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Abstract

Today, patient data often includes large amounts of structured information, such

as neuroimaging data, neuropsychological test results, demographic variables, etc.

Human beings, however, cannot analyze so much information, at least not without

the help of modern data mining and machine learning methods. Given the diverse

sources of information, computerized methods show a great promise to help clinicians

to discover hidden patterns in disease data. Thus, computer-aided diagnosis (CAD)

is a tool to assist clinicians in taking diagnosis decisions. The goal of the thesis is

to devise computer algorithms that can uncover useful patterns, which can further

be used to build predictive models.

Positron emission tomography (PET), one type of neuroimaging data, is of great

importance in the diagnosis of dementia. One specific application of PET scans is to

differentiate between different types of dementia, such as mild cognitive impairment

(MCI) against Alzheimer’s disease (AD). We develop a Gaussian mixture model with

a model selection approach to automatically classify them based on some training

samples. In a comparative study, the results show that the proposed method outper-

forms two baseline methods. A different use of PET scans is to predict the likelihood

of dramatic cognitive decline, i.e., the progression from MCI to full-blown AD. To

this end, a combined analysis of survival analysis together with an infinite Gaussian

mixture model is presented to find discriminative brain voxels that are related to

cognitive degradation. The experiments indicate that the proposed algorithm can

extract critical brain regions associated with dementia progression. Additionally,

non-imaging variables are brought in to complement the decision making. To make

full use of imaging and non-imaging variables, a multi-view stacking approach is

suggested to learn a hierarchical classification model on two levels, i.e., a base level

and a meta level. The experimental results demonstrate that various types of data,

also called views, can be beneficial if the correlation of views at the base and the

meta level is within a certain range.

To uncover interesting rules hidden in data, we develop two new subgroup discov-

ery algorithms. Although subgroup discovery has been studied within the area of

data mining for the last twenty years, some open problems still remain. One of these

problems is the huge search space for hypothesis exploration, which can be infeasible



to be explored. Another problem is the redundancy contained within the resulting

rule set. To this end, an optimization based method and a topic modeling based

method are devised to efficiently find rules defining subgroups with low redundancy.

Throughout the thesis, we propose algorithms for analyzing PET scans, multi-

view stacking for learning patterns in data from diverse information sources and

subgroup discovery algorithms to find interesting rules. These algorithms provide

us with new tools to gain knowledge based on data of rich and complex structure.



Zusammenfassung

Heutzutage enthalten Patientendaten häufig eine große Menge von strukturierten

Informationen, wie beispielsweise Neuroimaging-Daten, neuropsychologische Test-

ergebnisse, demographische Variablen, usw. Allerdings können Menschen so viele

Informationen nicht ohne die Hilfe von modernem Datamining und maschinellen

Lernverfahren analysieren. Mit Hilfe solch reichhaltiger und vielfältiger Informa-

tionsquellen können Computerwissenschaftler computergestützte Methoden entwick-

eln, um verborgenes Wissen und Muster zu entdecken, welche Ärzten dabei helfen

können, tiefe Einblicke in Krankheiten und Krankheitsverlaufe zu gewinnen. Deswe-

gen ist Computer-Aided Diagnosis (CAD) ein Werkzeug, um Ärzten bei schwierigen

Diagnose entscheidungen zu helfen. Daher ist das Ziel dieser Doktorarbeit, Algorith-

men zu entwerfen, die nützliche Muster entdecken, welche für die Erstellung von

Modellen für die Vorhersage von zukünftigen Ereignissen verwendet werden können.

Positronen Emissions Tomographie (PET), eine Art von Bildgebung, ist von

großer Bedeutung bei der Diagnose von Demenz. Eine Anwendung ist, zwischen

verschiedenen Typen von Demenz, wie milder kognitiver Beeinträchtigung (MCI)

und der Alzheimer Krankheit (AD), zu unterscheiden. Wir entwickeln ein Gaussian

Mixture Model mit einem Model Selection, um eine automatisierte Klassifizierung zu

ermöglichen, basierend auf einigen Trainingsbeispielen. Das Ergebnis zeigt, dass das

vorgeschlagene Verfahren die damit verglichenen zwei Baseline-Methoden übertrifft.

Die andere Anwendung von PET ist, die Wahrscheinlichkeit für einen dramatischen

Rückgang der kognitiven Leistungsfähigkeit in naher Zukunft, also die Progression

von MCI zu vollentwickelter AD, vorherzusagen. Zu diesem Zweck wird eine Kom-

bination aus Überlebensanalyse und einem Infinite Gaussian Mixture Model prasen-

tiert, um unterschiedliche Gehirn-voxel zu finden, die mit dem kognitiven Abbau

zusammenhangen. Das Ergebnis zeigt, dass der vorgeschlagene Algorithmus einige

kritische Hirnregionen extrahieren kann, die beim Fortschreiten von Demenz relevant

sind. Des Weiteren bringen die nicht-bildgebenden Variablen ebenfalls ergänzende

Informationen, um die Entscheidungsfindung zu begünstigen. Um die bildgebenden

und nicht-bildgebenden Variablen besser auszunutzen, wird ein Multi-View-Stacking

Ansatz empfohlen, um ein Klassifizierungsmodell auf zwei Ebenen, d.h., Basisebene

und Meta-Ebene, zu entwerfen. Die Ergebnisse zeigen, dass verschiedene Arten von



Daten (Views) von Vorteil sein können, wenn die Korrelation zwischen Views der

Basis- und Meta-Ebene in einem bestimmten Bereich liegt.

Um einige interessante Regeln aufzudecken, die in den Daten verborgen sind, en-

twickeln wir zwei neue Subgroup Discovery Algorithmen. Obwohl der Bereich Sub-

group Discovery im Datamining schon rund zwanzig Jahre existiert, gibt es immer

noch einige offene Probleme. Ein Problem ist der riesige Suchraum, der untersucht

werden muss, was bei einem relativ komplexen unmöglich werden kann. Das andere

Problem ist die Redundanz, die im resultierenden Regelsatz enthalten ist. Deswe-

gen wurde ein Optimierungs-basiertes Verfahren und ein Topic Model basiertes Ver-

fahren entwickelt, um Subgroup Discovery Regeln mit niedriger Redundanz effizient

herauszufinden.

Im Rahmen der Doktorarbeit stellen wir Algorithmen für die Analyse von PET

Scans, Multi-View Stacking für das Untersuchen vielfältiger Informationsquellen und

Subgroup Discovery Ansätze für das Hervorbringen interessanter Regeln vor. Sie

liefern uns ein Werkzeug, um Wissen aus strukturierten Daten zu gewinnen.
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CHAPTER 1

Introduction

A part of patient data from medical application is stored in a structured manner.

This data can come from different sources, such as brain scan images (for example,

positron emission tomography), demographic information, neuropsychological tests,

etc. Clinicians use diverse information to arrive at a diagnosis. However, clinicians

may have difficulties in diagnosing some patients whose symptoms are ambiguous.

Furthermore, clinicians can sometimes also disagree with each other. Therefore,

gaining some insights into data not only help clinicians in diagnosis, but also assist

them in making decisions. In general, we divide patient data into two categories,

imaging data (e.g., PET scans) and non-imaging data (e.g., demographic informa-

tion, neuropsychological tests). Therefore, we develop algorithms to discover hidden

information in both data sources.

1.1 Mining Imaging Data

In this thesis, PET scans are used as the imaging data to investigate a patient’s

mental status in terms of brain metabolism activity. One application is in the area

of dementia classification, i.e., in the attempt to devise a computer algorithm that

classifies the class (NC, MCI or AD)1 of a given PET scan based on a number

of training samples. A different application may originate from a follow-up study.

1 NC: normal control, MCI: mild cognitive impairment, AD: Alzheimer’s disease. Definitions are
given at Section 2.1.

1



2 1 Introduction

Given a PET scan from a patient with MCI, we try to predict whether this patient

will develop AD within the next two years. The former is a study of the classification

of images reflecting NC, MCI and AD, whereas the latter is a study of predicting a

patient’s progressive mental state based on the current MCI image.

1.1.1 Dementia Classification

To correctly classify a PET image into NC, MCI or AD is one of the most active

research topics in computational medicine, because a correct diagnosis may help a

patient in receiving a more targeted treatment. Approaches based on voxels2 as

features and based on statistical modeling represent the main methodologies. The

latter differs from the former by taking voxel neighborhood effects into account. Our

proposed approach is based on statistical modeling and clusters brain voxels into a

certain number of clusters, where the number of clusters can be determined by a

model selection criterion. Finally, the mean and standard deviation of a cluster are

calculated as input features for another algorithm. The suggested Gaussian mixture

model (GMM) with a model selection method shows better results than compared

baseline methods, in particular for the MCI against AD case on two independent

datasets.

1.1.2 Mild Cognitive Impairment Progression

The progression from MCI to full-blown AD is a great challenge which requires a

different approach. Researchers have conducted studies on analyzing the brain scan

difference between patients who progress to AD and those remain in the MCI state.

Applying a simple t-test can yield some significant brain voxels that represent the

interesting regions related to MCI progression. However, such a group comparison

based method may have limited performance on new test data. To this end, we

develop an algorithm that learns brain patterns of interest, which can be applied

for MCI to AD progression prediction. The proposed survival analysis and infin-

ite Gaussian mixture model (IGMM) method show some power in predicting MCI

progression.

2 Voxels are volume elements in three-dimensional space.

2



1.2 Mining Non-imaging Data 3

1.2 Mining Non-imaging Data

Non-imaging data can also be seen as structured data, which shows another perspect-

ive to patient data. Among the variables in these structured data, some particular

variable combinations may indicate an interesting phenomenon. For example, male

patients above the age of 65 tend to suffer from Alzheimer’s disease. To find such a

variable combination, subgroup discovery [Klö96, Wro97] can be employed, aiming

at searching for variable combinations with respect to a given target class. Although

subgroup discovery is a technique that has been around for more than twenty years,

some open issues still remain, such as a huge search space or redundancy in the

resulting rule set. In this work, two new methods [LAK14, LPDK15] are developed

to efficiently discover subgroups, while keeping the redundancy at a low level.

1.3 Combining Imaging and Non-imaging Data

Today, it is common to combine different sources of information to reach a more

reliable result. For example, multiple kernel learning, majority voting and stacking

are candidate approaches, to name only a few. A stacked multi-view learning method

[LHS+11] was devised, taking a decision based on a base and a meta model. The

base level of the proposed approach collects decisions provided from the base level

classifiers and the meta level classifier attempts to learn correlations between correct

decisions and decision behaviors of base classifiers. The proposed method yields

better results than using any individual source of information alone. In this way, it

meaningfully combines information sources.

The thesis is structured in the following way:

Chapter 2 introduces dementia and Alzheimer’s disease domain knowledge. We

further outline the common diagnosis-relevant neuropsychological tests, automated

diagnosis techniques and medical datasets used in the experiments.

Chapter 3 offers background knowledge on functional imaging techniques and

related work in mining imaging data. Subgroup discovery is subsequently introduced

in detail. Finally, we elaborate on multi-view learning techniques.

Chapter 4 is devoted to the mining of imaging data. A Gaussian mixture model

with model selection is developed particularly for dementia classification. An MCI

progression prediction study is then conducted using survival analysis and the infin-

3



4 1 Introduction

ite Gaussian mixture model.

Chapter 5 presents two new subgroup discovery algorithms. The optimization and

topic modeling based algorithms show advantages compared to existing methods.

Experiments are conducted on benchmark UCI datasets as well as a medical dataset.

Chapter 6 addresses the stacked multi-view learning that combines imaging and

non-imaging data for a study. We also attempt to analyze the experimental results

of stacked multi-view learning, revealing the factors associated with its performance.

Chapter 7 concludes the thesis and points out some feasible future studies.

4
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CHAPTER 2

Background on Dementia and Alzheimer’s

Disease

2.1 General Introduction to Alzheimer’s Disease

Alzheimer’s disease is a progressive, degenerative and incurable disease of the brain

and the main cause of dementia. According to studies from the World Health Or-

ganization (WHO), there are around six million patients suffering from Alzheimer’s

disease in North America alone. In Europe and China, the number even exceeds six

million. The number of people suffering from dementia is expected to grow rapidly

in the next decades. It is predicted that the number of patients with Alzheimer’s

disease will exceed 13 million in United States by the year 2050 [LZ14]. Worldwide,

according to some study [ALZ08], the number is expected to exceed 100 million by

2050. This will also have a major negative impact on healthcare systems.

Alois Alzheimer first observed the Alzheimer’s disease symptoms in 1901. The

patient was Auguste Deter, who later died from Alzheimer’s disease. Subsequent

microscopic analysis of her brain regions revealed several phenomena. For example,

noticeable atrophy of the cerebral lobes; loss of neuronal cells in some brain regions;

the existence of strange fibrillary pathology inside the neuronal cells; presence of

fibrous glial cells in the brain as well as in blood vessels. These effects continue to

represent the pathological characteristics of AD today. Fig. 2.1 shows that the brain

with Alzheimer’s disease severely suffers from lost brain tissue, whereas the healthy

brain remains intact.

6



2.1 General Introduction to Alzheimer’s Disease 7

Figure 2.1: Healthy and Alzheimer’s disease brain. Image courtesy of National In-
stitute on Aging−National Institutes of Health.

Alzheimer’s disease progresses in several phases, affecting memory, learning,

judgement, emotions and even movement. In the first phase, the damage is not

obvious and shows no visible symptoms. Later, some observable behaviors may ap-

pear, such as irritability, apathy, lack of interest, etc., but the behavior difference

may vary from one to another. The brain regions and their respective functionalities

are depicted in Fig. 2.2, showing several regions related to Alzheimer’s disease. The

parietal lobe is associated with body awareness, so people whose parietal lobe is in

atrophy may suffer from losing control of the body. The temporal lobe is essential

for long term memory, facial recognition and similar daily behaviors, thus it is also

an important region in Alzheimer’s disease. The cerebellum, on the other hand,

controls balance, and it is widely regarded as a less affected region in Alzheimer’s

disease. Therefore, the cerebellum region is often used as a reference region in PET

scan intensity normalization, because a reference region needs to be a healthy region

that can be treated as a benchmark to compare with.

One observed fact is that the number of female patients with Alzheimer’s disease is

twice as high as the one of male patients. Noticeably, cardiovascular disease is known

to be associated with Alzheimer’s disease. Many scientists believe that it could

explain the imbalance between male and female patients with Alzheimer. Because

cardiovascular disease affects men in their forties or fifties, estrogen and related

hormones in women help them get through this phase more easily. As a consequence,

7



8 2 Background on Dementia and Alzheimer’s Disease

Figure 2.2: Brain regions and functionality. Image obtained from https://

askabiologist.asu.edu/what-your-brain-doing.

men are at a higher risk of death in the decades before we can observe the presence

of Alzheimer’s disease. As for women, they may readily survive from cardiovascular

disease at ages forties or fifties, but will likely be affected by Alzheimer’s disease in

their sixties or seventies [PG14]. However, the AD risk is higher in women versus

men even after adjusting for higher life expectancy in women. Therefore, there must

be other characteristics that protect men from AD, but we do not yet know what

these are.

Age is considered the main risk factor of Alzheimer’s disease. Senile plaques,

neurofibrillary tangles and the massive loss of brain neurons are the three main

biological indicators of Alzheimer’s disease. Family history, obesity and head injury

can also play a role in the development of Alzheimer’s disease.

Apolipoprotein E4 allele (ApoE E4) is one important risk factor in Alzheimer’s

disease, since it plays an essential role in the cardiovascular system that transports

and delivers blood cholesterol. In addition, smoking, alcohol abuse and depression

may also cause Alzheimer’s disease.

The educational level seems to play an important role in protecting people from

getting Alzheimer’s disease [Kat93]. Besides, some studies suggest that consuming

red wine at a moderate level can provide some protection against Alzheimer’s dis-

ease. Physical exercise may postpone the symptoms of Alzheimer’s disease as well.

Besides, intellectual exercise, such as chess or Sudoku, gives people the opportunity

to improve memory or decision making, thus delaying the onset of the disease.

Concerning dementia and Alzheimer’s disease, the terms can often be confusing

8
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2.1 General Introduction to Alzheimer’s Disease 9

Table 2.1: Various forms of dementia.

Alzheimer’s disease Parkinson’s disease

mixed cognitive impairment Frontotemporal dementia (FTD)

vascular dementia normal pressure hydrocephalus

mixed dementia Huntington’s disease

dementia with Lewy bodies Wernicke-Korsakoff syndrome

or misused, thus a new lexicon [DFJ+10] was defined.

Some definitions:

• Normal control (NC) refers to the person whose mental status is normal.

• Mild cognitive impairment (MCI) is the patient who suffers from subtle but

measurable memory disorder. MCI is a term describing a syndrome, rather

than a disease.

• Alzheimer’s disease (AD) refers to the entire clinical phase of the disease and is

not bounded by the syndrome of dementia [DFJ+10]. There are several terms

describing different statuses of AD, for example, prodromal AD, AD dementia,

typical AD, atypical AD, mixed AD.

Dementia is a general term that is described in Table 2.1, and Alzheimer’s disease

remains the main disease in dementia. The ICD-10, international classification of

diseases, defines Alzheimer’ disease as F00.0, F00.1 and F00.2. MCI is denoted as

F06.7. These terms are used by clinicians in dementia diagnosis.

9



10 2 Background on Dementia and Alzheimer’s Disease

Table 2.2: Categories and subtests in CERAD.

Categories Subtests (0−15)

semantic memory Boston naming test (0−15)

word finding word list learning (0−30)

visual cognition word list cognition (0−20)

orientation word list recall (0−10)

concentration construction praxis (0−11)

direct retentiveness constructional praxis recall (0−11)

visuo-construction verbal fluency (0−∞)

delayed retentiveness Mini-Mental State Examination (MMSE) (0−30)

2.2 Neuropsychological Tests and Computer-aided Diagnosis

Neuropsychological tests provide clinicians with essential diagnostic information,

reflecting various daily abilities like memory, orientation, etc. We review the com-

monly used Consortium to Establish a Registry for Alzheimer’s Disease (CERAD)

[MMR88], Clock Drawing Test (CDT), ADAS: Alzheimer’s Disease Assessment Scale

and Clinical Dementia Rating (CDR).

CERAD encompasses several daily abilities described by Table 2.2. MMSE is a

very important subtest of CERAD, acting often as an indicator of mental health

status. ADAS is another test including word recall, naming, commands, construc-

tional praxis, to name only a few.

Besides question answering, patients can also be asked to draw a clock showing

ten past eleven, with grade from one to six and one for a perfect clock, cf. Fig. 2.3.

As a contrast to other neuropsychological tests, CDR is much closer to a diagnosis.

Thus, clinicians often use it as an important reference for diagnosis. It includes

categories such as memory, orientation, judgement, community, activity, personal

care and a global score. The possible scores are 0, 0.5, 1, 2, 3, with 0 as the best

and 3 as severe.

In the year 1984, the criteria for clinical diagnosis of Alzheimer’s disease were

established by the National Institute of Neurological and Communicative Disorders

and Stroke (NINCDS) and the Alzheimer’s Disease and Related Disorders Asso-

10



2.2 Neuropsychological Tests and Computer-aided Diagnosis 11

Figure 2.3: Example of clock drawing test. Image obtained from Master thesis
[Sch07].

ciation (ADRDA). The current diagnosis of Alzheimer’s disease relies heavily on

biopsy or postmortem examination of the brain [LZ14]. In the meantime, the use

of PET, computer tomography (CT), cerebrospinal fluid (CSF) and magnetic res-

onance imaging (MRI) provide a better understanding of brain volume loss and

cognitive degradation. Despite technological progress, the ante mortem diagnosis

of Alzheimer’s disease is still based on clinical grounds, with biomarkers such as

cerebrospinal fluid (CSF) proteins and neuroimaging procedures providing support-

ing information. In the following, we review some computer-aided diagnosis (CAD)

approaches in diagnosing Alzheimer’s disease.

Visual examination of images may be error-prone, thus CAD may be another

tool to diagnose Alzheimer’s disease [GLR+09, Met99]. One technique often used

for CAD in this area, automatic image classification, remains a topic receiv-

ing intensive research. Overall, however, more studies have been conducted on

MRI than on PET images. Regional brain atrophy, especially of the mediotem-

poral lobe, is a typical feature of AD, which can be reliably identified by MRI

[dLML+07, FWFN+10, MFNR+09], and MRI is therefore a useful imaging bio-

marker. For example, a recent study [CGT+11] compared ten distinct MRI clas-

sification approaches using 509 subjects of the Alzheimer’s Disease Neuroimaging

11



12 2 Background on Dementia and Alzheimer’s Disease

Initiative (ADNI), investigating the differentiation between different groups of in-

dividuals including normal controls (NC) against patients with AD. Another work

[LZS12] presented an ensemble approach to combining a number of weak classifi-

ers for classification. This local patch-based (a patch is understood as some small

region) subspace ensemble method builds individual classifiers based on various sub-

sets of local patches and then combines them for a better classification. A recent

study [LZStADNI14] proposed a hierarchical tree to capture relationships among

imaging features, aiming at identifying informative biomarkers for classifications of

MCI and AD using MRI scans. Another study [KSC+08] investigated the use of

support vector machines (SVM) for automatic classification based on MRI scans.

It showed that SVM can be very helpful in diagnosing various forms of dementia,

revealing that the linear kernel is adequate and generalizes well. A work [RCG+09]

applied random forest classifier on SPECT images, showing very good classification

accuracy. In recent years, multi-modality classification has been shown to be an at-

tractive research area in Alzheimer’s disease research. A pairwise similarity measure

derived from random forests was proposed as a multi-modality classification frame-

work [GAH+13]. In this study, FDG-PET, MR, CSF biomarker and categorical

genetic data were employed for the classification. The results indicate that joint in-

formation is superior to any individual modality on its own. In another work, MRI

data, PET data and CSF biomarkers were used to construct a kernel matrix, and a

combined kernel was produced for the final classification [ZWZ+11]. This method

allows combining heterogeneous data and permits different weights for various data

modalities. The results show high AD classification accuracy, even in very early

clinical stages (i.e., for mild cognitive impairment).

Combining imaging data and non-imaging data has also been studied. A work

[SBS+] combined PET images and neuropsychological test for Alzheimer’s disease

classification. The experiment using 46 subjects revealed that neuropsychological

tests can improve the classification accuracy compared to using the imaging data

alone.

12



2.3 Data Used in Experiments 13

2.3 Data Used in Experiments

2.3.1 Medical Data

Two independent medical datasets are used in this work. One is an in-house data

set provided by the Technische Universität München (TUM) School of Medicine.

Patients’ names were anonymized in the database. The study was approved by the

ethics committee of the “Medical Faculty of Technische Universität München”, which

permitted the use of patient data. The data includes PET scans, CERAD, CDR,

CDT and Apolipoprotein E, but some of the data records were missing for certain

patients. The other dataset is from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI), which is publicly available. ADNI offers more types of neuropsychological

test data, such as ADAS, and even some other biomarkers, but there are often

missing records. Some of the patient PET scans are adequately followed up at least

two years, so we can perform a follow-up study to investigate Alzheimer’s disease

progression, cf. Section 4.2.

2.3.2 Benchmark UCI Data

UCI (University of California, Irvine) benchmark datasets are widely used in the

machine learning and data mining communities [FA10]. The data is publicly avail-

able at https://archive.ics.uci.edu/ml/index.html. In the experiments, data

records with missing values were removed.

13
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CHAPTER 3

State-of-the-art in Data Mining

3.1 Mining Imaging Data

3.1.1 Introduction to Functional Imaging Techniques

PET is a non-invasive imaging technique, measuring blood flow, membrane trans-

port and metabolism activity quantitatively. PET gives us detailed insights into

molecular processes occurring in tissues. It is a three-dimensional medical imaging

technology based on the detection of positrons. The detection of positrons is real-

ized by a tracer that is injected into the body. There are several commonly used

tracers, such as fluorodeoxyglucose, acetate, palmitate, hydroxyephedrine, ammo-

nia, water and rubidium. Throughout this work, we use fluorodeoxyglucose type

PET (FDG-PET) scans for our study. Today, radiology and nuclear images are

often used in clinical practice. We briefly highlight the difference between these two

types of images in Table 3.1.

Many studies have been conducted using MRI to investigate Alzheimer’s disease,

since MRI can show the atrophy of the entire brain of patients with Alzheimer’s

disease, especially in the hippocampus region. Different from the MRI, the FDG-

PET reflects the decrease of metabolism in the posterior regions and in the posterior

cingulum. The FDG-PET has been widely applied to assist the diagnosis of AD,

because it has been shown that the brain scans can be very helpful in diagnos-

ing Alzheimer’s disease at an early stage [Drz09]. Besides, FDG-PET was also

recommended as a diagnostic marker by recently proposed guidelines [DFJ+07]. A

15



16 3 State-of-the-art in Data Mining

Table 3.1: Difference modalities in radiology and nuclear medicine imaging.

