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The Arbitrarily Varying Wiretap Channel—Secret
Randomness, Stability, and Super-Activation
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Abstract— We define the common randomness-assisted capac-
ity of an arbitrarily varying wiretap channel (AVWC) when the
eavesdropper is kept ignorant about the common randomness.
We prove a multi-letter capacity formula for this model. We prove
that, if enough common randomness is used, the capacity formula
can be given a single-shot form again. We then consider the
opposite extremal case, where no common randomness is avail-
able, and derive the capacity. It is known that the capacity of the
system can be discontinuous under these circumstances. We prove
here that it is still stable in the sense that it is continuous around
its positivity points. We further prove that discontinuities can only
arise if the legal link is symmetrizable and characterize the points
where it is positive. These results shed new light on the design
principles of communication systems with embedded security
features. At last, we investigate the effect of super-activation of
the message transmission capacity of AVWCs under the average
error criterion. We give a complete characterization of those
AVWCs that may be super-activated. The effect is thereby also
related to the (conjectured) super-activation of the common
randomness assisted capacity of AVWCs with an eavesdropper
that gets to know the common randomness. Super-activation is
based on the idea of wasting a few bits of non-secret messages
in order to enable provably secret transmission of a large bulk
of data, a concept that may prove to be of further importance in
the design of communication systems. In this paper, we provide
further insight into this phenomenon by providing a class of codes
that is capacity achieving and does not convey any information
to the eavesdropper.

Index Terms— Information security, secrecy capacity, wiretap
channel, arbitrarily varying channel, symmetrizable channel.

I. INTRODUCTION

JUST like in our previous work [38], we investigate a
model on the intersection between the two areas of

secrecy and robust communication in information theory: the
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Fig. 1. Secure coding schemes for correlated random coding (upper picture)
and secret common randomness assisted coding (lower picture).

arbitrarily varying wiretap channel (AVWC). The communi-
cation scenario is depicted in Figure 1.

In this model, a sender (Alice) would like to send messages
to a legitimate receiver (Bob) over a noisy channel. Involved
into the scenario are two other parties: a jammer (James) who
can actively influence the channel and a second but illegitimate
receiver (Eve). Alice’s and Bob’s goal is to achieve reliable
and secure communication:

First, Bob should be able to decode Alice’s messages with
high probability (with respect to the average error criterion)
no matter what the input of James is.

Second, the mutual information between the messages and
Eve’s output should be close to zero. Again, this has to be the
case no matter what the input of James is.

Like in our previous work, we add the option of
Alice and Bob having access to perfect copies of the outcomes
of a random experiment G (a source of common randomness).
While in our previous work [38] we considered the case
where Eve gets an exact copy of the outcomes received by
Alice and Bob, we now extend our study to the case where
Eve remains completely ignorant.

The only party which has no access to G in all the scenarios
we study is James. We call the capacities which we derive from
the two scenarios the “correlated random coding mean secrecy
capacity” if Eve has information about G and “secret common
randomness assisted secrecy capacity” if Eve has no informa-
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tion about it. When no common randomness is present at all,
we speak of the “uncorrelated coding secrecy capacity”. For
the sake of an extended discussion of secrecy criteria we also
define a “capacity with public side-information” which is the
data transmission benchmark for systems where Eve gets to
know a part of the messages.

From now on, we use the label CS for the uncorrelated
coding secrecy capacity (when no shared randomness is avail-
able between Alice and Bob) and Cmean

S,ran for the correlated
random coding mean secrecy capacity (just as in our previous
work [38] we restrict attention to the case where common
randomness is used. To the reader which is not familiar
with that work we apologize, as some of our results rely on
that previous work). The secret common randomness assisted
secrecy capacity is labelled Ckey and the capacity with public
side information Cpp. As is depcited in Figure 1, it is of vital
importance that Eve cannot communicate to James.

We give a unified treatment of the subject which allows
us to observe the behaviour of the system while we change
the amount of and the access to the common randomness: for
common randomness set to zero one observes instabilities of
the system (in the sense that the capacity is not a continuous
function of the channel parameters anymore) and the effect
of super-activation. Roughly speaking, two channels show
super-activation when each of them cannot be used for a
certain task (e.g. reliable communication under average error,
maximal error or zero error criterion or, as in this work,
secure communication) alone, but if a joint use is allowed the
task becomes feasible. A more precise formulation is given in
equations (5) to (8), while the definition is part of Definition 11
which is followed by a short discussion of super-activation
in the scenario treated here. If common randomness is used
between Alice and Bob but Eve gets to know it as well, it
is known from the results in [38] that already small (a loga-
rithmic number of bits, counted in block-length) amounts of
common randomness resolve the instabilities (in the sense that
the correlated random coding capacity is a continuous function
of the channel parameters). It remains unknown whether super-
activation is possible when common randomness is present,
and this question is the content of Conjecture 1.

The full advantage from common randomness can only be
gained if Eve is kept ignorant of it. If common randomness is
used at a nonzero rate, this rate adds linearly to the capacity
of the system. All the capacity formulas which can be proven
to hold in the various nontrivial scenarios are given by multi-
letter formulae. Only if the common randomness exceeds the
maximal amount of information which can be leaked to Eve do
we recover a single-letter description. At that point, the linear
increase in capacity stops. This behaviour is depicted in Figure
2 and explained in more detail after equation (11). In order to
carve out these principal features of secure data transmission
in a both exact and elegant mathematical framework we let
the number n of channel uses go to infinity.

We will now sketch the connections of our work with some
of the highlights and landmarks in the earlier literature. While
we do not attempt to work in full rigour in the introduction,
we will nonetheless gradually introduce some mathematical
notation.

Fig. 2. Scaling of secrecy capacity with the rate G of secret common
randomness. It holds X = Cmean

S,ran (W,T)−Cmean
S,ran (W,V), where T is defined

below after equation (1).

The probabilistic law which governs the transmission of
codewords sent by Alice and jamming signals sent by James
to Eve and Bob is, for n channel uses, given by

w⊗n(yn|xn, sn) · v⊗n(zn|xn, sn)

=
n∏

i=1

w(yi |xi , si ) · v(zi |xi , si ). (1)

Here, sn = (s1, . . . , sn) are the inputs of James,
xn = (x1, . . . , xn) those of Alice and zn = (z1, . . . , zn) the
outputs of Eve, while yn = (y1, . . . , yn) are received by Bob.
All letters are assumed to be taken from finite alphabets.
The action of the channel is, for each natural number n
and therefore also as a whole, completely described by the
pair (W, V ) of matrices of conditional probabilities and this
could rightfully be called an interference channel with non-
cooperating senders and receivers. With respect to the histori-
cal development we will nonetheless prefer to use a description
via the pair (W,V) = ((w(·|·, s))s∈S , (v(·|·, s))s∈S ) and the
label “AVWC”.

This model has two important restrictions which are widely
known: The case where V does not convey any information
about either one of its inputs is the arbitrarily varying chan-
nel (AVC). We will denote this special channel by T = (T ),
where t (z|x, s) = 1

|Z| for all z, x and s. Before we give some
credit to the historical developments in the area, we would like
to emphasize that the notion introduced in (1) extends to prod-
ucts of arbitrary channels from X1 to Y1 and X2 to Y2, let them
be denoted W1 and W2 with respective transition probability
matrices (w1(y1|x1))x∈X1,y∈Y1 and (w2(y1|x1))y∈Y2,x∈X2 as
follows: The transition probability matrix of W1 ⊗ W2 is
defined by w(y1, y2|x1, x2) := w1(y1|x1) · w2(y2|x2) (for all
x1 ∈ X1, x2 ∈ X2, y1 ∈ Y1 and y2 ∈ Y2).

The notation then carries over to arbitrarily varying
channels, where we set

W ⊗ W′ := (Ws ⊗ W ′
s ′)s∈S,s ′∈S ′ . (2)

The model of an arbitrarily varying channel has been intro-
duced by Blackwell et al. [12] in 1960. They derived a formula
for the capacity of an AVC with shared randomness-assisted
codes under the average error criterion, and we will restrict
our discussions to this criterion, although important nontrivial
results concerning message transmission under the maximal
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error criterion have been obtained e.g. in [1] and [32]. In [1]
it was shown that an explicit formula for the (weak) capacity of
an AVC under maximal error criterion would imply a formula
for the zero-error capacity of a discrete memoryless channel.
The latter problem is open now for half a century.

In [2], Ahlswede developed an elegant and streamlined
method of proof that, together with the random coding results
of [12], enabled him to prove the following: the capacity of an
AVC (under the average error probability criterion) is either
zero or equals its random coding capacity. This dichotomic
behaviour is extended in the present work to the case where
there is a (nontrivial) eavesdropper that has access to the
shared randomness.

After the discoveries made in [2], an important open
question was, when exactly the deterministic capacity with
vanishing average error is equal to zero, and in some sense
the corresponding question for the AVWC is left open by us
as well. In 1985, a first step towards a solution was made by
Ericson [27], who came up with a sufficient condition that was
proven to be necessary by Csiszár and Narayan [22] in 1989.

The condition which was developed by Ericson, called
symmetrizability, reads as follows: An AVC W is called
symmetrizable if there is a set (u(·|x))x∈X of probability
distributions on S such that for every x, x ′ ∈ X and y ∈ Y
we have

∑

s∈S
u(s|x)w(y|x ′, s) =

∑

s∈S
u(s|x ′)w(y|x, s). (3)

An arbitrarily varying channel W that is symmetrizable cannot
be used for reliable transmission of messages, as any input x
can, at least in an average sense, be made to look as if it
had been another input x ′. An example for a symmetrizable
AVC that cannot be used for reliable transmission of messages
just by using one encoder-decoder pair but still has a positive
capacity for correlated random codes was given in [12] and
later used again in [2, Example 1]. This exemplary AVC also
serves as an important ingredient to the super-activation results
in [16] and is, as an important example, also to be found in
Remark 7 of this document.

On the technical side, this work makes heavy use of the
results that were obtained in the work [22] by extending one
of their central results to the situation where Eve gets some
information via V . Namely, we are able to prove the following:
If W is non-symmetrizable, then CS(W,V) = Cmean

S,ran (W,V)
for all possible V. We do not attempt to give a necessary and
sufficient condition for CS to be positive, since a geometric
characterization in the spirit of the symmetrizability
condition 3 is not even known for the usual wiretap channel.
Rather, when speaking about the wiretap channel one usually
refers to the concept of “less noisy” channels that was devel-
oped in [21].

The wiretap channel has been studied widely in the lit-
erature. The analysis started with the celebrated work [40]
of Wyner, an important follow-up work was [21], by
Csiszar and Körner. While Wyner only treated the degraded
case, Csiszar and Körner derived the capacity for the general
discrete memoryless wiretap channel. The wiretap channel in
the presence of common randomness which is kept secret from

Eve (in this scenario, one could equally well speak of a secret
key) was studied by Kang and Liu in [30].

In recent years there has been a growing interest in more
elaborate models which combine insufficient channel state
information with secrecy requirements. Probably the earliest
publications which came to our attention are the work [34]
by Liang, Kramer, Poor and Shamai and the paper [13] by
Bloch and Laneman. Shortly after, the papers [9] and [10]
by Bjelaković, Boche and Sommerfeld got published. The
work [9] provides a lower bound on the secrecy capacity of
the compound wiretap channel with channel state information
at the transmitter that matches an upper bound on the secrecy
capacity of general compound wiretap channels given provided
in [34], establishing a full coding theorem in this case.
Important contributions of the work [10] are a lower bound
on what is called the “random code secrecy capacity” there,
as well as a multi-letter expression for the secrecy capacity in
the case of a best channel to the eavesdropper. The approach
taken in this publication is closely related to the one taken
in [10], but the use of different proof techniques enables
us to provide much stronger results. An interesting parallel
development is the work [29] by He, Khisti and Yener studies a
two-transmitter Gaussian multiple access wiretap channel with
multiple antennas at each of the nodes. A characterization of
the secrecy degrees of freedom region under a strong secrecy
constraint is derived.

A surprising result that was discovered only recently by
Boche and Schaefer in [16] is that of super-activation of
AVWCs. We will explain this example in more detail in
Remark 7. This effect was until then only known for infor-
mation transmission capacities in quantum information theory,
where it was proven by Smith and Yard in [36] that there exist
channels which have the property that each of them alone has
zero capacity but the two together have a positive capacity.

Before the work [16] this was assumed to be an effect which
only shows up in quantum systems, where it was observed
e.g. in [36].

The work [16] gave an explicit example of super-activation
which we repeat in Remark 7, but a deeper understanding
of the effect was not achieved. Based on our finer analysis,
we are now able to provide the following results: First, we
give a much clearer characterization of super-activation of the
uncorrelated1 coding secrecy capacity in Theorem 2. Second,
and more for the sake of a clean discussion of coding and
secrecy concepts, we define the capacity Cpp which explicitly
keeps a part of the messages public (such that it may be that
Eve is able to decode them). We do not attempt to give a
further characterization of Cpp in this work, but we show that
this capacity does as well show super-activation by use of
the code concepts that were developed in [16]. Details are

1Note that, due to the presence of an eavesdropper, it makes sense to
allow the use of randomized encodings. Using, in such cases, the term
“random code” is much too imprecise due to the potential presence of shared
randomness between sender and receiver. Thus, we prefer to use the term
uncorrelated codes. The random choice of codewords within an uncorrelated
code represents lack of knowledge both for Eve and James. Analysing the
case where James gains additional knowledge provides an interesting research
opportunity, but care has to be taken when modelling the information flow
from James to Eve.
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given in Subsection II-B, together with the exact definition
of Cpp.

We will now give a broad sketch of our results concerning
CS and Cmean

S,ran , before we start concentrating on Ckey. It was

proven in [38] that Cmean
S,ran is a continuous quantity, and while

the statement may seem trivial at first sight, it becomes highly
nontrivial when the following are taken into account:

There is at least no obvious way to deduce this statement
directly just from the definition of the capacity, without first
proving a coding result, and the latter route was taken in [38],
where an explicit formula for Cmean

S,ran was found:

Cmean
S,ran (W,V) = lim

n→∞
1

n
max

p∈P(Un)
max

U∈C(Un,X n)

×
(

min
q∈P(S)

I (p; W⊗n
q ◦ U) − max

sn∈Sn
I (p; Vsn ◦ U)

)
. (4)

Explicit bounds on |Un| were given as well. While one may
argue that this is not an efficient description since one is forced
to compute the limit of a series of convex optimization prob-
lems, it turns out to be an incredibly useful characterization in
the following sense: First, it enables one to prove that Cmean

S,ran is
a continuous function in the pair (W,V) and this result was
obtained in [38].

As has already been pointed out in [15], the continuous
dependence of the performance of a communication system
on the relevant system parameters is of central importance.
To give just one example, consider recent efforts to build
what is called “smart grids”. Such systems do certainly have
high requirements both concerning reliability and stability of
the communication in order to avoid potentially damaging
consequences for its users.

While it is very interesting from a mathematical point of
view, it certainly comes as an unpleasant surprise then that
CS does not grant us the favour of being a continuous function
of the channel. On the other hand, this casts a flashlight
on the importance of distributed resources in communication
networks - in this case the use of small amounts of common
randomness. While one may now be tempted to think that
the transmission of messages over AVWCs without the use
of common randomness is a rather adventurous task, we are
also able to prove that such a perception is wrong: Our
analysis shows that CS is continuous around its positivity
points (this has been observed for classical-quantum arbitrarily
varying channels in [15] already), and we are able to give
an exact characterization of the discontinuity points as well.
An example of a point of discontinuity has been given in [18].

Moreover, our characterization of discontinuity relies purely
on the computation of functions which are continuous them-
selves, so that a calculation of such points is at least within
reach also from a computational point of view.

Further, the deep interconnection between continuity and
symmetrizability which shows up in our work enables us to
give a characterization of pairs (Wi ,Vi ) (i = 1, 2) for which
super-activation is possible only in terms of Cmean

S,ran . In order
to be very explicit about super-activation, let us note the
following:

The inequality

CS(W1 ⊗ W2,V1 ⊗ V2) �
∑

i=1

2CS(Wi ,Vi ) (5)

follows trivially from the definition of C . It is common
to all notions of capacity which are known to the authors.
In contrast, if the inequality

CS(W1 ⊗ W2,V1 ⊗ V2) >

2∑

i=1

CS(Wi ,Vi ) (6)

holds, we speak of super-additivity and only if we can even
find AVWCs (W1,V1) and (W2,V2) such that we have

CS(W1,V1) = CS(W2,V2) = 0, (7)

but

CS(W1 ⊗ W2,V1 ⊗ V2) > 0 (8)

we speak of super-activation.
While it is clear from explicit examples in that super-

activation of CS is possible, it turns out in our work via
Theorem 5 that the effect is connected to the super-activation
of Cmean

S,ran , if the latter occurs. We would therefore like to
take the opportunity of spurring future research by stating the
following conjecture:

Conjecture 1: There exist pairs (W1,V1) and (W2,V2) of
(finite) AVWCs such that

Cmean
S,ran (W1,V1) = Cmean

S,ran (W1,V1) = 0, (9)

but

Cmean
S,ran (W1 ⊗ W2,V1 ⊗ V2) > 0. (10)

An initial definition of objects such as W1 ⊗ W2 has been
given in equation (2) and repeated again in Subsection II-B.
As a last introductory statement concerning super-additivity,
let us mention the connection of super-activation to infor-
mation transmission in networks: Consider two orthogonal
channels in a mobile communication network. Not taking
into account the issues on the physical layer, on may end
up in a description of these channels via W1,W2 from
Alice to Bob and V1,V2 from Alice to Eve. The surprising
result then is that, while it may be completely impossible to
send information securely over each one of them, there exist
coding schemes which enable Alice to send her information
securely if both she and Bob have access to both W1 and W2!

