, l is maximal in [0 .. t−1] with vt >∑l

j=1 v
t−j , fulfilling the requirements of

Lemma 2.7.
So, if the condition cut ≥ rhs on line 8 is true, then the point (v, cut) fulfills the lifted

start-up cost inequality for t and l, and by Lemma 2.7 lies in the epigraph epi(LCUt).
Otherwise, this constraint separates (v, cut) from epi(LCUt).

The while-loop is executed at most t− 1 times and the separating inequality on line
11 can also be constructed in O(t). In sum, the running time is O(t). 2

2.1.5 The Convex Extension LCUt of DCUt

Knowing an H-representation of epi(LCUt), we can deduce an explicit (non-linear)
representation of the convex extension LCUt of DCUt. Again, this definition is based
on the alternative formulation of the lifted start-up cost inequalities in (2.1.5).

Proposition 2.10 For each t ∈ [T] and v ∈ [0, 1]T ,

LCUt(v) =
t−1∑
l=0

(
CUt(l)− CUt(l − 1)

)
max

{
0, vt −

l∑
j=1

vt−j
}
, (2.1.8)

defining CUt(−1) = 0 for notational convenience.

Proof. By definition of the epigraph, the value of LCUt(v) is the smallest value cut
such that (v, cut) ∈ epi(LCUt). Due to Lemma 2.7, (v, cut) ∈ epi(LCUt) iff (v, cut)
fulfills all lifted start-up cost inequalities. Using the alternative representation (2.1.5),
the minimal such cut is

LCUt(v) = cut = max
k∈[0 .. t−1]

{
k∑
l=0

(
CUt(l)− CUt(l − 1)

)(
vt −

l∑
j=1

vt−j
)}

(2.1.9)

In Lemma 2.7 we have seen that the maximum of the right-hand sides is attained by
an ol ∈ [0 .. t−1] with

ol∑
j=1

vt−j ≤ vt ≤
ol+1∑
j=1

vt−j (defining v0 = 1).

The right-hand side of Eq. (2.1.8) corresponds exactly to the right hand side of
Eq. (2.1.9) for k = ol. 2

45

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

Since all lifted start-up cost inequalities (2.1.4) are homogeneous, LCUt is homoge-
neous as well - a fact which can also be seen by examining (2.1.8).

Corollary 2.11 The start-up cost function LCUt is homogeneous, i. e. it holds that

∀ v ∈ [0, 1]T , λ ≥ 0 : LCUt(λv) = λLCUt(v)

2.1.6 Redundancy and Approximations of Start-up Costs

Modeling epi(LCUt) for all t ∈ [T] requires T (T + 1)/2 lifted start-up cost inequalities
and T inequalities 0 ≤ vt ≤ 1, which proves to cause a high computational burden.
Traditionally, the number of necessary inequalities (2.1.2) is reduced by replacing the
costs CUt(l) by approximations C̃Ut(l) with a small number of steps, i. e. different
values [Gar62; Muc66; SPO05; CA06]. We transfer this reduction to epi(LCUt) by
showing that for this approximation C̃Ut(l), some inequalities (2.1.4) may be redundant.
Furthermore, to the best of our knowledge, the approximation C̃Ut(l) has always

been regarded part of the input in the existing publications, and its choice has not been
discussed. We provide an elementary algorithm which, given a certain error tolerance,
finds an approximation of the CUt(l) with a minimal number of steps.
Since the lifted start-up cost inequalities induce facets, the H-representation in

Theorem 2.8 is only redundant if two of them are equivalent. Using the alternative
formulation in Corollary 2.6, it is straightforward to derive under which conditions this
occurs.

Proposition 2.12 For each t ∈ [T], l1, l2 ∈ [t− 1], the two lifted start-up cost inequal-
ities for t and l1 or l2 are equal iff CUt(l1) = CUt(l2).

Proof. Let t, l1, and l2 with l1 ≤ l2.
By looking at the coefficient of vt in (2.1.4), we see that two such constraints may

only be equal if CUt(l1) = CUt(l2).
Now, assume that CUt(l1) = CUt(l2). Since the start-up costs increase with l, this

implies CUt(l1) = CUt(l) = CUt(l2) for all l ∈ [l1..l2]. Using (2.1.5), we obtain

rhst(l2)− rhst(l1) =
l2∑
j=l1

(
CUt(j)− CUt(j − 1)︸ ︷︷ ︸

=0

)vt − j∑
k=1

vt−k

 = 0,

implying that equality of the two constraints. 2

Due to the monotonicity of the CUt(l), Proposition 2.12 implies that the lifted
start-up cost inequalities for t and l ∈ [l1..l2] are equal.

An irredundant H-representation is gained by simply removing duplicate inequalities.

46

2.1 The Start-up Costs in a Single Period

Corollary 2.13 The H-representation

epi(LCUt) =



(v, cut) ∈ RT+1 :

cut ≥ CUt(l)vt −
l∑

j=1

(
CUt(l)− CUt(j − 1)

)
vt−j ,

l ∈ [0 .. t−1] with CUt(l) > CUt(l − 1)
0 ≤ vt ≤ 1, t ∈ [T]


.

is irredundant.

Thus, the H-representation given in 2.8 is irredundant for strictly increasing start-up
costs CUt(l). On the other hand, the number of irredundant inequalities decreases
for each l ∈ [t− 1] with CUt(l) = CUt(l + 1). This suggest a natural question: Given
certain costs CUt(l), how can we find an approximation C̃Ut(l) that lies within a given
tolerance and minimizes the number of inequalities? Figure 2.8 highlights that such an
approach can be effective even at low error tolerances.

±4%

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 l0%

30%

100% cost

Start-up costs CUt(l) (85 steps)

Approximation C̃Ut(l) (11 steps) with error of 4%

Figure 2.8: Approximation of a start-up cost function with a tolerance of 4%
The start-up cost function of a thermal unit (blue) with 30% fixed costs and
70% variable costs (absolute values are not relevant) is approximated in the first
85 periods by a function with 11 steps to a relative error of 4%. The error margin
is marked in light blue.

47

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

For the sake of a simpler notation, we exclude the trivial case t = 1. Given an
error tolerance CUtol, the problem of finding an approximation C̃Ut(l) with a minimal
number of steps can be stated as

min



∣∣∣∣ ⋃
l∈[t−1]

{
C̃Ut(l)

} ∣∣∣∣ :

∣∣∣C̃Ut(l)− CUt(l)
∣∣∣ ≤ CUtolCUt(l), l ∈ [t− 1]

C̃Ut(1) ≤ C̃Ut(2) ≤ . . . ≤ C̃Ut(t− 1),

C̃Ut(l) ∈ R≥0 l ∈ [t− 1]


. (2.1.10)

If the minimal number of different start-up cost values is n, there exist period counts
1 = l1 < l2 < . . . < ln < ln+1 = t such that the start-up costs in each of the intervals
[lj , lj+1−1] for j ∈ [n] are equal. For any such interval [lj , lj+1−1], it is straightforward
to check that the minimal local relative error is

δ(lj , lj+1 − 1) := CUt(lj+1 − 1)− CUt(lj)
CUt(lj+1 − 1) + CUt(lj)

,

which is attained by the start-up costs

C̃Ut(lj) = . . . = C̃Ut(lj+1 − 1) = γ(lj , lj+1 − 1) := 2CUt(lj)CUt(lj+1 − 1)
CUt(lj+1 − 1) + CUt(lj)

,

except if CUt(lj+1 − 1) = 0, where the minimal local error of 0 is attained by
C̃Ut(lj) = . . . = C̃Ut(lj+1 − 1) = 0. Thus, the minimization problem 2.1.10 is re-
duced to

min



n :
δ(lj , lj+1 − 1) ≤ CUtol, j ∈ [n]

l1 = 1,
ln+1 = t,

li < lj+1, j ∈ [n]
n ∈ [t− 1],
lj ∈ N j ∈ [n+ 1]


. (2.1.11)

The function δ is decreasing in its first parameter, and increasing in its second
parameter. Thus, we can solve (2.1.11) by starting with l1 := 1, and greedily choosing
the maximal feasible value for each lj , in turns.

48

2.1 The Start-up Costs in a Single Period

Algorithm 2.1.2: Finding optimal step boundaries lj
1 l1 ← 1
2 n← 0
3 while ln+1 < t do
4 n← n+ 1
5 ln+1 ← ln + 1
6 while ln+1 < t ∧ bestError(ln, ln+1) ≤ CUtol do
7 ln+1 ← ln+1 + 1

Proposition 2.14 Algorithm 2.1.2 solves (2.1.11) in O(t) steps.

Proof. It is straightforward to check that 1 = l1 < l2 < . . . < ln < ln+1 = t is
always fulfilled (remember that we assumed t ≥ 2). After line 5, it trivially holds that
δ(ln, ln+1− 1) = 0. So, by design of the loop termination condition on line 6, after each
iteration of the loop it still holds that δ(ln, ln+1 − 1) ≤ CUtol. Thus, the computed
l1, . . . , ln+1 are a feasible solution to our minimization problem 2.1.11.
Suppose that there exists a better solution 1 = l̃1 < l̃2 < . . . < l̃m < l̃m+1 = t with

m < n. Since l̃m+1 = t = ln+1 > lm+1, there exist j ∈ [2 .. m+1] such that lj < l̃j .
Denote the minimal such index as j∗. Trivially, we have lj∗ < l̃j∗ ≤ t. Thus, the loop
on lines 6-7 terminated due to δ(lj∗−1, lj∗) > CUtol, implying

δ(l̃j∗−1, l̃j∗ − 1) ≥ δ(l̃j∗−1, lj∗) = δ(lj∗−1, lj∗) > CUtol,

a contradiction to the feasibility of the l̃1, . . . , l̃m+1.
Finally, the running time of the algorithm follows from the increment of ln+1 in each

loop. 2

We transformed the minimization problem 2.1.10 into 2.1.11 by reducing the search
for approximate start-up costs to the search for a feasible partitioning of [t− 1]. Anal-
ogously, the minimization problem 2.1.10 can be reduced to a search for a feasible
partitioning of [CUt(1),CUt(t− 1)]. This provides an upper bound on the minimal num-
ber n of start-up cost values, which only depends on the interval [CUt(1),CUt(t− 1)]
and on the tolerance CUtol.

Proposition 2.15 The objective function of the minimization problem 2.1.10 is
bounded from above by ⌈

log(CUt(t− 1))− log(CUt(1))
log(1 + CUtol)− log(1− CUtol)

⌉

for any 0 ≤ CUtol < 1.

49

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

Proof. The statement is proved by providing a feasible solution to the minimization
problem 2.1.11. Define n as the upper bound

n :=
⌈

log(CUt(t− 1))− log(CUt(1))
log(1 + CUtol)− log(1− CUtol)

⌉
.

We partition the continuous interval [CUt(1),CUt(t− 1)] in n intervals with boundaries
cj defined as

∀ j ∈ [n+ 1] : cj :=
(1 + CUtol

1− CUtol

)j−1
CUt(1).

By the choice of n and cj , we have c1 = CUt(1) and cn < CUt(t− 1) ≤ cn+1.
Thus, the intervals [c1, c2), [c2, c3), . . . , [cn, cn+1] are a partitioning of a superset of
[CUt(1),CUt(t− 1)]. The size of the intervals is chosen such that

δ̃(cj−1, cj) := cj − cj−1
cj + cj−1

=
cj−1

(
cj
cj−1
− 1

)
cj−1

(
cj
cj−1

+ 1
) =

1 + CUtol
1− CUtol

− 1

1 + CUtol
1− CUtol

+ 1
= CUtol.

We define the period counts l1, . . . , ln such that the start-up cost values for downtimes
l ∈ [lj , lj+1 − 1] coincide with the above [cj , cj+1] intervals,

∀ l ∈ [n+ 1] : lj :=
{

min{l ∈ [t− 1] | CUt(l) ≥ cj} if j ∈ [n]
t else (j = n+ 1).

The min-expression is well-defined because of cn < CUt(t− 1). Since the cj are
increasing, the lj are increasing as well. If two indices lj and lj+1 are equal, one of
them can be “dropped”, decreasing n by one. Thus we can assume that the lj increase
strictly. By definition, it holds that ln+1 = t, and c1 = CUt(1) implies l1 = 1.

Finally, for each j ∈ [n], by definition of the lj we have

CUt(lj) ≥ cj and CUt(lj+1 − 1) ≤ cj+1,

which by choice of the cj implies that

δ(lj , lj+1 − 1) ≤ δ̃(cj−1, cj) ≤ CUtol.

Thus, the values l1, . . . , ln+1 are a feasible solution to our minimization prob-
lem 2.1.11. 2

50

2.1 The Start-up Costs in a Single Period

The bound on the maximal number of needed inequalities given in Proposition 2.15
does not depend on the number of periods t, but only on the error tolerance CUtol
and the ratio of the initial start-up costs CUt(1) and the maximal start-up costs
CUt(t− 1). This period-independent bound is shown in Fig. 2.9 for different ratios
and error tolerances.

CUtol

max. number
of inequalities

10−22·10−25·10−2 10−32·10−35·10−310−1

20

40

60

80

100

120 CUt(t−1)/CUt(1)=
100/8
100/15
100/25
100/40
100/60
100/75
100/90

Figure 2.9: The bound on the number of irredundant inequalities due to Proposition 2.15, for
varying parts of fixed and variable start-up costs, depending on CUtol.

Lastly, Algorithm 2.1.2 is easily varied to find period indices lj , such that the start-up
costs for any chosen downtime l are not approximated, i. e. such that the resulting
costs C̃Ut(l) equal the original costs CUt(l). In our model, we choose to accurately
model the start-up costs at CUt(1) and the asymptotic final start-up costs.

51

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

2.2 The Summed Start-up Costs
This section presents joint work with René Brandenberg and Matthias Huber [BHS16].

We consider the sum of the incurred start-up costs of a single unit. Our major result
is a correspondence between the facets of its epigraph and some binary trees for concave
start-up cost functions CU, which is bijective if CU is strictly concave. We derive an
exponential H-representation of the convex hull of this epigraph, and provide an exact
linear separation algorithm. These results significantly decrease the integrality gap of
the mixed integer formulation of a Unit Commitment problem compared to current
literature. Moreover, this section provides the basis for the temperature formulation in
Section 3.3.

The discrete summed start-up cost function DCUΣ is defined for operational sched-
ules v ∈ {0, 1}T based on the start-up costs DCUt in individual periods,

DCUΣ : {0, 1}T → R≥0, v 7→
T∑
t=1

DCUt(v), and

the (linearized) summed start-up cost function LCUΣ is the convex hull of DCUΣ on
the set [0, 1]T , i. e. the unique function such that epi(LCUΣ) = conv(epi(DCUΣ)).
Since the domain of DCUΣ is {0, 1}T , the epigraph epi(LCUΣ) is a polyhedron,

which means that LCUΣ is piece-wise linear, and DCUΣ = LCUΣ
{0,1}T . Summarizing,

epi(LCUΣ) possesses the following irredundant V-representation.

Corollary 2.16 The vertices of the polyhedron epi(LCUΣ) are

V Σ :=
{

(v, cuΣ) ∈ {0, 1}T × R≥0
∣∣∣ cuΣ = DCUΣ(v)

}
,

and it holds that
epi(LCUΣ) = conv(epi(DCUΣ)) = conv(V Σ) + pos(uT+1),

where uT+1 denotes the unit vector in the direction of the last coordinate cuΣ.

The epigraph epi(LCUΣ) inherits the trivial facets of its domain [0, 1]T , induced by
0 ≤ vt ≤ 1).

At its core, our contribution results from four observations:

1. Iteratively lifting a trivial inequality variable by variable results in facets of
epi(LCUΣ) and in coefficients which can be derived explicitly from the lifting
order.

2. Different lifting orders result in the same facet. Each lifted facet is already
uniquely described by a special partial order, which can be expressed as a binary
tree, warranting the name binary tree inequality (BTI) for the lifted inequalities.

52

2.2 The Summed Start-up Costs

3. The binary tree associated with a lifted facet readily identifies the points on this
facet. Furthermore, these facets describe the complete lower boundary (with
respect to the last coordinate cuΣ) of the epigraph, proving that it does not have
further non-trivial facets.

4. For a fractional point, a suitable binary tree and the coefficients of the respective
lifted facet can be determined efficiently.

These observations are presented as follows:

• in Subsection 2.2.1 the result of lifting a trivial inequality is analyzed,

• in Subsection 2.2.2 special notation for binary trees is introduced,

• in Subsection 2.2.3 the so-called binary tree inequalities are derived and shown
to be facet-inducing,

• in Subsection 2.2.4 these inequalities are shown to complete an H-representation
of the epigraph of the summed start-up costs, and finally

• in Subsection 2.2.5 an exact separation algorithm is presented.

2.2.1 Lifting Inequalities
In this subsection, we observe that by lifting the trivial inequality cuΣ ≥ 0, we gain
facet-inducing inequalities with explicitly derivable coefficients.

By Corollary 2.11 the functions LCUt are homogeneous, i. e. λLCUt(v) = LCUt(λv).
Hence LCUΣ is homogeneous and it holds for all (x, y) ∈ [0, 1]T × R, λ ∈ (0, 1] that

(v, cuΣ) ∈ epi(LCUΣ) ⇔ cuΣ ≥ LCUΣ(v) ⇔ λcuΣ ≥ λLCUΣ(v) = LCUΣ(λv)
⇔ λ(v, cuΣ) ∈ epi(LCUΣ).

This means, epi(LCUΣ) is the intersection of a cone with [0, 1]T ×R, and thus all facets
of epi(LCUΣ), except those induced by 0 ≤ vt ≤ 1, must also be facets of this cone.
Hence, the facet-inducing inequalities are homogeneous, i. e. without constant term,
and since cuΣ is not bounded from above in epi(LCUΣ), of the kind

cuΣ ≥
∑
t∈[T]

α tv
t.

Starting from cuΣ ≥ 0, such facets can be identified using the standard sequential
lifting method (see [Pad73]). For each order σ : [T] → [T], this method determines
the coefficients ασ(j) consecutively by considering the start-up costs for operational
schedules v with coordinates σ(j + 1), . . . , σ(T) fixed to 0,

∀ j ∈ [0..T] : F j(σ) :=
{
v ∈ {0, 1}T

∣∣∣ ∀ k ∈ [j+1 .. T] : wσ(k)
j = 0

}
.

53

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

Here, each F j(σ) extends F j−1(σ) by all v with wσ(j)
j = 1,

∀ j ∈ [T] : F j1(σ) := F j(σ) \ F j−1(σ) = {v ∈ F j(σ), vσ(j) = 1}.

Being fulfilled by 0 ∈ epi(LCUΣ) with equality, cuΣ ≥ 0 induces a face of epi(LCUΣ)
of at least dimension 0. By determining the coefficients ασ(j) as

∀ j ∈ [T] : ασ(j) := min
{
DCUΣ(v)−

j−1∑
k=1

ασ(k)v
σ(k)

∣∣∣∣ v ∈ F j1(σ)
}
,

the sequential lifting method produces a series of inequalities defining faces of epi(LCUΣ)
of at least dimension j, culminating in a facet of epi(LCUΣ).

Both the number of vertices and facets of the polyhedrons F j1(σ) grow exponentially
in general, rendering the above calculation of ασ(j) computationally infeasible. In the
case of DCUΣ(v) however, we claim that these coefficients can be derived as

∀ j ∈ [T] : ασ(j) = DCUΣ(wj(σ))−DCUΣ(wj−1(σ))
= DCUΣ(wj−1(σ) + uσ(j))−DCUΣ(wj−1(σ)),

(2.2.1)

with vectors wj(σ) ∈ F j1(σ) defined as

∀ j ∈ [T] : wj(σ) := wj−1(σ) + uσ(j),

w0(σ) := (0, . . . , 0).
(2.2.2)

To prove this, a closer look at the change of the summed start-up costs that defines
ασ(j) is necessary. This change depends on wj−1(σ) and σ(j), and not on the relative
lifting order of σ(1), . . . , σ(j−1) and σ(j+1), . . . , σ(T). We express this by considering
ṽ , v ∈ {0, 1}T and t ∈ [T] with ṽ = v − ut in place of wj−1(σ), wj(σ), and σ(j).

As depicted in Fig. 2.10, there are at most two indices t′ ∈ [T] such that the start-up
costs CUt′(v) and CUt′(ṽ) differ,

1. the index t itself, and
2. the minimal index q ∈ [t+1 .. T] with ṽq = 1, if such an index exists.

These start-up costs depend on the number of offline periods immediately before and
after period t. The number of offline periods preceding t is given by olt(v) (see (1.3.3)).
For each ṽ ∈ {0, 1}T , t ∈ [T], we define a similar function for the offline periods
succeeding t as

ort(ṽ) := max{j ∈ [0 .. T−t] | ṽt+1 = ṽt+2 = . . . = ṽt+j = 0}. (2.2.3)

54

2.2 The Summed Start-up Costs

ṽ 0 1 0 0 0 0 0 0 0 0 1 0

v 0 1 0 0 0 1 0 0 0 0 1 0

t q

t1 2 3 4 5 6 7 8 9 10 11 12

olt(v) ort(v)

olt(v) + ort(v) + 1

Figure 2.10: A step of the sequential lifting method, from the vector ṽ to the vector v . By
setting wtj = 1, the downtime of length olt(v) + ort(v) + 1 is split into two
downtimes of lengths olt(v) and ort(v), thereby changing the summed start-up
costs.

So, for two operational schedules v, ṽ ∈ {0, 1}T which differ solely in period t, the
start-up costs can be different only in periods t and t+ort(v). Abbreviating l := olt(v)
and r := ort(v), we obtain

DCUΣ(v)−DCUΣ(ṽ) =
{
DCUt(v) + DCUt+r+1(v)−DCUt+r+1(ṽ) if t+ r < T ,

DCUt(v) else.

Thus, the change in the summed start-up costs depends only on the offline periods
prior and after t, and can be further simplified.

Proposition 2.17 For each v, ṽ ∈ {0, 1}T and t ∈ [T] with ṽ = v − ut, it holds

DCUΣ(v)−DCUΣ(ṽ) = δt(olt(v), ort(v)),
where

δt : [0 .. t−1]× [0 .. T−t]→ R

(l, r) 7→
{
CUt(l) + CUt+r+1(r)− CUt+r+1(l + r + 1) if t+ r < T ,

CUt(l) else.

The following lemma shows where the concavity of the start-up cost function CU is
used.

Lemma 2.18 For each t ∈ [T], δt is increasing in l and r if CU is concave, and
strictly increasing if CU is strictly concave.

55

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

Proof. Let t ∈ [T], l, l̃ ∈ [0 .. t−1] with l < l̃ and r, r̃ ∈ [0 .. T−t] with r < r̃ be given.
Denote the period indices

q := t+ r + 1 and q̃ := t+ r̃ + 1,

implying q < q̃ (see Fig. 2.10). Recall that by definition, CUt(l) = CU(OLt(l)), where
OLt(l) denotes the offline length corresponding to l offline periods prior to period t
(see (1.3.4)). In Fig. 2.10 for example, l corresponds to olt(v) and r corresponds to
ort(v). So, OLq(l + r + 1) is the downtime prior to q in ṽ, and OLq(r) and OLt(l) are
the downtimes prior to q and t in v, respectively. Hence

OLq(l + r + 1) = OLq(r + 1) + OLt(l).

We start by proving that δt is increasing in l. For t+ r = T , δt increases in l since CUt
increases,

δt(l̃, r)− δt(l, r) = CUt(l̃)− CUt(l) ≥ 0.

For t+ r < T , we obtain

δt(l̃,r)− δt(l, r) = CUq(r) + CUt(l̃)− CUq(l̃ + r + 1)

−
(
CUq(r) + CUt(l)− CUq(l + r + 1)

)
=
(
CUt(l̃)− CUt(l)

)
−
(
CUq(l̃ + r + 1)− CU1(l + r + 1)

)
=
(
CU(OLt(l̃))− CU(OLt(l))

)
−
(
CU(OLq(l̃ + r + 1))− CU(OLq(l + r + 1))

)
=
(
CU(OLt(l) + OLt−l−1(l̃ − l))− CU(OLt(l))

)
−
(
CU(OLq(l + r + 1) + OLt−l−1(l̃ − l))− CU(OLq(l + r + 1))

)
which, when abbreviating x := OLt(l), y := OLq(l + r + 1), s := OLt−l−1(l̃− l), equals

δt(l̃, r)− δt(l, r) =
(
CU(x+ s)− CU(x)

)
−
(
CU(y + s)− CU(y)

)
.

The non-negativity of the final term follows from the characterization of concave
functions by subdifferentials, using that x < y and s > 0.

The statement that δt is increasing in r follows analogously in the case of t+ r̃ < T .
If t+ r̃ = T , then

δt(l, r̃)− δt(l, r) = CUt(l)−
(
CUt(l) + CUq(r)− CUq(l + r + 1)

)
= CUq(l + r + 1)− CUq(r) ≥ 0.

Finally, in the case of a strictly concave start-up cost function CU, all of the above
inequalities are also strict. 2

56

2.2 The Summed Start-up Costs

Proposition 2.17 shows that we may restate our claim regarding the lifted coefficients
ασ(j) in (2.2.1) as

∀ j ∈ [T] : ασ(j) = DCUΣ(wj(σ))−DCUΣ(wj−1(σ)) = δσ(j)(olσ(j)(wj), orσ(j)(wj)
)
.

(2.2.4)
Based on Lemma 2.18, this could be proved by induction over j. Furthermore,

[Pad73] shows that, as cuΣ ≥ 0 is valid for epi(LCUΣ), these inequalities define facets
of epi(LCUΣ). Since the current subsection is intended to be purely motivational, we
prefer to re-introduce the lifted inequalities in Section 2.2.3, and prove that they induce
facets without referring to the sequential lifting method, see Theorem 2.31.

The necessary steps are essentially the same:

• proving that the lifted inequalities are valid requires the same arguments as
showing ασ(j) ≤ δσ(j)(olσ(j)(wj), orσ(j)(wj)

)
, and

• proving that these inequalities induce facets requires the same arguments as
showing ασ(j) ≥ δσ(j)(olσ(j)(wj), orσ(j)(wj)

)
.

2.2.2 Notation for Binary Trees

Describing the lifted inequalities of the last subsection necessitates non-standard
notation for binary trees, which is presented in this section. A binary tree is defined
as an undirected, rooted tree, where each node t has at most two child nodes: a left
child llink(t) and a right child rlink(t) (cf. Fig. 2.11).

Basic notation includes:

• Each binary tree B has a root denoted by root(B).
• The number of edges on the unique path from a node t to the root is called the

depth d(t) of t. The nodes of this path are the ancestors of t (including t itself).
Vice versa, t is called a descendant of each of its ancestors.

• The path from a node t to the root is unique. The number d(t) of its edges is
called the depth of t, and its nodes are the ancestors of t (including t itself). Vice
versa, t is called a descendant of each of its ancestors.

• The first ancestor, i. e. the node immediately succeeding t on the path to the
root, is called the parent p(t) of t. Conversely, t is said to be a child of p(t).

• The subtree S(t) comprising all descendants of a node t (including t) is the
principal subtree in t. If the left/right child of t exists, then its principal subtree
is the left subtree L(t)/right subtree R(t) of t. All of these subtrees are binary
trees as well.

• The number of nodes in these subtrees in t are denoted by s(t) := |S(t)|,
l(t) := |L(t)| and r(t) := |R(t)|.

57

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

Proposition 2.19 For each binary tree B on nodes V , there exists a unique map-
ping rank : V → {1, . . . , |V |} such that

∀ t ∈ V \ {root(B)} : rank(t)
{
< rank(p(t)) if t is the left child of p(t),
> rank(p(t)) if t is the right child of p(t),

and such that the nodes of each principal subtree S(t) are a mapped to a contiguous
interval. This mapping is called the rank function of B.

Proof. We prove existence and uniqueness of the rank function by induction over the
number n := |V | of nodes of B. For n = 1, the unique rank function is clearly given by
rank : V → {1} with rank(t) = 1 for the single node t ∈ V .

1

2

3

4

5

6

7

8

9

10

11

12

rank: 1 2 3 4 5 6 7 8 9 10 11 12

root(B)

t1

p(t1)

llink(t1)

rlink(t1)

t2

S(t2)

L(t2)

R(t2)

l(t2) = 4 r(t2) = 1

s(t2) = 6

Figure 2.11: A binary tree with nodes labeled by ranks from 1 to 12, and root(B) = 6. The
parent of node t1 = 3 is p(t1) = 5, its left child is llink(t1) = 1 and its right child
is rlink(t1) = 4. The principal subtree S(t2) in t2 = 11 is marked in blue, its left
subtree L(t2) in green and its right subtree R(t2) in red. The respective subtree
sizes are s(t2) = 6, l(t2) = 4 and r(t2) = 1.

58

2.2 The Summed Start-up Costs

For n ≥ 2, let r := root(B). By induction, there exist rank functions for the
subtrees L(r) and R(r), rankl : L(r)→ {1, . . . , l(r)} and rankr : R(r)→ {1, . . . , r(r)},
respectively. Since l(r) + 1 + r(r) = s(r) = n, the mapping

rank : V → {1, . . . , n}

t 7→=


rankl(t) if t ∈ L(t),
l(r) + 1 if v = r,
l(r) + 1 + rankr(t) else,

is a rank function for B.
Furthermore, this rank function is unique: Choose any mapping rank′ fulfilling the

properties of a rank function for B. Since rank′(l(r)) < rank′(r) and since a rank
function must map the nodes of each L(r) to a contiguous interval, rank′(t) < rank′(r)
for all t ∈ L(r). Analogously, rank′(r) < rank′(t) for all t ∈ R(r). As rank′ is a mapping
to {1, . . . , n}, we have l(r) < rank′(r) ≤ n− r(r), which given that r(r) = n− l(r)− 1
implies rank′(r) = l(r) + 1 = rank(r).

The restriction of rank′ to L(r) is a rank function for L(r) and thereby unique, imply-
ing rank′

∣∣
L(r) = rank

∣∣
L(r). Analogously, rank

′∣∣
R(r) = rank

∣∣
R(r). In sum, rank′ = rank,

proving the uniqueness of the rank function. 2

The rank function has a straightforward interpretation: When drawing a binary tree
such that the left (right) subtree of each node t is located entirely left (right) of t, the
rank numbers the nodes from left to right (see Fig. 2.11). Several basic properties can
be derived from this observation:

• For each binary tree B and t ∈ B, it holds that

{rank(t′) | t′ ∈ S(t)} = {rank(t′) | t′ ∈ L(t)}∪ {rank(t)}∪ {rank(t′) | t′ ∈ R(t)}.

• Since by definition the ranks of nodes in a subtree are contiguous, it holds that

{rank(t′) | t′ ∈ L(t)} = [rank(t)−l(t) .. rank(t)−1],
{rank(t′) | t′ ∈ R(t)} = [rank(t)+1 .. rank(t)+r(t)], and
{rank(t′) | t′ ∈ S(t)} = [rank(t)−l(t) .. rank(t)+r(t)].

(2.2.5)

• Finally, since L(t) = S(llink(t)) and R(t) = S(rlink(t)), we have

rank(llink(t))+r(llink(t))+1 = rank(t) = rank(rlink(t))−l(rlink(t))−1. (2.2.6)

59

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

For example, in the binary tree shown in Fig. 2.11 it holds that

{rank(t′) | t′ ∈ S(t2)} = [7..10]︸ ︷︷ ︸
{rank(t′)|t′∈L(t2)}

∪ {11}︸ ︷︷ ︸
rank(t2)

∪ {12}︸ ︷︷ ︸
{rank(t′)|t′∈R(t2)}

and

1︸︷︷︸
rank(llink(t1))

+ 1︸︷︷︸
r(llink(t1))

+1 = 3︸︷︷︸
rank(t1)

= 4︸︷︷︸
rank(rlink(t1))

− 0︸︷︷︸
l(rlink(t1))

−1.

The special nature of the coefficients of the facets of epi(LCUΣ) is best characterized
by some non-standard notation, the top-left and top-right nodes (see Fig. 2.12). These
nodes are defined recursively, with the root being the first top-left and top-right node.
Left children of top-left nodes are also top-left nodes, and right children of top-right
nodes are top-right nodes too. The last top-left node has rank 1, and the last top-right
node has rank n, where n is the number of nodes in the binary tree.

Definition 2.20 For each binary tree B on n nodes, define µ1 := η1 := root(B),

∀ j ∈ [d(1)] : µj+1 := llink(µj), ∀ j ∈ [d(n)] : ηj+1 := rlink(ηj),

where µj denotes the j-th top-left node and ηj denotes the j-th top-right node.

Conversely, ancestors of top-left (top-right) nodes must be top-left (top-right) nodes
as well.

1
µd(1)+1 = µ3

2
µ2

3

4

5
η1µ1

6

7

8

9
η2

10

11
η3 = ηd(n)+1

Figure 2.12: A binary tree with top-left nodes µi and top-right nodes ηi. Both µ1 and η1
always equal root(B). The last top-left node µd(1)+1 is always the node with
rank 1, and the last top-right node ηd(n)+1 is always the node with maximal
rank.

We continue by proving basic facts regarding top-right nodes, and transfer them to
top-left nodes by “mirroring” the binary trees.
In a graph with n nodes, the node n is contained in the principal subtree of each

top-right node ηj , and by definition possesses the maximal rank. Since the principal
subtree of ηj spans the ranks [rank(ηj)−l(ηj) .. rank(ηj)+r(ηj)] (see (2.2.5)), it must

60

2.2 The Summed Start-up Costs

hold that rank(ηj) + r(ηj) = n. On the other hand, if the rank of a node t fulfills
rank(t) + r(t) = n, then n lies in the right subtree of t. So, t is an ancestor of n, and
thus a top-right node.

Proposition 2.21 For each binary tree B on n nodes, a node t is a top-right node in
B iff rank(t) + r(t) = n.

This result may be extended to subtrees as well:

Lemma 2.22 For each binary tree B on n nodes, a node t is a top-right node in the
left subtree of a node t′ iff rank(t) + r(t) + 1 = rank(t′).

Proof. By (2.2.5), the left subtree L(t′) of t′ consists of the nodes with ranks in the
interval [rank(t′)−l(t′) .. rank(t′)−1]. Thus, the rank function rankL(t′) of L(t′), which
must keep the same order as rank and ranges from 1 to l(t′) equates

rankL(t′)(t) = rank(t)− rank(t′) + l(t′) + 1.

So, each node t ∈ L(t′) is a top-right node in L(t′) iff rankL(t′)(t) + r(t) = |L(t′)| = l(t′)
(see Proposition 2.21), which may be rewritten as

rank(t) + r(t) + 1 = rankL(t′)(t) + rank(t′)− l(t′)− 1 + r(t) + 1 = rank(t′).

Assume that there exists a node t of B with t /∈ L(t′) but rank(t)=rank(t′)−r(t)−1.
Then rank(t) < rank(t′), and t /∈ S(t′). On the other hand, rank(t′) > rank(t) + r(t)
and hence t′ /∈ S(t).

Choose the first common ancestor s of t and t′, which due to t /∈ S(t′) and t′ /∈ S(t)
equals neither t nor t′. By the choice of s it holds that t ∈ L(s) and t′ ∈ R(s), and thus

rank(t) + r(t) < rank(s) < rank(t′)− l(t′),

a contradiction to rank(t) + r(t) + 1 = rank(t′). 2

Note that since rank(t) + r(t) + 1 ∈ [rank(t)+1 .. n+1], t must be either a top-right
node or a top-right node in the left subtree of some node t′.

Corollary 2.23 For each binary tree on n nodes, a node t is

• a top-right node iff rank(t) + r(t) = n, and

• a top-right node in the left subtree of the node t′ with rank(t′) = rank(t) + r(t) + 1
iff rank(t) + r(t) < n.

61

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

Let B denote the “mirrored” version of a binary tree B of size n, i. e. the binary
tree that results from exchanging the left and right children of each node. The depth,
parent and subtree size functions remain unchanged (dB = dB, pB = pB, sB = sB),
the left and right subtree size functions are exchanged (rB = lB, lB = rB), and the
rank function is mirrored (rankB(t) = n+ 1− rankB). By applying this mirroring to
the properties of the top-right nodes, we can derive equivalent properties of the top-left
nodes.

Corollary 2.24 For each binary tree, a node t is

• a top-left node iff rank(t) = l(t) + 1, and

• a top-left node in the right subtree of the node l̃ with rank(l̃) = rank(t)− l(t)− 1
iff rank(t) > l(t) + 1.

The root of a binary tree on n nodes is both a top-right and top-left node, and thus
its rank equals

rank(root(B)) = n− r(r) = l(r) + 1.

2.2.3 The Binary Tree Inequalities
In this subsection, we show that all lifted inequalities correspond in a one-to-one way
to binary trees, which motivates naming them binary tree inequalities (BTIs). Together
with 0 ≤ vt ≤ 1, these inequalities induce all facets of epi(LCUΣ).

We start with an example where α4 and α9 are lifted in both possible orders,

• α4 before α9 with intermediate vector wj , and
• α9 before α4 with intermediate vector ṽj (cf. Fig. 2.13).