Radiology Nuclear Medicine

anatomical images physiological images
structural images functional images

macroscopic imaging molecular imaging
ultrasound, XR, CT, MRI planar imaging, SPECT, PET

Figure 3.1: PET scanner, 3D brain, PET slices and NC, MCI, AD PET image.
Bottom PET images courtesy of Suzanne Baker, PhD; William Jagust, MD; and
Susan Landau, PhD.

significant functional neuroimaging application is the progression prediction of pro-

dromal AD, i.e., mild cognitive impairment (MCI), to full-blown AD dementia. A

growing number of studies show that FDG-PET can predict the clinical outcome in

MCI with a relatively high sensitivity and specificity. A recent literature review un-

derpins the gain in overall diagnostic accuracy by using FDG-PET in the evaluation

of dementia, supporting its role as an effective complementary tool [BHAM12]. The

superiority of FDG-PET to other potential predictors of clinical decline in MCI has

been suggested by some [Lan10], but not all studies [Gom14]. Typically, a couple

of AD-like FDG-PET patterns is found to be predictive of future AD dementia in

patients with MCI [MTH+08], such as decreases of the cerebral glucose metabolism

16



3.1 Mining Imaging Data 17

Figure 3.2: 91 PET scan slices in transaxial view. The colormap is defined as rain-
bow in XMedCon. Red color represents intense activity and black is no activity at all.
The black region represents no brain region, i.e., a non-brain part.

in the posterior temporoperietal regions and in the posterior cingulate cortex, as

well as in the prefrontal cortex.

Visualization offers a straightforward way to inspect the brain scans. Fig. 3.2

depicts 91 slices in transaxial view. In this work, we use XMedCon, MRIcron to

visualize and pre-process images. The 3D PET scan can be viewed in three different

perspectives, namely, the coronal view, the sagittal view and the transaxial view, cf.

Fig. 3.3. The 3D coordinate system consists the left-handed system (left cerebral

heimsphere is at left) and the right-handed system (left cerebral heimsphere is at

right). The right-handed system specifies −x coordinates are on the left and all

+x coordinates are on the right, −y coordinates are on the posterior and all +y

coordinates are on the anterior, −z coordinates are on the superior and all +z

coordinates are on the inferior. By convention, a left-handed system is used in

radiology, and a right-handed system is used in neurology. The PET images need

to be pre-processed by SPM with the following steps:

• Spatial normalization: This ensures individual images are mapped onto a

17



18 3 State-of-the-art in Data Mining

Figure 3.3: Three views of PET scan and coordinate system. (a): coronal view (b):
sagittal view (c): transaxial view. P: primary sensorimotor cortex normalization; G:
grand mean normalization. x, y and z are the width (91), depth (109) and height
(91) respectively.

standard brain template, so that the brain region analysis is based on a com-

mon basis. The dimension size (x, y, z) of the resulting image can be adjusted

by the specified bounding box in SPM. We used the bounding box [−90 −126

−72; 90 90 108] to obtain an image size of 91× 109× 91, which is the same as

the automated anatomical labeling (AAL, cf. Section A.2) [TMLP+02] brain

template.

• Smoothing: This is commonly used in image processing for improving the

signal to noise ratio by applying a fixed smoothing window to the image.

• Intensity normalization: This is an essential step in analyzing PET scans. Be-

18



3.1 Mining Imaging Data 19

cause patients can be injected with different amounts of tracer, the absolute

brain metabolism activity may vary as a consequence. Thus, it is necessary

to obtain the relative brain metabolism activity, which can be done by divid-

ing each voxel to a value calculated from a chosen reference region. There

are a couple of common choices in selecting the reference region. First, the

mean intensity of the whole brain is known as the grand mean normalization.

Second, the cerebellum region can be used, because it is not much affected

by Alzheimer’s disease. The third method may be a pSMC-based (primary

sensorimotor cortex) approach, which was shown to perform well in a study

[YLB+08].

3.1.2 Related Work in Mining Voxel Data

Data mining methods have been used in many applications in dementia research. A

survey [MFS+00] reviewed the data mining methods used for brain imaging data and

other clinical data. In another study [SF05], SPECT images were used to classify

patients with AD based on a linear programming formulation. Clustering and sub-

group discovery were studied to incorporate imaging and non-imaging data, where

the PET images and clinical variables were combined to correlate disease patterns

of the brain with neuropsychological tests [SHM+10]. A related work [GGK+06]

applied stacking to the early diagnosis of AD against NC using event related poten-

tials (ERPs) and showed that it outperformed majority voting. In the following, we

specifically address two main methods in mining voxel data.

3.1.2.1 Voxel-based Morphometry (VBM)

Voxel-based morphometry (VBM) [AF00] has been a popular approach to analyzing

functional imaging data, aiming at finding group differences in brain regions. Statist-

ical parametric mapping (SPM) provides VBM as a fundamental analysis technique,

which performs statistical tests, such as the t-test, across different groups of sub-

jects to discover discriminative voxels. Specifically, as for MRI scans, images are

first spatially normalized using a standard brain template, such that further com-

parison and analysis can be performed on the same basis. Images are subsequently

segmented into gray matter, white matter and CSF, followed by image intensity

normalization. Then, image voxels are smoothed by taking the surrounding voxels

19



20 3 State-of-the-art in Data Mining

into consideration. Afterwards, statistical analysis plays an important role in infer-

ring the statistical difference existing in various groups. In SPM, a wide range of

analysis methods are provided, such as the t-test, ANOVA (analysis of variance),

etc. Because false positives may appear due to statistical tests performed on a large

number of voxels, it is usually recommended to apply multiple comparison correc-

tion. A large family of such methods is available, for example, family-wise error

(FWE), false discovery rate (FDR) and Bonferroni correction. In terms of PET

scans, the procedure is similar, except that PET scans need not to be segmented

into gray matter, white matter and CSF, since PET scan is essentially a reflection

of gray matter metabolism activity.

The VBM approach is straightforward. Many studies have been conducted using

the voxel-based analysis methods. For example, voxels were directly employed using

an SVM for classification in a study [KSC+08]. However, such an approach ignores

statistical association among voxels. A couple of weaknesses were mentioned in a

related work [Tha08]. For example, the assumption of one-to-one mapping among

human brains may not be meaningful. Indeed, a VBM approach is quite sensitive

to the individual differences. Further, the statistics applied is criticized because

the identified regions may suffer from a misregistration from the previous spatial

normalization step.

3.1.2.2 Statistical Approaches to Voxel Mining

The voxel-based approach suffers from considering voxels independently, which takes

no correlations between neighbouring voxels into account. In contrast to such a uni-

variate approach, two multivariate methods were proposed to learn the patterns in

data from a higher perspective. In the first study, principal component analysis

(PCA) was used to extract features, which were then fed into a classifier [LRG+09].

Another work [NSM+08] used PCA to analyze FDG-PET in amnestic MCI and

illustrated some interesting findings using the principal components. A combined

use [LRG+] of kernel principal component analysis (KPCA) and linear discriminant

analysis (LDA) was applied on SPECT images to extract features. This method

outperformed a voxel-based feature selection approach by an accuracy gain of 12%.

It is worth mentioning that the PCA based method used in the above cases essen-

tially transforms the original features into another feature space, which is different

from the Region of Interest (ROI) based method. ROI based methods derive fea-
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3.2 Subgroup Discovery 21

tures directly from the PET images [GSR+11, SGR+12]. A t-test feature selection

with feature correlation weighting was employed to form ROIs that were used for

defining normalized mean squared error (NMSE) features [RCG+09]. A Gaussian

mixture model [GSR+11] models the difference between the controls and patients

with Alzheimer’s disease, where the number of Gaussians (K) was fixed to 64, which

can be a drawback since 64 may not be the optimal value.

3.1.3 Model Selection in Neuroscience

We also review some related work on model selection based on PET images in areas

other than dementia research. In a PET volume classification study [SAAZ12],

Bayesian information criterion (BIC) was applied to select the optimal number of

classes for each PET scan. In this work, the BIC values gradually reached a steady

state, such that the optimal number of classes was easily chosen. Another work

[SCA+14] employed the Akaike information criterion (AIC) to assess the different

predictive models, investigating the overall survival in a phase II clinical trial of a

targeted therapy. The authors reported that the highest prognostic value appeared

with the lowest AIC value, which suggested that AIC can be a guideline in choosing

a desired model. In a proton therapy research study [EMC+13], the AIC was used to

determine the most appropriate model for the FDG uptake dose response for each

patient. A compound-B based PET kinetic modeling study [LKTR12] used AIC

to ensure a good kinetic parameter setting. In another study [PKL+05], however,

both AIC and BIC did not perform reliably for realistic 3D dynamic PET images.

The authors assumed that the reason for this may be that AIC and BIC are model

dependent, so the specified probability distribution function was not suitable for

realistic 3D dynamic PET images. Although AIC and BIC are frequently applied

model selection techniques in neuroscience, their application to PET scans for the

purpose of AD diagnosis is rarely studied. Hence, this work studies their usefulness

in combination with the proposed GMM approach in dementia research.

3.2 Subgroup Discovery

Subgroup discovery (SD), one field in pattern mining, aims to find interesting sub-

groups (conjunctions of variables) with respect to a target class. Subgroup discov-

ery is closely related [NLW09] to other techniques, such as emerging pattern mining
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[DL99], contrast set mining [BP01, NLW09], class-correlated pattern mining [ZR04]

and rule learning [CS99, FP08, RK08].

Emerging patterns (EPs) [DL99] are defined as itemsets whose support increases

significantly from one dataset to another. Contrast set mining [BP01] studies the

differences existing in different contrasting groups by looking at conjunctions of

attributes3 and values that show different supports. A recent survey [NLW09] dis-

cusses commonalities and differences. CorClass (correlated classification) [ZR04] is

an approach for class-correlated pattern mining, which maximizes convex correla-

tion measures such as information gain or χ2, as also proposed previously by Sese

and Morishita [MS00]. All these approaches differ from SD (a) in the representation

(propositional or relational rules vs. patterns from some pattern language like item-

sets, trees, graphs) and (b) in their purpose (discovering interesting patterns, either

for direct inspection by the user or for combining them into predictive models).

However, search and pruning techniques developed there can in principle also be

used for subgroup discovery, if the quality function fulfills properties like convexity.

Rule learning has been investigated in machine learning and data mining for more

than forty years. SLIPPER [CS99] repeatedly boosts a simple and greedy rule-

builder to generate an ensemble of rules that is highly predictive. Much like SLIP-

PER, examples are re-weighted after each iteration in our approach. Margin-based

first-order rule learning [RK08] combines rules from an existing repository of rules

by optimizing the Margin Minus Variance (MMV) criterion. Error bounds are used

for capacity control. Here, numerical optimization is used to integrate rules into a

weighted rule set. A rule ensemble framework [FP08] constructs classification models

by linear combinations of simple rules yielded from the data. The principal advant-

age resides in its simple form for easy interpretation. Whereas rule learning and

subgroup discovery share the same representation (rules), they differ in their goal

to build a global or local model, respectively. In contrast to other approaches that

use numerical optimization for rule learning, the approach presented here does so in

a pre-processing step, to select subsets of relevant features that can be handed over

to a traditional search through a lattice. The following sections discuss subgroup

discovery, related algorithms and existing challenges.

3 Attribute and feature are used interchangeably in the thesis.
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3.2.1 Introduction to Association Rule Mining

We review association rule mining as some background information, due to the close

relation between subgroup discovery and association rule mining. Association rule

mining [AIS93] and pattern mining aim at finding interesting regularities (patterns,

rules) in a database. A typical application is the study of transaction data records

in a supermarket, which may reveal a hidden rule that people often buy beer and

chips together. This is actionable knowledge, since supermarkets can put them close

to each other for the convenience of customers’ purchase. To quantitatively measure

the usefulness (interestingness) of a rule, researchers have introduced some measures,

such as support and confidence:

support(A⇒ B) = P (A ∪B). (3.1)

confidence(A⇒ B) = P (B|A) =
P (A ∪B)

P (A)
. (3.2)

Support can be regarded as a global measure of a rule, whereas confidence is a

local measure of a rule that is irrespective of the total number of observations. For

example, 1000 customers have visited a shop, 400 of them bought computers and

50 of them bought software as well. Therefore support(computer ⇒ software) =

50
1000 = 5% and confidence(software|computer) =

50
1000
400
1000

= 50
400 = 12.5%, which shows

that the confidence is independent from the total number of customers.

In the context of association rule mining, coverage is also called support (fre-

quency), accuracy is also called confidence. However, support in fact means the

accuracy in the subgroup discovery literature. We follow the convention in their

contexts respectively. Support and confidence can be misleading, thus they are in-

sufficient at filtering out uninteresting association rules. To cope with it, correlation

analysis may be helpful. To this end, lift is used as a measure of correlation between

A and B:

lift(A,B) =
confidence(A⇒ B)

P (B)
=

P (A ∪B)

P (A)P (B)
. (3.3)

If lift is less than one, then A and B are negatively correlated. A and B are

positively correlated if lift is greater than one. They are independent if lift equals

one. A second correlation measure is the χ2 (independence) measure. However,
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the χ2 measure is not anti-monotonic with respect to set-inclusion. Besides, most

statisticians warn against using the test when any of the expected values is less

than five. Instead, Fisher’s exact test is suggested. In addition to lift and χ2, all-

confidence and cosine analyses are recommended to use when the result shows that

weak correlation is present, then other analysis may be performed to obtain a more

complete picture [HK05]. In the following, we highlight some important concepts:

• An itemset is closed if none of its proper super-itemset has the same support

as the itemset.

• An itemset is maximal frequent if none of its super-itemset is frequent. If an

itemset is maximal it is also closed.

• An itemset is derivable if its support can be exactly inferred from the support

of its sub-itemsets based on inclusion-exclusion principle. Otherwise it is non-

derivable. A family of all non-derivable itemsets is downward closed.

• The Apriori property tells that all nonempty subsets of a frequent itemset must

also be frequent. Apriori employs an iterative approach known as level-wise

search, where k-itemsets are used to explore (k + 1)-itemsets. This property

belongs to a special category of properties called anti-monotone in the sense

that if a set cannot pass a test, all of its supersets will fail the same test as well.

It is called anti-monotone because the property is monotonic in the context of

failing a test. Anti-monotone: given X ⊆ Y , if C(X) is not true then C(Y )

is not true, i.e., ¬C(X) → ¬C(Y ). Monotone: given X ⊂ Y , if C(X) is true

then C(Y ) is true, i.e., C(X)→ C(Y ). Anti-monotone is useful for bottom-up

searching, while monotone is useful for top-down. The apriori property plays

an important role in subgroup discovery, since it offers a methodology to find

subgroup rules.

In subgroup discovery, rules are found with respect to a target variable (class,

label), whereas there is no target variable in association rule mining. For example,

a rule can be an association rule if it is written as “buy beer and chips together”. A

slight modification leads it to a subgroup discovery rule if it becomes “IF buy beer

and chips together, THEN the customer is male”. Male is a target variable, beer and

chips are conjunctions of conditions pointing to the target. The subsequent section

introduces subgroup discovery in more details.
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non-disease

diseasesubgroup: age > 65 and

gender = male

50% 50%
90%
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Figure 3.4: Pie chart illustration of subgroup discovery.

3.2.2 Introduction to Subgroup Discovery

Subgroup discovery is a task at the intersection of predictive and descriptive in-

duction, aiming at identifying subgroups that have the most unusual statistical

(distributional) characteristics with respect to a property of interest. The task of

subgroup discovery (SD) is to find population subgroups described by conjunctions

of attribute-value conditions that are statistically most interesting (e.g., large, but

at the same time distributionally unusual) with respect to a property of interest

[Klö96, Wro97]. It is considered a task at the intersection of predictive and descript-

ive induction. An example of a subgroup rule could be: “IF age > 65 AND gender

= male, THEN disease”, where “age” is an attribute (feature), “> 65” is a condition

of this attribute, and “disease” is the target class. Subgroup rules have conjunctions

of conditions on the left-hand side and a user-specified target class on the right-hand

side.

In Fig. 3.4, 50% of the entire population has a disease, but the percentage dra-

matically increases to 90% in a subgroup “age > 65 and gender = male”. Thus, we

may be interested in such a subgroup representing obvious contrast to the whole

population. Quantitatively, the interestingness of a subgroup can be measured by a

quality function.
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Attribute 1 Attribute 2 Attribute 3

A1

A2C1, A2C2, B1C1, B1C2, B2C1, B2C2

A1B1, A1B2, A1C1, A1C2, A2B1, A2B2

A1B1C1, A1B1C2, A1B2C1, A1B2C2

A2B1C1, A2B1C2, A2B2C1, A2B2C2

A1

A1A2

A1
B1

A1
B2

A1
C1

A1
C2

Figure 3.5: Example of combinations of attribute-value conditions in finding sub-
group discovery rules. Every attribute has two distinct values. In practice, the attrib-
utes may be discretized if the data is continuous.

The process of subgroup discovery needs exhaustive search of all possible combin-

ations of attribute-value conditions. As demonstrated in Fig. 3.5, three attributes

with six distinct values produce 20 combinations to be inspected. Specifically, any

possible attribute-value combinations (two attributes, three attributes) needs to

be investigated. The number grows dramatically fast as more distinct values are

present. Section 3.2.5 summarizes this issue in more detail.

3.2.2.1 Quality Function of Subgroup Discovery

SD is usually evaluated by a quality function providing a trade-off between rule

generality and distributional unusualness. The most common form is:

ρ = ga(p− p0), (3.4)

where 0 ≤ a ≤ 1, where g is the generality (coverage) of the subgroup, p is the rule

accuracy (support), i.e., the fraction of rows of the target class in the subgroup,

and p0 is the default rule accuracy, i.e., the fraction of rows of the target class

in the database. We use Fig. 3.4 as a numeric example, if we let a = 1 and
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g = 0.15 (suppose the area of the inner pie accounts for 15% of the entire pie),

then the quality of subgroup “age > 65 and gender = male” can be calculated as

ρ = 0.15 · (0.9 − 0.5) = 0.06. If a quality threshold is set to 0.01, then 0.06 > 0.01

qualifies such a subgroup.

When a = 1, Eq. 3.4, known as Piatetsky-Shapiro [Klö96] quality function,

is equivalent to the weighted relative accuracy (WRAcc [LKF+04]) that can be

expressed as:

WRAcc(Class← Cond) = p(Cond)(p(Class | Cond)− p(Class)), (3.5)

where “Cond” represents conjunctions of attribute-values. To avoid some instances

(samples) being covered by rules over and over again, a weighted covering algorithm

was used to decrease the weights of the used instances [LKF+04].

ρ =
n′(Cond)

N ′

(
n′(class, cond)

n′(cond)
−
n′(class)

N ′

)

, (3.6)

where N ′ is the sum of the weights of all instances, n′(Cond) is the sum of the

weights of all covered instances. A tighter optimistic estimate (TOE) was proposed

as gp(1 − p0) [GRW08], as opposed to g(1 − p0) [Wro97].

3.2.3 Subgroup Discovery Algorithms

We review some important works. Besides the following works, other related studies

are discussed in a comprehensive overview [HCGJ11].

1. The system EXPLORA [Klö96] was the first approach for subgroup discovery,

introducing subgroup discovery in a single-relational setting. Both exhaustive

and heuristic search strategies are possible to be applied.

2. MIDOS [Wro97] extended EXPLORA to the multi-relational setting, using the

concepts of the optimistic estimate and minimal support pruning, an optimal

refinement operator as well as sampling to ensure efficiency. Two pruning

strategies were proposed: (a) minimal support pruning: Because the descend-

ant of a hypothesis cannot cover more instances than the hypothesis itself, the

subtree can be entirely pruned once this hypothesis fails to meet the criterion.
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(b) optimistic estimate pruning: It can be applied to shrink the search space

by removing branches that cannot pass a quality threshold.

3. SubgroupMiner [KM02] was the first algorithm to consider continuous target

variables via discretization. It is an extension to EXPLORA and MIDOS,

employing several quality measures to gauge the interestingness of discovered

subgroups.

4. Scholz [Sch05] proposed a knowledge-based sampling method, offering a generic

way of incorporating prior knowledge in the sense of sampling. They claim

that knowledge-based sampling allows to construct small sets of rules with

high diversity, revealing different aspects of a dataset.

5. CN2-SD [LKF+04] adapts CN2 [CN89], a standard classification rule learner,

to subgroup discovery, with two distinct features: (a) the weighted relative

accuracy measure trading off generality for accuracy, and (b) using weights for

examples in the covering process.

6. SD-Map [MF06] proposed a fast but exhaustive subgroup discovery algorithm.

It incorporates the idea of FP-growth, and is also able to handle missing values.

Several quality functions like Piatetsky-Shapiro [Klö96], unusualness or the

binomial test can be applied in this approach.

7. A tight optimistic estimate [GRW08] was proposed to limit the search space

size. The tight optimistic estimate (TOE) is a tight upper bound of the quality

of the promising subgroups. It is an improvement of the optimistic estimate

[Wro97] that was shown to be not tight.

8. A ranking support vector machine approach was suggested to rank subgroups

with respect to a user’s concept of interestingness, being one of the few ap-

proaches that incorporate numerical optimization into subgroup discovery

[R0̈9].

9. Difference-based estimates for a generalization-aware (DBEGA) [LBP13]

method was presented to take generalization into account using some new

optimistic estimates bounds. The method evaluates subgroups by considering

the difference in pattern generalization. It is shown to outperform compared

approaches by up to an order of magnitude in terms of runtime.
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10. More recently, an interactive subgroup discovery approach was proposed to

allow user feedback during search, obtaining more interesting and diverse rules

[DL13].

3.2.4 Evaluation Measures

Subgroup discovery can be evaluated by different measures [LKF+04]. Some com-

monly used ones are as follows:

• Cover redundancy (CR) [LPDK15, vLK11] measures the cover count of each

sample covered by the rule set, and the deviation from the mean cover count

is used to judge the level of redundancy. If the rule set covers some samples

unevenly and ignores the others, then this rule set focuses too much on one part

of the data. Hence, it probably has some degree of redundancy. Therefore,

a lower CR suggests the subgroup rule set covers the data fairly well and

is less redundant. Denote a dataset as D and a set of subgroups S. The

cover count (CC) of a sample m is simply how many times this sample is

covered by the rule set S, i.e., CC(m,S) =
∑

s∈S Ds(m). The expected count

CC = 1
|D|

∑

m∈D CC(m,S). The CR is then computed as:

CRD(S) =
1

|D|

∑

m∈D

|CC(m,S)− CC|

CC
. (3.7)

The CR is supposed to compare different subgroup sets of (roughly) the same

size for the same dataset [vLK11].

• Jaccard index (JI) is employed as a measure of the diversity of a rule set.

Given rules r1 and r2 from a rule set R, the JI is calculated as:

JI(r1,r2) =
|r1 ∩ r2|

|r1 ∪ r2|
. (3.8)

The rules have common elements only when they have matched feature values.

As JI (the lower, the more diverse) is computed in a pair-wise manner, we

compute it for every two rules in the rule set R. Then the mean JI is
∑n

i=1
JIi

n
,

where n =
(|R|

2

)
is the number of comparisons.

• Accuracy reflects the predictive power of the resulting rule set.
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• Number of rules is related to the amount of time a human may need to examine

and interpret the rules.

• Number of attributes per rule represents the number of attributes covered by

a rule in a rule set. A rule with a single attribute is the simplest rule, with

several attributes being more complex.

3.2.5 Challenges in Subgroup Discovery

The exponential search space and redundancy constitute two major challenges in

subgroup discovery.

The search space in subgroup discovery grows exponentially, therefore exploring

the full search space can be computationally very expensive. To cope with it, beam

search [KM02] is often used as a greedy search approach to limiting the search

possibilities. In addition, optimistic estimate [Wro97, GRW08] is another method

to exclude unpromising search branches. Some other works are proposed in this

regard as well. A closure system [BG09] was suggested to search for extensions of

quality functions rather than their individual descriptions. The authors found that

the search space and outputs were efficiently reduced when equivalence classes are

considered. A random sampling method to obtain maximal itemsets was proposed,

which can make use of any monotonically decreasing measure as an interestingness

criterion [MG13].

Redundancy is an essential issue in pattern mining, which has been actively stud-

ied in recent years. The redundancy in solution sets remains one of the big open

problems in subgroup discovery. The redundancy in resulting rule sets is partially

caused by exploring huge search spaces. In the following, we review some related

works concerning redundancy. Compared to the variety of different SD algorithms,

research on redundancy in subgroups appears to be quite limited. Due to the close

relationship between SD and itemset mining, it is worth mentioning work on avoid-

ing redundancy with itemsets. A study [XCYH06] examines evaluation functions

for measuring the combined significance of a pattern set, and proposes the use of

MMS (maximal marginal significance), aiming for significant and non-redundant

top-k patterns. In beam search, the top-k subgroups may contain variations of the

same theme, whereas other interesting patterns may be left out. Besides, top-k

mining has the drawback of considering each subgroup individually. To address this
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issue, an approach that selects diverse subgroups instead of the top-k in conventional

beam search was proposed, attempting to find non-redundant subgroups by a mod-

ified beam search [vLK11]. A memory-efficient, relevance test based top-k subgroup

mining algorithm was the first to find the top-k relevant subgroups by a traversal

of the closed-on-the-positives [GP11]. Another work [BZ09] on constrained pattern

mining suggests two general heuristic algorithms, “Bouncer” and “Picker”, to select

a small subset of patterns. The reduced pattern set indeed improves the classific-

ation results. The MDL (minimum description length) principle has witnessed a

renaissance recently. The Krimp algorithm [VLS11] uses an itemset coding scheme

to compress the data effectively. Related work employs a probabilistic maximum

entropy model to iteratively find itemsets [MVT12]. The authors suggested the use

of MDL to identify itemsets that summarize the data well. Most recently, diverse

subgroup set discovery (DSSD) [LK12] attempted to obtain diverse rule sets by

integrating a beam search into each level-wise search.

