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Abstract

We address the problem of efficiently testing for linear unbounded-
ness and its applications to translational assembly planning. We
describe a new algorithm that performs the test by solving a sin-
gle homogeneous system of equations followed by a single linear
feasibility test. We show that testing for unboundedness is com-
putationally at least as hard as these two subproblems. The new
algorithm is the fastest known algorithm and is practical. We then
present a framework for general translational assembly planning
based on linear constraints. We show the relation of m-handed as-
sembly planning to unboundedness testing and present a polynomial-
time algorithm for m-handed assembly of polygonal part assemblies
with no initially separated pairs of parts. For the general trans-
lational assembly–planning problem, we present a new algorithm
that uses unboundedness testing and a cell reduction technique to
significantly increase the search efficiency. Experimental results of
our implementation on a variety of planar and spatial assemblies
demonstrate the practicality of the algorithms.

KEY WORDS—linear programming, unboundedness test-
ing, translational assembly planning, motion planning

1. Introduction

This paper addresses the problem of efficiently testing for
linear unboundedness and its applications to translational as-
sembly planning. Assembly planning consists of finding
collision-free sequences of motions that assemble the parts of
a product. Because the general problem is known to be com-
putationally hard, finding efficient algorithms for restricted
classes of problems is of great theoretical and practical im-
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portance in applications such as computer-aided mechanical
design, computer-aided manufacturing, and biomedical engi-
neering (Joskowicz and Taylor 1996).

Much research has recently focused on developing algo-
rithms for various classes of assembly-planning problems.
The main parameters are (1) the dimensionality of the space,
e.g., planar versus spatial; (2) the geometry of the parts, e.g.,
polygonal, curved, or polyhedral parts; (3) the part topology,
e.g., convex versus concave parts; (4) the type of motions re-
quired to bring the parts together, e.g., translations, rotations,
or coupled motions; (5) the number of steps in each assem-
bly sequence, e.g., a single translation versus a sequence of
rotations and translations; and (6) the number of separable
subassemblies (or hands required) that must be moved simul-
taneously during assembly, e.g., one-hand assemblies versus
m-hand assemblies. Since assembly motions are equivalent
to reversed disassembly motions for rigid parts, many algo-
rithms perform assembly-by-disassembly, which computes a
disassembly sequence by partitioning the assembly into sub-
assemblies and recursively generating disassembly sequences
for them.

We focus on the problem of translational assembly plan-
ning of polygonal and polyhedral parts. Parts can have any
topology and can only be assembled by a sequence of part
translations, possibly simultaneous. Two examples of this
class are shown in Figure 1: a puzzle and a book case. Many
puzzle-like problems, and some real-life problems, belong to
or can be adequately approximated by this class. Their key
property is that contact relations between pairs of parts can
be expressed as linear constraints and can be represented as
hyperplanes embedded in a higher dimensional space, called
the assembly configuration space (Schweikard and Schwarzer
1998). The configuration space partitions into an arrange-
ment of cells that can be searched for an assembly path.
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Techniques from computational geometry, linear algebra, and
linear programming, such as Minkowski sums, linear opti-
mization, and feasibility testing, can be used in assembly-
planning algorithms.

We propose a general framework for translational assem-
bly planning based on efficient solution of linear constraints.
Within this framework, we present new algorithms for three
problems: (1) efficient testing of linear unboundedness, (2)
m-handed assembly, and (3) general translational assembly
planning.

Linear unboundedness testing determines if the intersec-
tion of a set of half-spaces is infinite. When the set is infinite,
it contains a ray in an unbounded direction, which represents
a single simultaneous collision-free disassembly translation
for all parts. Efficient testing of configuration space cells for
unboundedness is key for translational motion planning. We
present a new algorithm that tests for unboundedness by first
solving a single homogeneous system of equations and then
performing a single linear feasibility test. The new algorithm
is the fastest known algorithm for unboundedness testing and
is practical. The algorithm is general and can be used in ap-
plications other than motion planning.
M-handed assembly consists of deciding if an assembly

can be partitioned into at least two subassemblies by a single
simultaneous translational motion. Each part may assume a
different direction and velocity of motion but may be moved
at most once. No polynomial-time algorithms are known for
this problem. We have developed the first polynomial-time
algorithm form-handed assembly under the condition that no
pair of parts is separated in the initial placement (the puzzle
in Fig. 1a is an example of such an assembly).

General translational assembly planning specifies a se-
quence of coordinated part motions when changing directions
is necessary. Parts may have to be brought to intermediate
placements to clear the way for other parts (Fig. 1b is an ex-
ample of such an assembly). The problem has been shown
to be NP-hard. We present the first method for exact com-
putation of assembly configuration spaces that has been suc-
cessfully applied to practical examples. The output-sensitive
algorithm derives linear motion constraints for all pairs of
parts and incrementally forms configuration space cells by
embedding and intersecting the pairwise constraint sets. We
develop new techniques for reducing redundancies, which in
some practical cases yield exponential speedup.

Experimental results show that our algorithms are prac-
tical for both m-handed assembly and general translational
assembly planning.

The rest of this paper is organized as follows. Section 2
briefly surveys previous work. Section 3 presents the new al-
gorithm for unboundedness testing and shows that this prob-
lem is computationally at least as difficult as solving a sin-
gle homogeneous system of equations and then performing
a single linear feasibility test. Section 4 presents a linear
constraint framework and new algorithms for translational

assembly planning. First, we show that m-handed assembly
planning can be based on testing for unboundedness. We show
that for assemblies of polygons in which no pair of parts is
separated in their initial placement, a disassembly motion can
be computed in polynomial time by solving a single linear
unboundedness problem. For assemblies in which all pairs
of parts are initially separated, we present a simple linear
time algorithm to compute the disassembly motions. For the
case with separated and nonseparated pairs, we describe ef-
fective heuristics. Second, we present an algorithm based
on our previous work (Schweikard and Schwarzer 1998) for
general translational assembly planning. The algorithm uses
a reduction technique that significantly increases the search
efficiency and relies on fast unboundedness testing to search
many cells. Section 5 presents experimental results of our im-
plementations on planar and spatial examples, demonstrating
the practicality of our algorithms. Section 6 concludes with
open questions and directions for future work.

2. Previous Work

We briefly survey previous work on translational assem-
bly planning. For general assembly-planning surveys, see
Halperin, Latombe, and Wilson (1998); Homem de Mello
and Lee (1991); and Toussaint (1985).

Chazelle et al. (1984) prove that multistep assembly plan-
ning is NP-hard for polygons by a reduction of the PARTI-
TION problem for integers. They provide an exponential
lower bound using a construction that simulates the well-
known “Towers of Hanoi” problem, for which the minimum
number of moves required to remove a part is exponential in
the number of parts. The results hold for very simple parts,
since in both reductions, each polygon has a constant number
of vertices and all segments are either vertical or horizontal.

Other authors have developed polynomial time algorithms
by restricting the class of allowed motions. Agarwal et al.
(1996) describe an efficient algorithm for a constant set of
given disassembly directions. Schweikard and Wilson (1995)
show that the single-handed assembly problem, which con-
sists of finding all translational directions that partition a
given assembly into two subsets, can be solved in polynomial
time. Snoeyink and Stolfi (1994) show that assemblies of
convex polyhedral parts may require more than two hands to
disassemble.