If the coefficient α6 is already lifted, the relative order in which α4 and α9 are lifted
does not influence the period counts,

ol4(wj) = ol4(wj+1) and or4(wj) = or4(wj+1),
ol9(ṽj) = ol9(wj+1) and ol9(ṽj) = ol9(wj+1).

Thereby, the values of the lifted coefficients α4 and α9 are equal for both cases. This
holds in general: As soon as a coefficient α t has been lifted, for each subsequently
lifted coefficient α t′ with t′ < t we have ort′(v) < t− t′. Thus, the period counts, and
by extension the coefficient α t′ , do not depend on the lifting order of coefficients α t̃
with t̃ > t. Analogously if t′ > t, the coefficient α t′ does not depend on the lifting
order of coefficients α t̃ with t̃ < t.

A lifting order σ corresponds to a linear order 4σ on [T] with

∀ t1, t2 ∈ [T] : t1 4σ t2 :⇔ σ−1(t1) ≤ σ−1(t2).

62

2.2 The Summed Start-up Costs

0 1 0 0 0 1 0 0 0 0 1 0wj−1

t1 2 3 4 5 6 7 8 9 10 11 12

ol4(wj) or4(wj)

0 1 0 1 0 1 0 0 0 0 1 0wj
t1 2 3 4 5 6 7 8 9 10 11 12

ol9(ṽj) or9(ṽj)

0 1 0 0 0 1 0 0 1 0 1 0ṽj
t1 2 3 4 5 6 7 8 9 10 11 12

ol4(wj+1) or4(wj+1) ol9(wj+1) or9(wj+1)

0 1 0 1 0 1 0 0 1 0 1 0wj+1

t1 2 3 4 5 6 7 8 9 10 11 12

lifting α4

lifting α9

lifting α9

lifting α4

Figure 2.13: Lifting coefficients α4 and α9 in both orders, with intermediate vectors.

As argued above, the lifted coefficients α t1 , α t2 do not depend on whether t1 4σ t2 or
t2 4σ t1 if

∃ t3 ∈ [T] : min{t1, t2} < t3 < max{t1, t2}, t3 4σ t1, t3 4σ t2.

Eliminating such relationships from 4σ yields the partial order 4′σ defined as

∀ t1, t2 ∈ [T] : t1 4′σ t2 :⇔ t1 4σ t2 and t2 ∈ Dσ(t1), (2.2.7)
where

Dσ(t) :=
[
max

{
t′ ∈ [t− 1]

∣∣∣ t′ 4σ t
}

+ 1 .. min
{
t′ ∈ [t+1 .. T]

∣∣∣ t′ 4σ t
}
− 1

]
.

Proposition 2.25 For each ordering σ : [T] → [T], 4′σ as defined in (2.2.7) is a
partial order.

Proof. By definition, for each t1 ∈ [T] we have t1 ∈ Dσ(t1). Moreover, for each t2
with t1 4′σ t2, we have t2 ∈ Dσ(t1) and thus

max
{
t′ ∈ [t1 − 1]

∣∣ t′ 4σ t1
}

+ 1 ≤ t2 ≤ min
{
t′ ∈ [t1+1 .. T]

∣∣ t′ 4σ t1
}
− 1,

63

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

implying
max

{
t′ ∈ [t1 − 1]

∣∣ t′ 4σ t1
}

= max
{
t′ ∈ [t2 − 1]

∣∣ t′ 4σ t1
}

≤ max
{
t′ ∈ [t2 − 1]

∣∣ t′ 4σ t2
}
.

Analogously, min{t′ ∈ [t1+1 .. T] | t′ 4σ t1} ≥ min{t′ ∈ [t2+1 .. T] | t′ 4σ t2} and
hence Dσ(t2) ⊂ Dσ(t1) (more specifically, since t1 /∈ Dσ(t2), Dσ(t2) (Dσ(t1)).

The reflexivity and antisymmetry of 4σ is directly inherited by 4′σ since t ∈ Dσ(t).
For each t1, t2, t3 ∈ [T] with t1 4′σ t2 and t2 4′σ t3, we have

• t1 4σ t2 and t2 4σ t3, implying t1 4σ t3, and
• t3 ∈ Dσ(t2) ⊂ Dσ(t1).

So t1 4′σ t3, proving that 4′σ is transitive. In conclusion, 4′σ is a partial order. 2

The lifted inequality is fully determined by 4′σ, i. e. each linearization of this partial
order leads to the same lifted inequality. Fig. 2.14 shows an exemplary partial order
(twice, as a Hasse diagram) and two possible linearizations 4σ and 4σ represented by
the permutations σ and σ.

11,

33,

44,

55,

77,

88

99,

1010,

1212,

22,
66,

1111,σ=(

)

Dσ(6) = Dσ(6) = [3..10]

11,

22,

33,

44,

55,

66,

77,

88,

99,

1010

1111,

1212,

σ=(

)

Dσ(6) = Dσ(6) = [3..10]

Figure 2.14: A partial order determining the lifted coefficients (twice, as a Hasse diagram)
and two possible linearizations (as permutations σ and σ) leading to the same
lifted inequality.

As Fig. 2.14 suggests, the Hasse diagrams of a partial order is a binary tree with
root node σ−1(1) and, for each node t, with

• the node tl with Dσ(tl) = Dσ(t) ∩ [t− 1] as the left child of t (if it exists), and
• the node tr with Dσ(tr) = Dσ(t) ∩ [t+1 .. T] as the right child of t (if it exists).

64

2.2 The Summed Start-up Costs

Each coefficient α t corresponds to a node t and the partial order then prescribes that
each coefficient α t must be lifted before the coefficients associated with the descendants
of node t.

We claim in (2.2.2) that the vectors wj encountered in the lifting process with order σ
are

w0 := (0, . . . , 0) and ∀ j ∈ [T] : wj := wj−1 + uσ(j).

Observe that using the corresponding linear order 4σ, these vectors fulfill

∀ j ∈ [T], t ∈ [T] : wtj =
{

1 if t 4σ σ(j),
0 else.

Moreover, we claim in (2.2.4) that the lifting process results in an inequality with
coefficients ασ(j) = δσ(j)(olσ(j)(wj), orσ(j)(wj)

)
. Using the above representation of wj ,

the involved offline lengths olσ(j)(wj) and orσ(j)(wj) equate to

olσ(j)(wj) = max
{
l ∈ [0 .. σ(j)−1]

∣∣ ∀ t ∈ [σ(j)−l .. σ(j)−1] : t 4σ σ(j)
}
, and

orσ(j)(wj) = max
{
l ∈ [0 .. T−σ(j)]

∣∣ ∀ t ∈ [σ(j)+1 .. σ(j)+l] : t 4σ σ(j)
}
.

As argued, these lengths remain unchanged when replacing 4σ by the corresponding
partial order 4′σ. Furthermore, their above representation shows that they can be
derived from the Hasse diagram of 4′σ: The size l(σ(j)) of the left subtree of σ(j)
equals olσ(j)(wj) and the size r(σ(j)) of the right subtree of σ(j) equals orσ(j)(wj) (see
Fig. 2.15).

The claimed coefficients α t thus solely depend on the partial order 4′σ and may be
expressed as

α t = δt(l(t), r(t)),
where t = σ(j), and l(t), r(t) are determined by the partial order.

Each of the start-up cost terms in δt(l(t),r(t)) corresponds to the cost incurred when
starting up after being offline during the periods contained in either the left subtree L(t)
of t, the right subtree R(t) of t, or the principal subtree S(t) of t (see (2.2.5)),

δt(l(t), r(t)) = CUt(l(t))︸ ︷︷ ︸
offline in L(t)

+CUt+r(t)+1(r(t))︸ ︷︷ ︸
offline in R(t)

−CUt+r(t)+1(l(t) + 1 + r(t))︸ ︷︷ ︸
offline in S(t)

.

To simplify the notation, we generalize the definition (see (1.3.4)) of the offline
length OL: for each B ∈ B and t ∈ [T], we abbreviate

OL(S(t)) := OLt+r(t)+1(s(t)), (2.2.8)

and consequently, by (2.2.5)

OL(L(t)) = OLt(l(t)) and OL(R(t)) = OLt+r(t)+1(r(t)). (2.2.9)

65

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

1

3

4

5

7

8

9

10

12

2
6

11

0 1 0 0 0 1 0 0 0 0 1 0wj

t1 2 3 4 5 6 7 8 9 10 11 12

L(σ(j))

R(σ(j))

olσ(j)(wj) = l(σ(j)) orσ(j)(wj) = r(σ(j))
σ(j)

Figure 2.15: The lifting step as shown in Fig. 2.10, with a possible lifting order represented
by a binary tree B. The offline lengths olσ(j)(wj) and orσ(j)(wj) adjacent to
period σ(j) are equal to the sizes of the left and right subtree of node σ(j) in B.

Since by definition CUt(l) = CU(OLt(l)), it follows that

δt(l(t), r(t)) = CU(OL(L(t))) + CU(OL(R(t)))− CU(OL(S(t))). (2.2.10)

Hence we may write all lifted inequalities as follows.

Definition 2.26 A rank-labeled binary tree is a binary tree B on nodes [n], where
n ∈ N, and rank(i) = i for all i ∈ [n]. Let B denote the family of all rank-labeled
binary trees on [T]. For each B ∈ B, we define the binary tree inequality (BTI) as

cuΣ ≥
∑
t∈[T]

δt(l(t), r(t)) vt,

using the sizes l(t) or r(t) of the left or right subtrees of t, respectively, and δt as
defined in Proposition 2.17.

In the following, we confirm that the BTIs, together with the trivial inequali-
ties 0 ≤ vt ≤ 1, define all non-trivial facets of epi(LCUΣ) by proving that

• they are valid (Lemma 2.28),
• they are fulfilled with equality by all points (wj ,DCUΣ(wj)) encountered during

the lifting process (Lemma 2.29), and
• these points are linearly independent (Theorem 2.31).

66

2.2 The Summed Start-up Costs

Moreover, we will show that all points not in epi(LCUΣ) can be separated by the BTIs
or the trivial inequalities 0 ≤ vt ≤ 1 in O(T).

In the following, we need to put the vertices (v,DCUΣ(v)) of the epigraph epi(LCUΣ)
into relation with the binary trees B ∈ B.

Definition 2.27 For each B ∈ B with edges E and v ∈ {0, 1}T , define B(v) as the
subgraph of B induced by the 1-entries of v,

B(v) := (VS , ES) where VS :=
{
t ∈ [T]

∣∣ vt = 1
}

and ES :=
{
e ∈ E

∣∣ e ⊂ VS}.
Note that in general, B(v) is not connected.

The next lemma proves that the binary tree inequalities are valid using the concavity
of CU, which is exploited through the monotonicity of δt (Lemma 2.18).

Lemma 2.28 For each B ∈ B, the BTI induced by B is valid for epi(LCUΣ).

Proof. Due to the convexity of epi(LCUΣ) and since a binary tree inequality bounds
cuΣ only from below, it suffices to prove that all vertices (v,DCUΣ(v)) ∈ V Σ of
epi(LCUΣ) fulfill all BTIs. To do so, for each B ∈ B, we prove that its induced BTI is
valid by induction over the number of nodes n in its induced subtree B(v).

For n = 0, the only such point is 0 ∈ V Σ. Since each BTI is homogeneous, 0 fulfills
all of them with equality. For n ≥ 1, choose a leaf t in B(v), i. e. a node such that the
subtree of t in B does not contain any other nodes from B(v). Define the vector ṽ as

ṽt
′ :=

{
vt
′ if t′ 6= t,

0 if t′ = t,
,

differing from v only in period t. By Proposition 2.17, we get

DCUΣ(v) = DCUΣ(ṽ) + δt(olt(v), ort(v)).

These vectors, the induced subtrees, and the offline lengths olt(v), ort(v) are shown in
Fig. 2.16.

By the choice of t, its left subtree, which contains the nodes t−l(t), . . . , t−1, does not
contain any nodes from B(v). Hence, vt−l(t) = . . . = vt−1 = 0, implying olt(v) ≥ l(t).
Since the right subtree of t does not contain any nodes from B(v) either, we analogously
obtain ort(v) ≥ r(t).

Thus, using the monotonicity of δt, it holds that

DCUΣ(v) = DCUΣ(ṽ) + δt(olt(v), ort(v)) ≥ DCUΣ(ṽ) + δt(l(t), r(t))
ind.hyp.
≥

∑
t′∈[T]

δt
′(l(t′), r(t′)) ṽt′ + δt(l(t), r(t)) =

∑
t′∈[T]

δt
′(l(t′), r(t′)) vt′ . 2

67

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

B(v)

B(ṽ)

1

2

3

4

5

6

7

t

8

9

10

11

0 0 0 0 0 0 0 0 01 1ṽ = ()

0 0 0 0 0 0 0 01 1 1v = ()

ol7(v) or7(v)

Figure 2.16: Removing the leaf t = 7 from the induced subgraph B(v) results in the subgraph
B(ṽ) induced by ṽ . The lengths ol7(v) and or7(v) denote the offline lengths
before and after period 7 (see (1.3.7) and (2.2.3)).

The central argument of the proof of the last lemma is that in each step of the
induction, the inequality

δt(olt(v), ort(v)) ≥ δt(l(t), r(t))

holds due to olt(v) ≥ l(t) and ort(v) ≥ r(t). Assume that, for a given binary tree B
and a vertex of epi(LCUΣ), this inequality is fulfilled with equality in each induction
step. Then the vertex also fulfills the BTI induced by B with equality. We characterize
such vertices in the next lemma.

Lemma 2.29 For each B ∈ B, (v,DCUΣ(v)) ∈ V Σ, if the induced subgraph B(v) is a
tree containing root(B), then (v,DCUΣ(v)) fulfills the BTI induced by B with equality.

Proof. The condition that the induced subtree B(v) contains root(B) is fulfilled iff
for each node t ∈ B(v) all ancestors of t also lie in B(v).
Analogously to the proof of Lemma 2.28, we show that (v,DCUΣ(v)) fulfills the

binary tree inequality induced by B ∈ B by induction over the number of nodes n in
the subgraph B(v).

For n = 1, the only such vertex is v ∈ V Σ with the single non-zero coordinate vr = 1,
where r := root(B). Clearly,

DCU(v) = CUr(r − 1) = δr(r − 1, T − r) = δr(l(r), r(r)) =
∑
t∈[T]

δt(l(t), r(t))vt.

68

2.2 The Summed Start-up Costs

For n ≥ 2, let t be a leaf of B(v) except the root, and define ṽ := v − ut as in the
proof of Lemma 2.28. Note that since B(v) is a tree and root(B) ∈ B(v), the subgraph
B(ṽ) is also a tree with n− 1 nodes, which contains root(B).

Since no nodes in the principal subtree of t, except t itself, are in B(v), analogously
to the proof of Lemma 2.28, it holds that olt(v) ≥ l(t) and ort(v) ≥ r(t). We show
that these bounds are sharp by examining two cases for olt(v) = l(t) (see Fig. 2.17)
and two cases for ort(v) = r(t) (see Fig. 2.18).

B(v)

S(t)
B(v)

1

2

t

3

4

5

6

7

8

9

10

11

olt(v)
0 0 0 0 0 0 0 0 01 1v = ()

a) t is a top-left node

1

2

3

4

5
l̃

6

7 t

8

9

10

11

S(t)
olt(v)

0 0 0 0 0 0 0 01 1 1v = ()
b) t is a top-left node in R(l̃)

Figure 2.17: Number of offline periods olt(v) in v before period t, which is either bounded by
the start of the model or by the first left ancestor l̃ of node t

B(v)

S(t) B(v)

S(t)

1

2

3

4

5

6

7

8

9

t

10

11

ort(v)
0 0 0 0 0 0 0 0 01 1v = ()

a) t is a top-right node

1

2

3

4

5

6

7t

8

9

r̃

10

11

ort(v)
0 0 0 0 0 0 01 1 1 1v = ()
b) t is a top-right node in L(r̃)

Figure 2.18: Number of offline periods ort(v) in vector v after period t, which is either
bounded by the end of the model or by the first right ancestor r̃ of node t

69

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

If t is a top-left node in B, then t = l(t) + 1 (see Corollary 2.24), implying

l(t) ≤ olt(v) ≤ t− 1 = l(t),

and thus olt(v) = l(t). Otherwise, there exists a node l̃ such that t is a top-left node in
the right subtree R(l̃) of l̃. Since l̃ is an ancestor of t, we have l̃ ∈ B(v). Hence,

l(t) ≤ olt(v) ≤ t− l̃ − 1 Corollary 2.24=
(
l̃ + l(t) + 1

)
− l̃ − 1 = l(t).

If t is a top-right node in B, then t = T − r(t), implying r(t) ≤ ort(v) ≤ T − t = r(t).
Else, t is a top-right node in the left subtree of a node r̃ (see Corollary 2.23). Since r̃
is an ancestor of t, we have r̃ ∈ B(v), and thus again

r(t) ≤ ort(v) ≤ r̃ − t− 1 Lemma 2.22= r(t).

In conclusion, olt(v) = l(t) and ort(v) = r(t) holds. Analogous to Lemma 2.28,

DCUΣ(v) = DCUΣ(ṽ) + δt(olt(v), ort(v)) = DCUΣ(ṽ) + δt(l(t), r(t))
ind.hyp.=

∑
t′∈[T]

δt
′(l(t′), r(t′)) ṽt′ + δt(l(t), r(t)) =

∑
t′∈[T]

δt
′(l(t′), r(t′)) vt′ . 2

In general, a vertex (v,DCUΣ(v)) may lie on a facet induced by a binary tree B which
does not meet the requirements of the preceding lemma, e. g. for a linear start-up cost
function. The next result shows that this does not happen for strictly concave start-up
cost functions CU, which by Lemma 2.18 lead to strictly increasing functions δt(l, r).
Consider the model with parameters L1 = . . . = L4 = 1, PDT = 0, and the linear

start-up cost function CU(l) = l. This leads to the BTI coefficients

δt(l(t), r(t)) =
{
−1 if t is not a top-right node,
l(t) else.

The point (v,DCUΣ(v)) with v = (0, 1, 1, 1), DCUΣ(v) = l lies on the facets induced
by all three binary trees shown in Fig. 2.19, since it fulfills their BTIs with equality.
Despite this, its induced subtree B(v) is not a tree in the case of the binary trees b)
and c). Note moreover that the binary trees a) and b) are not equal but still induce
the same facet.

Lemma 2.30 Let CU be strictly concave, B ∈ B, and (v,DCUΣ(v)) ∈ V Σ. If
(v,DCUΣ(v)) fulfills the BTI induced by B with equality, then either v = 0 or the
induced subgraph B(v) is a tree containing root(B).

70

2.2 The Summed Start-up Costs

1

2

3

4

a)

cuΣ ≥ 2v3 − v1 − v2

1

2

3

4

b)

cuΣ ≥ 2v3 − v1 − v2

1

2

3

4
c)

cuΣ ≥ 3v4 − v1 − v2 − v3

Figure 2.19: Three binary trees with respective BTI. Note that for v = (0, 1, 1, 1), the induced
subtree B(v) (highlighted in blue) is a tree in case a), but not in cases b) and
c), while v fulfills all three BTIs with equality.

Proof. Again we prove the statement by induction over the number of nodes n in the
subgraph B(v). The case n = 0 is fulfilled trivially.
For n ≥ 1, analogously to the proof of Lemma 2.28, choose a node t such that the

subtree of t in B does not contain any other nodes from B(v). This choice implies
olt(v) ≥ l(t) and ort(v) ≥ r(t). Lemma 2.18 shows that δt(l, r) is strictly increasing in
l and r if CU is strictly concave, and thus

δt(olt(v), ort(v)) ≥ δt(l(t), r(t)).

For ṽ := v − ut, Proposition 2.17 yields

DCUΣ(v)− δt(olt(v), ort(v)) = DCUΣ(ṽ)

which, since (ṽ ,DCUΣ(ṽ)) ∈ epi(LCUΣ), may be bounded by

DCUΣ(ṽ) ≥
∑
t′∈[T]

δt
′(l(t′), r(t′))ṽt′ =

∑
t′∈[T]

δt
′(l(t′), r(t′))vt′ − δt(l(t), r(t))

which, by the choice of v and t, equals

DCUΣ(ṽ) = DCUΣ(v)− δt(l(t), r(t)) ≥ DCUΣ(v)− δt(olt(v), ort(v)) = DCUΣ(ṽ).

Therefore, the above inequality is fulfilled with equality, and we conclude

δt(olt(v), ort(v)) = δt(l(t), r(t)) and DCUΣ(ṽ) =
∑
t′∈[T]

δt
′(l(t′), r(t′))ṽt′ .

Firstly, as CU is assumed to be strictly concave, δt is strictly increasing in l and r
(see Proposition 2.17). Recalling that olt(v) ≥ l(t) and ort(v) ≥ r(t) by the choice of t,
we infer olt(v) = l(t) and ort(v) = r(t).

71

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

Secondly, since |B(ṽ)| = |B(v)|− 1, the induction hypothesis states that either ṽ = 0
or B(ṽ) is a tree containing root(B). If ṽ = 0, then

s(t) = l(t) + 1 + r(t) = olt(v) + 1 + ort(v) = t− 1 + 1 + (T − t) = T,

hence t is the root of B and B(v) is the single-noded tree consisting of t = root(B).
Else ṽ 6= 0, implying that B(ṽ) is a tree containing root(B). Therefore t 6= root(B),

meaning that t has a parent p(t) in B(ṽ). By (2.2.6), if t is a right child, then

p(t) = t− l(t)− 1 = t− olt(v)− 1,

and if t is a left child, then

p(t) = t+ r(t) + 1 = t+ ort(v) + 1.

In both cases, vp(t) = 1 by definition of olt(v) or ort(v) ((1.3.7) and (2.2.3)), and thus
p(t) ∈ B(v). Given that B(ṽ) is a tree containing root(B), we obtain that B(v) must
be a tree containing root(B) too. 2

The vectors v encountered during a lifting process gain a non-zero entry in every
step, and are thus linearly independent.

Theorem 2.31 All binary tree inequalities induce facets of epi(LCUΣ).

Proof. For each binary tree B ∈ B, the induced BTI is valid for epi(LCUΣ) (see
Lemma 2.28).
Choose a permutation σ of [T] such that the nodes σ(t) are ordered by their

depth d(σ(t)) in B, i. e. such that for each t ∈ [T − 1] it holds that d(σ(t)) ≤ d(σ(t+1)).
For each j ∈ [T], define the vector

∀ t ∈ [T] : wtj :=
{

1 if σ−1(t) ≤ j,
0 else,

which induces the subgraph B(wj) containing the nodes {σ(1), . . . , σ(j)}. B(wj) fulfills
the requirements of Lemma 2.29, and thus the vertex (wj ,DCUΣ(wj)) fulfills the BTI
with equality.

Denoting the permutation matrix associated to σ with Πσ, we obtain

Πσ ·
(
w1 w2 . . . wT

)
=


1 · · · · · · 1
0 1 · · · 1
...
0 · · · 0 1

,
and thus 0, (w1,DCUΣ(w1)), . . ., (wT ,DCUΣ(wT)) are affine linearly independent.
Since they amount to T+1 points on the face F of epi(LCUΣ) induced by the BTI, F
must be a facet. 2

72

2.2 The Summed Start-up Costs

2.2.4 Sufficiency of the BTIs

In this subsection, we prove that the binary tree inequalities (Definition 2.26), together
with the trivial facets 0 ≤ vt ≤ 1, are sufficient for an H-representation of epi(LCUΣ).
To do so we show that the facets induced by all the BTIs fully describe the lower
boundary of epi(LCUΣ). To this end, we extend Lemma 2.29 on the facets containing
a vertex (v,DCUΣ(v)) ∈ V Σ lies to points with v ∈ [0, 1]T .
Lemma 2.29 provides the sufficient (but not necessary) condition for the vertices

of epi(LCUΣ) lying on a certain facet: “A vertex (v,DCUΣ(v)) lies on the facet
corresponding to a binary tree B ∈ B, if the induced subgraph B(v) is a tree containing
root(B).” In other words, each node t ∈ B(v) needs to be connected to root(B) within
B(v). The unique path Pt from t to root(B) consists of its ancestors,

Pt = t→ p(t)→ p(p(t))→ p(p(p(t)))→ . . .→ root(B).

By definition, t ∈ B(v) ⇔ vt = 1. So, B(v) contains the paths Pt for all t ∈ B(v) iff

vt = 1 ⇒ vp(t) = 1 for all t ∈ [T] \ {root(B)},

which, since v ∈ {0, 1}T , is equivalent to

vt ≤ vp(t) for all t ∈ [T] \ {root(B)}. (2.2.11)

Coincidentally, this condition is also important when searching efficiently in a point
set in the Cartesian plane, and is denoted by “B is a Cartesian tree for v” in [Vui80].
We use a definition adapted to our purposes, equivalent to the recursive definition of
Cartesian trees in [GBT84]:

Definition 2.32 For each v ∈ RT , a binary tree B ∈ B with

vt ≤ vp(t) for all t ∈ [T] \ {root(B)}

is called a Cartesian tree for v.

For a rank-labeled binary tree B ∈ B, the condition xrank(v) ≤ xrank(p(v)) simplifies to
xv ≤ xp(v).

The following lemma shows that condition (2.2.11) applies to any v ∈ [0, 1]T as well.

Lemma 2.33 If v ∈ [0, 1]T and B ∈ B is a Cartesian tree for v, then (v,LCUΣ(v))
lies on the facet of epi(LCUΣ) induced by B.

Proof. For each v ∈ [0, 1]T and each Cartesian tree B ∈ B for v, we give a set of
vertices (ṽj ,DCUΣ(ṽj)) of epi(LCUΣ) which lie on the facet of epi(LCUΣ) induced by

73

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

t

v1

v2

v3

v4

v5
1

fractional vector v ∈ [0, 1]5

σ(2) σ(5) σ(3) σ(4) σ(1)

vectorsfactors andconvex combination:

v5 − v1 · 1

v1 − v3 · 1 1

v3 − v4 · 1 1 1

v4 − v2 · 1 1 1 1

v2 · 1 1 1 1 1

Figure 2.20: Decomposition of a fractional vector v ∈ [0, 1]5 into binary vectors wj ∈ {0, 1}
5,

such that all points (wj ,LCUΣ(wj)) lie on the same facet.

B, and whose vectors ṽj can be convexly combined to v. This convex combination is
depicted schematically in Fig. 2.20.
Choose a permutation σ which orders the indices t ∈ [T] by decreasing value of vt,

and increasing depth d(t) in B if the values vt are equal, i. e. such that

∀ j1, j2 ∈ [T], j1 < j2 : vσ(j1) ≥ vσ(j2) and
vσ(j1) = vσ(j2) ⇒ d(σ(j1)) ≤ d(σ(j2)).

For all j ∈ [T], define the vectors ṽj ∈ {0, 1}
T and the coefficients λj as

ṽtj :=
{

1 if σ−1(t) ≤ j,
0 else,

and λj :=
{
vσ(j) − vσ(j+1) for j ≤ T − 1,
vσ(T) else.

By definition of σ, all λj are non-negative, and obviously they sum up to vσ(1). Hence,
for each t ∈ [T], it holds that

T∑
j=1

λj ṽ
t
j =

T∑
j=σ−1(t)

λj =
T−1∑

j=σ−1(t)
(vσ(j) − vσ(j+1)) + vσ(T) = vσ(σ−1(t)) = vt.

74

2.2 The Summed Start-up Costs

Therefore, the vector v indeed is a convex combination of the vectors ṽj and 0,

v =
T∑
j=1

λj ṽj + (1− vσ(1)) 0.

We proceed by showing that the vertices (ṽj ,DCUΣ(ṽj)) lie on the facet induced
by B. For each j ∈ [T], the induced subgraph B(ṽj) is the induced subgraph of B on
nodes

{
t ∈ [T]

∣∣ σ−1(t) ≤ j
}
. Consider an arbitrary node t ∈ B(ṽj) and its parent p(t).

Due to the definition of B, both

vt ≤ vp(t) and d(t) > d(p(t)) hold.

So, by choice of the permutation σ, we have

σ−1(p(t)) < σ−1(t) ≤ j,

and therefore p(t) ∈ B(ṽj) too. As noted in the motivation preceding this lemma,
this condition is equivalent to “B(ṽj) contains the root of B and is a tree”, and thus
Lemma 2.29 implies that (ṽj ,DCUΣ(ṽj)) lies on the facet induced by B.

Being a convex combination of such points, the point (v,∑T
j=1 λjDCUΣ(ṽj)) lies on

the same facet, implying LCUΣ(v) = ∑T
j=1 λjDCUΣ(ṽj) and hence that (v,LCUΣ(v))

lies on the facet of epi(LCUΣ) induced by B. 2

Note that Lemma 2.33 is a generalization of Lemma 2.29, since for discrete vectors
v ∈ {0, 1}T the induced subgraph B(v) is a Cartesian tree for v iff it is empty or a tree
containing root(B).

By Lemma 2.33, each BTI defines a part of the lower boundary of epi(LCUΣ), and
thereby also a part of LCUΣ.

Corollary 2.34 If B ∈ B is a Cartesian tree for v ∈ [0, 1]T , then

LCUΣ(v) =
∑
t∈[T]

δt(l(t), r(t)) vt.

Since epigraphs are characterized by their lower boundary, this is equivalent to:

Corollary 2.35 If (v, cuΣ) ∈ [0, 1]T × R and B ∈ B is a Cartesian tree for v, then
(v, cuΣ) lies in epi(LCUΣ) iff it fulfills the BTI induced by B.

Proof. (v, cuΣ) ∈ epi(LCUΣ) ⇔ cuΣ ≥ LCUΣ(v) =
∑
t∈[T]

δt(l(t), r(t))vt

⇔ (v, cuΣ) fulfills the BTI induced by B. 2

75

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

Finally, since there exists a rank-labeled Cartesian tree for each v ∈ [0, 1]T ([GBT84]),
the BTIs and the trivial inequalities 0 ≤ vt ≤ 1 completely describe epi(LCUΣ).

Theorem 2.36

epi(LCUΣ) =


(v, cuΣ) ∈ RT+1 :

cuΣ ≥
∑
t∈[T]

δt(l(t), r(t)) vt, B ∈ B

0 ≤ vt ≤ 1, t ∈ [T]

. (2.2.12)

It remains to discuss whether this H-representation is irredundant. As noted in
the paragraph before Lemma 2.30, if the start-up cost function CU is not strictly
concave, e. g. if CU is linear, then a vertex (v,DCUΣ(v)) may fulfill a BTI induced by
a binary tree B ∈ B which is not a Cartesian tree for v. This leads to multiple binary
trees inducing the same facet of epi(LCUΣ), rendering the above H-representation
redundant.

However, if CU is strictly concave, Lemma 2.30 describes all vertices (v,DCUΣ(v))
on a facet. By showing that different binary trees induce facets with different vertices,
we prove that the given H-representation is irredundant:

Theorem 2.37 If CU is strictly concave, then the H-representation of epi(LCUΣ)
given in (2.2.12) is irredundant.

Proof. For each B1, B2 ∈ B with B1 6= B2, we construct a vertex (v,DCUΣ(v)) ∈ V Σ

such that B1 is a Cartesian tree for v, but B2 is not a Cartesian tree for v. Then,
by Lemma 2.29, (v,DCUΣ(v)) lies on the facet induced by B1, and by Lemma 2.30,
(v,DCUΣ(v)) does not lie on the facet induced by B2, proving that the induced facets
are not equal.
If root(B1) 6= root(B2), then (uroot(B1),DCUΣ(uroot(B1))) clearly is such a vertex.

Otherwise, we have r := root(B1) = root(B2), and therefore the edge sets E1 of B1
and E2 of B2 differ. Each edge in B1 connects a node t to its parent pB1(t). Choose
e = {t, pB1(t)} ∈ E1 \ E2 with minimal d(t). Since e /∈ E2 and t 6= r, t has different
parents p1 := pB1(t) and p2 := pB2(t) in B1 and B2. Now, denote the path from r to
p1 in B1 by P , and define v ∈ {0, 1}T as

∀ t′ ∈ [T] : vt
′ :=

{
1 if t′ = t or t′ ∈ P ,
0 else.

By definition, B1 is a Cartesian tree for v.
We conclude this proof by showing that p2 /∈ P , which implies vp2 = 0, and thereby

that B2 is not a Cartesian tree for v: Assume p2 ∈ P . Then, since choosing e such
that d(t) is minimal, we have P ⊂ B2, and therefore p1 is a descendant of p2 in
both B1 and B2. Since t is a child of p2 in B2 and t /∈ P , it holds that t and p1 are

76

2.2 The Summed Start-up Costs

separated to the subtrees LB2(p2) and RB2(p2) of p2, and thus either t < p2 < p1 or
p1 < p2 < t. However, t is a child of p1 in B1, and thus both, p1 and t, either lie in
the left subtree LB1(p2) or right subtree RB1(p2) of p2 in B1. Since this implies either
t, p1 < p2 or p2 < t, p1, we obtain a contradiction, proving p2 /∈ P . 2

The number of different binary trees on T nodes is given by the T -th Catalan
number CT , which is asymptotically equivalent to 4T/(T

3
2
√
π) (see [Ros00]). This allows

us to count the number of facets of epi(LCUΣ):
Corollary 2.38 If CU is strictly concave, the number of facets of epi(LCUΣ) is

CT + 2T ∼ 4T

T
3
2
√
π
,

where CT denotes the T -th Catalan number.

2.2.5 Separation
Generally, the H-representation of epi(LCUΣ) given in the last subsection is of ex-
ponential size, and thus not (directly) suitable for computational purposes. This is
overcome by a cutting plane approach based on an exact separation algorithm for
epi(LCUΣ) presented in this section. Assuming that the start-up cost function CU
can be evaluated in O(1), e. g. for the generally used exponential start-up cost func-
tion CU(l) = Ae−λl +B, we show that this separation algorithm has a running time of
O(T). Otherwise, the running time would change proportionally.
Lemma 2.33 states that a point (v, cuΣ) ∈ [0, 1]T × R lies in epi(LCUΣ) iff the

BTI induced by the Cartesian tree for v is fulfilled. Thus, the idea of the separation
algorithm for epi(LCUΣ) is to find a Cartesian tree for the vector v, and construct its
induced BTI.

A linear-time algorithm for finding a Cartesian tree for v has already been given in
[GBT84], and is revisited as Algorithm A.0.1 in Appendix A, denoted as FindCarte-
sianTree. In summary, this algorithm starts with a tree with a single node 1, and
iteratively adds the remaining nodes t ∈ [2..T]. The key observation is that the node t
in each iteration must be added such that it results to be

• the last top-right node (as to receive the correct rank t), and to be

• beneath all top-right nodes t′ with vt′ > vt and above all top-right nodes t′ with
vt
′
< vt.

The algorithm represents the resulting Cartesian tree by its left and right chil-
dren llink(t) and rlink(t) of each node t ∈ [T]. To construct the induced BTI, its
coefficients

α t = δt(l(t), r(t)) = CU(OL(L(t))) + CU(OL(R(t)))− CU(OL(S(t))) (2.2.13)
need to be computed.

77

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

This requires the subtree sizes l(t), r(t) and s(t), which due to (2.2.5) and (2.2.6)
equal

l(t) = s(llink(t)) = l(llink(t)) + 1 + r(llink(t)) = l(llink(t)) + t− llink(t), (2.2.14)
r(t) = s(rlink(t)) = l(rlink(t)) + 1 + r(rlink(t)) = rlink(t)− t+ r(rlink(t)), (2.2.15)
s(t) = l(t) + 1 + r(t). (2.2.16)

By the definition of the offline lengths OLt(l) (see (1.3.3)), we have

∀ t ∈ [T], l1 ∈ [0 .. t−1], l2 ∈ [t− l1 − 1] : OLt(l1 + l2) = OLt(l1) + OLt−l1(l2),

and the desired offline lengths OL(L(t)), OL(R(t)) and OL(S(t)) may be derived from
(2.2.8),(2.2.9) for each t ∈ [T] as

OL(L(t)) = OLt(l(t)) = OLt(t− 1)−
{
OLt−l(t)(t− l(t)− 1) if l(t) < t− 1,
0 else.

(2.2.17)
OL(R(t)) = OLt+r(t)+1(r(t)) = OLt+r(t)+1(t+ r(t))−OLt+1(t), (2.2.18)
OL(S(t)) = OLt+r(t)+1(s(t)) = OL(L(t)) + OL(R(t)) + Lt. (2.2.19)

Using (2.2.13)-(2.2.19), the next result shows that the coefficients α t of the induced
BTI are computable in linear time.

Proposition 2.39 Algorithm 2.2.1 solves the separation problem for epi(LCUΣ) in
O(T).

78

2.2 The Summed Start-up Costs

Algorithm 2.2.1: SeparateBTI
Input :Point (v, cuΣ) ∈ [0, 1]T × R
Output : (v, cuΣ) ∈ epi(LCUΣ), or a separating inequality.