In Chapter 5, we present two approaches for subgroup discovery. One avoids

redundancy neither during search nor by post-processing, rather it employs a quad-

ratic programming approach as a pre-processing step. The other is a modified topic

modeling based approach to finding subgroup rules.

3.3 Multi-view Learning

Today, it is common to have various information sources, which can be naturally

studied by multi-view learning. Multi-view learning is based on the assumption that

the views (various types of data) are both compatible and uncorrelated. One real-

world multi-view application may be that a patient with dementia can be diagnosed

by cognitive tests, brain scan or other biomarkers. In the following, we point out

the related studies conducted for multi-view learning, which is then followed by a

stacking method [Wol92] that can be used to learn the multi-view data.

3.3.1 Multi-view Learning Related Work

Co-training [BM98], a semi-supervised approach, is an early work on multi-view

learning. For example, a web page has two views, i.e., the text appearing on the

page itself and the anchor text attached to the hyper-links pointing to this page.

Using these two information sources shows improved web page classification results.
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A related work [CM09] developed a co-training algorithm to use data from various

sources for prediction. The data sources constitute several assay screens describing

individual molecules in a drug discovery application, reflecting both biological and

chemical views.

Multiple kernel learning (MKL) is another framework to deal with multi-view

learning, corresponding naturally to different views and combining kernels either lin-

early or non-linearly. Due to its closeness to kernel methods, one approach [BLJ04]

formalizes MKL as a second order cone program problem, and a sequential minimal

optimization (SMO) based SVM algorithm was proposed to obtain the optimal solu-

tion. Besides these theoretical works, a study [FRD11] employs MKL to integrate

imaging and non-imaging features, which together predict the cognitive decline of

the healthy adults. The results suggest that the joint information outperforms either

individual data source. In computer vision, object detection [VGVZ09] benefits from

MKL by capturing different feature sets, such as distribution of edges, dense visual

words, spare visual words and feature descriptors. Multi-view clustering [BS04] was

proposed to cluster text data, as contrast to other multi-view works devoted to clas-

sification. They found that the suggested multi-view k-means and EM algorithms

performed better than their single-view counterparts. They also reported negative

results, and applied entropy analysis to discover the underlying causes. A related

work [CUD08] specifically focused on the issue of view disagreement in multi-view

learning. A conditional entropy criterion was presented to detect view disagree-

ment. Subsequently, detected samples causing view disagreement were filtered so

that standard multi-view learning methods can be applied as usual.

Aside from above works, some other works are devoted to introducing other tech-

niques in multi-view learning. One [DFU11] proposed a low rank multi-view learn-

ing (LR-MVL) method, which is a spectral method dealing with a low dimensional

space. It has the advantages of being both computationally efficient as well as avoid-

ing becoming stuck in local optima, thus is able to be trained using large amounts

of data. Another study showed how to construct embedding projections from data,

such that the Euclidean distance yields a meaningful similarity measure for both

within-view and between-view. The experiments showed that the proposed nearest

neighbor retrieval is feasible, exceeding the performance over principal component

analysis and canonical correlation analysis as baselines. The use of both labeled

and unlabeled data addresses transductive learning, which can be integrated into
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multi-view learning [CmJ09]. The work introduced a linear smoother to represent

each view, thus the multi-view transductive learning can be studied under a com-

prehensive generalized fixed point additive modeling framework. In this framework,

the issue of view selection is handled by using a generalized AIC. The use of back

fitting and local-scoring type algorithms enables an efficient implementation.

3.3.2 Stacked Multi-view Learning

In data mining, stacking (stacked generalization) [Wol92] has been widely used, but

its underlying mechanisms are still not understood completely. An influential work

[TW99] pointed out two interesting facts: First, multi-response linear regression

(MLR) was a suitable meta level learner compared to decision trees, Naïve Bayes

and K-nearest neighbors (KNN). Second, class probabilities (soft) should be used

instead of class predictions (hard). The advantage of using class probabilities in-

stead of class predictions was confirmed in further studies [SPSH05]. An interesting

study argued that meta level correlation is crucial in stacking [FCS96]. Other en-

semble methods are bagging and dagging [TW97]. Bagging employs joint sample

bootstrapping, as opposed to dagging which uses disjoint samples. The extended

new methods were named as bag-stacking and dag-stacking, indicating comparable

results to bagging and dagging because no clear evidence suggested one being su-

perior to the other. Additionally, it was demonstrated that stacking was better than

selecting the best classifier from the ensemble by cross validation [Dz04]. More re-

cently, stacked graphical learning was proposed for collective classification, showing

that it was not only accurate but efficient as well [Kou07]. Voting and stacking

were together studied in information extraction systems [SPSH05]. Both voting and

stacking can benefit from using probabilistic estimates at the base-level. Stacking,

compared to voting, was proven to perform better or at least comparable over all ap-

plications. Stacking was also shown to improve the prediction of membrane protein

types [WYC06]. In this study, the SVM and instance-based learning were chosen as

base level classifiers, and C4.5 was applied as a meta level classifier. As a result, the

approach witnessed around a 20% overall accuracy gain.

Fig. 3.6 illustrates the framework of stacking. An information source (view or

feature subset) contains test and training data, which are used to construct the

meta level features. A base classifier is applied to the training data to yield the class
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Figure 3.6: Demonstration of stacking. CV: cross-validation. feature subset: view,
i.e., information source. prob.: probability.

probability estimates for both classes (assume two classes) using a 10-fold cross-

validation. The yielded class probability estimates serve as meta level features for

building the meta level training model. The meta level test feature is similarly

constructed by applying the same base classifier to the test data. However, the true

labels (if available) of the test data are reserved only for validating the final result.

In such a manner, the meta level classifier attempts to learn the relationship between

true decisions and the decisions made by various base classifiers.
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CHAPTER 4

Mining Discriminative Imaging Features

4.1 Gaussian Mixture Model and Model Selection: A Classification

Case Study

4.1.1 Motivation

Roughly speaking, the study of Alzheimer’s disease has focused mainly on the patho-

logical causes and the discrimination from other types of dementia or cognitive

impairment. This study is dedicated to distinguishing mild cognitive impairment

(MCI) from clinically diagnosable AD, MCI is a transitional phase to AD, which,

however, does not necessarily end up in it. Hence, distinguishing MCI from AD is

of great medical interest. Besides, classification cases as NC against AD and NC

against MCI are also investigated. For this purpose and, generally, diagnosing dif-

ferent forms of dementia, imaging techniques like MRI and PET are used routinely.

Despite the compelling evidence in favor of FDG-PET as a prognostic marker,

most experts concur that there is an immediate need for further efforts to improve

implementation of neuroimaging in current diagnostic paradigms, including the im-

provement of the image analysis methods. Previous studies suggest that improved

analytical methods such as principal component analysis [HFP+08], linear program-

ming discriminant analysis [YLTS14], support vector machines (SVM), Gaussian

process classification [YMC+13] or tree structured sparse learning [LZStADNI14]

may improve the overall diagnostic and prognostic performance. We propose an
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algorithm that is able to choose the optimal K by a model selection technique in

Gaussian mixture model (GMM). Therefore, the proposed novel CAD approach can

discriminate between NC, MCI and full-blown AD, which is often of practical in-

terest.

4.1.2 Materials and Methods

4.1.2.1 Data Acquisition

Experiments were performed on two independent datasets. One is from the publicly

available ADNI database (http://adni.loni.usc.edu/) and the other is an in-house

dataset of patients and controls recruited at the memory outpatient unit of the

Department of Psychiatry at Technische Universität München (TUM). The above

datasets are in the following referred to as ADNI and TUM, respectively. ADNI has

a large pool of PET (co-registered, averaged) images, which have been acquired on

various scanners using different imaging parameters. To eliminate the bias of these

factors, we selected images that have been obtained using the same scanner as well

as the same parameters, such as the number of slices. The patient information and

the PET scanner type are summarized in Table 4.1. Further details about the ADNI

recruitment procedures are provided in the Appendix A.1.

Prior to their use for image analysis, PET images had to undergo two pre-

processing steps: spatial normalization and smoothing (kernel size [8 8 8] mm),

which were achieved by SPM5. The spatial normalization ensures that the processed

image is of the size 91×109×91, which is in accordance with AAL [TMLP+02]. The

final step is the intensity normalization that was done by dividing each voxel by the

mean intensity value averaged over all brain voxels (grand mean normalization, the

non-brain voxels surrounding the brain were excluded). The second intensity nor-

malization method is called pSMC (primary sensorimotor cortex) and was reported

to be advantageous in a study [YLB+08]. Anatomically, the “Precentral_L, Pre-

central_R, Postcentral_L and Postcentral_R” regions in the AAL brain template

can be used as the primary sensorimotor cortex.

4.1.2.2 Gaussian Mixture Model and Model Selection (GMM+MS)

GMM [Bis06] is a parametric density estimation approach that assumes the data is

generated by more than one Gaussian distribution. It can cluster a point by assigning
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Table 4.1: Participant characteristics and scanner type. NC: normal control, MCI:
mild cognitive impairment, AD: Alzheimer’s disease, TUM: Technische Universität
München dataset, ADNI: Alzheimer’s Disease Neuroimaging Initiative dataset,
MMSE: Mini-Mental-State Examination.

Subjects Age MMSE Scanner Type
male:female mean±std mean±std

ADNI NC 30 (21:9) 74±5 28.6±1.35 Siemens/CTI

MCI 29 (23:6) 74±6 27.4±1.68 Siemens/CTI

AD 25 (15:10) 72±6 23.2±2.23 Siemens/CTI

TUM NC 16 (7:9) 66±6 29.3±0.70 Siemens Ecat HR Plus

MCI 30 (16:14) 69±7 26.3±2.41 Siemens Ecat HR Plus

AD 30 (18:12) 69±8 21.5±5.23 Siemens Ecat HR Plus

the cluster identifier to the Gaussian that contributes the largest probability. Given

a vector (data point) x, a GMM is defined as:

p(x|θ) =
K∑

k=1

πk N (x;µk,Σk), (4.1)

where µk, Σk and πk are the mean, covariance and mixing proportion respectively.

In addition, ΣK
k=1πk = 1, πk ≥ 0 and θ = {µk,Σk, πk}. N denotes the D-dimensional

Gaussian distribution:

N (X|µ,Σ) =
1

(2π)
D
2 |Σ|

1
2

exp
(

−
1

2
(X − µ)T Σ−1(X − µ)

)

. (4.2)

Expectation maximization (EM)4 [DLR77] is usually used to solve a GMM by the

following steps:

E-step: estimate the posterior probability pt
ij at t iteration as:

pt
ik =

πt
kp(xi|µ

t
k,Σ

t
k)

ΣK
k=1π

t
kp(xi|µt

k,Σ
t
k)

(4.3)

M-step: update the parameters µk, Σk and πk at t + 1 iteration based on the

probabilities from the E-step:

4 Since EM has great impact on machine learning and data mining applications, we give the
theoretical derivation of EM in Appendix A.3.
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πt+1
k =

1

N

N∑

i=1

pt
ik, (4.4)

µt+1
k =

∑N
i=1 p

t
ikxi

∑N
i=1 p

t
ik

, (4.5)

Σt+1
k =

∑K
k=1 p

t
ik(xi − µ

t
k)(xi − µ

t
k)T

∑N
i=1 p

t
ik

. (4.6)

EM is guaranteed to converge, so that a locally optimal solution is always assured.

However, one big concern in GMMs is the number of components/clusters (K) that

must be defined in advance, which can be a hard task. We employ the Bayesian

information criterion (BIC) [Sch78] to determine this parameter automatically. The

BIC is frequently used for model selection, since it considers a trade-off between

model fitting and model complexity. By adding a penalty term for the number of

parameters in the model, the BIC can alleviate the problem of overfitting, which

can be caused by increasing the likelihood by just adding parameters to the model.

The BIC has the form:

BIC = −2 log(likelihood) + log(N)P, (4.7)

where P is the number of free parameters to be estimated in the model and N

is the total number of data points. In a multivariate Gaussian, the number of free

parameter is (KD(D + 3))/2 + K − 1, due to K − 1 mixing proportions to decide,

KD mean values, and (KD(D + 1))/2 free parameters in the covariance matrix.

The model with the lowest value of BIC is selected as the desired model. Aside from

BIC, the Akaike information criterion (AIC) [Aka74] is also a common method for

model selection.

AIC = −2 log(likelihood) + 2P, (4.8)

The log-likelihood (L) of the GMM can be inferred as:

L(X|π,µ,Σ) =
N∑

n=1

log

{
K∑

k=1

πkN (xn|µk,Σk)

}

(4.9)
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=
N∑

n=1

log

{
K∑

k=1

Ak

}

, Ak is a multivariate Gaussian N (X|µ,Σ)

=
N∑

n=1

{

logAm + log

(
K∑

k=1

exp(logAk − logAm)

)}

, log-sum-exp trick

let Am = max{πiN (xn|µi,Σi)}, i ∈ 1, · · · ,K

=
N∑

n=1

{

log πm −
D

2
log 2π −

1

2
log |Σm|

}

−

N∑

n=1

{

1

2

N∑

n=1

(xm
n − µm)T Σ−1

m (xm
n − µm)

}

+

N∑

n=1

{

log

(
K∑

k=1

exp(logAk − logAm)

)}

,

where the “log-sum-exp” trick [Mur12] is a method for avoiding numeric underflow

and thus can improve the numeric stability when computing the BIC in a GMM

scenario. Continue writing out the Eq. 4.9, we can compute the log-likelihood of

the GMM, which is needed for computing Eq. 4.7 and Eq. 4.7.

log

(
N∑

n=1

An

)

= logAm + log

(
N∑

n=1

exp(logAn − logAm)

)

, (4.10)

where Am is the largest term among An. Continue writing out the Eq. 4.9, we

can compute the log-likelihood of the GMM, which is needed for computing Eq. 4.7

and Eq. 4.8.

It can be seen that AIC (the lower the better) has a lower penalty for model

complexity, because log(N)P usually is much larger than 2P . Because both AIC

and BIC consist of two terms, the final scores weight the relevance of these two

terms. In AIC, the term 2P does not contribute much to the final score as opposed

to −2 log(likelihood). However, log(N)P increases much faster when the model

becomes more complex (more clusters), thus the resulting BIC score stops growing

as the number of clusters increases. From Eq. 4.7 and 4.8, we see that AIC and BIC

suggest different quantities. Thus, they may yield different model selection results.

In the present study, we conduct experiments using both AIC and BIC, and report

more results on BIC. In the following, we review some reported studies comparing

BIC with AIC. Our experiments show that AIC and BIC yield comparable results,

40



4.1 Gaussian Mixture Model and Model Selection: A Classification Case Study 41

1 5 9 13 17

0

2000

4000

6000

8000

10000

12000

14000

16000

number of clusters (10th bin)

va
lu

e

 

 

−2log(likelihood)
2P
AIC

1 5 9 13 17

0

2000

4000

6000

8000

10000

12000

14000

16000

number of clusters (10th bin)

va
lu

e

 

 

−2log(likelihood)
log(N)P
BIC

1 5 9 13 17
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5
x 10

4

number of clusters (10th bin)

va
lu

e

 

 

BIC
AIC

12 54 97 139 182 224 267 309 351 394

0

0.5

1

1.5

2

x 10
5

number of clusters (30th bin)

va
lu

e

 

 

−2log(likelihood)
2P
AIC

12 54 97 139 182 224 267 309 351 394

0

0.5

1

1.5

2

x 10
5

number of clusters (30th bin)

va
lu

e

 

 

−2log(likelihood)
log(N)P
BIC

12 54 97 139 182 224 267 309 351 394
1.85

1.9

1.95

2

2.05

2.1
x 10

5

number of clusters (30th bin)

va
lu

e

 

 

BIC
AIC

(a) (b) (c)

(f)(e)(d)

Figure 4.1: BIC and AIC score displayed for the 10th (top) and 30th (bottom)
bin in 50 bin using pSMC normalization of the ADNI dataset. The AIC (red) and
BIC (red) values are simply −2 log(likelihood) (blue) plus 2P (green) and log(N)P
(green), respectively. Refer to Eq. 4.8 and Eq. 4.7 for the definition of AIC and BIC.
(a), (b) (d) and (f) show the AIC and BIC along with their components’ value. (c)
and (f) offers a direct comparison between AIC and BIC. The 10th bin contains 586
voxels, hence it is a small sample, in contrast to the large sample of the 30th bin con-
taining 12,414 voxels. Note that the term “sample” in this context does not mean the
number of patients, but the number of voxels to be clustered.

Table 4.2: Grade of evidence of the BIC difference [KR95].

BIC difference Evidence
0-2 weak
2-6 positive
6-10 strong
>10 very strong

cf. Tables 4.3 and 4.4.

A recent study [DBU+09] reveals a similar observation that illustrates model

selection discrepancy between AIC and BIC, preferring BIC to AIC for the sake of

favoring simpler models. In addition, another work [PZKM13] explicitly states that

“AIC has been shown to perform well at selecting the true number of factors when
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it exists, but only at small sample size N . BIC has been found to outperform AIC in

recovering the true K (number of clusters)”. Particularly, we observe that AIC and

BIC tend to agree with each other when the number of voxels (sample size) is small

(i.e., 586, cf. Fig. 4.1). As the number of voxels increases to 12,414, BIC reaches the

lowest value much earlier than AIC, which is illustrated in Fig. 4.1. Thus, BIC is

more appropriate when the number of voxels is large (greater than 3500 may mean

“large”, refer to work [BA04] to avoid a too complex model. As for the plot (c) in

Fig. 4.1, it can be seen that the AIC and BIC continues dropping as the number

of clusters increases. Thus, one may conclude that the more clusters, the better in

the small sample case. However, we can, at least, observe a dip if we test a larger

number of clusters. Because we intentionally impose that a cluster should at least

contain 30 voxels to avoid trivial clusters, more clusters are not necessary to be

tested (refer to Section 4.1.3.1 Parameters in Model).

Another study shows that BIC performs better than AIC in both small and large

sample size cases, claiming that AIC lacks the appropriate penalty to prevent over-

fitting [NST07]. The difference between our BIC models is greater than 10 (see plot

(c) and (f) in Fig. 4.1), thus it suggests strong evidence (cf. Table 4.2) that the

model difference is meaningful according to work on Bayes factors [KR95].

To empirically show the difference between AIC and BIC in this study, we show

the generalization error (GE, equivalently, 1−accuracy) demonstrated by Fig. 4.2.

From the 50 bins to 150 bins, we observe that BIC outperforms AIC on 8 cases (50,

60, 70, 80, 90, 110, 120, 140 bins) in terms of mean generalization error. BIC often

yields a certain bin that has the lowest GE, for example, in 60 bins, 70 bins, 90

bins, 110 bins, 120 bins, 140 bins and 150 bins. When we perform the classification

using all features extracted on all bins together (details are explained in Section

4.1.2.3 GMM+MS on 3D PET images), we see that BIC shows lower GE than

AIC demonstrated by the bottom plot of Fig. 4.2. The reason for this is that

selected features (on all bins) by BIC contain more discriminative information than

the features by AIC, which complies with the results of MCI against AD using

pSMC normalization using ADNI dataset. However, AIC shows better performance

than BIC in some other cases, such as MCI against AD using the TUM dataset. In

summary, AIC and BIC suggest generally comparable results across the two datasets

in different classification cases.
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Figure 4.2: Generalization error (GE) by BIC and AIC using pSMC normalization
of the ADNI dataset. The generalization error (equivalently, 1−accuracy) is com-
puted based on features (mean and standard deviation value) extracted from the
clusters in the individual bin (one bin among 50 bins, for example) via 10 times 10-
fold cross-validation. For example, a green point can represent the classification GE
using the n-th bin when we divide the whole brain voxels into 50 bins. The plotted
points are the bins that yield GE < 0.25, and these bins are highly predictive, thus
contribute to the final classification results. The x-axis represents only the number
of points, implying no ordering. The horizontal green line and red line are the mean
values computed from green circles and red crosses, respectively. The bottom plot il-
lustrates the generalization error from dividing brain voxels into 50 bins till 150 bins
after collecting top informative features from the individual bins.
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4.1.2.3 GMM+MS on 3D PET Images

We employ a clustering method (GMM) to group brain voxels into small regions

that exhibit both high similar intensity and geometric affinity. A PET image can

be viewed as three dimensional (3D) spatial data along with one extra dimension

that represents the intensity of each voxel. Thus, a voxel is denoted by a 4-tuple

(x, y, z, I) ∈ R
4, where x, y, z are the spatial coordinates and I is the intensity value.

We used NC PET images as reference images to obtain the clustering results and

used these clusters to extract the features from the NC, MCI and AD groups. Note

that the method is applied on the AAL (gray matter voxels of MNI space) defined

voxels, which constitute the gray matter in the brain. The mean intensity and

standard deviation of each cluster are subsequently defined as features. To ensure

the clusters have similar intensity values and are geometrically connected, we first

group the original voxels into a certain number (e.g., 100) of bins of equally sized

intensity ranges, and only then cluster each bin by the introduced methods based

only on the spatial information, i.e., the x, y, z coordinates. A bin is a data interval

that is described by a statistical histogram. The data falling into the same bin are

from a certain value interval, such that the data within the same bin are similar in

their values. Theoretically, it is hard to find the most appropriate number of bins

in advance, thus we tested different numbers from 50 to 150 with step size 10, i.e.,

50, 60, ..., 150. The best one can be chosen by a cross-validation on the training

data. In practice, we can keep track of the same cross-validation sampling, so that

the training data are ensured to be identical for running the various bins. Given

the training data, we can further split them into sub-training and sub-test data,

which are used to train and evaluate the model respectively. Evaluating the model

using the sub-test data gives a predictive accuracy. The yielded highest accuracy

of a certain bin corresponds to the most appropriate number of bins. Once the

desired number of bins is found, the same training procedure can be applied to the

whole training data to maximize the use of present training data. Therefore only

the training data is used to set the optimal parameters in the experiments. The

workflow of the proposed method is summarized in Algorithm 4.1 as well as the

Section 4.1.2.6.

If there are 1000 clusters formed using GMM+MS, then the image can be repres-
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Algorithm 4.1: Workflow of proposed GMM+MS clustering method on 3D
PET images.

• Stratified 10-fold cross-validation.

• Training phase (9 folds) Run different bins 50, 60, 70, ..., 150. Split training
data into disjoint sub-training and sub-test data.

1. Given a Mean NC image, divide the AAL defined voxels into the
specified number of bins, such as 50. Mean NC is averaged over all NC
images.

2. For each bin, run the GMM+MS method to yield the clusters.

3. Collect all the resulting clusters from all the bins.

4. Given a NC, MCI or AD image from the pool of sub-training data,
compute the mean (µ) and standard deviation (σ) of the voxels in each
cluster using the provided spatial information, i.e., of the cluster.

5. The image can then be represented as a feature vector by the mean (µ)
and standard deviation (σ).

6. Build SVM model using only the sub-training data, and the predictive
accuracy is computed for the sub-test data using the model. (The model
is trained on MCI and AD sub-training data, if the classification is MCI
against AD.)

Collect the computed accuracy from all bins.

• The resulting clusters correspond to the bin with the highest accuracy are
used as the most appropriate clusters for NC, MCI and AD images.

• Test phase (remaining 1 fold)

1. Construct the features for both training and test images described as
the steps of 4 and 5.

2. Build SVM model using the training data (9 folds), and obtain the
results using the remaining test data (1 fold).

ented as a 2000 (1000 µ and 1000 σ) dimensional vector. Generally, not all of these

features are informative, thus we applied a feature selection technique [CL06] to

choose the most discriminative ones for building the model. In this study, we empir-

ically used the top-150 most informative features for learning the model. From Fig.

4.3 of BIC, we observe that the classification accuracy increases in the beginning, but
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Figure 4.3: Number of features selected versus the classification accuracy using
pSMC normalization of the ADNI dataset on MCI against AD. Accuracy of BIC tend
to drop after selecting 150 features, and AIC tends to drop after 400.

drops after selecting too many features. 150 features appear to provide sufficient

classification relevant information, and more features may hamper the classifier’s

performance due to the well-known curse of dimensionality [Bis06]. As for AIC,

top-400 features were selected to perform the experimental comparison depicted by

Fig. 4.3. AIC needs more features than BIC, which may be the reason why AIC

divides voxels into more clusters so that the discriminative information are spread

over many clusters. It should be pointed out that the feature selection [SFK10] and

the model building steps only used information from the training set: no informa-

tion from the test set is used at any point in time (in other words, no information

leakage from the test set to the training set has occurred).