Existing translational assembly-planning methods are lim-
ited in the type of motions they can handle (Schweikard and
Wilson 1995), have not been proven to be practical (Halperin
and Wilson 1997; Halperin, Latombe, and Wilson 1998), or
rely on heuristics based on special part features (Hoffmann
1991).

Linear constraints and linear programming techniques
have been proposed for stability analysis (Wolter and Trin-
kle 1994; Baraff, Mattikalli, and Khosla 1997): given an
assembly of parts, determine from the part placements and
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(a) (b)
Fig. 1. Two examples of assemblies: (a) a planar puzzle, which requires four hands to simultaneously move parts in different
directions to disassemble it, and (b) a spatial book case, which requires several sequential motion direction changes to remove
the shelves.

contacts if it is stable under gravity and other forces. Although
the techniques for stability analysis bear some resemblance
to our work, there are several important differences. Stabil-
ity constraints are derived from local part contacts, whereas
for the m-handed assembly problem we may have to take
constraints for all pairs of parts into account since we con-
sider extended translations. In stability analysis for polygo-
nal parts, nonconvex constraints arise only when two vertices
come into contact. The problem can be solved by introduc-
ing a round vertex model (Wolter and Trinkle 1994). In our
case, nonconvex constraints cannot be discarded in general
by modifying the part models. Using mixed-integer program-
ming techniques, as proposed in Wolter and Trinkle (1994),
has a much higher computational cost. The algorithm for
solving the system of constraints in Baraff, Mattikalli, and
Khosla (1997) requires all variables to be strictly positive.
This is overly restrictive for m-handed assembly since some
variables may have to be negative or zero to model parts at
rest.

We present the first method for exact computation of as-
sembly configuration spaces that has been successfully ap-
plied to practical examples. Despite the theoretical complex-
ity of the general problem, most practical cases are much
simpler and can be solved with our output-sensitive approach.
Parts can be general (nonconvex) polygons or polyhedra. We
use the fact that for pairs of polygons or polyhedra, linear con-
straints that describe valid relative placements can be directly
derived. Techniques for computation of configuration spaces
of pairs of parts are well-known (Latombe 1991) and will not
be discussed here.

Within the assembly configuration space framework, direct
computation of hyperplane arrangements is impractical due to
their number and high dimension. For assemblies with more
than two parts, we therefore derive the set of valid placements

incrementally by embedding and intersecting the sets of valid
relative placements of all pairs in the composite configuration
space of all parts.

3. Linear Unboundedness Testing

In this section, we first define formally the linear unbound-
edness testing problem and describe a simple algorithm for
solving it based on 2d linear programming problems in d di-
mensions. We then present a new algorithm that answers the
query by solving a single system of homogeneous linear equa-
tions followed by a single linear feasibility test. By reducing
these two subproblems to unboundedness testing, we show
that testing for unboundedness is computationally at least as
hard as the two dominating steps of our new algorithm. Using
the best known algorithms for solving homogeneous equa-
tions and linear feasibility testing, the new algorithm is faster
than the simple algorithm by a factor of d.

3.1. Problem Statement

Consider a set of half-spaces in d dimensions, defined by the
inequalities

a11x1 + a12x2 + · · · + a1dxd ≥ b1
a21x1 + a22x2 + · · · + a2dxd ≥ b2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1x1 + an2x2 + · · · + andxd ≥ bn,

or, using matrix notation,

Ax ≥ b.

Each of the half-spaces is bounded by a hyperplane of the form
aix = bi , where x = (x1, . . . , xd), and ai = (ai1, . . . , aid)
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are the hyperplane normal vectors. We assume the intersec-
tion of the half-spaces is nonempty.

The intersection of these half-spaces defines a convex cell
in d-dimensional space whose dimension can be lower than
d . A cell is said to be unbounded if it entirely contains a ray.

The problem of testing for linear unboundedness is stated
as follows:

Given half-spaces in d dimensions with
nonempty intersection, decide whether there is
a ray r = {p + tu | t ≥ 0} that is contained in all
half-spaces. If so, return a valid direction vector
u �= 0.

Since the cell is convex, the choice of the direction vec-
tor u is independent of p. Thus, any combination of a valid
direction vector and a valid point will yield a ray that is con-
tained in the cell. Note that the point p can be determined by a
linear feasibility test and that we do not require, as is custom-
ary, that the coordinates of u be nonnegative (otherwise, the
problem can be directly solved with a single standard linear
maximization).

3.2. A Simple Unboundedness Test

There are two difficulties in solving the unboundedness testing
problem with standard tools for linear programming. First,
although it can be formulated as a linear optimization prob-
lem, the actual objective function, i.e., the direction in which
the maximum is to be found, is not known in advance. Sec-
ond, even if a direction is known, unboundedness is usually
regarded as an error condition in linear programming: the
maximization will fail if the given objective function has no
upper bound inside the cell.

We observe that any base of the d-dimensional space pro-
vides a sufficient set of directions to test. Let s1, . . . , sd be
a linear base of d−space. We can perform a maximization
for each of +si and −si , subject to the half-space inequalities
defining the given cell. If one of these maximizations fails,
the cell is unbounded. Notice, however, that a direction ±si
that causes the maximization to fail is not necessarily a valid
direction vector for a ray inside the given cell. For example,
consider the half-plane defined by the constraint y−x ≥ 1 in
E2. A maximization along e1 = (1, 0) will report unbound-
edness, since x can become arbitrarily large, but no ray with
direction vector e1 is contained in the half-plane.

To compute a valid direction vector, we first transform the
cell S by shifting the bounding hyperplanes to the origin, that
is, we replace the defining half-spaces aix ≥ bi by the corre-
sponding homogeneous half-spaces aix ≥ 0. We denote the
transformed cell by S0, since it always contains the origin.
The following lemma and corollary show that this transfor-
mation does not affect the set of unbounded directions: S is
unbounded in a direction u if and only if S0 is unbounded in
direction u.

LEMMA 1. S0 contains a point u �= 0 if and only if S is
unbounded in direction u.

Proof. Let u �= 0 be a vector in S0 (Au ≥ 0) and p be a point
in S (Ap ≥ b). Thus, for t ≥ 0, A(p + tu) ≥ b and S is
unbounded in direction u. Now assume that S contains a ray
{p + tu | t ≥ 0}. Thus, A(p + tu) ≥ b and, equivalently,
t (Au) ≥ b − Ap for any t ≥ 0. This implies Au ≥ 0. Thus,
u is in S0 and u �= 0 by definition of the ray. �
COROLLARY 1. S0 contains a point u �= 0 if and only if S0
is unbounded in direction u.

Now, testing for unboundedness can be reduced to find-
ing a point u �= 0 within the transformed cell. If successful,
the location vector of this point specifies a direction in which
the original cell is unbounded. We can determine u by, e.g.,
intersecting the transformed cell S0 with the bounding hyper-
planes of a d-dimensional box centered at the origin. Instead
of maximizing in the directions +ei and −ei for each unit
vector ei , we perform feasibility tests on the constraint sets
{Ax ≥ 0, eix = 1} and {Ax ≥ 0, eix = −1}. Any solution is
then a nontrivial point (not the origin) in S0 and thus a valid
direction vector u.

This simple algorithm requires 2d linear feasibility tests
in the worst case to decide if the set is unbounded. Is this the
most efficient way of testing? Is it optimal? We address these
questions next.