1 B ← FindCartesianTree(v);

2 for t = 1, . . . , T do

3 l(t) :=
{
l(llink(t)) + t− llink(t) if llink(t) 6= ∅
0 else;

4 for t = T, . . . , 1 do

5 r(t) :=
{
rlink(t)− t+ r(rlink(t)) if rlink(t) 6= ∅
0 else;

6 s(t) := r(t) + l(t) + 1;

7 OL1(0) := PDT;
8 for t = 2, . . . , T do
9 OLt(t− 1) := OLt−1(t− 2) + Lt−1;

10 for t = 1, . . . , T do

11 OL(L(t)) := OLt(t− 1)−
{
OLt−l(t)(t− l(t)− 1) if l(t) < t− 1,
0 else.

12 OL(R(t)) := OLt+r(t)+1(t+ r(t))−OLt+1(t);
13 OL(S(t)) := OL(L(t)) + Lt + OL(R(t));

14 for t ∈ [T] do

15 α t :=
{
CU(OL(L(t))) + CU(OL(R(t)))− CU(OL(S(t))) if t+ r(t) < T ,
CU(OL(L(t))) else.

16 if cuΣ ≥
∑
t∈[T]

α tv
t then

17 return (v, cuΣ) ∈ epi(LCUΣ);
18 else
19 return (v, cuΣ) may be separated from epi(LCUΣ) by the BTI with

coefficients α t;

79

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

2.3 The Start-up Costs in All Periods
This section investigates the epigraph of the start-up cost function of all periods. Its
H-representation is exponential, which we show by identifying an exponential class of
facet inducing inequalities.
We assume that CU(l) > 0 for l > 0, which holds for virtually all types of units.

While the results are straightforward to amend for CU(l) = 0, this would introduce
technical details.
The discrete start-up cost function of all periods is defined as the combination of

the discrete start-up cost functions DCUt in (2.1.1), which model the start-up costs in
each individual period t,

DCU : {0, 1}T → RT≥0, v 7→
(
DCU1(v), . . . ,DCUT (v)

)
.

Analogous to DCUt and DCUΣ, the convex hull of the epigraph of DCU is a
polyhedron with vertices (v,DCU(v)),

conv(epi(DCU)) = conv
({

(v,DCU(v))
∣∣∣ v ∈ {0, 1}T})+ pos{uT+t | t ∈ [T]}, (2.3.1)

In contrast to DCUt and DCUΣ however, in general no convex hull function of DCU
exists, i. e. there exists no function LCU such that epi(LCU) = conv(epi(DCU)), as
demonstrated by the following example:
Consider a model with parameters T = 3, L1 = L2 = L3 = 1, PDT = 1, and

CU(l) = 16(1 − 2−l). The operational schedule v = (1/2, 1/2, 1) may be decomposed
convexly into v = 1/2(0, 0, 1) + 1/2(1, 1, 1) and v = 1/2(0, 1, 1) + 1/2(1, 0, 1). Since

1
2DCU(0, 0, 1) + 1

2DCU(1, 1, 1) = 1
2(0, 0, 14) + 1

2(8, 0, 0) = (4, 0, 7) and
1
2DCU(0, 1, 1) + 1

2DCU(1, 0, 1) = 1
2(0, 12, 0) + 1

2(8, 0, 8) = (4, 6, 4),

conv(epi(DCU)) contains both (v, (4, 0, 7)) and (v, (4, 6, 4)). For any function LCU with
epi(LCU) = conv(epi(DCU)), it holds that LCU(v) ≤ min{(4, 0, 7), (4, 6, 4)} = (4, 0, 4),
and thus (v, (4, 0, 4)) ∈ epi(LCU) = conv(epi(DCU)). However, it is straight-forward
to determine that there is no convex combination of points (v,DCU(v)) equating
(v, (4, 0, 4)), a contradiction.

Thus, this section does not investigate epi(LCU) analogously to Section 2.1 and
Section 2.2, but instead considers conv(epi(DCU)).

In the following, we introduce a class of facets of conv(epi(DCU)) by

• generalizing the lifted start-up cost inequalities (2.1.4) defined in Subsection 2.3.1,
and

• showing that these inequalities define facets of conv(epi(DCU)) in Subsection 2.3.2.

80

2.3 The Start-up Costs in All Periods

2.3.1 Composite Start-up Cost Inequalities

Recall the lifted start-up cost inequalities defined in (2.1.4), Section 2.1,

∀ t ∈ [T], l ∈ [t− 1] : cut ≥ CUt(l)vt −
t∑

j=1

(
CUt(l)− CUt(j − 1))vt−j ,

which induce all facets of conv(epi(DCUt)). It is not surprising that these inequalities
induce facets of conv(epi(DCU)) as well.

Being designed for conv(epi(DCUt)), the inequality with parameters l, t only bounds
the single start-up cost variable cut. In the context of conv(epi(DCU)), this inequality
can be extended by including multiple cut: For a given set J ⊂ [l − 1], we lift the
coefficients of cut−j for each j ∈ J and call the resulting inequality a composite start-up
cost inequality.

Definition 2.40 For each t ∈ [T], l ∈ [0 .. t−1], and J ⊂ [l − 1], define the composite
start-up cost inequality as

cut +
∑
j∈J

ωj(t, l)cut−j ≥ CUt(l)vt −
t∑

j=1
αj(t, l,J)vt−j

with the non-negative coefficients

ωj(t, l) := min
{
ω ∈ R≥0

∣∣∣ ∀ k ∈ [j+1 .. l] : ωCUt−j(k − j) ≥ CUt(k)− CUt(j)
}

and
αj(t, l,J) :=

{
CUt(j)− CUt(j − 1) for j ∈ J ,
CUt(l)− CUt(j − 1) for j /∈ J .

If the constraint parameters t, l and J are evident from the context, we omit them
and refer to the coefficients as ωj and αj . It is straightforward to check that these
coefficients are non-negative, and even positive if CU(t) is strictly increasing.

The composite start-up cost inequalities generalize the lifted start-up cost inequalities,
which constitute the special case J = ∅. In the following, we

• show their validity in Lemma 2.41,

• prove that they induce facets in Theorem 2.47 and

• count them in Proposition 2.49.

Lemma 2.41 All composite start-up cost inequalities are valid for conv(epi(DCU)).

81

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

Proof. Since the composite start-up cost inequalities bound the start-up costs from
below, it suffices to prove that each vertex (v,DCU(v)) of conv(epi(DCU)) satisfies
each inequality. Consider the composite start-up cost inequality with parameters
t ∈ [T], l ∈ [0 .. t−1], and J ⊂ [l − 1]. This inequality is fulfilled by each vertex (v, cu)
with vt = 0, since its left-hand side is non-negative and its right-hand side for v is
non-positive,

cut +
∑
j∈J

ωjcut−j ≥ 0 ≥ CUt(l) vt︸︷︷︸
=0

−
l∑

j=1
αjv

t−j .

Of the vertices (v, cu) with vt = 1, we only need to examine those with vt′ = 1 for all
t′ ∈ [t− l − 1]. If such a vertex fulfills the considered inequality, then so do all vertices
(ṽ , c̃u) with vt′ = ṽt

′ for all t′ ∈ [t−l .. t], since

• different values of ṽt′ with t′ > t do not influence the inequality at all, and
• different values of ṽt′ with t′ < t− l may only increase the left-hand side of the

inequality, and do not influence its right-hand side.

The validity of the inequality for these vertices is proved by induction over the number
of online periods in the range [t−l .. t−1],

n := |N(v)| with N(v) := {j ∈ [l] | vt−j = 1}.

If n = 0, then cut = CUt(l) and the composite start-up cost inequality is fulfilled
with equality.

If n > 0, denote the two smallest elements of N(v) ∪ {l + 1} by

j1 := minN(v), j2 := min
(
N(v) \ {j1} ∪ {l + 1}

)
and define the vertex (ṽ , c̃u) as

∀ t′ ∈ [T] : ṽt
′ :=

{
0 if t′ = t− j1,
vt
′ else,

and c̃u := DCU(ṽ).

By definition |N(ṽ)| = |N(v)| − 1 = n− 1, and hence the composite start-up cost
inequality is satisfied by (ṽ , c̃u). Its validity for (v, cu) is inferred by comparing the
differences between the left and right hand sides for (v, cu) and (ṽ , c̃u). The start-up
costs cu and c̃u differ solely in periods t and j1,

cut = CUt(j1 − 1), cut−j1 = CUt−j1(j2 − j1 − 1),
c̃ut = CUt(j2 − 1), c̃ut−j1 = 0.

82

2.3 The Start-up Costs in All Periods

The difference ∆L of the left hand sides of the inequality for (v, cu) and (ṽ , c̃u) depends
on whether the coefficient for cut−j1 is lifted, and equals

∆L := cut +
∑
j∈J

ωjcut−j − c̃ut −
∑
j∈J

ωj c̃ut−j =
{
cut − c̃ut + ωj1cut−j

1 if j1 ∈ J ,
cut − c̃ut if j1 /∈ J .

=
{
CUt(j1 − 1)− CUt(j2 − 1) + ωj1CUt−j

1(j2 − j1 − 1) if j1 ∈ J ,
CUt(j1 − 1)− CUt(j2 − 1) if j1 /∈ J .

The difference ∆R of the right hand sides also depends on whether the coefficient of
cut−j1 is lifted, but implicitly through αj1 ,

∆L := CUt(l)vt −
t∑

j=1
αjv

t−j − CUt(l)ṽt +
t∑

j=1
αj ṽ

t−j = −αj1 .

We now show ∆L ≥ ∆R. If j1 /∈ J , then

∆L = CUt(j1 − 1)− CUt(j2 − 1) ≥ CUt(j1 − 1)− CUt(l) = −αj1 = ∆R.

Else, if j1 ∈ J and j2 = j1 + 1, then

∆L = CUt(j1 − 1)− CUt(j2 − 1︸ ︷︷ ︸
=j1

) + ωj1CUt−j
1(j2 − j1 − 1︸ ︷︷ ︸

=0

) = −αj1 = ∆R.

Finally, if j1 ∈ J and j2 > j1 + 1, then

∆L = CUt(j1 − 1)− CUt(j2 − 1) + ωj1CUt−j
1(j2 − j1 − 1)

def. 2.40
≥ CUt(j1 − 1)− CUt(j1) = −αj1 = ∆R.

Thus, the composite start-up cost inequality is fulfilled for (v, cu), and by induction
for all vertices (v,DCU(v)). 2

2.3.2 Facets
The proof of Lemma 2.41 already suggests how to derive vertices (v,DCU(v)) of the
epigraph conv(epi(DCU)) which lie on the face induced by a composite start-up cost
inequality: by inductively constructing them with ∆L = ∆R in each step. We enumerate
these vertices, ultimately proving that each composite start-up cost inequality induces
a facet of conv(epi(DCU)). Figure 2.21 gives these vertices for an exemplary inequality.

To simplify the notation, we denote the face induced by the composite start-up cost
inequality with parameters t ∈ [T], l ∈ [0 .. t−1], J ⊂ [l − 1] by F(t, l,J).
Firstly, the composite start-up cost inequality is trivially fulfilled with equality for

each vertex (v, cu) with vt−l = . . . = vt−1 = 0:

83

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1 1

()
()
()
()
()
()
()
()
()
()
()
()
()

t1 ∈ J{4, 5, 6} ⊂ J
[t−l .. t−1]t− l − 1

v in Prop. 2.42

v in Prop. 2.43

v in Prop. 2.44

v in Prop. 2.45

k k k

Figure 2.21: Operational schedules v of non-trivial vertices (v,DCU(v)) contained in the
face F(t, l,J) of an exemplary composite start-up cost inequality with parameters
t = T = 11, l = 8, and J = {1, 4, 5, 6} with equality. Only non-zero coefficients
are shown. The indices k, k, and k used in the respective results are marked.

Proposition 2.42 For each t ∈ [T], l ∈ [0 .. t−1], and J ⊂ [l − 1], F(t, l,J) contains
(v,DCU(v)) with

vt
′ =

{
1 if t′ ∈ [t− l − 1] ∪ {t},
0 else.

Proof.
cut +

∑
j∈J

ωjcut−j = CUt(l) = CUt(l) vt︸︷︷︸
=1

−
t∑

j=1
αj v

t−j︸︷︷︸
=0

. 2

The induction step of the proof of Lemma 2.41 discerns three cases,

• j1 /∈ J ,
• j1 ∈ J and j2 = j1 + 1, and
• j1 ∈ J and j2 > j1 + 1.

In the first case, we show that the equality ∆L = ∆R is attained if j2 = l + 1, which
implies that vt−j1 = 1 and vt−j = 0 for all j ∈ [l], j 6= j1.

84

2.3 The Start-up Costs in All Periods

Proposition 2.43 For each t ∈ [T], l ∈ [0 .. t−1], J ⊂ [l − 1], and k ∈ [l − 1] \ J ,
F(t, l,J) contains (v,DCU(v)) with

vt
′ =

{
1 for t′ ∈ [t− l − 1] ∪ {t, t− k},
0 else.

Proof.

cut +
∑
j∈J

ωjcut−j = CUt(k − 1) = CUt(l)−
(
CUt(l)− CUt(k − 1)

)
= CUt(l)− αk

= CUt(l)− αk vt−k︸︷︷︸
=1

−
t∑

j=1
αj v

t−j︸︷︷︸
=0

= CUt(l)vt −
t∑

j=1
αjv

t−j . 2

In the second case, i. e. if j1 ∈ J and j2 = j1 + 1, ∆L = ∆R is always fulfilled. We
construct a vertex (v,DCU(v)) such that either the first or second case would apply in
each induction step.

Proposition 2.44 For each t ∈ [T], l ∈ [0 .. t−1], J ⊂ [l − 1], and k ∈ J , define
k := min [k+1 .. l] \ J . Then, F(t, l,J) contains (v,DCU(v)) with

vt
′ =


1 if t′ ∈ [t− l − 1] ∪ {t},
1 if t′ ∈ [t−k .. t−k],
0 else.

Proof. By the choice of k, k /∈ J and [k .. k−1] ⊂ J . Hence, the coefficients αj
equate to

αk = CUt(l)− CUt(k − 1) and ∀ j ∈ [k .. k−1] : αj = CUt(j)− CUt(j − 1).

Thus, we have

cut +
∑
j∈J

ωjcut−j = CUt(k − 1)

= CUt(l)−
(
CUt(l)− CUt(k − 1)

)
−
(
CUt(k − 1)− CUt(k − 1)

)
= CUt(l)−

(
CUt(l)− CUt(k − 1)

)
−
k−1∑
j=k

(
CUt(j)− CUt(j − 1)

)

= CUt(l)− αk −
k−1∑
j=k

αj = CUt(l) vt︸︷︷︸
=1

−
k−1∑
j=k

αj v
t−j︸︷︷︸
=1

−
t∑

j=1
j /∈[k .. k−1]

αj v
t−j︸︷︷︸
=0

= CUt(l)vt −
t∑

j=1
αjv

t−j . 2

85

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

In the third case, i. e. if j1 ∈ J and j2 > j1 + 1, the equality ∆L = ∆R holds iff the
value of the coefficient ωj1 in its definition is attained for k = j2 (see Definition 2.40).
We construct a vertex (v,DCU(v)) such that this third case applies in the final induction
step, preceded by induction steps of the first and second case.

Proposition 2.45 For each t ∈ [T], l ∈ [0 .. t−1], J ⊂ [l − 1] and k ∈ J , define k as

k := 1 + max
{
j ∈ [k+1 .. l]

∣∣ ωkCUt−k(j − k) = CUt(j)− CUt(k)
}

and k := min [k .. l+1] \ J .

Then, F(t, l,J) contains (v,DCU(v)) with

vt
′ =


1 if t′ ∈ [t− l − 1] ∪ {t},
1 if t′ ∈ {t− k} ∪ [t−k .. t−k],
0 else.

Proof. Firstly, the definition of v implies the start-up costs

cut′ =


CUt(k − 1) if t′ = t,
CUt−k(k − k − 1) if t′ = t− k,
CUt−k(l − k − 1) if t′ = t− k,
0 else.

By the choice of k, [k .. k−1] ⊂ J and k /∈ J , and hence

cut +
∑
j∈J

ωjcut−j = CUt(k − 1) + ωkCUt−k(k − k − 1)

The index k is chosen such that, using Definition 2.40 of ωk,

ωkCUt−k(k − k − 1) = CUt(k − 1)− CUt(k).

Therefore,

cut +
∑
j∈J

ωjcut−j = CUt(k − 1) + CUt(k − 1)− CUt(k)

= CUt(l)−
(
CUt(k)− CUt(k − 1)

)
−
(
CUt(k − 1)− CUt(k − 1)

)
−
(
CUt(l)− CUt(k − 1)

)

86

2.3 The Start-up Costs in All Periods

Similar to the proof of Proposition 2.44, we expand the term into a sum,

cut +
∑
j∈J

ωjcut−j = CUt(l)−
(
CUt(k)− CUt(k − 1)

)
−
k−1∑
j=k

CUt(j)− CUt(j − 1)

−
(
CUt(l)− CUt(k − 1)

)
= CUt(l)− αk −

k−1∑
j=k

αj − αk

and by definition of vt get

cut +
∑
j∈J

ωjcut−j = CUt(l)vt −
t∑

j=1
αjv

t−j . 2

Since each composite start-up cost inequality is homogeneous, it is fulfilled with
equality by all vertices (v,DCU(v)) which have positive values solely for variables with
coefficient 0 in that inequality.

Proposition 2.46 For t ∈ [T], l ∈ [0 .. t−1], and J ⊂ [l − 1], F(t, l,J) contains

• the null vector 0,
• (ut′ ,DCU(ut′)) for t′ ∈ [T] \ [t−l .. t] and
• (0, ut′) for t′ ∈ [T] \ {t}, t− t′ /∈ J ,

where ut′ denotes the t-th unit vector.

Proof. Since DCU(0) = 0, both the null vector 0 and the points (ut′ ,DCU(ut′)) are
vertices of conv(epi(DCU)). We noted in (2.3.1) that conv(epi(DCU)) contains the
rays {uT+t | t ∈ [T]},

conv(epi(DCU)) = conv
({

(v,DCU(v))
∣∣∣ v ∈ {0, 1}T})+ pos{uT+t | t ∈ [T]}.

Therefore, conv(epi(DCU)) also contains the points (0, ut′).
Each of the mentioned points fulfills vt = vt−1 = . . . = vt−l = 0, cut = 0, and

cut−j = 0 for all j ∈ J . So, each point satisfies the composite start-up cost inequality
with equality,

cut +
∑
j∈J

ωj(t, l)cut−j = 0 = CUt(l)vt −
t∑

j=1
αj(t, l,J)vt−j ,

and lies in F(t, l,J). 2

Although the faces F(t, l,J) typically contain further vertices (v,DCU(v)), the
enumerated points suffice to prove that they are facets:

Theorem 2.47 For each t ∈ [T], l ∈ [0 .. t−1], and J ⊂ [l − 1], F(t, l,J) is a facet.

87

Chapter 2 H-Representations of the Epigraphs of Start-up Cost Functions

Proof. By definition, the face F(t, l,J) is a facet iff its affine hull aff(F(t, l,J)) has
dimension 2T − 1. This is certainly fulfilled if ϕ(aff(F(t, l,J))) = R2T−1 using the
projection ϕ which discards the coordinate cut,

ϕ : R2T → R2T−1, (v, cu) 7→ (v, cu1, . . . , cut−1, cut+1, . . . , cuT).

By linearity of ϕ, ϕ(aff(F(t, l,J))) = aff(ϕ(F(t, l,J))), and since F(t, l,J) contains
the null vector (cf. Proposition 2.46), the affine hull aff(ϕ(F(t, l,J))) equals the linear
hull span(ϕ(F(t, l,J))).
In the following, we consider linear hulls L0, . . . , L4 of the points proved to lie in

F(t, l,J) in Propositions 2.42 to 2.46. These linear hull Li span the projection of an
increasing set of these points,

• L0 of the points in Proposition 2.46,

• L1 of the points in Propositions 2.42 and 2.46,

• L2 of the points in Propositions 2.42, 2.43 and 2.46,

• L3 of the points in Propositions 2.42 to 2.44 and 2.46, and

• L4 of the points in Propositions 2.42 to 2.46.

The order of considering these points is chosen to allow a straight-forward characteri-
zation of the Li: As we will show, each Li has an orthonormal basis consisting of unit
vectors, and each added point increases this basis by a further unit vector.

The linear hull of (the projection of) the trivial points enumerated in Proposition 2.46
equals

L0 = span
(
ϕ
({
ut′
∣∣ t′ ∈ [T] \ [t−l .. t]

}
∪
{
uT+t′

∣∣ t′ ∈ [T] \ {t} and t− t′ /∈ J
}))

= span
({
ut′
∣∣ t′ ∈ [T] \ [t−l .. t]

}
∪
{
uT+t′

∣∣ t′ ∈ [T − 1] and t− t′ /∈ J
})
.

The point (v, cu) ∈ F(t, l,J) in Proposition 2.42 has non-zero entries in coordinates
v1, . . . , vt−l−1, vt, cu1, cut. Of these coordinates, only vt does not correspond to a unit
vector in the basis of L0. Thus, L1 = span(L0 ∪ ϕ((v, cu))) possesses the orthonormal
basis

L1 = span
({
ut′
∣∣ t′ ∈ [T] \ [t−l .. t−1]

}
∪
{
uT+t′

∣∣ t′ ∈ [T − 1] and t− t′ /∈ J
})
.

For each k ∈ [l − 1] \ J , Proposition 2.43 lists a point (v, cu) ∈ F(t, l,J) with
non-zero entries in coordinates v1, . . . , vt−l−1, vt−k, vt, cu1, cut−k, cut. Since k /∈ J , the
linear hull L2 of L1 and the points in Proposition 2.43 has the orthonormal basis

L2 = span
({
ut′
∣∣ t′ ∈ [T] and t− t′ /∈ J

}
∪
{
uT+t′

∣∣ t′ ∈ [T − 1] and t− t′ /∈ J
}))

.

88

2.3 The Start-up Costs in All Periods

For each k ∈ J , Proposition 2.44 defines k /∈ J and gives the point (v, cu) ∈ F(t, l,J)
with non-zero entries in v1, . . . , vt−l−1, vt−k, . . . , vt−k, vt, cu1, cut−k, cut. Hence, the
linear hull L3 of L2 and the points in Proposition 2.44 has the orthonormal basis

L3 = span
({
ut′
∣∣ t′ ∈ [T]

}
∪
{
uT+t′

∣∣ t′ ∈ [T − 1] and t− t′ /∈ J
}))

Finally, for each k ∈ J Proposition 2.45 lists a point (v, cu) ∈ F(t, l,J) with non-
zero entries v1, . . . , vt−l−1, vt−k, . . . , vt−k, vt−k, vt, cu1, cut−k, cut−k, cut. As k ∈ J , this
yields the linear hull L4 = R2T−1.

In conclusion dim(aff(F(t, l,J))) ≥ dim(L4) = 2T − 1 and thus F(t, l,J) is a facet
of conv(epi(DCU)). 2

Having introduced the class of facet-inducing composite start-up cost inequalities,
we now determine their number. For strictly increasing CU, the coefficients ωj and αj
are positive, and thus the parameters t ∈ [T], l ∈ [0 .. t−1], J ⊂ [l − 1] can be derived
uniquely from the non-zero coefficients of a given inequality. Since each inequality
uniquely induces a facet, all inequalities are irredundant.

Proposition 2.48 If CU is strictly increasing, then composite start-up cost inequalities
are irredundant.

Therefore, we can count the composite start-up cost inequalities simply by counting
the number of possible parameters.

Proposition 2.49 If CU is strictly increasing, then there exist 2T − 1 different com-
posite start-up cost inequalities.

Proof.

∑
t∈[T]

t−1∑
l=0

∣∣∣{J : J ⊂ [l − 1]}
∣∣∣ =

∑
t∈[T]

(
1 +

t−1∑
l=1

2l−1
)

=
∑
t∈[T]

(
1 +

t−2∑
l=0

2l
)

=
∑
t∈[T]

2t−1 = 2T − 1. 2

89

Chapter 3

The Temperature Model

This chapter presents joint work with René Brandenberg and Matthias Huber of which
parts have been published in [SHB16; BHS]. While Section 2.1 considers general concave
start-up cost functions, it proposes a model specifically designed for the exponential
start-up cost function as defined in (1.3.1),

CU(l) = CUfixed + CUvar
(
1− e−λl

)
(3.0.1)

with fixed costs CUfixed > 0, maximal variable costs CUvar > 0, and a parameter
λ ∈ (0, 1) as depicted in Fig. 3.1.

t

costs

CUfixed

CUvar

CU(l)

Figure 3.1: Exponential start-up cost function with λ = 0.04, fixed costs CUfixed and maximal
variable costs CUvar depending on the downtime l.

By introducing new variables tempt and ht for the temperature and heating of a
unit in period t ∈ [T], we model the start-up costs with significantly fewer inequalities
than the models conv(epi(DCUt)) and conv(epi(DCUΣ)) given in Chapter 2, resulting
in substantially improved solution times. Using 2T extra variables, O(T 2) inequalities
yield an extended formulation of the epigraph conv(epi(DCUΣ)) of the summed start-up
costs, and only O(T) inequalities are required to model the start-up cost function
accurately. These inequalities can be separated in linear time, enabling an efficient
cutting plane algorithm.

91

Chapter 3 The Temperature Model

The results are presented as follows:

1. Based on the physical interpretation of the exponential start-up cost func-
tion (3.0.1) in Subsection 1.3.1, Section 3.1 derives a continuous-time model
for the temperature of a unit. Discretizing this model yields the temperature and
heating values for each operational schedule v ∈ {0, 1}T .

2. Using this physical interpretation, Section 3.2 introduces the polyhedron P̂ temp

composed of O(T) inequalities which models temperature and heating, and
thereby also the start-up costs for v ∈ {0, 1}T .

3. Section 3.3 gives O(T 2) additional inequalities, yielding the extended formula-
tion P temp of conv(epi(DCUΣ)), which hence models the summed start-up costs
for fractional v ∈ [0, 1]T . A linear-time separation algorithm for these inequalities
is given in Subsection 3.3.2.

3.1 A Physical Interpretation of the Start-up Costs
The temperature model is based on a physical interpretation of the exponential start-up
costs. The variable part of these costs stem (mostly) from the boiler start-up costs, i. e.
the costs of reheating the boiler back to operating temperature, which is proportional
to the heat loss suffered during the downtime of the unit.
We assume that the heat is mainly lost to the environment, which means that we

exclude combined heat&power units that are able to actively extract heat. For such
units, the proposed temperature formulation is straightforward to amend, but results
in different start-up cost functions.
Furthermore, we assume that the time required for re-heating is negligible, which

appears to be an underlying assumption of the exponential start-up costs (3.0.1). We
discuss the case of non-negligible heating times in Section 6.2, where the heating speed
is bounded. This however results in additional heat losses while starting, and thereby
in costs which differ from the exponential start-up costs.

We start by considering the temperature temp˜ (t) of a unit as a continuous function,
where temp˜ (t) is normalized such that temp˜ (t) = 0 is the ambient temperature and
temp˜ (t) = 1 is the operational temperature. In a unit without heat extraction, we
model the heat loss using the law of heat conduction, which states that the density of
the heat flux from the unit to the ambient space is proportional to the temperature
difference,

dtemp˜
dt (t) = −λtemp˜ (t),

where the heat loss coefficient λ is characteristic to the unit. Solving this linear
homogeneous differential equation yields a temperature of

temp˜ (l) = e−λl (3.1.1)

92

3.1 A Physical Interpretation of the Start-up Costs

vt

tempt

temp˜ (t)

htv

t1 2 3 4 5 6 7 8 9 10 11

1

Figure 3.2: Temperature development and heating in the continuous and discretized model.

after a downtime l (cf. Fig. 3.2).
Thus, the heat loss after l offline periods amounts to (1−e−λl), and the total start-up

costs result to
CU(l) = CUfixed + CUvar

(
1− e−λl

)
,

where CUfixed, CUvar ≥ 0, and λ ∈ (0, 1) are appropriate constants specific to each
unit. This matches the typically used definition of the start-up costs in (3.0.1).

To apply this temperature model to the Unit Commitment problem, it needs to be
discretized. For an operational schedule v ∈ {0, 1}T , we denote the discretization of
the temperature as tempv , where temptv is defined as the continuous temperature at
the beginning of period t (c.f. Fig. 3.2). Analogously, the heating needed when starting
up in period t is denoted by ht−1

v .
As expected, the exponential decay of the physical temperature during offline periods

carries over to the discretized temperature tempv . Recall that olt(v) counts the number
of offline periods preceding period t (see (1.3.7)),

olt(v) = max
{
l ∈ [t− 1]

∣∣ vt−1 = . . . = vt−l = 0
}
.

Then, OLt(olt(v)) equals the total offline length (see (1.3.3)),

OLt(l) =
l∑

j=1
Lt−j +

{
PDT if l = t− 1,
0 else,

where PDT denotes the pre-model downtime. Using OLt(l), the temperature can be
expressed as

∀ t ∈ [T] : temptv :=
{

1 if vt = 1,
e−λOLt(olt(v)) else.

(3.1.2)

93

Chapter 3 The Temperature Model

The decay of the temperature results in an inverse exponential increase of the heating
after the downtime,

∀ t ∈ [T] : ht−1
v :=

{
1− e−λOLt(olt(v)) if vt = 1,
0 else.

(3.1.3)

Note that the indices of hv lie in [0 .. T−1], as the heating for a start-up in period t is
performed in period t− 1.

To model the fixed start-up costs, we use the start-up and shutdown indicators yt, zt
due to [Gar62], which are equal to 1 iff the unit starts up/shuts down in period t.

∀ t ∈ [T] : ytv :=
{

1 if vt = 1 and OLt(olt(v)) > 0,
0 else.

(3.1.4)

∀ t ∈ [T] : ztv :=
{

1 if vt = 0 and OLt(olt(v)) = 0,
0 else.

(3.1.5)

As shown in the following, yt and ht−1 suffice to derive the start-up costs. Still, we
require zv and tempv to model the extended formulation of conv(epi(DCUΣ)) with
O(T 2) inequalities (see Theorem 3.26).

Proposition 3.1 For each v ∈ {0, 1}T , using the orthogonal projection

πtemp : R5T → R2T , (v, yv , zv , tempv ,hv) 7→ (v, cu),
cut := CUfixedyt + CUvarht−1,

(3.1.6)

it holds that πtemp(v, yv , zv , tempv ,hv) = (v,DCU(v)).

Proof. Substituting the definitions of hv and yv into (3.1.6) yields

cut = CUfixedytv + CUvarht−1
v = CUfixedytv + CUvar

(
1− e−λOLt(olt(l))

)
=

CUfixed + CUvar
(
1− e−λOLt(olt(l))

)
if OLt(olt(l)) > 0 and vt = 1,

0 else,

which equals the definition of the start-up costs (see (1.3.6), (1.3.4),(1.3.2)) for the
exponential start-up cost function in (3.0.1). 2

Thus, the set V temp of all such points,

V temp :=
{
(v, yv , zv , tempv ,hv)

∣∣ v ∈ {0, 1}T}.

94

3.1 A Physical Interpretation of the Start-up Costs

projects on the vertices V of the epigraph conv(epi(DCU)) of the start-up costs in all
periods, i. e. πtemp(V temp) = V . This motivates Section 3.2 and Section 3.3, which
focus on modeling V temp by enclosing polyhedra.

However, the defining equations (3.1.2) and (3.1.3) of tempt and ht are non-linear. In
preparation of the linear inequalities presented in the next section, we derive recursive
linear representations of tempt and ht in the following. These representations are
based on the solution (3.1.1) of the differential equation describing the heat loss, which
suggests the recursion

tempt+1
v = e−λLttemptv

for the temperature during offline periods.
Taking into account the temperature during online periods and the downtime PDT

prior to the modeled time range, we extend this relationship to all cases:

Proposition 3.2 For each v ∈ {0, 1}T ,

∀ t ∈ [T] : temptv =


1 if vt = 1,
e−λPDT if vt = 0 and t = 1,
1 if vt = 0, t > 1 and vt−1 = 1,
e−λLt−1tempt−1

v (v) if vt = 0, t > 1 and vt−1 = 0.

Proof. For vt = 1, temptv = 1 by definition. For vt = 0, we have temptv = e−λOLt(olt(v)),
and the equivalency follows directly from the properties of the number of preceding
offline periods olt(v),

olt(v) =
{

0 if t = 1 or vt−1 = 1,
olt−1(v) + 1 else,

and the properties of the offline length OLt(olt(v)),

OLt(olt(v)) =


PDT if t = 1,
0 if t > 1 and vt−1 = 1,
OLt−1(olt−1(v)) + Lt−1 if t > 1 and vt−1 = 0. 2

The recursion for the heating hv is derived analogously:

Proposition 3.3 For each v ∈ {0, 1}T ,

∀ t ∈ [T] : ht−1
v =


0 if vt = 0,
1− e−λPDT if vt = 1 and t = 1,
0 if vt = 1, t > 1 and vt−1 = 1,
1− e−λLt−1tempt−1

v if vt = 1, t > 1 and vt−1 = 0.

95

Chapter 3 The Temperature Model

3.2 An H-Representation for Integral Operational Schedules
Based on Propositions 3.2 and 3.3, this section presents O(T) feasible inequalities for
V temp. The resulting polyhedron P̂ temp correctly models the start-up costs for integral
operational schedules v ∈ {0, 1}T when minimizing their sum.
The requirement to minimize the sum of the start-up costs stems from the need to

prevent premature heating and can be relaxed to minimizing certain weighted sums of
the start-up costs. We point out its necessity in Subsection 3.2.1 and specify the exact
requirement in Definition 3.7.
The operational state v, the start-up indicators yt and the shutdown indicators zt

are part of the Unit Commitment problem presented in Section 1.2. For convenience,
we repeat their defining inequalities (1.2.2),(1.2.3):

∀ t ∈ [T] : 0 ≤ vt ≤ 1 (3.2.1)
∀ t ∈ [2..T] : yt − zt = vt − vt−1, (3.2.2)

y1 − z1 = v1 −
{

1 if PDT = 0,
0 else.

(3.2.3)

∀ t ∈ [T] : yt, zt ≥ 0 (3.2.4)

The operational temperature is enforced by

∀ t ∈ [T] : tempt ≥ vt. (3.2.5)

A lower bound suffices, as higher temperatures never lead to an optimal solution (cf.
Lemma 3.10).

During an offline period t, the temperature decays by a factor of e−λLt . On the other
hand, the temperature must remain constant at 1 during an online period. Keeping in
mind the possible heating, this results in the temperature development equations

temp1 = e−λPDT + h0, (3.2.6)
∀ t ∈ [T − 1] : tempt+1 = e−λLttempt + (1− e−λLt)vt + ht. (3.2.7)

Note that without the heating ht, substituting either vt = 0 or vt = 1 yields the case
distinction in equation (3.1.2) for tempi,tv .

The linear representation of the temperature development (3.2.7) in tempt+1, tempt,
vt, and ht is crucial for the efficiency of the temperature model. Section 3.4 generalizes
(3.2.7) for different temperature decays and points out that only an exponential
temperature decay results in a linear temperature development.
Since we assume that the unit can not actively extract heat, the heating variables

are non-negative,
∀ t ∈ [T] : ht−1 ≥ 0. (3.2.8)

96

3.2 An H-Representation for Integral Operational Schedules

Noting that heating in period 1 is applied iff the unit is online and was previously
offline, i. e. v1 = 1 and PDT > 0, we find the additional valid equation

h0 = (1− e−λPDT)v1. (3.2.9)

Together, inequalities (3.2.2)-(3.2.9) define the polyhedron P̂ temp.

Definition 3.4

P̂ temp :=
{

(v, y, z, temp, h) ∈ R5T fulfilling (3.2.1)-(3.2.9)
}
.

The next lemma points out that this polyhedron contains the feasible solutions of
the temperature model V temp.

Lemma 3.5
V temp ⊂ P̂ temp ⊂ R5T

≥0

Proof. It is straightforward to check that all variables of P̂ temp must be non-negative,
and thus P̂ temp ⊂ R5T

≥0.
We show that each point (v, yv , zv , tempv , hv) ∈ V temp fulfills all inequalities defining

P̂ temp in order of their introduction.
The bounds 0 ≤ vt ≤ 1 are trivially fulfilled by definition of V temp. The validity of

inequalities (3.2.2)-(3.2.4) for the start-up and shutdown indicators has been shown by
[Gar62]: For t > 1, OLt(olt(vt)) > 0 iff vt−1 = 0, and therefore (3.1.4) and (3.1.5) yield

ytv − ztv =


1 if vt = 1 and vt−1 = 0
−1 if vt = 0 and vt−1 = 1
0 else

 = vt − vt−1,

validating (3.2.2). For t = 1, OLt(olt(vt)) > 0 iff PDT > 0, and thus (3.1.4) and (3.1.5)
yield

y1
v − z1

v =


1 if v1 = 1 and PDT > 0
−1 if v1 = 0 and PDT = 0
0 else

 =
{
v1 if PDT > 0
v1 − 1 if PDT = 0

.

Hence, (3.2.3) is valid as well. Moreover, the indicators are non-negative by definition,
and so (3.2.4) holds.

