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Abstract
In this article we describe an object perception system for autonomous robots performing everyday manipulation tasks
in kitchen environments. The perception system gains its strengths by exploiting that the robots are to perform the same
kinds of tasks with the same objects over and over again. It does so by learning the object representations necessary for
the recognition and reconstruction in the context of pick-and-place tasks. The system employs a library of specialized
perception routines that solve different, well-defined perceptual sub-tasks and can be combined into composite perceptual
activities including the construction of an object model database, multimodal object classification, and object model
reconstruction for grasping. We evaluate the effectiveness of our methods, and give examples of application scenarios
using our personal robotic assistants acting in a human living environment.
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1. Motivation

Autonomous robots that are to perform everyday manipu-
lation tasks in human living environments must be able to
pick up and place many objects of daily use. To manipu-
late them, the robots first have to perceive these objects.
They are to detect the objects in realistic settings, categorize
them, recognize object instances, estimate their 6D poses or
even reconstruct their shapes from partial views.

Many algorithms have been developed to solve these
problems for different subsets of objects, with varying
accuracy and reliability, with different requirements for
computational resources, and under different context
conditions. Some of them require prior object models while
others can do without, some infer only general categories,
others exact instances without the knowledge of the broader
categories these objects fall into. The approaches also differ
in the type of sensors used, in speed, in that not all of them
report 6D poses, in the number of objects they can deal
with at once, etc.

The realization of robot perception systems that can per-
ceive the range of objects to be manipulated in a typi-
cal human environment with the accuracy and reliability
needed for grasping them successfully in real everyday set-
tings poses a very hard and long-term research problem.
Robot manipulation tasks are usually restricted to detecting
distinctively textured objects, objects with distinct colors or
specific shapes, based on the full list of possible objects.

Service robots, such as household robots, perform the
same kinds of tasks with the same objects in the same envi-
ronment over and over again. This enables them to learn
and make use of more specific perception mechanisms for
the particular objects and environments through task and
environment adaptation (Horswill 1995). Task and environ-
ment adaptation thereby enables the robot to better perceive
the objects in its environment by exploiting its experience
and considering only relevant objects.

We consider that perceptions tasks can be intuitively cat-
egorized into active or passive. In the first type of task, a
specific object or a set of objects needs to be located and
thus the robot has to actively search for them. In the sec-
ond case, the robot, possibly while performing other tasks,
observes the environment or a specific region and identifies
the different objects. For example, while setting the table
for breakfast, the robot might spot a bottle of wine some-
where. Later, when the robot is to set a table for a lunch
that includes a wine beverage, it does not need to actively
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start searching for a bottle, but instead retrieves the bottle’s
location from memory and navigates directly to it.

In both types of perception tasks, some sort of model is
needed that describes what constitutes a certain object or
an object of a certain type. Since we are most interested in
pick-and-place scenarios such as completing a table setting
(which encompasses both active and passive perception),
models that aid the robot in grasping are of great impor-
tance. While identifying objects based on their appearance
works reasonably well (Kragic and Vincze 2009), a 3D
model is required in order to manipulate these objects and
it has to be matched to the observed model. Also, as con-
cluded by Kragic and Vincze (2009), a problem of current
vision systems is robustness and scalability.

In this article we investigate object perception mecha-
nisms for autonomous robots performing everyday manip-
ulation tasks. The perception mechanisms use general per-
ception methods to initialize learning, adapt and specialize
their strategies as much as possible to the environment and
objects it has to use. In this way, some of the problems
become easier to deal with, thus improving efficiency.

The proposed object perception system maintains an
object model database that provides information for the
detection, recognition, pose estimation and grasping of the
objects in the environment. We present a system that can use
and build such a database under some assumptions and dis-
cuss the scalability issues. Our approach is to start with gen-
eral detection routines and categorization modules to limit
the possibilities for identities of objects and then add more
and more details until an acceptable solution can be found.
As the most important perception methods, texture-based
and 3D perception routines constitute the focus of this arti-
cle. However, simple additions such as considering physical
size, color classification, and heat sensors can easily be
added to the system’s repertoire of examination methods.

The use of multiple detectors is important, as real-world
objects, especially products of the same company have
very similar appearance (coffee, cans, chocolate, etc.) as
illustrated in Figure 1. Using only geometric descriptors
is not generally applicable either, as, for example, mugs,
drinks and cereal boxes typically have similar shapes but
different appearance. In both cases, the intended use of the
object can be significantly different and can be relevant to
the task at hand. In addition, some objects might be hard
to detect with one sensor, but more easily detectable using
others (for example, semi-transparent or shiny objects), as
shown in Section 7.4.

Although the set of objects of daily use that a personal
robot could encounter in its tasks is unlimited, there are cer-
tain regularities that can be exploited with respect to the
objects’ shapes, textures and locations. Therefore, the per-
ception system can adapt itself to a specific set of objects
that are usually present in the world while at the same time
retaining a certain degree of flexibility with respect to the
incorporation of novel objects in its database of models.
For example, a new flavor of iced tea should be recognized

Fig. 1. Two examples of good model matches using SIFT features
extracted from images. The images, however, depict three ketchup
bottles with three different shapes which makes classification of
the objects based on visual appearance challenging.

and manipulated as an instance of a box from its geometry,
even though the robot has never seen it before. The knowl-
edge about the iced tea can then be easily enriched with its
appearance, provided it can be re-detected using geometric
information.

Also, certain information can be incorporated from exter-
nal sources, for example a database of semantically labeled
visual appearances of objects, which lacks the geometric
appearance. In this case, the system should complete the
missing information whenever possible. Similarly, in the
case of autonomously learned object models, the semantic
labeling or the correction of the assumed object identities
could be done externally.

To this end, our system can learn the specific models
of the objects it encounters. Since we do not assume that
every perceived object in the environment is known, the
system can mistakenly assume, for example, that a cer-
tain feature is unique to an object when in fact it is not.
Our view is, however, that these mistakes are unavoidable
during autonomous object learning; they are compensated
for by the ability to automatically acquire models. Also,
initializing the system with external databases (which are
rather complete and labeled with semantically rich data,
such as the KIT Object Models Web Database1) alleviates
this problem significantly.

As an example, let us consider the case where the robot is
to fetch a green object. Since this object happens to be the
only green one it already knows about, it looks for the first
green object it finds while heading towards the last observed
position of the object. While it drives around, it observes
various other objects that do not match the feature (color) it
is looking for. However, since navigating around and taking
laser scans takes longer than identifying the objects (scans
with adequate resolution take of the order of seconds), the
robot is constantly executing an ‘identify-all-objects’ rou-
tine. The latter updates the stored time-stamped position
of recognized objects and assigns all unrecognized ones to
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new entries, assuming they are objects that were previously
unknown to it.

As a simple, but effective way of considering different
viewing angles, we implemented the following algorithms
to aid the robot in integrating sequences of information. If,
between subsequent scans, an unrecognized object candi-
date is found to have the same position as another object in
the database, we inherit the class label from the object in the
database. In case of, for example, incomplete models, this
location-based identification enables us to incrementally
learn the appearance of previously unknown views.

Mistakes in object detection and updates are possible of
course, as in every classification problem, but the system
can deal correctly with novel objects, something that is
difficult for re-detection-based systems with a fixed set of
objects. Attaching the semantic label to learned objects and
the correction of mistaken object identities in the database
is then performed by the human user.

We are building on, improving and combining several of
our earlier works, mainly those presented in Marton et al.
(2010a) and Marton et al. (2010b), and to some extent
Blodow et al. (2009), Rusu et al. (2009a), Marton et al.
(2009b) and Rusu et al. (2008b).

We adapted the model fitting and geometric classifica-
tion to work on the less accurate 3D data coming from
the eye-safe Hokuyo UTM-30LX. The number of geomet-
ric categories was reduced (small differences such as the
existence of a handle are hard to detect with inaccurate sen-
sors) and the results were made more robust by considering
each view of each object as a separate class during training,
but taking only the identified category into account during
testing.

Visual classification was improved to be more scalable by
a strategy similar to a visual bag-of-words from the com-
puter vision field. The approach presented here is taken
from the field of document retrieval, where word groups are
used in a hierarchical tree setup to allow for fast lookup
times. Please see Section 6.3 for more detail on the com-
bination of a visual bag-of-words with document retrieval
methods.

In brief, the main contributions of our this paper are:

• a perception system for object classification, categoriza-
tion and modeling;

• automatic learning of descriptors for novel
objects/views;

• a perception system based on affordable sensors, thus
easy to rebuild.

