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BIOGRAPHY

After a diploma in mathematics and physics from the
Technical University of Munich in 1970, LUDWIG
FAHRMEIR accepted an offer to work at the Institut
fUr Angewandte Mathematik as a member of the hybrid
computing systems research group, whose two princi-
pal aims were to develop a hybrid computing system
interfacing a Beckman Ease analog and a CAE 90-10
digital computer, and to develop hybrid computing
methods to solve problems in applied mathematics.
In the course of this work, Dr. Fahrmeir investi-

gated hybrid methods for solving boundary-value
problems, coming up with the extension of the hybrid
Monte Carlo method described in this paper. In

December 1972 he completed his dissertation and is
now working as an assistant at the Institut. His
research interests embrace the theory and applica-
tion of stochastic processes, including further
development of Monte Carlo methods. He lives with
his wife in Germering, near Munich, where he enjoys
skiing, sailing, and guitar playing.

ABSTRACT

Hybrid Monte Carlo techniques for the solution of
linear boundary-value problems have previously been
developed. This paper is not primarily concerned
with implementing these techniques., but extends the
class of problems that can be solved by them and
improves the method first described by Little, which
in its original form is shown to be valid only in a
special case and not generally applicable to linear
boundary-value problems.

INTRODUCTION

A hybrid Monte Carlo method for solving certain
classes of linear boundary-value problems was first

developed by Chuang, Kazda, and Windeknecht2.
Little described a generalization of this tech-
nique to yield a method for solving the Dirichlet
problem for elliptical partial differential equa-
tions with &dquo;slowly varying&dquo; coefficients and without
mixed second-space derivatives. Handler6 extended
it to other boundary conditions, employing the
Astrac II ultrahigh-speed computer at the University
of Arizona.9

The hybrid Monte Carlo technique is also described
by Bekey and Karplusi and Korn.9 I investigated the
hybrid Monte Carlo method by a different mathematical
approach5 using the relation between Markov processes
and partial differential equations,4 extending this
method to general linear elliptic equations, and
demonstrating that Little’s method is only valid in
the special case of constant coefficients of the
second derivatives. Generally the two methods differ
in the simulation of the random walks in certain
stochastic differential equations. In the special
case the two methods coincide. The other aspects of
computer implementation3,5,7,8,9,10--such as noise

generation, detection of boundary crossings, error
analysis, and computation time--are not affected by
my extension.

BOUNDARY-VALUE PROBLEMS AND SOLUTION BY
THE MONTE CARLO METHOD

I shall describe the method briefly, omitting its
complete mathematical derivation, which is in my
dissertation. However, the approach to the mathe-
matical derivation is suggested in the remark at the
end of this section.

Consider the following boundary-value problem (the
Dirichlet problem) for the real function u(x) =

u(xl,...,xn) on a domain G of n-dimensional Euclidean
space with boundary G’ u(x) is required to satisfy
the elliptic differential equation:

where x is in G and where the boundary condition

where r = (rl,...,rn), lies on G’ and ~(r) is a
continuous function on G’.

If the domain G and its boundary G’ satisfy certain
regularity conditions and

If the coefficients bij possess continuous first (3)derivatives, and

If these derivatives and the coefficients a., f, (4)
g satisfy on G U G’ a Holder condition with
exponent X (e.g., ~f(x) - fey) I Lllx - ~))~
I I I being the distance between x and y, with
L a positive constant), and

If for any x in G U G’ and any collection of (5)
nonzero real numbers l~,..., l~

then4,11 there exists a unique solution u(x) of the
Dirichlet problem (1), (2).

Let B(x) be the matrix with elements bj.(r), assuming
that B(x) is symmetric. C(x) denotes the symmetric
matrix satisfying

 at Technical University of Munich University Library on November 10, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


178

Condition (5) guarantees the existence of C(x), but it
may be difficult to obtain it if n 3 and B(x) has
many off-diagonal elements. It is easy if (as as-
sumed by Little et aZ.) B(x) is a diagonal matrix.
Then

Now let Ni(t) be n independent noise sources approxi-
mating Gaussian white noise with power spectral
density a2, suitable for application to high-speedMonte Carlo methods.3,6,7, ,~ S denotes the diagonal
matrix with elements ai, and C(x) denotes the matrix
defined by

where S is the inverse of S.