A support vector machine (SVM) was used to build the final classification model,

which is trained on the training data. The SVM has been shown to perform well

in a variety of applications, thus it was chosen to be the classifier in this study. A

tutorial [Bur98] offers a good introduction to the SVM. Apart from the SVM, other

classification methods could be used, such as Random Forests, Naïve Bayes, and

others. We do not attempt to compare the proposed method with SVMs, we rather

use an SVM as a classifier in the method. The suggested method aims at extracting

useful features from brain voxels, whereas SVMs are a classification method based
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on input features (voxels).

In terms of running time, it costs roughly 15 hours to cluster the mean NC image

from 50 bins to 150 bins. It takes only a few seconds to extract the features of a

given PET scan after having the clusters. Therefore, the proposed approach is very

efficient once the clusters are derived, since extracting features from future images

is fast. The code is implemented in MATLAB and runs on a machine with Intel(R)

Core(TM) i7-3632QM CPU @2.20 GHz, 8GB of memory. In addition, the LIBSVM

[CL11] package provides a fast classification, once the features are constructed.

4.1.2.4 Compared Methods

AAL approach: AAL [TMLP+02] defines 116 brain regions, and we extracted the

mean and standard deviation from each of these regions as features. Thus, in total

each image is represented by a 232-dimensional feature vector.

t-test: This hypothesis testing based method uses voxel-wise t-test and is widely

applied in neuroscience studies. A t-test based method, for example, was tested as a

method for feature selection with respect to predictive accuracy recently [CHC+12].

If the p-value is lower than a pre-defined threshold, e.g., 0.001, then this voxel is

regarded as an indicator voxel for two groups of individuals. The null hypothesis

is that the voxels in the two groups come from a population where the means of

the two groups are the same. Therefore, a p-value lower than 0.001 rejects the null

hypothesis, i.e., the two groups have different means. Hence, this voxel can be an

indicator voxel representing group difference. We performed a two-tailed t-test on

each of the voxels defined in an AAL region without multiple comparison correction,

with a threshold set to 0.001. Finally, the top-150 voxels with the lowest p-value

were chosen for learning, to be in line with our proposed method.

4.1.2.5 Test Protocol

The experiments were performed on two datasets (ADNI and TUM, cf. Table 4.1)

independently. For each of the datasets, we trained the model based on the training

data, evaluating the model using the held-out test data. The training and test data

were divided using 10-fold cross-validation. In statistics, 10-fold cross-validation is

commonly applied as an approach to testing a predictive model. In 10-fold cross-

validation, technically, the original dataset is roughly divided into ten subsets, and
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each time we select nine subsets for training the model and the remaining one for

testing. This procedure is repeated ten times, assuring that each subset is tested

exactly once and employed nine times for training. The ten results are then averaged

to produce a single estimate. (In case of very small data sets, results are aggregated

by instance and not by test set.) In the two-class classification case, each subset

contains roughly the same proportion of samples from the two classes, which is

called stratification. For MCI versus AD in the TUM dataset (30 MCI, 30 AD), for

instance, each subset consists of six samples with three from the MCI and three from

the AD group. Each time 54 samples are employed for training and six for testing.

After repeating the procedure ten times, we compute the mean value from all ten

runs as the final result. We used the implementation of “crossvalind” function in

MATLAB 2010 (R2010a) to achieve the stratified 10-fold cross-validation.

4.1.2.6 GMM+MS in Summary

To sum up, we tested different numbers of bins (50, 60 to 150 with a step size of

10) to decide how many bins the whole brain voxels should be divided into. For

example, if the brain voxels are divided into 50 bins, we run the GMM algorithm on

each of the 50 bins. The BIC suggests the optimal number of clusters in each bin.

The yielded clusters from the 50 bins are then collected as the final clusters in the

whole brain. The mean and standard deviation of each cluster (given x, y, and z

coordinates) are extracted as the feature values representing a PET scan. Finally,

every PET scan can be represented by a vector. A 10-fold cross-validation is then

used to train an SVM and test the classification performance based on the vectors.

Algorithm 4.1 further explains the procedure of the method applied to PET scans.

4.1.3 Experiments

4.1.3.1 Parameters in Model

The proposed method is able to find the optimal number of clusters by comparing

the BIC score computed from different models. Thus, a number of different model

selections must be performed. The simplest way to determine the number of clusters

in a model is to let the cluster number be equal to the number of voxels in each

studied bin (a voxel value interval). However, this is not only computationally

expensive, but we may also end up with clusters that include too many (too rough)
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or too few (too trivial) voxels. To this end, we intentionally defined a priori that

the resulting clusters should have 1000 voxels at most and 30 voxels at least. Then

the maximal number of clusters in a bin can be calculated as Cmax=#(voxels in a

bin)/1000, and the minimal is Cmin=#(voxels in a bin)/30. The numbers between

the Cmax and Cmin are used in these model selections. Fig. 4.4 depicts that the

number of derived clusters, in general, decreases as the number of bins increases.

However, the sharp drop appears in the beginning and the curve then gradually

reaches a nearly stable state until 150.

4.1.3.2 Performance Comparison

Table 4.3 shows that the GMM+MS method performs much better than the AAL

and t-test methods on the task of discriminating MCI from AD. In particular,

GMM+MS is statistically significantly better than the t-test method. Specifically,

regarding pSMC, the accuracy gain is 12.9% (80.2%−67.3%) with a p-value of 0.017

(calculated using the test suggested by [BF04]), and the specificity gain is 0.19

(0.80−0.61) with a borderline p-value of 0.066. Regarding the grand mean normal-

ization method, the accuracy, AUC, sensitivity and specificity all show better results

than the AAL and t-test approaches. As for NC versus AD, the three methods per-

form equally well, which may due to the fact that the most essential discriminative

information can be easily identified by all of them. As a result, further improvement

hardly can be achieved. The t-test approach reveals a slightly better result on NC

versus MCI using pSMC, whereas it shows similar performance using grand mean

normalization. However, the opposite is true on the TUM dataset (cf. Table 4.4),

which suggests that GMM+MS is much better than the other two methods. Again,

a comparable performance is shown for NC versus AD. Regarding MCI versus AD,

the grand mean still reveals improved results, and pSMC shows comparable perform-

ance. As for the comparison between AIC and BIC, there is no significant difference

revealed by the results, cf. Tables 4.3 and 4.4. A possible explanation is that both

AIC and BIC can discover discriminative clusters sufficiently well, despite the fact

that AIC favors a more complex model and BIC tends to choose a simpler one.

The ROC (receiver operating characteristic) curves shown in Fig. 4.5 and 4.6

reveal the different performance of various methods, depicting the false positive rate

against the true positive rate. The BIC (green) and AIC (red) curves cover a large

portion of the t-test and AAL curves regarding MCI versus AD on both ADNI and
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Figure 4.4: Relation between the number of clusters and the number of bins on
ADNI and TUM datasets based on the normal control PET scans.

TUM datasets. This observation complies with the results shown in Tables 4.3 and

4.4, i.e., the proposed method GMM+MS performs better than the compared ones

in terms of MCI versus AD.

To sum up, the proposed method performs substantially better than the compared

methods, in particular for MCI versus AD. Specifically, three comparisons out of four

(TUM and ADNI datasets, grand mean and pSMC methods) demonstrate improved

performance. A statistically significant result is also confirmed on the ADNI dataset.

The limited NC sample size of 16 in the TUM dataset, as opposed to 30 in ADNI,

may be one reason for less accurate results.

4.1.3.3 Results Analysis

In general, the proposed method achieved either salient performance improvement

or comparable results compared to more established methods using two different

normalization methods on two independent datasets. However, the results are not

perfectly consistent across the two datasets, which might be caused by different

types of scanners and different image acquisition methods, such as the amount of
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Table 4.3: Result summary of three different methods on ADNI dataset. “*” de-
notes the GMM+MS is significantly better than t-test approach at a statistical level
of 0.05. The p-value was calculated by the corrected paired t-test tailored for com-
paring learning algorithms [BF04]. A library for support vector machines (LIBSVM)
[CL11] was used to build the SVM models. A linear kernel is used, with a grid search
for parameter optimization. Grid search considers only the optimization of the pen-
alty parameter C in the linear SVM, selecting the value of C yielding the best classi-
fication result based on the training data. After the best value of C is found, we ap-
ply it to the test data. AUC: area under ROC curve. Each experiment was repeated
10 times with a 10-fold cross-validation. P: results using “primary sensorimotor cor-
tex” region for intensity normalization. G: results using “grand mean” method for
intensity normalization. Results from AIC are noted in brackets, following the BIC
results.

Accuracy% AUC Sensitivity Specificity

MCI vs. AD

P GMM+MS 80.2* (78.3) 0.85 (0.82) 0.80 (0.77) 0.80 (0.79)

AAL 74.2 0.81 0.75 0.74

t-test 67.3 0.79 0.72 0.61

G GMM+MS 77.1 (78.1) 0.83 (0.83) 0.85 (0.78) 0.68 (0.77)

AAL 73.2 0.80 0.77 0.68

t-test 69.5 0.81 0.76 0.62

NC vs. AD

P GMM+MS 89.1 (88.4) 0.97 (0.97) 0.92 (0.91) 0.86 (0.85)

AAL 88.2 0.97 0.90 0.86

t-test 89.1 0.97 0.92 0.85

G GMM+MS 87.7 (88.1) 0.96 (0.97) 0.93 (0.91) 0.81 (0.83)

AAL 88.8 0.96 0.90 0.87

t-test 87.1 0.95 0.93 0.79

NC vs. MCI

P GMM+MS 63.2 (62.9) 0.72 (0.72) 0.65 (0.67) 0.61 (0.59)

AAL 63.7 0.81 0.66 0.60

t-test 67.1 0.79 0.68 0.65

G GMM+MS 64.6 (61.3) 0.74 (0.72) 0.66 (0.66) 0.64 (0.56)

AAL 63.7 0.80 0.67 0.60

t-test 65.8 0.81 0.66 0.65

tracer used, whether an eye mask was used during the scan, and so forth.

The information in Tables 4.5 and 4.6 highlights the detailed brain region inform-

ation regarding the contribution to the classification. These regions include areas

which are typically involved in AD, such as the cingulum, precuneus and temporal

regions. The red points in Fig. 4.7 and 4.8 highlight these informative voxels (brain

regions), which correspond to the information in Tables 4.5 and 4.6.

The use of two independent datasets is a major strength of our study. In addition,
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Table 4.4: Result summary of three different methods on TUM dataset. Results
from AIC are noted in brackets, following the BIC results.

Accuracy% AUC Sensitivity Specificity

MCI vs. AD

P GMM+MS 72.7 (74.0) 0.81 (0.80) 0.77 (0.78) 0.68 (0.69)

AAL 74.8 0.80 0.77 0.72

t-test 72.6 0.79 0.77 0.68

G GMM+MS 73.8 (74.8) 0.82 (0.82) 0.77 (0.78) 0.71 (0.71)

AAL 70.5 0.78 0.72 0.69

t-test 65.5 0.71 0.68 0.63

NC vs. AD

P GMM+MS 90.5 (89.5) 0.93 (0.96) 0.94 (0.88) 0.89 (0.89)

AAL 89.0 0.95 0.94 0.85

t-test 89.4 0.97 0.86 0.90

G GMM+MS 91.6 (88.1) 0.97 (0.96) 0.94 (0.84) 0.90 (0.89)

AAL 89.0 0.95 0.91 0.88

t-test 92.0 0.98 0.93 0.91

NC vs. MCI

P GMM+MS 88.0 (87.2) 0.95 (0.93) 0.87 (0.85) 0.89 (0.89)

AAL 81.5 0.88 0.82 0.79

t-test 81.1 0.90 0.64 0.89

G GMM+MS 87.7 (85.3) 0.95 (0.92) 0.87 (0.82) 0.88 (0.87)

AAL 78.0 0.90 0.74 0.80

t-test 89.5 0.94 0.89 0.90

two different intensity normalization methods, namely primary sensorimotor cortex

and grand mean normalization, were applied to establish the experimental results.

Tables 4.3 and 4.4 show that the proposed method is better compared to two other

methods.

4.1.3.4 Error Analysis

To gain some insights into the classification difference between GMM+MS, AAL and

the t-test methods, we exert to investigating the errors committed by the classifier.

To be concise and illustrative, we take MCI against AD (grand mean normalization)

in the ADNI dataset as a running example. Table 4.3 shows that the proposed

method leads to an accuracy gain of 7.6% (77.1%−69.5%), which is a salient im-

provement. Looking at the misclassified images, we observe that a certain image is

misclassified by AAL 4 times and 10 times by the t-test approach, but without any

misclassification by GMM+MS. Therefore, this image, in fact it is an AD image,
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Figure 4.5: ROC curve of compared method on ADNI dataset. To plot the curve,
we collected the predicted probabilities for all the test sets in 10 times 10-fold cross-
validation, along with their true class labels. Refer to page 173 in the book written
by Witten et al. [WFH11] for the ROC curve plotting.

is selected for a more detailed study. Recall that the SVM needs to compute the

sign of y = wx + b to make a decision. Hence, knowing w and b is essential. Since

b is only a constant, we omit it from further analysis. The studied AD image is

regarded as the test data and all the rest is treated as training data. After training
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Figure 4.6: ROC curve of compared method on TUM dataset.

the model, the SVM returns the support vectors and the weights w (feature import-

ance), such that the classification can be made upon y = wx+b. To stay illustrative

and straightforward, we take a closer look at the Euclidean distance, since it gives

a direct impression of dissimilarity. To this end, all the data, training and test, are

multiplied by the weight vector w, such that each instance is re-weighted by their

importance in terms of the SVM. Subsequently, the Euclidean distance is calculated
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Figure 4.7: The informative regions (voxels) of MCI against AD using ADNI data-
set of the 45th layer. (a): coronal view (b): sagittal view (c): transaxial view. P:
primary sensorimotor cortex normalization; G: grand mean normalization. x, y and
z are the width (91), depth (109) and height (91) respectively. The red points rep-
resent the informative voxels, whereas other colors are only used to depict the brain
structure.

between the test image and each training image (MCI and AD group). Finally, the

mean weighted Euclidean distance is computed for the MCI and AD group, respect-

ively, which represents the dissimilarity between the test image and the group. We

compute the relative ratio to denote the dissimilarity:

ρ =
DMCI −DAD

DAD
, (4.11)

where DMCI is the mean distance between the test image and the MCI group,

and the same as for DAD. The greater the ρ, the more similar to AD. As a result,
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56 4 Mining Discriminative Imaging Features

Figure 4.8: The informative regions (voxels) of MCI against AD using TUM dataset
of the 45th layer. (a): coronal view (b): sagittal view (c): transaxial view. P: primary
sensorimotor cortex normalization; G: grand mean normalization. x, y and z are the
width (91), depth (109) and height (91) respectively. The red points represent the
informative voxels, whereas other colors are only used to depict the brain structure.

ρ(GMM+MS) = 0.26, ρ(AAL) = 0.07, ρ(t-test) = 0.03. Hence, GMM+MS indicates

the greatest value and thus it classifies this image correctly as AD. Therefore, the

features derived from GMM+MS enable the SVM to make the correct decision in

this case, in contrast to the AAL and t-test based methods.

4.1.4 Discussion

In this work, a machine learning approach, GMM+MS, is used to derive clusters

based on an averaged NC PET image. The proposed method has the advantage of

determining the number of clusters automatically, using a widely accepted model
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Table 4.5: Informative regions (voxels) of MCI against AD using ADNI dataset.
The top-ten clusters in GMM are recorded in each cross-validation, with different
scores assigned to these clusters. The most informative cluster has the highest score.
After 10 times 10-fold cross-validation, we rank these clusters according the overall
score and select the top-ten, which are marked by the red points in Fig. 4.7. Within
these ten clusters, their corresponding AAL brain regions are identified and ranked
according to the proportion denoted by the numbers. The region names remain as
noted in the AAL template. The proportion is calculated as the number of significant
voxels in the region divided by the number of total significant voxels.

1 P: Cingulum_Post_L: 18.4% 6 P: Cingulum_Mid_L: 5.74%
G: Precuneus_L: 28.4% G: Cingulum_Mid_L: 5.28%

2 P: Precuneus_L: 20.4% 7 P: Cerebellum_8_L: 2.87%
G: Cingulum_Post_L: 21.1% G: Calcarine_R: 5.05%

3 P: Precuneus_R: 17.9% 8 P: Cuneus_L: 3.53%
G: Precuneus_R: 14.2% G: Cingulum_Mid_R: 4.36%

4 P: Cingulum_Mid_R: 15.7% 9 P: Calcarine_R: 2.06%
G: Cingulum_Post_R: 10.0% G: Cuneus_L: 3.90%

5 P: Cingulum_Post_R: 10.0% 10 P: Occipital_Sup_L: 1.33%
G: Calcarine_L 5.50% G: Lingual_R: 1.15%

Table 4.6: Informative regions (voxels) of MCI against AD using TUM dataset.

1 P: Temporal_Mid_L: 29.3% 6 P: Cerebelum_6_L: 3.41%
G: Temporal_Mid_L: 40.8% G: Parietal_Inf_L: 3.75%

2 P: Temporal_Inf_L: 29.0% 7 P: Parietal_Sup_L: 1.28%
G: Temporal_Inf_L: 21.5% G: Postcentral_L: 3.65%

3 P: Fusiform_L: 13.0% 8 P: Angular_L: 1.28%
G: Occipital_Inf_L: 8.74% G: Fusiform_L: 2.11%

4 P: Occipital_Inf_L: 10.8% 9 P: Cerebelum_Crus1_L: 1.19%
G: Occipital_Mid_L: 8.65% G: Temporal_Sup_L: 1.83%

5 P: Occipital_Mid_L: 6.47% 10 P: Precuneus_L: 1.11%
G: SupraMarginal_L: 4.42% G: Angular_L: 1.25%

selection criterion. The model selection procedure assures that the derived model

has a good trade-off between model fitting and model complexity. In such a way, a

too complex model can be excluded, although it may have a good degree of model

fitting. On the other hand, if a model is too concise, it may not have a satisfying

level of model fitting. Therefore, the model selection procedure aims to keep the

model complexity in a good balance. The two-phased algorithm first divides the
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voxel values into different bins and then applies the GMM+MS on the coordinate

information at each of the bins to yield the final clusters. The resulting clusters have

similar intensity values and are also geometrically connected. The experimental res-

ults suggest that the proposed method can outperform the compared methods, in

particular for discriminating MCI from AD. The underlying reason can be that the

proposed algorithm is able to discover finer (smaller) clusters that are helpful in

discriminating MCI from AD, while the AAL and t-test approach may fail to reveal

such critical information. However, a little inconsistency is seen by the different

intensity normalization methods, which also suggests that the intensity normaliza-

tion procedure can be an important factor. In the previous section, we also try to

shed some light on the performance difference between these methods. Although

the SVM is usually applied as a black-box classifier, we can still employ the support

vectors and the weights to gain important insights. Since there are 150 features for

the GMM+MS and t-test methods, and 232 for AAL, they are high-dimensional

datasets, which makes it hard to analyze which features contribute to the correct

classification in the end. However, by introducing the relative ratio computed from

the Euclidean distance, it is possible to quantitatively show the difference between

these approaches. In terms of time complexity, the AAL method is the fastest be-

cause it is based on pre-defined brain regions. GMM+MS needs to work further

based on defined AAL regions. In addition, the number of bins tested can also in-

fluence the running time. As for the t-test method, it is simple, but requires more

memory to store the images for a group comparison, which can sometimes become

a problem if there are too many images. The proposed algorithm can be widely

applied as a feature extraction method on medical imaging data, which can assist

the medical imaging community to discover interesting discriminative brain voxels

pattern. The applicability of the algorithm may reach broader application scenarios

than merely AD classification, as long as imaging feature extraction is concerned.

In particular, we also provide a thorough study on the comparison between AIC and

BIC, which offers a clear guidance for the model selection issue. One limitation of

the work is the open problem of discriminating patients with MCI who progress to

clinically diagnosable AD from those who remain clinically stable: this remains an

important and challenging task. To deal with it, one may need a clearly defined

dataset (MCI follow-up) and a reasonably sound algorithm, which is left for future

work.
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4.1.5 Conclusions

The present work proposed a new clustering method, i.e., GMM+MS, for FDG-

PET images. It has the advantage of determining the number of clusters by a model

selection approach. This method is applied only on an NC image to define the

clusters, and then the resulting clusters can be used to extract features from the MCI

and AD images. Throughout the experiments on two independent datasets, we not

only demonstrate the merits of suggested method, but also show that the intensity

normalization and different datasets (acquired by different scanners) indeed play

some role in the results. In conclusion, our results suggest that the discriminative

information in the FDG-PET images can be extracted by the proposed approach.

4.2 Survival Analysis: A Follow-up Case Study

4.2.1 Motivation

In Section 4.1.2.2, we proposed method for classification of different dementia forms,

such as MCI versus AD. In this section, we investigate the differentiation between

patients who remain in the MCI stage (MCIMCI) and those that progress to AD

dementia (MCIAD). The classification between MCIMCI and MCIAD is of great

medical interest, because it may reveal valuable knowledge in dementia studies. To

this end, we first apply survival analysis and infinite Gaussian mixture model to

FDG-PET scans in order to distinguish MCIMCI from MCIAD. Second, we study

the usefulness of non-imaging data compared to FDG-PET imaging data.

4.2.2 Materials and Methods

4.2.2.1 Study Participants

Experiments were performed using data from the publicly available AD Neuroima-

ging Initiative (ADNI) database (http://adni.loni.usc.edu/) accessed in the year

2011. Only data from the first stage of ADNI (ADNI 1) were considered. ADNI

has a large pool of FDG-PET (co-registered, averaged) images, which have been

acquired on various scanners using different imaging parameters. To eliminate bias

due to these factors, we selected images that had been obtained using the same scan-

ner (Siemens/CTI) as well as the same parameters, such as the number of slices.
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To ensure that differences in the degree of cognitive impairment at baseline did not

affect our results, we only included patients with a Clinical Dementia Rating (CDR)

sum of the boxes score of 1.5, 2 and 2.5 [Mor93]. Patients were only considered

if they had at least five consecutive clinical assessments every six months up to a

maximum of 24 months in order to have sufficient data for the survival analysis.

The planned pre-selection of participants resulted in a total of 77 patients, includ-

ing 45 MCIMCI and 32 MCIAD. MCIMCI was defined as patients not meeting the

Institute of Neurological and Communicative Disorders and Stroke-AD and Related

Disorders Association (NINCDS-ADRDA) criteria for AD at their last follow-up as-

sessment, whereas MCIAD patients met the NINCDS-ADRDA criteria at least at one

of the follow-up visits. It is important to note that this is a censored dataset, which

includes patients that did not progress to AD dementia until their last follow-up

visit for various reasons including withdrawal of consent, death or limited length of

follow-up. This phenomenon is often studied using survival analysis [KK11], which

is also the essential technique applied in this work. The characteristics of the study

population are summarized in Table 4.7.

Time to progression from MCI to AD dementia was calculated as the time between

the baseline visit and the visit at which an AD dementia diagnosis was first estab-

lished. As a result, we obtain a dataset that allows us to train a model predicting

progression to AD dementia within 24 months.

4.2.2.2 Image Pre-processing

Prior to their use for image analysis, the FDG-PET images underwent two pre-

processing steps in the statistical parametric mapping software package SPM5

(Wellcome Functional Imaging Laboratory, London, UK), based on Matlab R2010a

(The Mathworks Inc, Natick, USA): spatial normalization and smoothing (kernel

size [8 8 8] mm). Spatial normalization ensures that the processed image is of

the size 91×109×91 voxels, which is in accordance with the Anatomical Automatic

Labeling (AAL) template [TMLP+02]. The final step is intensity normalization,

which was done by dividing each voxel by the mean intensity value averaged over

the primary sensorimotor cortex region, which has been shown to improve FDG-

PET based discrimination compared to other brain regions or the global metabolic

mean [YLB+08]. Anatomically, the “Precentral_L, Precentral_R, Postcentral_L

and Postcentral_R” regions in the AAL brain template can be used as the primary
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Table 4.7: Baseline information mean (std) of the patients. The protocol of
ADNI diagnostic and image acquisition is described in appendix. CDR: Clin-
ical Dementia Rating. CDT: Clock Drawing Test, five is the best score and
zero is the worst (Note that the representation of CDT score is contrary to
TUM CDT score, cf. Section 2.2). MMSE: Mini-Mental State Examination.
ADAS: Alzheimer’s Disease Assessment Scale. The higher the ADAS, the more
severe of mental illness. More explanation is referred to http://www.adni-
info.org/scientists/Pdfs/ADNI_GeneralProceduresManual.pdf

Subjects Age CDR Total CDT MMSE ADAS
(female:male)

MCIMCI 45 (13:32) 76 (8.2) 1.97 (0.3) 4.3 (0.8) 27.4 (1.6) 15 (6.6)
MCIAD 32 (12:20) 75 (6.9) 1.95 (0.3) 3.8 (1.1) 26.7 (1.7) 19 (4.6)

sensorimotor cortex. The analysis is performed only on the AAL defined brain re-

gions (gray matter voxels of MNI space). In total, there are 185,405 voxels in the

AAL brain template. Among 185,405 voxels in each FDG-PET scan, there is a por-

tion of voxels that contain discriminative information. Hence, the following method

is proposed to discover the discriminative voxels.