The first case in (3.1.2) guarantees that inequality (3.2.5) enforcing the operational
temperature holds. To verify inequality (3.2.6), we consider two cases. If v1 = 0, then

temp1
v
(3.1.2)= e−λPDT (3.1.3)= e−λPDT + h0

v ,

97

Chapter 3 The Temperature Model

and if v1 = 1, then

temp1
v
(3.1.2)= 1 = e−λPDT + (1− e−λPDT) (3.1.3)= e−λPDT + h0

v .

For inequality (3.2.7) governing the temperature loss in periods t ≥ 1, three cases
are required. If vt = 1, then by Proposition 3.2 and 3.3

tempt+1
v = 1 = e−λLt temptv︸ ︷︷ ︸

=1

+
(
1− e−λLt

)
vt︸︷︷︸
=1

+ htv︸︷︷︸
=0

,

if vt = 0 and vt+1 = 0, then

tempt+1
v = e−λLttemptv = e−λLttemptv +

(
1− e−λLt

)
vt︸︷︷︸
=0

+ htv︸︷︷︸
=0

,

and if vt = 0 and vt+1 = 1, then

tempt+1
v = 1 = e−λLttemptv +

(
1− e−λLttemptv

)
vt︸︷︷︸
=0

+ htv .︸︷︷︸
=1−e−λLt temptv

Since the temperature tempv is bounded from above by 1, it is easy to see that the
heating hv is non-negative by checking every case of (3.1.3), confirming (3.2.8).

Finally, note that OL1(ol1(v)) = OL1(0) = PDT, (3.2.9) holds by definition of ht−1
v

in (3.1.3), since

h0
v =

{
1− e−λPDT if v1 = 1,
0 else.

}
= (1− e−λPDT)v1. 2

By Proposition 3.1, πtemp(V temp) equals the vertices of conv(epi(DCU)), which are
therefore contained in πtemp(P̂ temp). Furthermore, temperature and heating are only
bounded from below in P̂ temp, and hence the start-up costs are not bounded from
above. So, V temp ⊂ P̂ temp implies

Corollary 3.6
conv(epi(DCU)) ⊂ πtemp(P̂ temp).

98

3.2 An H-Representation for Integral Operational Schedules

3.2.1 Correctness for Integral Operational Schedules
Having established that solutions of the temperature model are contained in P̂ temp, we
spend the remainder of this section determining under which conditions these solutions
are optimal and the start-up costs are modeled correctly.
Note that in P̂ temp, a unit may heat even if it is not starting. However, since

the temperature losses are proportional to the difference between temperature and
operational state, premature heating leads to extra heat loss (see Fig. 3.3).

vt

tempt (optimal) temp˜ t (premature heating)

h10
h̃4

h̃10

k1 2 3 4 5 6 7 8 9 10 11

1

Figure 3.3: Temperature for premature heating h̃ compared to minimal heating h. The
premature heating h̃4 is strictly greater than the saved heating in period 10.

For example, consider a point (v, y, z, temp, h) ∈ P̂ temp with heating in period t− 1
such that tempt > vt. Postponing a part 0 < ∆ ≤ min{ht−1, tempt−vt} of the heating
to period t results in

temp˜ t′ =
{
tempt′ −∆ if t′ = t,
tempt′ else,

h̃t′ =


ht′ −∆ if t′ = t− 1,
ht′ + e−λLt−1∆ if t′ = t,
ht′ else.

(3.2.10)

Since temp˜ t ≥ vt, the point (v, y, z, temp˜ , h̃) still lies in P̂ temp. Its heating, and by
extension its associated start-up costs, are shifted from period t− 1 to period t, and
decreased by a factor of e−λLt−1

< 1.
As we show in the following, if p ∈ P̂ temp minimizes the total heating for an

operational schedule v ∈ {0, 1}, then there is no premature heating.
Definition 3.7 A positive objective function vector a ∈ RT>0 with

∀ t ∈ [T − 1] : at > e−λLtat+1,

is called heating-minimizing, and for each set P with V temp ⊂ P ⊂ P̂ temp and each
v ∈ [0, 1]T , a solution of

min
{
aT cu

∣∣∣ (v, y, z, temp,h) ∈ P, (v, cu) = πtemp(v, y, z, temp, h)
}

(3.2.11)

is called a heating-minimal solution for v in P .

99

Chapter 3 The Temperature Model

The class of heating-minimizing objective function vectors in particular includes the
one vector a = (1, . . . , 1)T , resulting in minimal summed start-up costs. In some cases,
for example when modeling variable fuel prices, one might want to choose a different
objective function vector a. Note that for a rapid increase in fuel prices, a may not
be heating-minimizing and premature heating may be optimal. While the resulting
start-up costs do not conform to the exponential start-up cost function, they may be
closer to the real behavior of a unit in such a situation.
We show in the following that heating-minimizing objective functions prevent pre-

mature heating, even for fractional operational schedules.

Proposition 3.8 For each v∈[0,1]T, each heating-minimal solution (v,y,z,temp,h)
for v in P̂ temp fulfills

∀ t ∈ [T] : ht−1 > 0 ⇒ tempt = vt.

Proof. Assume there exists a heating-minimal solution (v, y, z, temp, h) for v in P̂ temp

with premature heating, i. e.

∃ t ∈ [T] : ht−1 > 0 and tempt > vt.

Choose ∆ := max{ht−1, tempt − vt} > 0, and denote by (v, y, z, temp˜ , h̃) the point
with postponed heating as in (3.2.10). Let cu and c̃u be the start-up costs associated
with (v, y, z, temp,h) and (v, y, z, temp˜ , h̃), i. e. (v, cu) = πtemp(v, y, z, temp, h) and
(v, c̃u) = πtemp(v, y, temp˜ , h̃). Since both points have the same start-up indicators y,
we have

aT cu − aT c̃u = CUvar
(
aTh − aT h̃

)
,

which, noting that h and h̃ differ by ∆ in periods t and possibly t+ 1, is bounded by

aT cu − aT c̃u ≥
{
CUvar∆(at − at+1e−λL

t) > 0 if t < T ,
CUvarat∆ > 0 if t = T ,

a contradiction to the optimality of (v, y, z, temp, h). 2

As a direct consequence, heating prior to an offline period is never heating-minimal:

Proposition 3.9 For each v∈[0,1]T, each heating-minimal solution (v,y,z,temp,h)
for v in P̂ temp fulfills

∀ t ∈ [T] : vt = 0 ⇒ ht−1 = 0.

100

3.2 An H-Representation for Integral Operational Schedules

Proof. For t = 1, this holds due to (3.2.9). For t > 1, assume there exists t ∈ [T] with
vt = 0 and ht−1 > 0. By Proposition 3.8, this implies tempt = vt = 0, and thereby

0 = tempt (3.2.7)= e−λLt−1tempt−1 + (1− e−λLt−1)vt−1 + ht−1 ≥ ht−1 > 0,

a contradiction. 2

In the following, we show that every heating-minimal solution (v, y, z, temp,h) in
P̂ temp with v ∈ {0, 1}T lies in the set V temp, i. e. that

(v, y, z, temp,h) = (v, yv , zv , tempv ,hv).

Hence, P̂ temp correctly models temperature, heating, and start-up/shutdown indicators
when minimizing using a heating-minimizing objective function vector.

Lemma 3.10 For each v ∈ {0, 1}T , each heating-minimal solution (v, y, z, temp,h)
for v in P̂ temp fulfills temp = tempv and h = hv .

Proof. For each t ∈ [T], Proposition 3.8 proves that ht−1 > 0 implies tempt = vt.
Since the temperature may only rise when heating is applied and since vt ≤ 1, it follows
that tempt ≤ 1. On the other hand, vt ≤ tempt, and thus

∀ t ∈ [T] with vt = 1 : tempt = 1 = temptv .

If v1 = 0, then by (3.2.9) h0 = 0 and hence

temp1 (3.2.6)= e−λPDT + h0 = e−λPDT = temp1
v .

Finally, assume that there exists t ∈ [2..T] with vt = 0 and tempt 6= temptv , and
choose the first such period t∗. By the choice of t∗ we have tempt−1 = tempt−1

v , and
Proposition 3.9 implies ht∗−1 = 0. If vt∗−1 = 0, then

tempt∗ (3.2.7)= e−λLt
∗−1tempt∗−1 + (1− e−λLt

∗−1)vt∗−1 + ht∗−1

= e−λLt
∗−1tempt∗−1

v + (1− e−λLt
∗−1)vt∗−1

(3.2)=

e−λLt
∗−1tempt∗−1 if vt∗−1 = 0,

1 if vt∗−1 = 1,

 (3.2)= tempt∗v ,

again a contradiction. Hence, temp = tempv .
We proceed by showing that h = hv . Since no premature heating is applied due to

Proposition 3.8, we know that

∀ t ∈ [T], vt = 0 : ⇒ ht−1 = 0 = ht−1
v .

101

Chapter 3 The Temperature Model

If v1 = 1, the temperature development equation (3.2.6) implies

h0 = temp1 − e−λPDT = 1− e−λPDT = h0
v .

Analogously, for each t ≥ 2 with vt = 1, we have by (3.2.7)

ht−1 = 1− e−λLt
∗−1tempt−1 − (1− e−λLt

∗−1)vt−1

=

1− e−λLt
∗−1tempt∗−1 if vt∗−1 = 0,

0 if vt∗−1 = 1.

 = ht∗−1
v . 2

For non-zero fixed start-up costs, [Gar62] shows that inequalities (3.2.2)-(3.2.4)
properly model the start-up indicators.

Proposition 3.11 For each v ∈ {0, 1}T, each heating-minimal solution (v,y,z,temp,h)
for v in P̂ temp fulfills y = yv and z = zv .

So, for each integral operational schedule v ∈ {0, 1}T , the unique heating-minimal
solution is (v, yv , zv , tempv , hv) ∈ V temp, which models the start-up costs correctly by
Proposition 3.1.

Corollary 3.12 For each v ∈ {0, 1}T , the unique heating-minimal solution for v in
P̂ temp is (v, yv , zv , tempv ,hv) ∈ V temp.

By extension, the optimal solution of the heating-minimizing optimization problem
in (3.2.11) is independent of the feasible set P with V temp ⊂ P ⊂ P̂ temp. We use this
fact in the next section, where the formulation P̂ temp is tightened using further valid
inequalities for V temp.

Theorem 3.13 For each v ∈ {0, 1}T and each P with V temp ⊂ P ⊂ P̂ temp, the unique
heating-minimal solution for v in P is (v, yv , zv , tempv , hv) ∈ V temp.

3.3 The Temperature Polyhedron
This section introduces a class of O(T 2) inequalities valid for V temp, which can be
separated in O(T). Adding these inequalities to the H-representation of P̂ temp results
in an extended formulation of the summed start-up cost epigraph conv(epi(DCUΣ)).

Consider the operational schedules v′ = (1, 0, 0, 0, 0) and v′′ = (1, 0, 0, 0, 1) and their
convex combination v = (1− µ)v′ + µv′′ = (1, 0, 0, 0, µ) in Fig. 3.4. Since this decom-
position of v is unique, there exists exactly one point (v, y, z, temp, h) ∈ conv(V temp)
with v = (1, 0, 0, 0, µ). Combining the temperatures of v′ and v′′ yields

temp5 = (1−µ)temp5
v1

+µtemp5
v2

= (1− v5)e−3λ + v5 = e−3λtemp2︸ ︷︷ ︸
=1

+ (1− e−3λ)v5.

102

3.3 The Temperature Polyhedron

fractional vector v ∈ [0, 1]5

1
µ

t1 1v′′

t

integral vectors v′, v′′ ∈ {0, 1}5

1v′

t

Figure 3.4: Convex combination of the vectors v′ = (1, 0, 0, 0, 0), v′′ = (1, 0, 0, 0, 1) and their
respective temperatures (red) to v = (1, 0, 0, 0, µ), in contrast to the minimal
feasible temperature for v in P̂ temp (blue).

Generalizing the above example yields the residual temperature inequalities (RTIs)

∀ t ∈ [T], l ∈ [t− 1] :

tempt ≥

e−λOLt(l) tempt−l +
(
1− e−λOLt(l)

)
vt if l < t− 1,

e−λOLt(t−1) +
(
1− e−λOLt(t−1)

)
vt if l = t− 1.

(3.3.1)

We denote the RTI with parameters t and l as RTI(t, l). Using the same approach as
exemplified in Fig. 3.4, we show no RTI(t, l) is satisfied for all points in P̂ temp.

Proposition 3.14 For each t ∈ [T], l ∈ [t− 1], there exists (v, y, z, temp,h) ∈ P̂ temp

violating RTI(t, l).

Proof. It is straight-forward to check that the point (v, y, z, temp,h) with

∀ t′ ∈ [T] : vt
′ = yt′ =

{
e−λOLt(t−1) if t′ = t,
0 else,

tempt′ = e−λOLt′ (t′−1),

ht′ = 0,

zt′ =


1 if t′ = 1, PDT = 0,
e−λOLt(t−1) if t′ = t+ 1,
0 else,

fulfills the inequalities (3.2.1)-(3.2.9) and thereby lies in P̂ temp.
On the other hand, this point does not satisfy RTI(t, l): For l = t − 1, since

vt = e−λOLt(t−1) > 0 and e−λOLt(t−1) < 1, we have

tempt = e−λOLt(t−1) < e−λOLt(t−1) +
(
1− e−λOLt(t−1)

)
vt.

103

Chapter 3 The Temperature Model

and analogously for l < t− 1

tempt = e−λOLt(t−1) = e−λOLt(l)e−λOLt−l(t−l−1) < e−λOLt(l) tempt−l+
(
1−e−λOLt(l)

)
vt.
2

The terms e−λOLt(l)tempt−l and e−λOLt(t−1) represent the residual temperature left
in period t, if no heating is applied during periods t− l to t− 1, motivating their name.
The alternative formulation of the RTIs

∀ t ∈ [T], l ∈ [t− 1] : tempt − vt ≥
{
e−λOLt(l)(tempt−l − vt) if l < t− 1,
e−λOLt(l)(1− vt) if l = t− 1,

(3.3.2)

highlights their dominance over tempt ≥ vt and is well-suited for proving its validity
for V temp.

Lemma 3.15 All RTIs are valid for V temp.

Proof. Consider (v, yv , zv , tempv , hv) ∈ V temp and RTI(t, l), t ∈ [T], l ∈ [t− 1]. If
vt = 1, then the left hand side of (3.3.2) equals 0 by (3.2.5) and the right hand side is
not positive since tempv ≤ 1.
Recall that olt(v) denotes the number of offline periods prior to t, and therefore

vt−l = 0 for l ≤ olt(v). If vt = 0, then for l ≤ olt(v) by definition (3.1.2)

temptv = e−λOLt(olt(v)) and tempt−lv = e−λOLt−l(olt(v)−l).

This leads to

temptv = e−λOLt(olt(v))


≥ e−λOLt(l) ≥ e−λOLt(l)tempt−lv if l > olt(v),
= e−λOLt(l) = e−λOLt(l)tempt−lv if l = olt(v),
= e−λOLt(l)e−λOLt−l(olt(v)−l) = e−λOLt(l)tempt−lv else.

For l < t− 1, we thus have

temptv − vt = temptv ≥ e−λOLt(l)tempt−lv = e−λOLt(l)(tempt−lv − vt).

For l = t− 1, we know that l ≥ olt(v), and hence

temptv − vt = temptv ≥ e−λOLt(l) = e−λOLt(l)(1− vt). 2

The proof of the last statement already hints at the points in V temp which fulfill an
RTI with equality.

104

3.3 The Temperature Polyhedron

Proposition 3.16 A vertex (v, yv , zv , tempv ,hv)∈V temp fulfills RTI(t, l) with t ∈ [T],
l ∈ [t− 1] with equality if

• vt−l = . . . = vt = 0,
• l < t− 1 and vt−l−1 = vt = 1, or
• l = t− 1 and vt = 1.

Proof. We first consider the case vt−l = . . . = vt = 0, which implies l ≤ olt(v). Note
that l = t− 1 necessitates l = olt(v). Similarly to the proof of Lemma 3.15, (3.1.2) and
vt = 0 yield

temptv = e−λOLt(olt(v)) =
{
e−λOLt(l)tempt−lv + (1− e−λOLt(l))vt if l < t− 1,
e−λOLt(l) + (1− e−λOLt(l))vt. if l = t− 1.

On the other hand, if l < t− 1 and vt−l−1 = vt = 1, then tempt−lv = temptv = 1, and so

temptv = 1 = e−λOLt(l)tempt−lv + (1− e−λOLt(l))vt.

Analogously, if l = t− 1 and vt = 1, then

temptv = 1 = e−λOLt(l) + (1− e−λOLt(l))vt. 2

In the following, we consider the polyhedron P̂ temp tightened by the RTIs, which we
call the temperature polyhedron P temp.

Definition 3.17

P temp :=
{

(v, y, z, temp,h) ∈ P̂ temp fulfilling (3.3.1)
}
.

Note that P temp (P̂ temp, as Proposition 3.14 constructs a point for each t ∈ [T],
l ∈ [t− 1] which lies in P̂ temp \ P temp.
Since V temp ⊂ P temp ⊂ P̂ temp, Theorem 3.13 shows that each heating-minimal

solution in P temp for integral operational schedule v ∈ {0, 1}T lies in V temp and has
correct start-up costs. Furthermore, the RTIs do not bound the resulting start-up costs
from above, and so analogous to Corollary 3.6:

Corollary 3.18
conv(epi(DCU)) ⊂ πtemp(P temp).

105

Chapter 3 The Temperature Model

3.3.1 Equivalency to the Summed Start-up Cost Epigraph
Section 2.2 introduces the summed start-up cost DCUΣ and its convex extension LCUΣ,
and analyzes the epigraph epi(LCUΣ) = conv(epi(DCUΣ)). In this subsection, we show
that P temp is an extended formulation of epi(LCUΣ), i. e. that using the canonical
orthogonal projection

πΣ : R5T → R2T , (v, y, z, temp,h) 7→ (v, cuΣ)
with

cuΣ :=
∑
t∈[T]

(
CUfixedyt + CUvarht−1

)
,

we have πΣ(P temp) = epi(LCUΣ).
Theorem 2.36 gives an H-representation of epi(LCUΣ) composed of the binary tree

inequalities (BTIs, cf. Definition 2.26) and the trivial inequalities 0 ≤ v ≤ 1. We prove
our claim by showing that each BTI is dominated by a set of inequalities of P temp

under the projection πΣ.
Each BTI corresponds to a rank-labeled binary tree B ∈ B with nodes [T] (see

Definition 2.26). Recall that in such a binary tree,

• S(t), L(t), and R(t) denote the principal subtree, the left subtree, and the right
subtree of node t, respectively, and

• s(t), l(t), and r(t) are defined as the number of nodes of the respective subtrees
(cf. Subsection 2.2.2).

Furthermore, the definition of OLt(l) is extended in (2.2.8) such that OL(S(t))
denotes the downtime of a start-up after being offline during the periods t ∈ S(t). Since
S(t) comprises the nodes [t−l(t) .. t+r(t)],

OL(S(t)) := OLt+r(t)+1(s(t)).

Analogously, OL(L(t)) = OLt(l(t)) and OL(R(t)) = OLt+r(t)+1(r(t)).
Using this notation, the BTI are defined as

∀B ∈ B : cuΣ ≥
∑
t∈[T]

δt(l(t), r(t)) vt

with coefficients δt derived in (2.2.10) as

δt(l(t), r(t)) =
{
CU(OL(L(t))) + CU(OL(R(t)))− CU(OL(S(t))) if t+ r(t) < T ,
CU(OL(L(t))) else,

where, the condition t+r(t) < T holds iff t is not a top-right node (cf. Proposition 2.21).
We showed in Proposition 2.17 that these coefficients δt correspond to the change in

the summed start-up costs cuΣ associated with v when changing vt from 0 to 1 (cf.

106

3.3 The Temperature Polyhedron

1

2

3

4

5

6

7

8

v 0 0 0 0 0 0 0 1

ṽ 0 0 0 0 1 0 0 1

t′

t1 2 3 4 5 6 7 8
OL(L(t′)) OL(R(t′))

OL(S(t′))

Figure 3.5: Change from vt
′ = 0 to vt′ = 1 which defines the coefficient δt′ .

Fig. 3.5). If t+ r(t) = T , the start-up costs CU(OL(R(t))), CU(OL(S(t))) are dropped
from δt, since both refer to a start-up in period T + 1 which lies outside the modeled
time range.
For the exponential start-up cost function, the start-up costs CU(OL(L(t))) in the

coefficients δt of the BTIs equate to

CU(OL(L(t))) = CUvar
(
1− e−λOL(L(t))

)
+
{
CUfixed if OL(L(t)) > 0,
0 else.

For t+ r(t) < T , using that OL(S(t)) ≥ Lt > 0 and (OL(R(t)) > 0 ⇔ r(t) > 0), the
remaining start-up costs in δt equate to

CU(OL(R(t))) = CUvar
(
1− e−λOL(R(t))

)
+
{
CUfixed if r(t) > 0,
0 else,

CU(OL(S(t))) = CUvar
(
1− e−λOL(S(t))

)
+ CUfixed.

These start-up costs are composed by a fixed part with factor CUfixed and a variable
part with factor CUvar. Substituting the start-up costs in the definition of δt shows
that δt can be decomposed analogously.

107

Chapter 3 The Temperature Model

Proposition 3.19 For each B ∈ B and each t ∈ [T], defining

βt =
{

1 if OL(L(t)) > 0,
0 else,

}
−
{

1 if r(t) = 0 and t < T ,
0 else,

}
,

γt =
{

1 + e−λOL(S(t)) − e−λOL(L(t)) − e−λOL(R(t)) if t+ r(t) < T ,
1− e−λOL(L(t)) else.

each binary tree inequality can be written as

cuΣ ≥
∑
t∈[T]

δt(l(t), r(t))vt = CUfixed ∑
t∈[T]

βtvt + CUvar ∑
t∈[T]

γtvt.

The division in fixed and variable costs is reflected in the projection πΣ, where the
sum of the start-up costs is defined as

cuΣ = CUfixed ∑
t∈[T]

yt + CUvar ∑
t∈[T]

ht−1.

We prove the dominance of the inequalities of P temp over each BTI by showing that
for each (v, y, z, temp, h) ∈ P temp∑

t∈[T]
yt ≥

∑
t∈[T]

βtvt and
∑
t∈[T]

ht−1 ≥
∑
t∈[T]

γtvt,

which implies that for (v, cuΣ) = πΣ(v, y, z, temp,h),

cuΣ = CUfixed ∑
t∈[T]

yt + CUvar ∑
t∈[T]

ht−1 ≥ CUfixed ∑
t∈[T]

βtvt + CUvar ∑
t∈[T]

γtvt. (3.3.3)

We first consider the fixed costs: There, as we will see, the lower bounds on yt as
given by (3.2.2) of P̂ temp,

yt = vt − vt−1 + zt ≥ vt − vt−1 and yt ≥ 0,

suffice.

Lemma 3.20 For each (v, y, z, temp, h) ∈ P temp and each B ∈ B,∑
t∈[T]

yt ≥
∑
t∈[T]

βtvt.

Proof. The sum of the start-up indicator variables is bounded by∑
t∈[T]

yt ≥
∑
t∈[T]

OL(L(t))>0

yt ≥
∑
t∈[T]

OL(L(t))>0

vt −
∑

t∈[2..T]
OL(L(t))>0

vt−1,

108

3.3 The Temperature Polyhedron

since we have yt ≥ vt − vt−1 for t ≥ 2, and since, if OL1(0) > 0, we also have PDT > 0
and thus y1 = v1.

For t ≥ 2, OL(L(t)) > 0 is equivalent to l(t) > 0, which is equivalent to r(t− 1) = 0.
Thus, we have ∑

t∈[2..T]
OL(L(t))>0

vt−1 =
∑

t∈[T−1]
r(t)=0

vt,

and therefore the bound on the start-up indicators can be reformulated as∑
t∈[T]

yt ≥
∑
t∈[T]

OL(L(t))>0

vt −
∑

t∈[T−1]
r(t)=0

vt =
∑
t∈[T]

βtvt. 2

Subsection 2.2.1 highlights that the binary tree structure underlying the BTIs is
caused by the fact that for an operational schedule v ∈ {0, 1}T with vt = 1, the start-up
costs in periods prior and after t are independent. This property is intrinsic to the
temperature: vt = 1 implies tempt = 1, and hence the temperatures prior and after t
are independent.

Furthermore, recall the cost-optimal decomposition of a point (v, cuΣ) performed in
the proof of Lemma 2.33 and represented in Fig. 2.20. Considering a different example,
Fig. 3.6 shows that this decomposition fits all RTI(t, l(t)).
We prove in the remainder of this section that the variable part of each BTI is

formed by combining the RTIs with parameters t and l = l(t), using the temperature
development inequalities (3.2.6) and (3.2.7), which amounts to showing∑

t∈ [0 .. T−1]
ht ≥

∑
t∈[T]

γtvt.

The proof considers subtrees of B of increasing size:

• Proposition 3.22 starts with nodes t without a left child llink(t),

• Lemma 3.23 continues with principal subtrees S(t) of nodes t that are not
top-right, i. e. with t+ r(t) < 1,

• Lemma 3.24 proceeds with left subtrees L(t) of top-right nodes t, and

• Lemma 3.25 concludes with the complete tree.

To clearly identify the RTIs which are necessary to dominate a given BTI, we
summarize the contribution of the RTIs in the following technical lemma. Note that
for a given B ∈ B, only inequalities RTI(t, l) with l = l(t) are required in this proof
and in the following results.

109

Chapter 3 The Temperature Model

RTI(3, 2) RTI(7, 2)RTI(3, 2) RTI(7, 2)

t

v1

v2

v3

v4

v5
v6

v7
1

fractional vector v ∈ [0, 1]7 decomposition of v into vectors wj ∈ [0, 1]7

1

1 1

1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1

1

2

3
4

5
6

7

Cartesian tree for v

Figure 3.6: The summed start-up costs LCUΣ(v) of the fractional v ∈ [0, 1]7 (top left)
are given by the BTI defined by the Cartesian tree for v (bottom left).
Each point (wj ,DCUΣ(wj)) in the decomposition according to Lemma 2.33
of (v,LCUΣ(v)) (right) fulfills this BTI with equality. Proposition 3.16 shows
that each wj and its induced temperature also fulfills RTI(t, l(t)).

Lemma 3.21 Let (v, y, z, temp,h) ∈ P temp, B ∈ B, and t ∈ B be given. If t+r(t) < T
then

ht ≥ γtvt + e−λOL(R(t))tempt+1 − tempt

+
{

(e−λOL(L(t)) − e−λOL(S(t)))tempt−l(t) if l(t) < t− 1,
(e−λOL(L(t)) − e−λOL(S(t))) else,

(3.3.4)

and if t+ r(t) = T then

tempt −
{
e−λOL(L(t))tempt−l(t) if l(t) < t− 1
e−λOL(L(t)) else

}
≥ γtvt. (3.3.5)

110

3.3 The Temperature Polyhedron

Proof. If t+ r(t) = T , the statement follows directly from the definition of RTI(t, l(t))
in (3.3.1),

tempt −
{
e−λOL(L(t))tempt−l(t) if l(t) < t− 1
e−λOL(L(t)) else

}
≥ (1− e−λOL(L(t)))vt = γtvt.

Else, if t+ r(t) < T , then the temperature development equation (3.2.7) and ht ≥ 0
imply

ht ≥ e−λOL(R(t))ht

= e−λOL(R(t))tempt+1 − e−λ(OL(R(t))+Lt)tempt − e−λOL(R(t))(1− e−λLt)vt

= e−λOL(R(t))tempt+1 − tempt + (1− e−λOL(R(t)))vt (3.3.6)
+ (1− e−λ(OL(R(t))+Lt))(tempt − vt).

If l(t) < t−1, then RTI(t, l(t)) as given in (3.3.2) and multiplied by the non-negative
factor (1− e−λ(OL(R(t))+Lt)) equals

(1− e−λ(OL(R(t))+Lt))(tempt − vt) ≥ (1− e−λ(OL(R(t))+Lt))e−λOL(L(t))(tempt−l(t) − vt)
(2.2.19)=

(
e−λOL(L(t)) − e−λOL(S(t))

)
(tempt−l(t) − vt).

Applying this inequality to (3.3.6) yields

ht ≥ e−λOL(R(t))tempt+1 − tempt +
(
e−λOL(L(t)) − e−λOL(S(t))

)
tempt−l(t)

+
(

1− e−λOL(L(t)) − e−λOL(R(t)) + e−λOL(S(t))︸ ︷︷ ︸
=γt

)
vt.

If l(t) = t− 1, the statement follows analogously without “tempt−l(t)”, due to the case
distinction in the definition of the RTIs (3.3.1). 2

Proposition 3.22 Let (v, y, z, temp,h) ∈ P temp, B ∈ B, and t ∈ B with l(t) = 0 be
given. If l(t) < t− 1, then

0 = tempt − e−λOL(L(t))tempt−l(t),
and if l(t) = t− 1, then

h0 = tempt − e−λOL(L(t)).

Proof. If l(t) < t− 1, then OL(L(t)) = OLt(l(t)) = OLt(0) = 0, implying

0 = tempt − e−λOL(L(t))tempt = tempt − e−λOL(L(t))tempt−l(t).

If l(t) = t − 1, then t = 1 and e−λOL(L(t)) = e−λPDT . The equation for the initial
temperature (3.2.6) implies

h0 = temp1 − e−λPDT = tempt − e−λOL(L(t)). 2

111

Chapter 3 The Temperature Model

Lemma 3.23 Let (v, y, z, temp, h) ∈ P temp, B ∈ B, and t ∈ B with t + r(t) < T be
given. If l(t) < t− 1, then

∑
t′∈S(t)

ht′ ≥ tempt+r(t)+1 − e−λOL(S(t))tempt−l(t) +
∑

t′∈S(t)
γt
′
vt
′
,

and if l(t) = l − 1, then

h0 +
∑

t′∈S(t)
ht′ ≥ tempt+r(t)+1 − e−λOL(S(t)) +

∑
t′∈S(t)

γt
′
vt
′
.

Proof. The above inequalities (in particular ht′ and tempt+r(t)+1
t) are well-defined

since t+ r(t) < T , and thus T /∈ S(t).
We start by proving the claim for nodes t ∈ B with l(t) < t− 1 by induction over

the size s(t) of S(t). For the induction start, i. e. for t ∈ B with s(t) = 1, Lemma 3.23
is implied Lemma 3.21. We consider t ∈ B with s(t) > 1 in the following.

If t has a left child tl, it holds that

∑
t′∈L(t)

ht′ =
∑

t′∈S(tl)
ht

ind. hyp.
≥ temptl+r(tl)+1 − e−λOL(S(tl))temptl−l(tl) +

∑
t′∈S(tl)

γt
′
vt
′

= tempt − e−λOL(L(t))tempt−l(t) +
∑

t′∈L(t)
γt
′
vt
′
. (3.3.7)

If t has no left child, (3.3.7) holds because of Proposition 3.22. Analogously, if t has a
right child tr, the induction yields

∑
t′∈R(t)

ht′ =
∑

t′∈S(tr)
ht

ind. hyp.
≥ temptr+r(tr)+1 − e−λOL(S(tr))temptr−l(tr) +

∑
t′∈S(tr)

γt
′
vt
′

= tempt+r(t)+1 − e−λOL(R(t))tempt+1 +
∑

t′∈R(t)
γt
′
vt
′
. (3.3.8)

If t has no right child, (3.3.8) holds since

tempt+r(t)+1
t = tempt+1

t = e−λOL(R(t))tempt+1.

112

3.3 The Temperature Polyhedron

By combining the inequalities (3.3.4), (3.3.7), and (3.3.8), the sum of the heating
variables can be bounded by∑
t′∈S(t)

ht′ = ht +
∑

t′∈L(t)
ht′ +

∑
t′∈R(t)

ht′

≥ e−λOL(R(t))tempt+1 − tempt + (e−λOL(L(t)) − e−λOL(S(t)))tempt−l(t) + γtvt

+ tempt − e−λOL(L(t))tempt−l(t) +
∑

t′∈L(t)
γt
′
vt
′

+ tempt+r(t)+1 − e−λOL(R(t))tempt+1 +
∑

t′∈R(t)
γt
′
vt
′

= tempt+r(t)+1 − e−λOL(S(t))tempt−l(t) +
∑

t′∈S(t)
γt
′
vt
′
.

For nodes t ∈ B with l(t) = t− 1, the statement follows analogously 2

Lemma 3.24 Let (v, y, z, temp, h) ∈ P temp, B ∈ B, and t ∈ B with t + r(t) = T be
given. If l(t) < t− 1, then ∑

t′∈L(t)
ht′ ≥

∑
t′∈L(t)

γt
′
vt
′ + γtvt,

and if l(t) = t− 1,
h0 +

∑
t′∈L(t)

ht′ ≥
∑

t′∈L(t)
γt
′
vt
′ + γtvt.

Proof. For each node t ∈ B with t+ r(t) = T and l(t) < t− 1, we have by Proposi-
tion 3.22 (if t has no left child) or by Lemma 3.23 (applied to left child llink(t) of t)
that ∑

t′∈L(t)
ht′ ≥ tempt − e−λOL(L(t))tempt−l(t) +

∑
t′∈L(t)

γt
′
vt
′
,

which, by (3.3.5) may be bounded by∑
t′∈L(t)

ht′ ≥
∑

t′∈L(t)
γt
′
vt
′ + γtvt.

For the root node t = root(B), which is the unique node with t + r(t) = T and
l(t) = t− 1, we analogously have

h0 +
∑

t′∈L(t)
ht′ ≥ tempt − e−λOL(L(t)) +

∑
t′∈L(t)

γt
′
vt
′ ≥

∑
t′∈L(t)

γt
′
vt
′ + γtvt

due to Proposition 3.22, Lemma 3.23, and (3.3.5). 2

113

Chapter 3 The Temperature Model

Lemma 3.25 For each (v, y, z, temp, h) ∈ P temp and B ∈ B it holds that∑
t∈[T]

ht−1 ≥
∑
t∈[T]

γtvt.

Proof. The top-right nodes of B (see Definition 2.20) are defined recursively: the first
top-right node η1 is the root, and each subsequent top-right node ηi is the right child
of ηi−1. We repeat basic facts on top-right nodes from Subsection 2.2.2:

• the depth d of each top-right node ηi is i − 1, i. e. d(ηi) = i + 1, and the last
top-right node is ηd(T)+1 = T (see Definition 2.20),

• each node of B is either a top-right node or belongs to the left subtree of a
top-right node (see Corollary 2.23), and

• for each top-right node t it holds that t+ r(t) = T (see Proposition 2.21).

Thus, the heating variables ht can be split into top-right nodes and into left subtrees
of top-right nodes as

∑
t∈[T]

ht−1 = h0 +
d(T)+1∑
r=1

∑
t∈L(ηr)

ht +
d(T)∑
r=1

hηi ≥ h0 +
∑

t∈L(η1)
ht +

d(T)+1∑
r=2

∑
t∈L(ηr)

ht,

and, using Lemma 3.23 and Lemma 3.24, bounded by

∑
t∈[T]

ht−1 ≥
d(T)+1∑
r=1

 ∑
t∈L(ηr)

γtvt + γηrvηr

 =
∑
t∈[T]

γtvt.
2

As pointed out in (3.3.3), the statements of Lemma 3.20 and Lemma 3.25 imply that
each BTI is dominated by inequalities of P temp, as

∑
t∈[T]

(
CUfixedyt + CUvarht−1

)
≥ CUfixed ∑

t∈[T]
βtvt + CUvar ∑

t∈[T]
γtvt =

∑
t∈[T]

δtvt.

Therefore, the projection πΣ(p) of each point p ∈ P temp fulfills all BTIs and lies in
epi(LCUΣ). On the other hand, conv(epi(DCU)) ⊂ πtemp(P temp) (see Corollary 3.18),
which by definition of πΣ implies epi(LCUΣ) ⊂ πΣ(P temp).

Theorem 3.26
πΣ(P temp) = epi(LCUΣ).

114

3.3 The Temperature Polyhedron

3.3.2 Separation
Since each of the O(T 2) RTI has 3 non-zero coefficients, an exhaustive search separates
the RTI in O(T 2). In this section, we use Lemma 3.21 to identify T crucial RTIs for
each v ∈ [0, 1]T , based on which we present an O(T) algorithm that

• separates the projection πΣ(p) of each point p ∈ P̂ temp from epi(LCUΣ), and

• separates each heating-minimal point p ∈ P̂ temp from P temp.

This separation algorithm may be extended canonically to arbitrary points p ∈ R5T

while preserving the running time, as each of the O(T) inequalities in the H-represen-
tation of P̂ temp has at most 4 non-zero coefficients.

The proof of πΣ(P temp) = epi(LCUΣ) in the last section shows that each of the BTIs,
which define epi(LCUΣ), is dominated by a projection of the inequalities of P̂ temp

and the RTIs. Moreover, the RTIs used in this projection are identified in the proof
of Lemma 3.21, and depend solely on B:

Corollary 3.27 For each B ∈ B and p ∈ P̂ temp, if p fulfills RTI(t, l(t)) for each
t ∈ [T] with l(t) > 0, then πΣ(p) fulfills the BTI induced by B.

