

Consistent dynamic satellite reference frames and terrestrial geodetic datum parameters - status report PN 6 -

Mathis Bloßfeld, Natasha Panafidina, Manuela Seitz with contributions of Francesca Panzetta and Alexander Kehm

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM), Technische Universität München

Project meeting of DFG Research Unit "Space-time Reference Systems for Monitoring Global Change and for Precise Navigation in Space" Bonn, 13./14.06.2016

Future plans of last status seminar

- Include further LEO satellites in the SLR multi-satellite solution for geodetic parameter estimation (spherical and non-spherical) in order to increase the sensitivity to the gravity field (2nd degree Stokes coefficients) and to improve the geophysical datum
- Enlarge the TRF interval (last meeting: three years)
- Simulate LEO satellites and SLR stations to test their capability to improve the geophysical datum
- Combination of SLR and GNSS at NEQ level
- Refined realization of a physical TRF orientation
- What is the current sensitivity of the SLR multi-satellite solution? To what degree and order can the Stokes coefficients be determined (correlations, sensitivity)?

Work packages in 2nd funding phase (DGFI-TUM part)

- WP 6110: implementation of Jason-2 and SWARM models into DOGS-OC and SLR observation analysis
 - up to now, macro models of Jason-1/2 have been implemented; SWARM-A/B/C will be available for implementation in August
 - refined modeling of non-gravitational perturbations in DOGS-OC
 - complete analysis of SLR observations to Jason-2; Jason-1 was started; SWARM will be started in August
 - > 3.5-day Jason-2 NEQs were combined with weekly 10-satellite SLR-NEQs
- WP 6210: simulation of SLR observations
 - > new satellites like, e.g., E-GRASP were simulated
 - planned new SLR stations were simulated
 - > a minimum (optimum?) observation scheduling has been selected

SLR multi-satellite solution – current status

Refined modeling of non-gravitational perturbations

- For processing LEO satellites at very low altitudes (250 to 700 km), the modeling of the non-gravitational perturbations (especially due to the thermosphere) had to be refined in DOGS-OC
 - different thermospheric models in order to test sensitivity (currently, CIRA86, NRLMISE-00, JB2008 and DTM2013 are incorporated)
 - horizontal wind model (HWM14 incorporated)
 - > physically defined drag-/lift-/side-coefficients $c_{D/L/S}$ (important in order to estimate purely thermospheric density coefficients).

Critical in the thermospheric modeling due to numerous basic assumptions (e.g., **Gas-Surface-Interaction modeling; GSI-model**) and modeled key parameters (e.g., **satellite surface temperature**)

Refined handling of Jason-2

- Numerous routines of DOGS-OC have been refined in order to be able to process SLR observations to non-spherical satellites
- For example, the implementation of Jason-2 comprised
 - > the Jason-2 macro model (e.g., optical properties of satellite surfaces)
 - the attitude control (using quaternions and solar panel rotation angles)
 - the yaw-steering and eclipse model (to bridge quaternion gaps)
 - the mass history handling (to handle change of satellite CoM)
 - > the Jason-2 LRA phase center
 - the handling of special (abrupt) maneuvers
- After a time-consuming outlier detection, the analysis of all available SLR observations to Jason-2 was possible

ПΠ

Jason-2 results (I)

- The SLR observations to Jason-2 were processed completely.
- The internal accuracy assessment indicates the good quality of the dynamic orbits (mean orbit RMS = 1.18 cm)

ПΠ

Jason-2 results (II)

- The SLR observations to Jason-2 were processed completely.
- The external comparisons show a good agreement with the combined SLR/DORIS orbits of ESOC (differences below 10 cm)

Referenzsysteme

SLR de-correlation and sensitivity tests (I)

- In order to obtain reliable estimates of the Stokes coefficients, it is essential to de-correlate the orbital parameters and the coefficients of the Earth's gravitational field.
 - > **Test 1**: De-correlation of orbit parameters and C_{20} (table taken from Bloßfeld et al., 2015)

Table 8 Correlation coefficients of C_{20} and the right ascension of the ascending node of LA1 (Ω_{LA1}) at CW 51 of 2012.

solution	correlation coefficient			
LA1	1.00			
2-sat.	0.44			
4-sat. 4-sat. + AJI	$\begin{array}{c} 0.44 \ (\text{current ILRS setup}) \\ 0.24 \end{array}$			
4-sat. + STA	0.28			
4-sat. + STE	0.31			
4-sat. + LTS	0.41			
4-sat. + BTS	0.43			
4-sat. + LRS	0.24 (future ILRS setup)			
6-sat.	0.24			
7-sat. 8-sat.	0.22 0.21 0.21			
9-sat. 10-sat.	0.21			

10

SLR de-correlation and sensitivity tests (II)

- In order to obtain reliable estimates of the Stokes coefficients, it is essential to de-correlate the orbital parameters and the coefficients of the Earth's gravitational field.
- > Test 2: De-correlation of different Stokes coefficients using multi-satellite SLR solution

Correlation C21/C41

SLR de-correlation and sensitivity tests (III)

- In order to obtain reliable estimates of the Stokes coefficients, it is essential to de-correlate the orbital parameters and the coefficients of the Earth's gravitational field.
 - > Test 3: Sensitivity analysis w.r.t. Stokes coefficients
 - This test is based on the PhD thesis of R. Floberghagen (2002);

$$[0;1] \epsilon \operatorname{diag}(N^{-1}N) = (A^T P A + \alpha K)^{-1} (A^T P A)$$

- Important: sensitivity coefficient equal to one means that the Stokes coefficient is fully determinable from the observations
- BUT: some coefficients are highly correlated (Haberkorn et al., 2014) and therefore only a linear combination of them (Kaula, 1966) can be estimated (e.g., even zonal low degree Stokes coefficients)

11

SLR de-correlation and sensitivity tests (IV)

- In order to obtain reliable estimates of the Stokes coefficients, it is essential to de-correlate the orbital parameters and the coefficients of the Earth's gravitational field.
 - > **Test 3**: Sensitivity analysis w.r.t. Stokes coefficients

SLR simulations (I)

- DOGS-OC was developed in order to be able to simulate observations to any ground station and any satellite (e.g. LEOs, GNSS satellites, E-GRASP)
- Example: Increase of datum parameter accuracy due to eight new observing stations?