The kinds of limitations of the system (that would require
human supervision at some point) are as follows:

• previously unseen objects could be erroneously clas-
sified; this effect can, however, be minimized to the
combined false classification rate of the detectors if the
specialization step uses all of them;

• previously unseen faces of object could lead to the clas-
sification of a novel object if in the previous step it was

not observed in the same location or identified correctly;
this is unavoidable, but new views of known objects can
be identified, given continuous observations;

• known objects can be misclassified for example in cases
where objects have identically textured faces (some
cereal boxes for example); this issue also occurs in
re-detection-based systems, but if the object is contin-
uously observed, and one of the ambiguous faces is
not the first one that is seen, misclassification can be
avoided.

Some of the above issues can be resolved by an object
identity resolution system as we described in Blodow et al.
(2010) (see also Section 8.3), which maintains a proba-
bilistically modeled belief state of where certain objects
are located given the sensor measurements, however, this
in itself is a complex task and falls outside of the scope of
this paper.

In the next section, we describe the architecture of
our system, followed by the presentation of related work
through the prism of different domains. Next, we give tech-
nical details on the overall implementation of our system
and then describe the components of the different modules
in Sections 5 and 6. We evaluate the different functions of
our system in Section 7, and in Section 8 we show spe-
cific applications that benefit from our perception system.
We conclude in Section 9 and present which next steps we
planned for improving the system.

2. System overview

Figure 2 shows the schematic representation of our system,
starting from the sensors of the robot used for localization
and perception of the environment, through the possible
object detection methods, and the selection of modules from
the examination method library, to object recognition and
learning using the information stored in the object model
database.

Our two robots share similar setups, with standard cam-
eras in stereo setups, and a tilting Hokuyo UTM-30LX for
obtaining 3D point clouds. Lasers close to ground level pro-
vide information for localization. While many other sensors
are placed on both robots, these are those most relevant to
the presented system.

The images and 3D information coming from the robot’s
sensors are processed by the perception executive and the
gathered data is interpreted according to the task at hand
(searching for a specific object or identifying all objects).
First, to limit the search space for object locations, a set of
possible locations is extracted and the corresponding sen-
sor readings (3D clusters, 2D regions of interest [ROIs])
are considered to represent object candidates. These object
hypotheses are then processed as needed (see Figure 3 and
Section 6) in order to associate the percepts to the correct
object in the object model database.

When an object is being sought for, the system selects a
set of features, whose values uniquely describe the object
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Fig. 2. Object processing pipeline architecture: from sensor data to objects.

Fig. 3. Details of the perceptual task execution module’s operation. Selecting and combining methods from the examination method
library to recognize known objects (either based on their stored features, or by co-locality in subsequent cycles), and to update their
position or add their new view. The loop-back is not needed if a single object is being searched for. In cases when new objects were
found, all features and representations are computed from the available data in order to be inserted into the object model database.

amongst all of the objects in the database. The same fea-
tures’ values are then computed using the examination
modules for each object hypothesis, and the first one that
presents matching ones is selected as the target object for,
e.g., grasping. In the case that no geometric model is asso-
ciated with the database object in question, we compute it
on demand and feed it to the grasp planner.

If computational resources allow all object hypotheses
can be checked against all objects in the database, and new
objects, or new positions or views of known objects, can be
detected. In this case, the features for each object hypothesis
are computed one by one, according to a hierarchy, and the
possible object identities are filtered in each step. The selec-
tion of the feature to be used in each step is hand encoded as

of now, but an expansion of the single-object case is envi-
sioned to be extended for finding the most discriminative
features in each step.

This process is repeated until either an object is found
whose stored features match all observed features, or until
there are no matching objects left in the database, signaling
that a novel object was observed. In the ambiguous case,
when all features were computed and there are still multiple
matching objects left from the database, the system takes no
action and leaves the object hypothesis unclassified. Note
that this is the case only if no visual features are present for
the cluster (or stored for the possible matching objects), as
visual feature classification assigns each observation to at
most one modeled object, as discussed in Section 6.3.
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Since the computation of the features for an object
hypothesis is not too expensive, as shown in the corre-
sponding sections, the aim of the procedure is to minimize
the number of objects that have to be compared against
as drastically as possible in each step, and allow a large
number of objects to be handled efficiently. Given enough
descriptive features, this method can scale well in the
context of objects of daily use in human living environ-
ments. We consider this approach to be a move away
from bottom-up, rigid pipelines, towards a more flexible
setup. This enables the robot to specialize to the current
situation, producing shorter processing times as not all of
the methods are needed all of the time.

In order to be able to learn more and more about an
object, multiple detections with different sensors and from
different points of view are needed. To check if two percepts
belong to the same object or not, we use a simplified ver-
sion of the probabilistic framework for identity resolution
(Blodow et al. 2010), which is based on positions of objects.

3. Related work

In the following sections, we discuss related approaches in
groups representing the main areas of research this work
falls into.

3.1. Perception systems

Nakayama et al. (2009) presented the AI Goggles system,
which is a wearable system capable of describing generic
objects in the environment and retrieving the memories
of them using visual information in real time without any
external computation resources. The system is also capable
of learning new objects or scenes taught by users, how-
ever the training and testing phases are separate. As the
core of the system, a high-accuracy and high-speed image
annotation and retrieval method supporting online learning
are considered. The authors use color higher-order local
auto-correlation (Color-HLAC) features and the canonical
correlation analysis (CCA) algorithm to learn the latent
variables. In this work, we present a method for combining
multiple features, and discuss how unknown objects can be
detected and learned automatically.

Another system optimized for speed is MOPED (Torres
et al. 2010). It builds on POSESEQ, a state-of-the-art
object-recognition algorithm and demonstrates a massive
improvement in scalability and latency without sacrificing
robustness. The authors achieve this with both algorith-
mic (different variations of nearest-neighbor search) and
architectural (single input multiple data [SIMD] instruc-
tions, etc.) improvements, with a novel feature-matching
algorithm, a hybrid GPU/CPU architecture that exploits
parallelism at all levels, and an optimized resource sched-
uler. Since the system considers visual-only features, it has
certain limitations that can be tackled by considering 3D
data as well. Our system uses a different visual classifier,

but in theory any method can be used. The main advantage
of our approach is in the combination of image and 3D
features, and the building of models for grasping and
re-detection for new objects.

A system for 3D perception and modeling is presented
in Arbeiter et al. (2010), that can be used to reconstruct a
3D environment or learn models for object recognition on
a mobile robot. Both color and time-of-flight cameras are
used, and 2D features are extracted from color images and
linked to 3D coordinates. Those then serve as input for a
modified fastSLAM algorithm for rendering environment
maps or object models. While the 3D aspects are not given
that much importance, dealing with repeating visual land-
marks on an object is handled nicely by the system. As the
focus is on determining correspondences between scans,
recognizing when an object is novel and has to be learned
is not addressed.

A self-referenced 3D modeler is presented in Strobl et al.
(2009), where the authors demonstrate that an ego-motion
algorithm tracking natural, distinctive features and a con-
current 3D modeling of the scene is indeed possible. The
use of stereo vision, an inertial measurement unit, and
robust cost functions for pose estimation in the system fur-
ther increase performance. While here the authors build
accurate models using a hand-held device, we are using the
robot’s own sensors and movements to generate views that
are similar to what the robot will encounter when it needs
to perform recognition.

Incremental learning and recognition of objects is done
in an unsupervised manner in Triebel et al. (2010), but the
authors focus mainly on furniture pieces, and it is not clear
how well multiple objects could be reliably detected with-
out any prior information. Our approach is semi-supervised,
where the robot generates object hypotheses on its own, but
the categorization happens into user-defined classes.

A similar approach to ours is taken by Hinterstoisser
et al. (2010), where a new view of an object is added to
the model if it is so different from the stored objects as to
cause the matching score to drop below the detection level.
As we are combining the image data with 3D information,
we effectively eliminate the problem of scale and have a bet-
ter segmentation of the objects, and therefore require fewer
views to be learned.

3.2. Model fitting

Multiple sensors were used for solving similar tasks, such
as cameras (Coates et al. 2009; Ulrich et al. 2009), stereo
cameras (Hillenbrand 2008; Fritz et al. 2009), 3D sensors
(Steder et al. 2009), and also their combinations to speed
up or improve results (Klank et al. 2009).

A vision-based grasping system which segments objects
on a table and constructs triangular meshes for them is
presented in Richtsfeld and Vincze (2008). While the pre-
sented method is general and works for many objects, it
creates complicated models for certain objects, which could
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be simplified through the usage of geometric primitives. A
simplification of the modeling problem is used in Grasp-It
(Miller and Allen 2004), where combinations of geomet-
ric shape primitives such as spheres, cylinders, cones and
boxes are used to model each object.