By Corollary 2.35, a point (v, cuΣ) ∈ [0, 1]T ×R lies in epi(LCUΣ) iff the BTI induced
by a Cartesian tree B for v (cf. Definition 2.32) is fulfilled.

Corollary 3.28 For each p = (v, y, z, temp, h) ∈ P̂ temp with Cartesian tree B for v,
if p fulfills RTI(t, l(t)) for each t ∈ [T] with l(t) > 0, then πΣ(p) ∈ epi(LCUΣ).

Thus, to separate the projection πΣ(p) of a point p ∈ P̂ temp, it suffices to check all
RTI(t, l) with l = l(t) > 0:

• if these inequalities are fulfilled then πΣ(p) ∈ epi(LCUΣ), and
• else the violated RTIs separate p from P temp.

To simplify the algorithm, we note that the definition of the RTI can be extended
canonically to l = 0,

∀ t ∈ [T], l ∈ [0 .. t−1] :

tempt ≥

e−λOLt(l) tempt−l +
(
1− e−λOLt(l)

)
vt if l < t− 1,

e−λOLt(t−1) +
(
1− e−λOLt(t−1)

)
vt if l = t− 1,

such that RTI(t, l) with l = 0 are always fulfilled:

Proposition 3.29 For each point (v, y, z, temp,h) ∈ P̂ temp and each t ∈ [T], the
inequality RTI(t, 0) holds with equality.

115

Chapter 3 The Temperature Model

Proof. The claim holds for t ∈ [2..T] since OLt(0) = 0. For t = 1, we have
OL1(0) = PDT, and therefore (3.2.6) and (3.2.9) imply

temp1 = e−λPDT +h0 = e−λPDT +(1−e−λPDT)v1 = e−λOL1(0) +(1−e−λOL1(0))v1. 2

We give the separation algorithm without explicitly calculating the subtree sizes l(t)
and the downtimes OLt(l(t)). See Algorithm 2.2.1 for how these values can be derived
in O(T) for a binary tree B ∈ B.

Algorithm 3.3.1: SeparateRTI
Input :Point (v, y, z, temp,h) ∈ P̂ temp

Output : πΣ(v, y, z, temp,h) lies in epi(LCUΣ) or a violated RTI.
1 B ← FindCartesianTree (v) (represented by root, llink, and rlink);
2 for t ∈ [T] do
3 if l(t) < t− 1 then
4 if tempt < e−λOLt(l(t))tempt−l(t) + (1− e−λOLt(l(t)))vt then
5 stop (v, y, z, temp,h) violates RTI(t, l(t));

6 else
7 if tempt < e−λOLt(l(t)) + (1− e−λOLt(l(t)))vt then
8 stop (v, y, z, temp,h) violates RTI(t, l(t));

9 stop πΣ(v, y, z, temp,h) lies in epi(LCUΣ);

Proposition 3.30 For each p ∈ P̂ temp, Algorithm 3.3.1 confirms πΣ(p) ∈ epi(LCUΣ)
or stops with an RTI which separates p from P temp, in O(T).

By using Algorithm 3.3.1 in a cutting plane approach, we can model the constraint
πΣ(v, y, z, temp,h) ∈ epi(LCUΣ) and thereby reach the same bound on the summed
start-up costs as in epi(LCUΣ).
Still, Algorithm 3.3.1 does not separate p ∈ P temp from P̂ temp as there exist

points p ∈ P̂ temp \ P temp with πΣ(p) ∈ epi(LCUΣ). In the remainder of this sub-
section, we demonstrate that such points are not heating-minimal. In other words, we
prove that for a heating-minimal solution p, Algorithm 3.3.1 either finds a violated
RTI or confirms that p fulfills all RTIs. Moreover, the proof highlights the connection
between the RTIs and Cartesian trees.

A Cartesian tree of a vector v ∈ [0, 1]T is given in (2.2.11) as a rank-labeled binary
tree on nodes [T] such that for each node t ∈ [T] and its parent p(t), it holds that

vt ≤ vp(t).

116

3.3 The Temperature Polyhedron

Such a tree has two important properties:

• since for each t ∈ [T] with l(t) < t − 1, the node t is a descendant of the
node t− l(t)− 1 (cf. Corollary 2.24),

∀ t ∈ [T] with l(t) < t− 1 : vt ≤ vt−l(t)−1, (3.3.9)

• and since the nodes [t−l(t) .. t−1] lie in the left subtree of t (cf. (2.2.5)),

∀ t ∈ [T], t′ ∈ [t−l(t) .. t−1] : vt ≥ vt′ . (3.3.10)

As the next lemma demonstrates, property (3.3.9) implies that RTI(t, l̃) with l̃ > l(t)
is dominated by the combination of RTI(t, l(t)) and RTI(t− l(t)− 1, l̃ − l(t)− 1).

Lemma 3.31 For each p ∈ P̂ temp with Cartesian tree B, t ∈ [T], l̃ ∈ [l(t)+1 .. t−1],
the combination of RTI(t, l(t)) and RTI(t− l, l̃ − l(t)− 1) dominate RTI(t, l̃).

Proof. First, suppose l(t) < l̃ < t−1. We start from formulation (3.3.2) of RTI(t, l(t)),

tempt − vt ≥ e−λOLt(l(t))(tempt−l(t) − vt︸ ︷︷ ︸
(∗)

). (3.3.11)

Due to the temperature development equation (3.2.7) and (3.3.9), the term (∗) on its
right-hand side can be bounded by

tempt−l(t) − vt = e−λLt−l(t)tempt−l(t)−1 + (1− e−λLt−l(t)−1)vt−l(t)−1 − vt

= e−λLt−l(t)−1(tempt−l(t)−1 − vt) + (1− e−λLt−l(t)−1)(vt−l(t)−1 − vt︸ ︷︷ ︸
≥0

)

≥ e−λLt−l(t)−1(tempt−l(t)−1 − vt︸ ︷︷ ︸
(∗∗)

). (3.3.12)

Using RTI(t− l(t)− 1, l̃ − l(t)− 1), the term (∗∗) in (3.3.12) is bounded by

tempt−l(t)−1 − vt ≥ vt−l(t)−1 + e−λOLt−l(t)−1(l̃−l(t)−1)(tempt−l̃ − vt−l(t)−1)− vt,

= e−λOLt−l(t)−1(l̃−l(t)−1)(tempt−l̃ − vt)

+ (1− e−λOLt−l(t)−1(l̃−l(t)−1))(vt−l(t)−1 − vt︸ ︷︷ ︸
≥0

)

≥ e−λOLt−l(t)−1(l̃−l(t)−1)(tempt−l̃ − vt). (3.3.13)

Combining (3.3.11), (3.3.12), and (3.3.13) results in

tempt − vt ≥ e−λOLt(l(t))e−λLt−l(t)−1e−λOLt−l(t)−1(l̃−l(t)−1)(tempt−l̃ − vt),

117

Chapter 3 The Temperature Model

which equals RTI(t, l̃), as can be seen by aggregating the heat loss factors to

tempt − vt ≥ e
−λ
(∑

t′∈[t−l(t)..t−1] L
t′ + Ll(t)−1 +

∑
t′∈[t−l̃..t−l(t)−2] L

t′
)

(tempt−l̃ − vt)

= e−λ
∑

t′∈[t−l̃..t−1] L
t′

(tempt−l̃ − vt) = e−λOLt(t−l̃)(tempt−l̃ − vt).

Finally, for l̃ = t− 1 the statement is proved analogously by replacing tempt−l̃ with 1.2

The property (3.3.10) is used in the following to show that RTI(t, l̃) with l̃ < l(t) is
dominated by RTI(t, l(t)).

Lemma 3.32 For each heating-minimal solution (v, y, z, temp,h) in P̂ temp with Carte-
sian tree B for v, t ∈ [T], RTI(t, l̃ + 1) dominates RTI(t, l̃).

Proof. If ht−l̃−1 = 0, then

tempt−l̃ = e−λLt−l̃−1tempt−l̃−1 + (1− e−λLt−l̃−1)vt−l̃−1.

Using the above equation and (3.3.10), RTI(t, l̃ + 1) implies

tempt ≥ e−λOLt(l̃+1)tempt−l̃−1 + (1− e−λOLt(l̃+1))vt

= e−λOLt(l̃)tempt−l̃ + (1− e−λOLt(l̃))vt + e−λOLt(l̃)(1− e−λLt−l̃−1)(vt − vt−l̃−1︸ ︷︷ ︸
≥0

)

≥ e−λOLt(l̃)tempt−l̃ + (1− e−λOLt(l̃))vt,

and so RTI(t, l̃) is dominated by RTI(t, l̃ + 1).
If ht−l̃−1 > 0, then by Proposition 3.8 tempt−l̃ = vt−l̃. Hence, (3.3.10) implies

tempt − vt−l̃ ≥ vt − vt−l̃ ≥ 0 = e−λOLt(l̃)(tempt−l̃ − vt−l̃). 2

By combining the two previous results, we strengthen Corollary 3.28 for heating-
minimal solutions:

Theorem 3.33 For each heating-minimal solution p of P̂ temp, Algorithm 3.3.1 sepa-
rates p from P temp in a running time of O(T).

Proof. By Corollary 3.28, for each point p = (v, y, z, temp, h) ∈ P̂ temp Algorithm 3.3.1
either confirms that πΣ(p) ∈ epi(LCUΣ) or stops with a violated RTI in O(T).

If the algorithm stops with a violated RTI, then p /∈ P temp. Else, p fulfills RTI(t, l(t))
for a Cartesian tree B for v and each t ∈ [T]. We prove that the remaining RTIs are
fulfilled as well by induction over t ∈ [T].

For t = 1, the single inequality RTI(1, 0) is trivially fulfilled.

118

3.4 Generalization of Temperature Development

For t ≥ 2, Lemma 3.31 can be applied for l = l(t) + 1 and each l̃ ∈ [l .. t−1], showing
that RTI(t, l̃) is fulfilled for l̃ ∈ [l(t)+1 .. t−1].
Assume there exists l ∈ [l(t)− 1] such that RTI(t, l) is violated. If l̃ denotes the

maximal such l, then RTI(t, l̃ + 1) is fulfilled. Hence, Lemma 3.32 proves that RTI(t, l̃)
is fulfilled, a contradiction. Thus, RTI(t, l) is fulfilled for all l ∈ [t− 1].

In conclusion, if Algorithm 3.3.1 confirms that πΣ(p) ∈ epi(LCUΣ), then p fulfills all
RTI and hence p ∈ P temp. 2

3.4 Generalization of Temperature Development

In Section 3.2, we derived the temperature formulation P̂ temp for the exponential
start-up cost function

CU(L) =
{
CUvar(1− f(L)) + CUfixed if L > 0,
0 if L = 0,

where f(L) = e−λL. This section generalizes the temperature model to functions f
satisfying three conditions:

• f is strictly decreasing and continuous,
• f(0) = 1 and f(L)→ 0 for L→∞ to retain the meaning of the fixed costs CUfixed

and variable costs CUvar, and
• f is strictly convex for keeping premature heating inefficient.

As we will show, f = e−λL is unique with the property of resulting in a affine linear
inequalities in Proposition 3.35, and that f may be modeled using convex inequalities
iff f(f−1(x) + y) is concave with respect to x for y > 0.

The fundamental idea of this chapter is to explicitly model the variable temp by the
value f(L),

∀ t ∈ [T] : temptv :=
{

1 if vt = 1,
f(OLt(olt(v))) else,

where OLt(olt(v)) equals the downtime prior to period t in the operational schedule v.
To model the connection between two consecutive temperatures, we replace the

exponential case of the temperature development equations (3.2.6),(3.2.7) by their
possibly non-linear generalizations

temp1 = f(PDT) + ht, (3.4.1)
∀ t ∈ [T − 1] : tempt+1 ≤ f(f−1(tempt) + Lt) + (1− f(Lt))vt + ht. (3.4.2)

119

Chapter 3 The Temperature Model

The generalized temperature set Ŝtemp is defined similarly as P̂ temp with (3.2.6),
(3.2.7) replaced by (3.4.1), (3.4.2):

Ŝtemp :=
{

(v, y, z, temp,h) ∈ R5T fulfilling (3.2.1)–(3.2.5),(3.2.9),(3.4.1),(3.4.2)
}
.

(3.4.3)
Section 3.2 proves in three steps that P̂ temp models the start-up costs, showing that

• P̂ temp is valid for V temp in Lemma 3.5,
• optimal solutions in P̂ temp for heating-minimal objective function vectors do not

heat prematurely in Proposition 3.8, and
• optimal solutions in P̂ temp for heating-minimal objective function vectors model

correct start-up costs in Lemma 3.10.

Assuming that premature heating is prevented, Lemma 3.5 and Lemma 3.10 are
straightforward to generalize to Ŝtemp by noting that

• if vt = 1, then using (3.2.5) tempt = 1 and therefore

tempt+1
v = 1 = f(f−1(temptv)︸ ︷︷ ︸

=f−1(1)=0

+Lt) + (1− f(Lt)) vt︸︷︷︸
=1

+ htv︸︷︷︸
=0

,

• if vt = 0 and vt+1 = 0, then

tempt+1
v = f(OLt+1(olt+1(v))) = f(f−1(temptv)︸ ︷︷ ︸

=OLt(olt(v))

+Lt) + (1− f(Lt)) vt︸︷︷︸
=0

+ htv︸︷︷︸
=0

,

• and if vt = 0 and vt+1 = 1, then

tempt+1
v = 1 = f(f−1(temptv)︸ ︷︷ ︸

=OLt(olt(v))

+Lt) + (1− f(Lt)) vt︸︷︷︸
=0

+ htv .︸︷︷︸
=1−f(OLt+1(olt+1(v)))

Regarding the premature heating, extending Proposition 3.8 to Ŝtemp highlights why
f must be strictly convex. Due to the complexity of generalizing the definition of
heating-minimal objective function vectors in Definition 3.7, we restrict ourselves to
the typically used vector a := (1, . . . , 1).

Proposition 3.34 For each v ∈ [0, 1], each (v, y, z, temp, h) ∈ Ŝtemp which minimizes∑
t∈[T]

ht−1

in Ŝtemp fulfills
∀ t ∈ [T] : ht−1 > 0 ⇒ tempt = vt.

120

3.4 Generalization of Temperature Development

Proof. The argumentation of this proof is analogous to the original proof of Proposi-
tion 3.8. Assume there exists t ∈ [T] such that

ht−1 > 0 and tempt > vt.

Then, we can postpone an amount ∆ := max{ht−1, tempt − vt} > 0 of heating in
period t − 1 to period t. To keep tempt+1 constant, the heating in period t must
increase by

Γ := f(f−1(tempt) + Lt)︸ ︷︷ ︸
=tempt+1

−f(f−1(tempt −∆︸ ︷︷ ︸
temp˜ t

) + Lt).

The resulting point (v, y, z, temp˜ , h̃) with

temp˜ t′ =
{
tempt′ −∆ if t′ = t,
tempt′ else,

h̃t′ =


ht′ −∆ if t′ = t− 1,
ht′ + Γ if t′ = t,
ht′ else,

lies in Ŝtemp.
Since f is strictly decreasing and ∆ > 0, f−1(tempt) < f−1(tempt −∆). Thus, as f

is strictly decreasing and strictly convex, Γ can be bounded by

Γ < f(f−1(tempt))− f(f−1(tempt −∆)) = ∆.

Thereby, the amount of heating in (v, y, z, temp˜ , h̃) ∈ Ŝtemp is∑
t∈[T]

h̃t−1 =
∑
t∈[T]

ht + Γ−∆ <
∑
t∈[T]

ht−1,

a contradiction to the minimality of the total heating in (v, y, z, temp,h). 2

Having proved that Ŝtemp correctly models the start-up costs, we consider the shape
of Ŝtemp. The only inequality in the representation (3.4.3) of Ŝtemp which may not be
affine linear is (3.4.2), due to the term f(f−1(temp) + Lt).

This term determines whether Ŝtemp is a polyhedron, a convex set, or a non-convex
set:

• inequality (3.4.2) is affine linear iff f(f−1(temp) +L) is affine linear in temp, and
• inequality (3.4.2) is convex iff f(f−1(temp) + L) is concave in temp.

We continue by showing that f(f−1(temp) + L) is affine linear iff f = e−λL, and
conclude this section by giving the exemplary class of functions f = (1 + x)−p such
that f(f−1(temp) + L) is concave.

Proposition 3.35 Ŝtemp is a polyhedron iff f(L) = e−λL for some λ > 0.

121

Chapter 3 The Temperature Model

Proof. As noted, Ŝtemp is a polyhedron iff f(f−1(temp) + L) is affine linear in temp.
If f(L) = e−λL, then

f(f−1(temp) + L) = f

(ln(temp)
−λ

+ L

)
= eln(temp)−λL = e−λLtemp,

and hence f(f−1(temp) + L) is linear in temp. On the other hand, assume that there
exist functions a(L) and b(L) with

f(f−1(temp) + L) = a(L)temp + b(L).

Since f is strictly decreasing and converges to 0, we have 0 < f(f−1(temp)+L) < temp,
and so

(1− a(L))temp > b(L).
Hence, considering temp → 0, b(L) ≥ 0. Summarizing, b(L) is bounded as

(1− a(L))temp > b(L) ≥ 0,

which implies a(L) < 1 and, again by considering temp → 0, b(L) = 0.
Furthermore, it holds for all L′, L′′ ∈ R>0 that

a(L′′)a(L′)temp = a(L′′)f(f−1(temp) + L′) = f(f−1(f(f−1(temp) + L′)) + L′′)
= f(f−1(temp) + L′ + L′′) = a(L′ + L′′)temp.

By [Rud76, p. 197, ex. 6], the only continuous function with a(L′)a(L′′) = a(L′ + L′′)
is a(L) = e−λL with λ ∈ R, and since a(L) < 1, we have λ > 0. Finally, f(L) can be
derived as

∀L > 0 : f(L) = f(f−1(1)︸ ︷︷ ︸
=0

+L) = a(L) = e−λL. 2

Proposition 3.36 If f(x) = (1 + x)−p with p > 0, then Ŝtemp is convex.

Proof. First note that f(x) = (1 + x)−p is admissible, since f is continuous on (0, 1),
strictly decreasing, strictly convex, and fulfills f(0) = 1 and f(x)→ 0 as x→∞.

The term f(f−1(temp) + L) evaluates to

f(f−1(temp) + L) = temp
(p
√tempL+ 1)p ,

and its second partial derivative with respect to temp is

δ2f(f−1(temp) + L)
δtemp2 = −p+ 1

p

p
√tempL

temp(p
√tempL+ 1)p+1 < 0.

Thus, f(f−1(temp) + L) is concave in temp and Ŝtemp is convex. 2

122

Chapter 4

Start-up Types

Start-up type models assign a type s to each start-up using binary variables δts. This
approach was introduced in [Muc66] and enhanced in [SBB10], and is capable of
modeling the complete start-up process, including e. g. costs, synchronization times,
soak times, and power trajectories (see [SBB10]). Even when only modeling time-
dependent start-up costs, the computational experiments in [MELR13b] demonstrate
that start-up types are beneficial, since the solution times are shortened considerably
by tightening the linear relaxation compared to the start-up cost models presented e. g.
[NR00; CA06] and in Section 2.1.

The present chapter provides an interpretation of the start-up types as optimal flows
in a special network flow model. The flow conservation inequalities of this network
significantly tighten the inequalities in [Muc66; SBB10], yielding a smaller integrality
gap and better computational performance. In particular, the resulting model P δ
is an extended formulation of the epigraph of all start-up costs conv(epi(DCU)) (see
Section 2.3).
Moreover, Theorem 4.20 uses the interpretation of the start-up types as flows to

compare the tightness of the models P tex (see [CA06]), epi(LCUt) (see Section 2.1), P δex
(see [Muc66]), and the newly introduced P δ.

As opposed to the extended formulation P temp of conv(epi(DCUΣ)) presented in
Chapter 3, start-up type models allow any increasing start-up cost function and an
arbitrary weighting of the start-up costs in each period. Furthermore, while we only
consider start-up costs, the start-up production can be modeled based on the start-up
types as shown in [SBB10] (cf. Subsection 1.3.3).

In the following, the model is introduced in five steps:

• Section 4.1 presents the interpretation of a special case of start-up types as
optimal solutions in a network flow model.

• Section 4.2 shows that the polyhedron corresponding to this network flow model
is an extended formulation of conv(epi(DCU)) with O(T 2) variables and O(T) in-
equalities.

• For piece-wise constant start-up cost functions with S steps (e. g. approximations
as in Subsection 2.1.6), Section 4.3 groups the flows into S start-up types, thereby

123

Chapter 4 Start-up Types

reducing the number of variables to O(ST) at the cost of O(T 2) inequalities. Of
these, O(T) inequalities suffice to model the types correctly for v ∈ {0, 1}T , and
the remaining inequalities can be separated in O(T 2).

• Section 4.4 notes a relationship between the types and the widely-used start-
up/shutdown indicators, and substitutes some types with indicators.

• Finally, Section 4.5 exploits the flow interpretation to compare our model with the
models from [Muc66; SBB10; CA06] and the epigraphs in Sections 2.1 and 2.3.

4.1 The Network Flow Interpretation

We consider the network with nodes

V := {0, 1−, . . . , T−, 1+, . . . , T+} and edges

E :=
{

(t−, t+)
∣∣∣ t ∈ [T]

}
∪
{

(t+, t′−)
∣∣∣ t ∈ [T], t′ ∈ [0 .. t−1]

}
.

(4.1.1)

In this network, each node pair t−, t+ corresponds to a period t ∈ [T]. Their
connecting edge (t−, t+) represents the operational state vt and thus has capacity 1.
As we see in the following, the edges (t+, t′−) between nodes from different periods
indicate whether the unit was shut down in period t′ and started up in period t. The
capacity of these edges is unlimited, but the flow on them is implicitly bounded by 1
due to the capacities of the edges (t−, t+) and the flow conservation in nodes t+.
To represent shutdowns and start-ups outside the modeled time range, we use the

sink node 0, and model the nodes t− as sources, i. e. with outgoing flow at least as
high as incoming flow.
Denoting the flow on edge (t−, t+) as vt and the flow on edge (t+, t′−) as f tt−t′−1, a

flow can be represented by (v, f) (cf. Fig. 4.1).

0 1−

1+

2−

2+

T−

T+

v1 v2 vT
f1

0 f2
0

f2
1

fTT−3
fTT−2 fTT−1

fTl

Figure 4.1: Network flow interpretation of the start-up types.

124

4.1 The Network Flow Interpretation

Using the number of offline periods olt(v) preceding period t, we define the canonical
flow of an operational schedule v ∈ {0, 1}T as (v, f̂(v)) (see Fig. 4.2). For each
t ∈ [T], l ∈ [0 .. t−1], the flow on edge (t+, (t− l − 1)−) is given by

f̂ tl (v) :=
{

1 if vt = 1 and l = olt(v),
0 else.

(4.1.2)

t
0 0 1 1 1 0 0 1 0v

0 1−

1+

2−

2+

3−

3+

4−

4+

5−

5+

6−

6+

7−

7+

8−

8+

9−

9+

Figure 4.2: Exemplary canonical flow (v, f̂(v)) of an operational schedule v ∈ {0, 1}T with
T = 9. The shown edges have flow 1 and all hidden edges have flow 0.
Note how each start-up is indicated by an edge (t+, t′−) with t′ < t − 1 having
flow 1: The start-up is performed in period t and the length of the preceding
downtime is given by t− t′ − 1.

In the following, we characterize the feasible flows within the described network,
and bring them into relation with the start-up costs. Firstly, the canonical flow of an
operational schedule is always feasible:

Proposition 4.1 For each v ∈ {0, 1}T , (v, f̂(v)) is a feasible flow.

Proof. The edge capacities are fulfilled since 0 ≤ vt ≤ 1. Since the sink 0 has only
incoming edges, it suffices to check the flow conservation of the nodes t− and t+.

For each t ∈ [T], it holds by definition of f̂(v) that

t−1∑
l=0

f̂ tl (v) = f̂ tolt(v)(v) = vt,

fulfilling the flow conservation at nodes t+. For the nodes t−, a case distinction is
necessary:

• If vt = 0, then for each t′ ∈ [t+1 .. T], olt′(v) 6= t′ − t− 1, and thus

T∑
t′=t+1

f̂ t
′
t′−t−1(v) = 0 = vt.

125

Chapter 4 Start-up Types

• For vt = 1, suppose that there exist t1 < t2 ∈ [T] with vt1 = 1, t = t1−olt1(v)−1,
and t = t2 − olt2(v)− 1. Then by definition olt2(v) ≤ t2 − t1 − 1 < t2 − t− 1, a
contradiction. So, there exists at most one t′ ∈ [T] with t′ − olt′(v)− 1 = t, i. e.

T∑
t′=t+1

f̂ t
′
t′−t−1(v) ≤ 1 = vt. 2

The capacity of 1 on the edges (t−, t+) constrains v to [0, 1]T , and through the flow
conservation on the nodes t+ also limits f tl :

Proposition 4.2 Each feasible flow (v,f) lies in [0, 1]T+T (T + 1)/2.

Proof. The number of components of f is ∑t∈[T]
∑t−1
l=0 1 = T (T + 1)/2. For each t∈ [T],

max
l∈[0 .. t−1]

f tl ≤
t−1∑
l=0

f tl = vt ≤ 1. 2

Figure 4.2 suggests that non-zero flows f tl with l > 0 indicate offline periods, and may
therefore be used to derive the start-up costs incurred by v. We define the projection
πf as

πf : [0, 1]T × [0, 1]T (T + 1)/2 → [0, 1]T × RT

(v,f) 7→ (v, cu)
with cut :=

t−1∑
l=0

CUt(l)f tl .

Indeed, it follows directly from the definition in (4.1.2) that the costs associated to
(v, f̂(v)) equal the incurred start-up costs DCU(v), i. e.

∀ v ∈ {0, 1}T : πf (v, f̂(v)) = (v,DCU(v)). (4.1.3)

As we show next, the network is designed such that (v, f̂(v)) not only results in correct
start-up costs, but moreover minimizes the costs among all (v,f).

Proposition 4.3 For each v ∈ {0, 1}T and each feasible flow (v,f),

(v,DCU(v)) = πf (v, f̂(v)) ≤ πf (v,f),

and if CU is strictly increasing and f̂(v) 6= f , then πf (v, f̂(v)) < πf (v,f).

Proof. For each t ∈ [T], the definition of olt(v) implies vt−l = 0 for all l ∈ [olt(v)− 1].
Using the flow conservation for the nodes t′− with t′ ∈ [t−olt(v)+1 .. t−1], we obtain

∀ l ∈ [0 .. olt(v)−1] : f tl = 0.

126

4.2 The Start-up Flow Polyhedron

Since CU is increasing, πf (v,f) is bounded by

πf (v,f) =
t−1∑
l=0

CUt(l)f tl =
t−1∑

l=olt(v)
CUt(l)f tl

∗
≥ CUt(olt(v))

t−1∑
l=olt(v)

f tl = CUt(olt(v))
t−1∑
l=0

f tl ,

which by the flow conservation in nodes t+ and (4.1.2) implies

πf (v,f) ≥ CUt(olt(v))
t−1∑
l=0

f tl︸ ︷︷ ︸
=vt

= CUt(olt(v))
t−1∑
l=0

f̂ tl (v)︸ ︷︷ ︸
=vt

=
t−1∑
l=0

CUt(l)f̂ tl (v) = πf (v, f̂(v)).

If CU is strictly increasing and f 6= f̂(v), then the inequality above marked by “∗” is
strict for some t ∈ [T]. 2

4.2 The Start-up Flow Polyhedron

This section shows that the canonical linear model of the proposed network flow problem
is an extended formulation of conv(epi(DCU)).

The capacity 1 of the edges (t−, t+) and the unboundedness of the edges (t+, t′−) is
expressed as

∀ t ∈ [T] : 0 ≤ vt ≤ 1, (4.2.1)
∀ t ∈ [T], l ∈ [0 .. t−1] : f tl ≥ 0. (4.2.2)

The flow conservation for the nodes t+ is modeled by

∀ t ∈ [T] :
t−1∑
l=0

f tl = vt. (4.2.3)

For the nodes t−, which are sources, the outgoing flow must be at least as high as the
incoming flow,

∀ t ∈ [T − 1] :
T∑

t′=t+1
f t
′
t′−t−1 ≤ vt. (4.2.4)

We call the resulting polyhedron

P f :=
{

(v,f) ∈ RT+T (T + 1)/2 fulfilling inequalities (4.2.1)-(4.2.4)
}

(4.2.5)

the start-up flow polyhedron.

127

Chapter 4 Start-up Types

As the inequalities (4.2.1)-(4.2.4) model a flow problem on a directed graph with
edges of capacity 1 or unlimited capacity, an H-representation of P f can be given in
matrix form as

P f =


(v,f) ∈ RT+T (T + 1)/2

∣∣∣∣∣∣∣∣∣∣∣


C+
−C+
C−
IT 0
−I

(v,f) ≤


0
0
0
1
0




,

using the oriented incidence matrices C+ and C− of the graph in (4.1.1) restricted
to the nodes t+ and t−, respectively, the identity matrix IT of size T , the identity
matrix I of size T + T (T + 1)/2, and the zero matrix 0 of appropriate size. The matrices
C− and C+ are shown in Fig. 4.3 (using T = 5).

−1 1 1 1 1
−1 1 1 1
−1 1 1
−1 1
−1




C− =

1 −1
1 −1−1

1 −1−1−1
1 −1−1−1−1

1 −1−1−1−1−1




C+ =

v1 v2 v3 v4 v5 f1
0 f2

0 f2
1 f3

0 f3
1 f3

2 f4
0 f4

1 f4
2 f4

3 f5
0 f5

1 f5
2 f5

3 f5
4

1−
2−
3−
4−
5−

1+
2+
3+
4+
5+

Figure 4.3: Incidence matrices C− and C+ of the nodes t− and t+ in the network flow problem
underlying P f . The edges are identified by their associated flow.

The matrix defining P f is totally unimodular since it is composed of incidence and
identity matrices (see [HK56]). Hence, as the right hand side is integral, each vertex of
P f is integral as well.
As P f is contained in the cube [0, 1]T+T (T + 1)/2 (see Proposition 4.2), each vertex of

P f is binary and each binary vector in P f is extremal.

Proposition 4.4 The set of vertices of P f is V f := P f ∩ {0, 1}T+T (T + 1)/2.

128

4.3 The Start-up Type Polyhedron

In particular, the vertices of P f include the canonical flows (v, f̂(v)), which dominate
all other vertices (v,f) in terms of start-up costs (cf. Proposition 4.3). Hence, we have

conv
{
πf (v,f̂(v))

∣∣∣ v ∈ {0,1}T} ⊂ πf (P f) = conv
{
πf (v,f)

∣∣∣ (v,f) ∈ V f
}

⊂ conv
{
πf (v,f̂(v))

∣∣∣ v ∈ {0,1}T}+ pos{uT+t | t ∈ [T]},

where ut denotes the t-th unit vector.
Again by Proposition 4.3, the points πf (v, f̂(v)) equal the vertices of the epigraph

of the start-up costs conv(epi(DCU)),

conv(epi(DCU)) = conv
{

(v,DCU(v))
∣∣∣ v ∈ {0, 1}T}+ pos{uT+t | t ∈ [T]},

and hence the lower boundaries of P f and conv(epi(DCU)) are equal under projection.

Theorem 4.5

πf (P f) + pos{uT+t | t ∈ [T]} = conv(epi(DCU)).

4.3 The Start-up Type Polyhedron

[SBB10] presents the idea of grouping start-ups with the same start-up costs, such that
multiple offline lengths result in the same start-up type. This reduces the number of
variables for step-wise constant start-up cost functions, e. g. approximations of start-up
cost functions computed with Algorithm 2.1.2.
In this section, we introduce the concept of start-up types to P f , reducing the

number of variables from O(T 2) to O(ST), where S is the number start-up types. The
resulting extended formulation P δ of conv(epi(DCU)) has O(T 2) inequalities, of which
O(ST) suffice to model the start-up costs for integral operational schedules v ∈ {0, 1}T .

The inequalities of P δ have O(ST) non-zero coefficients, resulting in a separation by
exhaustive search with running time O(ST 3). We present a O(T 2) separation algorithm
which checks each inequality in constant time.

After defining start-up types in the context of P f , we analyze the resulting formulation

• by deriving valid inequalities in Subsection 4.3.1,
• by showing that a subset of these valid inequalities models the start-up costs

correctly for v ∈ {0, 1}T in Subsection 4.3.2,
• by proving that all valid inequalities model the start-up costs correctly for
v ∈ [0, 1]T in Subsection 4.3.3, and

• by providing a separation algorithm in Subsection 4.3.4.

129

Chapter 4 Start-up Types

Consider a start-up cost function with CUt(l) = CUt(l + n) for some t, l, n. Then,
the flows f tl , . . . , f tl+n induce the same start-up costs CUt(l). The idea of the start-up
types is to model these flows by a single variable δts := f tl + · · · f tl+n, where s denotes
the start-up type with offline lengths [l..l + n].
For a given start-up cost function, we define a grouping of the offline lengths into

start-up types for period t as a partition of [0 .. t−1] given by non-empty intervals
Lt0, . . . ,LtSt with Lt0 = {0}, such that the lengths in each interval induce the same
costs,

∀ s ∈ [0..St], l1, l2 ∈ Lts : CUt(l1) = CUt(l2),
and such that the lengths increase with s,

∀ s ∈ [St] : maxLts−1 = minLts − 1.

If CU is a step function, then each such interval Lts corresponds to a step of CU. We
denote the total number of such types by SΣ := ∑

t∈[T](St + 1).
Combining the flows f tl with l ∈ Lts into the start-up type δts can be expressed by

the projection

πfδ : RT+T (T + 1)/2 → RT+SΣ
, (v,f) 7→ (v, δ),

with
∀ t ∈ [T], s ∈ [0..St] : δts :=

∑
l∈Lts

f tl .

By the choice of Lts, the start-up costs induced by these composite flows equate to

∀ t ∈ [T] : cut =
t−1∑
l=0

CUt(l)f tl =
St∑
s=0

CUt
(
minLts

)
δts.

Thus, the start-up types (v, δ) are canonically projected to conv(epi(DCU)) by

πδ : RT+SΣ → R2T , (v, δ) 7→ (v, cu)
with

∀ t ∈ [T] : cut :=
St∑
s=0

CUt
(
minLts

)
δts.

Note that by definition the start-up costs πf (v,f) associated to (v,f) are equal to
the start-up costs πδ(v, δ) associated to (v, δ) = πfδ(v,f).

Proposition 4.6
πδ ◦ πfδ = πf .

Therefore πδ(πfδ(P f)) = πf (P f) = conv(epi(DCU)), and πfδ(P f) is also an extended
formulation of conv(epi(DCU)).

130

4.3 The Start-up Type Polyhedron

4.3.1 Valid Inequalities

The H-representation of P f is given by (4.2.1)-(4.2.4).
The edge capacities and the non-negativity of the flow remain valid for πfδ(P f),

∀ t ∈ [T] : 0 ≤ vt ≤ 1, (4.3.1)
∀ t ∈ [T], s ∈ [0 .. St] : δts ≥ 0. (4.3.2)

The conservation inequality (4.2.3) on the nodes t+,

∀ t ∈ [T] :
t−1∑
l=0

f tl = vt,

is easily translated to πfδ(P f), as each start-up type δts is the combination of flows f tl
with the same start node t:

∀ t ∈ [T] :
St∑
s=0

δts = vt. (4.3.3)

The flow conservation inequality (4.2.4) at nodes t−,

∀ t ∈ [T − 1] :
T∑

t′=t+1
f t
′
t′−t−1 ≤ vt,

however cannot be translated in the same manner, since each start-up type has multiple
end nodes. Thus, a start-up type δts can only be bounded if the inequality regards all
end nodes of δts simultaneously. To simplify the notation, we denote the indices of the
end nodes of δts by E ts, i. e.

∀ t ∈ [T], s ∈ [0..St] : E ts := {t− l − 1 | l ∈ Lts}.

For each set A ⊂ [T], the nodes {t− | t ∈ A} thus comprise the end nodes of all
start-up types δts with

(t, s) ∈ I(A) :=
{

(t′, s′)
∣∣∣ t′ ∈ [T], s′ ∈ [0..St′] with E t′s′ ⊂ A

}
. (4.3.4)

We call I(A) the set of incoming start-up types of A. By definition, these start-up
types correspond to a subset of the incoming start-up flows of {t− | t ∈ A}, i. e.

∑
(t,s)∈I(A)

δts =
∑

(t,s)∈I(A)

=δts︷ ︸︸ ︷∑
l∈Lts

f tl =
∑

(t,s)∈I(A)

∑
e∈Ets

f tt−e−1 ≤
∑
e∈A

T∑
t=e+1

f tt−e−1.