We will argue later in Subsection II-B how this effect works
for the capacity Cpp. While this capacity offers an insightful
view on the topic, we nevertheless concentrate on the interplay
between CS, Cmean

S,ran and Ckey in this work.
Let us now switch our attention to further results presented

in this work. As mentioned already, we also extend earlier
research to the case where lots of common randomness can
be used (exponentially many random bits, to be precise)
during our investigation of Ckey. We do not dive into the
issues arising when sub-exponentially many random bits are
available, although the repeated appearance of the activating
effect of common randomness in arbitrarily varying systems
seems to deserve a closer study. Our method of proving the



3508 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 6, JUNE 2016

direct part does again yield nothing more than the statement
that any number of random bits which scales asymptotically
as const. + (1 + ε) log(n) (for some ε > 0) is sufficient for
evading all issues which may arise from symmetrizable W.

Our restriction to positive rates G of common randomness
allows us to give an elegant formula for Ckey as follows: For
every G > 0, it holds

Ckey(W,V, G) = min
{
Cmean

S,ran (W,V) + G, Cmean
S,ran (W,T)

}
.

(11)

Here, T denotes the AVC consisting only of the memoryless
“trash” channel T mapping every legal input x and jam-
ming input s onto an arbitrary element of Z with equal
probability (t (z|s, x) = |Z|−1). While the reader familiar
with the topic would certainly have guessed the validity of
a formula of this form it is worth noting that this formula
is generally “hard to compute” in the sense that it requires
one to calculate the limit in the formula (4) - as long as
G < Cmean

S,ran (W,T) − Cmean
S,ran (W,V). If this condition is not

met, then Ckey(W,V) = Cmean
S,ran (W,T). Since the latter is

the usual capacity of the AVC W, we conclude the following:
If enough common randomness is available, the capacity of the
system can be much more efficiently described - by a formula
which does not require regularization anymore!

Again, a look into the area of quantum information theory
shows a striking resemblance: The capacity formula for the
usual memoryless quantum channel has been proven to be
given by regularized quantities in the general cases, both
for entanglement transmission and for message transmission.
Without going into too much detail about quantum systems
we cite here the work [23] by Devetak as our main reference
underlining this statement, although this work has been both
preceded and followed by important results dealing with the
topic.

Apart from specific classes of quantum channels which
were shown to have non-regularized capacity formulae [24] by
Devetak and Shor, it has also been proven that the entangle-
ment assisted capacity for message transmission over quantum
channels is given by a one-shot formulae [8] by Bennet, Shor,
Smolin and Thapliyal.

To the best of our knowledge, a quantification of the amount
of entanglement assistance which is necessary in order to turn
the capacity formula into a one-shot formula has not been
given yet.

II. NOTATION AND DEFINITIONS

This section contains notation, conventions, as well as
operational definitions and technical definitions.

A. Notation and Conventions

In the context presented in this work, every finite set will
equivalently be called an alphabet. Such alphabets are denoted
by script letters such as A, B, S, X , Y, Z . The cardinality
of a set A is denoted by |A|. Every natural number N ∈ N

defines a set [N] := {1, . . . , N}. The set of all permutations
on such [N] is written SN . The function exp : R → R+ is
defined with respect to base 2: exp(t) := 2t . The logarithm

log is defined with respect to the same base. For any c ∈ R

we define |c|+ by setting |c|+ := c if c > 0 and |c|+ := 0
otherwise. A function f : A → R is nonnegative ( f � 0)
if f (a) ≥ 0 holds for all a ∈ A. To each finite set A we
associate the corresponding set P(A) := {p : A → [0, 1] :
p � 0,

∑
a∈A p(a) = 1} of probability distributions on A.

Each random variable A with values in A is associated to
the unique p ∈ P(A) satisfying P(A = a) = p(a) for
all a ∈ A. An important subset of P(A) is the set of its
extreme points. Every such extreme point is a point measure
δa(a′) := δ(a, a′) where δ(·, ·) is the usual Kronecker-delta.
The one-norm distance between two probability distributions
p, p′ ∈ P(A) is ‖p − p′‖1 =∑a∈A |p(a) − p′(a)|.

The expectation of a function f : A → R with respect to a
distribution p ∈ P(A) is written Ep f :=∑s∈A p(a) f (a) or,
if p is clear from the context, simply E f .

For each alphabet A and natural number n ∈ N we can
build the corresponding product alphabet An := A× . . . ×A,
where × is the usual Cartesian product and there are exactly
n copies of A involved in the definition of An . The elements
of An are denoted an = (a1, . . . , an). Each such element
gives rise to the corresponding empirical distribution or type
N̄(·|an) ∈ P(A) defined via N(a|an) := |{i : ai = a}| and
N̄(·|an) := 1

n N(·|an). Given A and n ∈ N, the set of all
empirical distributions arising from an element an ∈ An is
Pn

0 (A) := {N̄(·|an) : an ∈ An}. Each type p ∈ Pn
0 (A) defines

the typical set Tp := {an : N̄(·|an) = p(·)}.
Channels are given by affine maps W : P(A) → P(B).

The set of channels is denoted C(A,B). Every channel is
uniquely represented (and can therefore be identified with)
its set {w(b|a)}a∈A,b∈B of transition probabilities, which are
defined via w(b|a) := W (δa)(b). It acts as

W (p) :=
∑

a∈A

∑

b∈B
w(b|a)p(a)δb, (12)

where both W (p) ∈ P(B) and {δb}b∈B ⊂ P(B)
(another way of writing the above formula would be
to set W (p)(·) = ∑a∈A

∑
b∈B w(b|a)p(a)δb(·) or even

W (p)(y) = ∑a∈A w(b|a)p(a)). As a shorthand, we may
occasionally also write W p to denote W (p), in analogy to
linear algebra (every channel is naturally associated to its
representing stochastic matrix (w(a|b))a,b and can therefore
be extended to a linear map on the appropriate vector spaces).

When operating on product alphabets such as A × B we
define p ⊗ q ∈ P(A × B) to be the distribution defined by
(p ⊗ q)(a, b) := p(a)q(b). Correspondingly, p⊗n ∈ P(An)
is defined via p⊗n(an) :=∏n

i=1 p(ai). The same conventions
hold for channels: if V : P(A) → P(B) and W : P(A′) →
P(B′), then V ⊗ W : P(A × A′) → P(B × B′) is defined
via its transition probabilities as (v ⊗ w)((b, b′)|(a, a′)) :=
v(b|a)w(b′|a′) and the notation carries over to n-fold prod-
ucts W⊗n of W : P(A) → P(B) as before by setting
w⊗n(bn|an) :=∏n

i=1 w(bi |ai).
For channels W ∈ C(A × B, C) it will become important

to derive a short notation for cases where one input remains
fixed while the other is arbitrary. Such induced channels
will be denoted, in case that this is unambiguously possible,
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by Wp where

Wp(δa) := W (δa ⊗ p). (13)

At times it will, in order to straighten out notation, also be
necessary to write the transition probabilities as either wp(b|a)
or even w(b|a, p).

The Shannon entropy of p ∈ P(A) is H (p) :=
−∑a∈A p(A) log p(a), the relative entropy between two
probability distributions p, q ∈ P(A) is D(p‖q) :=∑

a∈A p(a) log(p(a)/q(a)), if q(a) = 0 ⇒ p(a) = 0 for
all a ∈ A, and D(p‖q) := +∞, else.

Every p ∈ P(A) and channel W : P(A) → P(B) define a
joint random variable which we call (A, B) for the moment
and which is defined via P((A, B) = (a, b)) = p(a)w(b|a)
(for all a ∈ A, b ∈ B). This enables us to use an equivalent
formulation for the mutual information:

I (p; W ) := I (A; B). (14)

A more operational definition of this quantity can be achieved
by noting that the distribution of (A, B) in this scenario arises
from defining p(2) ∈ P(A×A) by p(2)(a, a′) := p(a) · δa(a′)
for all a, a′ ∈ A - it then holds P((A, B) = (a, b)) =
((Id ⊗ W )p(2))(a, b) for all a ∈ A, b ∈ B. The operational
interpretation of this probability distribution is that Alice
observes the outcomes a of some random process. Given any
such outcome, she makes one copy of it and sends that copy
over to Bob via the channel W , keeping the original data with
herself.

We will go one step further and define mutual information
on pairs of sequences an ∈ An , bn ∈ Bn , this time by defining
a random variable (A, B) with values in A×B via P((A, B) =
(a, b)) := N̄ (a, b|an, bn) and then setting

I (an; bn) := I (A; B). (15)

In addition, we will need a suitable measure of distance
between AVWCs. Our object of choice is the Hausdorff
distance which we define as follows: For two channels W,
W̃ ∈ C(A,B), set

‖W − W̃‖ := max
a∈A

‖W (δa) − W̃ (δa)‖. (16)

Now we define for a given W = (Ws)s∈S , and
W′ = (W ′

s ′)s ′∈S ′

g(W,W′) := max
s∈S

min
s ′∈S ′ ‖Ws − W ′

s ′‖.

Then we can ultimately define

d((W,V), (W′,V′))
:= max{g(W ⊗ V,W′ ⊗ V′), g(W′ ⊗ V′,W ⊗ V)}. (17)

This is a metric on the set of finite-state AVWCs with the
corresponding alphabets A,B, C. Another ingredient in the
following is the notion of the convex hull of a set of channels,
which can for e.g. AVCs W = (Ws)s∈S be defined as

conv(W) :=
{

W =
∑

s∈S
q(s)Ws : q ∈ P(S)

}
. (18)

At last, we would like to mention that for any given
W ∈ C(A,B), a ∈ A and subset B′ ⊂ B we use the notation

w(B′|a) :=
∑

b∈B′
w(b|a). (19)

B. Models and Operational Definitions

At first, we give a formal definition of an arbitrarily varying
channel. This extends our informal definition from the intro-
duction, without any change in notation.

Definition 1 (AVWC): Let X , Y, Z, S be finite sets and
for each s ∈ S, let Ws ∈ C(X ,Y) and Vs ∈ C(X ,Z). Define
W := (Ws)s∈S and V := (Vs)s∈S . The corresponding arbi-
trarily varying wiretap channel is denoted (W,V). Its action
is completely specified by the sequence ({Wsn , Vsn }sn∈Sn )n∈N,
where Wsn := Ws1 ⊗ . . . ⊗ Wsn and Vsn := Vs1 ⊗ . . . ⊗ Vsn .

Remark 1: The AVWC (W,V) can equivalently be repre-
sented by defining W ∈ C(S×X ,Y) via w(y|x, s) := ws(y|x)
and V ∈ C(S × X ,Z) via v(z|x, s) := vs(y|x). We will use
both representations interchangeably.

Whenever necessary, we will (for n ∈ N and q ∈ P(Sn))
also use the abbreviations

W⊗n
q :=

∑

sn∈Sn

q(sn)Wsn , V ⊗n
q :=

∑

sn∈Sn

q(sn)Vsn , (20)

and the corresponding conditional probabilities are defined in
the obvious way for all xn ∈ X n, yn ∈ Yn, zn ∈ Zn as

w⊗n
q (yn|xn) := W⊗n

q (δxn )(yn), (21)

v⊗n
q (zn|xn) := V ⊗n

q (δxn)(zn). (22)

Since a central part of our work is to study AVWCs under
joint use, we have to carefully define what we mean here
with “joint use”. Let (W1,V1) and (W2,V2) be two AVWCs.
Since state alphabets are finite in all of our work, we will
without loss of generality assume that they have a joint state
set S. We then define

(W1 ⊗ W2,V1 ⊗ V2)

:= ((W1(·|·, s) ⊗ W2(·|·, s′), V1(·|·, s) ⊗ V2(·|·, s′))s,s ′∈S .

(23)

We now come to a more “classic” topic: The definition of
codes, rates and capacities. From the start, we will include
the possibility of adding some extra variables like shared
randomness or common randomness between Alice and Bob,
but also the possibility for Alice to divide her message set into
two parts: One which is to be kept secret from Eve and one
which does not necessarily have to remain secret.

We introduce three different classes of codes, which are
defined in the following and related to each other as follows:
The class of shared randomness assisted codes contains those
which use common randomness and these again contain the
uncorrelated codes. Formal definitions are as follows:

Definition 2 (Shared Randomness Assisted Code): A shared
randomness assisted code Kn for the AVWC (W,V) consists
of: a set [K ] of messages, two finite alphabets [�], [�′] and
a set of stochastic encoders eγ ∈ C([K ],X n) (one for every
value γ ∈ [�]) together with a collection ((Dγ ′

k )K
k=1)

�′
γ ′=1 of
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sets satisfying
⋃K

k=1 Dγ ′
k ⊂ Yn and Dγ ′

k ∩ Dγ ′
k′ = ∅ for all

k 
= k ′ and for each γ ′. In addition to that, there is a probabil-
ity distribution μ ∈ P([�]×[�′]). Every such code defines the
joint random variables Ssn := (Kn,K′

n, �n, �′
n,Zsn ,Xn,Ysn )

(sn ∈ Sn) which are distributed according to

P(Ssn = (k, k ′, γ , γ ′, zn, xn, yn)) = 1

K
μ(γ, γ ′)

· eγ (xn|k)�
Dγ ′

k′
(yn)wsn (yn|xn)vsn (zn|xn) (24)

The average error of Kn is

err(Kn) = 1 − max
sn∈Sn

K ,�,�′∑

k,γ ,γ ′=1

μ(γ, γ ′)
K

·
∑

xn∈X n

eγ (xn|k)wsn (Dγ ′
k |xn). (25)

Definition 3 (Common Randomness Assisted Code): A com-
mon randomness assisted code Kn for the AVWC (W,V)
consists of: a set [K ] of messages, a set [�] of values for
the common randomness and a set of stochastic encoders
eγ ∈ C([K ],X n) (one for each element γ ∈ [�]), together
with a collection (Dγ

k )K ,�
k,γ=1 of subsets Dγ

k of Yn satisfying
Dγ

k ∩ Dγ
k′ = ∅ for all γ ∈ [�], whenever k 
= k ′.

Every such code defines the joint random variables
Ssn := (Kn,K′

n , �n,Xn,Ysn ,Zsn ) (sn ∈ Sn) which are
distributed according to

P(Ssn = (k, k ′, γ , xn, yn, zn)) = 1

� · K
eγ (xn|k)

·�Dγ

k′ (yn)wsn (yn|xn)vsn (zn|xn) (26)

The average error of Kn is

err(Kn) = 1 − max
sn∈Sn

K ,�∑

k,γ=1

∑

xn

eγ (xn|k)wsn (Dγ
k |xn)

K · � . (27)

For technical reasons we also define, for all state sequences sn,
the corresponding average success probability of the code by

dsn(Kn) = 1

K · �

K ,�∑

k,γ=1

∑

xn∈X n

eγ (xn|k)wsn(Dγ
k |xn). (28)

One particularly interesting feature of AVCs is that it may
be impossible to transmit any whatsoever small number of
messages reliably from Alice to Bob without using shared
randomness - but if one is willing to only spend a polynomial
amount of common randomness, the capacity of the channel
jumps to the maximally attainable value, an effect which was
discovered in [2].

If a whole communication network is being utilized it may
be possible to use one part of the network to establish common
randomness between the legal parties (one could equally well
speak of a secret key here) which is then used to send messages
over another part of the system which may be symmetrizable.
This idea was first established in [16]. In this work, we will
give a more careful analysis of the underlying structure, an
undertaking which motivates the following definition:

Definition 4 (Private/Public Code): A private/public code
Kn for the AVWC (W,V) consists of: two sets [K ], [L]

of messages, an encoder E ∈ C([K ] × [L],X n), and a
collection (Dkl )

K ,L
k,l=1 of subsets of Yn satisfying Dkl ∩ Dk′ l′ =

∅ whenever (k, l) 
= (k ′, l ′). Every such code defines the
joint random variables Ssn := (K,L,K′,L′,Xn,Ysn ,Zsn )
(sn ∈ Sn) which are distributed according to

P(Ssn = (k, l, k ′, l ′, xn, yn, zn)) = 1

K · L
e(xn|k, l)

·�Dk′l′ (yn)wsn (yn|xn)vsn (zn|xn). (29)

The average error of Kn is

err(Kn) = 1 − max
sn∈Sn

K ,L∑

k,l=1

∑

xn

e(xn|k, l)wsn (Dk,l |xn)

K · L
. (30)

With this definition we can formalize the idea of “wasting” a
few bits in order to guarantee secret communication. We would
like to compare this approach to the case of a compound
channel, where a sender that knows the channel parameters
can send pilot sequences to the receiver in order to let
him estimate the channel. The pilot sequences do not carry
information from sender to receiver. With such a scheme, a
sender with state information can transmit at strictly higher
rates than one without. The higher capacity is reached by
“wasting” some transmissions for the estimation. Since the
number of channel uses that have to be used for estimation
grows only sub-exponentially in the number of channel uses,
there is no negative impact on the message transmission rate
in asymptotic scenarios.

In the case treated here it turns out that sending a small
amount of non-secret messages is the key to increase the
secrecy capacity in specific situations. We would like to extend
the formal background of this idea by allowing for a joint
transmission of secret and non-secret messages:

Definition 5: (Private/Public Coding Scheme): A private/
public coding scheme operating at rates (Rpri, Rpub) consists
of a sequence (Kn)n∈N of private/public codes such that

lim
n→∞ err(Kn) = 0, (31)

lim inf
n→∞

1

n
log(Kn) = Rpri, (32)

lim inf
n→∞

1

n
log(Ln) = Rpub, (33)

lim sup
n→∞

max
sn∈Sn

I (Kn; Zsn |Ln) = 0. (34)

A more restricted class of codes arises when there is only
one type of messages, which ought to be kept secret, and in
addition allows the use of common randomness.

Definition 6 (Common Randomness Assisted Coding Scheme
Satisfying Mean Secrecy Criterion): A common randomness
assisted coding scheme satisfying the mean secrecy criterion
operating at rate R consists of a sequence (Kn)n∈N of common
randomness assisted codes such that

lim
n→∞ err(Kn) = 0, (35)

lim inf
n→∞

1

n
log(Kn) = R, (36)

lim sup
n→∞

max
sn∈Sn

I (Kn; Zsn |�n) = 0. (37)
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Note that both Definition 5 and Definition 6 require the
mutual information between the secret messages and
the output at Eve’s site to be small on average, either over the
public messages or over the common randomness. One may
argue that this is a somewhat weak criterion. In our earlier
paper [38] we compared the capacity arising from the use of
coding schemes under Definition 6 to a capacity derived under
more severe requirements on the secrecy criterion. We were
able to demonstrate that the respective capacities coincide.
It is not known to us whether a more strict requirement in
Definition 5 would lead to a different capacity.

