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ABSTRACT : Lightweight structures of multi–layer fiber–reinforced polymer composites and hybrid metal–
plastic composites offer high damping capabilities and a high stiffness–weight ratio. The damping properties
of such components are influenced by interfaces and local inhomogeneities resulting in uncertainties and non–
linearities of the characterizing parameters. The investigations are focused on the uncertainty quantification of
amplitude depending damping by stochastic finite element procedures. Uncertain and locally varying damping
parameters are represented with the help of a stochastic field using Karhunen–Loève expansions. The uncer-
tainty is involved into the damping properties of viscoelastic layers. The complex frequencies are represented
using generalized polynomial chaos expansion. To verify the developed and extended simulation method, ex-
perimental modal analysis is performed on samples of the polymer reinforced composite plates. All investigated
samples show a varying damping ratio depending on the displacement amplitude. This helps to identifying prior
information on the damping properties of the viscoelastic layer. Knowing the Karhunen–Loève expansions of
the damping properties, a stochastic finite element model is executed to estimate the unknown coefficients of
the polynomial chaos expansions representing the frequencies. The results are compared with the experimental
data.
Keywords: Composite materials, viscoelastic materials, uncertainty quantification, uncertain damping

1 Introduction

Bending vibrations of thin–walled components contribute signif-
icantly to the noise generation of machines, equipment and ve-
hicles. Implementing additional damping materials may help to
reduce noise propagation, however, may be in conflict with the
component light–weight properties. Such mixed adverse proper-
ties are particularly common in wide range of composite mate-
rials where the damping behavior is dependent on a number of
parameters which are generally characterized by non–linear re-
lationships. Available numerical models are not sufficiently ac-
curate to capture these relationships. For instance, the influence
of the deflection on the damping behavior cannot be modeled by
using existing material models, even though this influence has
been experimentally demonstrated. Furthermore, the impact of
uncertainties and material parameter scattering has not been re-
ported. This is much more dealt in multi–layer composites where
material parameters describing the structure behavior are usually
affected by manufacturing process.
There are numerous physical interdependencies and mathemati-
cal models to describe the damping behavior of sandwich com-
posite structures. A key objective here is to reflect as accurately
as possible the energy dissipation during dynamic loading in or-
der to predict the dynamic behavior of components realistically.
Several analytical and numerical methods have been developed
in past decades to predict the damping in such composites. Com-
prehensive theoretical considerations can be found in relevant lit-
eratures where various nonlinear dependence of the damping has
been experimentally demonstrated [1–4]. Work like [5] consider

nonlinearities with respect to the strain amplitude and frequency
of cross–material for metals, ceramics, mineral materials, as well
as comparative for thermoplastics ([6]). Especially, for continu-
ous fiber–reinforced multilayer composites having matrix mate-
rial, the fiber volume content and fiber orientation of the individ-
ual layers have a dominant influence on the damping properties
while providing a high potential of the targeted property modifi-
cation, see [7–9]. The works [10, 11] describe in detail a method
to identify damping behavior of fiber reinforced polymer (FRP)
experimentally and, as well as [12] for linear application of vis-
coelastic material behavior in the finite element method (FEM).
Demonstration of the damping using generalized rheological
serves constitutive laws involving fractional time derivatives and
thus take into account the deformation history. In [13] the ap-
plicability of such a 3–parameter models for polymers shown by
means of damped vibration, but so far not taken into account the
deflection dependency. The noise–insulating behavior of hybrid
sandwich composites with polymer core layers of a few microm-
eters thickness has been investigated in [14]. In all those works, it
is assumed that all parameters are either constants or at least their
corresponding dependencies are known. Nonlinear behavior typi-
cally has a high degree of complexity in terms of models and their
parameters. In contrast to the mass and stiffness parameters, the
reliable quantification of damping is difficult due to the influenc-
ing state variables and associated uncertainties. For that reason,
the real dynamic of such structures is consequently described in-
completely or with limited accuracy. In several publications sim-
ple viscose damping model is used to quantify the damping un-
certainties where the damping coefficient assumed to be a random
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variable, see e.g. [15, 16]. The effects of uncertain or scattering
damping on the system response using linear models by means
of the perturbation theory, the first and second order reliability
method (FORM/SORM) or Monte Carlo (MC) simulation analy-
sis has been reported [17–19]. The influence of this uncertainty
and the geometric variability was investigated by possibilistic and
probabilistic methods for different FRP structures [20, 21]. They
are based primarily on methods of fuzzy sets [22, 23], stochas-
tic FEM (SFEM) and MC simulation [24, 25]. The determina-
tion of uncertainties using probabilistic methods is very com-
plex due to the underlying sampling method and high accuracy
of the simulation requires a very large number of calculations.
For example, MC method converge slowly and their efficiency
depends on the standard deviation [26]. Furthermore, the cal-
culations have to be performed again in full even with a slight
modification of the frame data. To reduce the high computational
cost associated with this, alternative methods have been devel-
oped, such as the Karhunen–Loéve the generalized polynomial
chaos (gPC) expansions [27, 28] . These expansions in combi-
nation with the FEM have been used for the uncertainty analysis
of different stochastic problems, see e.g. [29–33], as well as to
nonlinear problems [34, 35].
In this paper, we employ the SFEM to analysis of sandwich struc-
tures with random geometrical and material parameters. To this
end, the KL expansion is used to represent the input random pa-
rameters and free vibration responses are approximated using the
gPC expansions. Stochastic simulation is carried out using deter-
ministic FE model on sample collocation points in random space.
The method is applied to sandwich beams with viscoelastic layer
for which the thickness and material parameters of core are con-
sidered random. The results show high accuracy of the method
with MC simulation of 1000 realizations.
The rest of the paper is organized as follows. Section 2 reviews
two important discretization methods for random space. Gen-
eral SFEM formulation of structural free vibration is presented in
section 3. The numerical simulations of the method illustrate in
section 4. Section 5 discusses the conclusions.