131

Chapter 4 Start-up Types

By summing the flow conservation inequalities (4.2.4) of nodes {t− | t ∈ A}, we can
thereby bound their incoming start-up types,

∀A ⊂ [T] :
∑

(t,s)∈I(A)
δts ≤

∑
e∈A

T∑
t=e+1

f tt−e−1
(4.2.4)
≤

∑
t∈A

vt. (4.3.5)

This combined flow conservation inequality for A inequality is valid for πfδ(P f).
Note however that this inequality is not irredundant. For each set A ⊂ [T] that

can be partitioned in two sets A1∪̇A2 = A with I(A) = I(A1) ∪ I(A2), the flow
conservation inequalities for A1 and A2 imply the inequality for A,∑

(t,s)∈I(A1∪A2)
δts =

∑
(t,s)∈I(A1)

δts +
∑

(t,s)∈I(A2)
δts ≤

∑
t∈A1

vt +
∑
t∈A2

vt =
∑

t∈A1∪A2

vt.

By definition, I(A) = I(A1)∪I(A2) iff each set of end nodes E ts ⊂ [a..b] fulfills E ts ⊂ A1
or E ts ⊂ A2. Since the sets E ts are intervals, such A1, A2 exist for all A ⊂ [T] which
are not intervals. Hence, no irredundant inequalities (4.3.5) are disregarded by only
considering

∀ a ∈ [T − 1], b ∈ B(a) :
∑

(t,s)∈I([a..b])
δts ≤

b∑
t=a

vt (4.3.6)

with B(a) :=
{
b ∈ [a .. T−1]

∣∣∣ ∀ b′ ∈ [a .. b−1] : I([a..b]) 6= I([a..b′]) ∪ I([b′+1 .. b])
}
.

Corollary 4.7 The set of inequalities (4.3.5) dominates the set of inequalities (4.3.6).

4.3.2 Integral Operational Schedules
The canonical flow f̂(v) is extended to start-up types by

∀ t ∈ [T], s ∈ [0..St] : δ̂ ts(v) :=
{

1 if vt = 1 and olt(v) ∈ Lts,
0 else,

By definition (v, δ̂(v)) = πfδ(v, f̂(v)), and hence feasibility and associated start-up
costs follow directly from Proposition 4.1 and (4.1.3).

Corollary 4.8 For each v∈{0,1}T,

(v, δ̂(v)) ∈ πfδ(P f) and πδ(v, δ̂(v)) = (v,DCU(v)).

Proposition 4.3 shows that P f models the start-up costs correctly for v ∈ {0, 1}T
by noting that start-up costs associated with the canonical flow f̂(v) are minimal.

132

4.3 The Start-up Type Polyhedron

The proof centers on the flow conservation of the nodes t−, which enforces f tl = 0 for
l < olt(v).
An analogous argument can be made for the start-up types using the following

selection of inequalities (4.3.6):

∀ [a..b] ∈
{
E ts
∣∣∣ t ∈ [T], s ∈ [0 .. St]

}
:

∑
(t,s)∈I([a..b])

δts ≤
∑

t∈ [a..b]
vt. (4.3.7)

Note that these inequalities are a subset of the inequalities (4.3.6): [a..b] = E ts implies for
each b′ ∈ [a .. b−1] that (t, s) ∈ I([a..b]) \ I([a..b′]) ∪ I([b′+1 .. b]), and thus b ∈ B(a).

We call the resulting polyhedron

P̂ δ :=
{

(v, δ) ∈ RT+SΣ fulfilling (4.3.1), (4.3.2),(4.3.3), and (4.3.7)
}

(4.3.8)

the start-up type polyhedron for integers, and apply the approach of Proposition 4.3 to
P̂ δ:

Proposition 4.9 Each (v, δ) ∈ P̂ δ with v ∈ {0, 1}T fulfills πδ(v, δ) ≥ (v,DCU(v)).

Proof. We show that πδ(v, δ) ≥ (v,DCU(v)) by defining the start-up costs cu such
that (v, cu) = πδ(v, δ) and examining cut for each t ∈ [T].
Since the intervals Lts partition [0 .. t−1], there exists a unique s∗ ∈ [0..St] with

olt(v) ∈ Lts∗ . By definition of olt(v), we have vt′ = 0 for each s ∈ [0 .. s∗−1], t′ ∈ E ts.
Therefore by (4.3.7)

δts ≤
∑

(t′,s′)∈I(Ets)
δt
′
s′ ≤

∑
t′∈Ets

vt
′ = 0,

implying δts = 0. Since CU is increasing, it follows from inequality (4.3.3) that

cut =
St∑
s=0

CUt(minLts∗)δts =
St∑
s=s∗

CUt(minLts∗)δts

≥ CUt(minLts∗)
St∑
s=s∗

δts = CUt(minLts∗)
St∑
s=0

δts = CUt(minLts∗)vt,

which by the choice of s∗ and by definition of the start-up costs in (1.3.6) implies

cut ≥ CUt(minLts∗)vt = CUt(olt(v))vt = DCUt(v). 2

133

Chapter 4 Start-up Types

4.3.3 Fractional Operational Schedules
In general, πfδ(P f) is a proper subset of P̂ δ, meaning that P̂ δ does not bound the
start-up costs tightly for fractional operational schedules. Consider the following
example with T = 5, start-up costs

∀ t ∈ [T] : CUt(1) = CUt(2) = 2, CUt(3) = CUt(4) = 3

independent of t and start-up types

L1
0 = {0}, L2

0 = {0},L2
1 = {1}, L4

0 = {0},L4
1 = [1..2],L4

2 = {3},
L3

0 = {0},L3
1 = [1..2], L5

0 = {0},L5
1 = [1..2],L5

2 = [3..4].

For the operational schedule v = (1, 1/2, 0, 1/2, 1), the point (v, f) ∈ P f with

f4
1 = 1/2, f5

3 = 1/2, and f tl = 0 for all other (t, l),

results in minimal start-up costs cu = (0, 0, 0, 2/2, 3/2). Yet, for (v, δ) ∈ P̂ δ the start-up
types

δ4
1 = 1/2, δ5

1 = 1/2, and δts = 0 for all other (t, s),

are feasible, resulting in strictly lower costs c̃u = (0, 0, 0, 2/2, 2/2). Thus, in general

πfδ(P f) (P̂ δ. (4.3.9)

This subsection shows that by using all instances of inequality (4.3.6), the so-called
start-up type polyhedron

P δ :=
{

(v, δ) ∈ RT+SΣ fulfilling (4.2.1), (4.3.2),(4.3.3), and (4.3.6)
}

(4.3.10)

models πfδ(P f) and is thereby an extended formulation of conv(epi(DCU)).
Since inequalities (4.3.3) and (4.3.6) are valid for πfδ(P f), it holds that πfδ(P f) ⊂ P δ.

We prove P δ ⊂ πfδ(P f) by showing that each type δ may be “split” into feasible flows f ,
i. e. that for each (v, δ) ∈ P δ there exists (v,f) ∈ P f such that πfδ(v,f) = (v, δ).

Theorem 4.10
πfδ(P f) = P δ.

Proof. The idea of this proof is to model the splitting of δ into f as a network
flow problem. This problem is designed such that any maximal flow corresponds to
(v,f) ∈ P f with πfδ(v,f) = (v, δ).

The underlying graph G = (V,E) is shown in Fig. 4.4. Its vertices V consist of a
source a, a sink b and two sets of nodes X and Y ,

V := {a, b}∪X ∪Y with X := {xts | t ∈ [T], s ∈ [0..St]}, Y := {yt | t ∈ [0..T − 1]}.

134

4.3 The Start-up Type Polyhedron

Its directed edges E are subdivided into three categories,

E := Eδ ∪ Ef ∪ Ev
with

Eδ :=
{

(a, xts)
∣∣∣ t ∈ [T], s ∈ [0..St]

}
⊂ {a} ×X,

Ef :=
{

(xts, yt
′)
∣∣∣ t ∈ [T], s ∈ [0..St], t′ ∈ E ts

}
⊂ X × Y,

Ev :=
{

(yt, b)
∣∣∣ t ∈ [T − 1]

}
⊂ Y × {b}.

Each edge (a, xts) corresponds to the start-up type δts, each edge (xts, yt
′) corresponds

to the start-up flow f tl with l = t− t′ − 1 ∈ Lts, and each edge (yt, b) corresponds to vt.

a

b

x1
0 x6

2 x6
1 x6

0 xT0

y0 y1 y2 y3 y4 y5 yT−1

Eδ

Ef

Ev

Figure 4.4: Graph modeling the splitting of δ into f . The edges between xts and yt
′ are shown

for x6
s with S6 = 2.

The edge capacities of Eδ and Ev are derived from the considered point (v, δ), and
the capacities of (y0, b) and Ef are unlimited,

c : E → R≥0, e 7→


δts if e = (a, xts),
vt if e = (yt, b) with t ≥ 1,
∞ if e = (y0, b),
∞ if e = (xts, yt

′).

A flow in this network is uniquely determined by the flow on the edges (xts, yt
′):

Denoting the flow on (xts, yt
′) by f tl with l = t− t′ − 1 ∈ Lts, the flow conservation of

the nodes xts and yt state

• that the flow on each edge (a, xts) equals
∑
l∈Lts

f tl , and

135

Chapter 4 Start-up Types

• that the flow on each edge (yt, b) equals
T∑

t′=t+1
f t
′
t′−t−1.

Therefore, the capacities of the edges (yt, b) imply the inequality (4.2.4) of P f ,

∀ t ∈ [T − 1] :
T∑

t′=t+1
f t
′
t′−t−1 ≤ vt,

and the capacities of the edges (a, xts) imply

∀ t ∈ [T], s ∈ [0..St] :
∑
l∈Lts

f tl ≤ δts,

which is equivalent to πfδ(v,f) ≤ (v, δ).
Note that if there exists an a-b-flow with value

C :=
∑

t∈[T],s∈[0..St]
δts ,

then the outgoing edges of node a are saturated, and it holds that

∀ t ∈ [T], s ∈ [0..St] :
∑
l∈Lts

f tl = δts,

which is equivalent to πfδ(v,f) = (v, δ).
For such a flow, the inequality (4.2.3) of P f is fulfilled as well since

∀ t ∈ [T] :
∑

l∈[0..T−1]
f tl =

∑
s∈[0..St]

δts = vt,

Hence (v,f) ∈ P f , which proves P δ ⊂ πfδ(P f). The remainder of this proof shows that
an a-b-flow with value C exists by demonstrating that a minimal a-b-cut has weight C.

We claim that the cut (A∗, B∗) with A∗ = {a} and B∗ := b∪X∪Y is such a minimal
cut. Its cut-set is exactly Eδ , and hence its weight equals∑

t∈[T],s∈[0..St]
δts = C.

Assume there exists a cut (A,B) with smaller weight. Since the edges (y0, b) and Ef
have unlimited capacity, it holds that y0 ∈ B and that for each (xts, yt

′) ∈ Ef either
{xt, yt′} ⊂ A or {xt, yt′} ⊂ B. By definition of Ef , this implies

∀xts ∈ A, t′ ∈ E ts : yt
′ ∈ A,

136

4.3 The Start-up Type Polyhedron

which, when defining 0 /∈ S := {t ∈ [T] : yt ∈ A}, is equivalent to

∀xts ∈ A : E ts ⊂ S. (4.3.11)

The weight of the cut (A,B) equals∑
xts∈X∩B

δts︸ ︷︷ ︸
edges Eδ∩A×B

+
∑

yt∈Y ∩A,t≥1
vt

︸ ︷︷ ︸
edges Ev∩A×B

. (4.3.12)

Since (v, δ) ∈ P δ, (v, δ) fulfills inequality (4.3.6) and by Corollary 4.7 also (4.3.5).
Hence, we can bound the total capacity of the edges Ev ∩A×B by

∑
yt∈Y ∩A,t≥1

vt =
∑
t∈S

vt
(4.3.6)
≥

∑
(t,s)∈I(S)

δts =
∑

t∈[T],s∈[0..St]
Ets⊂S

δts
(4.3.11)
≥

∑
xts∈A

δts.

Thus, the weight (4.3.12) of the cut (A,B) can be bounded from below by∑
xts∈X∩B

δts +
∑

yt∈Y ∩A,t≥1
vt ≥

∑
xts∈X∩B

δts +
∑

xts∈X∩A
δts =

∑
xts∈X

δts = C.

Therefore, the weight of a minimum cut is C, implying that the value of a maximum
flow is C (cf. [FF56]). As shown, such a maximum flow represented by f fulfills
πfδ(v,f) = (v, δ) and (v,f) ∈ P f , and hence proves P δ ⊂ πfδ(P f). 2

As noted, since πf = πδ ◦ πfδ (see Proposition 4.6) and πf (P f) = conv(epi(DCU))
(see Theorem 4.5), P δ is an extended formulation for conv(epi(DCU)).

Corollary 4.11

πδ(P δ) + pos{uT+t | t ∈ [T]} = conv(epi(DCU)).

Finally, both P̂ δ and P δ are generalizations of P f . Specifically, if for each t ∈ [T],
[0 .. t−1] is partitioned such that Lts = {s}, then by definition πfδ degenerates into
the identity function, implying P f = P δ. Furthermore, since B(a) = {a} for each
a ∈ [T − 1], inequalities (4.2.4), (4.3.6) and (4.3.7) are equal, implying that the H-rep-
resentations of P f , P δ, and P̂ δ are equal.

Proposition 4.12 If Lts = {s} for each t ∈ [T], s ∈ [0..St], then πfδ = id and the
H-representations of P f , P δ, and P̂ δ are equal.

137

Chapter 4 Start-up Types

4.3.4 Separation
In P δ, the O(T) flow conservation inequalities (4.2.4) of P f are replaced by the
O(T 2) inequalities (4.3.6). To reduce the impact on solution times, we present an exact
separation algorithm for (4.3.6) with running time O(T 2). Note that due to the O(ST)
non-zero coefficients of each of the O(T 2) inequalities, an exhaustive search requires a
running time of O(ST 3) to separate (4.3.6).
The efficiency of our separation algorithm depends on an efficient construction of

the sets of incoming start-up types I([a..b]) of the nodes {t− | t ∈ [a..b]}. By their
definition in (4.3.4), it holds that

I([a..b]) =
{

(t, s)
∣∣∣ t ∈ [T], s ∈ [0..St] with E ts ⊂ [a..b]

}
=

⋃
a′∈[a..b]

⋃
b′∈[a′..b]

A([a′..b′])

with A([a..b]) =
{

(t, s)
∣∣∣ t ∈ [T], s ∈ [0..St] with E ts = [a..b]

}
.

Determining the sets A([a..b]) is straightforward. The sets I([a..b]) can be computed
recursively by first deriving

B([a..b]) :=
⋃

b′∈[a..b]
A([a..b′]) = B([a .. b−1]) +A([a..b]) (4.3.13)

and then calculating

I([a..b]) =
⋃

a′∈[a..b]
B([a′..b]) = I([a+1 .. b]) ∪ B([a..b]) (4.3.14)

When separating a point (v, δ) ∈ P̂ δ however, we do not require the actual
sets I([a..b]), but rather the sum of the values of the included start-up types, i. e.

ϕ(I([a..b])) with ϕ(S) :=
∑

(t,s)∈S
δts.

Using (4.3.13)–(4.3.14), Algorithm 4.3.1 computes these values in O(T 2), and checks the
resulting inequality. Note that each iteration of the outer loop on lines 6–11 only requires
the values ϕ(I([a′..b′])) with a′ ∈ {a, a+ 1}. Therefore, a careful implementation of
these variables only requires O(T) space.

Theorem 4.13 Algorithm 4.3.1 separates P δ from P̂ δ by inequality (4.3.6) in O(T 2).

Proof. The sums ∑b
t=a v

t used on line 10 are easily computed in a total time of
O(T 2). Due to its nested loop structure, the algorithm considers each tuple (a, b) with
a ∈ [T − 1] and b ∈ [a .. T−1] at most once. Since the operations lines 8–11 have
running time O(1), the total complexity of the algorithm is O(T 2).

138

4.3 The Start-up Type Polyhedron

Algorithm 4.3.1: Separate P δ from P̂ δ by inequality (4.3.6)
Input :Point (v, δ) ∈ P̂ δ
Output : (v, δ) lies in P δ or a violated inequality (4.3.6).

1 ϕ(A([a..b]))← 0 ∀ [a..b] ⊂ [T − 1];
2 for t ∈ [T], s ∈ [0 .. St−1] do
3 ϕ(A(E ts))← ϕ(A(E ts)) + δts;

4 for a = T − 1, . . . , 1 do
5 ϕ(B([a .. a−1]))← 0;
6 ϕ(I([a+1 .. a]))← 0;
7 for b = a, . . . , T − 1 do
8 ϕ(B([a..b]))← ϕ(B([a .. b−1])) + ϕ(A([a..b]));
9 ϕ(I([a..b]))← ϕ(I([a+1 .. b])) + ϕ(B([a..b]));

10 if ϕ(I([a..b])) >
b∑
t=a

vt then

11 stop (v, δ) violates inequality (4.3.6) with parameters a, b;

12 return (v, δ) ∈ P δ;

It is straightforward to check that lines 1–3 compute ϕ(A([a..b])) by considering
each δts. Furthermore, the calculations on lines 5–9 apply the relationships presented
in (4.3.13)–(4.3.14), as well as in Algorithm 4.3.1, and hence the algorithm computes
the values ϕ(I([a..b])) correctly. So, line 10 checks inequality (4.3.5) as desired.
What remains to be proved is that only violated inequalities (4.3.6) with b ∈ B(a)

are reported. Assume the algorithm stops claiming that (v, δ) violates inequality (4.3.6)
for parameters a ∈ [T − 1], b ∈ [a .. T−1] due to

ϕ(I([a..b])) >
b∑
t=a

vt. (4.3.15)

If b /∈ B(a), then there exists b′ ∈ [a..b] such that I([a..b]) = I([a..b′])∪ I([b′ + 1..b]).
By design of the loops, prior to stopping the algorithm has already checked that

ϕ(I([a..b′])) ≤
b′∑
t=a

vt and ϕ(I([b′+1 .. b])) ≤
b∑

t=b′+1
vt,

which contradicts (4.3.15) since ϕ(I([a..b])) = ϕ(I([a..b′]))+ϕ(I([b′ + 1..b])). Therefore,
b ∈ B(a). 2

139

Chapter 4 Start-up Types

4.4 Start-up and Shutdown Indicators

While the polyhedron P δ in the last section models the types δtl based on the operational
schedule v, [SBB10] derives the start-up types from the start-up and shutdown indicators
yt and zt, which are part of most Unit Commitment formulations (see (1.2.1)–(1.2.2)).
In this section, we show that δt0 = vt − yt = vt−1 − zt and use this relationship to
substitute δt0 in P δ. This reduces the number of variables by T and simplifies the
comparison to [SBB10] performed in Section 4.5.
The start-up and shutdown indicator variables yt and zt are introduced in [Gar62],

and are widely used in UC formulations, for example to model minimum up-/downtime
and ramping limits (see e. g. [AC00; RT05; OAV12; MELR13b; MELR13a]), and
exponential start-up costs (see Chapter 3).
The indicators are expressed by two sets of binary variables y, z ∈ {0, 1}T where

yt = 1 iff the unit starts up in period t and zt = 1 iff the unit shuts down in
period t. In our basic formulation in Section 1.2, these variables are modeled by the
inequalities (1.2.1)–(1.2.3), which we repeat for convenience:

∀ t ∈ [T] : 0 ≤ vt ≤ 1, (4.4.1)
∀ t ∈ [2..T] : yt − zt = vt − vt−1, (4.4.2)

y1 − z1 = v1 −
{

1 PDT = 0,
0 else,

(4.4.3)

∀ t ∈ [T] : yt ≤ vt, (4.4.4)
∀ t ∈ [T] : zt ≤ 1− vt, (4.4.5)
∀ t ∈ [T] : yt, zt ∈ {0, 1}T .

In this section, we only use the linear relaxation of the above integrality constraint,
which can be modeled as

∀ t ∈ [T] : yt, zt ≥ 0, (4.4.6)

since the inequality yt, zt ≤ 1 is dominated by (4.4.4) and (4.4.5).
The start-up and shutdown indicators can be interpreted as the change of the

operational schedule vt from period t− 1 to t, where yt is the increase and zt is the
decrease, i. e.

∀ t ∈ [2..T] : yt = max{0, vt − vt−1}, zt = max{0, vt−1 − vt}

140

4.4 Start-up and Shutdown Indicators

On the other hand, the types δt0 represent the amount of the operational schedule
which remains constant from period t− 1 to t,

∀ t ∈ [2..T] : δt0 = min{vt−1, vt},

Thus, the operational schedule is split into constant and changing part (cf. Fig. 4.5),

∀ t ∈ [2..T] : vt = yt + δt0, vt−1 = zt + δt0. (4.4.7)

Relationship (4.4.7) is easily verified for integral v ∈ {0, 1}T and its natural
types δ̂ tl (v): yt = 1 iff vt = 1 and vt−1 = 0, and δ̂ t0(v) = 1 iff vt = 1 and vt−1 = 1.
Hence, yt + δ̂ t0(v) = 1 iff vt = 1. Moreover, zt + δ̂ t0(v) = yt − vt + vt−1 + δ̂ t0(v) = vt−1.
Since the start-up and shutdown indicators are already part of a typical Unit

Commitment formulation, we can reduce the number of variables by substituting the
variables δt0 using (4.4.7). Taking into account the case t = 1, this substitution is
expressed by the mapping

πδ→z : RT+SΣ → R3T+(SΣ−T), (v, δ) 7→ (v, y, z, δ≥1) (4.4.8)
with

yt :=
{
vt − δt0 if t ≥ 2 or PDT = 0,
vt else,

zt := yt − vt +


vt−1 if t ≥ 2,
1 if t = 1 and PDT = 0,
0 else,

where δs≥1 comprises all variables δts with t ∈ [T] and s ∈ [St], but excludes δt0.
In the following, we consider the resulting polyhedron

P δyz := πδ→z(P δ). (4.4.9)

vt

t

yt

t

δt0
t1 2 3 4 5 6 7 8 9 10

Figure 4.5: Fractional operational schedule vt with corresponding start-up indicators yt and
start-up types δt0. Note that vt = yt + δt0, vt−1 = zt + δt0.

141

Chapter 4 Start-up Types

In Corollary 4.11, it was shown that if each point (v, δ) ∈ P δ is associated with the
start-up costs

∀ t ∈ [T] : cut =
∑

s∈[0 .. St]
CUt(minLts)δts,

then P δ models the lower boundary of conv(epi(DCU)) under projection. Since
CUt(0) = 0 for t ≥ 2 and δ1

0 = v1 by (4.3.3), the same costs are associated with
(v, y, z, δ≥1) := πδ→z(v, δ) by

πδyz : R2T+SΣ → R2T , (v, y, z, δ≥1) 7→ (v, cu)
with

∀ t ∈ [T] : cut =
∑
s∈[St]

CUt(minLts)δts +
{
CU1(0)v1 if t = 1,
0 else.

Therefore, Corollary 4.11 can be extended to P δyz:

Corollary 4.14

πδyz(P δyz) + pos{uT+t | t ∈ [T]} = conv(epi(DCU)).

We now develop an H-representation of P δyz from the given H-representation of P δ,
which comprises the inequalities (4.3.3), (4.3.6), and (4.3.2). Recall that by definition
of πδ→z, we have

∀ t ∈ [2..T] : δt0 = vt − yt = vt−1 − zt

for each (v, δ) ∈ R2T+SΣ and its projection (v, y, z, δ≥1) := πδ→z(v, δ).
By substituting δt0 = vt−yt in the flow conservation inequality (4.3.3) of the nodes t+,

for t ≥ 2 we obtain
∀ t ∈ [2..T] :

St∑
s=1

δts = yt. (4.4.10)

Using δt0 = vt−1 − zt, the flow conservation in the nodes t− (4.3.6) translates to

∀ a ∈ [T − 1], b ∈ B(a) :
∑

(t,s)∈I([a..b])
s≥1

δts ≤
b∑
t=a

zt+1. (4.4.11)

The non-negativity of the start-up types δts with s ≥ 1 in (4.3.2) remains unchanged,

∀ t ∈ [T], s ∈ [St] : δts ≥ 0. (4.4.12)

Furthermore, the following result shows that the projection πδ→z is designed such that
the resulting indicators as modeled by (4.4.1)–(4.4.6).

142

4.4 Start-up and Shutdown Indicators

Proposition 4.15

P δyz =
{

(v, y, z, δ≥1) ∈ R2T+SΣ fulfilling (4.4.1)–(4.4.6),(4.4.10)–(4.4.12)
}
.

Proof. We start by proving that each point (v, y, z, δ≥1) ∈ R2T+SΣ which fulfills
(4.4.1)–(4.4.6), (4.4.10)–(4.4.12) lies in P δyz. For such a point, define

δt0 =
{
vt − yt if t ≥ 2,
vt else,

resulting in πδ→z(v, δ) = (v, y, z, δ≥1). This point (v, δ) lies in P δ, since

• (4.4.4) implies δt0 ≥ 0, which together with (4.4.12) is equivalent to (4.3.2),
• for t = 1, (4.3.3) is fulfilled by definition of δt0,
• for t ≥ 2, (4.3.3) is equivalent to (4.4.10), and
• (4.3.6) is equivalent to (4.4.11).

Therefore, (v, y, z, δ≥1) = πδ→z(v, δ) ∈ πδ→z(P δ) = P δyz.
For the converse direction, we show that each (v,y,z,δ≥1)∈P δyz fulfills (4.4.1)–(4.4.6),

(4.4.10)–(4.4.12) by considering the point (v, δ) ∈ P δ with (v, y, z, δ≥1) = πδ→z(v, δ).
Again, inequalities (4.4.10)–(4.4.12) on the variables δtl are implied by (4.3.3)–(4.3.2)
by construction.

Moreover, the definition of πδ→z in (4.4.8) guarantees that

• (4.4.2), (4.4.3) holds by definition of zt,
• (4.4.4) is implied by δt0 ≥ 0,
• yt ≥ 0 in (4.4.6) is fulfilled since δt0 ≤

∑St

s=0 δ
t
s = vt (see (4.3.3)), and

• zt ≥ 0 in (4.4.6) holds due to

zt =


yt − vt + vt−1 = vt−1 − δt0 ≥ vt−1 −

∑St

s=0 δ
t
s ≥ 0 for t ≥ 2,

y1 − v1 + 1 ≥ 1− v1 ≥ 0 for t = 1, PDT = 0,
y1 − v1 = 0 for t = 1, PDT > 0.

Therefore, (v, y, z, δ≥1) fulfills (4.4.2)–(4.4.6),(4.4.10)-(4.4.12). 2

Moreover, the projection πδ→z may also be applied to the start-up type polyhe-
dron P̂ δ for integers, which models the start-up costs correctly for v ∈ {0, 1}T (see
Proposition 4.9) using only the subset (4.3.7) of the inequalities (4.3.6). Substituting
δt0 by vt − yt in (4.3.7) yields

∀ [a..b] ∈
{
E ts
∣∣∣ t ∈ [T], s ∈ [St]

}
:

∑
(t,s)∈I([a..b])

s≥1

δts ≤
∑

t∈ [a..b]
zt+1. (4.4.13)

143

Chapter 4 Start-up Types

Analogously to Proposition 4.15, it holds for P̂ δyz := πδ→z(P̂ δ) that

P̂ δyz =
{

(v, y, z, δ≥1) ∈ R2T+SΣ fulfilling (4.4.1)–(4.4.6),(4.4.10),(4.4.12),(4.4.13)
}
.

(4.4.14)
Finally, since the structure of inequality (4.3.6) remains unchanged in (4.4.11),

adapting the separation algorithm 4.3.1 to P δyz is straightforward.

4.5 Comparison of Start-up Cost Models

The approach of categorizing start-ups using variables δts was introduced in [Muc66],
and the grouping into start-up types was proposed in [SBB10]. Even if only start-up
costs are modeled, the formulation in [SBB10] represents the state of the art (cf.
[MELR13b]). This section shows that the inequalities of P̂ δ, P δ, both tighten and
generalize the inequalities of the existing formulations, and that already P̂ δ improves
the bound on the start-up costs.

Moreover, we introduce a formulation based on the start-up and shutdown indicators,
which in terms of start-up cost bounds is equivalent to [Muc66; SBB10], but stricter
than the epigraph of the start-up costs conv(epi(DCUt)) in a single period and [CA06].
By extension, we are able to compare the tightness of all considered start-up cost
formulations in Subsection 4.5.4.
To visualize the difference between these models, we consider their respective cost-

minimal point (v, δ) for the fractional operational schedule v = 1/4(3, 2, 1, 2, 4) and
with the trivial partition Lts = {s} (cf. Fig. 4.6).

v1 v2 v3 v4 v5

1

z2

z3 y4

y5

δ5
4

δ5
3

δ4
1

Figure 4.6: A visualization of the point (v, δ) with v = 1/4(3, 2, 1, 2, 4), δ4
1 = δ5

3 = δ5
4 = 1/4,

δ1
0 = 3/4, δ2

0 = δ5
0 = 1/2, δ3

0 = δ4
0 = 1/4. The values vt are represented by bars

of corresponding height. The type δtl on the edge (t+, t′−) with t′ = t− l − 1 is
depicted by an arrow starting in vt and ending in vt′ , and its value is indicated
by the part of vt of the same color. The types δt0, which are not modeled in all
compared formulations, and the types δtl with δtl = 0 are not shown.

144

4.5 Comparison of Start-up Cost Models

4.5.1 The Existing Start-up Type Models
The formulation presented in [Muc66] models time-dependent start-up costs without
grouping downtimes, i. e. in the same manner as P f . The parts pertaining to these
flows can be summarized as

∀ t ∈ [2..T] :
t−1∑
l=1
f tl = yt,

∀ t ∈ [T], l ∈ [t− 1] : f tl ≤ zt−l,
∀ t ∈ [T], l ∈ [t− 1] : f tl ≥ 0.

Due to its size, the formulation in [Muc66] is computationally expensive. By grouping
the individual start-up variables f to start-up types δ , [SBB10] critically improves the
problem size for piece-wise constant start-up cost functions. The resulting start-up
type model can be summarized as

P δex :=
{

(v, y, z, δ≥1) ∈ R2T+SΣ fulfilling (4.4.1)–(4.4.6), (4.5.1)–(4.5.3)
}

with
∀ t ∈ [2..T] :

St∑
s=1

δts = yt, (4.5.1)

∀ t ∈ [T], s ∈ [St − 1] : δts ≤
∑
l∈Lts

zt−l, (4.5.2)

∀ t ∈ [T], s ∈ [St] : δts ≥ 0. (4.5.3)

When comparing this formulation to the H-representation of P̂ δyz in (4.4.14), we note
that (4.5.1),(4.5.3) are equivalent to (4.4.10),(4.4.12), and that (4.5.2) is dominated by
(4.4.13), since I(E ts) always contains the tuple (t, s). Therefore, P̂ δyz models a stronger
bound on the start-up costs than P δex, and since P δyz ⊂ P̂ δyz, we conclude:
Proposition 4.16

P δyz ⊂ P̂ δyz ⊂ P δex.

The difference between P δyz and P δex is highlighted in Fig. 4.7.

4.5.2 The Epigraph of the Start-up Costs in a Single Period
In Section 2.1, we derived the convex extension LCUt of the start-up costs DCUt in pe-
riod t (see Proposition 2.10) and an H-representation of epi(LCUt) = conv(epi(DCUt))
(see Theorem 2.8),

epi(LCUt) =


(v, cut) ∈ RT+1 :

cut ≥ CUt(l)vt −
l∑

j=1

(
CUt(l)− CUt(j − 1)

)
vt−j , l ∈ [0 .. t−1]

0 ≤ vt ≤ 1, t ∈ [T]

.

145

Chapter 4 Start-up Types

v1 v2 v3 v4 v5

1

z2

z3 y4

y5

P δyz :

δ5
4

δ5
3

δ4
1

v1 v2 v3 v4 v5

1

P δex :

δ5
3

δ5
2

δ4
1

Figure 4.7: Cost-minimizing types δ for v = 1/4(3, 2, 1, 2, 4) in P δyz (left) and P δex (right),
visualized as in Fig. 4.6. While P δyz bounds δ4

1 + δ5
2 ≤ z3, P δex only models δ4

1 ≤ z3

and δ5
2 ≤ z3 separately, resulting in a lower bound on the start-up costs. This is

indicated by the overlapping rectangles which represent the value of z3 and z2
5.

As argued in Section 1.3, epi(LCUt) models the best possible bound on the start-
up costs in period t (if condition (1.3.14) holds). However, since epi(LCUt) does
not consider dependencies between multiple periods, its combination for all peri-
ods epi(LCU1, . . . ,LCUT) is strictly dominated by conv(epi(DCU)). In this section,
we show that epi(LCU1, . . . ,LCUT) is also dominated by the projection πδ(P δex) of the
type polyhedron from [Muc66; SBB10].
To prove this, we present the start-up cost polyhedron using indicators P yz, which

bounds the start-up costs as strictly as P δex, but stricter than epi(LCU1, . . . ,LCUT).
This polyhedron is defined as

P yz :=
{

(v, y, z, cu) ∈ R4T fulfilling (4.4.1)–(4.4.6) and (4.5.5)
}

(4.5.4)

with inequalities (4.4.1)–(4.4.6) describing v, y, z, and inequality

∀ t ∈ [T], l ∈ [0 .. t−1] : cut ≥ CUt(l)yt −
l−1∑
j=1

(CUt(l)− CUt(j))zt−j . (4.5.5)

We start the comparison of P δex and P yz by showing that the inequalities of P δex
dominate (4.5.5) under projection. To this end, we project (v, y, z, cu) to the space of
(v, cu),

πyz : R4T → R2T , (v, y, z, cu) 7→ (v, cu).

Proposition 4.17

πδyz(P δex) + pos{uT+t | t ∈ [T]} ⊂ πyz(P yz).

146

4.5 Comparison of Start-up Cost Models

Proof. For each (v, y, z, δ≥1) ∈ P δex, define (v, cu) := πδyz(v, y, z, δ≥1), i. e.

∀ t ∈ [T] : cut =
St∑
s=1

CUt(minLts)δts +
{
CU1(0)v1 if t = 1,
0 else.

For t = 1, inequality (4.5.5) trivially holds since cu1 = CU1(0)v1 ≥ CU1(0)y1. For
t ∈ [2..T] and l ∈ [t− 1], choose s∗ ∈ [St] such that l ∈ Lts∗ . Then,

cut =
St∑
s=1

CUt
(
minLts

)
δts = CUt(l)

St∑
s=1

δts −
St∑
s=1

(
CUt(l)− CUt

(
minLts

))
δts

≥ CUt(l)
St∑
s=1

δts −
s∗−1∑
s=1

(
CUt(l)− CUt

(
minLts

))
δts,

due to CUt(l) ≤ CUt
(
minLts

)
for s ≥ s∗.

Using inequalities (4.5.1) and (4.5.2), the start-up costs can be bounded by

cut ≥ CUt(l)yt −
s∗−1∑
s=1

(
CUt(l)− CUt

(
minLts

)) ∑
j∈Lts

zt−j

= CUt(l)yt −
s∗−1∑
s=1

∑
j∈Lts

(CUt(l)− CUt(j))zt−j .

Since the sets Lt1, . . . ,Lts∗−1 partition [1 .. maxLts∗−1] and CUt(l) = CUt(j) for each
j ∈ [maxLts∗−1+1 .. l−1] ⊂ Lts∗ , we finally have

cut = CUt(l)yt−
maxLt

s∗−1∑
j=1

(CUt(l)−CUt(j))zt−j = CUt(l)yt−
l−1∑
j=1

(CUt(l)−CUt(j))zt−j.

Therefore (v, y, z, cu) fulfills (4.5.5). By definition (v, y, z, cu) also satisfies (4.4.1)–
(4.4.6), and hence (v, y, z, cu) ∈ P yz.

Since πδyz(v, y, z, δ≥1) = (v, cu) = πyz(v, y, z, cu), we have πδyz(P δex) ⊂ πyz(P yz).
Given that the start-up costs cut are not bounded from above in P yz, this implies
πδyz(P δex) + pos{uT+t | t ∈ [T]} ⊂ πyz(P yz). 2

The following proposition shows the converse direction, i. e. that P yz models the
same lower boundary on the start-up costs as P δex, by explicitly constructing δ≥1 with
minimal start-up costs for a given (v, y, z) such that (v, y, z, δ≥1) ∈ P δex.

Proposition 4.18

πδyz(P δex) + pos{uT+t | t ∈ [T]} = πyz(P yz).

147

Chapter 4 Start-up Types

Proof. For each (v, y, z, cu) ∈ P yz define δt≥1 as

∀ s ∈ [St − 1] : δts := min
{∑
l∈Lts

zt−l,max
{

0, yt −
s−1∑
s′=1

δts′
}}
,

δtSt := max
{

0, yt −
St−1∑
s=1

δts

}
.

The point (v, y, z, δ≥1) satisfies the inequalities (4.4.1)–(4.4.6) for v, y, z by definition
of P yz, and the flow inequalities (4.5.1)–(4.5.3) of P δex by definition of δt≥1. Hence,
(v, y, z, δ≥1) ∈ P δex.