3.3. The New Unboundedness Testing Algorithm

Table 1 presents the new algorithm. We begin with an infor-
mal description and then formally prove its correctness.

Lemma 1 shows that a cell is unbounded if and only if it
contains a point other than the origin after the transformation.
We can therefore work directly in the homogeneous cell S0
and test if it contains a point other than the origin. First, we
test if the corresponding homogeneous system of equations is
underconstrained (step 1). If it is, the cell is unbounded since
the solution space is at least of dimension one, and we can
compute nontrivial solutions directly. If the homogeneous
system of equations is not underconstrained, we construct a
combined vector as the sum of the hyperplane normal vectors
(step 2). The hyperplane defined by this vector at a positive
distance from the origin will intersect any ray emanating from
the origin in the cell due to the full rank of the matrix. If the
combined vector is zero, no such plane exists and thus the cell
is bounded. Otherwise, we construct a new set of constraints
consisting of the homogeneous inequalities and the new hy-
perplane (step 3). Now unboundedness can be detected with
a single linear feasibility test on the new constraint set.

This algorithm reduces the number of hyperplanes to be
tested from 2d hyperplanes (the previous simple test) to a
single hyperplane with combined normal a� . This reduction
is only possible after we have established the range of the
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Table 1. New Linear Unboundedness Testing Algorithm

Input: Half-spaces H+
1 , . . . , H

+
n defined by inequalities H+

i : aix ≥ bi .

Output: Unbounded direction u when the cell defined byH+
1 ∩. . .∩H+

n is unbounded or bounded otherwise.

1. If the homogeneous system of equations Ax = 0 has a nontrivial solution
u �= 0, return unbounded, the vector u, and exit.

2. Construct a combined direction a� := ∑n
i=1 ai .

If a� = 0, return bounded and exit.

3. Construct the constraint set C as

ax ≥ 0, 1 ≤ i ≤ n

a�x = 1.

If C is feasible, return unbounded. The solution of the feasibility test is the
direction u.
Else return bounded and exit.

underlying constraint set, which means that step 1 is not re-
dundant, as illustrated with the following example.

EXAMPLE. Let a1 = (−1, 0), a2 = (2, 0), b1 = −2, b2 = 2.
After transformation, the cell containing the origin, i.e., the
cell defined by a1x ≥ 0 and a2x ≥ 0, is unbounded, but
a� = (1, 0), so that C is infeasible.

We now prove the correctness of the algorithm.

Proof. The correctness of step 1 follows from Lemma 1 and
the fact that the set of solutions of Ax = 0 is a subset of S0.
Notice that step 1 fails if and only if dim〈a1, . . . , an〉 = d. �
To prove steps 2 and 3, we state Lemma 2.

LEMMA 2. (variant of Farkas’ lemma). Let dim〈a1, . . . , an〉
= d. Then S0 contains a point u �= 0 if and only if C is
feasible.

Proof. Let u �= 0 be a point in S0. We must show that C
is feasible. Assume a�u = 0. Since u is in S0 (aiu ≥ 0),
we have aiu = 0 for each i ≤ n, so u is orthogonal to each
ai . But this would imply that dim〈a1, . . . , an,u〉 is strictly
greater thand. Thus a�u �= 0. The same argument shows that
a� �= 0 if the space spanned by a1, . . . , an has full dimension
and S0 contains a point u �= 0. For each scalar t ≥ 0, the
point tu is in S0. Thus after appropriate scaling, we can
assume a�u = 1, so that u satisfies C. Conversely, a point
satisfying C is clearly a non-zero point in S0. �

3.4. Complexity Analysis

Is this test the fastest possible test? Our algorithm relies on
finding a nontrivial solution for a homogeneous system of
linear equations and linear feasibility testing. Is there a test
that does not require one or both of these two steps? The
following constructions show that the problem of testing for
unboundedness and finding an unbounded direction is at least

as hard as these two steps. Based on these reductions, the new
algorithm is optimal when optimal algorithms for solving the
homogeneous equations and for feasibility testing are used.
We show that with known algorithms for these two problems,
the new unboundedness testing algorithm is faster by a factor
of d over the simple approach in Section 3.2.

LEMMA 3. Testing for linear unboundedness is at least as
hard as finding a nontrivial solution for a homogeneous system
of linear equations.

Proof. We reduce the problem of finding a nontrivial solution
of a homogeneous linear system to unboundedness testing.
Given a homogeneous system (E) of n linear equations Ax =
0, we construct an equivalent homogeneous system (U) of
2n linear inequalities consisting of Ax ≥ 0 and Ax ≤ 0.
We determine a nontrivial solution u �= 0 for (E) by finding
an unbounded direction for (U). From Corollary 1, (E) has a
trivial solution if and only if (U) is bounded. Even though
(U) has twice as many rows as (E), this increase does not
affect the asymptotic computing time (assuming that testing
for unboundedness is polynomial in n). Also, the described
transformation itself is dominated by the unboundedness test
and thus does not increase the complexity. �
LEMMA 4. Testing for linear unboundedness is at least as
hard as linear feasibility testing for the constraint set C.

Proof. We give a simple reduction of feasibility testing for
C to unboundedness testing. Consider the linear feasibility
problem (C)

Ax ≥ 0

a�x = 1,

with dim〈a1, . . . , an〉 = d , i.e., the rank of the matrix A is
full. We can transform this problem to a (homogeneous) test
for unboundedness by setting (U) to
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Ax ≥ 0

a�x − z = 0

z ≥ 0.

We must show that (C) is feasible if and only if the cell defined
by the system (U) is unbounded. First, assume that (C) is
feasible, i.e., Ax0 ≥ 0 and a�x0 = 1 for some x0 ∈ Ed .
Thus, z(Ax0) ≥ 0 and z(a�x0 − 1) = 0 for any z ≥ 0 and
(U) is unbounded in direction (x0, 1). Now assume that (U) is
unbounded, i.e., there is a vector u = (x0, z) �= 0 in (U). We
first show that z > 0. Assume that z = 0 (and thus x0 �= 0).
Since u is in (U), we would then have a�x0 = 0 and Ax0 ≥ 0.
But this implies that aix0 = 0 for all rows of A and we have a
nonzero vector x0 that is orthogonal to all ai , in contradiction
to dim〈a1, . . . , an〉 = d . Thus, after appropriate scaling of
u, we can assume that z = 1, so that u′ = (x′

0, 1) is in (U).
Thus, x′

0 is in (C).
The transformation from (C) to (U) has increased the di-

mension d and the number n of constraints of the problem by
one, since a new variable z has been added. Furthermore, the
transformation increases the number of constraints by one.
Assuming the number of steps required for a linear feasibility
test (with n constraints in d dimensions) is polynomial in n
and in d, this increase does not affect the asymptotic comput-
ing time. �

The new algorithm does not specify how solving the ho-
mogeneous equations and linear feasibility testing are to be
performed. Based on known algorithms for these two sub-
problems, we obtain the following time bound for our test.

LEMMA 5. The complexity of the algorithm in Table 1 is
O(nd4.5) where n is the number of constraints and d is the
number of variables.