A computer vision and machine learning based method is
used by Saxena et al. (2008) to train classifiers that can pre-
dict the grasping points in an image. This is then applied
to images of unseen objects. To obtain 3D positions of
grasping points, the authors use stereo cameras, but their
approach works reliably only to the extent provided by the
training data. Another issue is the segmentation of objects,
since grasp points are provided with no information about
what objects are in the scene and to which of them do the
identified points correspond. Bone et al. (2008) used an
accurate line laser and a camera to build models and iden-
tify grasping points for novel objects with very encouraging
results. However, the system was tested only on two objects,
thus its scalability is not clear.

Available models of complex objects are decomposed
into superquadric parts in Biegelbauer and Vincze (2007)
and Zhang et al. (2004), and these models are matched to a
point cloud. This needs a database of models, and more-
over, their decomposition into superquadric components,
which is often difficult to obtain. A random sample consen-
sus (RANSAC)-based approach for model decomposition
is presented by Schnabel et al. (2007), where a set of 3D
geometric primitives (planes, spheres, cylinders, cones and
tori) are fit to noisy point clouds. Since the point clouds
presented there are complete, the authors do not need to
reconstruct the missing parts.

Thrun and Wegbreit (2005) described a method for
detecting and verifying symmetries in point clouds obtained
from a single viewpoint, and they project the existing
points according to the detected symmetry to obtain the
backside. However, using our methods we were able to
reconstruct surfaces by approximating them with shape
equations and thus generate a complete model, which
can be meshed with the required density or sparseness
according to the speed and accuracy requirements of our
applications.

3.3. Object classification

There are two principal mainstream lines in the area of
the object recognition related research: one aiming at
recognition of objects in camera images, and one using
3D depth data acquired through range scanning devices.
Combining both of them leads to a hybrid approach and
our work falls into this category. Depending on the type
of perception data, various different 2D (e.g. Lowe 2004)
and 3D (e.g. Rusu et al. 2008a) distinctive local features
have been developed. Taken individually, however, they are
still insufficient to solve the full object recognition problem
as both are prone to failure in situation where texture-less
objects are present or depth data is too noisy or ambiguous.

Therefore, different research initiatives have decided to
combine sets of local features and cluster them together
using different metrics (kernels) in order to be able to infer
the global identifiers for objects.

Fergus et al. (2003) have proposed an unsupervised scale-
invariant learning scheme, in order to detect objects on
a wide range of images. Objects therein are modeled as
flexible constellations of parts using a probabilistic rep-
resentation for all significant aspects of the object. The
work exploits the expectation–maximization algorithm in a
maximum-likelihood setting. The method of Romea et al.
(2009) estimates six-degree-of-freedom (6-DOF) object
poses in cluttered scenes by matching local descriptors to
stored models. Since the objects present in household envi-
ronments are often texture-less, our approach constitutes an
important advantage over the above proposed research ini-
tiatives, which fail to work in the absence of well-textured
objects.

Another approach to obtain 3D information directly from
camera images is to project computer-aided design (CAD)
models from a database to the image and search for good
matches in the edges domain, as in Ulrich et al. (2009)
for example. While this is a more direct method, it is still
dependent on a database of CAD models.

The work of Ruhnke et al. (2009) uses an iterative match-
ing procedure to merge similar models in an unsupervised
manner. However, it is unclear how well the proposed algo-
rithm would generalize to unknown, novel objects. Lai and
Fox (2009) perform outdoor laser scans classification com-
bining manual labeling and data downloaded from the Inter-
net in an effort to achieve what the authors call domain
adaption. While their presented recall curves outperform
others, the number of objects is relatively low and house-
hold objects are less distinct. Steder et al. (2009) authors
investigate the extraction of GOODSAC point features and
object recognition from range images that are in turn com-
puted from point cloud data sets. These object models are,
as in our case, created from real 3D data but processed using
the work of Ruhnke et al. (2009).

The combination of depth information with camera
images is addressed by Quigley et al. (2009). The authors
calculate depth information for each pixel in the scene by
applying laser-line triangulation with a rotating vertical
laser and a camera. To obtain high-resolution 3D images,
each scan requires 6 seconds with an additional 4 seconds
spent on post-processing and triangulation. Thus, a waiting
period of 10 seconds has to be expected before object
detection and robot manipulation could be performed.

In the work of Xue et al. (2009) the grasping of objects
modeled in the 3D object modeling center (KIT Object
Models Web Database) was presented. The center employs
a digitizer, a turntable and a pair of RGB cameras mounted
to a rotating bracket which allows for views from above
the scene. At present, there are around 110 highly detailed,
high-precision objects publicly available. While working
with such a system and data would yield high-quality
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results, its downside lies in the fact that the modeling center
is rather expensive and cannot be used online, i.e. mounted
on a mobile robot for autonomous mapping. In another
initiative, the Columbia Grasp Database (Goldfeder et al.
2009) has been built. The major difference between this
work and ours lies in how the models are obtained. The
authors created artificial 3D models whereas we acquired
our models by scanning real-world objects and surfaces,
and are thus facing the problem of noisy and cluttered
data.

4. Implementation details

The following sections detail the functioning principles of
the building blocks of our system as shown in Figure 2.

Our system is developed within the ROS open-source
framework (Robot Operating System2), as a collection of
modules or ‘nodes’, that each tackle a specific sub-problem,
and can either be run separately or as dynamically loadable
libraries or ‘plugins’. Thus, the data flow between nodes can
either occur through shared memory, when optimal perfor-
mance is required, or over the network, which is convenient
for decentralized processing.

Using ROS and general examination methods based on
PCL (Point Cloud Library3)enables us to be platform inde-
pendent in the sense that the system can be run on different
robots, and results can be interchanged between them. So
far, we have successfully performed our experiments on two
different robots, TUM-Rosie (Blodow et al. 2010; Marton
et al. 2010a; Pangercic et al. 2010) and the PR2 (Wyrobek
et al. 2008).

Currently we employ the following methods to achieve
the overall classification:

• auxiliary modules (noise removal, kd-tree, octree,
described in the following);

• local feature estimation: Moving Least Squares (MLS)
and Radius-based Surface Descriptor (RSD4) (Section
6.1);

• global (view-based) features: Global RSD (GRSD5)
feature (Section 6.2), Scale-Invariant Feature Transform
(SIFT) (Lowe 2004) feature using Vocabulary Trees6

(Section 6.3);
• building geometric models: box/cylinder/rotational

model fitting and triangulation (Section 6.4);
• categorization using support vector machines (SVMs)

as described in Chang and Lin (2001) and classification
using SIFT descriptors with vocabulary trees.

To increase the performance of the 3D data processing
steps, we rely on noise removal (Rusu et al. 2008b), and effi-
cient spatial decompositions such as kd-trees and octrees.
Noise removal is performed to remove jump edges in the
laser scans and to remove points from noisy or low-density
areas of object clusters. We use kd-trees to find a fixed num-
ber of neighbors or all of the neighbors in a sphere with a
given radius, while octrees are useful for down-sampling

and occupancy grids, but also for the verification of the
geometric models (Blodow et al. 2009), and for computing
object-level features efficiently, as in Section 6.2.

5. Segmenting object hypotheses

Approaches to segment camera or point cloud percepts into
distinct objects can be roughly split into two paradigms:
Locating an instance of a known object in the scene,
using, e.g., appearance models or feature descriptors, or
segmenting the sensory data without prior knowledge about
the objects or their views in order to acquire information
about them.

In the first case, a direct search for each appearance can
be performed, or a set of feature words can be extracted
from the sensor data and matched to a model database as
in Torres et al. (2010); Hinterstoisser et al. (2010). These
approaches are usually limited by the fact that for locat-
ing one or more of a very large number of possible objects,
performance can decrease significantly.

In the second case, as the objects to be detected are
unknown, it is possible to segment scenes under certain
assumptions, as presented in Figure 4:

• Background subtraction: Assuming successive addition
of objects to the scene, one can easily detect successive
changes even in cluttered scenes. More advanced meth-
ods include the learning of a foreground/background
model.

• Planar support: Assuming a detectable support that
assures physical stability allows for segmentation of
objects in an Euclidean sense, as long as the objects are
apart from one another (Rusu et al. 2009a). However,
too much clutter is not acceptable in this case.

• Environment maps: Assuming a known 3D environ-
ment, such as stored in a semantic object map, makes
it possible to define ROIs in which objects are expected,
which can then be processed as in the planar support
method. This approach is a natural extension to the 3D
semantic mapping efforts.

The latter of these alternatives requires obviously the
largest amount of knowledge about the environment. Since
we have a static semantic environment map of our kitchen
(Rusu et al. 2008b), we generated a URDF (unified robot
description format7) map to describe the geometrical and
kinetic properties of our environment. Every link in a
URDF tree describes a part or reference frame in the map
(e.g. walls, furniture items, appliances, doors, handles, etc.),
and links are connected with joints of varying types, such
as fixed for rigid links (such as those between walls and
the floor), prismatic (such as drawers), or revolute (for
rotational joints such as door hinges).