We continue by showing that the start-up costs (v, c̃u) := πδyz(v, y, z, δ≥1) induced
by δ≥1 are at most cu. The start-up costs CU1(0) in period 1 are positive iff the unit
was offline prior to the model time, i. e. PDT > 0, which implies y1 = v1. Thus,

c̃u1 = CU1(0)v1 = CU1(0)y1 ≤ cu1.

For each t ∈ [2..T], choose s∗ ∈ [St] maximal such that δts∗ > 0, and l := minLts∗ .
Then, the start-up costs c̃ut can be bounded by

c̃ut =
St∑
s=1

CUt
(
minLts

)
δts =

s∗∑
s=1

CUt(minLts)δts

= CUt(l)
s∗∑
s=1

δts −
s∗−1∑
s=1

(
CUt(l)− CUt

(
minLts

))
δts

By the choice of s∗ and definition of δts, it holds that
s∗∑
s=1

δts = yt and ∀ s ∈ [s∗ − 1] : δts =
∑
j∈Lts

zt−j .

Hence, the above bound on c̃ut can be expressed as

c̃ut = CUt(l)yt −
s∗−1∑
s=1

(
CUt(l)− CUt

(
minLts

)) ∑
j∈Lts

zt−j

Since CUt(j) = CUt
(
minLts

)
for each j ∈ Lts, and since the sets Lt1, . . . ,Lts∗−1 partition

[1 .. maxLts∗−1] and maxLts∗−1 = minLts∗ − 1 = l − 1, we have

c̃ut = CUt(l)yt −
s∗−1∑
s=1

∑
j∈Lts

(CUt(l)− CUt(j))zt−j

= CUt(l)yt −
l−1∑
j=1

(CUt(l)− CUt(j))zt−l ≤ cut.

148

4.5 Comparison of Start-up Cost Models

In conclusion, πδyz(v, y, z, δ≥1) = (v, c̃u) ≤ (v, cu) = πyz(v, y, z, cu), and therefore
πyz(P yz) ⊂ πδyz(P δex) + pos{uT+t | t ∈ [T]}. 2

Having proved that P δex and P yz model the same lower bound on the start-up
costs, we now compare P yz to the epigraph epi(LCUt) of the individual start-up cost
function DCUt. In Theorem 2.8, we showed that epi(LCUt) equals

epi(LCUt) = {(v, cut) ∈ RT+1 fulfilling v ∈ [0, 1]T and (2.1.4)},

where inequality (2.1.4) is defined as

∀ l ∈ [0 .. t−1] : cut ≥ CUt(l)vt −
l∑

j=1
(CUt(l)− CUt(j − 1))vt−j .

The epigraphs epi(LCUt) can be combined for all t, yielding a model of the start-up
costs in all periods,

epi(LCU1, . . . ,LCUT) =
{

(v, cu) ∈ R2T
∣∣∣ v ∈ [0, 1]T ,∀ t ∈ [T] :

⇔ (v,cut)∈epi(LCUt)︷ ︸︸ ︷
cut ≥ LCUt(v)

}
=
{

(v, cu) ∈ R2T fulfilling v ∈ [0, 1]T and (2.1.4) for t ∈ [T]
}
.

Due to the similar structure of their inequalities (4.5.5) and (2.1.4), it is straightfor-
ward to show that P yz dominates epi(LCU1, . . . ,LCUT) in terms of start-up costs:

Proposition 4.19
πyz(P yz) ⊂ epi(LCU1, . . . ,LCUT).

Proof. For each (v, y, z, cu) ∈ P yz, t ∈ [T], and l ∈ [0 .. t−1], we have

cut ≥ CUt(l)yt −
l−1∑
j=1

(CUt(l)− CUt(j))zt−j .

Using yt = vt − vt−1 − zt ≥ vt − vt−1 and zt = yt − vt + vt−1 ≤ vt−1, these start-up
costs cut are bounded by

cut ≥ CUt(l)(vt − vt−1)−
l−1∑
j=1

(CUt(l)− CUt(j))vt−j−1

= CUt(l)vt −
l∑

j=1
(CUt(l)− CUt(j − 1))vt−j .

Therefore πyz(v, y, z, cu) = (v, cu) ∈ epi(LCU1, . . . ,LCUT). 2

149

Chapter 4 Start-up Types

On a side note, analogously to the relationship between P yz and P δex, there exists an
extended formulation of epi(LCU1, . . . ,LCUT) using start-up types. The same approach
as in the proofs of Propositions 4.17 and 4.18 with zt−l replaced by vt−l−1 shows that

epi(LCU1, . . . ,LCUT) =

= πδyz

({
(v,y,z,δ≥1)∈R3T+(SΣ−T)

fulfilling (4.4.1)-(4.4.6),(4.5.6)–(4.5.8)

})
+ pos{uT+t | t ∈ [T]}

with inequalities

∀ [2..T] :
St∑
s=1

δts = yt, (4.5.6)

∀ t ∈ [T], s ∈ [St − 1] : δts ≤
∑
l∈Lts

vt−l−1, (4.5.7)

∀ t ∈ [T], s ∈ [St] : δts ≥ 0. (4.5.8)

Using this representation, the difference between P δyz, P yz, and epi(LCU1, . . . ,LCUT)
is highlighted in Fig. 4.8 by considering cost-minimizing types in the three models.

4.5.3 The Temperature Polyhedron for Integers
The formulations presented in Chapter 3, which are based on explicitly modeling the
temperature of a unit, follow an entirely different approach than the start-up type
formulations. This is reflected by the fact that in general, P̂ temp can be compared to
neither P tex, epi(LCUt), nor P δex. We show this by giving examples of points which have
strictly highest start-up costs in P̂ temp and P δex, respectively.

Consider the exponential start-up cost function CU(t) = (1− e− ln(2)t) + 1 in a model
with uniform period lengths Lt = 1. Then, P̂ temp models the temperature tempt,
heating ht, and start-up indicators yt as

temp = (1, 1, 1/2, 1/4), h = (0, 0, 0, 0), y = (0, 0, 0, 1/2),

for the operational schedule v = (1, 0, 0, 1/2), resulting in the costs cu = (0, 0, 0, 1/2). For
the same schedule however P tex yields cu = (0, 0, 0, CU4(2)/2)) = (0, 0, 0, 3/8) > (0, 0, 0, 1/2).
Therefore, in general

πtemp(P̂ temp) 6⊂ P tex, (4.5.9)

which implies πtemp(P̂ temp) 6⊂ epi(LCUt) and πtemp(P̂ temp) 6⊂ P δex.
For the operational schedule v = (1, 1/2, 1/2, 0, 1/2, 1), P̂ temp models

temp = (1, 1, 3/4, 5/8, 1/2, 1), h = (0, 0, 0, 0, 3/16, 1/2), y = (0, 0, 0, 0, 1/2, 1/2),

150

4.5 Comparison of Start-up Cost Models

v1 v2 v3 v4 v5

1

z2

z3 y4

y5

P δyz :

δ5
4

δ5
3

δ4
1

v1 v2 v3 v4 v5

1

P δex :

δ5
3

δ5
2

δ4
1

v1 v2 v3 v4 v5

1

epi(LCU1, . . . ,LCUT) :

δ5
2

δ5
1

δ4
1

Figure 4.8: Cost-minimizing types for v = 1/4(3, 2, 1, 2, 4) in the type model P δyz (top
left), the existing type model P δex (top right), and in the type model equiv-
alent to epi(LCU1, . . . ,LCUT) (bottom), visualized as in Fig. 4.6. While P δyz
bounds δ4

1 + δ5
2 ≤ z3, P δex only models δ4

1 ≤ z3 and δ5
2 ≤ z3 separately, and

epi(LCU1, . . . ,LCUT) only models δ4
1 ≤ v2 and δ5

1 ≤ v3, resulting in a lower
bound on the start-up costs.

leading to a total start-up cost of cuΣ = 27/16. The start-up costs in P δex however equate
to cu = (0, 0, 0, 0, CU5(1)/2, CU6(2)/2) = (0, 0, 0, 0,) such that cuΣ = CU5(1)/2 + CU6(2)/2
= 3/4 + 7/8 = 13/8 = 26/16 < 27/16. So, in general

πδ(P δex) 6⊂ πtemp(P̂ temp), (4.5.10)

which analogously demonstrates P tex 6⊂ πtemp(P̂ temp) and epi(LCUt) 6⊂ πtemp(P̂ temp).

4.5.4 Conclusion

In this chapter and in Section 2.1, we have considered the existing start-up cost models

• P tex is the existing step-wise start-up cost polyhedron presented in [CA06] (see
Subsection 2.1.1) and

• P δex is the existing start-up type polyhedron presented in [SBB10] (see Subsec-
tion 4.5.1),

and have introduced the novel models

151

Chapter 4 Start-up Types

• epi(LCU1, . . . ,LCUT) is the combination of epi(LCUt) for all t ∈ [T],
• P δ is the start-up type polyhedron in Section 4.3 and P δyz is its variation using

indicators in Proposition 4.15,
• P̂ δ is the start-up type polyhedron for integers in Subsection 4.3.2 and P̂ δyz is its

variation using indicators in Proposition 4.15, and
• P yz is the start-up cost polyhedron using indicators in Subsection 4.5.2.

Combining the results in Theorem 4.10, Proposition 4.16, Proposition 4.18, and
Proposition 4.19 allows us to compare the tightness of all of these formulations.

Theorem 4.20 Defining R := pos{uT+t | t ∈ [T]},

conv(epi(DCU)) = πδ(P δ) +R = πδyz(P δyz) +R

⊂ πδ(P̂ δ) +R = πδyz(P̂ δyz) +R

⊂ πδyz(P δex) +R = πyz(P yz)
⊂ epi(LCU1, . . . ,LCUT) ⊂ P tex,

where conv(epi(DCU)) is the epigraph of the start-up costs in all periods (cf. Sec-
tion 2.3), and πδ, πδyz, and πyz denote the respective projections to the space of
conv(epi(DCU)).

Note that except for P δ and P δyz, the newly introduced tighter formulations do not
introduce further variables and inequalities, but strengthen the inequalities of the
existing models (cf. Table 4.1).

Model Source Variables Inequalities
P f (4.2.5) O(T 2) O(T)
P δ, P δyz (4.3.10), (4.4.9) O(ST) O(T 2)
P̂ δ, P̂ δyz (4.3.8), (4.4.14) O(ST) O(ST)
P δex [Muc66] O(ST) O(ST)
P yz (4.5.4) O(T) O(ST)
epi(LCU1, . . . ,LCUT) Theorem 2.8 O(T) O(ST)
P tex [CA06] O(T) O(ST)

Table 4.1: Sizes of step-wise start-up cost formulations and start-up type formulations, in
order of decreasing tightness.

152

Chapter 5

Numerical Experiments
This section compares the integrality gap and the computational performance of the
proposed and existing start-up cost and start-up process models by embedding them
into the Unit Commitment model presented in Subsection 1.2.2.

The main findings can be summarized as:
• The temperature models P̂ temp and P temp, and the start-up type models P̂ δ and
P δ considerably outperform the state of the art.

• Approximating the start-up cost function by a step-wise function with toler-
ance CUtol (cf. Subsection 2.1.6) reduces the number of start-up types and
therefore the model size of P̂ δ, but increases the integrality gap. Out of
CUtol ∈ {5%, 10%, 20%}, P̂ δ and P δ perform best for CUtol = 10%.

• While the RTIs in P temp significantly reduce the integrality gap of P̂ temp, their
separation is beneficial only in some cases.

All tests have been performed with the FICO Xpress Optimizer (see [Fic]) and with
the separation of cutting planes for P temp and P δ implemented in FICO Xpress Mosel.

5.1 The Scenarios
As noted in the introduction, the main cause of the increasing number of start-ups is
the volatile production from renewable energy sources. To highlight the computational
viability of the proposed start-up models, even for future scenarios with higher renewable
energy penetration, we perform the numerical experiments both on real-world data for
2011 and on a forecast for 2025, similar to the scenarios proposed in [SHB16].

All models use a uniform period length of one hour, i. e. L1 =...=LT =1. The
pre-model uptimes POTi are defined to be equal to the minimum uptime UTi, such
that each unit is able to shut down in the first period. To keep the computational effort
reasonable, each problem instance only considers a limited number of periods T ≤ 540,
corresponding to a maximal duration of 22.5 days. We retain the diversity of the years
2011 and 2025 by repeating each experiment for 14 different time ranges starting in
the S-th hour of the year with

S ∈
{
624k + 433 : k ∈ [0..13]

}
. (5.1.1)

153

Chapter 5 Numerical Experiments

By calculating the start points S using the coefficients 624 and 433,

• the modeled time ranges are distributed uniformly over the years 2011 and 2025
(since b365/14c ≈ 26 = 624/24),

• each time range starts at midnight (since 433 = 18 · 24 + 1),
• the atypical Christmas and New Year holiday is part of a single time range, and
• two time ranges start on any day of the week, respectively (since 624/24 = 26 and

7 are relatively prime).

The power plant data is based on the publication [Ger14] by the German Federal
Network Agency for the year 2014, consisting of 228 individually controlled power
plants. Observing the plans for a nuclear phase-out in Germany, all 9 remaining nuclear
power plants are removed in the 2025 scenario and replaced by 4 combined cycle gas
units, resulting in a total of 223 power plants.
As our UC model requires parameters not contained in [Ger14], in particular the

minimal production, efficiency, and start-up costs, we complement it based on the
results reported in [Kum+12; EUR03; Ege+14]. The start-up costs are defined as in
(1.3.1),

∀ i ∈ I, t ∈ [T], l ∈ [t− 1] : CUti(l) := CUvar
i (1− e−λil) + CUfixed

i ,

with the fixed start-up costs CUfixed
i , the maximal variable start-up costs CUvar

i and
the heat loss rate λi. The heat loss rates depend on the unit type and are chosen as
λi = 0.03 for lignite and nuclear units, λi = 0.05 for coal units, λi = 0.1 for combined
cycle gas units, and λi = 0.3 for gas units.
In some experiments, these start-up costs are approximated by Algorithm 2.1.2 to

a tolerance of CUtol ∈ {5%, 10%, 20%}, which results in smaller problem sizes in the
considered formulations.

The start-up time is defined as

TUti(l) = max
{

1,
⌈
Ai(1− e−λil)− 0.5

⌉}
,

with parameters Ai fitted to the start-up times given in [SBB10, Table II]. The start-up
production is modeled by power trajectory (1.3.5) with parameters PUi = 0 and
PUi = Pi. This yields the linear power trajectory from 0 to Pi at start-up, which is
typically used in the literature (see e. g. [SBB10; MELR13a]).

Renewable energy sources which cannot be scheduled, i. e. wind and solar energy, do
not need to be modeled as units in the Unit Commitment problem. Given the short
time span modeled in the following experiments (at most 10 days), their production
is assumed to be known to a sufficient accuracy from weather forecasts and their
contribution is included by defining the demand Dt as the difference between the total
demand and the production from these renewables. Hourly demand data is provided

154

5.2 The Models

by ENTSO-E [ENT] and scaled to a yearly electricity consumption of 520 TWh. Wind
and solar electricity generation profiles are computed based on the weather data in the
NASA MERRA database [Rie+11],

• on the actual installed capacity in 2011 (29 GW wind, 23 GW solar, 3 GW
biomass, 4 GW hydro), and

• on the forecast installed capacity for 2025 (50 GW wind, 50 GW solar, 5.5 GW
biomass, 4.5 GW hydro).

Biomass and hydro units contribute relatively little to the fluctuation of the renewable
power production. We simplify the model by assuming that these units constantly
produce at full capacity.
In a small fraction of the periods, the production from renewable energy sources

exceeds the demand. We assume that the renewable production is restricted such that
the residual demand Dt fulfills

• Dt ≥ 0 MWh in models without start-up production, and
• Dt ≥ 1000 MWh in models with start-up production, to ensure that an adequate

number of units is able to start up even after an exceptionally low residual
demand without causing overproduction.

5.2 The Models
In this thesis, we have examined the two existing start-up cost models,

• the step-wise start-up cost polyhedron P tex presented in [CA06] (see Subsec-
tion 2.1.1), and

• the start-up type model P δex presented in [SBB10] (see Subsection 4.5.1).

Moreover, we have proposed some new start-up cost models,

• the epigraphs conv(epi(DCUt)) for all t ∈ [T] in Theorem 2.8, denoted by P t,
• the temperature polyhedron for integers P̂ temp in Definition 3.4,
• the temperature polyhedron P temp in Definition 3.17,
• the start-up cost polyhedron P yz using indicators in Subsection 4.5.2,
• the start-up type polyhedron for integers P̂ δ in Subsection 4.3.2, and
• the start-up type polyhedron P δ in Section 4.3.

We embed these approaches into the Unit Commitment formulation summarized in
Subsection 1.2.2, where the placeholders cui are substituted by the start-up costs as
defined in the respective start-up cost models.
P temp and P δ are implemented using Algorithm 3.3.1 and Algorithm 4.3.1 in a

Branch&Cut approach. These separation algorithms are modified to select the Q most

155

Chapter 5 Numerical Experiments

violated inequalities such that at most Qi apply to a single unit. We use the values
Q = 0.5|I| and Qi = 0.15T for P temp, and Q = |I| and Qi = 0.15T for P δ, which lead
to an adequate computational performance in the considered test cases.

Subsection 1.3.3 notes that the start-up type variables δti,s of P δex, P̂ δ, and P δ provide
the basis of a start-up process formulation, and that the start-up production can be
modeled by replacing the demand equation (1.2.8)

∀ t ∈ [T] :
∑
i∈I

pt = Dt

of the UC formulation by (1.3.15),

∀ t ∈ [T] :
∑
i∈I

(
pti +

∑
t′∈[t+1 .. T],s∈[St′]

PUti(t′, s)δt
′
i,s

)
= Dt.

We assess the impact of the start-up process by considering all start-up type models
with and without start-up production.

5.3 Integrality Gap
In practice, Unit Commitment problems are not solved to optimality due to excessive
computational effort, as are most Mixed Integer Programs. Instead, state-of-the-art
solvers find a feasible commitment with a cost within a given tolerance of the minimal
cost in two steps:

• First, they gain a lower bound on the cost by solving the linear relaxation of the
UC formulation,

• which is then iteratively refined and complemented with feasible commitments.

The gap of the initial linear relaxation to the optimal solution is called the integrality
gap and the target gap of the iterative refinement is called optimality tolerance. This
optimality tolerance controls the trade-off between the solution quality and computation
time. On one hand, it limits the possible financial loss due to non-optimality: In our
model of Germany 2014, the electricity production in an average week causes a cost of
more than 170 million euro. An optimality tolerance of 1% means that the accepted
solution may cost as much as 1.7 million euro more than necessary. Hence, this tolerance
should be selected as low as possible. On the other hand, increasing the ratio between
integrality gap and optimality tolerance sharply increases the computational effort of
the iterative refinement.

The integrality gap is thus a major driver of the computational effort and it is essential
to use a formulation with a low integrality gap. In the following, we experimentally
compare the integrality gaps of the presented models for 14 instances with the start

156

5.3 Integrality Gap

points S as given in (5.1.1) and T = 96 periods (4 days). In the following figures, we
highlight the newly introduced models in red.

As proved in Theorem 4.20, all experimental results yield

• equal integrality gaps when using the start-up cost models P yz and P δex, which
we denote by “P δex” in the following charts, and

• equal integrality gaps when using the start-up cost models P δ and P temp, which
we denote by “P δ”.

Moreover, since we approximate the start-up cost function only in the experiment
shown in Fig. 5.4, P̂ δ degenerates into P δ in the remaining figures Fig. 5.1–5.3. Also
recall that we denote epi(LCU1, . . . ,LCUT) by “P t”.

Figure 5.1 compares the integrality gap in scenario 2011 (left chart) and scenario 2025
(right chart). Due to the higher penetration of renewable energy in 2025, more start-ups
and ramping are necessary, leading to a 2–4 times higher integrality gap. The higher
number of start-ups increases the spread between lowest and highest median integrality
gaps from 1.2 percentage points in 2011 to 2.6 percentage points in 2025. In both cases
the significant impact of the start-up cost model is demonstrated.
We consider the relative differences between the formulations in the following.

Examining the integrality gaps relative to P δex (see Fig. 5.2) confirms Theorem 4.20
and the experimental results of [MELR13b], which state that the existing start-up
type polyhedron P δex in [SBB10] dominates the step-wise model P tex in [CA06]. The
tightening of P tex to P t = epi(LCU1, . . . ,LCUT) (inequalities (2.1.2) to (2.1.4)) does
not change this assessment.

P tex P t P δex P̂ temp P δ

1.32% 1.23%

0.54%
0.38%

0.11%

in
te
gr
al
ity

ga
p

P tex P t P δex P̂ temp P δ

10−3

10−2

10−1

2.97% 2.75%

1.35% 0.96%

0.41%

Figure 5.1: Integrality gap in scenarios 2011 (left) and 2025 (right) represented in a box
plot: For each model the median is represented by a red line and number, the
range from first to third quartile is spanned by a gray box, and the minimum and
maximum values are marked by whiskers.
The median integrality gaps in 2025 are higher than in 2011 by a factor of 2–4.
P δ always outperforms the other models (see Fig. 5.3).

157

Chapter 5 Numerical Experiments

Still, the state-of-the-art P δex is outperformed by the temperature polyhedron for
integers P̂ temp, which reduces the median integrality gap by further 24–28%. While
P̂ temp is typically tighter than P δex, Fig. 5.3 demonstrates that there are examples were
P δex strictly dominates P̂ temp. Albeit they did not occur in our numerical experiments,
it is easy to construct instances where P tex strictly dominates P̂ temp. Consider the UC
problem with a single unit, T = 2, PDT = 0, and demand D = (0, 1/2P1), which has an
optimal fractional solution with v1 = (0, 1/2). If λ1 < ln(1/2), then no heating in period 1
is necessary, and the start-up costs in P̂ temp equal 1/2CUfixed

1 . On the other hand, the
unit incurs start-up costs of 1/2CU2

1(1) = 1/2((1− e−λL1)CUvar
1 + CUfixed

1) > 1/2CUfixed
1

in P tex, strictly dominating P̂ temp.
The difference of P̂ temp and P temp (corresponding to “P δ”) caused by the residual

temperature inequalities defined in (3.3.1) is considerable. Figure 5.3 points out that
the RTIs reduce the median integrality gap by 55–69%.

P tex P t P δex P̂ temp P δ

274% 251% 100%

72% 21%

in
t.

ga
p
re
l.
to
P
δ ex

P tex P t P δex P̂ temp P δ
7%
13%
25%
50%
100%
200%
400%

217% 195% 100%

76%

33%

Figure 5.2: Integrality gap relative to P δex in scenarios 2011 (left) and 2025 (right). P δex
outclasses P tex and P t = epi(LCU1,...,LCUT), but is typically dominated by P̂ temp.

P tex P t P δex P̂ temp P δ

377% 350%

139%
100%

31%

in
t.

ga
p
re
l.
to
P̂

te
m
p

P tex P t P δex P̂ temp P δ
13%
25%
50%
100%
200%
400%
800%

361% 330%
132% 100%

45%

Figure 5.3: Integrality gap relative to P̂ temp in scenarios 2011 (left) and 2025 (right). While
P̂ temp typically dominates the state-of-the-art P δex, the distance to P temp and P δ
is considerable.

158

5.4 Computational Performance

As the start-up costs increase strictly, P̂ δ degenerates into P δ. We therefore contrast
the integrality gaps for tolerances CUtol ∈ {5%, 10%, 20%} in the scenario 2025 (see
Fig. 5.4). The tightened inequalities in P̂ δ significantly reduce the integrality gap in
comparison to P δex. Note however that the ratio between P̂ δ and P δ strongly correlates
with CUtol: While for CUtol = 5% only 9% separate P δ and P̂ δ, the difference grows
to 72% for CUtol = 20%. At the same time, the advantage of P̂ δ over P δex diminishes.
In contrast, the relative integrality gaps of P tex and P t decrease consistently.

Finally, Fig. 5.5 highlights the impact of the start-up production. While the integrality
gaps consistently decrease, their relative difference for P δex, P̂ δ, and P δyz stays similar.
This is explained by the fact that the start-up production effectively reduces the
start-up costs: For each unit which produces during start-up, the other units ramp
down and thereby decrease their production costs.

5.4 Computational Performance

This subsection analyzes the computational performance of each model by determining
the maximal number of periods T for each start point which the model solves to a
certain optimality gap within a given time limit.

We consider two common solver configurations,

1. a time limit of 15 minutes and an optimality tolerance of 1% for scenario 2011,
and

2. a time limit of 30 minutes and an optimality tolerance of 0.5% for scenario 2025.

In scenario 2011, all models fail to solve some instances due to poor upper bounds,
even for low values of T . The reason is that the FICO Xpress Optimizer separates
cutting planes at the root node before applying heuristics, and sometimes does not

5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%
100%

200%

400%

800%
705%

549%
424%

647%
525%

411%

257%
219% 253%

109%
116%

172%
100%

P tex P t P yz, P δex P̂ δ P δ

Figure 5.4: Integrality gap relative to P δ with CUtol ∈ {5%, 10%, 20%} in scenario 2025. P̂ δ
is significantly tighter than P δex and nearly matches P δ at CUtol = 5%.

159

Chapter 5 Numerical Experiments

find (good) feasible solutions within the time limit. We amend this by disabling the
built-in cutting planes with XPRS_CUTSTRATEGY=0 and enabling thorough heuristics
with XPRS_HEURSTRATEGY=3 for scenario 2011.

The results are depicted separately in Fig. 5.6 and Fig. 5.7, with P δex in both charts
for comparability. Figure 5.6 shows that P δex outperforms all step-wise start-up cost
models P tex, P t = epi(LCU1, . . . ,LCUT), and P yz. While the advantage over P yz is
only minor, this result is still unexpected, as P yz reduces the model size compared to
P δex, while retaining its integrality gap. P tex and P t offer similar performances due to
equal model sizes and only slightly differing integrality gap.

Figure 5.7 demonstrates the superiority of the temperature formulations P̂ temp and
P temp, and the start-up type formulations P̂ δ and P δ over the state-of-the-art P δex.
P̂ temp and P temp are matched only by P δ at CUtol = 10%, which is notable since P̂ temp

and P temp model the exponential start-up costs exactly. Separating the RTIs is not
beneficial in this case, as P temp solves slightly fewer instances than P̂ temp.
P δ consistently outperforms P̂ δ, and both formulations exceed P δex for almost all

T and CUtol. However, the linear relaxation of P δex is solved faster due to the lower
number of non-zero coefficients of its inequalities. Hence, P δex is successful for some
instances where the solution of the linear relaxations of P̂ δ and P δ does not complete
within the time limit. Note in particular that P̂ δ and P δ abruptly stop to solve any
instances at T = 192 (for CUtol = 0%) and T = 288 (for CUtol = 5%).
All models in Fig. 5.6 perform better for a higher approximation tolerance CUtol

due to smaller model sizes and smaller integrality gaps for P tex and P t (see Fig. 5.4).
In contrast, the models P̂ δ and P δ in Fig. 5.7 are fastest at CUtol = 10%, which offers
the best compromise of model size and integrality gap (see Fig. 5.4).

P δex P̂ δ P δ P δex P̂ δ P δ
10−3

10−2

10−1

1.23%
0.61%0.49%

0.50%

0.24%
0.21%

in
te
gr
al
ity

ga
p

without SP with SP
P δex P̂ δ P δ

100%

200%

400%

800%
219%

116%

100%

in
t.

ga
p
re
l.
to

re
sp
.P

δ

P δex P̂ δ P δ

245%

116%

100%

without SP with SP

Figure 5.5: Integrality gaps, absolute (left) and relative to P δ (right), in scenario 2025 with and
without start-up production. While the integrality gaps decrease when modeling
start-up production (left), their ratios between the models remain similar (right).

160

5.4 Computational Performance

0 48 96 144 192 240 288 336 3840
2
4
6
8

10
12
14

modeled periods T

so
lv
ed

in
st
an

ce
s

P tex 5% P t 5% P yz 5% P δex 5%
P tex 10% P t 10% P yz 10% P δex 10%
P tex 20% P t 20% P yz 20% P δex 20%

Figure 5.6: Number of instances of scenario 2011 solved to an optimality gap of 1% in
15 minutes. P δex outperforms all step-wise models P tex, P t, P yz. The tightening of
P tex to P t = epi(LCU1, . . . ,LCUT) does not improve the performance.

0 48 96 144 192 240 288 336 384 432 480 5280
2
4
6
8

10
12
14

modeled periods T

so
lv
ed

in
st
an

ce
s

P δex 5% P̂ δ 5% P δ 5% P δ 0%
P δex 10% P̂ δ 10% P δ 10% P̂ temp

P δex 20% P̂ δ 20% P δ 20% P temp

Figure 5.7: Number of instances of scenario 2011 solved to an optimality gap of 1% in 15
minutes. P̂ temp, P temp, and P δ with CUtol = 10% outperform all other models.

The number of variables and inequalities depends approximately linearly on T for all
formulations, except for P δ with CUtol = 0%: Here, the number of variables increases
quadratically (see Figs. 5.8 and 5.9).

161

Chapter 5 Numerical Experiments

P tex, P t, P yz have the lowest number of variables, followed by P̂ temp and P temp. The
number of variables of P δex, P̂ δ, P δ is equal and decreases with increasing tolerance CUtol.
Still, it is higher than in P̂ temp and P temp for CUtol = 20% (see Fig. 5.8).

Regarding inequalities, P δ with CUtol = 0% has the lowest number followed closely
by P̂ temp. The other formulations P tex,P t,P yz,P δex,P̂ δ, and P δ have the same number
of inequalities, which increases with decreasing tolerance CUtol.

0 48 96 144 192 240 288 336 3840
2 · 105
4 · 105
6 · 105
8 · 105

10 · 105

modeled periods T

nu
m
be

r
of

va
ria

bl
es

P δex,P̂
δ,P δ 5% P δex,P̂

δ,P δ 20% P̂ temp,P temp

P δex,P̂
δ,P δ 10% P tex,P

t,P yz (all CUtol) P δ 0%

Figure 5.8: The number of variables of the formulations for increasing T . Note that the
number of variables depends linearly on T in general, but quadratically on T for
P δ with CUtol = 0%. Moreover, the number of variables is independent of CUtol
for P tex, P t, P yz and dependent on CUtol for P δex, P̂ δ, P δ.

0 48 96 144 192 240 288 336 3840

5 · 105

10 · 105

15 · 105

modeled periods T

nu
m
be

r
of

in
eq
ua

lit
ie
s

P tex, P
t,P yz,P δex,P̂

δ 5% P tex, P
t,P yz,P δex,P̂

δ 20% P δ 0%
P tex, P

t,P yz,P δex,P̂
δ 10% P̂ temp

Figure 5.9: The number of inequalities of the formulations for increasing T . Note that all
numbers increase linearly with. P temp and P δ are not included in this chart since
the major part of their inequalities is separated.

In scenario 2025, the model size and therefore CUtol is less important (see Fig. 5.10).
The results of the models P̂ δ and P δ coincide for CUtol ∈ {5%, 10%}, indicating that

162

5.4 Computational Performance

the generalized inequalities in P δ are not effective due to the already close integrality
gaps. For CUtol = 20% however, P δ outperforms P̂ δ.
Figure 5.11 shows all models with their respective optimal CUtol. The proposed

formulations P̂ temp, P temp, P̂ δ, and P δ are relatively close in performance and dominate
P tex, P t, P yz, and P δex. At a higher number of periods, P̂ δ and P δ yield the best results.
The models P tex and P t solve the exact same instances. Similarly, the results for P δex
and P yz are practically equal.
Comparing P̂ temp and P temp highlights an interference between cutting planes and

heuristics similar as in scenario 2011: As long as the problem size is small enough
to separate the RTIs and apply heuristics within the time limit, P temp has a higher
success rate than P̂ temp (see Fig. 5.11 up to T = 132). For larger problems however,
the heuristics of P temp are cut short before finding a high-quality solution, and P̂ temp

solves more instances due to its less extensive cutting plane stage. To mitigate this, we
advise to apply cutting planes and (custom) heuristics in parallel. Nevertheless, P temp

solves a total of 9 instances more than P̂ temp.
Finally, including the start-up production does not fundamentally change the per-

formance of the start-up type models (cf. Fig. 5.12): P̂ δ and P δ still consistently
exceed P δex. The importance of the integrality gap is even more pronounced than for
scenario 2025, leading to P δ generally improving over P̂ δ. While CUtol = 10% again
yields the best results for P̂ δ, there is no clear optimal CUtol for P δ. This is also
explained by the stronger dependence on integrality gaps, as P δ possesses nearly the
same integrality gap regardless of CUtol.

0 24 48 72 96 120 144
modeled periods T

so
lv
ed

in
st
an

ce
s

P δex 5% P δex 10%
P δex 20%

0 48 96 144 192 2400
2
4
6
8
10
12
14

modeled periods T

P̂ δ, P δ 5% P̂ δ, P δ 10%
P̂ δ 20% P δ 20%

Figure 5.10: Number of instances of scenario 2025 solved to an optimality gap of 0.5% in
30 minutes. P δex (left) is typically fastest with CUtol = 20%, while P̂ δ and P δ
(right) are fastest with CUtol = 10%.

163

Chapter 5 Numerical Experiments

0 24 48 72 96 120 144 168 192 216 2400
2
4
6
8

10
12
14

modeled periods T

so
lv
ed

in
st
an

ce
s

P tex, P
t 20% P δex 20% P̂ δ, P δ 10% P̂ temp

P yz 20% P δ 0% P temp

Figure 5.11: Number of instances of scenario 2025 solved to an optimality gap of 0.5% in
30 minutes, showing only the best-performing start-up cost tolerance CUtol for
each formulation. P tex, P t and P̂ δ, P δ yield the same results, respectively. P δex
is outperformed by P̂ temp, P̂ temp, P̂ δ, P δ, and P f .

0 20 40 60 80 100 120 140 160 180 200 2200
2
4
6
8

10
12
14

modeled periods T

so
lv
ed

in
st
an

ce
s

P δex 5% P̂ δ 5% P δ 5% P δ 0%
P δex 10% P̂ δ 10% P δ 10%
P δex 20% P̂ δ 20% P δ 20%

Figure 5.12: Number of instances of scenario 2025 solved to an optimality gap of 0.5% in
30 minutes, including start-up production. The results remain similar, with P̂ δ
and P δ consistently outperforming P δex.

164

Chapter 6

Summary and Outlook

6.1 Summary

In this work, we thoroughly examine the start-up process of a electricity producing
unit and

• analyze the epigraphs of the start-up cost functions DCUt, DCUΣ, and DCU in
Chapter 2,

• present the temperature model, an extended formulation of conv(epi(DCUΣ)), in
Chapter 3, and

• introduce the start-up type model, an extended formulation of conv(epi(DCU)),
in Chapter 4,

which are interesting both for their theoretical insight and practically applicability.
The analysis of the epigraphs of the start-up cost functions in Chapter 2 yields

• a linear, irredundant H-representation of conv(epi(DCUt)) in Section 2.1,
• an exponential H-representation of conv(epi(DCUΣ)) in Section 2.2, which is

irredundant in the general case and possesses a linear separation algorithm, and
• an exponential class of facet-inducing inequalities of conv(epi(DCU)) in Sec-

tion 2.3.

Each epigraph dominates a certain important class of inequalities (cf. Subsec-
tion 1.3.2), and thus serves as a goalpost for our research. Moreover, these results
deepen our understanding of the start-up costs by characterizing the convex exten-
sions LCUt, LCUΣ of the discrete start-up cost functions DCUt, DCUΣ and by providing
a separation algorithm for conv(epi(DCUΣ)).
Based on a physical interpretation of the exponential start-up costs, Chapter 3

introduces the temperature and heating variables, and presents

• the temperature model P̂ temp with O(T) inequalities, and
• the temperature model P temp, an extended formulation of conv(epi(DCUΣ)) with
O(T 2) inequalities and linear separation algorithm.

165

Chapter 6 Summary and Outlook

These formulations provide the most compact description of the exponential start-up
costs without relying on approximations.
Finally, Chapter 4 identifies a network flow problem which underlies all start-up

type models. Based on this interpretation, it introduces

• the start-up type model P δ, an extended formulation of conv(epi(DCU)) with
O(ST) variables, O(T 2) inequalities, and a O(T 2) separation algorithm, where
S is the number of start-up types,

• the start-up type model P̂ δ, which models the start-up costs correctly for
v ∈ {0, 1}T using a subset of O(ST) inequalities of P δ, and

• the model P yz, which provides the same lower bound on the start-up costs as
the state-of-the-art start-up type models in [Muc66; SBB10] with O(T) variables
and O(ST) inequalities.