Proof. Based on Karmarkar’s (1984) method, linear maxi-
mization and feasibility testing take at most O(Ld3.5) steps,
where L is the accumulated length of the input coefficients
(Wright 1992). If the length of each individual coefficient is
fixed and constant, i.e., the number of bits necessary to rep-
resent each number is at most l, then L = O(nd), so that the
described feasibility test takes at most O(nd4.5) steps. Step
1 can be performed in O(nd2) steps (for n constraints and d
variables, [Stoer 1976]). Thus, the complexity of the algo-
rithm in Table 1 is O(nd4.5) versus O(nd5.5) for the simple
method in Section 3.2. Thus, our algorithm allows for a re-
duction of time bounds by a factor of d when compared to the
simple method. �

4. A Linear Constraint Framework for
Translational Assembly Planning

This section introduces the linear constraint framework for
translational assembly planning and presents algorithms for
m-handed assembly and general translational assembly.

4.1. Basic Concepts

For simplicity, we describe the basic concepts for the case
of polygonal parts. The formulation extends directly to
polyhedra.

Let P1, . . . , Pk be polygons in a given initial placement,
which is, by definition, overlap-free. Since we consider only
translational motions, the position of each movable part Pi
is given by a vector pi = (xi, yi). We assume pi = (0, 0)
for the initial placement, so pi �= (0, 0) describes the lo-
cation of part Pi after a translational displacement. A si-
multaneous placement of all parts is represented by a vector
u = (x1, y1, . . . , xk, yk) in E2k . The origin in this space
describes the initial placement of all parts. For example, the
vector (1, 0, . . . , 0) is the placement, possibly overlapping,
obtained by translating the first part along the positive x-axis
by one length unit.

The configuration space obstacle CO(Pi, Pj ) of two parts
describes the set of relative placements of Pi with respect
to Pj for which Pi and Pj will overlap (Latombe 1991).
We regard all parts as open sets. The complement of
interior(CO(Pi, Pj )) represents relative placements of poly-
gons Pi and Pj in which their interiors do not intersect. This
complement is a union of closed 0-, 1-, and 2-dimensional
convex cells. Each cell in this union can be represented by an
intersection of half-planesH1 ∩ . . .∩Hs . A single half-plane
constraint has the form

ax ≥ b.

Here, x = pi − pj denotes the coordinates of Pi rela-
tive to Pj . Thus, each half-plane constraint induces a four-
dimensional constraint on the coordinates of Pi and Pj

a(pi − pj ) ≥ b.

Note that since CO(Pi, Pj ) = −CO(Pj , Pi), these four-
dimensional constraints do not depend on the order of the
parts. It is thus sufficient to consider only pairs (Pi, Pj )where
i < j .

Once we have derived cells for all pairs of parts, we em-
bed them in the compound assembly configuration space by
regarding their constraints as d-dimensional constraints with
only four nonzero coefficients.

4.2. M-Handed Assembly Planning

The m-handed assembly problem is stated as follows:

Given an initial, overlap-free placement of parts,
decide whether at least one part can be re-
moved without collisions by a single simultane-
ous (“one-shot”) translation. Each moving part
may translate in a different direction with its own
constant velocity.
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We first introduce the concept of separated pairs of parts.
Two sets are said to be separated if there exists a hyperplane
ax = b such that one set is entirely contained in the half-space
ax ≥ b while the other set is entirely contained in the (open)
half-space ax < b. For example, the polygons in Figure 2a
are not separated, while those in Figure 2b are.

We distinguish among three types of assemblies accord-
ing to the initial part placement: (1) assemblies in which no
pairs of parts are separated, (2) assemblies in which all pairs
of parts are separated, and (3) assemblies with separated and
nonseparated pairs. We provide polynomial time algorithms
for the first two cases and heuristics for the third. For planar
assemblies in which no pair of parts is separated in the initial
placement, a motion can be computed in polynomial time with
a single unboundedness test. No polynomial-time algorithms
were previously known for this problem. When all pairs of
parts are initially separated, we show that collision-free out-
ward motions can always be computed for both planar and
spatial assemblies. In the general case with both separated
and nonseparated pairs of polygons, an exponential number
of unboundedness tests may be necessary. It is currently an
open question whether the generalm-handed assembly prob-
lem is NP-hard.

4.2.1. Constraints and Unboundedness Testing

We first derive linear constraints for pairs of polygons. For
each pair of parts (Pi, Pj ) in the initial placement, where
1 ≤ i < j ≤ k, we consider the set separate(Pi, Pj ) of
one-shot translations separating Pi from Pj without colli-
sions when Pj is fixed (motions of Pi relative to Pj ). This
set of translations is represented by a cone of rays emanat-
ing from the origin (in the plane). Any ray that intersects
interior(CO(Pi, Pj )) represents an invalid translation of Pi
during which the interiors of the parts will intersect.

All pairs of parts initially nonseparated. We first consider
the special case in which no pair of polygons is separated in
the initial placement. Figure 1a and Figure 3 show examples
in which no pair of parts is initially separated.

Under this restriction, each of the sets separate(Pi, Pj )
forms a convex sector (or half-cone) in the plane, which is
the intersection of two half-planes (Fig. 2c). A conjunction
of two linear constraints describes this convex sector:

a(ij)1 x ≥ 0

a(ij)2 x ≥ 0,

where x denotes the coordinates of Pi relative to Pj . The
substitution x = pi − pj yields four-dimensional linear con-
straints on the absolute part positions pi and pj :

C
(ij)

1 : a(ij)1 (pi − pj ) ≥ 0

C
(ij)

2 : a(ij)2 (pi − pj ) ≥ 0.

Each ray in this set is a direction of simultaneous translation
for both Pi and Pj , during which Pi and Pj will not collide.

For the entire assembly, we embed the sets of separating di-
rections from all pairs of parts in the compound assembly con-
figuration space by considering the four-dimensional inequal-
ities C(ij)1 and C(ij)2 as d-dimensional inequalities. These
inequalities describe a single convex cell of separating direc-
tions for the whole assembly.

Without loss of generality, we fix the placement of one part
(the basis) and compute assembly motions relative to it. This
is possible since if the given parts can be separated at all, then
there is also a separating motion that will leave one of the parts
fixed. If the resulting cell is bounded, then the parts interlock.
Otherwise, at least one part can be removed. Since the cell is
convex, a single unboundedness test is sufficient and thus the
running time is polynomial. Here, the first step in our new
algorithm (transformation of the cell) is not necessary, since
all constants on the right sides of the inequalities are already
equal to zero.

Notice that at least one part must be fixed. Otherwise, the
resulting cell is always unbounded, at least in all directions
(vx, vy, vx, vy, . . . , vx, vy), since the assembly can always be
moved as a whole.

Note also that there is no need to explicitly compute the en-
tire assembly configuration space nor any configuration space
obstacles for pairs of polygons. Instead, it is sufficient to com-
pute and test the cell defined by two tangent constraints per
pair of parts. Thus, even curved planar parts can be taken into
consideration as long as tangent rays can be computed for all
pairs.

All pairs of parts initially separated. As shown in Dawson
(1984), any collection of k star-shaped objects with disjoint
interiors can be separated with k−1 hands using a simultane-
ous one-shot translation. It follows that if all pairs of parts are
initially separated, there is always a valid m-handed removal
motion. Note that this is true for both planar and spatial as-
semblies. In our case, parts need not be star shaped, since all
pairs of parts are initially separated.