Applying labels to certain links, such as counter_top,
drawer, door, wall and shelf lets us specify search filters
that help in pre-segmenting the raw point data into mean-
ingful regions, such as on top of certain counters, or the
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Fig. 4. Different object detection methods, from left to right: background subtraction, planar support, and using environment maps.

region in front of doors. The filters can reuse the geo-
metric descriptions of the collision shape model stored in
the URDF description and thus adapt the filter routines to
each link label instance’s distinct properties. These regions
are processed by special routines that can, e.g., determine
the opening angle of a cupboard door or the location of
an extended drawer, or simply delete all points that repre-
sent walls to reduce further processing time. This results
in faster processing times, since only some regions of the
raw input data need to be examined, and every specialized
processing step is executed solely on the task-relevant data.

For the scope of this publication, objects are located
on supporting horizontal structures such as tables, shelves
or other furniture, so we focus on object clusters found
on them. However, for some of the training and test data
acquisition, we fell back to the planar support method.

An interesting aspect of the tree-like structure of the
map is the fact that for arbitrarily aligned rectangular or
box-like search spaces, one can transform the input data
such that the search space becomes axis aligned. We then
identify complete subtrees in the map that share the same
rotation and cache the transformed point cloud such that
all search operations for these links can perform very fast
axis-aligned bounding box tests with a minimal amount
of point cloud transformations. A detailed analysis of this
map-based pre-segmentation approach falls outside the
scope of this paper and will be addressed in a separate
publication.

6. Examination methods

In this section we present the examination methods used
by our system, and their possible connections as sum-
marized in Figure 5. Each method has a common inter-
face, with initializing, processing, and result validating
and returning functions, that enable the easy extension
with additional methods if needed. Each method lists the
data type it requires and provides, and the parameters are
obtained through the parameter server of ROS. We are cur-
rently making efforts to enable the definition of processing
pipelines using configuration files, but for now the steps are
hard-coded.

adapts

Fig. 5. The conceptual representation of the complete pipeline
that can be formed by the examination methods.

6.1. Estimating descriptive local 3D features

Since the point cloud coming from the 3D sensor is very
noisy, we are using a moving least squares algorithm to
smooth it. To speed up the process, and considering that
small details are not detected by the laser which has errors
in the centimeter range, we have simplified and thus sped
up the Robust MLS method described in our previous
work (Marton et al. 2009b), which was developed for a
more accurate laser. To process the 3D points obtained by
the Hokuyo laser, we use the principle component anal-
ysis (PCA) approximation of the tangent plane’s normal,
and re-fit the points and normals using MLS as shown in
Figure 6.

While estimated surface normals are important, on their
own they tell us little about the type of surface. The esti-
mation of the curvature using the ratio of eigenvalues
of a neighborhood’s covariance matrix on the other hand
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Fig. 6. Left: Photo of a teapot. Middle: Rendering from the side of the raw scan of the teapot obtained from the laser and the points
projected onto the estimated underlying surface. Right: The estimated surface curvature values before and after MLS.

Fig. 7. Left: Illustration of how a distance and an angle between
normals define a radius as per Equation (1). Right: Identifying
same number of surface classes as using FPFH without classifi-
cation. The plot shows the log density/number of points in a 1 cm
range in the feature space of rmin and rmax for a variety of objects,
with the rough ranges corresponding to certain shapes marked.

neglects surface normals and we found it to be too inaccu-
rate. As argued by Marton et al. (2010a), the approximated
radii of the smallest and biggest fitting curves to a local
neighborhood are values with physical meaning, which can
be tied directly to the underlying surface without the need
for classification. We compute this feature (Radius-based
Surface Descriptor [RSD]) starting similarly as in the case
of spin images with a local support (Johnson 1997), with the
added advantage that we consider the normals of the neigh-
boring points directly, and that we can extract values that
intuitively describe the local surface (as shown in Figure 7).

If we look at the case of the sphere, for each point all of
the circles that fit to its neighborhood have the same radius,
namely the radius r of the sphere itself. For each of these
circles we can write the following relation between the dis-
tance d of a point on the sphere from the original point and
the angle α between these two points’ (undirected) normals:

d(α) =
√

2r
√

1− cos( α). (1)

From this we can see that given the distance and the angle
between two point normals one can approximate the radius
of the circle the point is on.

In the case of an ideal plane, this estimated radius will
always be infinite with all neighbors, since they have par-
allel normals. A point on a cylinder is on multiple circles
(ellipses actually), and the radius estimated with different
neighbors will vary between the minimum radius (the radius
of the cylinder) and the maximum radius (infinity). For cor-
ners and edges the estimated radius changes similarly as for
spheres and cylinders (see Figure 8).

Given a point on a surface along with its neighbors,
this minimum and maximum radius can be estimated using
the model in Equation (1) by solving the equation system
for r given the maximum and minimum angles for differ-
ent distance intervals. To make the estimation easier, we
can exploit the fact that8 α ∈ [0, π/2] and the Taylor
decomposition of Equation (1) is simple:

d(α) = rα + rα3/24+ O( α5) , (2)

where O( α5) indicates the existence of elements with order
five and upwards. Thus, we can assume d ≈ rα which ren-
ders the problem of finding r to a simple regression, as seen
in Figure 9.

To find the minimum and maximum radius of a point
based on its nearest neighbors, we compute the minimum
and maximum angle in each of five distance bins, and com-
pute the corresponding radius value. This introduces a small
error (rmin is typically under- and rmax over-estimated),
which we found to be less than 1 cm for all points of a set
of 10 synthetic spheres with different surface radii R (for
which rmin = rmin = R). For the real scan of the teapot in
the right part of Figure 9 we found similar errors (its top
cylinder having a radius of 4 cm and the bottom 7 cm).

In the cases where the two normals do not form an equal
angle with the distance vector, the algorithm would assume
they do and compute the radius in that manner. However,
as the process is repeated for every point pair, and we are
only interested in the minimum and maximum radius, these
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Fig. 8. Computation of the Radius-based Surface Descriptors (RSD): 2D histograms of normal angle difference and distance from a
reference point to its neighbors (examples are shown from left to right for histograms computed for points on a plane, sphere, corner,
edge and three cylinders, where the last two are computed for different points of the corrected teapot scan presented in Figure 6); from
these histograms the physical surface radii can be read as the slopes of the different lines going through the lower left corner.

small errors are either evened out, or produce the typical
result for curvature computation, i.e. estimated radii on a
plane start dropping from very large to very small values
the closer the point is to an edge. In the case of RSD this
is also aided by the fact that the previous surface and nor-
mal estimation step also relies on a neighborhood of points.
Please see Figure 14 for an example involving sharp edges
(tea box).

This feature is easy to compute, while still being very
descriptive (see Section 6.2) and does not require consis-
tently oriented normals. Because it is a continuous value
that estimates the real minimal metric radius of the curve
each points lies on, it can be used for example as a prior
when sampling points to fit different surfaces.

In our case, points with very high estimated minimal
radius are preferred when fitting boxes, while they are
avoided along with points having a very small radius when
searching for rotational models. We incorporated this pref-
erence in the random sampling step for each model fitting
algorithm. Since the surfaces scanned with these noisy sen-
sors appear to be ‘bumpy’ even after MLS, the estimated
minimal radius is in some cases smaller than it ideally
should be. Still, they provide our RANSAC methods with
a fast and accurate weighting for the points, depending on
the model to be fit. The inliers are also weighted by how
well their radius fits the model.

Based on the minimum and maximum radius it is pos-
sible to devise simple heuristic rules that categorize the
surface types and enable the computation of a global
descriptor, GRSD, as detailed in the next section.

6.2. Object categorization

We are using a two layered classification scheme for geo-
metric categorization (Marton et al. 2010b), where local
surface labels are combined in a global descriptor. To
speed up the local surface classification, we label voxels
directly instead of individual points, as those are needed
for the global classification. This reduces the complex-
ity proportionally to the average number of points in a
voxel.

In each voxel with a width of 2.5 cm, we compute the
minimum and maximum radius and label the surface by
successive checks of the radii: planar (rmin > 0.1), cylin-
drical (if not planar and rmax > 0.175), sharp edge/corner

or noisy (if not cylindrical and rmin < 0.015), spherical (if
not edge and rmax − rmin < 0.05) and rim (in the remaining
cases). This is a simple and fast way to categorize surfaces
(see Figure 7), and it divides the feature space formed by
the radii well enough for the computation of a global fea-
ture. We picked the local surface labels to have an intuitive
significance, but the actual correctness of these labels is not
relevant for the global classification.

