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Vibration mitigation of a rotating beam
under external periodic force using a
nonlinear energy sink (NES)

S Bab1, SE Khadem1, MK Mahdiabadi2 and M Shahgholi3

Abstract

In this paper, the performance of a smooth nonlinear energy sink (NES) to mitigate vibration of a rotating beam under an

external force is investigated. The rotating beam is modeled using the Euler-Bernoulli beam theory, and the centrifugal

stiffening effect is considered. It is assumed that the nonlinear energy sink has a linear damping and an essentially

nonlinear (nonlinearizable or cubic) stiffness. Required conditions for occurring Hopf bifurcation, saddle-node bifurcation

and strongly modulated responses (SMR) in the system are investigated. The most important parameter to study NES

performance is SMR occurrence range in the detuning parameter span. Effects of position and damping of the NES and

magnitude of the external force on the vibration mitigation of the rotating beam are studied. The Complexification-

Averaging and the Runge Kutta methods are employed for analytical and numerical investigations, respectively. Finally, the

efficiency of an optimal linear absorber and an optimal NES in the vibration mitigation of the rotating beam are compared.

It is shown that the best range for the parameters of the NES is the one in which SMR and weak modulated

response occur simultaneously. Furthermore, the best position for connecting the NES to a rotating beam is at the

beam tip.
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1. Introduction

Since many industrial structures such as gas turbine,
helicopter and windmill turbine blades are modeled as
rotating beams, the vibration analysis of the rotating
beam is an interesting research area. Vibration of the
rotating beam is more complex in comparison to a non-
rotating beam. It is influenced by different factors such
as the centrifugal force and various external excitations.
The ‘engine order excitation’ is one of these forces that
is very important in the turbo-machinery context. Due
to the importance of this vibration and the risk of fail-
ure of equipments resulted by it, the rotating beam
vibration mitigation is an important issue in the
literature.

Sanches et al. (2011) investigated a helicopter
ground resonance in isotropic and anisotropic multi-
bladed rotor configurations. They used Floquet
theory for the nonlinear dynamic analysis of the
system. In addition, the system bifurcation points,

which depend on the anisotropic parameters, were
determined.

Dai et al. (2001) examined a rotor-bearing system
with the magnetic bearings, hydrodynamic bearings
and squeeze film dampers. Using a four-degree of free-
dom model, the linear dynamic of the system was
described. The unbalance response of the system was
investigated. They demonstrated that squeeze film
damper significantly decreases the amplitude of
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vibrations and unstable region of dynamic behavior of
the system.

Duffy et al. (2000, 2004) analyzed the influence of a
self-tuning impact damper on the vibration attenuation
of rotating components of turbo-machinery. The
numerical and experimental results showed that self-
tuning impact damper decreases vibration amplitude
and hence, it increases the fatigue life of the
components.

Byers and Gandhi (2009) studied the dynamic
effects of two vibration absorbers in the radial and
chordwise directions embedded in the helicopter
blades. The blade and absorbers were modeled as a
discrete two-degree of freedom system. Analytical
results showed that the radial absorber in compare
with chordwise absorber has a more efficient perform-
ance on the vibration reduction of the helicopter blades.

Gerges and Vickery (2003) considered the efficiency
of a nonlinear tuned mass damper (TMD) on the vibra-
tion mitigation of a slender structure with square cross-
section. A wire rope spring was used as a nonlinear
TMD. The results of numerical and analytical analyses
were validated by a wind tunnel test.

In recent years, nonlinear energy sink (NES) is
widely taken into consideration for vibration mitigation
of discrete and continuous systems, instead of tuned
mass damper (TMD) or weakly nonlinear absorber.

Ahmadabadi and Khadem (2012a) investigated
attenuation of a drill string self excited oscillations,
using a nonlinear energy sink. Various positions of
the drill string for attaching of the NES was examined.
They showed that nonlinear energy sink decreases the
drill string vibrations.

Samani and Pellicano (2009) studied the effects of
linear and nonlinear absorbers on the vibration annihi-
lation of a simply supported beam stimulated by a
moving load. Two criterions of the maximum vibration
amplitude and portion of dissipated energy of the
system by the absorbers were used to study the effi-
ciency of the absorbers. Furthermore, the optimal pos-
ition of the absorbers on the beam was determined.

Grinberg et al. (2012) examined the vibration attenu-
ation of a single-degree of freedom oscillator subjected
to a harmonic force using a two-degree of freedom
NES. Periodic, quasi-periodic and chaotic responses
were observed in the dynamic regimes of the system.
They showed that two-degree of freedom (2DOF)
NES in compare with single-degree of freedom
(SDOF) NES in a greater range of the amplitude of
external force has a higher efficiency. The analytical
results have a good agreement with numerical ones.

Lamarque and Savadkoohi (2014a) studied the
multi-scale energy interchange between a main oscilla-
tor of Bouc–Wen type and a nonlinear energy sink.
They acquired the invariant manifold in fast time

scale, and equilibrium points and fold singularities in
the slow time scale. Using numerical example, perform-
ance of the nonlinear energy sink for vibration mitiga-
tion of the Bouc–Wen type main structures was
confirmed. Likewise, Lamarque and Savadkoohi (in
press) and Weiss et al. (2014), investigated the efficiency
of the nonlinear energy sink on the vibration mitigation
of the system with a set of Saint-Venant elements.
Domany and Gendelman (2013) studied dynamics of
Van der Pol–Duffing (VdPD) oscillator with attached
nonlinear energy sink. They illustrated that the dynam-
ics of the system were described using a combination of
averaging and multiple scales methods. It was shown
that the nonlinear energy sink efficiently attenuate the
undesired LCOs in the system response.