General case: initially separated and nonseparated pairs
of parts. Let N be the set of initially nonseparated pairs and �
the set of initially separated pairs. For nonseparated pairs, the
set of separating directions is convex and can be represented
by a conjunction of two half-plane constraints C(ij)1 ∧ C(ij)2 .
For an initially separated pair (Fig. 2b), the corresponding set
is nonconvex (Fig. 2d) and must be split into a disjunction of
two half-plane constraints C(kl)1 ∨ C(kl)2 .

The set of all embedded constraints can then be expressed
by the conjunction

C0 ∧
∧

(i,j)∈N
(C

(ij)

1 ∧ C(ij)2 ) ∧
∧

(k,l)∈�
(C

(kl)
1 ∨ C(kl)2 ),

(1)
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(a) (b)

(c) (d)
Fig. 2. (a) Nonseparated and (b) separated parts and their respective configuration spaces (c,d).

where C0 denotes constraints that fix an arbitrary part. To
apply the unboundedness test, we transform this expression
into disjunctive normal form. Each conjunctive clause in the
normal form expression represents a d-dimensional convex
cell and can thus be tested for unboundedness. We stop once
an unbounded cell is found. In the worst case, 2s cells must be
examined, where s = |�| is the number of initially separated
pairs of parts.

When the number of initially separated pairs is not con-
stant, the above procedure is exponential in the worst case. It
is an open question whether the general m-handed assembly
problem is NP-hard.

We can heuristically reduce the number of nonconvex con-
straints in (1) by analyzing the influence of the constraints
from all initially nonseparated pairs of parts. These con-
straints define a single convex cell Ax ≥ 0, which can be
projected into the configuration spaces of all pairs of parts
(Huyn et al. 1991). Each such projection is a single two-
dimensional cone. We can then use this projection to deter-
mine, in each pairwise configuration space, how the allowed
motion directions for the considered pair are further restricted
by other parts. Specifically, separating directions for initially
separated pairs may be restricted to a convex set. We provide
examples for this heuristics in Section 5.

Fig. 3. Assembly with no separated pair of parts.

4.2.2. Polyhedral Assemblies

The linear constraint framework can be extended directly to
the spatial case by introducing a z-coordinate for each part.
However, the actual construction of the sets of directions sep-
arating each pair of parts, separate(Pi, Pj ), is more difficult
than in the polygonal case. In Schweikard and Wilson (1995),
pairwise separating directions are computed using a central
projection from the origin onto the unit sphere or two parallel
planes (z = −1, z = 1). Our constraints can then be derived
from a planar arrangement since all bounding planes of the
cones of directions must contain the origin.
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In the polygonal case, we were able to develop efficient
algorithms for assemblies with no initially separated pairs of
parts because the pairwise constraints for nonseparated pairs
were convex. However, this does not hold for spatial pairs: the
set of separating directions can partition into several convex
sets even for nonseparated polyhedra (e.g., a part with several
connected cavities that contain another part).

Another interesting difference between polygonal and
polyhedral assemblies is that, unlike assemblies of convex
polygons, assemblies of convex polyhedra cannot always be
assembled with a single hand (Snoeyink and Stolfi 1994).
Therefore, for polyhedral assemblies, it is not sufficient that
all pairs of parts be separated to allow for single-handed as-
sembly. In contrast, as shown above, m-handed assembly is
always possible for pairwise separated parts in any dimension.

4.3. General Translational Assembly Planning

The general translational assembly-planning problem is stated
as follows:

Given an assembly of polygonal or polyhedral
parts, decide whether one or more parts can
be removed without collisions from the remain-
ing set of parts by an arbitrary sequence of
translations.

General translational assembly planning includes non-
monotone assembly sequences, in which one or more sub-
assemblies have to be brought in intermediate placements.
For example, the wooden cube puzzle in Figure 4 has 12
pieces. To disassemble it, several parts must be shifted back
and forth to remove other parts. Known algorithms cannot
handle such multistep translations in a uniform and complete
way.

We now show how our linear constraints framework can be
used in an algorithm for general translational assembly plan-
ning. The algorithm incrementally computes a d-dimensional
arrangement of hyperplanes representing simultaneous place-
ments of all parts. Valid and forbidden placements correspond
to cells in the d-arrangement. A sequence of valid cells con-
necting the initial cell to an unbounded cell directly yields
a feasible disassembly plan. The algorithm is opportunistic
because it computes only certain required parts of the reach-
able free configuration space regions. We first summarize the
basic concepts from Schweikard and Schwarzer (1998), and
then present a new method, called D–node reduction, that can
significantly speed up the search by reducing redundancies
in the arrangement. We use our new unboundedness test to
efficiently test cells during the search.

4.3.1. Constraints for Pairs of Parts

The configuration space obstacle of two translating poly-
hedral parts in space, Pi and Pj , is also a polyhedron
(Latombe 1991). The bounding planes of CO(Pi, Pj )

define an arrangement of planes A(Pi, Pj ) in three-
dimensional space. A(Pi, Pj ) decomposes the complement
of interior(CO(Pi, Pj )) into closed convex cells, as illus-
trated in Figure 5a in two dimensions. We can embed and
intersect these free cells from all pairs of parts in the compos-
ite assembly configuration space, yielding a d-dimensional
arrangementAd as described above. Computing this arrange-
ment yields cell fragmentation and is impractical due to the
high dimension of the space. To remedy this, we introduce
two new data structures, floorgraphs and D–graphs, for im-
plicit representation and efficient storage of free space.

4.3.2. Floorgraphs

A floorgraph for a pair of parts (Pi, Pj ) is a graph obtained by
decomposing the complement of interior(CO(Pi, Pj )) into
overlapping closed convex cells defined by oriented plane
patches from CO(Pi, Pj ), instead of full bounding planes.
Each cell corresponds to one node in the floorgraph and is
defined by linear equalities and inequalities. Two nodes are
connected by an undirected edge if their associated cells in-
tersect. Edges are associated with constraints describing the
intersection of the two adjacent nodes.

Figure 5b shows an example of a decomposition. Note that
it has fewer cells than the decomposition in Figure 5a. Figure
5c shows the corresponding floorgraph. The constraints asso-
ciated with node 5 are {xP − xQ ≥ a, yP − yQ ≤ b}, where
a and b are constants. The constraints of the edge connecting
nodes 4 and 5 are {xP − xQ ≥ a, yP − yQ = b}.

The advantage of the floorgraph representation is that cells
are bounded by surface patches rather than full planes. As
a consequence, free space is decomposed into considerably
fewer cells.

4.3.3. D–Graphs

To obtain a composite configuration space, we combine the
floorgraphs from all pairs of parts into a new data structure,
called D–graph. A D–graph is an exact and compact rep-
resentation for cells and their adjacency relations in the d-
dimensional assembly configuration space.

A D–node is a tuple S = (n1, . . . , nf ) of floorgraph
nodes, where a tuple entry ni represents the current floor-
graph node of the ith pair of parts. The length of the tuple is
f = k(k− 1)/2, where k is the number of parts in the assem-
bly. Associated with each D–node is the set of all embedded
constraints stemming from the current floorgraph nodes. Note
that most D–nodes represent empty cells, as most combina-
tions of constraints stemming from the pairwise floorgraph
cells are infeasible. The D–node containing a given valid
assembly configuration is obtained by projecting the configu-
ration in each pairwise configuration space and searching the
corresponding floorgraphs for the cell containing the projec-
tion. A D–edge is an edge between two nonempty neighbor-
ing D–nodes whose associated cells intersect.
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(a) (b)
Fig. 4. (a) Wooden cube puzzle with 12 parts requiring a nonmonotone assembly sequence. (b) Exploded view showing the
individual parts.