Once all voxels are annotated locally using a geomet-
ric class, our processing pipeline constructs a global fea-
ture space that can produce a unique signature for each
object cluster. This space is based on the idea that, for
a set of labeled voxels, a global feature can be con-
structed by observing the relationships between all these
local labels (and the encompassed free space). Since the
labels represent geometric classes obtained from the clas-
sification of RSD descriptors, we call this new feature the
GRSD.

Algorithm 1: GRSD computation.

L = {l1...lm} /* octree leaves encapsulating the

object */

C = {cl1 ...clm } /* the leaf classes generated by

RSD (e.g. class empty, class plane, etc.)

*/

H = ZeroMatrix /* transition matrix holding

the number of neighboring classes */

foreach li ∈ L do
foreach lj ∈ L do

rij ←( li, lj) /* create a line segment

between li and lj */

I = {lk|lk = L ∩ rij} /* get leaves

intersected by rij */

/* count the class changes between

leaves in I */

foreach lk ∈ I do
H[clk , clk+1 ]++ /* increase

counter */

The complete algorithm is described in Algorithm 1,
and Figure 10 shows two sets of feature vectors for differ-
ent objects generated by the GRSD estimation. We were
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Fig. 9. Left: Variation of point-to-point distance by angle, measured from the center point of a half-sphere. Right: Radius estimation
results for a scan of a teapot; values are color-coded from red (radius of 0) to blue (radius of 0.2 m or higher). Note that for visualization
purposes the values were capped at 0.2 m, as planar regions have an infinite or very large radius. For the accurate color information we
kindly direct the reader to the electronic version of the article.

Fig. 10. Plots of GRSD histograms (left) and identified surface types based on RSD (middle) for a flat box (i.e. book, upper row) and a
cylinder (i.e. mug, bottom row). Left: The GRSD histogram bin values are scaled between −1 and 1 (based on the value ranges found
in the training data). Middle: The colors represent the following local surfaces: red, sharp edge/corner (or noise); yellow, plane; green,
cylinder; light blue, sphere (not present); and dark blue, rim (i.e. boundary, transition between surfaces). For accurate color information
we direct the reader to the online version of the article.

using the Octomap library (Wurm et al. 2010) to facili-
tate ray intersection tests in the voxels encompassing the
objects.

The computation of GRSD is similar to GFPFH (Rusu
et al. 2009b), but we use voxel-based labeling based on
RSD, and we sum up the individual H histograms instead

of computing their distribution, to further reduce compu-
tational complexity. In this way, the complete processing
of a cluster (correcting, estimating normals, computing the
voxelized RSD values, labeling voxels and constructing the
GRSD) takes between 0.2 and 0.5 seconds (depending on
object size) on a single core working at 2 GHz.
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6.2.1. Selection of geometric categories The geometric
categories were selected based on an analysis of the fol-
lowing databases containing objects of daily use: TUM
Organizational Principles Database (TUM-OPD9), A List
of Household Objects for Robotic Retrieval Prioritized by
People with ALS (ALS) (Choi et al. 2009), KIT Object
Models Web Database (KIT), Semantic 3D Database
(SemanticDB10) and Household Objects Database from
Willow Garage (WG11).

We selected six geometric categories, covering most of
the objects a robot could perceive and manipulate in a
kitchen, namely mug/can sized cylinder, flat box, pressed-
top box (Tetrapak), box, tube-like cylinder and rotationally
symmetric. The statistics done over the different databases
(Table 1) reveal a comparably small number of objects (such
as scissors, money, sunscreen) that do not fall into one of
the above categories (154/621, i.e. just under 25%). We
included the other category into our geometric classifica-
tion, and merged rotationally symmetric objects such as
teapots, bottles, etc. into it. Since we group each view sep-
arately during training, adding very different objects to the
other category does not make the category more ambiguous
for the classifier.

6.2.2. Evaluation We trained each view of objects from
the categories listed above as a different class using an SVM
classifier. We used 934 individual views for training, at least
2 objects of each type scanned from different angles. For
the final classification only the general category was con-
sidered, to avoid mistakes due to similar views, thus the
model’s accuracy for 174 newly segmented scans of the
training objects (i.e. test views) was 93.68%, and we tested
it using 205 views of untrained objects and had a success
rate of 85.37%. The corresponding confusion matrices in
Figure 11 show that we obtained good results for the dis-
tinctive categories, and had an around 30% confusion rate
between two of the categories (between the side views of flat
boxes and relatively thin Tetrapaks). The existence of simi-
lar views between differently shaped objects also makes the
automatic learning of geometric categories quite difficult,
producing analogous results to Figure 1, further supporting
the need for combining perceptual mechanisms.

6.3. Visual feature classification

The visual feature detection is carried out only on the ROI
in the image, in order to avoid false-positive matches with
the background. To obtain the ROI the robot simultane-
ously takes a 3D scan and captures an image of the scene
in front of it. The robot generates object hypotheses by
detecting candidate point clusters in the 3D point cloud
acquired by the depth sensor. These object hypotheses are
then back-projected into the captured image as ROIs which
are subjects used for detecting and recognizing objects.

For the SIFT-based detection we first determine segments
by performing region growing on detected features in image

space which typically results in an over-segmentation of the
ROI. Identification of the object and the image region it
belongs to is then performed through methods transferred
from document retrieval. In document retrieval tasks for
example as in Web search, we look for the documents that
best match a given query term. To do so the search engines
compute frequency statistics for discriminative words and
word stems as a pre-processing step performed on all doc-
uments. Given a search term, fast indexing mechanisms
quickly search for the documents that are particularly rel-
evant with respect to frequency for the search term. The
application of text retrieval technology for object matching
is promising because it is very mature and the techniques
aim at having high recall and precision rates while at the
same time being very fast.

The computational idea of textual document retrieval can
be mapped to object description matching in the following
way. The descriptors computed from the ROIs that belong
presumably to (or are partial views of) the same object
are considered to be the search term. The object descrip-
tors of the different views of the relevant objects are the
documents of the document retrieval model. Word frequen-
cies are replaced by the frequency of visual object features.
Given a large set of objects, represented by their object
descriptors, and the feature descriptor of an image region
we can then index the objects where the particular features
are particularly prominent using the respective methods
from document retrieval.

In this paper we apply vocabulary trees for weighted term
frequency inverse document frequency (TF-IDF) indexing
(Robertson 2004), a method used in document retrieval to
find the documents that best fit a given textual user query. In
this reformulation of object identification, vocabulary trees
speed up the retrieval of the matching objects.

The methods for object descriptor matching do not only
match a given region descriptor to the large set of object
descriptors, they can also learn new object descriptors to be
put into the visual object library (see Figure 12).

6.3.1. Vocabulary tree The vocabulary tree approach to
object classification is based on the bag-of-words (Sivic
et al. 2005) document retrieval methods, that represent the
subject of a document by the frequency in which certain
words appear in the text. This technique has been adapted to
visual object classification substituting the words with local
descriptors such as SIFT computed on image features. The
vocabulary tree of branching factor K and depth L is a tree
data structure where the nodes in the tree represent a set of
SIFT descriptors. The root node of the vocabulary tree rep-
resents the SIFT descriptors of all views of all object models
in the library. If a node n in the vocabulary tree represents
the set of SIFT descriptors N , then its children nodes rep-
resent the partitioning of N into k subsets represented by
the children nodes cn1, . . . cnk where the SIFT descriptors
within a children node are similar and those of different
children nodes are dissimilar.
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Table 1. Frequencies of the selected categories of objects in different known databases of objects of daily use, based on hand-labeling
through visual inspection.

Category TUM-OPD ALS KIT SemanticDB WG

Mug/can sized cylinder 93 3 26 9 68
Plat box 23 5 28 4 3
Pressed-top box (Tetrapak) 4 0 1 4 1
Box 42 4 23 4 2
Tube-like cylinder 12 1 6 3 18
Rotationally symmetric 46 2 11 0 21
Other 99 10 15 11 19

Fig. 11. Confusion matrices for new scans of the trained objects (left) and scans of new objects (right) provide the true and false-positive
normalized statistics for the geometric classes (neglecting the view classification results) as discussed in 6.2.2. Ground truth is shown
in rows, and classification results in columns. Please note the different scales in the two plots.

Thus, by taking a SIFT descriptor sd and classifying it
hierarchically through the vocabulary tree using the defined
distance measure on the SIFT descriptors we quickly find
the set of the most similar SIFT descriptors in the object
model database as the leaf nodes whose representative SIFT
descriptors have the shortest distances to sd. For efficiency
sd is not compared with all features in a given node, but to
the centroid of its features.