Using the flow interpretation, Theorem 4.20 derives a total order on the tightness
of all proposed start-up cost formulations (under projection) except P̂ temp, which is
shown in Fig. 6.1. The figure highlights that the models introduced in this work (red)
dominate the state-of-the-art (blue) and that we reached our goal of describing each of
the start-up cost epigraphs.
Moreover, the temperature formulation P̂ temp, which models the start-up costs for

integral operational schedules with O(T) inequalities, is shown to be incomparable to
the models P tex, P δex, P yz: The experiments in Chapter 5 indicate that the bound on
the start-up costs provided by P̂ temp is typically tighter than P yz, but may be weaker
than P tex in some cases (see Fig. 5.2).
Moreover, Chapter 5 confirms the practical superiority of the presented models,

showing that they strongly decrease the integrality gap when modeling start-up costs
and processes alike and significantly increase the computational performance.
Still, there remain several interesting open questions, which we address in the

following subsections.

6.2 Modeling the Start-up Process in the Temperature Model
This section recaps joint work with Matthias Huber [HS15].

In the temperature formulation in Chapter 3, we model the exponential start-up
cost function CU(L) = e−λL by introducing variables for the temperature tempt and
heating ht of a unit. If we restrict ourselves to L1 = . . . = LT = 1, these variables are
connected by the temperature development equation (3.2.7) as

tempt+1 = e−λtempt + (1− e−λ)vt + ht.

To accurately model the exponential start-up costs, Chapter 3 assumes that the heating
time is negligible, effectively leaving ht unbounded.

166

6.2 Modeling the Start-up Process in the Temperature Model

start-up
types

conv(epi(DCUt))
H-representation

P tex in [CA06]

⊃
conv(epi(DCU))
class of facets

P δ

pr
oj
→ =

P̂ δ
⊃

P yz

←
pr
oj

⊃

P δex in [SBB10]
proj↔⊂

←proj=

epi(LCU1,...,LCUT)

←
pr
oj
⊃

←
pr
oj
⊃

conv(epi(DCUΣ))
H-representation

proj→=

P temp

pr
oj
→ =

P̂ temp

⊂

applied to
all periods

Figure 6.1: Comparison of the tightness of the lower bounds of the start-up cost models,
partially under projection (“proj”). Blue nodes denote state-of-the art models,
nodes and set relationships in red denote our contribution presented in this thesis.
In particular, we prove P tex ⊂ P δex, which has been stated in [MELR13b] based on
experiments.
The green area marks formulations based on start-up types, which can be used to
model the start-up process. The combination of (v, cut) ∈ conv(epi(DCUt)) for
all periods t is denoted by epi(LCU1, . . . ,LCUT).
Note that the proposed models both dominate the state-of-the-art and describe
the start-up cost epigraphs conv(epi(DCUt)) and conv(epi(DCUΣ)).

The heating speed of thermal units however is regulated to mitigate material tensions
induced by temperature gradients, which necessitate maintenance and shorten the
service life of the unit [KSH13]. By limiting the amount of heating performed in each
period to H,

∀ t ∈ [T] : ht−1 ≤ H,
the total heating at start-up is spread over a time of

TU(L) = 1
λ

ln
(

H/λ

H/λ − (1− e−λL)

)
,

and therefore over dTU(L)e periods, depending on the prior downtime L. Hence, this
effectively models a time-dependent start-up time (see Fig. 6.2).

167

Chapter 6 Summary and Outlook

1
v

t
1

temp
t

H
h

t1 2 3 4 5 6 7 8 9 10 11 12
dTU(10)e

Figure 6.2: Due to the limited heating speed, the shown unit needs to heat up for dTU(10)e = 3
periods before becoming operational in period 12.

Due to the lengthier starting process, a unit looses more heat and requires a total
heating of H dTU(L)e, which is interpolated by

H
λ

ln
(

H/λ

H/λ − (1− e−λL)

)
> 1− e−λL

and for L→∞ converges to

H
λ

ln
(

H/λ

H/λ − 1

)
> 1.

Note that both the start-up time and total heating depend on the ratio H/λ of the
heating speed and the heat loss rate.

To retain the meaning of CUvar as the maximal variable start-up cost, we define the
start-up costs in the case of limited heating as

cut := C̃Uvarht−1 + CUfixedyt with C̃Uvar := CUvar
(
H
λ

ln
(

H/λ

H/λ − 1

))−1

.

The resulting start-up cost function differs from the exponential start-up costs, albeit
only marginally for typical thermal units (cf. Fig. 6.3). Therefore, the temperature
model with bounded heating may be applied even if the unit exhibits exponential
start-up costs.

Seeing how the start-up time naturally arises in the temperature formulation when
respecting a basic limitation of thermal units, we believe that further aspects of the
start-up process follow from considering the underlying technical restrictions during a
start-up. For example, the start-up production could be tied to either the heating or
the temperature while heating, leading to a constant or nearly linear start-up power
trajectory as proposed in [SBB10].

168

6.3 The Epigraph of Start-up Costs in All Periods

exponential

limited

5 10 15 20
L

0

CUvar

CUfixed

costs

Figure 6.3: Start-up costs with limited heating speed (“limited”) compared to exponential
start-up costs (“exponential”), depending on the downtime L. Note that the
“limited” costs require a smaller coefficient C̃Uvar

< CUvar than the “exponential”
costs to reach the same maximal start-up costs

6.3 The Epigraph of Start-up Costs in All Periods

Section 2.3 presents the composite start-up inequalities, an exponential class of facet-
inducing inequalities of conv(epi(DCU)), but leaves the problem of deriving an H-rep-
resentation of conv(epi(DCU)) open. The start-up flow polyhedron P f presented in
Section 4.2, which is an extended formulation of the lower boundary of conv(epi(DCU)),
may provide a viable solution approach.
A fundamental result on extended formulations (see e. g. [Bal05]) considers a

projection of the set Q defined as

Q := {(x, u) ∈ Rq × Rp : Au+Bx ≤ b, x ∈ S},

with matrices A ∈ Rm×q, B ∈ Rm×p, vector b ∈ Rm, and set S ⊂ Rq. It shows that
projecting Q on its variables x results in

πx(Q) = {x ∈ Rq : (vTB)x ≤ vT b, v ∈ extr(W), x ∈ S}, (6.3.1)

where extr(W) denotes the extremal rays of the cone W ,

W := {v ∈ Rm : vTA = 0, v ≥ 0}.

169

Chapter 6 Summary and Outlook

To apply this result, we explicitly incorporate the start-up costs as calculated in the
projection πf from P f to conv(epi(DCU)), gaining the polyhedron

P̃ f :=
{

(v, cu, f) ∈ R2T+T (T + 1)/2 fulfilling inequalities (6.3.2)-(6.3.6)
}

with inequalities
t−1∑
l=0
f tl ≥ vt, t ∈ [T] (6.3.2)

T∑
t′=t+1

f t
′
t′−t−1 ≤ vt t ∈ [T − 1] (6.3.3)

cut ≥
t−1∑
l=0

CUt(l)f tl t ∈ [T] (6.3.4)

0 ≤ vt ≤ 1, t ∈ [T] (6.3.5)
f tl ≥ 0, t ∈ [T], l ∈ [0 .. t−1] (6.3.6)

and with corresponding orthogonal projection
π̃f : R2T+T (T + 1)/2 → R2T , (v, cu, f) 7→ (v, cu).

Substituting Q = P̃ f and πx = π̃f in (6.3.1) yields an H-representation of the
projection π̃f (P̃ f) = conv(epi(DCU)), which can be simplified to

π̃f (P̃ f) =



(v, cu) ∈ R2T :∑
t∈[T]

λtccut ≥ λTs vT +
∑

t∈[T−1]
(λts − λte)vt, (λc, λs, λe) ∈ extr(W)

0 ≤ vt ≤ 1 t ∈ [T]


,

where λc corresponds to the start-up cost bounds (6.3.4), λs corresponds to the flow
start inequalities (6.3.2), and λe corresponds to the flow end inequalities (6.3.3).

The respective cone W is defined as

W :=



(λc, λs, λe) ∈ RT × RT−1 × RT :

CUt(l)λtc − λts + λt−l−1
e ≥ 0, t ∈ [T], l ∈ [0 .. t−2]

CUt(t− 1)λtc − λts ≥ 0, t ∈ [T]
λtc ≥ 0, t ∈ [T]
λts ≥ 0, t ∈ [T]
λte ≥ 0 t ∈ [T − 1]


.

The composite start-up cost inequalities (cf. Definition 2.40) provide some of the
rays extr(W). Each inequality with parameters t ∈ [T], l ∈ [0 .. t−1], J ⊂ [l − 1]
corresponds to the ray {

q(λc, λs, λe)
∣∣∣ q ∈ R≥0

}
∈ extr(W)

170

6.4 Minimum Downtime and Start-ups

with coefficients

∀ t′ ∈ [T] : λt
′
c =


1 if t′ = t,
ωj(t, l) if t′ = t− j with j ∈ J ,
0 else,

∀ t′ ∈ [T] : λt
′
s =


CUt(l) if t′ = t,
CUt(l)− CUt(t− t′) if t− t′ ∈ J ,
0 else,

∀ t′ ∈ [T − 1] : λt
′
e =

{
CUt(l)− CUt(t− t′ − 1) if t′ ∈ [l],
0 else.

Deriving the remaining extremal rays of W would lead to an explicit H-representation
of conv(epi(DCU)).

6.4 Minimum Downtime and Start-ups
Subsection 1.3.2 establishes the importance of start-up cost epigraphs by showing
that if the set of feasible solutions of a Unit Commitment problem fulfills condi-
tion (1.3.14), then these epigraphs dominate important classes of inequalities. Specifi-
cally, conv(epi(DCUt)), conv(epi(DCUΣ)), and conv(epi(DCU)) model the best possible
lower bound on the start-up costs with respect to the inequalities

cut ≥
∑
t∈[T]

αtv
t + β,

∑
t∈[T]

cut ≥
∑
t∈[T]

αtv
t + β, and

∑
t∈[T]

γtcut ≥
∑
t∈[T]

αtv
t + β,

respectively.
As subsequently noted, condition (1.3.14) does not hold for units with a minimum

downtime DT > 1, for which it is straightforward to show that the lower bound on the
start-up costs can be improved. An H-representation of conv(epi(DCUt)) is given by
the lifted start-up cost inequalities (2.1.4),

∀ t ∈ [T], l ∈ [t− 1] : cut ≥ CUt(l)vt −
l∑

j=1
(CUt(l)− CUt(j−1))vt−j ,

which can be tightened to

∀ t ∈ [T], l ∈ [t− 1] : cut ≥ CUt(l)(vt − vt−1 −
l∑

j=DT+1

(
CUt(l)− CUt(j−1)

)
vt−j .

171

Chapter 6 Summary and Outlook

For vt = 0 or vt−1 = 1, the new inequality is fulfilled since its right-hand side
is non-positive. For vt = 1 and vt−1 = 0, the minimum downtime states that
vt−1 = . . . = vt−DT = 0, such that the right-hand sides of the new inequality and the
original inequality (2.1.4) are equal.

Analogously, the defining inequality (4.5.5) of the polyhedron P yz,

∀ t ∈ [T], l ∈ [0 .. t−1] : cut ≥ CUt(l)yt −
l−1∑
j=1

(CUt(l)− CUt(j))zt−j ,

can be tightened to

∀ t ∈ [T], l ∈ [0 .. t−1] : cut ≥ CUt(l)yt −
l−1∑
j=DT

(CUt(l)− CUt(j))zt−j .

Regarding conv(epi(DCU)), the stronger lower bound is easy to see when considering
its extended formulations, the start-up flow polyhedron P f and the start-up type
polyhedron P δ. A minimum downtime DT effectively renders all start-up flows f tl with
l ∈ [DT − 1] superfluous and P f can be tightened by setting

∀ t ∈ [T], l ∈ [DT − 1] : f tl = 0.

Equivalently, P δ can be tightened by choosing the partition Lt0, . . . ,LtSt of [0 .. t−1]
such that Lt1 = [DT − 1] and fixing δt1,

∀ t ∈ [T] : δt1 = 0.

Given these straightforward improvements, one cannot help asking:

• Is a further tightening possible? Do additional non-redundant inequalities exist?
• Can the binary tree inequalities or the temperature model be tightened in the

case of a minimum downtime?
• Do other typical restrictions on the operational schedule of a unit result in similar

opportunities for improvement?

172

Bibliography

[AC00] J. Arroyo and A. Conejo. “Optimal response of a thermal unit to an elec-
tricity spot market”. In: IEEE Trans. Power Syst. 15.3 (2000), pp. 1098–
1104.

[Bal05] E. Balas. “Projection, lifting and extended formulation in integer and
combinatorial optimization”. In: Ann. Oper. Res. 140.1 (2005), pp. 125–
161.

[BHS] R. Brandenberg, M. Huber, and M. Silbernagl. “An Extended Formulation
of the Summed Start-up Costs in a Unit Commitment Problem via Power
Plant Temperatures”. In Preparation.

[BHS16] R. Brandenberg, M. Huber, and M. Silbernagl. “The Summed Start-up
Costs in a Unit Commitment Problem”. In: (2016). EURO J. Comput.
Optim., Early access: http://www.springer.com/-/2/AVOG6nyoAgf
PWjhr_594.

[BS14] R. Brandenberg and M. Silbernagl. Implementing a Unit Commitment
Power Market Model in FICO Xpress-Mosel. FICO Xpress Optimization
Suite whitepaper. FICO, 2014.

[CA06] M. Carrión and J. Arroyo. “A computationally efficient mixed-integer
linear formulation for the thermal unit commitment problem”. In: IEEE
Trans. Power Syst. 21.3 (2006), pp. 1371–1378.

[DW60] G. B. Dantzig and P. Wolfe. “Decomposition principle for linear pro-
grams”. In: Oper. Res. 8.1 (1960), pp. 101–111.

[Ege+14] J. Egerer, C. Gerbaulet, R. Ihlenburg, F. Kunz, B. Reinhard, C. v.
Hirschhausen, A. Weber, and J. Weibezahn. Electricity sector data for
policy-relevant modeling: Data documentation and applications to the
German and European electricity markets. Data Documentation 72. Berlin:
Deutsches Institut für Wirtschaftsforschung (DIW), 2014.

[EHG11] J. Ebrahimi, S. H. Hosseinian, and G. B. Gharehpetian. “Unit commit-
ment problem solution using shuffled frog leaping algorithm”. In: IEEE
Trans. Power Syst. 26.2 (2011), pp. 573–581.

[FF56] L. R. Ford and D. R. Fulkerson. “Maximum flow through a network”. In:
Canadian J. Math. 8.3 (1956), pp. 399–404.

173

http://www.springer.com/-/2/AVOG6nyoAgfPWjhr_594
http://www.springer.com/-/2/AVOG6nyoAgfPWjhr_594

Bibliography

[Fic] FICO Xpress Optimization Suite. url: http://www.fico.com/en/
products/fico-xpress-optimization-suite (visited on 05/27/2015).

[Gar62] L. Garver. “Power Generation Scheduling by Integer Programming-
Development of Theory”. In: IEEE Trans. Power App. Syst. 81.3 (1962),
pp. 730–734.

[GBT84] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. “Scaling and Related
Techniques for Geometry Problems”. In: Proc. 16th Annu. ACM Symp.
Theory Comput. STOC ’84. New York, NY, USA: ACM, 1984, pp. 135–
143.

[GK94] P. Gritzmann and V. Klee. “On the complexity of some basic problems in
computational convexity: I. Containment problems”. In: Discrete Math.
136.1 (1994), pp. 129–174.

[Gom58] R. E. Gomory. “Outline of an algorithm for integer solutions to linear
programs”. In: B. Am. Math. Soc. 64.5 (1958), pp. 275–278.

[GZP03] X. Guan, Q. Zhai, and A. Papalexopoulos. “Optimization based methods
for unit commitment: Lagrangian relaxation versus general mixed integer
programming”. In: 2003 IEEE Power Eng. Soc. General Meeting. Vol. 2.
IEEE, 2003.

[HK56] A. Hoffman and J. Kruskal. “Integral boundary points of convex polyhe-
dra”. In: Linear Inequalities and Related Systems. Ed. by K. Kuhn and
A. Tucker. Princeton University Press, Princeton, NJ, 1956, pp. 223–246.

[HS15] M. Huber and M. Silbernagl. “Modeling Start-Up Times in Unit Com-
mitment by Limiting Temperature Increase and Heating”. In: 12th Int.
Conf. Eur. Energy Market. Lisbon, 2015.

[Hug93] T. Hughes. Networks of Power: Electrification in Western Society, 1880-
1930. Softshell Books. Baltimore: Johns Hopkins University Press, 1993.

[KSH13] P. Keatley, A. Shibli, and N. J. Hewitt. “Estimating power plant start
costs in cyclic operation”. In: Appl. Energ. 111 (2013), pp. 550–557.

[Kum+12] N. Kumar, P. M. Besuner, S. A. Lefton, D. D. Agan, and D. A. Hileman.
Power Plant Cycling Costs. Tech. rep. Research Report, prepared for
National Renewabl Energy Laboratory and Western Electricity Coordi-
nating Council. Sunnyvale, California: Intertek APTECH, 2012.

[LLM04] J. Lee, J. Leung, and F. Margot. “Min-up/min-down polytopes”. In:
Discrete Optim. 1.1 (2004), pp. 77–85.

[MELR13a] G. Morales-España, J. Latorre, and A. Ramos. “Tight and Compact
MILP Formulation for the Thermal Unit Commitment Problem”. In:
IEEE Trans. Power Syst. 28.4 (2013), pp. 4897–4908.

174

http://www.fico.com/en/products/fico-xpress-optimization-suite
http://www.fico.com/en/products/fico-xpress-optimization-suite

Bibliography

[MELR13b] G. Morales-España, J. Latorre, and A Ramos. “Tight and Compact MILP
Formulation of Start-Up and Shut-Down Ramping in Unit Commitment”.
In: IEEE Trans. Power Syst. 28.2 (2013), pp. 1288–1296.

[MHV12] M. Moghimi Hadji and B. Vahidi. “A solution to the unit commitment
problem using imperialistic competition algorithm”. In: IEEE Trans.
Power Syst. 27.1 (2012), pp. 117–124.

[Muc66] J. A. Muckstadt. “Scheduling in power systems”. http://hdl.handle.
net/2027.42/6720. PhD thesis. University of Michigan, 1966.

[NR00] M. P. Nowak and W. Römisch. “Stochastic Lagrangian Relaxation Ap-
plied to Power Scheduling in a Hydro-Thermal System under Uncer-
tainty”. In: Ann. Oper. Res. 100.1-4 (2000), pp. 251–272.

[OAV12] J. Ostrowski, M. Anjos, and A. Vannelli. “Tight Mixed Integer Linear
Programming Formulations for the Unit Commitment Problem”. In:
IEEE Trans. Power Syst. 27.1 (2012), pp. 39–46.

[Ott10] A. Ott. “Evolution of computing requirements in the PJM market: Past
and future”. In: 2010 IEEE Power Energy Soc. General Meeting. 2010,
pp. 1–4.

[Pad04] N. Padhy. “Unit commitment-a bibliographical survey”. In: IEEE Trans.
Power Syst. 19.2 (2004), pp. 1196–1205.

[Pad73] M. W. Padberg. “On the Facial Structure of Set Packing Polyhedra”. In:
Mathematical Programming 5.1 (1973), pp. 199–215.

[PE10] V. S. Pappala and I. Erlich. “A variable-dimension optimization approach
to unit commitment problem”. In: IEEE Trans. Power Syst. 25.3 (2010),
pp. 1696–1704.

[Rie+11] M. M. Rienecker et al. “MERRA: NASA’s Modern-Era Retrospective
Analysis for Research and Applications”. In: J. Climate 24.14 (2011),
pp. 3624–3648.

[Ros00] K. H. Rosen, ed. Handbook of discrete and combinatorial mathematics.
Discrete Math. Appl. CRC press, 2000.

[RR91] S. Ruzic and N. Rajakovic. “A new approach for solving extended unit
commitment problem”. In: IEEE Trans. Power Syst. 6.1 (1991), pp. 269–
277.

[RT05] D. Rajan and S. Takriti. “Minimum Up/Down Polytopes of the Unit
Commitment Problem with Start-Up Costs”. In: IBM Res. Rep. (2005).

[Rud76] W. Rudin. “Principles of mathematical analysis”. In: 3d ed. International
series in pure and applied mathematics. New York: McGraw-Hill, 1976.

175

http://hdl.handle.net/2027.42/6720
http://hdl.handle.net/2027.42/6720

Bibliography

[SBB10] C. Simoglou, P. Biskas, and A. Bakirtzis. “Optimal Self-Scheduling of
a Thermal Producer in Short-Term Electricity Markets by MILP”. In:
IEEE Trans. Power Syst. 25.4 (2010), pp. 1965 –1977.

[Sch98] A. Schrijver. Theory of linear and integer programming. Chichester: John
Wiley & Sons, 1998.

[SF94] G. Sheble and G. Fahd. “Unit commitment literature synopsis”. In: IEEE
Trans. Power Syst. 9.1 (1994), pp. 128 –135.

[SHB16] M. Silbernagl, M. Huber, and R. Brandenberg. “Improving Accuracy and
Efficiency of Start-up Cost Formulations in MIP Unit Commitment by
Modeling Power Plant Temperatures”. In: IEEE Trans. Power Syst. 31.4
(2016), pp. 2578–2586.

[SPO05] D. Streiffert, R. Philbrick, and A Ott. “A mixed integer programming
solution for market clearing and reliability analysis”. In: 2005 IEEE
Power Eng. Soc. General Meeting. 2005, 2724–2731 Vol. 3.

[SS34] M. J. Steinberg and T. H. Smith. “The theory of incremental rates
and their practical Application to load division—Part I”. In: Electrical
Engineering 53.3 (1934), pp. 422–445.

[Tse96] C.-L. Tseng. On power system generation unit commitment problems.
University of California, Berkeley, 1996.

[Vui80] J. Vuillemin. “A unifying look at data structures”. In: Commun. ACM
23.4 (1980), pp. 229–239.

[WW96] A. Wood and B. Wollenberg. Power generation, operation and control.
2nd ed. Wiley, 1996.

[ZG88] F. Zhuang and F. Galiana. “Towards a more rigorous and practical unit
commitment by Lagrangian relaxation”. In: IEEE Trans. Power Syst.
3.2 (1988), pp. 763–773.

[ENT] ENTSO-E, European Network of Transmission System Operators for
Electricity. Hourly Load Values. url: http://www.entsoe.eu/data/
data-portal/consumption/ (visited on 06/01/2015).

[EUR03] EURELECTRIC. Efficiency in Electricity Generation. Tech. rep. ww
w.eurelectric.org/Download/Download.aspx?DocumentID=13549.
EURELECTRIC, 2003.

[Ger14] German Federal Network Agency. List of Power Plants. 2014. url: http:
//www.bundesnetzagentur.de/cln_1412/DE/Sachgebiete/Elekt
rizitaetundGas/Unternehmen_Institutionen/Versorgungssicherh
eit/Erzeugungskapazitaeten/Kraftwerksliste/kraftwerksliste-
node.html (visited on 06/01/2015).

176

http://www.entsoe.eu/data/data-portal/consumption/
http://www.entsoe.eu/data/data-portal/consumption/
www.eurelectric.org/Download/Download.aspx?DocumentID=13549
www.eurelectric.org/Download/Download.aspx?DocumentID=13549
http://www.bundesnetzagentur.de/cln_1412/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerksliste/kraftwerksliste-node.html
http://www.bundesnetzagentur.de/cln_1412/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerksliste/kraftwerksliste-node.html
http://www.bundesnetzagentur.de/cln_1412/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerksliste/kraftwerksliste-node.html
http://www.bundesnetzagentur.de/cln_1412/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerksliste/kraftwerksliste-node.html
http://www.bundesnetzagentur.de/cln_1412/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerksliste/kraftwerksliste-node.html

Bibliography

[Int12] International Energy Agency. World Energy Outlook 2012. OECD/IEA,
2012.

[Int13] International Energy Agency. Renewable Energy Medium-Term Market
Report. Tech. rep. OECD/IEA, 2013.

177

Appendix A

Finding Cartesian Trees

By [GBT84], the Cartesian tree of a vector x ∈ Rn can be constructed in O(n) using
an iterative approach. Since Subsection 2.2.5 relies on its applicability, we reprise the
algorithm and its proof of correctness in detail.

Algorithm A.0.1: FindCartesianTree
Input :Vector x ∈ Rn
Output :Cartesian tree B for the vector x, represented by llink and rlink

1 for i = 1, . . . , n do
2 llink(i)← ∅, rlink(i)← ∅;
3 η1 ← 1;
4 R← 1;
5 for i = 2, . . . , n do
6 if xη1

≤ xi then
7 llink(i)← η1;
8 η1 ← i;
9 R← 1;

10 else
11 j ← R;
12 while xηj ≤ xi do
13 j ← j − 1;
14 llink(i)← rlink(ηj);
15 rlink(ηj)← i;
16 ηj+1 ← i;
17 R← j + 1;

18 return binary tree represented by llink and rlink;

Lemma A.1 For each x ∈ Rn, Algorithm A.0.1 finds a Cartesian tree for x in O(n).

179

Appendix A Finding Cartesian Trees

Proof. For i ∈ [n], let llinki(j), rlinki(j), ηij and Ri denote the values of the variables
llink(j), rlink(j), ηj and R during the execution of the algorithm,

• before the first execution of the main for-loop (lines 5–17) for i = 1, and
• after the (i−1)-th iteration of the main for-loop for i > 1.

We proof by induction over i ∈ [n] that llinki and rlinki restricted to [i] represent a
Cartesian tree Bi for (x1, . . . , xi) with rankBi(k) = k for each node k ∈ [i] and top-right
nodes ηi1, . . . , ηiRi .

The functions llink1 and rlink1 restricted to [1] represent the binary tree B1 with the
single node 1, which is the unique Cartesian tree for (x1). Both R1 and η1

1 are correct.
For i > 1, consider the case where the if-block (lines 6–9) was executed in the

last iteration of the main loop: here line 7 appends Bi−1 as the left subtree of i (see
Fig. A.1). Since the root i has no right child, the sole top-right node is ηi1 = i, which is
reflected by the update of the top-right nodes on lines 8–9.

Bi−1:
ηi−1

1 ηi1 = i

Bi:

ηi−1
1

Figure A.1: Adding a node i with xηi−1
1
≤ xi to the Cartesian tree Bi−1, resulting in the

Cartesian tree Bi.

By definition of the rank function, rankB1(i) = i and the ranks of the nodes in its
left subtree LBi(i) = Bi−1 are [i− 1]. Since their relative order remains unchanged,
their ranks remain unchanged, and rankBi(k) = rankBi−1(k) = k for all k ∈ [i− 1].

All nodes k ∈ Bi except ηi−1
1 and i have the same parent in Bi−1 and Bi, and thus

fulfill xk ≤ xp(k). Since the if-block has been executed, xηi−1
1
≤ xi holds as well and

Bi is a Cartesian tree for (x1, . . . , xi).
Now, consider the case where the else-block (lines 10–17) has been executed in the

last iteration of the main loop. Since the statement xi < xηi−1
1

holds, the while-loop
on lines 12–13 stops with j ≥ 1. Lines 14–15 move the right subtree T of ηi−1

j to the
left subtree of i, and append i as the right child of ηi−1

j (see Fig. A.2). Hence, the
top-right nodes ηi−1

j+1, . . . , η
i−1
Ri−1 are replaced by ηij+1 = i, and lines 16–17 update ηj+1

and R correctly.
As the node ηi−1

Ri−1 = i− 1 lies in the moved subtree T , we have rankBi(i) = i and T
contains the nodes with ranks [i−s(T) .. i−1] both in Bi−1 and Bi. By extension, the

180

remainder of the tree Bi−1 also contains the nodes with the same ranks [i− s(T)− 1]
in Bi. So, the ranks in Bi−1 and Bi are equal, and rankBi(i) = i.

All nodes k ∈ Bi except i and ηi−1
j+1 (if j < Ri−1) have the same parent in Bi−1 and

Bi, and thus fulfill xp(k) ≥ xk. Since the while-loop terminates with xp(i) = ηi−1
j ≤ xi

the Cartesian tree property is fulfilled for i. If j < Ri−1, the same holds for ηi−1
j+1, as

we have xp(ηi−1
j+1) = xi < ηi−1

j+1. So, Bi is a Cartesian tree for (x1, . . . , xi).
This concludes the induction and proves that the tree resulting from the algorithm

is a Cartesian tree for the vector (x1, . . . , xn).
The whole algorithm except the while-loop (lines 12-13) clearly has a running time

of O(n). The number of top-right nodes R is initialized with 1, and is only changed
on line 17 to R = j + 1. Since the condition on line 12 for j = 1 is the same as the
condition on line 7, the while-loop stops with j ≥ 1. Thus, R is always greater than or
equal to 1. On the other hand, R is only possibly increased on line 17 by at most 1.
Thus, the body of the while-loop is executed at most n− 1 times during the complete
algorithm. 2

Bi−1:
ηi−1

1

ηi−1
j

ηi−1
j+1

T

Bi:
ηi−1

1

ηi−1
j

i

ηi−1
j+1

T

Figure A.2: Adding a node i with xηi−1
j

> xi ≥ xηi−1
j+1

to the Cartesian tree Bi−1, resulting in
the Cartesian tree Bi.

181

Glossary
boiler Component of a unit which is heated by the burning fuel to generate steam. 92

demand, residual Difference between electricity demand and production from other
sources; in this publication: difference between demand and renewable energy
production. 5, 6, 155

downtime Time during which a unit does not produce electricity, i. e. is offline. 5, 7,
8, 10, 11, 15–19, 22, 25, 26, 32, 50, 51, 55, 56, 91–95, 106, 116, 119, 125, 140,
145, 167, 169, 171, 172

Economic Dispatch Problem of cost-optimally distributing an electricity demand
on a set of online units. Does not include the decision which units should be
offline and which units should be online. 6

load, base Typical minimal residual demand in a power system. 5, 31
load, peak Typical maximal residual demand in a power system. 31

material tension Force on material; in this publication due to temperature gradients
which result in differing material densities. 17, 167

maximal production Maximal sustainable electricity production of a unit. Generally
determined by the thermal design. 7, 10, 11, 13

minimal production Minimal electricity production in online state of a unit. Gener-
ally defined by law, since lower production levels lead to a higher concentration
of carbon monoxide and other toxic gases in the exhaust gas. 7, 13, 14, 154

MWh Megawatt hour, a unit of energy of adequate dimension to describe power plants.
The average German citizen used 7 MWh of electricity in 2011. 8, 155

offline State during which a unit does not produce electricity or heat. 11, 15, 17–19,
22, 32, 33, 36, 37, 43, 54–56, 65–69, 78, 93, 95–97, 104, 106, 125, 126, 129, 130,
148, 183, 184

online State during which a unit contributes electricity to the power system. 6, 8–12,
15, 18, 36, 82, 95–97, 183–185

operational schedule Schedule determining the operational state of a unit over time.
11, 19, 20, 24, 32, 52, 53, 55, 92, 93, 96, 99, 100, 102, 105, 109, 119, 125, 129,
134, 140, 141, 144, 172

operational state General state of a unit: online, offline, banking, soaking, synchro-
nizing, desynchronizing. 8–10, 15, 18, 96, 99, 183

183

Glossary

power plant Electricity producing factory, typically consisting of multiple units in a
single building complex. 1, 4, 6, 154, 183

power trajectory Pre-defined controlled development of a unit’s electricity production
level over time, mainly in the context of a start-up. 1, 5, 17, 22, 25, 123, 154,
168, 184

production costs Costs of electricity production excluding start-up costs. 5, 7, 12,
14, 159

ramp Change of the electricity production level of a unit during normal operation. 7,
10, 14, 19, 140, 157, 159, 185

shutdown Transition from online to offline status of a unit. 5, 8, 11, 12, 26, 94, 97,
140, 141, 144, 185

start-up Transition from offline to online status of a unit. 1, 4, 5, 8, 11, 15–19, 22, 23,
26, 31, 94, 97, 106, 107, 123, 129, 140, 141, 144, 153–155, 157, 159, 167, 168,
184, 185

start-up costs Costs caused by a start-up, both directly and indirectly. 1, 3, 4, 7, 10,
12, 13, 15–25, 31–33, 36–38, 40–43, 47–49, 51–55, 80, 82, 91–96, 98–100, 102,
105–110, 116, 120, 121, 123, 125, 126, 129, 130, 132–134, 140, 142–152, 154,
155, 158–160, 165, 166, 168–171

start-up process Process to transition a unit from offline to online state, encompassing
a pre-defined power trajectory. 4, 5, 12, 22, 27, 123, 153, 156, 165, 167, 168

start-up production Production of a unit while performing a start-up. 7, 8, 12, 15,
18, 22, 23, 26, 123, 154–156, 159, 160, 163, 164, 168

start-up time Time required for to complete the start-up process of a unit. 15, 17,
18, 22, 25, 154, 167, 168

state, banking State in which the unit is kept at operational temperature without
producing electricity, e. g. to allow a fast start-up. 15, 183

state, desynchronizing State in which a unit is disconnecting from the power system.
15, 183

state, soaking State during start-up in which the heat in the turbines is allowed to
distribute by keeping the unit at a certain intermediate temperature. 15, 123,
183

state, synchronizing State in which a unit is connecting to the power system. 15,
123, 183

thermal stress Deteriorating force due to quick changes in temperature. 5

unit Smallest electricity producing entity which may be started up and shut down
independently. 1, 3, 5–7, 10–14, 16–18, 22, 23, 33, 36, 37, 52, 80, 91, 92, 94,
96, 97, 99, 100, 140, 148, 155, 158, 159, 165, 167, 168, 171, 172, 183–185

184

Glossary

Unit Commitment Problem of cost-optimally distributing an electricity demand on
a set of units, deciding which units need to be online and which units should
be offline. 1, 6, 8–10, 13–15, 19, 21–25, 31, 52, 93, 96, 140, 141, 153–156, 158,
171

unit, biomass Thermal unit producing energy by burning organic matter, e. g. wood,
(converted) plants, waste. 5, 155

unit, coal Thermal unit producing heat by burning coal. 5, 31, 154
unit, combined cycle gas Thermal unit producing electricity by transforming the

heat of burning gas in multiple combined thermodynamic cycles. 154, 185
unit, combined heat&power Unit whose waste heat is used in heating-intensive

processes, e. g. chemical processing, drying, building heating. 92
unit, gas Unit producing electricity by transforming the heat of gas in a single

thermodynamic cycle. Less efficient than a combined cycle gas unit, but with
faster ramping and start-up. 5, 31, 154

unit, hydro Unit producing energy by converting the gravitational force of water. 11,
155

unit, hydrothermal Unit which is either a thermal unit or a hydro; mainly used to
address units with controllable production level. 13

unit, lignite Thermal unit producing energy by burning lignite, i. e. brown coal. 5,
154

unit, nuclear Thermal unit producing heat by nuclear fission. 5, 154
unit, solar Unit producing energy by converting solar energy. 7, 155
unit, thermal Unit which produces electricity by generating heat, e. g. by burning

fuel and converting the heat to electricity. 5, 13, 16–18, 31, 47, 167, 168
unit, wind Unit producing energy by converting wind energy. 7, 155
uptime Time during which a unit produces electricity, i. e. is online. 7, 8, 10, 11, 14,

19, 22, 26, 140, 153

wear&tear Deterioration of a unit due to production, ramping, start-ups, and shut-
downs. 5

185

	Introduction
	Technical and Economical Background
	Mathematical Background
	Nomenclature
	Unit Commitment Reference
	Computational Complexity

	Foundations of Start-up Modeling
	Start-up Notation
	Epigraphs of Start-up Costs Functions
	Start-up Types

	Contribution
	Summary

	Acknowledgments

	H-Representations of the Epigraphs of Start-up Cost Functions
	The Start-up Costs in a Single Period
	The Existing Step-wise Start-up Cost Model
	A Geometric Interpretation
	Lifted Start-up Cost Inequalities
	An H-Representation
	The Convex Extension LCU^t of DCU^t
	Redundancy and Approximations of Start-up Costs

	The Summed Start-up Costs
	Lifting Inequalities
	Notation for Binary Trees
	The Binary Tree Inequalities
	Sufficiency of the BTIs
	Separation

	The Start-up Costs in All Periods
	Composite Start-up Cost Inequalities
	Facets

	The Temperature Model
	A Physical Interpretation of the Start-up Costs
	An H-Representation for Integral Operational Schedules
	Correctness for Integral Operational Schedules

	The Temperature Polyhedron
	Equivalency to the Summed Start-up Cost Epigraph
	Separation

	Generalization of Temperature Development

	Start-up Types
	The Network Flow Interpretation
	The Start-up Flow Polyhedron
	The Start-up Type Polyhedron
	Valid Inequalities
	Integral Operational Schedules
	Fractional Operational Schedules
	Separation

	Start-up and Shutdown Indicators
	Comparison of Start-up Cost Models
	The Existing Start-up Type Models
	The Epigraph of the Start-up Costs in a Single Period
	The Temperature Polyhedron for Integers
	Conclusion

	Numerical Experiments
	The Scenarios
	The Models
	Integrality Gap
	Computational Performance

	Summary and Outlook
	Summary
	Modeling the Start-up Process in the Temperature Model
	The Epigraph of Start-up Costs in All Periods
	Minimum Downtime and Start-ups

	Finding Cartesian Trees