2 Discretization of random quantities

As the complex deterministic problems are discretized by FEM
techniques, the discretization of random quantities in stochastic
space is required. Namely, the stochastic space has to be dis-
cretized for the treatment of randomness in the physical system
to be adapted to the implementation of the deterministic FEM
model, which can deal with geometrical complexity. In this pa-
per we use spectral methods based on constructing the functional
dependence expressed in terms of a series [36, 37]. In these meth-
ods the random quantities are represented by spectral decomposi-
tion with unknown coefficients and orthogonal polynomial basis.
A least–squares fit can be used to determine the coefficients of
the expansion. They use commonly the Karhunen–Loève (KL)
theorem and polynomial chaos as discussed below.

2.1 Karhunen–Loève expansion

The expansion is a representation of a random quantity as an in-
finite linear combination of orthogonal functions which are the

eigenfunctions of the covariance function. By definition, the co-
variance function is real, symmetric and positive definite. Thus,
all its eigenfunctions are mutually orthogonal and form a com-
plete set spanning the function space. This property is employed
to construct the KL expansion of the random field w as

w(x, ξ) = w0(x) +
∞∑
i=1

√
λiξifi(x) (1)

where ξi denote independent standard normal random variables
spanning the probability space and λi and fi(x) are the eigenval-
ues and eigenfunctions of the covariance function, i.e.

∫
D

C(x,x′)fi(x′)dx′ = λifi(x) (2)

in which D denotes the spatial domain over which the random
quantity w(x, ξ) is defined. Usually only a few of the terms with
the largest eigenvalues are important assuming the eigenvalues
are ordered by decreasing magnitude. For a higher rate of spec-
tral decay, the smaller number of terms is required for approxi-
mation. Provided that the exact eigenfunctions of the covariance
coefficients are available; the KL method is the most efficient
method for discretizing a random quantity. The most important
feature of the KL discretization method is that the spatial random
fluctuations are decomposed into a set of deterministic functions
fi multiplying random coefficients. However, the application of
the KL expansion is limited by the fact that the covariance func-
tion has to be known apriori. In particular, it is extremely difficult
to determine a covariance function if the KL is employed to rep-
resent uncertainty in model responses. In such condition, they
can be formally expressed as some nonlinear functional of ran-
dom vector ξ by using the polynomial chaos to overcome the KL
limitations.