Definition 7 (Secure Uncorrelated Coding Scheme): A
secure uncorrelated coding scheme operating at rate R con-
sists of a sequence (Kn)n∈N of common randomness assisted
codes with �n = 1 for all n ∈ N such that

lim
n→∞ err(Kn) = 0, (38)

lim inf
n→∞

1

n
log(Kn) = R, (39)

lim sup
n→∞

max
sn∈Sn

I (Kn; Zsn ) = 0. (40)

Definition 8 (Secure Coding Scheme With Secret Common
Randomness): A secure coding scheme with secret common
randomness operating at rate R and using an amount G > 0
of common randomness consists of a sequence (Kn)n∈N

of common randomness assisted codes with limn→∞ 1
n log

�n = G such that

lim
n→∞ err(Kn) = 0, (41)

lim inf
n→∞

1

n
log(Jn) = R, (42)

lim sup
n→∞

max
sn∈Sn

I (Kn; Zsn ) = 0. (43)

Remark 2: The reader may wonder why the common ran-
domness is only being quantified for secrecy schemes where
the common randomness is kept secret. The reason for this
becomes clear when reading [17], where it is proven that any
shared randomness needed in order to achieve the correlated
random coding mean secrecy capacity can always be assumed
to not be larger than polynomially many bits of common
randomness. These small amounts are not counted in the
definition of the respective capacity. This result from [17] got
applied in our earlier paper [38] as well.

Since we completely restrict our analysis to the case
where the system uses common randomness, we can spare
a few indices to distinguish the different sources of external
randomness:

Definition 9 (Secrecy Capacities): Given (W,V), we
define for every G > 0 the secret common randomness
assisted secrecy capacity as

Ckey(W,V, G) := sup

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

R :

There exists a secret
common randomness
assisted coding scheme
operating at rate R
using an amount G
of common randomness

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

The uncorrelated coding secrecy capacity and the
correlated random coding mean secrecy capacity are

defined just as in [38]:

CS(W,V) := sup

⎧
⎪⎪⎨

⎪⎪⎩
R :

There exists a secure
uncorrelated coding
scheme operating at
rate R

⎫
⎪⎪⎬

⎪⎪⎭

Cmean
S,ran (W,V) := sup

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

R :

There exists a secure
common randomness
assisted coding scheme
satisfying the mean
secrecy criterion
operating at rate R

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

We refrain from defining the rate region for private and
public messages in this work, and restrict ourselves to consider
only the boundary of that region that arises from letting Rpub
be arbitrarily small. This does for example allow us to transmit
any finite number of messages, or numbers of messages that
scale sub-exponentially in the number of channel uses.

Definition 10 (Private/Public Secrecy Capacity): The pri-
vate/public secrecy capacity is given by

Cpp(W,V) := sup

⎧
⎨

⎩R :
There is a private/public
coding scheme at rates
(Rpub, Rpri) with R = Rpri

⎫
⎬

⎭.

The above definition explicitly allows for the super-
activation strategy of [16] to be used, and shall be explained
using this example first. Before we do so, let us give the formal
definition of super-activation:

Definition 11 (Super-Activation): Let (W1,V1) and
(W2,V2) be AVWCs. Then (W1,V1), (W2,V2) are said to
show super-activation if CS(W1,V1) = CS(W2,V2) = 0 but
CS(W1 ⊗ W2,V1 ⊗ V2) > 0.

Now set W := W1 ⊗ W2 and V := V1 ⊗ V2. In order
to simplify the discussion, one may additionally set V2 =
W2 = (Id), where Id ∈ C([2], [2]) and assume that W1 is
symmetrizable but that Cmean

S,ran (W1,V1) = α > 0. It follows

that Cpp(W1,V1) = Cpp(W2,V2) = 0, because of sym-
metrizability and since decoding of the messages that are sent
via (W2,V2) is possible without any error both for Bob and
for Eve. These messages may therefore be treated as common
randomness that is known by Eve. We know that already with
the choice Ln = n2 we have enough common randomness
to remove any effect arising from symmetrizability of W1.
Since the code arising from the combination of sending and
decoding public messages via (Id, Id) and private messages
via (W1,V1) is a coding scheme that fits under Definition 5,
we get Cpp(W1 ⊗ W2,V1 ⊗ V2) � α > 0.

That such a scheme does work as well when CS is consid-
ered instead of Cpp can be understood as follows:

Let two AVWCs (W1,V1) and (W2,V2) be given. Let W1
be symmetrizable, but such that Cmean

S,ran (W1,V1) = α > 0.
Since W1 is symmetrizable we have CS(W1,V1) = 0.
If no additional resources are available, the surplus α in the
common-randomness assisted secrecy capacity cannot be put
to use. Let now CS(W2,V2) = 0 but CS(W2,T) = β > 0
(T denotes the trash channel, so this just means that it is
possible to reliably transmit messages over W2). Then

CS(W1 ⊗ W2,V1 ⊗ V2) � α > 0 (44)



3512 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 6, JUNE 2016

and the reason for this effect is that (as before when we con-
sidered Cpp) a small amount of messages can be sent over W2
and is then used as common randomness, therefore increasing
the rate of messages that can be sent reliably over W1 from
zero to α. Of course, the messages sent over W2 can be
read by Eve. That this causes no problems with the security
requirements can be seen by defining a toy-model where only
two parallel channels with respective adversarially controlled
channel states are considered. This is done as follows:

Let us define random variables Rs,ŝ = (M, M̂,Z1,s , Ẑ2,ŝ)
where

P(R = (m, m̂, z, ẑ)) = 1

M

1

M̂
w1,s(z|m, m̂)ŵ2,ŝ(ẑ|m̂) (45)

and the channels {W1,s}s∈S and {Ŵŝ}ŝ∈Ŝ can be controlled by
James separately. It is understood that m are the messages,
whereas m̂ are the values of the shared randomness that
is distributed between Alice and Bob by using {Ŵ2,ŝ}ŝ∈Ŝ .
We assume that for some small ε � 0 we have

max
ŝ∈Ŝ

I (M; Ẑ2,ŝ |M̂) � ε. (46)

Observe that Ẑ2,ŝ depends solely on M̂ via the channel Ŵ2,ŝ
(this is where the fact that the two arbitrarily varying channels
are used in parallel), so that the data processing inequality
yields for every s, ŝ that

I (M; Z1,s, Ẑ2,ŝ) � I (M; Z1,s, M̂). (47)

It is a consequence of the independence between M and M̂
that we can (for every s and ŝ) then continue this chain of
estimates as follows:

I (M; Z1,s, Ẑ2,ŝ)

� I (M; Z1,s, M̂) (48)

= H (M) + H (Z1,s, M̂) − H (M,Z1,s, M̂) (49)

= H (M, M̂) + H (Z1,s, M̂)

− H (M,Z1,s, M̂) − H (M̂) (50)

= H (M|M̂) + H (Z1,s, M̂) − H (M,Z1,s, M̂) (51)

= H (M|M̂) + H (Z1,s|M̂) − H (M,Z1,s|M̂) (52)

= I (M; Z1,s |M̂) (53)

� ε. (54)

Thus it is clear that, in addition,

max
s∈S,ŝ∈Ŝ

I (M; Z1,s, Ẑ2,ŝ) � ε. (55)

It is also evident that this argument ceases to hold true when
the channels that are used for transmission of M and of M̂ ar
not orthogonal anymore. Our sketch indicates why the protocol
developed in [16] is able to meet the secrecy requirement
in Definition 7.

After we indicated why the super-activation protocol
works we do now want to switch the topic and high-
light a few connections to related problems and technical
difficulties:

It is evident from the existing literature on AVCs [5],
arbitrarily varying classical-quantum channels [14] and on the

quantification of shared randomness [7], [28], [31], [39], [41]
that the latter is not an easy task. A brief overview concerning
the connections between quantification of shared randomness
and arbitrarily varying channels has been given in [14]. Our
focus here is on systems that use only common randomness
in various different ways.

In our previous work [38] we developed a formula
for Cmean

S,ran . The proof, extending the results established
in [16] and [17], displays clearly that already amounts of
common randomness which scale polynomially in the block-
length n are sufficient for achieving the full random capacity.
Moreover, an exact quantification of the amount of shared
randomness is not necessary when speaking about correlated
random coding mean secrecy capacity. Either no shared ran-
domness is allowed in the sense that �n = 1 for all n ∈ N or
else one allows arbitrarily large amounts of it but then only
uses the above mentioned polynomial amount.

With the functions G �→ Ckey(W,V, G) the story is a
different one, as the following interesting behaviour occurs:
They are well-defined for all G > 0. However, when G = 0
they are not unambiguously defined anymore, as it is clearly
possible to take e.g. a sequence (�n)n∈N such that �n = n2

for each n ∈ N. In that case, G = limn→∞ 1
n log �n = 0,

but the amount of randomness is sufficient in the sense that
for every ε > 0 there exists a sequence (Kn)n∈N of codes
which use only the common randomness �n , operate at a
rate Rε = Cmean

S,ran (W,V) − ε and are both asymptotically
secure and satisfy limn→∞ err(Kn) = 0. Thus, purely from
the mathematical definition of Ckey(W,V, G), one would be
tempted to set Ckey(W,V, 0) = Cmean

S,ran (W,V).
However, from the operational point of view this is unsatis-

fying: imagine taking the statement “no common randomness”
literally, and therefore setting �n = 1 for all n ∈ N. Let
W be a symmetrizable AVC. In that case there is no chance
to reliably transmit any whatsoever small amount of messages
with �n = 1 for all n ∈ N [27].

It is thus clear that Cmean
S,ran (W,V) = limG→0 Ckey(W,V, G)

holds, but that it at least seems to be a difficulty to give a
both operationally meaningful and mathematically satisfying
definition of Ckey(W,V, 0) (see e.g. [37] for a possible
approach to such type of problem).

A quantity which will be proved to be of importance during
our proofs and when quantifying how close an AVC is to being
symmetrizable is defined as follows: We let Mfin denote the
set of all finite sets of elements of C(X ,Y).

Definition 12: The function F : Mfin → R+ is defined via
setting, for each W′ = (W ′(·|s, ·))s∈S ∈ Mfin ,

F(W′) := max
U∈C(X ,S)

min
x 
=x ′

×
∥∥∥∥∥
∑

s∈S

(
u(s|x)w′(·|s, x ′) − u(s|x ′)w′(·|s, x)

)
∥∥∥∥∥

1

.

(56)

This function obviously has the property that for every
AWVC W′, the statement F(W′) = 0 is equivalent to W′
being symmetrizable.
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III. MAIN RESULTS

In this section we list our main results. We start with a
coding theorem concerning the secret common randomness
assisted secrecy capacity whose direct part is based on our
Lemma 1 that we state directly afterwards. We continue with
a second and even more delicate lemma, which is an extension
of [22, Lemma 3 ] to AVWCs. This lemma (Lemma 2) is
important: it provides a direct (coding) part for Theorem 2,
which addresses the influence of the symmetrizability
condition (3) on the capacity CS and thereby relates it
to Cmean

S,ran .
Our last result connects to the work [16], which showed

a very surprising effect that has so far not been observed
for classical information-carrying systems: super-activation.
We give a precise characterization of the conditions which
lead to super-activation in Theorem 5.

Theorem 1 (Coding Theorem for Secret Common Random-
ness Assisted Secrecy Capacity): Let (W,V) be an AVWC.
For every n ∈ N, set Un := [|X |n]. Define

C∗(W,V) := lim
n→∞

1

n
max

p∈P(Un)
max

U∈C(Un,X n)

×
(

min
q∈P(S)

I (p; W⊗n
q ◦ U) − max

sn∈Sn
I (p; Vsn ◦ U)

)
. (57)

It holds (with T = (T ) denoting the AVC consisting only
of the memoryless channel that assigns the uniform output
distribution to every input symbol),

Ckey(W,V, G) = min{C∗(W,V) + G, C∗(W,T)} (58)

Of course, C∗(W,T) is the capacity of the AVC W
under average error. This capacity has a single-letter descrip-
tion. Since the first argument in above minimum is not
single letter, there is room for speculation whether there
is room for improvement in this characterization or, if
not, for which value of G the description in terms of a
single-letter quantity is possible and for which not. Apart
from the complicated multi-letter form, an important take-
away from the above formula is that the following is
true:

Corollary 1: For every G > 0, the function (W,V) �→
Ckey(W,V, G) is continuous.

Remark 3: If G = 0 in the sense that �n = 0 for all
n ∈ N, then for all AVWCs (W,V) we know that
Ckey(W,V, G) equals CS(W,V).

We are getting closer to the technical core of our work
now. The next Lemma is essential to proving the direct part of
Theorem 1. It quantifies how many messages L and how many
different values � for the common randomness are needed in
order to make the output distributions at Eve’s site independent
from the chosen message k.

Lemma 1: For every τ > 0 there exists a value
ν(τ ) > 0 and an N0(τ ) such that for all n � N0(τ )
and natural numbers K , L, � and type p ∈ Pn

0 (X ) there
exist codewords (xklγ )K ,L ,�

k,l,γ=1 in Tp ⊂ X n and decoding sets
Dγ

kl ⊂ Yn obeying Dγ
kl ∩ Dγ

k′l′ = ∅ if (k, l) 
= (k ′, l ′), such
that we have:

If 1
n log(K · L) � minq∈P(S) I (p; Wq) − ν(τ ) and

� � 2n·5·ν(τ ) then

min
sn

�∑

γ=1

1

�

K ,L∑

k,l=1

1

K · L
wsn (Dγ

kl |xklγ ) � 1 − 2−n·ν(τ ). (59)

If 1
n log(L · �) � maxq I (p; Vq) + τ then

max
sn,k

∥∥∥∥∥∥

L ,�∑

l,γ=1

vsn (·|xklγ )

L · �
− Evsn (·|Xn)

∥∥∥∥∥∥
1

� 2−n·ν(τ ), (60)

where Xn is distributed according to P(Xn = xn) :=
1

|Tp|�Tp (xn) and the dependence of ν on τ is such that

limτ→0 ν(τ ) = 0.
While Lemma 1 delivers the correct interplay between and

scaling of the size of the numbers of secret messages K ,
the number of additional messages L that are just being sent
in order to obfuscate Eve and the number of values for the
(secret) common randomness � that are being used up in the
process, it is insufficient for dealing with the case when �
is set to one or is kept very small. For those cases where
the secret or partially secret common randomness � is set
to one for every number of channel uses, we have to deal
with the symmetrizability properties of the legal link W from
Alice to Bob. Initial statements in that case are as follows:

Theorem 2 (Symmetrizability Properties of CS): Let
(W,V) be an AVWC.

1) If W is symmetrizable, then CS(W,V) = 0.
2) If W is non-symmetrizable, then CS(W,V) =

Cmean
S,ran (W,V).

We now start to take on a slightly different point of view,
under which the AVWC becomes an object that has some
parameters which can be subject to changes. When considering
practical deployment aspects, such a point of view is necessary
as all information we may have gathered about the channel
during for example a training phase may not be accurate
enough to model the real-world behaviour. Thus one needs
to understand whether a slight error in the parameters may
lead to catastrophic events, and this is the content of our next
theorem.

Theorem 3 (Stability of CS): Let (W,V) be an AVWC.
If (W,V) satisfies CS(W,V) > 0 then there is an ε > 0
such that for all (W′,V′) satisfying d((W,V), (W′,V′)) � ε
we have CS(W′,V′) > 0.

However, despite the reassuring statement of Theorem 3,
care has to be taken at some points, which are characterized
below.

Theorem 4 (Discontinuity Properties of CS): Let (W,V)
be an AVWC.

1) The function CS is discontinuous at the point (W,V) if
and only if the following hold: First, Cmean

S,ran (W,V) > 0
and second F(W) = 0 but for all ε > 0 there is Wε

such that d(W,Wε) < ε and F(Wε) > 0.
2) If CS is discontinuous in the point (W,V) then it is

discontinuous for all V̂ for which Cmean
S,ran (W, V̂) > 0.

Note that F(W) = 0 is equivalent to W being symmetrizable -
a property which is defined in the introduction in equation (3).
The function F itself is the content of Definition 12.
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The take-away from above Theorem is two-fold: First, it
delivers a criterion for the finding of a point of discontinuity
that only requires the validation that Cmean

S,ran (a continuous
function) is nonzero in a specific point and the running
of a convex optimization problem (calculation of F in that
point). Second, it becomes clear that any discontinuity of
the capacity CS arises solely from effects that stem from the
“legal” link W - changing V has no effect on discontinuity.

Corollary 2: For every W, the function V �→ CS(W,V) is
continuous.

Note that discontinuity is caused both by the legal link
W (see statement 1) and the link V to Eve (statement 2),
but depends on V only insofar as the capacity Cmean

S,ran (W, V̂)
has to stay above zero in order for a discontinuity to
occur.

Theorem 4 also delivers an efficient way for calculating
whether CS is discontinuous in a specific point or not: One
only needs to give a good-enough approximation of the
continuous function Cmean

S,ran and then run a convex optimization

in order to calculate F(W). Regarding future research, it may
therefore be of interest to quantify the degree of continuity of
the capacity of arbitrarily varying channels in those regions
where it is continuous.