(a) (b) (c)
Fig. 5. (a) Decomposition of two-dimensional configuration space obstacles into an arrangement of half-planes; (b) decompo-
sition of the same obstacle into overlapping cells defined by oriented bounded half-planes; and (c) its corresponding floorgraph.

Fig. 6. Example of D–node construction from pairwise floorgraphs.
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The example in Figure 6 illustrates D–node construction
from pairwise floorgraphs. It shows a configuration of three
boxes on the left, the generic floorgraph for a pair of boxes in
the middle, and on the right, the D–node containing the given
configuration. For clarity, the pairs corresponding to the D–
node entries are referenced by arrows in the right picture. The
first entry e stems from the pair (1, 2) and indicates that the
relative position of part 1 with respect to part 2 is contained
in cell e in all configurations contained in this D–node.

4.3.4. Incremental Search Algorithm

A valid disassembly path is obtained by searching the D–
graph. We begin by constructing the initial D–node corre-
sponding to the cell containing the assembled parts placement
and explore neighboring D–nodes until we encounter an un-
bounded D–node. The disassembly motions are directly ob-
tained from D–nodes in the path from the initial D–node to
the unbounded one.

Precomputing the D–graph and then searching it for a path
is both impractical and unnecessary: instead, we can start
from the initial D–node and incrementally construct and test
reachable D–nodes for unboundedness. Visited D–nodes are
stored and marked, so that they are not visited again later. To
generate successor D–nodes, it is not necessary to compute
the complete boundaries of cells in higher-dimensional space:
it is sufficient to test so-called door cells. These door cells
are convex patches on the cell boundaries and will be defined
next.

Formally, D–node S′ = (n′
1, . . . , n

′
f ) is said to be a suc-

cessor of a nonempty D–node S = (n1, . . . , nf ) if (1) ni
and n′

i are neighbors in floorgraph i, (2) nj = n′
j for all

j �= i, and (3) the combined constraints from (S, n′
i ) define a

nonempty cell, called door cell. For a given valid D–node, we
generate all successor D–nodes by successively switching all
entries, one at each step, and verifying that condition (3) holds
with a linear feasibility test. In Schweikard and Schwarzer
(1998), we prove that all neighbors of a feasible D–node can
be reached via one or more successor D–nodes each.

In most cases, only a fraction of the entire D–graph will
be searched, resulting in a practical algorithm.

4.3.5. Searching with Reduced D–Nodes

Experimentation with practical examples shows that the in-
cremental algorithm is still inefficient in certain cases be-
cause it generates many redundant D–nodes. Some of them
can be avoided by dynamically eliminating unnecessary pair-
wise constraints based on the search context. This technique,
which we call D–node reduction, can speed up the search sig-
nificantly. We motivate the problem and briefly describe its
solution with a representative example next.

Consider the example in Figure 7a. It consists of a con-
tainer X with four separate slots, numbered 1 to 4, and four

boxes, named A, B, C, and D. The four boxes cannot in-
teract, as there is no passage between them. The pairwise
floorgraphs of the container and the boxes are topologically
equivalent to the container: they consist of four disconnected
cells, which we also number 1 to 4 to correspond with the
slot number. The pairwise floorgraphs of box pairs are all
similar to the floorgraph in Figure 7b: they consist of a single
component of four connected cells.

The initial D–node is formed by taking one floorgraph cell
for each pair of parts in their initial configuration. We denote
the initial D–node by

(1AX, 2BX, 3CX, 4DX, 1BA, 1CA, 1DA, 1CB, 1DB, 2DC),

where 1AX denotes cell 1 in the configuration space of A and
X, and 1BA denotes that the relative position of part B with
respect to partA is contained in cell 1 in the floorgraph of this
pair of parts. The incremental algorithm will generate and
test all combinations of vertical orderings of the boxes (a box
is either above or below the other), which is exponential in
the number of boxes.

We can reduce this D–node to (1AX, 2BX, 3CX, 4DX)with-
out loss of information. Since the boxes cannot interact with
each other, the constraints of the reduced node are sufficient
to prevent all boxes from intersecting. This can be verified
by projecting the cell to all pairwise configuration spaces of
the eliminated pairs. The projections will not intersect the
corresponding pairwise configuration space obstacles. In this
example, the reduction results in a single D–node without any
successor nodes, thus achieving an exponential speedup.

More formally, we can interpret a D–node itself as a graph.
Nodes in this graph correspond to parts in the assembly. An
edge between two parts will be labeled with the currently
active floorgraph node from the two adjacent parts. Con-
sequently, all D–nodes were complete graphs (cliques). A
reduced D–node will contain only those edges (pairwise con-
straints) that are currently required to prevent intersections.
Figure 7c shows the reduced D–node graph for the assembly
configuration in Figure 7a. Note that only constraints for the
pairsAX, BX, CX, andDX are necessary since they prevent
all pairs of boxes from interacting. The edges are labeled with
the corresponding floorgraph cells.

By using reduced D–nodes instead of full nodes, the incre-
mental search algorithm gains in efficiency because

• fewer successor D–nodes have to be generated and
tested,

• fewer constraints contribute to each cell in d-
dimensional space, and

• the cell decomposition becomes coarser, thereby reduc-
ing the size of the graph.

The extra work is maintaining the D-nodes during search.
When moving to a successor D–node, a validation of the re-
duced D–node must be performed. As a consequence, edges
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(a) (b) (c)
Fig. 7. (a) Example for D–node reduction, (b) reduced D–node graph for the configuration in (a), and (c) representative
floorgraph for two boxes.

may have to be added or can be deleted from the D–node
graph.

Note that the eliminated constraints are not necessarily re-
dundant in the classical sense of linear programming, since
they indeed may partition the original cell (as in the above
example). If this is the case, by discarding pairwise con-
straints the cell will be augmented and the compound config-
uration space decomposition becomes coarser. We can there-
fore also interpret the impact of D–node reduction as cell
augmentation.

5. Experimental Results

To demonstrate the practical value of our algorithms and quan-
tify their performance, the unboundedness testing algorithms
(Sections 3.2 and 3.3) and the assembly-planning algorithms
(Section 4) were implemented in C++ and run on a SUN
Ultra-60 workstation with 256 MB of RAM under Unix. We
constructed representative planar and spatial examples to test
the different properties of the algorithms and to evaluate the
heuristics. Singular value decomposition was used for solving
homogeneous equations, and the simplex method was used for
feasibility testing.

5.1. Unboundedness Testing

To quantify the performance of the new unboundedness test-
ing algorithm with respect to the simple one, we created a
series of problems consisting of randomly generated homo-
geneous cells.

Table 2 summarizes the results. The first 5 columns (cell
characteristics) describe the properties of the randomly gen-
erated cells: # the name, d the number of variables (problem
dimensionality), n≥ the number of random half-space con-
straints of the form aix ≥ 0, n= the number of random hy-
perplane constraints aix = 0, and unb whether the cell is
unbounded or not. The next two columns (simple algorithm)
describe the running time t (in seconds) that was measured for
f actually performed feasibility tests. For all bounded cells

except (b), we did not run the simple algorithm to comple-
tion, since this requires exactly 2d feasibility tests (all failing).
For these cases, the following column specifies an estimate
T = 2dt/f for the complete running time of all 2d tests. The
last four columns (new algorithm) describe the running times
th and tf of solving the homogeneous equations and perform-
ing the feasibility test and whether the cell was found to be
unbounded by the respective step (unbh and unbf ).