4.2.2.3 Identification of Discriminative Voxels

Cox regression is suitable to be applied when some censored records occur in a

dataset, which is exactly the scenario of the ADNI follow-up study (end of study

after, for example, five visits). Therefore, we use this technique in a first step to

select the discriminative voxels of FDG-PET scans.

4.2.2.4 Introduction to Cox Regression (Survival Analysis)

Cox regression is a semi-parametric survival analysis method. It makes no assump-

tion about the probability distribution of the survival time, assuming only propor-

tional hazards. Cox regression is also known as the Cox proportional hazards model

[Cox72]. The rate at which the failure happens or the patient suffers from a disease

is known as the hazard function. Let x1, x2, ..., xp be the values of p covariates X1,

X2, ..., Xp. The hazard function is defined as:

h(t) = h0(t) exp

(
p
∑

i=1

βixi

)

, (4.12)
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where β1, β2, ..., βp is the 1 × p vector of regression parameters and h0(t) is

the baseline hazard function at that time. The coefficient vectors of the covariates

are estimated using a maximum likelihood (ML) estimate, which is obtained by

maximizing a partial likelihood function. The hazard function focuses on failing,

whereas the survivor function focuses on “surviving” given survival up to a certain

time point. The hazard function h(t) and survivor function s(t) can be derived from

each other. The general formula for their relation is:

s(t) = exp



−

t∫

0

h(u)du



 . (4.13)

Since we apply Cox regression on each single voxel in this first step, we have only

one covariate β1 to determine, and x1 is the voxel intensity. Kleinbaum [KK11]

offers a more comprehensive introduction to survival analysis.

4.2.2.5 Cox Regression Applied to FDG-PET

Given the baseline PET scan, we run the Cox regression on each of the 185,405

voxels (AAL defined) independently on 77 studied samples, collecting the ones that

show a negative correlation β1 with hazardness at a p-value smaller than 0.01 (i.e.,

voxels that correlate positively with the survival time). The statistical significance

level of 0.01 instead of 0.05 is chosen because we apply no multiple comparisons

correction. The reason why we did not perform multiple comparisons correction is

that too many voxels may be discarded after correction. The resulting voxels are

first filtered out in this way, before they are combined in a classification model (see

below).

4.2.2.6 Selection of Neighboring Voxels by Infinite Gaussian Mixture Model

A number of discriminative (informative) voxels are identified by the Cox regression

analysis. Since an informative voxel’s neighboring voxels also tend to be informative

(in part due to the partial volume effect [RME98]), we need to eliminate such an

effect to avoid overfitting. We therefore applied the infinite Gaussian mixture model

to divide the voxels into clusters based on their x, y, and z coordinates (the resulting

clusters are illustrated in Fig. 4.9).
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The infinite Gaussian mixture model (IGMM) [Ras12] was proposed as an exten-

sion of the widely applied Gaussian Mixture Model (GMM) [Bis06]. In a GMM, the

number of clusters (components) is assumed to be fixed a priori, which is, in fact,

hard to do in practice. Alternatively, one can apply model selection technique to

further determine the number of clusters as illustrated in Section 4.1.2.2. On the

contrary, IGMM assumes the number of clusters is unknown (infinity, not to limit

the number), which is determined by the data in the end. The IGMM can be briefly

written as follows:

p(x|θ) =
K∑

k=1

πkN (x;µk,Σk), (4.14)

where µk, Σk and πk are the mean, covariance and mixing proportion respectively.

In addition, ΣK
k=1πk = 1, πk ≥ 0 and θ = {µk,Σk, πk}. N denotes the D-dimensional

Gaussian distribution:

N (X|µ,Σ) =
1

(2π)
D
2 |Σ|

1
2

exp
(

−
1

2
(X − µ)T Σ−1(X − µ)

)

. (4.15)

By allowing K →∞, IGMM extends the GMM in terms of the number of clusters.

The inference is achieved by Markov chain Monte Carlo (MCMC), performing Gibbs

sampling for a number of iterations. In the end, the voxel data neighbouring each

other are likely to be grouped in one cluster.

After applying IGMM, the clustered voxels in one cluster are adjacent to each

other. We subsequently chose 10% of the voxels in each cluster to represent the

respective cluster, selecting voxels spread widely across the cluster. Finally, we col-

lected the chosen 10% of voxels in every cluster as the discriminative voxels for the

prediction model. In our experiments, 10% empirically turned out to be optimal.

The reason may be that, too few voxels, such as 1%, may exclude some discrimin-

ative ones hence causing underfitting. On the other hand, too many voxels, such as

50% may still cause overfitting. Another reason is that the complementary inform-

ation conveyed by other non-imaging data (see Section “Building the Classification

Model”) cannot be fully used, due to the curse of dimensionality, if too many voxel

features are selected in building the classification model. The workflow is depicted

in Fig. 4.10.
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Figure 4.9: Illustration of significant voxels and the clustering results. (a): 3D view
of the same voxels shown in 2D. (b): 3D view of significant voxels after Cox regres-
sion. (c): 2D view of clustered voxels (same color represents same cluster) after ap-
plying the infinite Gaussian mixture model. (d): 3D view of the same voxels shown in
subplot (c). (e): 2D view of selected 10% voxels shown in subplot (c) and (d). (f): 3D
view of the same voxels shown in subplot (e).
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Figure 4.10: Workflow of proposed MCI conversion prediction. IGMM: infinite
Gaussian mixture model.

4.2.2.7 Building the Classification Model

The identified imaging voxels were used as features to build a classification model.

In this study, we employed support vector machines (SVM), which is a state-of-the-

art classifier. LIBSVM [CL11] was used to build the SVM models with a linear

kernel with grid search for parameter optimization. Grid search considers only the

optimization of the penalty parameter in the linear SVM, selecting the value that

yields the best classification result based on the training data. After the best value

is found, it is applied to the test data. To validate the model, the whole dataset was

split into two subsets, a training set used for model building and a test set used to

test the performance of the model. A 5-fold cross-validation was applied to split the

data, which was achieved by dividing it into five disjoint subsets, with four subsets

as training and the remaining subset as test dataset. In addition to the imaging

data (FDG-PET), we also investigated the non-imaging data (cf. Table 4.7) with

the aim to consider information derived from more than just one source or modality.
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The non-imaging data includes age, gender, the results of the Clock Drawing Test

(CDT), the Mini-Mental State Examination (MMSE) and the Alzheimer’s Disease

Assessment Scale (ADAS). Note that we did not use the Clinical Dementia Rating

(CDR) in building the model, because CDR is a stronger indicator used for the

diagnosis.

4.2.3 Experiments

The study samples show that the number of males is greater than the number of

females in both MCIMCI and MCIAD (cf. Table 4.7). The two groups of MCIMCI and

MCIAD indicate similar mean age and CDR at baseline. Other cognitive indicators,

such as CDT, MMSE, ADAS, all suggest that the MCIMCI group is at a better

cognitive status than MCIAD.

4.2.3.1 Brain Voxels Identified by Cox Regression Analysis

After applying a Cox regression analysis, a number of discriminative voxels served

as essential features to train the subsequent model. Some identified voxels are dis-

played in Fig. 4.11. Table 4.8 reveals these voxels’ associated regions defined in

the AAL template. The “Precuneus_L, Precuneus_R, Parietal_Inf_L and Angu-

lar_R” account for particularly high percentages compared to other regions. It is

known that the precuneus is involved in several essential cognitive tasks. For ex-

ample, episodic memory, visual-spatial abilities, and motor activity coordination

strategies. The parietal lobe includes symbolic functions in language and numbers

and interpretation of spatial information. The remaining identified regions, such

as angular, temporal and cingulum, are associated with some cognitive abilities as

language, mathematics and memory, etc.

4.2.3.2 Prediction of Progression to AD Dementia

The baseline accuracy of random guessing is at 45/(45+32) = 58.4% (45 MCIMCI

and 32 MCIAD) to predict that a patient does not progress to AD dementia within

two years. Fig. 4.12 demonstrates that the FDG-PET scan alone achieves a classi-

fication accuracy of 70%, which is higher than the accuracy of any other information

source. Classification accuracy reaches nearly 80% when all the sources of inform-

ation are pooled together to build the predictive model, the reason being that the
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Figure 4.11: 2D view of the interesting regions at the 45th layer based on the whole
dataset using Cox regression at a p-value of 0.01 (a): coronal view (b): sagittal view
(c): transaxial view. x, y and z are the width (91), depth (109) and height (91), re-
spectively. The red points represent the informative voxels (brain regions).

Table 4.8: The top-10 interesting regions and their proportions using the whole
dataset. The proportion is calculated as the number of significant voxels in the re-
gion divided by the number of total significant voxels. The region name refers to the
AAL template [TMLP+02].

Regions Percentage Regions Percentage

1: Precuneus_L 13.9% 6: Temporal_Mid_L 5.79%
2: Precuneus_R 11.3% 7: Parietal_Sup_R 5.05%
3: Parietal_Inf_L 10.8% 8: Parietal_Inf_R 4.71%
4: Angular_R 10.3% 9: Parietal_Sup_L 3.84%
5: Angular_L 7.78% 10: Cingulum_Mid_R 3.57%

model benefits from gaining complementary discriminative information from diverse

sources.

4.2.4 Discussion

Accurately predicting the course of MCI is an important clinical and academic aim,

but censored data often limit the ability to derive meaningful results. Survival ana-

lysis is a suitable statistical tool for this kind of situation since it allows to analyze

incomplete datasets. The current study corroborates findings of previous studies,

showing that a metabolic deficit in the temporoparietal cortex, the precuneus and the
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Figure 4.12: Comparison of classification accuracy of various information sources.
All: using all data (PET, ADAS, MMSE, Demo, ApoE and CDT) as features in the
SVM. ApoE: Apolipoprotein E.

limbic cortex offers valuable information in terms of dementia risk in MCI [MTH+08].

These brain areas are well known to play a role in episodic memory, visuospatial

processing and executive function, which all are typically affected early in the course

of AD [WWS12]. Our results also show that survival analysis is a viable statistical

method to discriminate between progressive and stable MCI cases. The usual lim-

itations of studies based on clinical cohorts recruited at specialized memory clinics

apply to our study. These include the lack of generalizability of the results to the

wider population due to highly selected MCI patients with a high a priori probab-

ility of suffering from AD; the lack of histopathological verification of the clinical

diagnoses; the limited follow-up period; and the restricted sample size. We also

demonstrate the benefits of a clustering algorithm (IGMM) to cluster the significant

voxels derived from the Cox regression model. These voxels can be clustered into

different groups with respect to their geometric similarity. By choosing a portion

(i.e., 10%) of the voxels in each cluster, we avoid using too many voxels and thereby

effectively reduce the risk of overfitting, while still maintaining informative voxels
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for dementia prediction. We also corroborate the view that combining imaging data

with neurocognitive and demographical information leads to improved classification

accuracy. To combine various sources of data, one may also use multi-view stacking

[LHS+11] (see also Chapter 3.3.2). However, the present research does not benefit

from it because of the limited classification performance of non-imaging variables.

In our case, collecting all data into a simple form for learning yields satisfactory

results. The improvement in classification accuracy can be attributed to the com-

plementary information provided by non-imaging variables, in other words, more

complementary sources of information together improve the training model.

4.2.5 Conclusions

The present study proposed a survival analysis method to analyze neuroimaging

data. It reveals the ability of FDG-PET to predict conversion from MCI to full-blown

AD dementia within 24 months. By treating data from stable MCIs as censored

records, we are able to use survival analysis to detect the brain regions that convey

discriminative information. This approach shows brain regions that are typically

associated with early clinical AD. Thus, it can be used for MCI to AD progression

prediction. The use of IGMM divides the discriminative voxels into various clusters,

and overfitting is eliminated by selecting a portion of voxels. Less discriminative

power is conveyed by the neurocognitive and demographical data. They, however,

still seem to provide complementary information, which altogether improves the

accuracy of prediction model.
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CHAPTER 5

Subgroup Discovery

5.1 Subgroup Discovery via Optimization

5.1.1 Motivation

Different subgroup discovery approaches differ in the way the search space is tra-

versed and the way subgroups are evaluated (i.e., quality measures [LKF+04]). These

aspects are not independent of each other, rather, they go hand in hand and dir-

ectly determine the kind of solutions that are obtained. For example, some search

strategies return subgroups with a certain degree of redundancy due to correlated

attributes. Consider the example “IF weather = snow AND season = winter, THEN

go skating”. It is quite likely that information about “winter” is unnecessary once

“snow” is identified. Since too many subgroups may incur the risk of overfitting as

well as imply tedious work on the side of human users interpreting the results, we

focus on the redundancy issue in this work and propose a novel search strategy to

avoid redundancy based on quadratic programming.

The most simple and straightforward search method, exhaustive search, enumer-

ates all possible combinations of conditions of attributes, however, it clearly becomes

infeasible when the number of attributes is high. A second common way is beam

search, where only a predetermined number of best partial solutions is evaluated at

each stage. It is a heuristic technique, as it discards non-promising alternatives in

order to keep the explored portion of the search space tractable. Applied to SD, it

picks the top most promising subgroups for each level of the search and discards the
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rest. On the other hand, standard pruning techniques cannot be used for subgroup

discovery, due to the non-monotonicity of the quality function. For instance, sub-

group sd[x1] = y may not be interesting, but its refinement may be interesting again.

Further, sd[x1] and sd[x2] may not be interesting, but sd[x1, x2] may still be. To deal

with this, an optimistic estimate [Wro97] is usually employed, ensuring safe pruning

of all refinements, if we know that all these refinements cannot pass the quality test.

More recently, a tight optimistic estimate [GRW08] was proposed to speed up the

search, which is also used for comparison in this work. The (tight) optimistic es-

timate is an (tight) upper bound of the quality of the promising subgroups. Having

subgroups at hand, people usually gauge the quality score, significance, coverage,

support, classification accuracy, rule complexity, and other measures [LKF+04].

The motivation of optimization based subgroup discovery is mainly two-fold:

Runtime is a critical issue when we cope with high-dimensional datasets. Conven-

tional methods, like beam search and optimistic estimate, may be computationally

very expensive in such a case. Thus, we resort to an optimization technique to al-

leviate the hard combinatorial problem. Secondly, too many similar patterns would

be too redundant and also laborious for end-users to comprehend. The proposed

approach can identify correlated variables such that the resulting patterns can be

less redundant but still predictive.

5.1.2 Subgroup Discovery via Quadratic Programming (SDVQP)

Conventional SD search methods, such as beam search and the optimistic estimate,

evaluate subgroup rules individually, accompanied by two problems, i.e., the re-

dundancy of subgroups and the nature of the exponential search space. The former

is caused by treating each subgroup rule individually and generating rules that re-

semble each other and convey similar information. The latter is due to the inherent

nature of the exponential search space. To reduce the redundancy and alleviate the

combinatorial problem, we resort to an optimization technique (quadratic program-

ming: QP) that iteratively discovers subgroup rules. At each iteration, QP selects a

small number of useful attributes, which are subsequently analyzed in an exhaustive

search. Then a number of rules will be applied and the samples covered by these

rules are assigned new weights. The next iteration starts with a recalculated qual-

ity measure and the procedure is repeated until the stopping condition is met (cf.
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Algorithm 5.1: Beam search

Data: F : set of feature values, d : maximum beam depth, k : beam width, R :
subgroup rule, ρ : quality measure, D : qualified rule set.

D ← ∅, cands ← ∅1

while depth ≤ d ∧ improvement in beam do2

for i = 1 to k do3

Rij ← ∅4

for j = 1 to |F | do5

Rij: formed by adding a new feature value to old rule6

cands ← cands ∪ Rij7

if ρ(cands) ≥ mimimum quality then8

D ← D ∪ Rij9

end10

end11

end12

beam ← top k rules in cands13

depth + 1;14

end15

return D16

Algorithm 5.2).

Generally, QP is a technique that leads to a desired solution given an objective

and defined constraints, and thus especially suitable for yielding a globally (maybe

locally) optimal solution in the presence of independent factors. The factors, in SD,

can be attribute dependency and/or a quality measure. Attribute dependency nat-

urally forms a quadratic term (wTHw in Eq. 5.2, “T ” denotes matrix transpose),

linking attributes in a pair-wise fashion5. The quality of individual attributes is

viewed as a linear term (QT w in Eq. 5.2), representing the contribution of an at-

tribute with respect to a given target. Therefore, the interaction between attributes

as well as attribute contribution can be combined into one objective function that

forms the core of the quadratic programming problem. The solution to the problem

is a weight vector (w) in which the non-zeros are further used for exhaustive search

to actually find the SD rules. The identified attributes should have low correlation,

5 Partial correlation may be useful if we want to investigate the dependency between two variables
after removing the effect of all others.
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but at the same time high quality with respect to the target.

To be more precise, the quadratic program of SDVQP is defined as follows:

maximize
w∈Rn×1

F = −1
2wTHw +QT w.

subject to
∑n

i=1 wi ≤ t

wi ≥ 0,

(5.1)

where H ∈ R
n×n is the pair-wise mutual information matrix (symmetric, n being

the number of attributes), since mutual information is non-negative, so Hij ≥ 0; t

controls sparsity; Q ∈ R
n×1 contains the quality score ϕ and is measured by the

function WQM described in Algorithm 5.2. Specifically, if a certain value in an

attribute has a support greater than 0.5 with respect to a target class, then it is

regarded as an indicator for this target, thus its quality score is added to the total

quality of this attribute (Qi =
∑m

j=1 ϕ(attij |supp(attij > 0.5)) ≥ 0), where m is the

number of distinct values in the ith attribute). In Eq. 5.1, the objective function F is

quadratic and the constraints are linear, thus it is standard quadratic program6 that

can be solved by methods such as the interior point method. It is noteworthy that it

is possible to weight Eq. 5.1 as F = −1
2(1−α)wTHw + αQT w, α ∈ [0, 1], allowing

different contributions of the quadratic and the linear term. The proper value of

α could be set via a cross-validation with respect to a quantity like classification

accuracy. However, we set α = 0.5 in this work.

Definition of Entropy:

H(X) = −
∑

x∈X

p(x) log p(x), (5.2)

where p(x) is probability distribution, log is logarithm with base 2 since information

is transmitted in 0 and 1.

Mutual Information (MI) is a measure of the statistical dependence between

two variables. Different from other measures like Pearson’s ρ, MI can reflect also

the non-linear relationship between variables. Let X and Y be two sets of discrete

6 Quadratic programming has been used for feature selection before by Rodrigue-Lujan et al.

[RLHEC10].
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Algorithm 5.2: Subgroup Discovery via Quadratic Programming (SDVQP)

Data: SR: subgroup rules, d: maximum number of attributes in SR, ρ:
quality measure, δ: quality threshold, S: qualified subgroup rules, |att|:
number of attributes, |atti|: number of possible values (conditions) in
ith attribute, N : number of samples.

Initialization: w← arg max
w
−wTHw +QT w, Z ← [1, ..., 1]T of length N , i.e.,

1

the initial weight for each sample is set to one, iter ← 0

while
|F iter−F iter−1|

F iter > tolerance and iter ≤ maxIter do2

w← arg max
w
−wTHw +QT w

3

select non-zero weights in w as candidate attributes for subgroup discovery4

using exhaustive search, if number of non-zero weights is greater than d
then select top-d
S ← S ∪ SR (ϕ(SR) > δ, Eq. 3.6)5

M ← number of times each sample covered by SR6

for i = 1 to N do7

Zi = e−Mi (new weights calculated for samples)8

end9

Q←WQM(Z, data)10

iter ← iter + 111

F ← compute Eq. 5.412

end13

WQM: weighted quality measure:14

for i = 1 to |att| do15

q ← 016

for j = 1 to |atti| do17

if supp(attij, Z) > 0.5 then18

q ← q + ϕ(attij , Z)19

end20

end21

Qi ← q22

end23

random variables, then MI is defined as:

H(X;Y ) =
∑

y∈Y

∑

x∈X

p(x,y) log
p(x,y)

p(x) p(y)
, (5.3)

where p(x,y) is the joint probability distribution of X and Y , respectively, p(x)
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and p(y) are the marginal probabilities. Eq. 5.3 can be rewritten as H(X;Y ) =

H(X) + H(Y ) − H(X,Y ), where H(X) = −
∑

x∈X p(x) log p(x) and H(X,Y ) are

the entropy of X and the joint entropy of X and Y respectively. If X and Y are

independent (X ⊥⊥ Y ), then H(X,Y ) = H(X) + H(Y ) ⇒ H(X;Y ) = 0. Once X

and Y are totally dependent (e.g., identical), then H(X,Y ) = H(X) = H(Y ) ⇒

H(X;Y ) = H(X) ≤ log |X |, assuming that the random variable X takes on possible

values X , where equality is achieved only if X is a uniform distribution. After matrix

multiplication, Eq. 5.1 can be equivalently expressed as:

F =−
1

2
w2

1H11 − . . .−
1

2
w2

iHii −w1w2H12 − . . .−wiwjHij + . . .

+Q1w1 + . . . +Qiwi, (i, j ∈ [1, . . . , n]). (5.4)

Hii in Eq. 5.4, self information, does not reflect the variable interaction, thus it

seems that one can safely discard the terms 1
2w2

iHii to obtain a simplified version:

F∗ = −w1w2H12−. . .−wiwjHij +Q1w1+. . .+Qiwi, (i, j ∈ [1, . . . , n], i 6= j). (5.5)

However, if we maximize F∗ instead of F , we will arrive at a solution that selects

always a single variable exhibiting maximal quality Q. Thus we have the following

proposition.

Proposition 1: To maximize function F∗, a full weight will be assigned to a single

variable and all others to zero. Without loss of generality, we let
∑n

i=1 wi = 1.

Proof. Let Qp be the maximal quality among Qi (i = 1, ..., n), i.e., Qp > Qq ≥ 0,

p 6= q, p, q ∈ [1, ..., n].

F∗ = −wiwjHij +Qiwi (i, j ∈ [1, ..., n], i 6= j) (5.6)

≤ Qiwi (wi,wj,Hij ≥ 0) (5.7)

= Qpwp + . . .+Qqwq (p, q takes on specific value of index i) (5.8)

≤ Qpwp + . . .+Qpwq (Qp > Qq) (5.9)
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= Qp(wp + . . .+ wq)

(
n∑

i=1

wi = 1

)

(5.10)

= Qp (5.11)

Thus, the maximal value of F∗ is upper bounded by Qp, hence a full weight is

certainly given to wp = 1 to reach the maximum.

Consequently, only a single variable is chosen for subgroup discovery, which ends

up with merely a single subgroup description (rule description with one attribute).

However, subgroup discovery also aims at finding complex SD rules to gain some

interesting insights, therefore maximizing Eq. 5.5 is not a preferable approach. In

contrast to Eq. 5.5, Eq. 5.4 is a reasonable formulation for our purpose, because in-

troducing w2
iHii can avoid assigning the full weight to a single attribute and ensures

that the variable interaction term wiwjHij plays some role in the optimization.

To maximize Eq. 5.4, the optimization program needs to select variables that

together contain high quality (i.e., high Qi) and with the least level of dependence

(redundancy). In particular, non-zero weights of w are the ones that contribute

the most to the objective function F , therefore their corresponding attributes are

selected for SD using exhaustive search. Since we intentionally impose t in Eq. 5.1

to be a small value, most of the weights are set to zero. Thus, it is realistic to apply

exhaustive search on only a couple of attributes. In the first iteration, all samples

are untouched and hence they are equally weighted. After the first iteration, some

samples are covered by certain subgroup rules, and their new weights are computed

as Z = e−M , where M is the number of times an example has been covered. In

such a way, unused samples contribute more to the score in Eq. 3.6. Alternatively,

a multiplicative decrease 1
M+1 can also be considered, in order to have a smoother

drop of example weights. Consequently, also the number of discovered subgroup rules

would be more than using the exponential reweighting. However, we do not re-weight

samples in beam search (cf. Algorithm 5.1) and the optimistic estimate, because

they will very likely deliver single rules (rules with only one attribute condition) and

yield too few complex rules, in particular when using the exponential reweighting.

As the sample weights are recalculated after each iteration, the quality measure Q

(cf. line 10 in Algorithm 5.2) is immediately updated. However, we do not update

the mutual information matrix H, because it encodes the variable interaction that
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Figure 5.1: (a): Effect of sparsity control in the first iteration on the wine dataset.
The numbers listed on the bar represent the selected attributes (i.e., w(atti) 6= 0), the
order does not reflect their importance. Attribute 7 has the highest weight and hence
is chosen first. (b): Objective function F on 12 datasets with respect to the positive
target class. Error bars indicate the standard deviation from 10-fold cross-validation.

indicates the inherent characteristics of the data. In addition, the algorithm needs

to revise its coded information to guide the proper selection of subset attributes.

Therefore, it should be kept unchanged.