Remark 4: It is necessary to request the existence of the
Wε in the first statement of Theorem 4, and an easy example
why this is so is the following:

Define Wi,ε ∈ C({1, 2}, {1, 2, 3}) for i = 1, 2 and
ε ∈ [0, 1/2] by

W1,ε :=
(

0 1 − ε
ε 0
1 − ε ε

)
, (61)

W2,ε :=
⎛

⎝
1 − ε 0
ε 1 − ε
0 ε

⎞

⎠. (62)

For every ε ∈ [0, 1/2], these AVCs are symmetriz-
able with u(1|1) = ε/(1 − ε) and u(1|2) = (1 −
2 · ε)/(1 − ε). The reason for this is that for every
ε ∈ [0, 1/2] the convex sets conv({W1,ε(δ1), W2,ε(δ1)}) and
conv({W1,ε(δ2), W2,ε (δ2)}) have non-empty intersections. It is
also geometrically clear that for any ε ∈ (0, 1/2), there will
be a small vicinity of AVCs which share this property. Thus,
around such a Wε , all other AVCs are symmetrizable as well
and for every V we therefore have both CS(Wε,V) = 0 and
CS(W′,V) = 0 whenever d(Wε,W

′) is small enough.
Thus, continuity is given.
It is easy to see that the AVC W0 does not share this prop-

erty: Although Cmean
S,ran (W0,T) > 0 and Cmean

S,ran (W0,T) > 0,
it is easy to find explicit examples of AVCs W′ which are
arbitrarily close to W0 but are non-symmetrizable.

Thus we discovered a discontinuity point.
Of course, every whatsoever nice characterization of a set

of interesting objects is pretty useless if the set turns out to be
empty. Fortunately, it has been proven in [18] that the function
mapping an AVC W to its capacity has discontinuity points
by explicit example.

Such an example is also given by (W0,T) with W0 taken
from above.

Remark 5: The capacity Cmean
S,ran (W,V) was quantified

in [38]. It satisfies

Cmean
S,ran (W,V) = lim

G→0
Ckey(W,V, G) = C∗(W,V). (63)

The proofs of Theorems 1 and Theorem 2 are carried out
by providing coding strategies. The proof of the direct part
of Theorem 2 extends the techniques from [22] by adding
constraints on the random code that lead to it having additional
security features. These features are quantified in the following
Lemma:

Lemma 2: For any τ > 0 and β > 0, there exists a
value ν(τ ) > 0 and an N0(τ ) such that for all n � N0(τ ),
natural numbers K , L, � satisfying K · L � 2n·τ and type
p ∈ Pn

0 (X ) satisfying minx :p(x)>0 p(x) � β, there exist

codewords (xklγ )K ,L ,�
k,l,γ=1 in Tp ⊂ X n, and a c′ > 0 such

that if �−1 > exp(−2n·c′
) and upon setting R = 1

n log(K · L)
we have for all xn, x̂ n ∈ Tp

max
γ,sn

|{(k, l) : (xn, xklγ , sn) ∈ TN̄ (·|xn,x̂ n,sn)}|
� 2n(|R−I (x̂ n;xn,sn)|++τ ) (64)

max
γ,sn

|(k, l) : (xklγ , sn) ∈ TN̄ (·|xn,sn)| � K · L · 2−n·τ/2

i f I (xn, sn) ≥ τ (65)

max
γ,sn

∣∣∣∣
{
(k, l, γ ) : There is (k ′, l ′, γ ) 
= (k, l, γ )

such that (xklγ , xk′l′γ , sn) ∈ TN̄(·|xn,x̂ n,sn)

}∣∣∣∣

� K · L · 2−n·τ/2

i f I (xn; x̂ n, sn) − |R − I (x̂ n; sn)|+ > τ (66)
log L · �

n
� max

q∈P(S)
I (p; Vq) + τ

⇒ max
sn,k

∥∥∥∥∥∥
1

L · �
L ,�∑

l,γ=1

Vsn(·|xklγ ) − EVsn (·|Xn)

∥∥∥∥∥∥
1

� 2−n·ν(τ )

(67)

where Xn is distributed according to P(Xn = xn) :=
1

|Tp|�Tp (xn) and the dependence of ν on τ is such
that limτ→0 ν(τ ) = 0.

Our intention was be to apply this Lemma to AVWCs for
which the link between Alice and Bob is not symmetrizable.
While Lemma 2 contains the possibility to use shared random-
ness �, this is not necessary in the application intended by us
in this work (we use it only with � set to one). The main
reason for keeping � as a variable in our proof this is that
it allows us to deliver a unified treatment of the whole topic,
increases the generality of the Lemma and does not require
much additional work.

Remark 6: The properties (64), (65) and (66) of the code
are identical to those stated in [22, Lemma 3]. This Lemma
again is the main ingredient to the proof of [22] that non-
symmetrizability (symmetrizability is defined in (3)) is suffi-
cient for message transmission over AVCs if the average error
criterion and non-randomized codes are used. Our strategy
thus is to use the properties (64), (65) and (66) in Lemma 2
in order to ensure successful message transmission over the
legal link, if W is non-symmetrizable.

The main tool used by Csiszar and Narayan for proving
properties (64), (65) and (66) of Lemma 2 in their work [22]
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was large deviation theory, and this is where we can make the
connection to our work and prove the additional properties
via application of the Chernoff-bound.

Roughly speaking, this method of proof amounts to adding
some additional requirements in a situation where any expo-
nential number of additional requirements can be satisfied
simultaneously.

When utilizing Lemma 2 (with � = 1) in the proof of
Theorem 2 one sees that while reliable transmission is
achieved via fulfillment of conditions (64), (65) and (66) in
Lemma 2 if and only if the legal link W is non-symmetrizable,
the security of the communication can always be achieved
by making L large enough. This implies that there are
generic communication systems (AVWCs with a symmetriz-
able legal link) for which it is much easier to design codes
that convey little information to Eve than codes which ensure
robust communication.

In order to derive from Lemma 1 the connection between
symmetrizability and the capacity CS (which is the content of
Theorem 2) it is necessary to prove not only achievability
of quantities like e.g. minq I (p; Wq )−maxs I (p; Vs) but also
of quantities like minq I (p′; W n

q ◦ U) − maxsn I (p′; Vsn ◦ U)
that involve multiple channel uses and pre-coding that is
defined via the optimization problem (4). Such a process of
adding pre-coding may unfortunately cause the AVWC arising
from the concatenation of pre-coding and the original AVWC
to be symmetrizable. This highly interesting interplay of pre-
coding and symmetrizability is quantified in the next Lemma
and the following example.

Lemma 3: Let W be an arbitrarily varying channel with
input alphabet A, output alphabet B and state set S. Let
T ∈ C(A′,A) be a channel. Let W′ be the arbitrarily
varying channel with input alphabet A′, output alphabet B and
state set R defined by w′(b|a′, s) := ∑a∈A w(b|a, s)t (a|a′)
(or, equivalently, via setting W ′

s := Ws ◦ T for all s ∈ S).
If W is symmetrizable then W′ is symmetrizable as well.
That, even for channels T whose associated matrix

(t (a|a′)a′∈A′,a∈A has full range, the reverse implication “W′
is symmetrizable ⇒ W is symmetrizable” does not hold came
as a surprise and is proven here by explicit example:

Example 1: Define an AVC W ⊂ C({x1, x2}, {1, 2, 3}) by
setting

w(·|s1, x1) := δ1, (68)

w(·|s2, x1) := δ2, (69)

w(·|s1, x2) := 0.6δ1 + 0.2δ2 + 0.2δ3, (70)

w(·|s2, x2) := 0.1δ1 + 0.3δ2 + 0.6δ3, (71)

where δi ( j) = 1 if and only if i = j holds for i, j ∈ [3]. Then
W is non-symmetrizable: The equation

λ · w(·|s1, x1) + (1 − λ) · w(·|s2, x1)

= μ · w(·|s1, x2) + (1 − μ) · w(·|s2, x2) (72)

cannot have a solution with λ,μ ∈ [0, 1] because δ3 appears
only on the right hand side and with strictly positive weights.

However, if we add pre-coding by a binary-symmetric
channel Np with parameter p ∈ [0, 1] we obtain the new

Fig. 3. Light gray lines are the vertices of the probability simplex
P({1, 2, 3}). The sets conv({w(·|s1, xi ), w(·|s2, xi )}) where i = 1, 2 are
displayed as dashed lines. The intersection of the dashed lines in the lower
picture shows that W′ is symmetrizable.

AVC W′ defined via W ′
s := Ws ◦ Np or, more concretely, by

w′(·|s1, x1) = pδ1 + p′(0.2δ1 + 0.6δ2 + 0.2δ3) (73)
w′(·|s2, x1) = pδ2 + p′(0.1δ1 + 0.3δ2 + 0.6δ3) (74)
w′(·|s1, x2) = p′δ1 + p(0.6δ1 + 0.2δ2 + 0.2δ3) (75)
w′(·|s2, x2) = p′δ2 + p(0.1δ1 + 0.3δ2 + 0.6δ3) (76)

where p′ := 1 − p. We set p = 0.4. The equation

λ · w′(·|s1, x1) + (1 − λ) · w′(·|s2, x1)

= μ · w′(·|s1, x2) + (1 − μ) · w′(·|s2, x2) (77)

can be written out explicitly into three equations for the two
parameters μ, λ. The solution is given by

λ = 31/37, μ = 75/148. (78)

This shows that W′ is symmetrizable. The situation is depicted
in Figure 3.

In order to derive the statement of Theorem 2 from
Lemma 2 we can therefore not use a simple blocking strat-
egy. Rather, we will present two methods of proof. The
first employs a reasoning along the lines of equations (46)
until (55). This approach is based on the concept of using a
few non-secret bits in order to guarantee secrecy for the actual
data. While this is highly interesting from a practical point of
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view, it does not utilize the full strength of Lemma 2. This
proof uses a set of public messages that can be read by Eve but
not by James, secrecy is only obtained for the (exponentially
larger) set of private messages.

Our second proof of Theorem 2 is based on lifting the
optimal pre-codings for n channel uses to n+1 channel uses by
using no pre-coding on the (n +1)th channel use. This type of
pre-coding preserves non-symmetrizability. The second proof
makes almost full use of the statements of Lemma 2, as we still
set � = 1. No public messages are used in the construction
of the code.

It remains an interesting open question whether, for n
channel uses, the optimal channel U arising from the n-th
term of the optimization problem (4) does in fact symmetrize
(Wsn )sn∈Sn or not. So far, it can only be said that “injection”
of noise at the encoder has to be treated with care when
the channel that is to be transmitted over is an AVWC
(or an AVC).

Our next result is potentially the most interesting in
this work, since it sheds additional light on a rather new
phenomenon: the super-activation of “the” secrecy capacity
of AVWCs.

Theorem 5: (Characterization of Super-Activation of CS

via Properties of Cmean
S,ran): Let (Wi ,Vi )i=1,2 be AVWCs.

1) If CS(W1,V1) = CS(W2,V2) = 0, then the estimate

CS(W1 ⊗ W2,V1 ⊗ V2) > 0 (79)

is true if and only if W1 ⊗W2 is not symmetrizable and
Cmean

S,ran (W1 ⊗ W2,V1 ⊗ V2) > 0.
If (Wi ,Vi )i=1,2 can be super-activated it holds

CS(W1 ⊗ W2,V1 ⊗ V2)

= Cmean
S,ran (W1 ⊗ W2,V1 ⊗ V2). (80)

2) There exist AVWCs which exhibit the above behaviour.
3) If Cmean

S,ran shows super-activation for (W1,V1) and
(W2,V2), then CS shows super-activation for (W1,V1)
and (W2,V2) if and only if at least one of W1 or W2
is non-symmetrizable.

4) If Cmean
S,ran shows no super-activation for (W1,V1) and

(W2,V2) then super-activation of CS can only happen
if W1 is non-symmetrizable and W2 is symmetrizable
and Cmean

S,ran (W1,V1) = 0 and Cmean
S,ran (W2,V2) > 0. The

statement is independent of the specific labelling.
Remark 7: Of course for W1 ⊗ W2 to be non-

symmetrizable, it has to be that at least one out of W1, W2
is non-symmetrizable.

While Theorem 5 offers a complete characterization, it does
not give any explicit examples - fortunately this has already
been done in [16], where two AVWCs were used as follows:
The first legal link is modeled by an AVC W1 = (W1,1, W1,2)
with input system for Alice being {1, 2} and output at Bob’s
site being {1, 2, 3}. The transition probabilities were given by

W1,1 =
(

1 0 0
0 0 1

)�
, W1,2 =

(
0 0 1
0 1 0

)�
(81)

(note that assume that the columns of a matrix representing a
channel sum up to one, not the rows!) and the first link to the

eavesdropper by V1 = (V1) (no influence from the jammer on
that link). For the purpose of this example, it would even be
sufficient to let V1 = T. This channel has the property that
W1 is symmetrizable. The second link was chosen to consist
of two binary symmetric channels W2, V2 where W2 was a
degraded version of V2, but both had nonzero capacity. Thus,
CS(W2,V2) = 0 but nontheless it is possible to transmit (non-
secret) messages via W2. This example fits into the third class
of pairs of AVWCs described in the above Theorem 5.

While this explicit example is very interesting, our analysis
provides a more systematic analysis.

Note that all our arguments only apply to the strong
secrecy criterion. The weak secrecy criterion can be handled
differently, and will be the scope of future work.

As a last point in this section, we would like to discuss
connections between Cpp and CS. At first, let us observe a
similarity: The former shows super-activation if and only if
the latter shows super-activation. To see this, we argue as
follows: By definition, the class of codes which transmit public
and private messages as defined in Definition 5 includes that
according to Definition 7 where no public information is trans-
mitted. Therefore it holds that Cpp(W,V) � CS(W,V) for
all AVWCs (W,V). Further, the definition of private/public
codes according to Definition 5 is more narrow than the one of
a common randomness assisted code according to Definition 3,
so that every private/public code is at the same time also
a common randomness assisted code. Especially, the public
messages may be treated as if they were common randomness
if L = �.

Therefore, Cpp(W,V) > 0 implies that Cmean
S,ran (W,V) > 0

for all (W,V). We conclude from Theorem 2 that
Cpp(W,V) > 0 implies CS(W,V) > 0 for all (W,V). This
leads us to conclude that

∀(W,V) : Cpp(W,V) > 0 ⇔ CS(W,V) > 0. (82)

Let now Cpp show super-actication on ((W1,V1), (W2,V2)).
Then it follows from the statement in equation (82) that
both CS(W1,V1) = CS(W2,V2) = 0 and CS(W,V) > 0.
Therefore, super-activation of Cpp implies super-activation
of CS.

In the reverse direction, let CS show super-activation on
the pair ((W1,V1), (W2,V2)). From the statement in equa-
tion (3) we immediately see that Cpp shows super-activation
as well.

Concerning differences, we note that a question we have to
leave open is whether there could exist AVWCs W,V such
that Cpp(W,V) > Cmean

S,ran (W,V) holds.
This question is of huge practical importance, as it allows

the quantification of the interplay between private and public
communication in interfering networks when i.i.d. assumptions
are not met, as is often the case.

IV. PROOFS

A. Technical Definitions and Facts

An important part of our results builds on the mathematical
structure that was developed in [22]. The structure of the
codes developed there builds on randomly sampling codewords
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which are all taken from one and the same set Tp . In our
previous paper we used an approach that was built on sampling
codewords according to some pruned distribution p′ defined
by p′(xn) := 1

p⊗n(T n
p,δ )

�T n
p,δ

· p⊗n(xn) for some p ∈ P(X ). The

small deviation of p′ from p⊗n brings with it some benefits
concerning asymptotic estimates. Since this work uses the
outcomes of the earlier work [38], it would be desirable to
use exactly the same technical approach.

However, due to the intended connection to [22], we cannot
use p′ in this work. Instead, we decided to use the same
distribution as the one which was used in [22] which is in some
sense further away from p⊗n . While this ensures seamless
connectivity to [22], it also made us deviate (compared to for
example our previous work [38]) from standard formulations
in some other points, namely: We use a different notion of
conditional typicality than before, and we define typical sets
using the relative entropy rather than the one-norm.

This deviation is motivated by the fact that, for any finite
alphabet A and p ∈ A as well as type N̄ ∈ Pn

0 (A), we have
p⊗n(TN̄ ) = poly(n)2−n·D(p‖N̄) for some polynomial poly in n.
Therefore, defining typicality with respect to relative entropy
gives the best control on the asymptotic behaviour of typical
sets. All methods that use other distance measures for the
definition of typicality need to relate these other measures to
the relative entropy.

That the use of relative entropy is also elegant as compared
to other methods can be seen as follows: Looking at
[20, Definition 2.9] (which deals with typicality in the pres-
ence of channels and inputs to those channels) one sees an
additional advantage of using relative entropy over using one-
norm: defining typicality with respect to variational distance
requires one to add additional assumptions which are not
necessary when relative entropy is used, as the latter quantity
can become infinite.

More precisely, let us assume we are given a channel
W ∈ C(A,B) such and (an, bn) ∈ An × Bn such that for
one specific choice of a, b we have N(a, b|an, bn) > 0 but
w(b|a) = 0. Then bn is not a typical output of the channel
w⊗n given that its input was an , since the probability that it
is received when an as sent is zero:

0 � w⊗n(bn|an) (83)

=
n∏

i=1

w(bi |ai ) (84)

�
∏

i:ai =a,bi=b

w(bi |ai ) (85)

= w(b|a)N(a,b|an,bn) (86)

= 0N(a,b|an,bn) (87)

= 0. (88)

Excluding non-typical sequences is crucial for the derivation
of lower bounds on cardinality of the conditionally typical set,
for example. Thus, the above sequence bn is excluded from
the w-typical set given an explicitly in [20, Definition 2.9].

A notion using relative entropy captures this perfectly
as well, but without necessitating the explicit exclusion:

Let us assume that bn is said to be w- typical given an iff
�(an, bn) := D(N̄ (·|an, bn)‖pAB) satisfies �(an, bn) � δ
for some δ > 0, where pAB(a, b) := N̄ (a)w(b|a). Then let
an be given and bn be such that there exists a, b such that
N(a, b|an, bn) > 0 but w(b|a) = 0. It follows pAB(a, b) = 0
and therefore D(N̄ (·|an, bn)‖pAB) = ∞, so that
�(xn, yn) = ∞ and hence bn is not w-typical given an .

A brief look at robust typicality as defined in [35] shows
that this quantity is also only related to relative entropy via
inequalities.

Therefore, our definition achieves two goals: It connects in
the most direct way to the relevant probability estimates and
can be written down with minimal effort.