2.2 Polynomial chaos expansion

It was first introduced in the form of homogeneous chaos expan-
sion by Wiener [38]. The generalized Polynomial Chaos (gPC)
permits the discretization of multi–dimensional non–Gaussian
and non–stationary random quantities. Using this approach, the
random quantity w is expanded as

w(x, ξ) =

∞∑
i=0

wi(x)Ψi(ξ) (3)

where wi are deterministic unknown functions. The random
base functions Ψi are a set of complete multidimensional poly-
nomials in terms of the multidimensional random variable ξ =
{ξ1, ξ2, . . . , ξn}t with the orthogonality relation of

E[Ψi,Ψj ] = E[Ψ
2
i ]δij = h2

i δij (4)

where δij represents the Kronecker delta, hi is the norm of the
polynomials. The unknown deterministic functions can be deter-
mined using Galerkin projection with the base orthogonal poly-
nomials Ψk(ξ) as [39]

wk =
〈w(x, ξ) , Ψk(ξ)〉

〈Ψk(ξ)2〉 , k = 0, 1, 2, . . . (5)
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A complete discretization is obtained once the deterministic func-
tions are known. The dimension of Ψ reflects the spatial complex-
ity of the process. It has the same order as the expansion. The first
order terms of Ψ represent a Gaussian process and thus the expan-
sion reduces to the KL representation of the same random quan-
tity. We note that the knowledge of the correlation function is not
necessary to uniquely determine the set of coefficients wi(x) ap-
pearing in the gPC expansion. Higher order terms in Ψ show the
probabilistic complexity and can be applied for representation of
non–Gaussian processes. For practical simulation, the series in
Eq. (3) is truncated to a finite number of terms.

3 Stochastic FEM on vibration of sand-
wich beams

In this section, the stochastic FEM (SFEM) for free vibration of
sandwich beams is formulated based on spectral expansion. The
sandwich beam is comprised of three layers; two elastic face lay-
ers denoted as layer 1 and 3 and constrained viscoelastic core
layer 2. The beam is made of two thin face sheets with con-
strained viscoelastic core. It is assumed that the transverse dis-
placement and the rotational deflection are constant across the
beam cross–section. Furthermore, the core layer has negligible
bending and extensional rigidity and is subjected only to shear
deformation. In contrast, the face sheets possess no shear defor-
mation. It is also assumed that no slip occurs between the layers,
and there is perfect continuity at the interface. The deflections are
defined with respect to the neutral axis of the composite beam.
Four degrees of freedom is assumed per section of the finite ele-
ment as shown in Fig. 1: ui and uj denote the axial displacements

Layer 1, Metal sheet

Layer 2, Viscoelastic layer

Layer 3, Metal sheetui3

ui1

w
iθi

uj3

uj1

w
j θj

Figure 1: Degrees of freedom for sandwich beam element.

of each face sheet metals, w is the transverse displacement and
the rotational degree of freedom of the face sheets at each section
is defined as θ. Accordingly, the vector of element displacements
for the core is defined as

u = {ui1 , ui3 , wi, θi, uj1 , uj3 , wj , θj}t (6)

The elastic isotropic material model is assumed for face layers
and the viscoelastic core is modeled with its complex shear mod-
ulus G∗

c as

G∗
c(ω) = G

′
c(ω) + jG

′′
c (ω) = G

′
c(ω) [1 + jη(ω)] (7)

in which G
′
c and G

′′
c are the shear storage modulus and the loss

modulus, respectively, and η is the loss factor. Here, and subse-
quently, f and c denote face and core. The stiffness and mass
matrices are estimated from the strain and kinetic energies of the

element. These energies are calculated for each layer individ-
ually. In particular, the strain energy U of faces is constructed
from extensional and bending components. The shear strain in
the core is used to develop the core stiffness matrix, i.e.

U =
1

2
ut

(
Kf

b +Kf
e +Kc

s

)
u (8)

In which Kf
b , and Kf

e are bending extension stiffness matrices of
the faces and Kc

s is the shear stiffness matrix of the core. Due to
the complex structure of the core, it is not constant within the el-
ement and uncertainties are involved in this layer. The face sheet
parameters are considered deterministic. To this end, the stiffness
matrix Kc

s is represented as a function of space coordination x
and random vector ξ, i.e.