Parameter Setting:

Parameter Setting I: sparsity control (t): The sparsity control parameter

t was set to 0.1, Fig. 5.1(a) illustrates the impact of t with respect to non-zero

weights (wi 6= 0). A larger t would return us more non-zero weights. Moreover, the

choice of t is not particularly critical, because the most essential attributes always

rank on top. Hence, even an inappropriately high t value still permits us to select

the most influential attributes by picking the top ones. As shown in Fig. 5.1(a), a

larger t always covers the selected attributes produced from a lower t, which suggests

the consistency of variable selection yielded by the sparsity control parameter. To

theoretically prove the consistency, we need to resort to the objective function (Eq.

5.1). Because the mutual information matrix H is not a positive definite matrix (cf.

Proposition 2), Eq. 5.1 is not a convex function according to optimization theory,

which indicates that a global maximizer might not be guaranteed, instead some local

minimizer may be found. As a consequence, the theoretical proof of consistency of

sparsity control is not assured. However, we empirically show that, in practice, the
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Figure 5.2: Effect of sparsity control. (a): mammography dataset. (b): breast can-
cer dataset. (c): australian statlog dataset. (d): credit dataset.

consistency is still well preserved on the randomly chosen four UCI datasets that

are depicted in Fig. 5.2.

Parameter Setting II: termination condition (tolerance): When sample

weights are newly weighted in each round, their corresponding counting statistics,

such as support and quality, are generally decreasing, but the objective function value

is not guaranteed to decline, since different attributes might be picked up at the next

round and therefore an even higher value of F may emerge. As a consequence, the

value of
|F iter−F iter−1|

F iter (denoted as ∆ (ov)) may not reach the specified tolerance

(10−4) after several iterations. However, it will, in the long run, drop to a steady

state as demonstrated in Fig. 5.1(b). Thus the algorithm terminates after the
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maximum number of iterations maxIter. From Fig. 5.1(b), we observe that ∆ (ov)

reaches a stable state after 20 iterations. Thus, we may use 20 as a rule of thumb

to set maxIter.

Proposition 2: Mutual information matrix is not positive definite.

Proof. Linear algebra states that a symmetric matrix H is positive definite if

xTHx > 0, ∀x 6= 0. The mutual information matrix H ∈ R
n×n is symmetric

and its entry is denoted as Hij. Let x be a n × 1 column vector, x ∈ R
n×1. Then,

the matrix form of xTHx can be written as:

xTHx =
[

x1 x2 . . . xn

]










H11 H12 . . . H1n

H21 H22 . . . H2n

...
...

. . .
...

Hn1 Hn2 . . . Hnn



















x1

x2

. . .

xn










(5.12)

=
[

x1 x2 . . . xn

]










∑n
i=1 H1ixi

∑n
i=1 H2ixi

. . .
∑n

i=1Hnixi










(5.13)

= H11x
2
1 +H12x1x2 + . . . +H1nx1xn (5.14)

+H21x2x1 +H22x
2
2 + . . .+H2nx2xn + . . . (5.15)

+Hn1xnx1 +Hn2xnx2 + . . .+Hnnx
2
n

=
n∑

i,j=1

Hijxixj. (5.16)

If n = 4, then xTHx can be expanded as H11x
2
1 + H22x

2
2 + H33x

2
3 + H44x

2
4 +

2H12x1x2 + 2H13x1x3 + 2H14x1x4 + 2H23x2x3 + 2H24x2x4 + 2H34x3x4, since Hij =

Hji for symmetric matrix. It is sufficient to show a counter example to com-

plete the proof. For example, if a data set is










3 4 2 5

1 4 4 4

5 4 4 3

1 3 2 2










and the correspond-
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ing mutual information matrix H is










1.5 0.3 0.5 1.5

0.3 0.8 0.3 0.8

0.5 0.3 1.0 1.0

1.5 0.8 1.0 2.0










and the column vector

x =
[

7.2 5.4 4.9 −9.9
]T

, then xTHx = −0.19 < 0, which violates the necessary

condition for a matrix being positive definite. Therefore the mutual information

matrix is not positive definite.

5.1.3 Experiments

The different methods are performed on a set of benchmark UCI datasets [FA10] as

well as a real-world medical dataset on Alzheimer’s disease.

5.1.3.1 Experimental Results on UCI Dataset

Since subgroup discovery can be evaluated by different measures [LKF+04], we focus

on cover redundancy, runtime, predictive accuracy and rule complexity. To measure

predictive accuracy as well, we conduct a 10-fold cross-validation. The rules were

built on both classes. To obtain a prediction for a new instance, the quality score

ρ was summed for all the subgroups covering this instance for both classes. The

class label with the highest overall quality is assigned. The algorithm can also be

applied to multi-class problems if we perform one-versus-all or pairwise classification

for the reduction of multi-class to binary. In the experiments, parameters were set

as follows: a = 1 in Eq. 3.4, tolerance = 10−4, δ = 0.01 (quality threshold), and

d = 4 (maximum number of conditions allowed in a subgroup rule).

As for cover redundancy CR, SDVQP nearly always halts with a lower value than

other methods, which suggests a better rule diversity and therefore its resulting rule

set is less redundant.

Results for the classification accuracy in Table 5.5 suggest that SDVQP performs

better than beam search and the tight optimistic estimate. The mean classification

performance on 12 datasets reaches 82.5%, which is the highest. Rule complexity is

indicated by “avg(RF)”, which measures how many attributes form a rule on average.

Beam search and TOE subgroup rules have higher complexity than SDVQP rules,

cf. Table 5.5. The results summary of Table 5.5 is provided in Table 5.2, in which
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Table 5.1: Description of 12 UCI dataset [FA10]. †: samples with missing values
were removed. ‡: multi-class datasets were converted to binary by merging several
classes to one, i.e., the largest versus the rest. The continuous attributes were discret-
ized by entropy-based discretization.

Dataset # Samples # Attributes # Classes

mammography [ma]† 830 5 2

car‡ 1728 6 4

liver disorder [liver] 345 6 2

ecoli‡ 327 7 5

pima 768 8 2

glass‡ 214 9 6

breast cancer wisconsin [bw]† 699 9 2

wine‡ 178 13 3

heart statlog [heart] 270 13 2

australian statlog [aus] 690 14 2

credit approval [credit]† 653 15 2

congressional voting [con]† 232 16 2

the “RF” is not reported because it is hard to judge whether a short rule or a long

rule is better.

In terms of runtime, SDVQP clearly outperforms the other approaches in the

comparison, especially on higher-dimensional datasets, cf. Fig. 5.4. In beam search,

as the beam becomes larger, the search space expands as well so that also more

time is required. As for TOE, candidate generation is a time-consuming step at

each level. Candidates for the next level are generated from qualified ones from the

current level, which sometimes can cause memory problems.

Finally, Fig. 5.3 gives an example of how redundancy is handled by SDVQP. Fig.

5.3(c) shows that attributes 2, 4, 7 and 13 are selected, since they have non-zero

weights and also exhibit a high quality score, as shown in Fig. 5.3(b). Interestingly,

attribute 6, marked as red, has higher quality than 2 and 4, but is not chosen.

The right-hand side table indicates that attribute 6 has high interaction with 2, 7

and 13, which are already picked, and therefore attribute 6 is ruled out. If it were

chosen, some degree of redundancy would be introduced into the final subgroups.

Eq. 5.4 makes sure that not only high quality contribution is considered, but also
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Figure 5.3: Illustration of handling correlated attributes in SDVQP using the pos-
itive class of the wine dataset. (a): MI matrix. (b): attribute quality in the first it-
eration. (c): computed attribute weight (w). The columns in the table are selected
attributes (cf. Fig. 5.3(c)) and the rows are those attributes that share high MI with
them, which are ranked in this order (cf. Fig. 5.3(a)).
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Figure 5.4: Runtime comparison on 12 datasets on log scale. Beam search with
width 5, 10 and 15 was tested. The code was implemented in Matlab and runs on a
machine with Intel(R) Dual Core(TM) i5 CPU @2.53 GHz, 4GB of memory.

low interactions among the variables. Thus, if two attributes share a high MI value,

they would overall decrease the score of the objective function F . However, clearly,

the issues of redundancy and feature correlation are quite subtle and need to be

investigated further.
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Table 5.2: Results summary of Table 5.5 with the comparison of SDVQP versus
compared methods (times of Win, Tie and Loss). Win: if proposed method SDVQP
is better than compared method at the significance level (p-value < 0.05). Tie: if no
significant difference is reported. Loss: SDVQP is significantly worse than the com-
pared method. The p-value is calculated by the corrected paired t-test tailored for
comparing learning algorithms [BF04]. In beam search, the beam width was set to
5, 10, and 15, respectively. b5: beam search method with beam width 5; results were
obtained using all the returned subgroup rules. b*5: beam search results were ob-
tained using the same amount (top ones) of rules as in SDVQP. For example, suppose
|SR(SDVQP )| = 20, then select top-20 rules in beam*5 for comparison. So is the
same as beam*10 and so on. acc: accuracy%; avg(RF): average number of attributes
covered by a rule in a rule set for both classes. CR: cover redundancy [vLK11].

b5 b*5 b10 b*10 b15 b*15 TOE TOE*

acc
Win 4 2 4 2 4 2 5 2

Tie 8 10 7 10 7 10 7 10

Loss 0 0 1 0 1 0 0 0

CR
Win 11 11 11 11 11 11 11 11

Tie 1 1 1 1 1 1 1 1

Loss 0 0 0 0 0 0 0 0

Table 5.3: Description of Alzheimer’s disease dataset. AD: non-AD. Education is
divided into four categories, “Realschule”: 1, “Hauptschule”: 2, “Gymnasium”: 3,
“Hochschule”: 4. ApoE is of five types and their respective numbers are given in the
third and fourth row. ApoE 23: ApoE E2/E3, etc.

class sex education age CDT MMSE ApoE

(female, male) (1, 2, 3, 4) (23, 24, 33, 34, 44)

AD (23) 12, 11 9, 13, 1, 0 69 3.4 21 0, 1, 12, 7, 3

AD (47) 26, 21 18, 25, 2, 2 67 2.1 26 5, 1, 16, 22, 3

5.1.3.2 Experimental Results on Alzheimer’s Disease Dataset

The Alzheimer’s disease dataset was provided by the psychiatry and nuclear medicine

departments of Klinikum rechts der Isar of Technische Universität München. It

comprises both imaging data and non-imaging data. The imaging data is in the

form of F18-fluorodeoxyglucose positron emission tomography (PET) scans, which

reflect the metabolic activity of the human brain and is an established biomarker of

AD [Drz09]. We build on the data by Schmidt et al. [SHM+10] to evaluate our and
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Figure 5.5: Results summary of Alzheimer’s disease dataset. The figure depicts the
runtime comparison of different methods. The table shows the same statistics as in
Table 5.5. acc: accuracy%; avg(RF): average number of attributes covered by a rule
in a rule set for both classes. CR: cover redundancy [vLK11]. beam 5: beam search
method with beam width 5; results were obtained using all the returned subgroup
rules. beam *5: beam search results were obtained using the same amount (top ones)
of rules as in SDVQP.

competing methods. In this work, the PET scans were categorized into different

clusters according to the intensity of the images. The optimal number of clusters

was chosen according to the silhouette coefficient [KR90] based on the k-Medoids

clustering method. We use the results yielded by k = 16 clusters. Since some of the

clusters include too few cluster members, they are filtered out. The present study

considers eight clusters, namely cluster 1, 4, 5, 6, 7, 9, 11, 14 and their respective

numbers of PET images in these clusters are 4, 1, 4, 4, 0, 1, 6, 3 for AD and 3, 15,

14, 3, 2, 0, 3, 7 for non-AD.

On the other hand, the non-imaging data consist of demographic (e.g., gender,

education, age) and clinical data. The clinical variables encompass two different

psychometric tests, which are routinely used to assess a patient’s overall cognitive

performance. The first test is the clock drawing test, which requires the patient to

draw a clock reading a specific time; it is scored between one (best) and six (worst).

The second test is the MMSE, a battery of tests covering a range of cognitive domains

with scores ranging from 30 (best) to 0 (worst). In addition, the Apolipoprotein E
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Table 5.4: Selected subgroup descriptions (SD) using SDVQP. The score ρ is calcu-
lated as in Eq. 3.4.

SD1: IF MMSE ≤ 25 THEN AD (ρ = 0.18)

SD2: IF MMSE ≤ 25 AND ApoE = E3/E3 THEN AD (ρ = 0.08)

SD3: IF cluster = 11 THEN AD (ρ = 0.05)

SD4: IF CDT = 5 THEN AD (ρ = 0.02)

SD5: IF ApoE = E3/E3 THEN AD (ρ = 0.02)

SD6: IF MMSE > 25 THEN non-AD (ρ = 0.18)

SD7: IF CDT = 1 THEN non-AD (ρ = 0.08)

SD8: IF cluster = 4 AND MMSE > 25 THEN non-AD (ρ = 0.07)

SD9: IF MMSE > 25 AND ApoE = E3/E4 THEN non-AD (ρ = 0.07)

SD10: IF MMSE > 25 AND ApoE = E3/E3 THEN non-AD (ρ = 0.06)

genotype (ApoE) is also taken into account, since it is the strongest known genetic

risk factor for sporadic, late-onset (AD).

In total, there are seven variables to investigate, namely image cluster, gender,

education, age, CDT, MMSE and ApoE. We only consider the patients who have all

this information, and therefore we end up with 70 patients’ records, in which 23 are

categorized as AD, and the remaining as non-AD, including individuals with only

minor cognitive deficits (so-called mild cognitive impairment, MCI) or depression.7

The table in Fig. 5.5 suggests that the tested methods are comparable in terms

of accuracy, rule complexity and cover redundancy. The main advantage of the

proposed method is the runtime that is shown by the plot.

In Table 5.4, rule description 1 (SD 1) says that if the MMSE score is less than

or equal to 25, then it is an AD patient, and this rule has the highest score value of

0.18. This rule is still qualified when it is complemented by ApoE E3/E3. The ApoE

E3/E3 genotype is not associated with higher AD risk, but this combination passes

the rule quality threshold due to the main contribution from feature MMSE ≤ 25.

SD3 describes that if the image is clustered into the eleventh cluster, then it is also an

AD, which is consistent with the finding in the work of Schmidt et al. [SHM+10] (cf.

Fig. 6 of that work). That is to say that the eleventh cluster comprises effectively a

7 Note that in contrast to a previous publication [SHM+10] the target variable is AD/non-AD,
not the cluster membership in image clusters.
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large portion of AD patients. SD6 reveals that a person is non-AD if the MMSE is

greater than 25. Interestingly, SD9 tells that if MMSE is greater than 25 and and

ApoE genotype is E3/E4, then it is a non-AD person. This particular genotype is

associated with higher AD risk, but does not seem to provide relevant information in

this case. However, a low quality threshold and a major contribution from another

feature condition yields a controversial rule. For example, the rule condition MMSE

is very dominant, which results in the controversial rule. The resulting rule set

suggests that there are many rules of the same gist and thus many of them are

redundant. We also see that the level of redundancy of the resulting rule set from the

proposed method is not lower than the one of the competing methods. The reason

may be that the limited number of samples is not representative enough, as opposed

to the UCI datasets that comprise more samples. It would be interesting to see

whether the interpretation of the subgroups would benefit from an increased sample

size by data imputation. The pointed out facts remind us that the resulting rule

set needs to be carefully examined by domain experts and the level of redundancy

needs to be further coped with.

5.1.4 Conclusions

The work presented a subgroup discovery approach based on quadratic program-

ming, aiming at reduced redundancy and improved computational efficiency. In-

stead of evaluating the subgroups individually, we utilize the mutual information

matrix to explore the interaction between attributes. As a result, the degree of re-

dundancy is reduced, which in turn avoids overfitting and thus makes classification

more reliable, if used also in a predictive setting. Last, but not least, the proposed

method runs much faster than other methods compared, which is a crucial factor

when applied to high-dimensional data. As such, it offers an interesting alternative

to beam search and the optimistic estimates, which have difficulty already on data

of medium dimensionality. However, it should be kept in mind that the focus of this

study was just on redundancy, computational efficiency, predictive power and rule

complexity, whereas subgroups can be evaluated also along other dimensions.
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Table 5.5: Results summary of UCI Datasets. Notations, such as b5 and b*5, are
referred to Table 5.2. The best result is marked with bold face. Italics represent the
salient difference between the compared methods and SDVQP. “-” denotes the empty
value, since CR should be compared to rule sets with roughly the same size [vLK11].
“avg”: averaged result over 12 datasets.

data b5 b*5 b10 b*10 b15 b*15 TOE TOE* SDVQP

acc

ma 77.9 77.8 77.0 77.3 77.0 77.3 77.0 77.3 77.9

car 88.3 79.5 86.2 79.5 86.2 79. 86.3 79.5 88.5

liver 65.6 64.3 66.4 63.4 65.0 63.4 65.8 65.2 65.2

ecoli 66.6 66.7 66.7 66.0 66.6 66.3 66.3 66.6 66.6

pima 67.9 69.5 67.7 69.7 67.4 69.7 67.9 69.9 73.8

glass 66.4 73.7 72.9 73.7 70.9 73.7 62.5 72.8 76.0

bw 94.7 94.7 93.9 94.2 94.2 94.2 94.1 94.4 94.7

wine 93.7 96.1 93.2 95.5 93.2 96.1 94.4 95.5 97.7

heart 82.9 82.5 82.9 82.5 83.7 81.4 84.8 81.8 82.5

aus 85.9 85.5 85.9 85.5 87.9 85.5 85.9 85.3 84.4

credit 86.6 86.3 86.3 86.3 86.5 86.3 86.2 86.2 85.4

con 94.4 97.0 93.1 97.0 92.7 97.0 90.5 97.0 97.0

avg 80.8 81.1 81.0 81.0 81.0 80.9 80.1 81.0 82.5

RF

ma 2.72 2.33 2.72 2.35 2.72 2.35 2.73 2.36 1.84

car 2.27 1.84 2.30 1.84 2.31 1.84 2.31 1.84 1.41

liver 3.02 2.47 3.20 2.49 3.35 2.48 3.41 2.49 1.81

ecoli 3.27 2.92 3.49 2.96 3.69 2.89 3.74 2.95 2.20

pima 2.82 2.36 2.97 2.33 3.05 2.34 3.14 2.34 2.18

glass 3.02 2.60 3.19 2.65 3.29 2.67 3.60 2.73 1.69

bw 2.43 1.90 2.52 1.90 2.60 1.89 2.74 1.86 2.05

wine 2.96 2.67 3.06 2.56 3.11 2.56 3.69 2.59 2.49

heart 3.05 2.47 3.14 2.76 3.22 2.75 3.76 2.73 2.58

aus 3.03 3.05 3.16 3.14 3.24 3.15 3.74 3.12 2.68

credit 3.10 3.12 3.23 3.30 3.30 3.36 3.83 3.27 2.27

con 3.17 3.05 3.26 3.28 3.31 3.32 3.92 3.32 2.35

avg 2.91 2.56 3.02 2.63 3.10 2.63 3.38 2.63 2.13

CR

ma - 0.34 - 0.32 - 0.32 - 0.33 0.46

car - 0.54 - 0.54 - 0.54 - 0.54 0.49

liver - 0.49 - 0.52 - 0.52 - 0.47 0.36

ecoli - 0.69 - 0.69 - 0.70 - 0.69 0.53

pima - 0.45 - 0.44 - 0.45 - 0.44 0.34

glass - 0.86 - 0.87 - 0.87 - 0.88 0.73

bw - 0.49 - 0.47 - 0.47 - 0.47 0.34

wine - 0.40 - 0.37 - 0.38 - 0.37 0.29

heart - 0.37 - 0.38 - 0.38 - 0.37 0.27

aus - 0.43 - 0.44 - 0.45 - 0.45 0.42

credit - 0.65 - 0.65 - 0.66 - 0.65 0.47

con - 0.34 - 0.34 - 0.34 - 0.34 0.19

avg - 0.50 - 0.50 - 0.51 - 0.51 0.40
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5.2 Subgroup Discovery via Topic Modeling

5.2.1 Motivation

There are several important issues concerning subgroup discovery. First of all, the

search strategy is an intensively studied topic, because the search space grows expo-

nentially as the dimension increases. Thus, investigating all of the possible feature

value combinations is simply infeasible for high dimensional data. To cope with

it, beam search is used to explore only a tractable fraction of the search space.

On the other hand, the optimistic estimate [GRW08, Wro97] is another alternat-

ive that discards the non-promising search branches and only concentrates on the

top most promising subgroups at each level. The second essential aspect is the

level of redundancy. During the process of subgroup rule mining, many similar

rules can be found, although they all pass the selection criterion (e.g., quality meas-

ure). However, they may be some variants of the same scheme. Thus, discovering

qualified but also redundancy reduced (diversity increased) subgroups is of great

interest [LPDK15, vLK11]. Also, too many rules make it hard for users to inter-

pret and validate the results. To address these issues of subgroup redundancy and

interpretability, we approach the problem of subgroup discovery from a statistical

perspective.

Motivated by the goal of rule interpretability, we conjecture it is easier to in-

terpret rules once they are categorized, because categorization can reveal similar-

ity/dissimilarity. In documents categorization, latent Dirichlet allocation (LDA)

[BAJ03] is a generative topic modeling approach to identifying co-occurring words

in documents. Each document can be characterized by a set of topics, and each topic

is associated with a set of words. The popularity of LDA and its extension spreads

across different application areas, such as document clustering, routine discovery,

and so forth.

Subgroup discovery aims at finding conjunctions (co-occurrences) of feature values

that together predict a target. On the other hand, LDA is meant to find co-occurring

words in documents. Hence, both techniques uncover co-occurring patterns (words

in LDA and feature values in SD). Thus, it is then feasible to lend the idea of

LDA to SD to effectively find rules, without exhaustively searching the prohibit-

ively large space of rules. Besides, a recent study [HS12] has shown that the use of
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the Dirichlet process [Teh11], closely related to LDA, is efficient in finding frequent

itemsets in binary transaction data. In addition, an Entity Topic Model (ETM)

approach [KSHH12] was presented to devise topic models for documents with en-

tity information by capturing the word co-occurrences. Inspired by this work, we

present a constrained latent Dirichlet allocation (CLDA) approach to SD. Its main

contributions are as follows:

• It offers another way of integrating LDA into SD to find interesting rules (a

related method was proposed by Atzmüller and Mitzlaff [AM11]).

• A tailored CLDA is proposed to practically bring LDA and SD together.

• The resulting rules can be interpreted and categorized by various discovered

topics, which is missing in existing SD algorithms.

5.2.2 Introduction to Topic Modeling

5.2.2.1 Fundamentals of Topic Modeling

In document classification, latent Dirichlet allocation (LDA) [BAJ03] is a generative

topic modeling approach to identifying co-occurring words in documents. LDA is

based on seminal work in latent semantic indexing (LSI [DDF+90]) and probabil-

istic LSI [Hof99]. In LDA, each document can be characterized by a set of topics,

and each topic is associated with a set of words. The popularity of LDA and its

extensions are applied in different application areas, such as document clustering,

routine discovery [FGP11], and many others. To better explain LDA, it is necessary

to introduce following statistical concepts as the Dirichlet distribution, conjugate

priors and Markov chain Monte Carlo (MCMC).

Dirichlet distribution: It is a generalization of the Beta distribution, which is the

case of n = 2. It is a distribution overs distributions, i.e., a distribution over Mul-

tinomials. The Dirichlet distribution can be represented equivalently by Gamma

random variables. The product of two Dirichlet distributions is still a Dirichlet

distribution. Sampling from Dirichlet distribution amounts to sampling from inde-

pendent Gamma distributions with common scale and shape parameters. It can be

denoted as x ∼ Dir(α1, · · · , αn) or x ∼ Dir(α) in the following form:
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Figure 5.6: (a): Dirichlet distribution with α = [3 3 3], [0.1 1 1], [4 3 2] and [0.05
0.05 0.05]. (b): Graphical model of smoothed latent Dirichlet allocation [BAJ03]. θ is
the per-document topic assignment and z is the per-word topic assignment. ϕ is the
per-corpus topic distribution parameterized by β.

p(x;α) =
Γ(
∑n

i=1 αi)
∏n

i=1 Γ(αi)

n∏

i=1

xαi−1
i , subject to

n∑

i=1

xi = 1, xi ≥ 0, (5.17)

where “;” means x is parameterized by α. Γ is the Gamma distribution. Before

proceeding to the conjugate prior, we introduce the multinomial distribution:

p(x; p,N) =
N !

∏n
i=1 xi!

n∏

i=1

pxi

i , subject to
n∑

i=1

pi = 1,
n∑

i=1

xi = N, (5.18)

where xi ∈ N
+,0.

Conjugate prior : It is very useful in Bayesian statistics for inference. The

conjugate prior facilitates the computation of posterior probability in a model,

since the posterior form can be explicitly inferred. It can be shown that the

Dirichlet distribution is the conjugate prior of the multinomial distribution, i.e.,

p(x; p,N)mult · p(p;α)Dir = p(p;β)Dir, according to conjugate prior definition. The

derivation is as follows:

Proof.

p(x; p,N)mult · p(p;α)Dir =
N !