Thus, the sets which we will be using frequently in the
following are, for arbitrary finite sets A,B, C, every p ∈
P(A), Ṽ ∈ C(A × B, C) and δ > 0 defined as follows: for a
given (an, bn) ∈ An × Bn we define pABC ∈ P(A × B × C)
via pABC(a, b, c) := N̄(an, bn)ṽ(c|a, b) and

T n
p,δ := {an ∈ An : D(N̄ (·|an)‖p) � δ}, (89)

TṼ ,δ(a
n, bn) := {cn : D(N̄ (·|an, bn, cn)‖pABC ) � δ}. (90)

These definitions are only valid for δ > 0. Each TṼ ,δ(s
n, xn)

obeys the estimate

ṽ⊗n(TṼ ,δ(a
n)|an) � 1 − 2−n·δ/2, (91)

for all n ∈ N such that |A × B| 1
n log(2n) � δ. We set, for

every p ∈ P(X ),

E(p) := max
q∈P(S)

I (p; Vq) (92)

and

B(p) := min
q∈P(S)

I (p; Wq). (93)

For the technical part of our proofs, the most important tool
will be the Chernoff-Hoeffding bound:

Lemma 4: Let b be a positive number. Let Z1, . . . , Z L be
i.i.d. random variables with values in [0, b] and expectation
EZl = ν, and let 0 < ε < 1

2 . Then

P

{
1

L

L∑

l=1

Zl /∈ [(1 ± ε)ν]
}

� 2 exp

(
−L · ε2 · ν

3 · b

)
, (94)

where [(1 ± ε)ν] denotes the interval [(1 − ε)ν, (1 + ε)ν].
The proof can be found in [25, Th. 1.1] and in [6].

B. Proof of the Converse Part of Theorem 1
(Coding Theorem for Ckey)

Main ingredients to this proof are Fano’s inequality, data
processing and almost-convexity of the entropy.

Let a sequence K = (Kn)∞n=1 of common randomness-
assisted codes be given such that for all n ∈ N we have

min
sn∈Sn

1

�n · Kn

�n,Kn∑

γ,k=1

eγ (xn|k)wsn(Dγ
k |xn) � 1 − εn, (95)

max
sn∈Sn

I (Kn; Zsn) � εn, (96)
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and of course lim supn→∞ εn = 0. Set R :=
lim infn→∞ 1

n log Kn , and G := limn→∞ 1
n log �n . In addition

to the random variable defined in Definition 3, consider
(Kn,K′

q,n, �n) distributed as

P((Kn,Y
n
q ,K′

q,n, �n) = (k, k ′, γ ))

=
∑

sn∈Sn

q⊗n(sn)P(Kn,Yq,n,K′
n, �n). (97)

Then for all n ∈ N, q ∈ P(S) and sn ∈ Sn Fano’s inequality
implies

(1 − εn) log Kn � I (Kn; K′
q,n|�n) − I (Kn; Zsn) + 2. (98)

We can apply the data processing inequality to get

(1 − εn) log Kn � I (Kn; Yn
q |�n) − I (Kn; Zsn) + 2, (99)

and from e.g. [20, Lemma 3.4] and independence of the
random variables Kn and Gn it follows that the asymptotic
scaling of the rate lim infn→∞ 1

n log Kn can be upper bounded
through the following inequality:

(1 − εn) log Kn � I (Kn; Yn
q) − I (Kn; Zsn) + H (�n) + 2.

(100)

Since this estimate is valid for all q ∈ P(S) and sn ∈ Sn we
get

log Kn � 1

1 − εn

(
min

q∈P(S)
I (Kn; Yn

q) − max
sn∈Sn

I (Kn; Zsn )

)

+ 2

1 − εn
+ log �n

1 − εn
. (101)

Define the distribution p ∈ P([Kn]) and the channel
U ∈ C([Kn],X n) by setting

p(k) = 1

Kn
, u(xn|k) :=

�n∑

γ=1

1

�
eγ (xn|k), (102)

for all k ∈ [Kn], xn ∈ X n . Then we arrive at

log Kn � 1

1 − εn

(
min

q∈P(S)
I (p; W⊗n

q ◦ U)

− max
sn∈Sn

I (p; Vsn ◦ U)

)
+ 1 + εn

1 − εn
+ log �n

1 − εn
.

(103)

Of course, we can obtain a more relaxed upper bound by
optimizing over all p ∈ P([Kn]) and U ∈ C([Kn],X n).
We then obtain (since Kn � |X n | for every reliably working
code and, therefore, P([Kn]) ⊂ P([|X n|]) under the standard
embedding [Kn] ⊂ [|X |n]) by further increasing the size of
the input alphabet from Kn to |X |n with Un := [|X |n] that

R � lim
n→∞

1

n
max
p∈Un

max
U∈C(Un,X n)

×
(

min
q∈P(Sn)

I (p; W⊗n
q ◦ U)− max

sn∈Sn
I (p; Vsn ◦ U)

)
+G.

(104)

As it has been proven in [38] that the capacity Cmean
S,ran equals

the leftmost part in the above sum we have proven the desired
result.

Another obvious bound on the capacity arises by ignoring
all security issues: since K ensures an asymptotically perfect
transmission, we have

lim
n→∞

1

n
log Kn � max

p∈P(X )
min

q∈P(S)
I (p; Wq). (105)

This establishes the converse part of the coding theorem.

C. Proof of the Direct Part of Theorem 1
(Coding Theorem for Ckey)

Let G > 0 be given. Define p := arg maxp∈P(X )(B(p) −
E(p)). Set G′ := max{E(p), G}. Intuitively speaking, this is
the amount of common randomness which can be put to use
in the obfuscation of Eve. Choose a τ > 0 such that ν(τ )
from Lemma 1 satisfies ν(τ ) < G′. Let n ∈ N be so that for
all n � N there is pn ∈ Pn

0 (X ) such that |B(pn) − B(p)| �
max{τ, ν(τ )} and |E(pn)−E(p)| � max{τ, ν(τ )}. This can be
achieved by approximating p through types pn via Lemma 8
and since both B and E are continuous functions. Take three
sequences (Kn)

∞
n=1, (Ln)∞n=1, (�n)∞n=1 of natural numbers.

Without loss of generality, we can ensure that (�n)n∈N satisfies
both �n � 2n·G ′

for all n ∈ N and limn→∞ 1
n log �n = G′.

Let now n ∈ N satisfying n � N be fixed but large enough
such that in addition

E(p) − G′ + 4τ � 1

n
log(Ln) � E(p) − G′ + 2τ, (106)

B(p) − E(p) + G′ − 4(τ + ν(τ )) � 1

n
log(Kn) (107)

1

n
log Kn � B(p) − E(p) + G′ − 2(τ + ν(τ )) (108)

be satisfied, for all large enough n ∈ N. This implies both

1

n
log(Kn · Ln) � B(p) − E(p) + G′

− 4(τ + ν(τ )) + E(p) − G′ + 4τ (109)

= B(p) − 4ν(τ ) (110)

� B(pn) − ν(τ ) (111)

and

1

n
log(Ln · �n) � E(p) + 2τ � E(pn) + τ. (112)

Asymptotically, we also have this yields

lim inf
n→∞

log Kn

n
� B(p) − E(p) + G − 4 · (τ + ν(τ )). (113)

At the same time, the prerequisites of Lemma 1 are met such
that a reliable sequence of codes exists which is also secure
with respect to ‖ · ‖1: For all large enough n ∈ N we have

min
sn

�∑

γ=1

1

�

K ,L∑

k,l=1

1

K · L
wsn (Dγ

kl |xklγ ) � 1 − 2−n·ν(τ ),

(114)

max
sn,k

∥∥∥∥∥∥
1

L · �
L ,�∑

l,γ=1

vsn (·|xklγ ) − Evsn (·|Xn)

∥∥∥∥∥∥
1

� 2−n·ν(τ ).

(115)
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It can already be seen that this yields reliable communication
at any rate which is strictly below B(p)−E(p)+G - we proved
the achievability of rates close enough to B(p) − E(p) + G,
but it is clear that time sharing between a trivial strategy
where only one codeword is being transmitted (which is then
automatically perfectly secure) and the strategy which was
proven to work in the above will show achievability of all other
rates R ∈ [0, |B(p) − E(p) + G|+]. That we also get secure
communication can be seen as follows: From [20, Lemma 2.7]
we know that our exponential bound (60) asymptotically leads
to fulfillment of the strong secrecy criterion.

We have thus proven that, for each τ ′ > 0, the number

max
p∈P(X )

(
min

q∈P(S)
I (p; Wq ) − max

q∈P(S)
I (p; Vq)

)
+ G − τ ′

(116)

is an achievable rate. We now proceed by adding channels U at
the sender and using blocks of the original channels together:
Since we now know that, for every r ∈ N, G > 0 and δ > 0,
p ∈ P(Ur ) where Ur := [|X |r ] and U ∈ C(Ur ,X r ) there exist
sequences K = (Km)∞m=1 such that for every sr ·m ∈ (Sr )m =
Sr ·m we have

Km∑

k=1

�m∑

γ=1

∑

xr·m

e(xr ·m |k, γ )

Km · �m
wsm·r (Dγ

k |xr ·m) � 1 − εm , (117)

where xk,γ ∈ Um
r are codewords (each xk,γ ,i is an element

of Ur ) for (Wsr ◦ U)sr ∈Sr , and the stochastic encoder is
e(xr ·m |k, γ ) =∏m

i=1 u(xi j |xk,γ ,i) for xr ·m and it holds that

lim inf
m→∞

log Km

m
� min

q∈P(Sr )
I (p; Wq ◦ U) + r · G

− max
sr ∈Sr

I (p; Vsr ◦ U) − δ. (118)

We can define values tn ∈ {0, . . . , r − 1} by requiring
n = m · r + tn for them to hold for some suitably chosen
m = m(n) ∈ N. This quantity satisfies −1 + n/r � m(n) �
n/r . For every n ∈ N we then define new decoding sets by

D̂γ
k := Dγ

k × Y tn (119)

and new codewords by setting for some arbitrary but fixed xtn

x̂kγ := (xkγ , xtn ). (120)

From the choice of codewords and the decoding rule it is
clear that this code is asymptotically reliable. The asymptotic
number of codewords (mind that K̂n = Km(n)) calculated and
normalized with respect to n, is

lim inf
n→∞

log K̂n

n
= lim inf

n→∞
1

m(n) · r + tn
log Km(n) (121)

� lim inf
n→∞

1

r
· 1

m(n) + 1
log Km(n) (122)

= 1

r
lim inf
n→∞

1

m(n)
· log Km(n) (123)

= 1

r

(
min

q∈P(Sr )
I (p; Wq ◦ U) + r · G

− max
sr ∈Sr

I (p; Vsr ◦ U) − δ

)
. (124)

To see that every number C∗(W,V)− ε is an achievable rate,
take r , U and p such that

C∗(W,V) − ε/2 � 1

r

(
min

q∈P(Sr )
I (p; Wq ◦ U)

− max
sr ∈Sr

I (p; Vsr ◦ U)

)
. (125)

This is possible since in [38] it was (in addition to the equality
Cmean

S,ran (·, ·) = C∗(·, ·)) proven that

C∗(W,V) = lim
r→∞

1

r
max

p∈P(Un)
max

Un∈C(U ,X n)

×
(

min
q∈P(Sr )

I (p; Wq ◦ U) − max
sr ∈Sr

I (p; Vsr ◦ U)

)
.

(126)

We set δ = r · ε/4. Then from our preceding arguments it
becomes clear that there is a sequence K̂ of asymptotically
reliable codes at an asymptotic rate

lim inf
n→∞

log K̂n

n
� 1

r

(
min

q∈P(Sr )
I (p; W m

q ◦ U) + r · G

− max
sr ∈Sr

I (p; Vsr ◦ U) − r · ε/4

)
(127)

� 1

r

(
min

q∈P(Sr )
I (p; W m

q ◦ U) + r · G

− max
sr ∈Sr

I (p; Vsr ◦ U)

)
− ε/4 (128)

� C∗(W,V) + G − ε/2 − ε/4 (129)

� C∗(W,V) + G − ε. (130)

This proves the direct part of the coding theorem.

D. An Intermediate Result

We now have to prove the core results from which all the
other statements can be deduced. The idea of proof will be
to make a random selection of the codewords xklγ where k
are the messages, l are non-secret messages which are only
being sent in order to obfuscate the received signal at Eve, and
γ are the values of the common randomness. When applying
the results to AVWCs, the decoder is the one defined in [22]
whenever we study CS and is defined here according to our
needs for the study of Ckey.

We define events E1, . . . , E3 which describe certain desir-
able properties of our codewords, in dependence of (W,V)
and the numbers K , L, � of available indices k, l, γ . We then
use Chernoff bounds. This guarantees that the random selec-
tion of codewords has each single property we would like them
to have with probability lower bounded by 1 − exp(−2nc)
for some positive constant c > 0 and all large enough n
under some conditions on �, L and K which of course depend
on (W,V) as well. Application of a union bound then reveals
the existence of one particular choice of codewords that has
all the desired properties simultaneously.

Using exactly this method of proof, Csiszár and Narayan
[22, Lemma 3] proved properties (64), (65) and (66) of
Lemma 2. Thus what remains for us is to provide proof that
the remaining event (67) has high probability.
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In [22], large deviation results for dependent random vari-
ables were employed, but the underlying probability employed
in codeword selection was the same as the one used by us, so
that our findings connect seamlessly.

We become a bit more concrete now. Let p ∈ Pn
0 (A),

q ∈ Pn
0 (S). Throughout, we will attempt to twist and

tweak asymptotic quantities such that they are calculated
with respect to the random variables (S, X, Z) defined via
P((S, X, Z) = (s, x, z)) := p(x)q(s)v(z|x, s). Since the
distribution of (S, X, Z) is so important, we label it by pS X Z .
The variable p will remain fixed, and q will always denote
a type corresponding to one of the choices of James. The
proof will require us to draw codewords at random. As stated
already, we adapt this procedure to the one chosen in [22].
This is done as follows: We define the random variables Xklγ

(1 � k � K , 1 � l � L, 1 � γ � �) by P(Xklγ = xn) :=
1

|Tp|�Tp (xn) for all k ∈ [K ], l ∈ [L] γ ∈ [�] and xn ∈ X n ,

where K , L, � are natural numbers. We write xklγ for the
realizations of the variable Xklγ , instead of xn

klγ . The random

variable X := (Xklγ )K ,L ,�
k,l,γ=1 is distributed such that each Xklγ

is independent of Xk′l′γ ′ if (k, l, γ ) 
= (k ′, l ′, γ ′). The real-
izations of (Xklγ )K ,L ,�

k,l,γ=1 are written x. We use the projections
πklγ defined by πklγ (x) := xklγ . Further projections as e.g.
xγ := πγ (x) := (xklγ )K ,L

k,l=1 are defined wherever there is a
need.

In order to enhance readability, we will not only omit the
superscript n in our codewords, but from time to time we will
also write statements like ∀sn , property P holds. Then, it is
understood that P holds for all sn ∈ Sn .

When calculating expectations of any of the Xklγ we need
no reference to k, l, γ due to independence of our random
variables. We therefore add another random variable, Xn ,
distributed as P(Xn = xn) = 1

|Tp |�Tp(xn) as well.

A first and crucial step for all that is to come in the proofs
of the technical Lemmas 1 and 2 is to fix some δ > 0 and
p ∈ P(X ) and define, for all sn ∈ Sn and zn ∈ Zn , the func-
tions �sn,zn : X n → [0, b] (where b := 2−n(H(Z |X,S)− f2(n,δ))

for some function f2, as we will see soon) by

M(sn , zn) := {xn ∈ Tp : D(N̄ (·|sn, xn, zn)‖ p̃) � δ} (131)

�sn,zn (xn) := v⊗n(zn|sn, xn)�M(sn,zn), (132)

where p̃ := pS X Z . In order to enhance readability, the
dependence of both M and � on δ is suppressed here and
in the following. All our proofs rely on a common strategy,
which only deviates in one point: The codes which ensure
reliable transmission. For non-symmetrizable AVWCs we rely
on the work [22] and use the codes which are defined therein.
This will be sufficient to obtain all the results that we claimed
for the uncorrelated coding secrecy capacity.

The coding theorem for secret common randomness assisted
secrecy capacity needs an additional definition of codes. This
definition is as follows:

For every n ∈ N, set �n := Pn
0 (S). For every xn , define

(not necessarily disjoint) “decoding” sets by

D̂xn :=
⋃

ξ∈�n

TWξ ,δ(xn) (133)

and for a collection xγ := (xklγ )K ,L
k,l=1 of codewords with fixed

value of γ set

D(xγ )kl := D̂xklγ

⋂
⎛

⎝
⋃

k′ 
=k

⋃

l′ 
=l

D̂xk′ l′γ

⎞

⎠
�

. (134)

This defines the code Kn . This definition allows the decoder
to decode the randomization index l as well, an approach
which works for AVWCs and compound (wiretap) channels
with convex state sets via the minimax theorem. Note that this
code will only ensure reliable transmission if � is sufficiently
large.

In order to deliver a joint treatment of the subject it makes
sense to define the following events, where we implicitly
assume a functional dependence δ = δ(τ ) that will be specified
more exactly later during our proofs.

E1 :=
⎧
⎨

⎩x|∀sn, zn, k :
L∑

l,γ=1

�sn,zn (xklγ )

L · �
∈ I τ/4

sn,zn

⎫
⎬

⎭, (135)

whereI τ/4
sn,zn := [(1 ± 2−n·τ/4)E�sn,zn ], (136)

E2 :=
⎧
⎨

⎩x| min
sn

1

�

�∑

γ=1

dsn(Kγ ) � 1 − 2 · 2−nδ/4

⎫
⎬

⎭, (137)

E3 := {x : (64), (65) and (66) hold f or all xn, x̂ n ∈ Tp}.
The average success probability dsn(Kγ ) (see also Defini-
tion 3) is given by

dsn(Kγ ) = max
sn∈Sn

K ,L∑

k,l=1

∑

xn

eγ (xn|k, l)wsn (Dγ
k |xn)

K · L
. (138)

The event E3 is proven to have high probability in [22]
(actually, their proof is valid for |�| = 1 but can be extended
to arbitrary |�| by simple union bounds, which leads to the
following statement:

Lemma 5 (Cf. [22]): There is c′ > 0 such that, if W is
non-symmetrizable, we have that

P(E3) � 1 − � · exp(−2n·c′
) (139)

The bound in Lemma 5 is trivial whenever � > exp(2n·c′
).