The results show that the new algorithm can handle large,
higher-dimensional problems with many constraints. It is sig-
nificantly faster on large bounded cells for which the simple
algorithm leads to impractical running times (column T in
cases d, f, and h). This is of special importance for general
translational assembly applications where a large number of
bounded cells may have to be tested before an unbounded
cell is found. The simple test has better performance only
when the set of unbounded directions is a subset of the solu-
tions of the homogeneous equations, and where the number
of necessary feasibility tests is small (cases a, c, and g). In
the new algorithm, the better performance of the feasibility
test indicates that it can be advantageous to first perform this
test before solving the homogeneous equations.

5.2. M-Handed Assembly

We tested the m-handed translational disassembly algorithm
in Section 4.2 on a variety of representative planar examples.
The program uses the new unboundedness testing algorithm
and the LEDA library (Mehlhorn and Naeher 1995) for the
geometric computations.

The example in Figure 8 shows a planar assembly with
no separated pair of parts and snapshots of the computed m-
handed motion that separates the parts. The program estab-
lishes that four of the five parts must be translated simultane-
ously, with distinct velocities and directions. Unboundedness
testing takes only 0.02 s. By examining subassemblies, the
program also determined that no m-handed disassembly mo-
tion with fewer than four hands is possible. An extension
of the example in Figure 3 from Section 4.2.1 to 16 moving
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Table 2. Results of Running the Simple and New Linear Unboundedness Testing Algorithm on Randomly Generated
Homogeneous Cells Defined by d Variables, n≥≥≥ Half-Space Constraints, and n= Hyperplane Constraints

Cell Characteristics Simple Algorithm New Algorithm

# d n≥ n= unb t f T th unbh tf unbf

a 40 0 39 yes 0.1 1 0.1 0.2 yes 0.1 no
b 40 0 40 no 7.8 80 7.8 0.2 no 0.1 no
c 200 0 199 yes 10 1 10 20 yes 7.6 no
d 200 0 200 no 60 8 3,000 20 no 8.1 no
e 200 100 0 yes 1.1 1 1.1 6.6 yes 0.8 yes
f 200 500 0 no 976 8 48,800 54 no 119 no
g 500 0 499 yes 171 1 171 399 yes 135 no
h 500 200 400 no 1233 4 308,250 841 no 275 no

parts also required only a small fraction of a second to find a
disassembly motion.

Figure 9 shows two nearly identical eight-part assemblies
with 14 separated pairs and 14 nonseparated pairs of parts,
respectively. In both cases, the nonconvex constraints from
all separated pairs of parts can be discarded since the con-
straints from the nonseparated pairs are restrictive enough to
prevent collisions. This is detected in a preprocessing step by
projecting the constraints from all nonseparated pairs into the
configuration spaces of all separated pairs of parts. The re-
maining test for unboundedness determines that the assembly
in Figure 9a can be disassembled, but not the one in Figure 9b.
The total running time is about 0.55 s, with 0.5 s for the pro-
jections and 0.05 s for unboundedness testing. Without the
reductions, 214 cells would have to be tested for the example
in Figure 9b, with a running time of about 800 s. Heuristic
preprocessing eliminates all nonconvex constraints and leaves
a single d-dimensional cell to be tested for unboundedness.
Since the number of initially separated pairs grows quadrat-
ically with the number of parts, the speedup obtained by the
heuristic is exponential.

We tested a large number of examples with both initially
separated and nonseparated pairs of parts and found that the
described reduction of nonconvex constraints works very ef-
fectively on them.

5.3. General Translational Assembly

We ran the algorithm for general translational assembly plan-
ning with D–node reduction from Section 4.3 on several real-
istic spatial examples. For comparison, we incorporated both
the simple (Section 3.2) and the new (Section 3.3) unbound-
edness testing algorithm. Running times were recorded for
the following two tasks:

• Search for the first unbounded cell. The search stops
when the first unbounded cell is found, i.e., at least one
part can be removed from the remaining parts. Table 3
summarizes the results. The columns specify the prob-
lem name, the number of parts, the number of cells
tested for unboundedness during the search, the times

of the simple and new unboundedness test for all cells,
and the total search time required.

• Complete disassembly. Having found an unbounded
cell, the problem is split into separable subsets and
the subproblems are processed recursively until they
consist of single parts or cannot be disassembled any
further. Table 4 summarizes the cumulative times for
complete disassembly.

We now discuss the results in more detail.
Cube. For the 12-part wooden cube in Figure 4 from Sec-

tion 4.3, 38 unboundedness tests were necessary to find a
sequence for removing the first subset of parts (Table 3). Our
new unboundedness test is almost 6 times faster than the sim-
ple algorithm. For complete disassembly, the required non-
monotone sequence of translations was found by our program
in about 13 s, of which about 2 s are for the new unbound-
edness test (instead of more than 12 s for the simple test,
Table 4). The first row in Table 5 shows the running times of
the algorithm without D–node reduction (for comparison, the
numbers in parentheses from Table 4 are with D–node reduc-
tion). The speedup factor of about three shows that D–node
reduction is very effective even for tightly packed assemblies
with many interlaced parts.

Bookcase. For the 17-part bookcase in Figure 1b from
Section 1, constraints from many pairs of parts can be elim-
inated due to redundancy. This is illustrated in Figure 10,
which shows an exploded side view of one half of the book
case (11 parts instead of 17) and the reduced D–node for the
initial mounted configuration. Only 22 out of 55 pairwise
constraints (edges) are necessary for the 11 parts. For the
entire bookcase assembly, the initial reduced D–node graph
contains 50 out of 136 edges. The disassembly plan was
computed in about 16 s for the search and 10 s for the new
unboundedness test. A total of 277 cells were tested for un-
boundedness. In contrast, the simple algorithm took about
5 times longer (56 s). Table 5 shows that D–node reduction
with the new unboundedness test speeds up the computation
by a factor of about 3.5.

Desk. Figure 11a shows a desk with eight drawers. The
container of the drawers is a single part. Each of the draw-
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Fig. 8. Top: parts of an assembly with no initially separated pair of parts can be separated by the motion indicated by arrows,
whose length represents relative velocities. Bottom: snapshots of separating motion.