∏n
i=1 xi!

n∏

i=1

pxi

i

Γ (
∑n

i=1 αi)
∏n

i=1 Γ (αi)

n∏

i=1

pαi−1
i (5.19)
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∝
n∏

i=1

pxi

i

n∏

i=1

pαi−1
i (5.20)

∝
n∏

i=1

pxi+αi−1
i (5.21)

= p(p;x+ α)Dir let x+ α = β (5.22)

= p(p;β)Dir.

Thus, Dirichlet distribution is the conjugate prior of multinomial distribution.

It is worth mentioning that many well-known distributions such as Bernoulli,

Poisson, Gaussian, Binomial, Multinomial and Dirichlet belong to the exponential

family, which plays a key role in statistics. The exponential family has the general

form:

P (x|θ) = h(x) exp
{

θTψ(x)−A(θ)
}

, (5.23)

where h(x) ≥ 0 is the base density, θ are natural parameters and ψ(x) is the sufficient

statitstics vector. A(θ) represents the cumulant generating function or log partition

function or log normalizer.

A(θ) = log
∫ (

h(x) exp
{

θTψ(x)
}

dx
)

. (5.24)

A(θ) plays an important role in exponential family distributions. In particular, it

can be seen as the cumulant generating function of ψ(x). The distribution in the

exponential family is only a specific form of Eq. 5.23.

Markov chain Monte Carlo (MCMC): The aim of MCMC is to design a

Markov chain whose stationary distribution is the target distribution. In Bayesian

statistics, Gibbs sampling is a commonly used simple case of the MCMC sampling

method. It is a random algorithm, and is an alternative to deterministic algorithms

for statistical inference such as variational Bayesian or the expectation maximiz-

ation (EM) algorithm. In LDA (cf. Fig. 5.6), we want to calculate the latent

document-topic distribution ϕ, the topic-word distribution θ and the topic-word in-

dex assignment z. Due to the property of the conjugate prior, we can integrate out

the multinomial parameters, simply sampling only z. This is called collapsed Gibbs

sampling [GS04, Dar11]. The widely used Gibbs sampling is illustrated in Algorithm
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Algorithm 5.3: Gibbs Sampling

Task: Sample joint distribution p(x1, · · · ,xn).1

Initialize x1,· · ·, xn.2

for i = 1 to MaxIteration do3

Sample xi+1
1 ∼ p(x1|x

i
2, x

i
3, · · · , x

i
n).4

Sample xi+1
2 ∼ p(x2|x

i+1
1 , xi

3, · · · , x
i
n).5

...6

Sample xi+1
n ∼ p(xn|x

i+1
1 , xi+1

2 , · · · , xi+1
n−1).7

end8

5.3.

5.2.2.2 Latent Dirichlet Allocation

LDA is a generative model, describing how observed words in documents can be gen-

erated by hidden (latent) topics. The structure is shown in Fig. 5.6. In this model,

there is a set of N words w = {w1, · · · , wN}, M documents D = {d1, · · · , dM}, with

each wi belonging to some document d. In each document, there is a multinomial

distribution over K topics, which are not directly observable (latent). Each docu-

ment is associated with a parameter θd. A topic is also modeled as a multinomial

distribution over words. Two hyperparameters α and β are introduced in this model.

A low hyperparameter α encourages few topics per document and low β encourages

few words per topic.

The LDA generative process can be explained as follows: Draw M multinomials

θ from a Dirichlet prior α, one for each document; draw K multinomials ϕ from a

Dirichlet prior β, one for each topic; draw a topic zi from multinomial θ, i.e., p(zi|α)

and then draw a word wi from multinomial ϕ, i.e., p(wi|zi,β).

θ ∼ Dirichlet(α) (5.25)

zi|θ
d ∼ Multinomial(θd) (5.26)

ϕ ∼ Dirichlet(β) (5.27)

wi|zi,ϕ ∼ Multinomial(ϕzi
) (5.28)
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The central task of inference in LDA is to determine the posterior distribution of

latent topic variables θ and z conditioned on the words in the documents. Apart from

the mean field variational methods [BAJ03], a collapsed Gibbs sampling approach

was proposed to yield the solution [GS04]. The ratio of probability of wi under topic

j is:

p(wi|zi = j,z−i,w−i) =
nwi

−i,j + β

n
(·)
−i,j +Wβ

, (5.29)

where nwi

−i,j is the number of times a word assigned to topic j, excluding the current

one, and n
(·)
i,j is the total number of times of words assigned to topic j, excluding

the current one. W is the number of unique words. The probability of topic j in

document d is:

p(zi = j|z−i) =
nd

−i,j + α

nd
−i +Kα

, (5.30)

where nd
−i,j is the number of times a word from document d assigned to topic j, not

including the current one, and nd
−i is the total number of times a word in document

d, excluding the current one. Thus the full conditional posterior distribution for zi

(p(zi = j|z−i,w)) can be obtained as:

p(zi = j|z−i,w) =
p(zi = j,wi|z−i,w−i)

p(wi)

∝ p(zi = j,wi|z−i,w−i)

= p(wi|zi = j,z−i,w−i)
︸ ︷︷ ︸

likelihood

· p(zi = j|z−i)
︸ ︷︷ ︸

prior

=
nwi

−i,j + β

n
(·)
−i,j +Wβ

·
nd

−i,j + α

nd
−i +Kα

. (5.31)

5.2.3 Constrained Latent Dirichlet Allocation for Subgroup Discovery with Topic

Rules

He and Shapiro [HS12] attempted to discover frequent itemsets in binary data using

the Dirichlet process. Our proposed algorithm CLDA is not confined to binary data,

and we are also able to identify topics indicating subgroup rules. We illustrate how

to incorporate the idea of LDA into SD to find interesting subgroup rules.
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5.2.3.1 Bringing SD and LDA Together via CLDA

In the proposed method, a “feature = value” expression functions as a word in the

topic model, thus the number of total distinct feature values in the data amounts

to the total number of words in LDA. We also assume that there are topics express-

ing some perspectives on the data. Thus, the subgroup rules can be immediately

discovered after inferring the topics and their associated feature values. Feature

values from the same feature may be grouped into the same topic, whereas the rule

conditions in SD should be from different features. Therefore, we should effectively

impose some constraints that encourage feature values from the identical feature

to go into different topics. To this end, we propose a CLDA approach tailored for

finding subgroup rules.

Recently, CLDA [ZLXJ11, AZC09] was suggested to allow the use of prior know-

ledge. The cannot-link and must-link constraints were realized by incorporating a

term in Eq. 5.31. It can be shown [And10] that the conditional probability can be

altered by multiplying a factor at the right-hand side of Eq. 5.31. Differing from

their work, we suggest a different form of the constraint devised for SD. For example,

we can intentionally multiply it with 0 if we knew a word belonging a topic j with

probability 0. Similar to existing work [ZLXJ11, AZC09], we allow a soft constraint

modifying Eq. 5.31 as:

p(zi = j|z−i,w) = p(wk
i,j) ·

nwi

−i,j + β

n
(·)
−i,j +Wβ

·
nd

−i,j + α

nd
−i +Kα

, (5.32)

where p(wk
i,j) denotes the prior probability of a feature value wi from feature k

belonging to topic j, and it is computed as:

p(wk
i,j) =







1 if nk
−i,j = 0, nk

i,j = 0

1 if nk
−i,j = 0, nk

i,j 6= 0

1
nk

−i,j
+nk if nk

−i,j 6= 0, nk
i,j = 0

nk
i,j

nk
−i,j

+nk
i,j

if nk
−i,j 6= 0, nk

i,j 6= 0

(5.33)

where nk
i,j is the number of times of feature value wi from feature k belonging to

topic j. nk
−i,j is the number of times this topic j already assigned to the feature

k excluding the current wi. nk is the number of distinct feature values in feature
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Figure 5.7: Numerical demonstration of CLDA regarding the four cases in Eq. 5.33.
Feature 1 constitutes three distinct values (A1, B1, C1), in which A1 is used to show
the calculation of p(wk

i,j) assuming four topics T1 to T4. Note the samples in the
positive and the negative class are used separately.

Algorithm 5.4: CLDA for Subgroup Discovery with Topic Rules
Data: SR: subgroup rules, K: allowed maximal number of topics, training

data Dtrain, test data Dtest.
Data preparation for CLDA1

for i = 1 to K do2

Run CLDA on positive and negative samples from Dtrain, respectively3

Calculate the perplexity using Eq. 5.34 based on Dtest4

end5

Determine an appropriate number of topics Kbest based on the calculated6

perplexity for j = 1 to Kbest do
Choose the corresponding features of co-occurring feature values produced7

from positive and negative samples respectively, as candidates to find SR
on the training data Dtrain

Collect the rules SR8

end9

k, which is used to act as a Laplace smoothing term. The essence of p(wk
i,j) is

to encourage feature values from the same feature to fall into different topics by

investigating the previous topic assignments. Fig. 5.7 demonstrates that calculation

of p1
A1,j is only involved with prior counting statistics of A1, B1 and C1, regardless

of D2 from the second feature. As for topic 1 (T1) and 2, no prior statistics of other

feature values B1 and C1 is given, therefore the prior probability belonging to the

topic is 1. As for topic 3, B1 and C1 are already assigned to it with 4 and 5 times.
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Thus, its prior probability for this topic is only 1
4+5+3 , where 3 is the number of

distinct feature values in feature 1, i.e., A1, B1 and C1. In terms of topic 4, the

probability is proportional to its assignment 20 over the total assignments 60.

SD needs a class label (supervised) to find the rules, whereas LDA (unsupervised)

does not request any class information. Thus, we divide the data into positives

and negatives, constructing the CLDA based on data from each of the two classes,

respectively. When built on either of the classes, CLDA produces the co-occurring

feature values regarding the respective target class. It is equivalent to state that

feature values tend to appear together in the positive or negative class, which is

in line with the goal of finding rules pointing to a given target. In Algorithm 5.4,

line 7 to line 8 are devoted to finding the actual SD rules with a fixed number of

topics Kbest. For each topic, we have some feature values associated with integers

indicating the number of assignments. The larger the number, the more frequently

it appears in that topic, and of course zero means no occurrence. We then find the

corresponding features of these feature values for exhaustive SD rule search using

the quality function of Eq. 3.4. One can also only examine the combinations of

these feature values for SD rules, but this may limit the number of discovered rules.

In particular, we suppose that some features as a whole describe a certain topic,

therefore we execute the search in a broader space.

Data Preparation for CLDA: Line 1 in Algorithm 5.4 prepares the data for

running CLDA. If the data is numeric, then we first discretize them into nominal.

The data may be denoted as integers, such as 1, 2, etc. Thus, two different features

can have the same feature value of, for example, 1, but 1 in a feature is different from

1 in another feature. We, hence, intentionally denote each feature value uniquely to

form a set of feature values (just as a vocabulary in documents). As a result, each

sample is represented by some feature values drawn from the feature value set. In

Fig. 5.7, for example, the set is A1, B1, C1,D2... for the positive class and C1, E2...

for the negative class.

Choosing the Number of Topics: It is often hard to know the number of

topics in advance. One common remedy known from language modelling is the use

of per-word predictive perplexity (low values are suggested) as a measure of the

likelihood of the model based on a held-out test set [BAJ03]. It is a measure of the

generalization ability of the model on unseen data. Theoretically, one can choose the

best number of topics according to the lowest perplexity. We applied the perplexity
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suggested by Heinrich [Hei04], which can be briefly formulated as:

perplexity(wtest) = exp

{

−

∑Dtest

d=1 log p(wd)
∑Dtest

d=1 Nd

}

, (5.34)

where
∑Dtest

d=1 Nd is the total number of feature values in the test data. p(wd) is

calculated as:

p(wd) =
N∏

i=1





K∑

j=1

ϕj,i · θd,j





nd
i

, (5.35)

where nd
i is the number of times feature value (word) i appears in test sample (doc-

ument) d. In this study, nd
i = 1 because a feature can appear only once in a sample.

ϕj,i is calculated using Eq. 5.29 only from training data. θd,j =
nd

j
+α

∑K

j=1
nd

j
+K·α

, where

nd
j is the number of times a feature value assigned to topic j calculated using Eq.

5.30. For details, see Eq. 93 of the original reference [Hei04].

5.2.3.2 Insights into Rules by Topics

The four evaluation measures allow a comparison among SD algorithms, while one

merit of the proposed approach is that it offers the possibility of getting deeper

understanding of rules by investigating the topics. To gain further insights into the

rules in various topics, we suggest a measure of pair-wise distance between every

two sets of rules in two topics. The distance is measured on the every pair of rules

in the two topics. The rules in a topic are called a topic rule set. We define a rule

distance rd for single rules r1 and r2 as:

rd(r1, r2) =
Hamming distance(r1, r2)

max(|r1|, |r2|)
. (5.36)

The Hamming distance measures the bitwise difference between two rules, and

the denominator ensures the measure is bounded by [0, 1]. It measures the dis-

similarity/distance, as opposed to JI, a measure of similarity. For example,

rd({A}, {B,C}) = 2/2 and rd({A}, {A,B,C}) = 2/3. The calculated pair-wise

distance can be used to show a dendrogram as in Fig. 5.10.
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Table 5.6: Description of six UCI dataset [FA10]. †: samples with missing values
were removed. Att.: attributes. ‡: multi-class datasets were converted to binary by
merging several classes into one, i.e., the largest versus the rest. The continuous at-
tributes were discretized by entropy-based discretization.

Dataset #Samples #Att. #Classes

pima 768 8 2

glass‡ 214 9 6

heart statlog [heart] 270 13 2

credit approval [credit]† 653 15 2

bank 4521 17 2

german credit [GC] 1000 20 2

5.2.4 Experiments

The algorithms are tested on six UCI datasets [FA10]. A 10-fold cross-validation was

conducted to hold out some data for calculating perplexity. The tested number of

topics (T ) was from 5 to 100. The hyperparameters were set to β = 0.1 and α = 50/T

(same as in previous work [FGP11, GS04, Wan09]), where T is the number of topics

(i.e., the testing number i in Algorithm 5.4). These values of hyperparameters turned

out to be suitable also in our tests. For the CLDA inference, we implemented a

collapsed Gibbs sampling approach with 500 iterations. The threshold was δ = 0.01

for the SD quality function. The rules were post-processed by the likelihood-ratio

χ2 test [LKF+04] at a significance level of 0.05. Four methods (cf. Fig. 5.9)

are employed to compare with the proposed CLDA. These methods were already

introduced. They represent a diverse set of methods regarding SD, e.g., optimistic

estimate, redundancy reduction and diversity. In DSSD, default parameters were

used, except minCoverage = 1 and maxDepth = 4. We only chose the “equal”

rule descriptions to stay comparable with other methods. Certainly, there are many

other SD algorithms that can be compared with, but the chosen ones are the most

recent approaches.

5.2.4.1 Comparison with Baseline Random CLDA

We first empirically show that the proposed CLDA is feasible by comparing it with

randomly chosen features, i.e., random CLDA. For each topic in CLDA, the al-
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Figure 5.8: Left figure shows the relation between the number of rules and
thresholds using random CLDA and CLDA methods. Right figure is the discovered
actual number of topics on the six UCI datasets. The numbers are averaged over pos-
itive and negative classes from 10-fold cross-validation.

gorithm suggests some feature values co-occurring frequently, whose respective fea-

tures are then used to identify the actual SD rules. Instead of using these identified

co-occurring feature values, we randomly selected the same amount of feature val-

ues for rule search. Fig. 5.8 clearly shows that CLDA yields many more rules than

random CLDA, which proves that CLDA can indeed find co-occurring feature values.

Fig. 5.8 illustrates that the number of topics is not influenced by the number of

samples and dimensions. Regarding the positive class, heart reveals 19 topics, while

german has only three topics despite it has the most samples and dimensions. The

number of topics in the negative class varies slightly across these datasets.

5.2.4.2 Results on Six Datasets: Evaluation Measures

We focus on four measures (cf. Fig. 5.9) for our comparison, namely, cover redund-

ancy, Jaccard index, accuracy and the number of rules. Concerning the Jaccard

index (JI) measure, CLDA shows the lowest value on the pima, glass, heart and

bank data. DSSD indicates a lower value on the remaining two datasets (credit and

german), as it is particularly devised to discover diverse rules. As for redundancy,
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Figure 5.9: Evaluation measures of methods. The error bar represents the standard
deviation from 10-fold cross-validation.

CLDA holds again the lowest value on pima, glass, heart and bank, being slightly

worse (higher value) than DSSD on credit and german. The other three methods

exhibit greater values than CLDA and DSSD overall. In terms of accuracy, all these

methods show similar results, with SDVQP performing three times the best, on

pima, glass and bank. The reason is that SDVQP integrates mutual information

between feature and target class into the process of uncovering SD rules, therefore it

has good predictive power. Regarding the number of discovered rules, TOE has the

greatest number, since it finds all the qualified rules by shrinking the search space

via an optimistic estimate [GRW08]. Next to TOE, DBEGA also returns more rules

than the other three methods because it is a similar approach as TOE but focusing

on generalization aware SD rules. SDVQP, DSSD and CLDA are not purely devised

to find all SD rules, they are rather aiming for diverse rule sets. Thus, the size of

the resulting rule set is smaller. In summary, CLDA returns rule sets within the

same accuracy range as the other methods, but with comparatively low redundancy.
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5.2.4.3 Results on Six Datasets: Insights into Rules by Topics

By design, CLDA also facilitates easier rule interpretation by categorizing rules into

various topics. The dendrograms in Fig. 5.10 show that topics can be grouped by

measuring their rules’ similarity. If there are many rules, especially, we can interpret

and examine these rules by looking at their topics. Choosing topics far apart in the

dendrogram gives quite dissimilar rules, and choosing topics near each other gives

similar rules. Hence, it is possible to interpret the SD rules via uncovered hidden

topics. Take the glass dataset for example: Topic three (T3) and four (T4) are

neighbors by sharing the second feature value marked by light green. In addition,

CLDA gives a probability assignment to each of the feature values in every topic.

This probability reveals how likely this feature value belongs to the topic.

5.2.5 Conclusions

This section presented a constrained latent Dirichlet allocation (CLDA) approach to

discovering less redundant and more diverse subgroup rules. Instead of exhaustively

searching the space of rules, we use a topic modeling method CLDA to identify

co-occurring feature values. The feature values are associated with hidden topics,

which are uncovered and used to find the actual SD rules. Consequently, the results

revealed by the four evaluation measures indicate a better or similar performance

compared to some standard methods.

In addition, the algorithm allows users not only pick the rules in terms of a rule

quality measure, but also according to their associations to topics. The similarity

of topics (hence rules) can be visualized by dendrograms using the suggested rule

distance measure. Last, but not least, CLDA assigns a probability to each feature

value in a discovered rule regarding the respective topic, which could aid users in

gaining deeper insights into the data.
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Figure 5.10: Dendrogram and calculated probability matrix (cf. Eq. 5.29) of feature
values associated with yielded topics of the positive target class on six UCI datasets
(cf. Table 5.6). Note that the sum of feature value probability in a topic is not one
because the matrix shows only qualified SD rules.
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CHAPTER 6

Multi-view Learning: Combining Imaging

and Non-Imaging Data

6.1 Motivation

In Section 4, we proposed algorithms to mine imaging voxels. Apart from imaging

techniques, clinical variables (e.g., from neuropsychological tests) are employed to

assist in the assessment of cases [SHM+10]. As this medical domain naturally offers

different perspectives or views on patients (e.g., demographic data, neuropsycho-

logical tests, imaging data, etc.), it lends itself to the application of methods for

so-called multi-view learning [Re05]. In particular, we investigate the use of multi-

view stacking, which combines the classifications (into the classes MCI or AD) ori-

ginating from different views into overall classifications. In the proposed approach,

we not only present the results of multi-view stacking along those lines, we also

attempt to explain the performance of multi-view stacking in terms of correlations

between feature groups and correlations between predictions. The proposed ap-

proach is demonstrated by the MCI against AD classification case. Finally, we shed

some light on the way the different views are combined by the stacking procedure

to come up with the overall classification.
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106 6 Multi-view Learning: Combining Imaging and Non-Imaging Data

6.2 Stacked Multi-View Learning

In this section, we introduce the proposed approach, which is slightly different from

standard stacked generalization. Furthermore, we elaborate on the correlation meas-

ure using CCA that aims at providing a quantitative explanation of the results.

6.2.1 Stacking

Stacking [Wol92] was proposed to combine different classifiers to improve predictive

accuracy. By learning how classifiers correlate with each other, the approach aims

at outperforming each individual base classifier [FCS96]. Conventionally, base clas-

sifiers (originating from different base learners) are applied to a single dataset, and

the predicted labels along with their true labels are concatenated and used as train-

ing (test) data at the meta level [Wol92, TW99]. In this study, stacking is applied

in a different manner: we stack the predictions from different views, i.e., groups of

features, and then perform meta level learning, assigning one base learner and clas-

sifier to each view. Each base classifier (from a corresponding view) then produces

class probabilities (predictions), which are subsequently used to train the meta level

model. Once a test sample is presented, each base classifier gives a prediction, and

subsequently their predictions are combined by the meta model.

6.2.2 Canonical Correlation Analysis

Canonical correlation analysis (CCA) is applied to measure the correlation between

views. It was proposed to measure the linear association between two sets of vari-

ables [Hot36]. Let X = (x1, x2, · · · , xp), Y = (y1, y2, · · · , yq), U = α1x1 + α2x2 +

· · · + αpxp = αTX and V = β1y1 + β2y2 + · · · + βqyq = βTY (U and V are called

canonical variates). Σ =

(

Σ11 Σ12

Σ21 Σ22

)

, Σ11 (or Σ22) is the covariance matrix within

set X (or Y ), Σ12 is the covariance matrix between sets X and Y and Σ12 = ΣT
21.

CCA seeks to find αp and βq such that the following equation is maximized:

ρ(αp,βq) = αT
p Σ12βq, (6.1)

subject to αT
p Σ11αp = 1, βT

q Σ22βq = 1.
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Algorithm 6.1: Stacked Multi-View Learning.

Data: Di, i = 1, ..., n, n-view training data with true label Y .
Training: divide Di into J disjoint sets.1

for i = 1 to n do2

for j = 1 to J do3

compute class probabilities zij of set j trained from remaining D(J−j)
i4

using base learner Li.
end5

Denote zi as entire predicted class probabilities of Di.6

end7

Let F = {z1, · · ·, zi, Y }, train meta level model (M) based on F using MLR.8

Test: each Li gives a prediction (z∗
i ) to a test sample D∗

i trained from Di, let9

F∗ = {z∗
1 , · · ·, z∗

i } to be classified by M and result in the final prediction.

As a result, the canonical correlation coefficient can be computed as the square

root of the eigenvalues of matrix Σ−1
22 Σ21Σ−1

11 Σ12 for each canonical variates pair.

The number of coefficients equals min = {p, q} with a statistical significance value

(p-value < 0.05), therefore E(ρ) =
∑min{p,q}

i=1 ρi/min{p, q} is taken as the overall

correlation between two feature subsets. Pairwise CCA is performed among views

and a mean value is calculated as the final correlation.

6.3 Experiments

The dementia dataset was provided by the psychiatry and nuclear medicine depart-

ments of Klinikum rechts der Isar of Technische Universität München. It covers 127

patients for which both a PET scan and clinical/demographic data are available.

From these patients, 57 patients suffered from AD and 70 from MCI.

6.3.1 PET Imaging Data

Prior to their use, PET scans are transformed into feature vectors. The Automated

Anatomical Labeling (AAL) brain Atlas [TMLP+02] was applied to obtain 116 pre-

defined brain regions modeling the intensities of the interesting brain regions (e.g.,

Hippocampus) along with their spatial coordinates. This separation was done on a

group of 20 cognitively healthy age-matched persons. We propose a density-based

clustering method, in contrast to the model-based clustering method suggested in
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108 6 Multi-view Learning: Combining Imaging and Non-Imaging Data

Section 4.1.2.2. In particular, we applied DBSCAN [EKJX96] on the 116 previously

identified regions and clustered them into 1894 finer groups8. Both intensity and

coordinates (x, y, z) of each voxel were taken into account during the clustering.

Then the mean intensity of each cluster of the MCI and AD PET scans was extrac-

ted. Thus, the PET is, at this point, represented as a feature vector consisting of

1894 intensity values. As 1894 features apparently require too much computational

effort, we applied the F-score [CL06] to select the most informative ten features.

However, before creating the final feature vector, PET images have to undergo two

pre-processing steps: normalization and smoothing (kernel size [8 8 8] mm), which

were achieved by SPM89.

6.3.2 Non-Imaging Data

Non-imaging data consist of demographic (e.g., age and gender) and clinical data.

Clinical variables cover neuropsychological tests that indicate the patients’ social

behavior, self-care capability and a person’s daily ability concerning memory, lan-

guage and orientation. The tests include: Consortium to Establish a Registry for

Alzheimer’s Disease (CERAD) neuropsychological assessment battery, Mini-Mental

State Examination (MMSE) and the Clock Drawing Test (CDT). The CDT is added

to the demographic data in this work to form a more informative view for multi-view

stacking. The demographic data, CERAD, and the MMSE form natural views on

the dementia data.