In the applications intended here, the maximal scaling of �
with n will be exponential, so that nontrivial bounds arise.

Our main effort in the following will be to show that a
similar bound is true for P(E1) and P(E2) under the right
conditions on K , L and �. With respect to these conditions,
any of the intersections Ei ∩ . . .∩ E j will then have very high
probability as well.

For the proofs of both Lemma 1 and 2 it will be of
importance to control the amount of information which leaks
out to Eve. This will require us to prove that a careful random
choice of codewords will be provably secure, and this is the
main content of the following Lemma (which contains state-
ments concerning the message transmission capabilities of the
common randomness assisted codes defined in (133) and (134)
as well).

Lemma 6: Let K , L, � ∈ N. Let the random variable X be
as described above. Then for every τ > 0 and β > 0 there is
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a δ > 0 and and N ∈ N such that for all n � N and types
p ∈ Pn

0 (X ), the following statements are true:

1) If 1
n log(L · �) � E(p) + τ and minx :p(x)>0 p(x) � β,

then P(E1) � 1 − 2 · |S × X × Z|n · exp(−2n·τ/6).
2) If 1

n log(K · L) � B(p) − δ − 2 · f1(
√

2 · δ) then
P(E2) � 1 − exp(n · log(|S|) − � · 2−nδ).

3) For every β > 0, |X |, |S| and |Z|, a functional
dependence between δ and τ can be chosen such that
limτ→0 δ(τ ) = 0.

The number N depends on |X |, |S|, |Z| as well as on p (via
the quantity β := minx∈X :p(x)>0 p(x)) and on δ.

Proof: Some of the statements we wish to prove here are

not about the full random variable X = (Xklγ )K ,L ,�
k,l,γ=1 but only

about exponentially many parts of it. We do therefore feel the
need to write a few lines concerning our strategy of proof.
We adopt the usual point of view that X somehow generates
matrices of codewords. In the special case treated here it will
be convenient to think of realizations of X as a list of �
matrices, all of which describe a code-book and each of these
code-books uses the index l solely for making Eve obfuscated,
while k is used to transmit messages. The fact that γ is known
to both the sender and the receiver lets the receiver adapt his
decoder appropriately, while Eve only sees the average over
all code-books. The effective randomness used for obfuscation
of Eve is therefore L · �.

Before making this more precise, we need additional
notation:

As stated already, the projections πklγ : (X n)K L� → X n

project onto the copy of Xn corresponding to k, l, γ , such
that πklγ (X) = Xklγ . Accordingly, πk are the projections
mapping X to Xk := (Xklγ )L ,�

l,γ=1.
The trick will be to first understand how to embed state-

ments concerning only certain projections of X into the whole
random selection process. The idea is to proceed as follows:

Take any set of functions g1, . . . , gM : X n → [0, b′]. Then
for all k ∈ [K ],

P(
1

� · L

L ,�∑

l,γ=1

gm(πklγ (X)) /∈ [(1 ± ε)Egm])

= P(
1

L · �
L ,�∑

l,γ=1

gm(πlγ (Xk)) /∈ [(1 ± ε)Egm]), (140)

where the left hand side is a probabilistic statement about
X = (Xklγ )K ,L ,�

k,l,γ=1 and the right hand side is a statement about

the random variables Xk = (Xklγ )L ,�
l,γ=1. Thus by the usual

Chernoff bound Lemma 4 we have

P

⎛

⎝∃ m, k :
L ,�∑

l,γ=1

gm(πlγ (Xk))

L · � /∈ [(1 ± ε)Egm]
⎞

⎠

� 2 · M · K · exp

(
− L · � · ε2 · minm Egm

3 · b′

)
. (141)

Another crucial connection in what is to follow is that for
all zn, xn and sn we have (using the abbreviation N(·) :=

N(·|sn , xn, zn) and r(z|x, s) := N(s, x, z)/N(s, x |sn , xn)):

v⊗n(zn|sn, xn)

= 2n·∑s,x,z N̄ (s,x,z) logv(z|s,x) (142)

= 2
n·(∑s,x,z N̄ (s,x,z)(log v(z|s,x)p(x)q(s)

N̄ (s,x,z)
· N̄ (s,x,z)

p(x)q(s) )) (143)

= 2n·(−D(N̄(·|sn,xn,zn)‖pX S Z ))

· 2n·(∑s,x,z N̄ (s,x,z) log( N̄ (s,x |sn ,xn )·r(z|x,s)
p(x)·q(s) ) (144)

= 2n·(−D(N̄(·|sn,xn,zn)‖pX S Z )

· 2n(D(N̄(·|sn,xn)‖p⊗q)−H( Ẑ |Ŝ,X̂)), (145)

where Ŝ X̂ Ẑ is distributed according to N̄ (note that without
loss of generality we may assume that p, q > 0 here and in
the following lines, since otherwise we could simply erase a
symbol from the alphabet X or S).

Proof of Property 1 of Lemma 6: Let n ∈ N. Replace M
with Sn × Zn and the functions gm with the �sn,zn ’s. We let
δ > 0 be arbitrary for the moment. Using equation (142) and
the fact that the relative entropy is never negative it can be
seen that each �sn,zn obeys

�sn,zn (xn) = 2n·(−D(N̄(·|sn,xn,zn)‖pX S Z )−H( Ẑ |X S))

· 2n·(D(N̄(·|sn,xn)‖p⊗q))
�M(sn,zn)(xn) (146)

� 2−n·(H( Ẑ|Ŝ X̂)−D(N̄(·|sn,xn)‖p⊗q)). (147)

This bound does obviously still depend on xn . But if
xn ∈ M(sn , zn) then the distribution of Ŝ X̂ Ẑ has the following
important feature: by Pinsker’s inequality, we have

‖N̄ − pS X Z‖1 �
√

2δ. (148)

Setting f2(δ) := 2 · f1(
√

2δ)+ δ, an application of Lemma 11
from the appendix together with monotonicity of the relative
entropy then yields

∀xn ∈ X n : �sn,zn (xn) � 2−n·(H(Z |X S)− f2(δ)). (149)

Here, f1 is defined setting A = S ×X ×Z . This justifies our
choice of b. Note that the definition of � together with the
monotonicity of D(·‖·) ensures that the empirical distribution
N̄(·|xn, sn) is almost product (N̄(·, ·|xn, sn) ≈ p(·) · N̄ (·|sn))
and that this property was vital in the derivation of the results
contained in [22], whereas it may not be strictly necessary
here (but does lead to a valid strategy of proof, nonetheless).

In order to apply the Chernoff bound we also need to
calculate the expectation of each �sn,zn , and for that matter
it will be important to obtain a tight enough lower bound on
|M(sn, zn)|: According to Lemma 9 from the appendix (set
A = X and B = S × Z there) we have

|M(sn, zn)| � 2n(H(X̂ |Ŝ Ẑ)− fC (n)). (150)

We are now almost ready to give a lower bound on the
expectation of �sn,zn . Be aware that sn of type q and zn

remain fixed quantities for the moment. From monotonicity of
the relative entropy and Pinsker’s inequality applied together
with Lemma 11 it follows that we can estimate

xn ∈ M(sn, zn)

⇒ v⊗n(zn |sn, xn) � 2−n(H(Z |X,S)+2δ+ f1(
√

2δ)). (151)
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It then follows that, if M(sn , zn) 
= ∅, we have the estimate

E�sn,zn = 1

|Tp|
∑

xn∈M(sn,zn)

v⊗n(zn|xn, sn) (152)

� 2−n(H(Z |X,S)+2δ+ f1(
√

2δ))

· 2n(H(X)− fC (n))|M(sn, zn)|. (153)

Estimate (148) together with the continuity of entropy yields
(see [20, Lemma 2.7])

M(sn , zn) 
= ∅

⇒ |M(sn , zn)| � 2n(H(X |S,Z)+ fC(n)+ f1(
√

2δ)). (154)

We define m : Sn × Zn → {0, 1} by m(sn, zn) = 1 if
M(sn , zn) 
= ∅ and m(sn, zn) = 0 else. It then follows that
for all large enough n ∈ N

E�sn,zn � m(sn, zn) · 2−n(H(Z |S)− f3(n,δ)), (155)

where f3(δ) := 4(δ+ f1(
√

2δ). For our random variable X this
can be used as follows: via the Chernoff bound, and setting
I ε
sn,zn := [(1 ± ε)E�sn,zn ],

P(∃k, sn, zn :
L ,�∑

l,γ=1

�sn,zn (πklγ (X))

L · � /∈ I ε
sn,zn ) (156)

� 2 · |S × X × Z|n

· exp

(
−ε2 · L · � · minsn,zn E�sn,zn

3 · b

)
(157)

= c(n) · exp

(
−ε2 · � · L · minsn,zn E�sn,zn

3 · b

)
, (158)

on account of the same argument that we used in
equations (140) and (141) and with the obvious definition
of c(n). Now we have to plug in the asymptotic behaviour of
L · �, ε and b. If m(sn, zn) = 0 then the statement is trivial.
We set f (δ) := f2(δ)+ f3(δ), E(p) := maxq I (p; Vq) and let
1
n log L · � � E(p) + τ for some τ > 0. Note that, no matter
what the distribution of S (which depends on the choice sn of
James!), we have E(p) − I (X; Z |S) � 0. Therefore,

ε2

3
· L · � · E�sn,zn

b

� m(sn, zn) · ε2

3
· 2n(E(p)+τ−H(Z |S)+H(Z |X,S)− f 2(δ)− f3(δ)) (159)

= m(sn, zn) · ε2

3
· 2n(E(p)+τ−I (Z ;X |S)− f (δ)) (160)

� m(sn, zn) · ε2

3
· 2n(E(p)+τ−E(p)− f (δ)) (161)

= m(sn, zn) · ε2

3
· 2n(τ− f (δ)). (162)

Upon choosing ε = 2−n·α we get a doubly exponential decay
of the probability in equation (156) if 0 > τ − 2α − f (δ), and
since limδ→0 f (δ) = 0 there is a combination of δ > 0, τ > 0
such that for α = τ/6 and all large enough n ∈ N we have

(with I τ/6
sn,zn := [(1 ± 2−nτ/6)E�sn,zn ])

P

⎛

⎝∃ k, sn, zn :
L ,�∑

l,γ=1

�sn,zn (xklγ )

L · �
/∈ I τ/6

sn,zn

⎞

⎠

� c(n) · exp(−2n·τ/6). (163)

It is clear that this defines a dependence δ = δ(τ ) and that
limτ→0 δ(τ ) = 0 and δ(τ ) > 0 for all (small enough) τ .
A specific choice that we will use here is δ(τ ) = τ .

Proof of Statement 2 of Lemma 6: We will need Ahlswede’s
robustification technique.

Lemma 7 [3], [4]: If a function f : Sn → [0, 1] satisfies
∑

sn∈Sn

f (sn)q(s1) · · · q(sn) � 1 − ε (164)

for all q ∈ Pn
0 (S) and some ε ∈ [0, 1], then

1

n!
∑

π∈�n

f (π(sn)) � 1 − 3 · (n + 1)|S| · ε. (165)

We will in the following make use of the codes Kγ which
defined the set E2.

We would like to use the Chernoff bound for the variable �,
so we have to control the expectation for each fixed γ . Note
that the construction of codes is such that it is independent
from γ , so this will not turn into a hopeless case if we
draw an independent number � of realizations of above
codes. We go as follows: First associate to any given choice
xγ = (xklγ )K ,L

k,l=1 of codewords the corresponding code K(xγ )
as defined in equations (133) and (134). Then, for every sn

and γ ∈ [�], define the success probability of that code via

dsn (xγ ) :=
K ,L∑

k,l=1

1

K · L
wsn(D(xγ )kl |xklγ ). (166)

We then have for each fixed γ

Edsn(Xγ )

= E
1

K · L

K ,L∑

k,l=1

wsn (D(Xγ )kl |Xklγ ) (167)

� E
1

K · L

K ,L∑

k,l=1

(
wsn (D̂Xklγ |Xklγ )

)
(168)

− E
1

K · L

K ,L∑

k,l=1

wsn(
⋃

k′ 
=k

⋃

l′ 
=l

D̂Xk′ l′γ |Xklγ )

�
∑

xn∈Tp

1

|Tp|wsn(D̂xn |xn)

− K · L ·
∑

xn,x̂ n∈Tp

1

|Tp|2 wsn(D̂xn |x̂ n). (169)

Now observe that π(Tp) = Tp for every π ∈ Sn

and that, for all π ∈ Sn , xn, yn and sn we have
wsn (π(yn)|π(xn)) = wπ−1(sn)(yn|xn). In addition to that,
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D̂π(xn) = π(D̂xn ), so that we can write

Edsn (Xγ ) � 1

n!
∑

π∈Sn

wsn(D̂π(xn)|π(xn))

− K · L ·
∑

xn,x̂ n∈Tp

1

|Tp|2 wsn(D̂xn |x̂ n). (170)

By [20, Lemma 2.3 and eq. (2.1)], the density 1
|Tp|�Tp satisfies

1

|Tp|�Tp � (n + 1)|X |2−n·H(p)
�Tp (171)

= (n + 1)|X | p⊗n
�Tp (172)

� (n + 1)|X | p⊗n. (173)

Setting pl(n) := (n + 1)|X |, we use this to further develop our
bound as follows:

Edsn (Xγ ) � 1

n!
∑

π∈Sn

wsn (D̂π(xn)|π(xn)) − K · L · pl(n)

·
∑

xn∈Tp

1

|Tp|w
⊗n
p (D̂xn |sn) (174)

= 1

n!
∑

π∈Sn

wsn (D̂π(xn)|π(xn)) − K · L · pl(n)

·
∑

π∈Sn

1

n!w
⊗n
p (D̂xn |π(sn)), (175)

where xn ∈ Tp is arbitrary and wp(y|s) =∑
x∈X p(x)w(y|s, x) according to our definition in

equation (12). By carrying out the same estimate as in
equation (171) for the distribution 1

|Tq |�Tq induced by the

type q of sn and setting pl2(n) := (n + 1)2·max{|X |,|S|} we
get (note here that wp⊗q(y) := ∑s,x q(s) · p(x) · w(y|s, x)
defines, according to our convention, a probability distribution
on P(Y) which is identical to W (p ⊗ q))

Edsn (Xγ ) � 1

n!
∑

π∈Sn

wsn (D̂π(xn)|π(xn))

− K · L · pl2(n) · w⊗n
p⊗q(D̂xn ) (176)

= 1

n!
∑

π∈Sn

wπ(sn)(D̂xn |xn)

− K · L · pl2(n) · w⊗n
p⊗q(D̂xn ) (177)

� 1

n!
∑

π∈Sn

wπ(sn)(D̂xn |xn) − K · L · pl2(n)

· max
ξ∈�n

w⊗n
p⊗q (TWξ ,δ(xn)). (178)

It is now the time to apply Ahlswede’s robustification tech-
nique. For the fixed but arbitrary xn ∈ Tp define f by fixing all
its values f (sn) via f (sn) := wsn (D̂xn |xn). Then by Lemma 7

we get

Edsn (Xγ ) � 1 − (n + 1)|S| max
ξ∈�n

w⊗n
ξ (D̂�

xn |xn)

− K · L · pl2(n) · max
ξ∈�n

w⊗n
p⊗q(TWξ ,δ(xn)) (179)

� 1 − pl2(n)

(
max
ξ∈�n

W⊗n
ξ (TWξ ,δ(xn)�|xn)

+ K · L · max
ξ∈�n

w⊗n
p⊗q(TWξ ,δ(xn))

)

(180)

� 1 − pl2(n)
(

2−n·δ/2

+ K · L · max
ξ∈�n

∏

x∈X
w

⊗n·p(x)
p⊗q (TWξ (x),δ)

)
.