(a) (b)
Fig. 9. Two assemblies with several separated pairs of parts. Parts in (a) are separable, whereas the parts in (b) are blocked.
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Table 3. Searching for First Unbounded Cell. Total Running Times (in seconds) Are the Sum of the Numbers in
Columns Simple and Search or New and Search

Example Parts U-tests Simple New Search

Cube 12 38 5.91 1.00 7.24
Book case 17 147 50.71 9.82 14.83
Desk1, can be disassembled

(not decoupled) 9 504 25.17 2.61 7.64
(decoupled) 2 × 5 25 0.37 0.03 0.18

Desk2, cannot be disassembled
(not decoupled) 9 256 11.14 1.23 13.09
(decoupled) 2 × 5 32 0.50 0.08 0.52

Table 4. Complete Disassembly. Total Running Times (in seconds) Are the Sum of the Numbers in Columns Simple
and Search or New and Search

Example Parts U-tests Simple New Search

Cube 12 132 12.42 2.05 10.94
Book case 17 277 55.82 10.42 16.23
Desk1, can be disassembled

(not decoupled) 9 960 37.10 3.86 10.35
(decoupled) 2 × 5 118 1.24 0.10 0.54

Table 5. Running Times for Complete Disassembly without D–Node Reduction. Times Using D–node Reduction from
Table 4 Are Shown in Parentheses

Example Simple New Search

Cube 22.59 (12.42) 3.34 (2.05) 33.85 (10.94)
Book case 115.31 (55.82) 16.62 (10.42) 77.90 (16.23)
Desk2, 195.93 (11.14) 22.7 (1.23) 1635.18 (13.09)

cannot be disassembled
(not decoupled)

(a) (b)
Fig. 10. (a) Exploded side view of book case in Figure 1b (front side only) and (b) reduced initial D–node graph.
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(a) (b)
Fig. 11. (a) Desk with eight drawers and (b) initial D–node allowing for decoupling into two subproblems.

ers slides along two splints, secured against falling out. The
drawers must be pulled out, lifted, and then pulled further out
to be removed. Before a single drawer can be lifted enough for
removal, the one above it must have been removed. We cre-
ated two versions of the desk, one demountable and the other
one not demountable. The second model is nearly identical
to the first, but the back panels of the topmost drawers were
heightened so that these drawers could no longer be lifted
enough for removal. Consequently, none of the drawers can
be removed, although they can all be moved back and forth
independently.

The running times for finding the first unbounded cell and
complete disassembly are shown in Tables 3 and 4 (rows in-
dicated by “not decoupled”). For comparison, Table 5 shows
that the total running time (using our new unboundedness
test) is more than 100 times slower when D–node reduction
is turned off.

With D–node reduction, 28 cells are examined since the
two cabinets are not checked independently (each of the eight
drawers is checked in two positions: pushed in and pulled
out). However, the drawers in the left cabinet cannot interact
with the drawers in the right cabinet. Figure 11b shows the
initial reduced D–node. The container (C) separates the left
(L1-L4) and right (R1-R4) drawers. Thus, no edges between
any L- and R-node are present and the problem can be split in
two simpler decoupled subproblems (left and right cabinet).
A simple depth-first search (DFS) on the graph of the current
D–node can be used to verify a given part separates the as-
sembly in two unrelated subassemblies. We start the search at
the node of the part in question. If the root node of the result-
ing search tree has two or more children, then their subtrees
comprise independent subassemblies that can be decoupled.

If the root node has only a single child, the assembly cannot
be decoupled at the root node. To find a part that allows for
decoupling the assembly in this sense, we successively per-
form DFS starting at all parts of the assembly in overallO(k2)

time.
For the desk example, we can decouple the left and right

cabinets as described above. The resulting running times are
included in the tables (rows indicated by “decoupled” in the
leftmost column). The problem is split in two decoupled
problems with two parts each, which results in significant
speedup up to a factor of almost 50. The time needed for
identifying the separate subproblems by performing a DFS
on the D–node graph is negligible.

5.4. Local Computation of Constraints for
Pairs of Polyhedra

In the above examples, all parts have relatively few faces. As a
consequence, preprocessing times (computation of complete
floorgraphs for all pairs of parts) range from a small fraction
of a second to a few seconds per pair. For larger models, con-
figuration space computation for pairs of parts can become
much slower. Note, however, that since in our application
the search proceeds incrementally, we do not need to precom-
pute complete configuration spaces. Instead, it is sufficient
to compute a current cell and its neighbors for each pair of
parts. During the search, only the required parts of the pair-
wise configuration spaces will be expanded. Although parts
may be quite complex, the portions of the Minkowski sums
that actually have to be computed are usually much simpler in
assembly-planning applications (e.g., for a situation similar
to a peg in a hole, the current cell may be only a ray or a
cylinder as illustrated in Fig. 12).
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(a) (b)

(c) (d)
Fig. 12. (a) RS-232 plug P and (b) socket S. (c) Initial configuration (side view). (d) Projection of cell for placement in (c).

The idea of computing configuration spaces locally is not
new. Ramkumar (1998) proposes in his conclusions to com-
pute local portions of the convolution from which parts of
the Minkowski sum surface can be derived. However, no al-
gorithm or experimental results are given there. Bounding
volume hierarchies as described, e.g., in Larsen et al. (1999),
are a common approach for computing the distance between
nonconvex polyhedra. They are practical for large models
and can be easily extended to extract relevant pairs of trian-
gles for incremental configuration space cell computation. To
illustrate this, we created two coaxial cylinders with 512 tri-
angles each. The cell for the selected configuration is also a
cylinder. Filtering the closest triangle pairs required testing
13·103 bounding volume pairs and 2.6·103 triangle pairs. The
resulting triangle pairs are sufficient to construct the cell. The
total running time is only a fraction of a second. In contrast,
considering all 2.6 · 105 pairs and computing the complete
convolution of the two cylinders would be much slower.

6. Conclusion and Open Problems

Linear unboundedness testing is a classical problem in lin-
ear programming and plays an important role in assembly
planning. In this paper, we presented a new unboundedness
testing algorithm and showed that testing for unboundedness
reduces to solving a single homogeneous system of equations

and performing a single linear feasibility test. The O(nd4.5)

algorithm, where n is the number of constraints and d their
dimension, is the fastest known algorithm for unboundedness
testing and is practical, as our implementation and experi-
ments suggest.

We introduced a framework for translational assembly-
planning applications based on linear constraints. We formu-
lated them-handed assembly problem and showed its relation
to unboundedness testing. Polynomial running time can be
achieved if the number of nonconvex pairwise constraints is
constant or can be reduced to a constant number. For the
latter, we proposed an effective heuristic reduction technique
that even allows for exponential speedup in special cases.

An interesting open theoretical question is whether the gen-
eralm-handed assembly-planning problem with initially sep-
arated and nonseparated pairs of parts is NP-hard. We have
not further investigated this question here, but a reduction of
an NP-hard problem to m-handed assembly seems not trivial
for the following reasons:

1. If the considered NP-hard problem has a solution, then
+(k) parts will have to move simultaneously in the
constructed assembly.

2. The motions must be extended translations, which im-
poses strong restrictions on the possible part shapes and
assembly constructions.
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Based on the linear constraint framework, we developed
practical algorithms for general translational assembly plan-
ning of polygonal and polyhedral parts. To decide if the as-
sembly can be disassembled by arbitrary translational mo-
tions, we traverse the reachable free cells in a d-dimensional
static arrangement of hyperplanes representing simultaneous
placements of all parts. We start with the cell containing the
origin and test each visited cell for unboundedness. Since the
unboundedness test is called at each step of the search, a fast
and practically efficient test such as the one presented here
is essential. Our experimental results demonstrate that our
approach is practical.

Several extensions can be directly integrated into our lin-
ear constraint framework. For example, small overlap be-
tween parts, e.g., to model deformations, can be allowed by
introducing an overlap-parameter ε(ij) ≥ 0 for each pair of
parts. A pairwise constraint will thus simply be rewritten as
a(ij)x ≥ b−ε(ij). Other extensions include linear models for
shape and motion uncertainty.
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