To examine the factors contributing to the success and failure of multi-view stack-

ing, we additionally created 50,000 datasets with randomly generated views of the

same dimensionality as of the natural views (e.g., dim(V1) = dim(PET )). From

these 50,000 trials, we picked the two datasets with the lowest and the highest

correlation among the views for further examination (cf. Table 6.1).

8 Parameter ǫ was analytically set according to the input data and the minimum number of points
(minPts) = 6. The parameters were set so as to keep the clusters’ size roughly balanced.

9 In our experiments, we found that SPM5 and SPM8 yield same results in terms of normalization
and smoothing.
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6.3.3 Results

We ran three experiments to examine the prediction accuracy of stacking compared

to a baseline learner. The baseline is a simple prediction based on the whole dataset

without any division into views. K-nearest neighbors (KNN) is chosen as the base

learner, as it is one of the simplest and most fundamental learning schemes10. KNN

was used as first level predictor in the stacking approach, while multi-response linear

regression (MLR) was applied as meta learner, since it was shown to be efficient for

this purpose [TW99]. Table 6.1 gives the performance of the baseline approach

(column “baseline”), predictions using only one view (columns “PET” to “Demo”)

and the accuracy for stacking (“Stacked”). Each experiment was repeated 50 times

with a 10-fold cross validation. Class probabilities are used instead of class labels

at the meta level. The K in KNN was set to nine and the probability for each class

(AD and MCI) is calculated via majority voting of the first-level learner: p(AD) =
|votesAD|

K
. Various values (K) have been tested, and values that are relatively large,

e.g., nine, yield equally good results.

Table 6.1 shows that the natural views on dementia data present the best result

for all stackings. Moreover, specific views outperform the baseline approach, but

do not exceed the performance of stacking. Remarkably, all stacking approaches

outperform the baseline approach. This shows that stacking on random views also

increases performance. As for “Created Views 2”, the result of stacking does not

outperform V3 (82.7%), which may due to the too high base level correlation (0.95,

cf. Table 6.2). Detailed explanation will follow in Section 6.4.

Although the stacked versions of Table 6.1 show that stacking is better than a

baseline, the underlying mechanisms are not yet completely understood. Three para-

meters that may influence the performance of stacking are: the feature correlation

between base views; the meta correlation, i.e., the correlation between the prediction

of the separate views; and the variation of accuracy of separate views. Training data

are used for these measures, since training data, in reality, are the only ones that we

can gain knowledge from. Table 6.2 gives the values for the base correlation, meta

correlation and the standard deviation of the accuracy of the four views. We claim

that the prediction accuracy for stacking improves when the base level correlation is

10 Other learning schemes like decision trees or the SVM are also possible.
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Table 6.1: Comparison of accuracy, mean±std%. Baseline: PET, MMSE, CERAD,
CDT and Demographic data are pooled into one table for learning. Vi: randomly cre-
ated view of dementia data with dimension unchanged. In “Created Views 1”, V2 was
set to contain MMSE, since we wanted to observe if a strong individual view takes
effect in multi-view stacking.

Natural Views Baseline PET MMSE CERAD Demo Stacked

KNN 76.3±11.1 69.6±12.4 78.1±10.6 80.1±11.0 61.6±13.4 83.2±10.2 •

Created Views 1 Baseline V1 V2 V3 V4 Stacked

KNN 76.3±11.1 72.9±11.6 78.1±10.6 79.6±11.4 61.4±12.9 81.2±11.0 •

Created Views 2 Baseline V1 V2 V3 V4 Stacked

KNN 76.3±11.1 75.6±11.1 66.1±11.8 82.7±10.3 72.0±11.4 81.1±10.3 •

Table 6.2: Description of three factors of stacked multi-view learning on dementia
data. Base Corr.: base correlation, Meta Corr.: meta correlation, std of Accur: stand-
ard deviation of accuracy.

Base Corr. Meta Corr. std of Accur.

Natural Views 0.63±0.01 0.28±0.04 13.9±5.45

Created Views 1 0.64±0.01 0.27±0.03 13.5±5.19

Created Views 2 0.95±0.01 0.27±0.03 12.2±4.91

Table 6.3: Regressors of multiple linear regression on meta level data. p-value in
brackets.

PET MMSE CERAD Demo

MCI -0.241 (0.0001) -0.303 (0.0031) -0.269 (0.0157) -0.083 (0.1791)

AD 0.339 (0.0006) 0.084 (0.0493) 0.197 (0.0108) 0.183 (0.2060)

relatively high, e.g., in the range of [0.6−0.9]. We can support this fact by examin-

ing the relation of the baseline correlation and the prediction improvement (for a

more detailed analysis of these factors see Fig. 6.1 in Section 6.4). As the dementia

dataset has a high baseline correlation, stacking is supposed to work on this data.

As noted by other authors [FCS96], meta level correlation can be crucial in stacking,

which is also supported by Fig. 6.1 that shows a likely ideal interval of [0.2−0.5].

Again, the given dementia dataset witnesses a meta correlation in this range. These

findings, to some extent, should help explain the performance of stacked multi-view

learning on our dementia dataset.

Another property of the views is, of course, their natural meaning. In the fol-
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lowing, we will briefly analyze the contributions of the different views on the meta

level classification. More specifically, we take a look at the coefficients of the MLR

model, which is given as:

Y = α · PET(MCI) + β · PET(AD) + ...+ γ ·Demo(AD) + const. (6.2)

As the MLR model encodes the two classes in two separate linear models, the task

is to find eight regressors (weights) given the training label and meta level class

probability. The resulting eight weights are given in Table 6.3. Following these

results, MMSE and CERAD are strong at predicting MCI, since their weights are

high (negative because MCI = 1 < AD = 2). By contrast, PET is strong at

recognizing AD due to its highest value of 0.339. This table shows the interaction of

these four views, which does not reveal their individual importance but their power

in stacking using MLR as a meta learner.

6.4 Investigation of Stacking Performance

As it is hard to find standard datasets with naturally defined views, we conducted

a study with synthetic views on 14 UCI datasets to empirically study the factors

contributing to the performance of stacked multi-view learning.

6.4.1 UCI Data Subsets Generation

The UCI datasets are single view data, hence we randomly sample features into

various subsets11 (views) to create multiple views. The number of views produced

is 4, which is the same as in the dementia data. 20 randomly sampled datasets are

generated for every dataset, making sure that the generated views are approximately

equally sized.

6.4.2 UCI Data Results

Three factors are analyzed, and the results shown in Table 6.4. The comparison

with the dementia data is straightforward, because they are all of a 4-view scenario.

11 UCI datasets were already split into two disjoint subsets for co-training purposes [LDZ09].
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Figure 6.1: Regression analysis using all randomly sampled datasets. Each UCI
dataset is re-sampled 20 times and each point is a dataset (20 × 14 = 280 in total).
The green line is a linear regression, and the red line is a quadratic regression.

Table 6.4 reveals that the meta and base level correlation may be associated

with the performance of stacking. For example, “german”, “breast” and “chess”

present low meta correlation and the stacked results are not satisfying, as opposed

to “hepatitis”, and “musk”.

To measure the linear association between accuracy and the conjectured influ-

ential factors, we apply linear regression to determine the corresponding regressor

(β) indicating their relation. Let “Y = accuracy gain = accuracy (stacking) −

accuracy (baseline KNN)” be the dependent (target) variable, each of “base corr.”,

“meta corr.” and “std of accur.” be the independent variable X. The task is to find

β given Y and X, assuming equation Y = β ·X + const. The straight black line in

Fig. 6.1 indicates the fitted linear curve with the slope and p-value shown on top.

The gray quadratic curve is fitted using quadratic regression if we envision there is

a non-linear relation.
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Table 6.4: Accuracy comparison between baseline and stacked 4-view learning aver-
aged over 20 randomly sampled sets (mean±std%). Only the mean is given for Base
Corr. etc., as the standard deviation is marginal.

Datasets KNN Stacked 4-View Base Corr. Meta Corr. std of Accur.

hepatitis [he] 56.7±8.62 62.6±3.92 0.77 0.31 7.11

musk [mu] 71.0±3.60 85.7±0.62 0.85 0.47 1.67

ionosphere [io] 85.1±2.62 87.1±1.39 0.66 0.17 1.93

sonar [so] 68.3±5.27 74.8±1.78 0.82 0.26 2.93

ozone [oz] 93.3±7.34 93.1±1.30 0.92 0.58 1.49

spectf [sp] 73.8±63.4 74.5±0.94 0.83 0.30 2.62

parkinson [pa] 81.4±6.79 83.1±2.78 0.84 0.30 2.62

promoters [pr] 76.6±6.09 77.6±3.28 0.94 0.29 9.95

german [ge] 70.7±2.19 50.9±1.27 0.51 0.11 1.19

breast [br] 95.0±1.47 90.2±3.81 0.76 0.12 3.69

chess [ch] 91.5±0.96 81.3±4.56 0.46 0.21 9.26

spambase [sb] 91.0±1.03 87.5±1.47 0.44 0.30 5.52

heart [ht] 81.4±3.51 63.1±7.80 0.56 0.17 7.36

australian [au] 85.1±2.30 69.3±8.04 0.48 0.10 6.65
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Figure 6.2: Percentage of wins (accuracy gain > 0) and losses (accuracy gain < 0)
against meta and base level correlation. The correlation is shown on top of the bar.
The number above each bar indicates the correlation noted in Table 6.4. For each
dataset, the percentage of the yellow (win) and the red (lose) bar sums to one.

Fig. 6.1 demonstrates that meta correlation is by far the most important factor

in terms of accuracy gain. A medium meta correlation would be suggested if the

quadratic curve is regarded as more reasonable. The linear curve claims that ac-

curacy grows as meta correlation increases. As for base correlation, the quadratic

curve starts to drop at 0.9. View accuracy variation seems to be unimportant. Re-
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markably, some datasets have high base and meta correlation but perform poorly.

Therefore, we do not claim that the higher the correlation of base and meta level,

the better the stacking performance, whereas a medium degree might be optimal.

In Fig. 6.2, the majority of datasets with wins reveal relatively high base correlation

[0.77−0.85] and medium meta correlation [0.30−0.47]. It can be easily understood

that the meta level learner does not benefit if there is a very high or even perfect cor-

relation. Certainly, there are still exceptional points falling into the optimal range,

but behave poorly, which might be due to other reasons, such as the distribution

difference between training and test samples, to name only one.

6.5 Discussion and Conclusions

The present study investigated the use of multi-view stacking for classifying dementia

data, in particular for discriminating between Alzheimer’s disease and mild cognit-

ive impairment. While a simple KNN prediction including all features achieved a

prediction accuracy of 76.3%, stacking on the natural views achieved an accuracy

gain of 6.9%. Analyzing the meta level classifier showed that the predictions of

the MMSE and CERAD views are important for MCI classification, while the PET

view is crucial for AD. Further evaluations on 14 UCI datasets revealed that the

performance can be largely attributed to the medium meta-level correlation of the

views and the relatively high base-level correlation of the views. These insights were

gained by transforming the UCI datasets into multi-view datasets within different

ranges of base and meta correlations. Regression analysis showed that views with a

high level of base correlation are likely to perform well in stacking. However, if the

base correlation is low, stacking may nevertheless perform well. The same is true

for the meta correlation: For medium values, the performance is likely to increase,

but still this may happen for smaller and larger values. We can thus, to some ex-

tent, explain the good performance of stacking in our application domain. Based

on these findings, researchers may therefore consider stacking for data from other

medical application domains to improve their prediction accuracy whenever there

are natural views in the indicated ranges of correlation.
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CHAPTER 7

Conclusions and Outlook

7.1 Summary

In this thesis, we proposed algorithms to study structured patient data, with exper-

iments both on real-world medical datasets and UCI datasets. Since imaging data

(e.g., PET scans) are an important data source for clinical diagnosis, we investigate

the use of PET from two perspectives. The first is dementia classification, which is

achieved by clustering using a Gaussian mixture model with model selection. This

approach extracts brain image features based on the resulting clusters. The number

of clusters can be determined by the model selection, i.e., based on the Bayesian in-

formation criterion. The experimental results show that the method performs much

better than compared methods especially on MCI against AD. The second applica-

tion is the prediction of MCI progression, which is a follow-up study. We first apply

survival analysis to identify some significant voxels. These voxels are subsequently

clustered into a certain number of clusters by an infinite Gaussian mixture model.

Further, a small portion of voxels from each cluster is chosen to build a classification

model. The results reveal that PET has some power in predicting MCI progression.

By adding other non-imaging variables to the model, we can obtain better results.

To extract some interesting rules from the data, we devised two new subgroup

discovery algorithms. The optimization based approach pre-selects some potentially

interesting features for further rule search. It leverages the feature’s individual

importance and the interaction between features. The resulting rule set is less
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redundant and more diverse as compared to other methods. The other approach

is developed using a constraint latent Dirichlet allocation that has been proposed,

which reveals various aspects (topics) in the data. Every topic is associated with

some features that are then used for actual subgroup rule search. This method has

one additional merit that the rules can be interpreted by the respective topic. A

suggested dendrogram can illustrate the topic similarity in terms of contained rules.

A stacked multi-view learning approach is proposed to combine various informa-

tion sources. The information contained in the sources can be better used when a

two level stacking is performed. Stacking employs base level classifiers to learn the

decision behaviors, then a meta level classifier makes better decisions based on the

outputs of the base level. The experimental results suggest that combining various

information sources can benefit the dementia classification performance. Experi-

mental analysis explains the factors contributing to a good performance, i.e., that

the correlation of views on the base and the meta level should be within certain

ranges to facilitate successful stacked multi-view learning.

However, some limitations still exist in the work. The medical datasets do not

contain many samples for a study, which complies with the common problem of small

n large p. Because PET is an expensive neuroimaging technique, we can hardly

obtain many PET scans to form a study. It is particularly more difficult to obtain

follow-up PET scans for MCI progression studies. Other types of medical data are

not abundant as well, such as biomarkers and neuropsychological test results. As

a consequence, the developed subgroup discovery algorithms cannot be fully tested

using the medical data.

7.2 Outlook

Regarding the research on imaging data, we may consider MRIs as another comple-

mentary source to PET. Currently, multi-modality is a popular topic in neuroima-

ging, because relying only on one information source may be error-prone and risky.

However, this brings another research question of how to meaningfully combine vari-

ous sources of information. We not only need methods like multiple kernel learning

or stacking, but we also need to understand the underlying reasons of good perform-

ance and their applicable domains. Another essential aspect to be addressed is the

missing records in medical data. It is nearly unavoidable to have missing values in
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patient data, since patients may drop out of studies or some tests are simply not

carried out. We encountered the problem of too few samples in the context of sub-

group discovery for the medical data, which is a limitation of the experiments. Thus,

it is desirable to further develop new algorithms that can cope with missing data,

although some existing algorithms like expectation maximization can deal with it

to some extent.

Although subgroup discovery has being actively studied in data mining for quite

sometime, the issues of redundancy and rule search efficiency are yet to be well

addressed. Hence, a good algorithm should return a comprehensible rule set as effi-

ciently as possible. We may further extend the proposed constraint latent Dirichlet

allocation to a non-parametric Bayesian approach in order to model rule discovery

as a stochastic process. Such a process models data distribution, and the distri-

bution can be nicely incorporated into a statistical model for learning. Therefore,

there is no need to perform an exhaustive search on feature value combinations. In

addition, the non-parametric Bayesian approach has the merit of avoiding model

selection, which is instead replaced by model averaging. As a result, the number of

topics does not need to be specified in advance. Therefore, the number of rules may

be optimally determined by the approach based on the underlying data.
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Appendix

A.1 ADNI Data

ADNI Data Declaration:

Data collection and sharing for this project was funded by the Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01

AG024904) and DOD ADNI (Department of Defense award number W81XWH-

12-2-0012). ADNI is funded by the National Institute on Aging, the National Insti-

tute of Biomedical Imaging and Bioengineering, and through generous contributions

from the following: Alzheimer’s Association; Alzheimer’s Drug Discovery Founda-

tion; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.;

Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and

its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO

Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson

& Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck &

Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Novartis Pharmaceut-

icals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda

Pharmaceutical Company. The Canadian Institutes of Health Research is providing

funds to support ADNI clinical sites in Canada. Private sector contributions are

facilitated by the Foundation for the National Institutes of Health (www.fnih.org).

The grantee organization is the Northern California Institute for Research and Edu-

cation, and the study is coordinated by the Alzheimer’s Disease Cooperative Study

at the University of California, San Diego. ADNI data are disseminated by the

Laboratory for Neuro Imaging at the University of Southern California.
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ADNI Data Information Sharing Statement: Data used in preparation of

this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI

contributed to the design and implemen- tation of ADNI and/or provided data but

did not participate in analysis or writing of this report. A complete listing of ADNI

investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/

how_to_apply/ADNI_Acknowledgement_List.pdf

ADNI Diagnostic and Image Acquisition Protocol: The ADNI recruitment

and inclusion procedures are described in detail at www.adni-info.org. Briefly, at

baseline, subjects in ADNI were between 55−90 years of age, had a modified Hach-

inski score e 4 and at least six years of education. Patients with MCI had MMSE

scores between 24 and 30, a CDR score of 0.5; they had memory complaints, but

no significant functional impairment, and objective memory deficits on the Wechsler

Memory-Scale- LogicalMemory II test. After the baseline visit, follow-up visits were

conducted at six- or 12-month intervals up to a maximum of six years. FDG-PET

were acquired within two weeks before or two weeks after the in-clinic assessments

at Baseline and at the second annual visit, 24 months after Baseline.
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A.2 Brain Regions defined in AAL

Table A.1: 116 defined brain regions in AAL brain template [TMLP+02].
1: Precentral_L 2: Precentral_R 3: Frontal_Sup_L
4: Frontal_Sup_R 5: Frontal_Sup_Orb_L 6: Frontal_Sup_Orb_R
7: Frontal_Mid_L 8: Frontal_Mid_R 9: Frontal_Mid_Orb_L
10: Frontal_Mid_Orb_R 11: Frontal_Inf_Oper_L 12: Frontal_Inf_Oper_R
13: Frontal_Inf_Tri_L 14: Frontal_Inf_Tri_R 15: Frontal_Inf_Orb_L
16: Frontal_Inf_Orb_R 17: Rolandic_Oper_L 18: Rolandic_Oper_R
19: Supp_Motor_Area_L 20: Supp_Motor_Area_R 21: Olfactory_L
22: Olfactory_R 23: Frontal_Sup_Medial_L 24: Frontal_Sup_Medial_R
25: Frontal_Med_Orb_L 26: Frontal_Med_Orb_R 27: Rectus_L
28: Rectus_R 29: Insula_L 30: Insula_R
31: Cingulum_Ant_L 32: Cingulum_Ant_R 33: Cingulum_Mid_L
34: Cingulum_Mid_R 35: Cingulum_Post_L 36: Cingulum_Post_R
37: Hippocampus_L 38: Hippocampus_R 39: ParaHippocampal_L
40: ParaHippocampal_R 41: Amygdala_L 42: Amygdala_R
43: Calcarine_L 44: Calcarine_R 45: Cuneus_L
46: Cuneus_R 47: Lingual_L 48: Lingual_R
49: Occipital_Sup_L 50: Occipital_Sup_R 51: Occipital_Mid_L
52: Occipital_Mid_R 53: Occipital_Inf_L 54: Occipital_Inf_R
55: Fusiform_L 56: Fusiform_R 57: Postcentral_L
58: Postcentral_R 59: Parietal_Sup_L 60: Parietal_Sup_R
61: Parietal_Inf_L 62: Parietal_Inf_R 63: SupraMarginal_L
64: SupraMarginal_R 65: Angular_L 66: Angular_R
67: Precuneus_L 68: Precuneus_R 69: Paracentral_Lobule_L
70: Paracentral_Lobule_R 71: Caudate_L 72: Caudate_R
73: Putamen_L 74: Putamen_R 75: Pallidum_L
76: Pallidum_R 77: Thalamus_L 78: Thalamus_R
79: Heschl_L 80: Heschl_R 81: Temporal_Sup_L
82:Temporal_Sup_R 83: Temporal_Pole_Sup_L 84: Temporal_Pole_Sup_R
85: Temporal_Mid_L 86: Temporal_Mid_R 87: Temporal_Pole_Mid_L
88: Temporal_Pole_Mid_R 89: Temporal_Inf_L 90: Temporal_Inf_R
91: Cerebelum_Crus1_L 92: Cerebelum_Crus1_R 93: Cerebelum_Crus2_L
94: Cerebelum_Crus2_R 95: Cerebelum_3_L 96: Cerebelum_3_R
97: Cerebelum_4_5_L 98: Cerebelum_4_5_R 99: Cerebelum_6_L
100: Cerebelum_6_R 101: Cerebelum_7b_L 102: Cerebelum_7b_R
103: Cerebelum_8_L 104: Cerebelum_8_R 105: Cerebelum_9_L
106: Cerebelum_9_R 107: Cerebelum_10_L 108: Cerebelum_10_R
109: Vermis_1_2 110: Vermis_3 111: Vermis_4_5
112: Vermis_6 113: Vermis_7 114: Vermis_8
115: Vermis_9 116: Vermis_10

123



124 A Appendix

A.3 Derivation of Expectation Maximization Algorithm

The expectation maximization (EM) algorithm is a general method for deriving max-

imum likelihood parameter estimates from incomplete (i.e., partially unobserved)

data. The essential trick of the EM algorithm is to maximize not the log-likelihood,

but a lower bound on the log-likelihood, which is more tractable.

Let X be a random vector and parameterized by θ. We want to find θ such that

p(X|θ) is a maximum, which is known as a maximum likelihood estimate (MLE)

for θ. It is common to introduce the log-likelihood, since it is a strictly increasing

function, i.e., L(θ) = ln p(X|θ). Assume θ̂n is the n-th estimate of θ, then we want

to maximize the difference,

L(θ)− L(θ̂n) = ln p(X|θ)− ln p(X|θ̂n). (A.1)

In the presence of hidden random vector Z with its given value z, the total probability

p(X|θ) can be written with respect to z, p(X|θ) =
∑

z
p(X|z, θ)p(z|θ), thus Eq. A.1

can be rewritten as:

L(θ)− L(θ̂n) = ln

(
∑

z

p(X|z, θ)p(z|θ)

)

− ln p(X|θ̂n)

= ln

(
∑

z

p(X|z, θ)p(z|θ)
p(z|X,θ̂n)

p(z|X,θ̂n)

)

− ln p(X|θ̂n)

= ln

(
∑

z

p(z|X,θ̂n)
p(X|z,θ)p(z|θ)

p(z|X,θ̂n)

)

− ln p(X|θ̂n)

Jensen’s inequality ln
n∑

i=1

λixi ≥
n∑

i=1

λi ln(xi), λi ≥ 0,
n∑

i=1

λi = 1

≥
∑

z

p(z|X,θ̂n) ln

(

p(X|z,θ)p(z|θ)

p(z|X, θ̂n)

)

− ln p(X|θ̂n)

since
∑

z

p(z|X,θ̂n) = 1⇒ ln p(X|θ̂n) =
∑

z

p(z|X,θ̂n) ln p(X|θ̂n)

=
∑

z

p(z|X,θ̂n) ln

(

p(X|z,θ)p(z|θ)

p(z|X,θ̂n)p(X|θ̂n)

)

def
=∆(θ|θ̂n). (A.2)
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Further we define l(θ|θ̂n)
def
= L(θ̂n)+∆(θ|θ̂n). In order to achieve the greatest possible

increase in the value of L(θ), EM calls for selecting θ such that l(θ|θ̂n) is maximized.

The updated value is denoted as θ̂n+1. Then we have,

θ̂n+1 = arg max
θ
l(θ|θ̂n)

= arg max
θ

(

L(θ̂n) +
∑

z

p(z|X,θ̂n) ln
p(X|z,θ)p(z|θ)

p(X|θ̂n)p(z|X,θ̂n)

)

remove terms which depend only on θ̂n

= arg max
θ

(
∑

z

p(z|X,θ̂n) ln p(X|z,θ)p(z|θ)

)

= arg max
θ

(
∑

z

p(z|X,θ̂n) ln
p(X,z,θ)p(z,θ)

p(z,θ)p(θ)

)

= arg max
θ

(
∑

z

p(z|X,θ̂n) ln p(X,z|θ)

)

= arg max
θ

(

E
z|X,θ̂n

[ln p(X,z|θ)]
)

. (A.3)

Then the expectation and maximization steps are easy to obtain:

• E-step: determine the conditional expectation E
z|X,θ̂n

[ln p(X,z|θ)].

• M-step: maximize this expression with respect to θ.

To infer the GMM solution, the E-step is to evaluate the posterior probability for

the hidden cluster k given the current parameters θ = {µ,Σ, π} at t iteration, i.e.,

pt
ik =

πt
k

p(xi|µt
k

,Σt
k

)

ΣK
k=1

πt
k

p(xi|µt
k

,Σt
k

)
. Note, we denote xi as a point in a random vector X. At

M-step, this expression needs to be maximized by setting the first derivative to zero

with respect to µ, Σ and π respectively. As a result, we obtain the final solutions as

Eq. 4.4, Eq. 4.5 and Eq. 4.6.
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