(181)

The last term in above estimate deserves special attention.
Following the lines of proof of [9, Lemma 3] (which was
originally proven in [42]) we see that

D(N̄ (·|yn)‖Wξ (p))

= D(
∑

x

p(x)N̄x (·|yn)‖Wξ (p)) (182)

�
∑

x

p(x)D(Nx (·|xn, yn)‖Wξ (p)) (183)

= D(N̄ (·|xn, yn)‖Wξ (p) ⊗ p) (184)

� δ. (185)

It follows that for each ξ ∈ �n we have by Lemma 11 that

W⊗n
p⊗q (TWξ ,δ(xn))

� |TWξ ,δ(xn)| max
yn∈TWξ ,δ (xn)

w⊗n
p⊗q(yn) (186)

� |TWξ ,δ(xn)|
· max

yn∈TWξ ,δ (xn)
2−n(D(N̄(·|yn)‖W (p⊗q))+H(N̄(·|yn))) (187)

� |TWξ ,δ(xn)|2−n(H(Wξ (p))− f1(
√

2·δ)). (188)

We further estimate that for the distribution pXY,ξ ∈ P(X×Y)
defined via pXY,ξ (x, y) := p(x)wξ (y|x) we have

|TWξ ,δ(xn)|
� max |{ŷn : N(·|ŷn, xn) = N(·|yn, xn)}|

{yn :D(N̄(·|xn,yn)‖pXY,ξ )�δ}
(189)

� max
yn :D(N̄(·|xn,yn)‖pXY,ξ )�δ

2n·H(Ŷ |X̂) (190)

� 2n·∑x p(x)H(Wξ (δx ))+ f1(
√

2·δ), (191)

by Lemma 9 and Lemma 11. We can now re-insert this
estimate into our original problem and obtain

Edsn (Xγ ) � 1 − pl2(n)
(
2−n·δ

+ K · L · 2−n(minξ I (p;Wξ )−2 f1(
√

2·δ))) (192)

� 1 − pl2(n)
(

2−n·δ/2

+ K · L · 2−n(minq I (p;Wq )−2· f1(
√

2·δ))) (193)
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� 1 − pl2(n)
(

2−n·δ/2 + 2−n·δ/2
)

(194)

� 1 − 2−n·δ/4 (195)

for all large enough n ∈ N, since

K · L � 2n(minq I (p;Wq )−δ−2· f1(
√

2·δ)) (196)

� 2n(minξ I (p;Wξ )−δ−2· f1(
√

2·δ)) (197)

by assumption and since �n ⊂ P(S). Observe that this lower
bound is entirely independent from the choice of sn ∈ Sn .
It now follows from the Chernoff bound Lemma 4 that

P

⎛

⎝∀sn : 1

�

�∑

γ=1

dsn(Kγ ) � (1 − ε)Edsn (K)

⎞

⎠

� |S|n · exp(−� · ε2 · Edsn (K)/3) (198)

� exp(n · log(|S|) − � · ε2 · (1 − 2−n·δ/4)/3). (199)

Choose ε = 2−n·δ/4 to obtain the statement.
Proof of Statement 3 in Lemma 6: The proof of this

statement follows from the proof of statement 1 where the
functional dependence τ �→ δ(τ ) is specified. �

E. Proof of Lemma 1

Proof of Lemma 1: We know from Lemma 6 that (if
1
n log(K · L) � B(p) − δ − 2 · f1(

√
2 · δ) for some δ > 0

and n is large enough)

P(E2) � 1 − exp(n log(|S|) − �ε2(
1

3
− 2−nδ/2)). (200)

Stepping away from the goal of proving Lemma 1 we see
that there are two possible routes which diverge from here.
One is to make � as small as possible, the other will
be to exploit large numbers �. We will soon go on with
the second approach and thereby prove Lemma 1, but first
let us assume that we want � to be as small as possible
(in an asymptotic sense of course). How can we achieve
this? We take any sequence (εn)n∈N of numbers εn ∈ [0, 1]
which converges to zero. Depending on such a choice, we set
�n = 3 · log(|S|2) n

ε2
n
(1 − 2−nδ). It follows for the average

success probability dsn(Kγ ) as defined in Definition 3 that

P(∀sn : 1

�

�∑

γ=1

dsn (Kγ ) � (1 − ε)Edsn(K) ) < 1, (201)

proving the existence of a sequence of codes for which

min
sn∈Sn

1

�n · K · L

�n,K ,L∑

γ,k,l=1

wsn (Dkγ |xkγ ) � 1 − εn (202)

(whenever �n scales asymptotically as �n ≈ n
ε2

n
). If εn = n−ν

for some small number ν > 0 for example we get �n ≈ n
n−2ν =

n1+2ν . This type of asymptotic scaling of common randomness
has been observed several times now in the literature, and
obviously raises the question whether �n = const ·n would be
sufficient to guarantee asymptotically optimal performance, for
some sufficiently large number const depending only on |S|,
for example.

We can now proceed our proof of Lemma 1 by using
equation (199) together with Lemma 6 and a union bound:
Let β > 0 and τ > 0. From now on until the end of this
proof, let δ = δ(τ ). Let

1

n
log(�n · Ln) � E(p) + τ, (203)

B(p) − δ − 2 · f1(
√

2 · δ) � 1

n
log(Kn · Ln). (204)

It then follows that for all large enough n it holds that

P(E1 ∩ E2) > 0. (205)

Thus, there is a realization x of X such that for this particular
realization we have for all sn, zn, k that

1

L · �

L ,�∑

l,γ=1

�sn,zn (xklγ ) ∈ [(1 ± 2−nτ/4)E�sn,zn ] (206)

min
sn∈Sn

1

�

�∑

γ=1

dsn(Kγ ) � 1 − 2 · 2−nδ/2 (207)

Further, for every k ∈ [Kn] we have (setting �(sn, zn, xn) :=
�sn,zn (xn) for all sn, zn and xn)
∥∥∥∥∥∥

1

L · �

L ,�∑

l,γ=1

vsn (·|xklγ ) − Evsn

∥∥∥∥∥∥
1

(208)

�

∥∥∥∥∥∥
1

L · �
L ,�∑

l,γ=1

(vsn (·|xklγ ) − �(sn, ·, xklγ )

∥∥∥∥∥∥
1

+
∥∥∥∥∥∥

1

L · �

L ,�∑

l,γ=1

�(sn, ·, xklγ ) − E�(sn, ·, Xn)

∥∥∥∥∥∥
1

+ ∥∥E(vsn (·|Xn) − E�(sn, ·, Xn)
∥∥

1 (209)

� 1

L · �

L ,�∑

l,γ=1

∥∥vsn (·|xklγ ) − �(sn, ·, xklγ )
∥∥

1

+ 2−n·τ/4 + E
∥∥vsn (·|Xn) − �(sn, ·, Xn)

∥∥
1 (210)

where the first inequality is due to the triangle inequality of
‖ · ‖1 and the second one due to the specific probabilistic
choice of x, especially the validity of (206). We now use the
definition of �sn,zn in order to derive bounds on the remaining
quantities: for every xn ∈ Tp we have, with A := {zn :
D(N̄ (·|sn, xn, zn‖pS X Z) > δ},

‖vsn (·|xn) − �(sn, ·, xn)‖1

=
∑

zn∈A

v⊗n(zn|sn, xn) (211)

= v⊗n(TV ,δ(s
n, xn)�|sn, xn) (212)

� 2−n·δ/2, (213)

for all large enough n. Thus

1

L · �

L ,�∑

l,γ=1

‖vsn (·|xklγ ) − �(sn, ·, xklγ )‖1

+ E‖vsn (·|Xn) − �(sn, ·, Xn)‖1 � 2 · 2−nδ/2 (214)
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for all large enough n ∈ N so that we ultimately get (uniformly
in k ∈ [K ]) the bound

L ,�∑

l,γ=1

‖vsn (·|xklγ ) − �(sn, ·, xklγ )‖1

L · �

� 2 · 2−nδ/2 + 2−nτ/4 � 2−n·ν(τ ), (215)

for all large enough n and setting ν(τ ) := min{δ(τ ), τ }/5
(note that ν(τ ) = τ/5 is a valid choice). �

F. Proof of Theorems 2, 3 and 4 (Properties of CS)

Proof of Theorem 2: We give the proof of the properties
of CS in the same order as they were stated in the theorem:

1. This is clear from [27] where it was proven that sym-
metrizability makes it impossible to reach reliable transmission
of messages.

2. The strategy of proof is to use Lemma 2 with � = 1. The
reason for this is that, by assumption, W is non-symmetrizable.
Now, we know from Example 1 that this does not imply that
every W◦U is non-symmetrizable as well. More precisely, to
a given r ∈ N there may exist an alphabet Ur (without loss
of generality Ur = X r , as a consequence of the cardinality
bound that was obtained in [38]), a p ∈ P(X r ) and a channel
Ur ∈ C(X r ,X n) such that

min
q∈P(Sr )

I (p; Wq ◦ Ur ) − max
sr ∈Sr

I (p; Vsr ◦ Ur ) (216)

= max
p′∈P(X r )

max
U ′

r ∈C(X r ,X r )
min

q∈P(Sr )
I (p′; Wq ◦ U ′

r )

− max
sr ∈Sr

I (p′; Vsr ◦ U ′
r ) (217)

� Cmean
S,ran (W,V) − ε (218)

but, additionally, (Wsr ◦Ur )sr ∈Sr is symmetrizable. We provide
here two approaches to deal with this problem: First, we will
use the fact that W is non-symmetrizable for transmission of
a small number of messages that can be read by Eve but, since
backwards communication from Eve to James is forbidden, are
sufficient to counter any of the allowed jamming strategies.

Second, we will consider a variant of the optimization
problem (4) where optimization of U ′

r is restricted to maps
of the form U ′

r = Id ⊗ U ′′
2,...,r and we will prove that

these restricted maps are asymptotically as good as those
that are derived from the original problem when it comes to
calculating capacity. However, these maps have the additional
property that they cannot turn a non-symmetrizable AVC into
a symmetrizable one.

Now let r ∈ N be arbitrary but fixed and p, Ur as above.
Let k, l ∈ N be such that n = k + l and l = �λ · n�, where
λ ∈ (0, 1) is arbitrary but fixed for the moment. Then from
[22, Lemma 5], if K̂ satisfies the assumptions of Lemma 2
with L set to one based on the properties (64), (65) and (66)
of the lemma.

So, on the grounds of 2 and of the results proven in [22],
we see that for every m′ ∈ N, r ∈ N and δ > 0, p ∈ Pm′

0 (Ur )
(where Ur = [|X |r ] ) and U ∈ C(Ur ,X r ) there exists a code
K = (Km)∞m=1 such that for every sr ·m ∈ (Sr )m = Sr ·m we

have

1

K ′
k

K ′
k∑

a=1

∑

xk

wsk (D′
a|x′

a) � 1 − εk, (219)

where {εk}k∈N ⊂ [0, 1], limk→∞ εk = 0 and it may be
assumed that K ′

k = l3. In addition to that we know from [38]
that there exist codes for (W,V) such that

min
sl∈Sl

�l ,K ′′
l∑

a,b=1

∑

xl∈X l

ul(xl |a, b)wsl (D′′
a,b|x′′

ab)

�l · K ′′
l

� 1 − δl, (220)

where {δl}l∈N ⊂ [0, 1], liml→∞ εl = 0, �l = l3,
Ul ∈ C([�l ] × [K ′′

l ],X l) is stochastic pre-coding and Da,b ∩
Da,b′ = ∅ whenever b 
= b′ (a ∈ [�l ] is used as common
randomness in [38], whereas here we will substitute the
messages that were sent on the first k channel uses for it.
Note that the messages on the first k channel uses are not
secure against Eve). In addition to that it holds

lim
l→∞

1

l
log K ′′

l = Cmean
S,ran (W,V) − ν (221)

for some arbitrarily small ν > 0 and

lim
l→∞

1

l
max
γ∈[�l]

max
sl∈S l

I (K′′
l ; Zsl |�l = a) = 0. (222)

The mutual information is evaluated on the random variables
defined via

Psl ((K′′
l ,Zsl , �l) = (b, zl, a))

:= 1

�l

1

K ′′
l

∑

xl∈X l

ul(xl |a, b)v(zl |sl , xl).

(223)

We concatenate the two codes by defining new stochastic
encodings En ∈ C([K ′′

l ],X n) via

en((xk, xl)|b) :=
�l∑

a=1

δxa (xk)ul(xl |a, b) (224)

and new decoding sets via

Db := ∪a D′
a × D′′

a,b ⊂ X n . (225)

It holds Db ∩ Db′ = ∪a,a′(Da × Da,b ∩ Da′ × Da′,b′) = ∅.
We set Kn := K ′′

l , αn := εk and βn := δl for the l
satisfying l = �λ · n� and the k satisfying k = n − l.
Then limn→∞ αn = limn→∞ βn = 0. As a consequence
of the Innerproduct Lemma in [2] we know that for every
sn = (sk , sl) we have

1

Kn

Kn∑

b=1

∑

xn∈X n

en(xn|b)w(Db|sn, xn)

�
�k ,K ′

l∑

a,b=1

∑

xl

u(xl |a, b)w(D′
a|sk, xk)w(D′′

a,b|sl , xl)

Kl
(226)

� 1 − 2 max{αn, βn}. (227)
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That the messages b ∈ [Kn] are also asymptotically secure in
the sense that

lim
n→∞

1

n
max
sn∈∫ n

I (Kn; Zsn) � lim
l→∞

λ

l
max
sl∈S l

I (K′′
l ; Zsl |�l) (228)

= 0 (229)

follows from independence of the distributions of the mes-
sages b and the values a of the common randomness as
described in the inequalities from (46) to (55). Especially
inequality (46) is valid since as a consequence of (222). The
rate of the code is calculated as

lim
n→∞

1

n
log Kn = λ

(
Cmean

S,ran (W,V) − ν
)
. (230)

Since ν can be arbitrarily close to 0 and λ can be chosen
arbitrarily close to 1 we have proven the desired result.

We now explain the second approach to proving statement 2.
in Theorem 2. Here we aim to utilize the full power of
Lemma 2 with � = 1. Our starting point are the distributions p
and the channels U arising from the optimization (4) for
fixed r ∈ N. Note that, without loss of generality, Ur = X r

for every r ∈ N in (4). Set, for every r ∈ N,

Cr := max
p∈P(X r )

max
Ur ∈C(X r ,X r )

min
q∈P(Sr )

×
(

I (p; Wq ◦ Ur ) − max
sr ∈Sr

I (p; Vsr ◦ Ur )

)
. (231)

Let r ∈ N be arbitrary but fixed. For an arbitrary ε � 0, let p
and Ur be such that

Cr − ε = min
q∈P(Sr )

I (p; Wq ◦ Ur ) − max
sr ∈Sr

I (p; Vsr ◦ Ur ).

Now define Ũr+1 by ũr+1((x1, . . . , xr+1)|(x, u)) :=∑
x ′∈X ur ((x ′, x2, . . . , xr+1)|u)δx(x1) for all x, x1, . . . ,

xr+1 ∈ X and u ∈ Ur = X r . Then it holds that

Cr+1 � min
q∈P(Sr+1)

I (p ⊗ π; Wq ◦ Ur+1)

− max
sr+1∈Sr+1

I (p ⊗ π; Vsr+1 ◦ Ur+1) (232)

� min
q∈P(Sr )

I (p; Wq ◦ Ur ) (233)

− max
sr ∈Sr

I (p; Vsr ◦ Ur ) − log |X | (234)

= Cr − ε − log |X |, (235)

where π ∈ P(X ) is defined by π(x) := |X |−1 for all
x ∈ X . This latter estimate is due to the equality I (p ⊗
π; Vsr+1 ◦ Ur+1) = I (p; Vsr ◦ U) + I (π; Vsr+1), the data
processing inequality and the fact that for arbitrary channels
S ∈ C(A×B, C) and T ∈ C(A′ ×B′, C ′), as well as distribu-
tions q ∈ S(B × B′) with respective marginal distributions
qB ∈ P(B) and qB ′ ∈ P(B′) and p ∈ S(A × A′) with
respective marginal distributions pA ∈ P(A) and qA′ ∈ P(A′)
we have for all (a, b, c) ∈ A × B × C that

∑

a′,c′

∑

b,b′
s(c|a, b)t (c′|a′, b′)p(a, a′)q(b, b′)

=
∑

b

qB(b)pA(a)t (c|a, b). (236)

Since W is non-symmetrizable we know that W⊗r ◦ Ũr is
non-symmetrizable for every r � 2. The reason for that is

explained as follows: Let again S, T be channels as above.
Assume that S is symmetrizable but T is not. Then S ⊗ T
is non-symmetrizable. This can be seen by assuming the
existence of a symmetrising map Q ∈ C(A × A′,B × B′).
The statement

∀(a1, a2, a′
1, a′

2) ∈ A2 × A′2 :∑

b,b′
s(·|a1, b)t (·|a′

1, b′)q(b, b′|a2, a′
2)

=
∑

b,b′
s(·|a2, b)t (·|a′

2, b′)q(b, b′|a1, a′
1) (237)

would obviously imply for any fixed choice of (a1, a2) that
∑

b′
t (·|a′

1, b′)qB ′(b′|a2, a′
2)

=
∑

b′
t (·|a′

2, b′)qB ′(b′|a1, a′
1), (238)

regardless of the choice of (a′
1, a′

2) ∈ A′ × A′ and setting
qB ′(b′|a1, a′

1) :=∑b q(b, b′|a1, a′
1). This would be in contra-

diction to non-symmetrizability of T . Since Ũr = Ur−1 ⊗ Id
we can thus conclude that W⊗r ◦ Ũr is non-symmetrizable.
We now proceed with the proof of Theorem 2.

With this approach we have evaded the problem that
W⊗r ◦ Ur may well be symmetrizable (see our Example 1).

By [22, Lemma 4] non-symmetrizability of W⊗r ◦ Ũr

implies that it is possible to define a decoder according to
[22, Definition 3], with N = K · L and [N] replaced by
[K ] × [L]. Since only the number of codewords and their
type ever enters the proof it makes no difference whether we
enumerate them by one index taken from [N] or by two indices
taken from [K ]×[L]. This decoder is proven to work reliably
in [22, Lemma 5] (even with an exponentially fast decrease
of average error), if N = K · L satisfies the assumptions of
Lemma 2 based on the properties (64), (65) and (66) of the
lemma.