The SIFT descriptors in the vocabulary tree also have a
reference to the object model they occur in. Thus, when sd
matches a leaf node it votes for the object models that the
SIFT descriptors of the identified leaf belong to.

The children nodes cn1, . . . , cnk of N are computed by
applying k-means clustering to the SIFT descriptors of
node n. Since the weighted TF-IDF algorithm works on
words (equivalent of leaf nodes), we use a vocabulary tree
to convert the keypoint descriptors into words, where each
word is an integer value corresponding to the number of
the leaf node.

Building the database

In our approach we use a similar database (object model
database) to that described by Nister and Stewenius (2006).
In order to be able to detect objects the database stores
only the quantized SIFT features of the images, but not the
images themselves.

Extracting SIFT features

In order to extract the visual SIFT features from the images
we use an open-source implementation of the standard SIFT
algorithm (Fast SIFT Image Features Library12) as initially
described by Lowe (2004). Each SIFT feature is charac-
terized by a 128-dimensional descriptor vector, 2 image
coordinates, a scale and an orientation value. In the cur-
rent implementation we use only the descriptor vectors
for the detection process and the image coordinates for
visualization.
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Fig. 12. Top row: Different robot views used for online learning of SIFT appearance models. Bottom row: Successful match against an
online learned appearance models.

Generating database documents

After we have the vocabulary tree, we quantize feature
descriptors to single words. For every image, we take all
SIFT features, we quantize them with the vocabulary tree
and we group the resulting words in one document for
every image. In this way the document is just the list of
all quantized features corresponding to a single image.

Populating and training the database

After we have all image documents, we insert them into
a specialized database as proposed by Nister and Stewe-
nius (2006). The database is then trained with the weighted
TF-IDF algorithm. After that it can be queried with doc-
uments generated from the input camera images in order
to find the best database matches between objects in the
image and the objects in the database. The database doc-
uments along with specific database information can be
stored in a binary format in order to allow for fast load-
ing of the database. Additional information like image file
names, textures and feature coordinates are also saved for
the visualization purposes.

The whole detection process is implemented as a sin-
gle ROS node, which receives an image coming from the
camera and outputs the most probable matches from the
database.

6.3.2. Retrieving object models In order to find an object
in the received image we have to generate a database docu-
ment in the same way as described in the section above. We
first extract the SIFT features from the received image and
we quantize the descriptor vectors to words with the vocab-
ulary tree. A single document is formed from all words of
the input image and we can query the database with it. The
database returns the best N matches with their respective
scores s (between 0 and 2, where 0 is best and 2 is worst). A
score is calculated by comparing the two documents (d1, d2)
in a scoring function realized as an L2-norm metric:

s( d1, d2)=
∥∥∥∥

d1

‖d1‖ 2
− d2

‖d2‖ 2

∥∥∥∥
2

. (3)

The above-mentioned [0 . . . 2] interval is obtained through
metric scaling.

6.4. 3D model reconstruction

In this section, we lay out the 3D reconstruction meth-
ods we integrated in order to create complete object model
hypotheses that can be used in grasping scenarios. The
focus in this section does not lie on millimeter-accurate
modeling of clusters, which is realistically not possible in
a lot of cases due to sensor noise and large variability in
the objects we encounter. Instead, we strive to improve the
models generated from point cloud data with regards to two
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Fig. 13. Example of matching SIFT features for different objects from the imported database.

Fig. 14. Automatic reconstruction of objects of different types. The top row shows the estimated rmin values color-coded by the legend
of Figure 9 (red 0, blue 0.2 m or higher).

aspects. First, we want the resulting reconstruction to be
smooth, especially when compared with a simple meshing
approach, where sensor noise causes problems in the grasp
planner, e.g. when computing contact points and forces. On
the other hand, we want to generate a working hypothesis
concerning the backside of an object perceived only par-
tially. Otherwise, grasp analysis might suggest a pinch grasp

on the edge of the cluster, even though the object continues
smoothly towards the unobserved back.

As of now, reconstruction algorithms have been devel-
oped for boxes, cylinders and rotational objects (Marton
et al. 2010a), as shown in Figure 14. We chose these mod-
els because they are inherently symmetrical and occur fre-
quently in a large number of objects (as shown in Table 1).
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In the case of cylinders and rotational objects, a rotation
axis is determined, which allows for simple completion of
the object model, and for boxes, the hidden surfaces can
also be retrieved relatively straightforward.

If a fitted model does not have at least 75% of the points
as inliers, we assume that it has a more complex shape, and
a simple triangulation is performed as a fall back. Also in
the other cases, the outliers of the geometric models are tri-
angulated and added to the final model as a mesh, e.g. to
model additional geometric features of an object, such as
handles. Figure 15 shows such an example. As the major-
ity of grasp planning methods use triangular meshes, the
geometric shapes are decomposed in triangles as well, but
we are exploring the use of the shapes directly for more
optimized grasping.

6.4.1. Box and cylinder fitting The decision on selecting
the appropriate fitting model is based on our previous work
on footprint analysis (Marton et al. 2009a), but, in addition,
we rely on the 3D normals to robustly detect a circular or a
rectangular footprint, also during the 3D model fitting and
validation step. This enables our method to make the best
choice regarding what model it should choose.

If a sufficient number of points have a minimum radius
greater than 0.1 m they are highly likely to lie on planar
surfaces and we set out to find the best fitting box to the
cluster. Unlike Marton et al. (2009a), we fit a rectangular
model directly to the points having normals perpendicular
to the ‘up’ axis (as we assume boxes to be statically stable,
i.e. standing on one of their sides) and maximize the number
of inliers in a RANSAC loop. This direct approach esti-
mates the box orientation and outperforms the line detection
and merging and/or box detection based on PCA. Since
we assume a correct segmentation and noise is removed
in pre-processing, the box dimensions are computed from
the oriented bounding box, and a final inlier count is
performed.

For cylinders, we use a RANSAC approach which is
based on the observation that on a cylinder surface, all nor-
mals are orthogonal to the cylinder axis, and intersect it.
We consider the two lines defined by two sample points
and their corresponding normals as two skew lines, and the
shortest connecting line segment as the axis. Determining
the radius is then a matter of computing the distance of one
of the sample points to the axis.

The quality of box and cylinder fittings for two objects
is presented in Figure 16. Further tests on a total of 267
measurements of 5 objects show an average fitting error of
5.31 mm with a standard deviation (SD) of 2.69 mm for
the extensions of boxes, and slightly less for cylinder radii,
an average of 2.85 mm and SD of 1.23 mm. Both are well
below the original sensor noise of roughly 1 cm. The aver-
age error for the axis orientation for cylinders was 1.11◦

with a SD of 0.34◦. By enforcing an upright position for the
axes results are more robust, but it is not mandatory.

Fig. 15. Triangulation of an object where no good model could be
fitted.

Compared with the original approach presented by Mar-
ton et al. (2009a) we can see a clear increase in accuracy. On
the same scans, the obtained average errors for box extents
was 10.6 mm with SD 6.05 mm. Results did not improve
(nor worsen) for cylinders as the methods have the same
basis, but instead we are now reconstructing them in arbi-
trary poses, while the original approach assumed all objects
to be upright (and would consider lying cylinders to be
boxes).

6.4.2. Estimation of rotational surfaces To reconstruct
surfaces of revolution, we employ a RANSAC-based two-
step approach as described by Blodow et al. (2009). In the
first step, a rotation axis is estimated from sample points
by minimizing a function over the line-to-line distances
between the axis and the lines defined by each sample
point and its corresponding normal. This is based on the
observation that for a rotational object, a line constructed
from a point and corresponding normal intersects the sym-
metry axis, similar to the cylinder case. The contour line
is then estimated in the second step (as described in the
following).

Let 〈a, 
a〉 denote the axis, defined by a point a and a
direction vector 
a and let 〈pi, 
ni〉 denote the line defined
by the ith sample point and its corresponding normal
vector. Then, we minimize the following function over a
and 
a:

m∑

i=0

dl,l( 〈a, 
a〉, 〈pi, 
ni〉)2 , (4)

where dl,l stands for the line-to-line distance. This can be
solved using a non-linear optimizer such as Levenberg–
Marquardt.