Referenzsysteme

SLR simulations (II)

- Simulation setup:
 - weekly solutions between 01/2014 and 02/2015
 - simulated satellites: LAGEOS 1/2, Etalon 1/2, LARES
 - > estimated parameters: station coordinates, EOP and satellite initial state vectors
 - > origin and scale realized implicitly in SLR NEQs
 - observations scheduled minimally for orbit determination
 - > performance and noise parameters derived empirically (no systematics assumed!)

SLR simulations (III)

 Validation of accuracy improvement by scatter of weekly similarity transformation parameters w.r.t. SLRF2008

Improvement w.r.t. real station network

origin [cm]	real network	real + AGGO	real + 8 new		
WRMS (t_x)	0.19	0.18	0.16	7 %	16 %
WRMS (t_y)	0.21	0.19	0.17	7 %	18 %
WMRS (t_z)	0.21	0.20	0.19	5 %	9 %
scale [cm]	real network	real + AGGO	real + 8 new		
	Tour motivority				
WRMS (p)	0.22	0.21	0.18	7 %	20 %

These numbers show the improvement of the geodetic datum purely caused by the geometric effect of a more homogeneous station network!

Conclusions and Outlook

- DOGS-OC modifications nearly finished (non-spherical sat. / refined therm. modeling)
- Jason-2 observations are analyzed; internal/external validations confirm their reliability
- Different test of SLR multi-satellite solution have been performed
 - > Test 1: de-correlation of orbit parameters and Stokes coefficient C_{20}
 - > Test 2: de-correlation of Stokes coefficients itself
 - > **Test 3**: sensitivity analysis of satellite observations w.r.t. Stokes coefficients
- Simulation of eight new SLR stations results in an improvement of up to 20 % in the translation and scale parameter time series
- Realization of physical TRF datum will be investigated using as much as possible SLR satellites (spherical + Jason-2/SWARM-A/B/C)
- Combination of SLR and GNSS NEQs and analysis of SLR observations to GNSS satellites still pending

Consistent dynamic satellite reference frames and terrestrial geodetic datum parameters - status report PN 6 -

Mathis Bloßfeld, Natasha Panafidina, Manuela Seitz with contributions of Francesca Panzetta and Alexander Kehm

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM), Technische Universität München

Thank you for your attention! Any questions?

Project meeting of DFG Research Unit "Space-time Reference Systems for Monitoring Global Change and for Precise Navigation in Space" Bonn, 13./14.06.2016

ТШП

Personnel situation at DGFI-TUM

<u>1st project phase (03/2012 – 02/2015):</u>

Natasha Panafidina

- worked full-time for two years
- > was on parental leave for one year
- is working half-time for two years
- Francesca Panzetta (parental leave substitution for Natasha)
 - > worked full-time for 9 months
- 2nd project phase (03/2015 02/2017):
- Francesca Panzetta
 - worked full-time for 6 months
- Sergej Rudenko
 - will start in August for three years (half-time)

Refined modeling of thermospheric perturbations

ANDE-P \rightarrow spherical satellite \rightarrow only drag forces (no side/lift forces)

$$a_{D} = -\frac{1}{2} \cdot f_{s} \cdot \frac{A_{eff}}{m} C_{D} \rho v_{rel}^{2} \hat{u}_{D}$$

$$\hat{u}_{D} = \frac{v_{rel}}{\|v_{rel}\|} \quad drag unit vector$$

$$v_{rel} \quad relative velocity of the satellite w.r.t. the thermosphere$$

$$C_{D} \quad thermospheric drag coefficient (C_{L}, C_{D} = 0 \text{ for spherical satellites})$$

$$\rho \quad integrated thermospheric density$$

$$A_{eff} \quad effective satellite cross-section area interacting with the thermosphere$$

$$m \quad satellite mass$$

$$f_{s} \quad Lagrange scaling factor \rightarrow this parameter is estimated!$$

How can thermospheric density corrections be computed? \geq

ρ

m

 f_s

Computation of physically-based drag coefficient C_D

Assumptions for refined thermospheric density estimation

- Assumption 1 -> Free molecular flow: no inter-molecular collisions at satellite altitudes > 150 km (based on the Knudsen number)
- Assumption 2 → Sentman's GSI model: interaction between gas and satellite surface at altitudes < 500 km
- Assumption 3 \rightarrow Satellite surface is covered with a layer of absorbed atomic oxygen \rightarrow fully diffuse reflection of the gas particles with full accomodation ($\alpha = 1$; explanation on next slide)
- Assumption 4 \rightarrow Thermal flow: incident flow at satellite surface is superposition of random thermal molecule velocity (Maxwell-Boltzmann distribution) and bulk velocity (v_{rel})
- Assumption 5 → Maxwell-Boltzmann velocity of re-emitted particles
- Assumption 6 \rightarrow $T_w = 300 K$

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München

Key parameters for refined thermospheric density est.

 \Box Based on the assumptions, C_D can be computed according to