So, on the grounds of Lemma 2 and of the results proven
in [22], we see that for every m ∈ N, r ∈ N\{1} and δ > 0,
p ∈ Pm

0 (X r ) and U ∈ C(X r−1,X r−1) there exists a code
K = (Km)∞m=1 such that for every sr ·m ∈ (Sr )m = Sr ·m we
have

Km ,Lm∑

k,l=1

∑

xm·r

wsm·r (Dkl |xm·r )u⊗m(xm·r |ukl)

Km Lm
� 1 − εm,

where {εm}m∈N ⊂ [0, 1], limm→∞ εm = 0 and it holds that

lim inf
m→∞

log Km · Lm

m
� min

q∈P(Sr )
I (p; W m

q ◦ Ũr ) − δ (239)

(the code we use here is defined by using the codewords xklγ

together with the decoder from [22, Definition 3] defined for
the AVC W⊗r ◦ Ũr := (Wsr ◦ (Ur−1 ⊗ Id))sr ∈Sr ) and

max
sr ∈Sr

I (p; Vsr ◦ Ũr ) + 2δ � lim inf
m→∞

1

m
log Lm (240)

� max
sr ∈Sr

I (p; Vsr ◦ Ũr ) + δ, (241)

implying that for a sequence (pm)m∈N of choices for pm

converging to some p having a decomposition p = p′ ⊗π for
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p′ ∈ P(X r−1) being an optimal choice in the sense of (231)
we get

lim inf
m→∞

1

m
log Km � min

q∈P(Sr )
I (p; Wq ◦ Ũr )

− max
sr ∈Sr

I (p; Vsr ◦ Ũr ) − 3δ (242)

� Cr−1 − log |X | − 3δ. (243)

Also, it is clear from the last part of Lemma 2 (equation (67))
together with [38, Lemma 20] that the codes employed here
are asymptotically secure in the strong sense:

lim sup
m→∞

max
sr·m I (Km; Zsr·m ) = 0. (244)

We now wish to apply the code for the extended channel
(W⊗r ◦Ũr ,V

⊗r ) to the original channel (W,V). Define values
tn ∈ {0, . . . , r − 1} by requiring n = m · r + tn for them to
hold for some suitably chosen m = m(n) ∈ N. This quantity
satisfies −1 + n/r � m(n) � n/r . For every n ∈ N we then
define new decoding sets by

D̂kl := Dkl × Y tn (245)

and new randomized encodings by setting for some arbitrary
but fixed xtn

E(x̂ n|k) :=
L∑

l=1

1

L
u⊗n(xm·r |ukl) · δxtn (x̂ tn ). (246)

From the choice of codewords and the decoding rule it is
clear that this code is asymptotically reliable. The asymptotic
number of codewords (mind that K̂n = Km(n)) calculated and
normalized with respect to n, is

lim inf
n→∞

1

n
log K̂n = lim inf

n→∞
1

m(n) · r + tn
Km(n) (247)

� lim inf
n→∞

1

r
· 1

m(n) + 1
Km(n) (248)

= 1

r
lim inf
n→∞

1

m(n)
· Km(n) (249)

= 1

r
(Cr−1 − 3δ − log |X |) . (250)

In addition to that, the code is secure: For each n ∈ N, the
distribution of the input codewords and Eve’s outputs is

P(Kn = k,Zsn = zn)

=
L∑

l=1

1

L

∑

xr·m

∑

xtn

u⊗m(xr ·m |ukl) ·

· v⊗r ·m (zr ·m |xr ·m, sr ·m)v⊗tn (ztn |xtn , stn ) (251)

= P(Kn = k,Zsr·m = zr ·m) · v⊗tn (ztn |xtn , stn ). (252)

This demonstrates that (uniformly in sn ∈ Sn and since
Kn = Km holds) we have

I (Kn; Zsn) = I (Kn; Zsr·m ) + 0 = I (Km; Zsr·m ). (253)

Since the right hand side of above equation goes to zero for
n going to infinity and since limr→∞ r−1

r = 1 we see that
the capacity CS is lower bounded by limr→∞ 1

r Cr . It is not
an immediate consequence that this implies we can reach the

capacity Cmean
S,ran (W,V) = C∗(W,V). Fortunately it has been

proven in [38] that

C∗(W,V) = lim
r→∞

1

r
max

p∈P(Un)
max

Un∈C(U ,X n)

×
(

min
q∈P(Sr )

I (p; Wq ◦ U) − max
sr ∈Sr

I (p; Vsr ◦ U)

)
(254)

holds. Thus limr→∞ 1
r Cr = C∗(W,V). This finally implies

the desired result. �
Proof of Theorem 3: If CS(W,V) = 0, there is nothing

to prove. Assume that CS(W,V) > 0. It is evident that, in
that case, W is not symmetrizable. The function F defined
in Definition 12 is continuous with respect to the Hausdorff
distance (proving this statement is in complete analogy as
the corresponding part in the proof of [15, Th. 5]). Thus,
if F(W) > 0, then there is an ε > 0 such that for all W′
satisfying d(W,W′) < ε we know that F(W′) > 0 as well.
Thus, every of these W′ is non-symmetrizable.

For some suitably chosen ε′ < ε we additionally know
from [38, Th. 9] that Cmean

S,ran (W′,V) > 0 for all those W′
for which d(W,W′) < ε′. But since Theorem 1 shows that
F(W′) > 0 ⇒ CS(W′,V) = Cmean

S,ran (W′,V) this implies that

CS(W,V) > 0 ∀ W′ : d(W,W′) < ε′. (255)

Since from Theorem 2 we know that positivity of CS(W′,V)
ensures that it equals Cmean

S,ran (W′,V), and since the latter is
continuous, we are done. �

Proof of Theorem 4: Again, we prove everything in the same
order as it is listed in the theorem.

1. Let CS be discontinuous in the point (W,V).
By Theorem 3 we know that this can only be the case if
CS(W,V) = 0. If in addition we have Cmean

S,ran (W,V) = 0 then
we have, since Cmean

S,ran is continuous, that for every ε > 0 there
is δ > 0 such that for all (Wδ,V) satisfying d(Wδ,W) < δ
we have Cmean

S,ran (Wδ,V) � ε. Since since Cmean
S,ran � CS this

would imply that CS is continuous as well, in contradiction
to the assumption. Thus Cmean

S,ran (W,V) > 0. Of course this
immediately implies that W has to be symmetrizable, by
property 2. This is, in turn, equivalent to F(W) = 0. The
definition of F can be picked up from equation (56), its
connection to symmetrizability is obvious from the definition.
The notion of symmetrizability is explained in the introduction
in equation (3). Clearly, if for all ε > 0 and W′ satisfying
d(W,W′) < ε we would have F(W′) = 0, then CS(W′,V′)
would be zero in a whole vicinity of (W,V). Thus for all
ε > 0 there has to be at least one Wε such that d(W,Wε) < ε
but F(Wε) > 0.

The reverse direction is basically established by using all
our arguments backwards: For all ε > 0, let there be at
least one Wε such that d(W,Wε) < ε but F(Wε) > 0.
Let in addition to that F(W) = 0 but Cmean

S,ran (W,V) > 0.
Since Cmean

S,ran is continuous, there is a δ > 0 such that

Cmean
S,ran (W′,V′) > (1/2) · Cmean

S,ran (W,V) =: α whenever
d((W,V), (W′,V′)) < δ.

For every ε′ � (1/2) min{ε, δ} we can therefore deduce the
following: It holds that CS(Wε′ ,V) = Cmean

S,ran (Weps ′,V) �
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α > 0 (since F(Wε′) > 0), but CS(W0,V) = 0. Thus CS is
discontinuous in the point (W,V).

2. Let CS be discontinuous in the point (W,V).
By property 4 this implies that for all ε > 0 there is Wε

such that d(W,Wε) < ε but F(Wε) > 0. If V̂ is such
that Cmean

S,ran (W, V̂) > 0 then the pair (W, V̂) fulfills all the
points in the second of the two equivalent formulations in
statement 4, and this implies that CS is discontinuous in the
point (W, V̂). �

G. Proof of Lemma 2

Proof of Lemma 2: The proof is in many ways similar to the
one for Lemma 1. As we know already that for some c′ > 0
and all large enough n ∈ N

P(E3) � 1 − � · exp(2−n·c′
) (256)

holds from [22], there is not much left to prove, as only
P(E1) needs to be controlled in order to get statement (67) of
Lemma 2. We know from Lemma 6 that both

P(E�
1 ) � 2 · |X × S × Z|n · exp(−2n·τ/2), (257)

if we choose δ = δ(τ ). Keeping in mind that we already know
from [22] that P(E3) � 1 − � · exp(2n·c′

) we can combine all
the previous to get the statement

P(E3 ∩ . . . E1) � 1 − (2 + �) · exp(−2n·c′′
), (258)

for some c′′ > 0 and for all large enough n. If � scales
at most exponentially there will thus exist N0 ∈ N such
that for all n � N0 there exists a choice x = (xklγ )K ,L ,�

k,l,γ=1
satisfying all conditions in Lemma 2 and, in addition, the
estimate

∀sn, zn, k : 1

L · �
L ,�∑

l,γ=1

�sn,zn (xklγ ) /∈ I τ/4
sn,zn (259)

(where again we set I τ/4
sn,zn := [(1 ± 2−nτ/4)E�sn,zn ]). That

this leads to secure transmission is proven exactly as in the
proof of Lemma 1. The Lemma is thus proven. �

H. Proof of Theorem 5 (Super-Activation Results)

We will divide this proof into three parts, each correspond-
ing to its counterpart in Theorem 5. Proof: 1. Let us
start with the “only if” statement. Clearly, if W1 ⊗ W2 is
symmetrizable then CS(W1 ⊗ W2,V1 ⊗ V2) = 0. So, this
part of the statement is proven.

If, on the other hand, W1 ⊗ W2 is not symmetrizable and
Cmean

S,ran (W1⊗W2,V1⊗V2) > 0 then on account of Theorem 2,
statement 1, we know that CS(W1 ⊗ W2,V1 ⊗ V2) > 0.

This proves the first part of the Theorem.
2. In [16], Section VI, an explicit example of a pair

(Wi ,Vi )i=1,2 has been given with the property that W1 is
symmetrizable, but W2 is not. By elementary calculus, this
implies that W1 ⊗ W2 is non-symmetrizable.

Since this holds, our Theorem 2, statement 1, shows that
the uncorrelated capacity of (W1 ⊗ W2,V1 ⊗ V2) equals its
randomness-assisted capacity.

In [16] it was further shown that Cmean
S,ran (W1,V1) > 0 and

CS(Wi ,Vi ) = 0 (i = 1, 2).
3. By assumption, Cmean

S,ran (Wi ,Vi ) = 0 (i = 1, 2) but
Cmean

S,ran (W1 ⊗ V1,W2 ⊗ V2) > 0. The former implies
CS(Wi ,Vi ) = 0 (i = 1, 2). If W1 and W2 were sym-
metrizable then clearly W1 ⊗ W2 would be symmetrizable
and by [27] the message transmission capacity of W1 ⊗ W2
would be zero, implying CS(W1 ⊗ W2,V1 ⊗ V2) = 0. If on
the other hand either W1 or W2 are not symmetrizable then
W1 ⊗ W2 is not symmetrizable and this implies

CS(W1 ⊗ W2,V1 ⊗ V2)

= Cmean
S,ran (W1 ⊗ W2,V1 ⊗ V2) > 0, (260)

where the equality is due to Theorem 2, part 1, and the lower
bound is true by assumption.

4. We do again rely on Theorem 2. Let both W1 and W2
be symmetrizable. Then W1 ⊗ W2 is symmetrizable. Since
by assumption Cmean

S,ran shows no super-activation on the pair
(Wi ,Vi ) (i = 1, 2) it follows that CS cannot show super-
activation as well. Thus at least one of the two AVCs has
to be non-symmetrizable. Let without loss of generality this
channel be W1.

If in addition W2 would be non-symmetrizable, then
CS(Wi ,Vi ) = Cmean

S,ran (Wi ,Vi ) would hold for i = 1, 2 and
since W1 ⊗ W2 would be symmetrizable as well, we would
additionally have CS(W1 ⊗ W2,V1 ⊗ V2) = Cmean

S,ran (W1 ⊗
W2,V1 ⊗V2). But since Cmean

S,ran shows no super-activation on
the pair (Wi ,Vi ) (i = 1, 2) this cannot be. Thus again without
loss of generality we have W2 is symmetrizable.

Since we are talking about super-activation of CS, it
has to be that CS(Wi ,Vi ) = 0 holds for i = 1, 2.
But since W1 is non-symmetrizable this requires that
Cmean

S,ran (W1,V1) = 0 holds. If in addition we would have

Cmean
S,ran (W2,V2) = 0 would hold than CS could not be super-

activated since Cmean
S,ran cannot be super-activated by assumption.

Thus Cmean
S,ran (W2,V2) > 0. �

I. Proof of Lemma 3

We now prove Lemma 3: First and without loss of gen-
erality, we have A ⊂ A′. Let U be symmetrizable. Let
Q ∈ C(A,R) be the symmetrizing channel, meaning that for
all a, a′ ∈ A the equality

(U ◦ (Id ⊗ Q)) (a, a′) = (U ◦ (Id ⊗ Q)) (a′, a) (261)

holds true. It follows that for all a, a′ ∈ A′ it holds that

(U ◦ (T ⊗ QT )) (a, a′)

=
∑

a′′,a′′′∈A

∑

r∈R
u(·|a′′, r)t (a′′|a)q(r |a′′′)t (a′′′|a′) (262)

=
∑

a′′,a′′′∈A

∑

r∈R
u(·|a′′′, r)t (a′′|a)q(r |a′′)t (a′′′|a′) (263)

= (U ◦ (T ⊗ QT )) (a′, a). (264)

Thus, U′ is symmetrizable.
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APPENDIX

(AUXILIARY RESULTS AND PROOFS)

Lemma 8 (Cf. [11]): Let p ∈ P(X ). For every n � |X |2,
there is p′ ∈ Pn

0 (X ) such that

‖p − p′‖1 � 2|X |
n

(265)

and p(x) = 0 implies p′(x) = 0 for all x ∈ X .
Proof of Lemma 8: Let n ∈ N be arbitrary. Set X ′ :=

{x ∈ X : p(x) > 0}. From the next lines it will follow that,
without loss of generality, we may assume X = X ′. For sake
of simplicity, assume again without loss of generality that X =
{1, . . . , |X |} and that p(|X |) � 1/|X |. Choose p′(i), for i =
1, . . . , |X | − 1, such that |p′(i) − p(i)| � 1

n . Clearly, this is

possible. Then necessarily p′(|X |) = 1 −∑|X |−1
i=1 p′(i) and

‖p − p′‖1 �
|X |−1∑

i=1

1

n
+ |p′(|X |) − p(|X |)| (266)

= |X | − 1

n
+ |

|X |−1∑

i=1

p(i) − p′(i)| (267)

� |X | − 1

n
+

|X |−1∑

i=1

|p(i) − p′(i)| (268)

� 2|X |
n

. (269)

Of course, while all the p′(i) � 0 by construction if i < |X |,
this does not hold for p′(|X |). This is where we need the
additional condition that n � |X |2:

p′(|X |) = 1 −
|X |−1∑

i=1

p′(i) (270)

� 1 −
|X |−1∑

i=1

p(i) − |X | − 1

n
(271)

� p(|X |) − |X |
n

(272)

� 1

|X | − |X |
n

(273)

� 0. (274)

�
Lemma 9 (C.f. [19]): Let ân ∈ An and b̂n ∈ Bn. There

exists a function fC : N → R+ such that with ÂB̂ being
distributed as P(( Â, B̂) = (a, b)) = 1

n N(a, b|ân, b̂n) we have

|{an : N(·|ân, b̂n) = N(·|an , b̂n)}| = 2n·(H( Â|B̂)− fC (n)).

(275)

The function fC satisfies limn→∞ fC (n) = 0.
The following Lemma is basically taken from [20]. It would

generally be completely sufficient for proving all our state-
ments in sufficient generality.

Lemma 10: Let D(p‖q) � δ. For the function f1 :
[0, 1/2] → R+ defined by f1(x) := −√

x/2 log(x |Z|2) we
have that

|H (p) − H (q)| � f4(δ). (276)

Clearly, limδ→0 f4(δ) = 0.

Note that p(x) = 0 implies p′(x |s) = 0 for all s ∈ S, by
construction.

Proof: From Pinsker’s inequality we have ‖p − q‖1 �√
2δ and, accordingly, by [20, Lemma 2.7], |H (p)− H (q)| �

−√
2δ log(

√
2δ/|Z|). �

We did however feel that it would be interesting to use a
slightly more general version of Lemma 10, which led us to
prove the following Lemma:

Lemma 11 (Continuity of Conditional Entropy With Respect
to Averaged Norm): Let p ∈ P(X ) and channels w, r :
P(X ) → P(Z) be given such that

∑

x∈X
p(x)‖w(·|x) − r(·|x)‖1 � δ � 1. (277)

Then

|H (w|p) − H (r |p)| � f1(δ), (278)

where f1(δ) := |Z| · h( δ
|Z| ).

Proof of Lemma 11: As in [20], set ν(t) := −t log t and
observe that ν is concave and satisfies ν(0) = ν(1) = 0. This
brings with it the property that for all s, λ ∈ [0, 1] we have

ν(λ · a) � λ · ν(a), ν(λ · a + 1 − λ) � λ · ν(a). (279)

We wish to obtain a meaningful bound on |ν(s) − ν(t)| in
terms of |s − t|. To this end, assume without loss of generality
that s � t . Observe that this implies that |t − s| = t − s, so
that both

ν(|t − s|) + ν(s) = ν(t · t − s

t
) + ν(t · s

t
) (280)

� t − s

t
· ν(t) + s

t
· ν(t) (281)

= ν(t) (282)

and with λ := t−s
1−s satisfying 0 � λ � 1 we have

ν(1 − |t − s|) + ν(t) = ν(λ · s + 1 − λ)

+ ν(λ + (1 − λ) · s) (283)

� λν(s) + (1 − λ)ν(s) (284)

= ν(s), (285)

so that in total we get for every two number s, t ∈ [0, 1]:
|ν(t) − ν(s)| � max{ν(|t − s|), ν(1 − |t − s|)} (286)

� ν(|t − s|) + ν(1 − |t − s|) (287)

= h(|t − s|) (288)

where h denotes the binary entropy. Then for every (εx )x∈X ∈
[−1, 1]|X | and (tx)x∈X ∈ [0, 1]|X | such that tx + εx ∈ [0, 1]
for all x ∈ X we get:

|
∑

x∈X
p(x)(ν(tx) − ν(tx + εx ))|

�
∑

x∈X
p(x)|ν(tx) − ν(tx + εx )| (289)

�
∑

x∈X
p(x)h(|εx |) (290)

� h(
∑

x∈X
p(x)|εx |). (291)



3530 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 6, JUNE 2016

Then, we write txz := w(z|x) and εxz := −w(z|x) + r(z|x).
This leads to the bound we ultimately need:

|
∑

x∈X
p(x)H (w(·|x)) − H (r(·|x))|

= |
∑

z∈Z

∑

x∈X
p(x)(ν(w(z|x)) − ν(r(z|x)))| (292)

�
∑

z∈Z
|
∑

x∈X
p(x)(ν(txz − ν(txz + εxz)| (293)

�
∑

z∈Z
h(
∑

x∈X
p(x)|εxz|) (294)

� |Z| · h(
1

|Z|
∑

x∈X

∑

z∈Z
p(x)|εxz|) (295)

= |Z| · h(
1

|Z|δ) (296)

�
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