Once an axis has been found, the original sample points
are transformed into a 2D coordinate system such that
the rotation axis coincides with the x-axis. Every point
pi is projected onto a point pi,2D whose x coordinate is
defined as its position along the rotation axis, and whose y
coordinate represents the point-to-line distance between pi

and 〈a, 
a〉.
We then employ a polynomial fitting step based on least-

squares minimization to fit a preliminary contour line to

 at Technical University of Munich University Library on November 10, 2016ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


1394 The International Journal of Robotics Research 30(11)

Fig. 16. Left: Visualization of the setup used for measuring fitting errors. The model and the table are marked with green. Right: Errors
in estimated box width (W), height (H), thickness (T), and in estimated cylinder radius (R) and angle to the vertical (A). Graph shows
these errors for subsequent scanning and fitting (x-axis shows the scan number).

the projected (2D) sample points. This contour line is then
used to determine which points are inliers to the rotational
model, and the polynomial is refitted using these inliers.
This can be repeated until changing the polynomial coeffi-
cients does not increase the number of inliers. An example
of this 2D problem is shown in Figure 17(right) for the
teapot data set used earlier. Note that the contour curve is
not influenced by the outliers that come from the handle, for
example.

Unfortunately, the axis estimation step as presented in
Blodow et al. (2009) is sensitive to higher degrees of noise,
which we encounter with less accurate 3D sensors. The
minimization function (4) becomes less smooth and the
optimization becomes ‘stuck’ in local optima most of the
time, as can be seen in Figure 17(left). We alleviated this
problem by performing the rotational estimation on smooth
resampled point cloud data, which has much less noise and
more accurate normals (see Figure 17(middle)). Figure 18
shows the analysis of errors in determining the axis during
rotation estimation.

This smoothing step alleviates some of the problems
originating from noisy normal estimation, but it also loses
detail on the underlying surface, such as sharp creases. The
fitting step can therefore not be guaranteed to capture the
ground-truth model. In our experiments, the standard devi-
ation of the distances of points to the model were found

to be of the order of 2 mm with a correlation coefficient
of r2 ≈ 0.95, however this only represents how well the
model fits the data points, not the underlying actual geom-
etry. For a more detailed analysis, we have to refer to the
previous work on these methods as the significance of the
herein presented fitting methods lies in the completion of
partially perceived models, and not in quality of fit of the
reconstruction methods.

Although the rotational estimation is less accurate and
computationally more intensive than fitting of simple mod-
els, it is an important addition in order to be able to deal
with more types of objects (see Table 1). More accurate
results can be obtained by increasing the expected probabil-
ity of a successful fit for RANSAC (and thus the maximum
number of iteration), but in order to obtain results in under
2 seconds, axis estimation errors around 10◦ were obtained.

In the case of box-like and cylindrical models, the fact
that the dimensions are computed accurately from partial
views already validates the use of this approach for grasp
planning. As presented in Section 8.1 having a hypothe-
sized backside makes a significant difference when the goal
is to pre-compute realistic stable grasps. Similarly, this is
an important consideration for rotational objects as well,
as considering only the scanned points does not give any
estimate on how large the object is, and how the back-
side looks. While we do not claim to have solved every
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Fig. 17. The axis estimation step fails consecutively if surface points and normals contain too much noise (left). Re-sampling the points
results in usable axis estimates (middle). Fitting a polynomial function to generate the contour curve given the axis (right).

Fig. 18. Left: Visualization of the setup used for measuring fitting errors. Right: Errors in the angle of the estimated axis to the vertical
(A) if no visibility checks are performed in the optimization loop. The inaccurate fits are penalized by their parts in free space, and the
more accurate fits, such as at iteration 14, will be selected as the final model. Graph shows these errors for subsequent axis optimization
steps, at different RANSAC iterations.

problem related to this uncertainty, approaches such as
ours or that of Thrun and Wegbreit (2005) provide use-
ful hypotheses. Their full evaluation, apart from the fit
quality presented above, is on our agenda, including the
acquisition of enough ground-truth data, performing and
evaluating the grasping, and the analysis the effect of fit-
ting errors on grasp stability when compared with reactive
blob-grasping.

7. System evaluation

To facilitate object recognition we maintain a database of
the descriptors provided by the examination methods. It is
important to note that not all descriptors must be known
due to the multimodal nature and incremental learning
feature of our system. The view-dependent variations of
the descriptors are stored for every view, thus each view
of an object that has been observed can be looked up and
compared with object hypotheses during classification. The

examination methods described in Section 6 provide the fol-
lowing data on a per-view basis: the geometric category,
the appearance descriptors, the model parameters and the
3D mesh. The timestamped position of the last detection is
saved for each object as well.

The following sections provide details of the object iden-
tification and model learning modules using the above-
presented subsystems. We have to differentiate between
the two operating modes, active perception, when a given
object needs to be located, and passive perception of objects
for updating their locations and models. Since the object
model database does not have to contain every possible
piece of information about the objects, it is straightfor-
ward to look for a novel object by adding a new entry that
contains known information about the object.

7.1. Object classification

For object classification, we iterate over the examination
methods (Figure 5), run them on the object hypotheses to
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extract features (if possible), and search through the list of
available objects in the database to see which ones present
the same or similar features. The objects that match are
kept in the list for the next iteration of comparison, and
the others are removed. In this way, at each step the set
of possible objects is reduced. As discussed previously,
if multiple objects remain after checking all features, the
result is deemed ambiguous, whereas if at a given step no
objects match, we consider the object hypothesis to be a
novel object.

Owing to the combination of features, an object candi-
date is accepted only if it matches all of the checked fea-
tures. This reduces the effect of misclassifications, at the
cost of observed views of known objects presenting pre-
viously unobserved features being added as new objects
(unless observed in subsequent scans). As the preced-
ing process is started only if the object was not identi-
fied in the previous step (otherwise the previous identity
is assumed), new views can be learned through contin-
uous observation of an object as presented in the next
section.

Figure 19 shows results we obtained with our first batch
of 12 testing objects. For the 3D categorization we used
the model trained as described in Section 6.2 and the
visual features were trained on the SemanticDB database
as detailed in Section 6.3. The tests show correct classifica-
tions, achieved in under 2 seconds (not considering acqui-
sition time). Please see the following sections for a more
detailed evaluation.

7.2. Detection based on known views

In order to evaluate our approach as a whole, we performed
the detection and recognition test in our kitchen laboratory
(see the left column of Figure 20). The test was carried
out on a total number of 13 objects located at 4 differ-
ent scenes (denoted with Scene 1 to Scene 4 and depicted
in top-down order in the right column of Figure 20). The
robot was programmed to navigate to each of the scenes
and capture point cloud and image from several different
views by traversing along the free paths around the scenes.
The basic planar support approach could not have been
applied for the Scenes 2 and 4 as the supporting planes
are too high, thus impossible to scan with either of our
robots.

The vocabulary tree and corresponding database with
descriptors were trained and built from images from the
SemanticDB database and 10 more images of products from
the GermanDeli13 Web site. The parameters K and L were
both set to 5, resulting in a 1 minute training time of the
database for the 65,000 features extracted from 170 images.
In this configuration the querying for one object cluster
took 50 ms. Setting the score value of the database retrieval
mechanism to the experimentally determined value of 1.0
enables us to classify all measurements that exceed this
value as unknown.

The SIFT-based detection performed well (Table 2), and
geometric classification achieved just below 80% success
rate (lower than in the experiments described earlier due to
partial occlusions). The final database that was built con-
tained some mistakes, as mentioned in Section 1, which
required a few manual corrections, but all in all constituted
less effort than manually adding all descriptors of all new
object to the database using a rotating table for example.

7.3. Improved detection through incremental
learning

In the case that an object hypothesis is detected in the same
position in the map’s coordinate frame in subsequent scans
we assume it is the same object as that identified previously.
For the localization we use an AMCL-based framework
combining robot’s odometry and laser readings in a pri-
ori built 2D map (Pfaff et al. 2006). Localization’s absolute
error margin lies at 0.02 m on average, thus we consider
object hypotheses to represent the same object if they are
not further away than 0.05 m. If the subsequent call of the
examination methods returns no matching views for the
given object hypothesis, we store the current observation
as a new view of the object in the object model database, as
shown in Figure 21.

To demonstrate the capability of our system to acquire
new object models on the fly we set up the Scene 1 with
one unknown object (green milk box) which in fact gener-
ated all 10 unclassified views reported in the first row of
Table 2. Knowing that these do not match anything in the
database, we can introduce them as new object models. The
assumption we are making here is that the scene remains
static, thus the cluster cloud and the defined ROI at the given
3D position in the world coordinate frame contain the same
object.

After this we performed another test run on the Scene 1
with the re-trained tree and the updated database of SIFT
descriptors and were able to reduce the number of not
detected objects down to two as shown in Table 3.

Since most large databases (e.g. the GermanDeli Web
site) offer only single pictures of objects, incremental learn-
ing is an important feature for a perception system that
needs to develop over time.