If B(x) is diagonal, (7) and (8) result in

This is the formula of Little et al.

Suppose now that we desire the solution u(x) of the

boundary-value problem at x = (xl,---,xn) somewhere
in G. Then a n-dimensional random walk X(t) =
(X1(t),...,Xn(t)) can be initiated from point x by
integrating the following system of stochastic dif-
ferential equations

with initial condition

If T is the first exit time from G after t = 0, then
the value of the boundary condition at the point of
crossing is denoted by ~(X(L)). With T and ~(X(T))
we define

If f(x) - 5 g(r) = 0 in G, then reduces to ~.

We start now a number N of random walks and denote

by oi the value of ~(X(T)) realized by the ith
random walk. The average

gives an approximation of u(-x~:

COMPARISON WITH LITTLE’S METHOD

Compare now this Monte Carlo method (MC1) with the
method first described by Little (MC2):

In MC2 the coefficients b2~(x) are res ricted to

b ~~ (x) E 0 if i ~ j. The random walk l(t) =
(X1(t),...,In(t)) is governed by

*

Then MC2 continues as MC1 with X(t) instead of X(t).

Comparing (9) and (11), we see that

1) MC1 is applicable to a wider class of boundary-
value problems, since the coefficients b ij(x),i ~ j, are not restricted to b ij(x) = 0 ~J

z0

2) even when b,~,,(x) = 0, i ~ j, MC1 differs from MC2
-1

by the additional terms in (9).

Only for the case of a constant diagonal matrix
B(x) = B does MC1 reduce to MC2.

Little assumed that the coefficients bii(x) were

&dquo;slowly varying.&dquo; The additional terms then may be
small if the derivatives 9c’’/~xk are small enough.
Generally, however, these additional terms are not
negligible.

Remark: The absence of the additional terms in MC2
is a consequence of Little’s derivation of the method.
He writes (12) assuming Ni(t) to be ideally Gaussian
white noise. But white noise is not integrable (with
probability 1) and therefore (12) has no mathematical
meaning. By integrating (12), Little gets the
(mathematically undefined) integral equation

Then he--intuitively--applies the rules of the Ito-
calculus.4 If we write (13) in the form of Ito’s
stochastic integrals

the rest of Little’s proof, in the main, remains
unchanged. A more general result, where the c2~(x)
are not restricted to be zero, may be found in 

-bj

Dynkin’s book.‘’ But the realizations of X (t)
cannot be obtained directly by (14) because Ito’s
stochastic integrals are defined on the quadratic
mean.5 If the physically realisable noise Ni(t)
in (9) converges to white no se, the process Xi(t)
defined by (9) converges to Xi(t) as defined by (14).
If additionally N -> 00, the average $ converges to
u(x). The additional terms in (9) arise from the
unsymmetric definition of the second integral in (14).
The proofs of these statements are given in my
dissertation.5

EXAMPLE

The example given in this paper is selected from a
number of problems5 which were solved using the
hybrid computing system (Beckman Ease 2133/CAE-90-10)
of the Institut fUr Angewandte Mathematik at the
Technische Universitat Munchen, which is directed by
Professor J. Heinhold. The computer implementation
differs from Little’s only by the simulation of the
stochastic differential equations. Noise generators
with a = a1 = c~2 = 0.096 were used.
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Boundary value problem

Figure 1.

Exact solution

With

we get

By (9) the random walks (N = 1000) are governed by the
stochastic differential equations

Results
For each (r,y), the value in the first line is com-

puted by the Monte Carlo method, the second value
is exact):

CONCLUSION

I have described a Monte Carlo method for obtaining
approximate solutions of the first boundary-value
problem for linear elliptical differential equations
which corrects and extends the method of Little.

He applied his method also to parabolic differential
equations with known boundary conditions and initial
conditions, and Handler extended it to other boundary
conditions (e.g., the Neumann problem). Although I

have yet to test it numerically, I am quite sure that
the correction and extension given in my method also

applies to these problems, since the stochastic
differential equations which govern the random walks
depend only on the coefficients of the first and
second derivatives of the partial differential equa-
tion and not on the boundary conditions.
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