Kc
s = Kc

s(x, ξ) (9)

In this work, we approximate stochastic element stiffness of the
core by means of KL expansion as

Kc
s(x, ξ) = k0(x) +

N∑
i=0

√
λiki(x)ξifi(x) (10)

where k0(x) is the mean value of the core stiffness and ki ∈ R
are deterministic coefficient matrices of the KL expansion. It is
written in the compact form of

K = K0 +
√
ΛKξF (11)

The column vectors ξ and F assume the role of shape functions
characterizing the random and spatial variation of material prop-
erties. Clearly, terms associated with the small amplitudes tend
to have only slight impact on the overall representation of the
stiffness. Accordingly, the stochastic elemental strain energy are
adopted from Eq. (12) as

U(x, ξ) =
1

2
ut(x, ξ)

[
Kf

b +Kf
e +Kc

s(x, ξ)
]
u(x, ξ) (12)

The element mass matrix M is deduced deterministically for all
layers derived from the kinetic energy:

T =
1

2
u̇tMu̇ (13)

The damping behavior of faces is ignored owing the fact that it is
very small compared with the core damping. The random eigen-
values γ of the beam are complex exhibit as

γ(ξ) = ω2(ξ) [1 + jη(ξ)] (14)

Assembly of the element stiffness, mass and damping matrices
lead to the SFEM model of the beam vibration in the frequency
domain in the following form

γ(ξ)MU(x, ξ) = K(x, ξ)U(x, ξ) (15)

Due to the lack of information about the covariance function of
responses, the model nodal vector, the eigenfrequency and the
damping ratio are approximated using the gPC expansion at the
same time as

U(ξ) = utΨ(ξ) (16)

ω2(ξ) = atΨ(ξ) (17)

η(ξ) = dtΨ(ξ) (18)
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In which u is deterministic unknown functions, a and d are
vectors of unknown deterministic coefficients. The basis Ψ are
multi–dimensional random orthogonal polynomials of the same
random variables used for KL expansion of the material proper-
ties. Substitution of the KL and gPC expansions in Eq. (15) yields
to

atΨ(ξ)
[
1 + jdtΨ(ξ)

]
MutΨ(ξ)

=
[
K0 +

√
ΛKξF

]
utΨ(ξ) (19)

This equation is SFEM of free vibration of sandwich beam from
which the gPC coefficients of responses are calculated. To this
end, the approximation stochastic error ε(t, ξ) has to be mini-
mized, i.e.

ε(t, ξ) = atΨ(ξ)
[
1 + jdtΨ(ξ)

]
MutΨ(ξ)

−
[
K0 +

√
ΛKξF

]
utΨ(ξ) (20)

Once the stochastic structural responses are approximated by
means of the gPC expansion, the non–intrusive SFEM runs the
deterministic FE model of the structure as black–box and it is
only called as a function for numerical calculation of the un-
known coefficients. The method intends to compute the un-
known gPC coefficients of random outputs by means of a pseudo–
random sampling of the random variables in stochastic space.
The sampling space are implicitly prescribed by the selected a
few abscissae ξni , n = 1, 2, . . . , ,M . Therefore, in Eq. (20) one
has to solve the minimization problem of

∫
{ξi}

ε(t, ξ) δ(ξi − pi)f(ξi)dξi = 0 , (21)

in which δ is the delta function and pi denotes the set of spe-
cific collocation points. The support space can be simply cho-
sen from the roots of random orthogonal polynomial Ψ. The
method provide this major facility to use third–party commer-
cial or free license deterministic FE codes as a black–box to get
the system responses associated with each realization of random
vector. These characteristics make the method very attractive for
parametric quantification in complex models and industrial appli-
cations where the deterministic FE model has been already devel-
oped. The key idea is to use deterministic FE codes to perform
spatial discretization to arrive at a system of random algebraic
equations to employ in the SFEM.

4 Numerical results

In this section, we apply the above formulation to a cantilever
sandwich beam with random core properties, see Fig. 2. The
dimension and material parameters are given in Table .1. All

Table 1: Nominal dimensions and material properties of investi-
gated sandwich beam, cf. Fig. 2.
Dimensions [mm] l = 180 hf = 0.45 hc = 0.05
Material: faces Ef = 200 Gpa νf = 0.3

core Gc = 1.73 Mpa νc = 0.48

topological and material parameters of face layers are considered

Metal sheet, Ef , νf

Metal sheet, Ef , νf

Polymer, Ec(x, ξ), νc

l

h
f

h
c

h
f

Figure 2: Cantilever sandwich beam with random constrained
layer properties. Face layers possess deterministic parameters.

deterministic. The thickness hc and the shear modulus Gc of the
core layer are treated as random parameters. They are approx-
imated locally be means of the KL expansion with covariance
function of the spatial homogeneous as a function of the distances
between two points on the beam core. The squared–exponential
covariance function C(x1, x2) which reflects the correlation at
any two points (x1, x2) in the beam domain defined as