7.4. Discussion on failure cases

All five SIFT-based classification failures for Scene 2 (sec-
ond row of Table 2 and right column of Figure 20) are
attributed to the reflective metallic surface of a green chips
cylinder which made the classification using SIFT descrip-
tors practically impossible in that position. And this is
where the power of our multimodal system becomes appar-
ent. In all six measurements of this object for this scene it
was correctly categorized as a tube-like cylinder, which for
the set of our 13 objects made the perceptual task execution
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(a) cup-0
Break fast cereal-0
Potato Chips-1

(b) Cup-0
CowsMilk-
Product-0
Tea-Iced-1

(c) Tea-Iced-0
Tea-Pot-0
CowsMilk-
Product-0

(d) Tea-Iced-0
Book-0
Book-1

(e) Tea-Iced-0
Potato-Chips-0
Cup-1

Fig. 19. Classification results for a variety of objects. Clusters shown in random colors.

Fig. 20. We performed the final evaluation test on a total number of 13 objects located at 4 different scenes in our kitchen lab (denoted
with Scene 1 to Scene 4 and depicted in top-down order in the right column). The robot was programmed to navigate to each of the
scenes and capture point cloud and image from several different views by traversing along the free paths around the scenes.

Table 2. Detection of objects and identification of unknown views using SIFT with vocabulary trees.

Scene #Views/#Known #Failures #Unknown Success (with/no unknowns)

Scene 1 52/42 0 10 80.8%/100%
Scene 2 11/11 5 0 54.5%/54.5%
Scene 3 24/24 2 0 91.6%/91.6%
Scene 4 12/12 0 0 100%/100%

Total 99/89 7 10 82.8%/92.1%

 at Technical University of Munich University Library on November 10, 2016ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


1398 The International Journal of Robotics Research 30(11)

Fig. 21. Different views of a cereal box (top) and chips (bottom) learned by multiple observations in the same position. The green line
represents the table’s edge as detected by the laser (some parts of it were not scanned), and the green markers denote the projections of
the fitted 3D model onto the image data.

select the green chips cylinder object as the only tall cylin-
drical object in the object model database. In a database
with a larger number of objects containing, for exam-
ple, multiple tall cylinders correct geometric categorization
would still provide a significant hint at the possible class
instance. In addition, the geometric model reconstruction
provides the means for eventual manipulation.

8. Application scenarios

Object reconstruction, categorization and classification rou-
tines are useful for addressing many practical problems in
robotics. Despite these not being the main focus of the
paper we would like to briefly present the use cases for the
presented system here.

8.1. Grasping of objects using reconstructed
object models

For grasping applications the geometric models are the
most important ones, thus if an object needs to be grasped
the geometric reconstruction has to be performed as
denoted in Section 6.4. The triangulated meshes are then
compared with stored models which have already grasp
points computed, and if no good enough match was found
they are uploaded into the GraspIt simulator (Goldfeder
et al. 2009) where they get annotated with large sets of sta-
ble, pre-computed grasp points. Computed grasps can then
be performed by the robot, as shown in Figure 22

Grasps for novel objects (e.g. Figure 15) are computed
for the specific robot (PR2 and TUM-Rosie) at runtime
from 3D sensor data, using heuristics based on both the
overall shape of the object and its local features. We kindly
refer the reader to the papers by Hsiao et al. (2010) and
Marton et al. (2010a) to obtain more information for PR2
and TUM-Rosie calculation of grasps.

The major benefit of the reconstruction routine is that
grasps are calculated by also considering the backsides of
the objects as depicted in Figure 23. From the contacts,
the grasp quality is statically estimated using the algorithm
presented by Ferrari and Canny (1992).

Fig. 22. Grasping of the localized object by the PR2 robot. The
fitted geometric model was triangulated and fed into the grasp
planning software to obtain grasping points.

8.2. CAD model-based object detection

It is possible to perform 6-DOF position retrieval of objects
on camera images using state-of-the-art 3D shape model
matching technique that simulates the 2D appearance of
the objects in a shape model generation phase (Ulrich et al.
2009). The routine receives object candidates (clusters of
points) projected onto the corresponding 2D image from
point cloud data and then uses a priori built CAD model of
objects to perform the actual detection. The strength of this
approach is based on the fact that the CAD models do not
need to be modeled manually but can rather be generated
by the robot itself in the desired complexity (see Figure 24
for the matching results and Section 6.4 for the generation
of CAD models).

These meshes can be used by other systems as well,
even if the sensors and their setup is different, as detailed
in the following section. If, however, the model is built
by the agent performing the CAD model-based detec-
tion, the known pose of the model can be used to
avoid unnecessary matching of very different poses in the
image.
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Fig. 23. Grasp planning application for TUM-Rosie. Note that we used incomplete scans of the objects, such as that depicted in the last
image (side view of the triangulated mesh) and were still able to generate good grasps for the backsides.

Fig. 24. Locating the resultant geometric model in an image by the TUM-Rosie robot.

Table 3. Improved detection for Scene 1 from Figure 20 before and after the vocabulary tree was re-trained and database rebuilt with
the templates for green milk box. All in all, more views received the correct label.

Scene 1 #Views/#Known #Failures #Unknown Success (with/no unknowns)

Before 52/42 0 10 80.8%/100%
After 52/52 2 0 96.2%/96.2%

8.3. Lifelong dynamic world state mapping

The multimodal nature of our perception system lends itself
to applications for entity resolution (Blodow et al. 2010),
where we proposed to use Markov logic networks to prob-
abilistically track trajectories of objects over time using
reconstructions and refinement algorithms as described in
Section 6. In principle, the approach computes similar-
ity measures between different object cluster observations
from compatible object descriptions (e.g. category and/or
SIFT descriptors) and uses the full power of first-order
logic with the probabilistic semantics of graphical mod-
els in order to deal with difficult conditions such as par-
tial observability of the robot’s environment, incomplete
object descriptions, and a dynamic environment in which
we cannot observe the human and his actions directly.

8.4. Platform independent perception system

Our perception system has been validated on two state-
of-the-art service robots, the TUM-Rosie and the PR2
thanks to the general infrastructure provided by ROS.
Since the only prerequisite is to have the kinematic chains
between the 2D cameras and the 3D tilting laser sen-
sor calibrated with the precision under 5 mm (which still
ensures correct ROI extraction for the purpose of table-
top manipulation), our system can thus be ported to any
arbitrary robot platform that meets the above requirement.
As most of the testing for this article was performed
with the PR2 robot, Figures 23 and 24 verify our claims
for the TUM-Rosie robot by showing the execution of
the shape-based matching algorithm and grasp planning,
respectively.
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While our two robots have similar sensor setups, cameras
and lasers are widely used on different platforms as well,
and many 3D sensors provide accuracy similar to or better
than the Hokuyo UTM-30LX, ensuring the usability of the
presented methods.

9. Conclusions and future work

In this paper, we have presented a system for automatic and
efficient object detection and modeling that can improve
its models with limited human supervision. The high num-
ber and variety of objects in a typical household require
the use of multiple descriptive features and the automatic
construction of geometric models for performing robotics
tasks autonomously, as we believe that having an object
database built by the robot itself in the operating environ-
ment (or adapting/enriching a seed database) is more suit-
able to deal with the specifics of the environment efficiently
than a generic approach of providing as many models of as
many objects as possible.

In the future, we plan to automatically learn the objects’
geometric classes and learn which geometric model type fits
best to each class. Also, after multiple views of an object are
obtained, the geometric models should be re-adapted into a
consistent global model which should be used to locate the
object in the scenes. In this way, the handle of a cup could
be assumed to be in the back even without being detected.

Probably the most important and exciting application
of the presented methods would be the extension of the
system with more features and the integration with the
system presented in Section 8.3. This advancement would
bring household robot assistants one step closer to being
truly autonomous when it comes to dealing with objects of
daily use. The integration of multiple sources of informa-
tion, prior knowledge, and combining multiple observations
seem to be natural ways to achieve robust performance.

Notes

1. See http://i61p109.ira.uka.de/ObjectModelsWebUI/.
2. See http://www.ros.org.
3. See http://www.pointclouds.org.
4. See http://docs.pointclouds.org/trunk/classpcl_1_1_r_s_d_

estimation.html.
5. See http://code.cs.tum.edu/indefero/index.php//p/mapping/

source/tree/master/pcl_cloud_algos/src/pcl_cloud_algos/
global_rsd.cpp.

6. See http://www.ros.org/wiki/objects_of_daily_use_finder.
7. See http://www.ros.org/wiki/urdf.
8. Since we do not assume that normals are oriented consis-

tently we compute α as the angle between the lines defined
by the two points and their normals.

9. See http://ias.in.tum.de/kb/wiki/index.php/Example_images_
of_kitchens.

10. See http://ias.cs.tum.edu/download/semantic-3d.
11. See http://www.ros.org/wiki/household_objects_database.
12. See http://sourceforge.net/projects/libsift/.
13. See http://www.germandeli.com.
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