C(x1, x2) = σ2e
− (x1−x2)2

l2c (22)

The standard deviations are assumed to be σG = 0.35 Mpa and
σh = 0.01 mm. The correlation length is assumed to be lc = l.
Large correlation length, lc >> L, means small variations within
the beam length. In such a case, the spatial dependency of the
random parameters can be ignored and only σ–values play major
role and the uncertain parameters can be represented as a random
variable depending only to random vector ξ. An important issue
facing the KL approximation of the uncertain parameters is se-
lecting the dimension of random vector ξ. In other words, the
optimal representation depends to the number of terms in the KL
expansions which directly limits the random space dimensions.
For that we calculate the relative weight W of ith–eigenvalue of
covariance function as

Wi =
λ2
i∑n

i=1 λ
2
i

× 100 (23)

which yields to W = {69.01, 21.53, 6.17, 2.07, 0.83} for the
first 5 eigenvalues. For a good approximation we used the first 2
terms of the KL expansion to estimation the spatial variations of
the core thickness and the shear modulus. This implies that the
dimension of random space is reduced to four, i.e. ξ = {ξi}i=1,2

with ξi ∈ N(0, 1). The mean values and some realizations of
the uncertain parameters are shown in Fig. 3. A robust SFEM
procedure must capture the structure behavior for all realizations
represented as the KL expansion. Third order gPC expansions
employing 2–dimensional Hermite polynomials are used to ap-
proximate the uncertain natural frequencies ω2 and damping ra-
tios η. A deterministic FE model with 10 SHELL281 elements in
ANSYS is considered as a black–box solver. The model is exe-
cuted on 17 sample collocation points produced from the roots of
fourth order Hermite polynomials. The mean values and the stan-
dard deviations of output parameters are given in Table 2. The

Table 2: The mean values and standard deviations of the modal
parameters, frequencies f and damping ratios η.

(f1, η1) (f2, η2) (f3, η3) (f4, η4)
μ (63, 0.37) (303, 0.26) (361, 0.29) (617, 0.48)
σ (1.04, 0.005) (15.17, 0.0065) (28.05, 0.015) (33.50, 0.033)

probability density function (PDF) of the natural frequencies f
[Hz], ω = 2πf , and damping are shown in Fig. 4(a) and (b) in
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Figure 3: Some realization samples of the random core parame-
ters, Gc and hc. The bold lines show the mean values.

comparison with 1000 realizations form the MC simulations. As
shown, the results from the third order gPC with 17 collocation
samples are in high agreement with the MC simulations. The pa-
rameter uncertainties had different impact on the natural frequen-
cies and damping ratios. While the first mode frequency is least
affected from these uncertainties, other modes show large varia-
tions. This is, particularly, distinguished for the third and fourth
modes. The parameters display considerable overlap among the
intervals, with a great deal for the third mode frequency. Third
mode is torsion mode which is most sensitive to uncertainty in
shear modulus. This is a result of the greater uncertainty in the
latter mode. The critical issue relating to the mode overlap comes
out when this overlapping causes the mode shape change. This,
however, requires to investigate the mode shape spatial variations.

5 Conclusions

In this paper, we presented and discussed the application of
stochastic FEM to free vibration of sandwich composite beams
with random viscoelastic parameters. The locally and random
variations of the core layer represented by means of KL expan-
sions and the gPC expansions used to approximated the modal

100 200 300 400 500 600 700

10−6

10−5

10−4

10−3

10−2

10−1

100

f [Hz]

f3f2 f4
f1

(a)

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

10−3

10−2

10−1

100

101

102

η [-]

η2 η3

η4

η1

(b)

Figure 4: Probability density functions of : (a) the first 4 natu-
ral frequencies and (b) damping ratios of the cantilever sandwich
beam, constructed from the third order gPC (bold lines) and 1000
realization from the MC simulation (dashed lines).

outputs, i.e. natural frequencies and damping frequencies. A de-
terministic FE model employed as a solver to evaluate the modal
outputs at some collocation points. The results were in high
agreement with MC simulations of 1000 realizations. Further-
more, modal parameters are influenced by the input parameter
uncertainty in different levels. More especially, the natural fre-
quency of the first torsion mode is mostly affected from the ran-
domness of core layer. The output parameters also demonstrated
some interval overlap. This may be more critical when this over-
lapping results to the mode change, an issue which cannot be fol-
lowed from the modal data and a spatial variations in mode shape
in required.
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