Ahmadabadi and Khadem (2012b) studied vibration
mitigation of a two-degree of freedom system using an
NES with nonlinear damping. They tuned NES param-
eters, in order to attenuate vibration perfectly, and to
have a maximum strongly modulated responses (SMR)
region in the vicinity of both modes of the primary
system, simultaneously. Ahmadabadi and Khadem
(2014) studied a coupled nonlinear energy sink (NES)
and a piezoelectric-based vibration energy harvester
positioned on a free-free beam under a shock excita-
tion. The efficiency of the NES and the Harvester for
two configurations were investigated, and hence, the
optimal parameters of the system for the maximum
dissipated energy in the NES, and the highest energy
harvesting by piezoelectric element were extracted. Bab
et al. (2014) investigated the performance of a number
of smooth nonlinear energy sinks (NESs) on the vibra-
tion attenuation of a rotor system under mass eccentri-
city force. The nonlinear energy sinks had a linear
damping, linear stiffness and a cubic stiffness. They
utilized Jeffcott model for modeling of the rotor and
derived the equations of the motion employing the
Lagrange method. For analytical solution, Multiple
Scales-Harmonic Balance Method (MSHBM) was
used. It was demonstrated that, when the external
force reaches its medium magnitude, the range of hap-
pening of SMR in the area of the system parameters get
wider and the collection of the NESs illustrate a drastic
effect.

Georgiades and Vakakis (2009) studied nonlinear
interaction between different types of an NES and a
thin cantilever plate on an elastic foundation.
Attachment of the SDOF NES, two SDOF NESs at
two different positions, and a multi-degree of freedom
(MDOF) NES to the plate are considered and the
behavior of the system in these configurations was
examined. They demonstrated that the best locations
for the attachment of NES to the plate are the anti-
nodes of the plate. Georgiades and Vakakis (2007)
investigated the nonlinear phenomena due to an NES
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which is attached to a simply supported beam under a
shock excitation. They showed numerically that the
energy transfer approximately occurred in one direction
from the beam to NES in this system. Georgiades et al.
(2007) examined interaction between a rod and an
NES. The nonlinear energy sink was attached to the
rod free end. The transient nonlinear dynamic in the
coupled NES and rod system subjected to a shock pulse
was investigated. The optimum parameters for efficient
targeted energy transfer were extracted using the
Wavelet, Empirical Mode Decomposition and Hilbert
transforms.

Ahmadabadi and Khadem (2012c) reviewed the
influence of grounded and ungrounded nonlinear
energy sink attached to a cantilever beam on the
energy mitigation of the coupled system under an exter-
nal shock. They investigated the effect of the nonlinear
normal modes of the system on the occurrence of one-
way irreversible energy pumping. Mehmood et al.
(2014) surveyed usefulness of a nonlinear energy sink
(NES) on the passive control of the vortex-induced
vibrations of a freely oscillating circular cylinder. The
flow pressure on the cylinder was extracted employing a
direct numerical simulation of the incompressible flow
over the cylinder. They showed that by changing mass
ratio of the NES to the primary system and damping,
the primary system had various behavior. They
depicted that, depending on initial conditions, this
system had multiple stable responses.

Luongo and Zulli (2012) introduced a general solu-
tion for evaluation of the performance of an essentially
nonlinear oscillator with small mass and damping
(NES), which was attached to a general, nonlinear,
MDOF system, motivated by harmonic external
force. They applied Multiple Scale-Harmonic Balance
Method (MSHBM) to study dynamic of the system
analytically. The main superiority of the method was
that no complexification-averaging is required, and
therefore, the analyses were performed using the clas-
sical perturbation techniques. Luongo and Zulli (2013)
studied the performance of the nonlinear energy sinks
on the controlling of aeroelastic instability of a two-
degree-of-freedom rigid airfoil under steady wind.
They employed the MSHBM method for analytical
solution and obtained results were compared with
numerical results. Also, Zulli and Luongo (2014) inves-
tigated the performance of the nonlinear energy sink on
the vibration mitigation of an internally nonresonant
elastic string using the MSHBM method.

Gendelman (2011) presented efficiency of the NES
on the absorbing and suppressing broadband initial
excitations of different primary system. It was shown
that using NESs is a possible engineering solution for
more traditional problems of vibration mitigation such
as self-excited attenuation and externally forced

systems under single or multiple frequency excitation.
Vaurigaud et al. (2013) studied dynamic behavior of a
system which composed of a two degree of freedom
suspension bridge model and a single degree of freedom
NES. The dynamic behavior was considered in a 1:1:1
nonlinear resonance condition. They used the complex-
ification methods, multiple scales expansions and the
concept of limiting phase trajectories (LPTs) for ana-
lytical analysis. Optimal parameters of the NES for
efficient vibration reduction were obtained. Their
numerical results had a good agreement with analytical
predictions.

According to the above works, one distinguishes that
survey of effects of the smooth NES on vibration
attenuation of a rotating beam under an external
force promises interesting results. In this paper, the
Euler-Bernoulli beam theory is used to model the rotat-
ing beam where the centrifugal stiffening effect is con-
sidered. The source of the external force at the end of
the rotating beam is due to the variation of the gas
stream pressure passing through blades that is known
as ‘engine order excitation’. The NES has a small mass
and damping. Also, the damping of the NES is linear,
but its stiffness is nonlinearizable. In the presence of
SMR in the system, the absorber has an optimum
attenuating effect (Gendelman et al., 2008;
Starosvetsky and Gendelman, 2008a). In order to
detect the best efficiency of the absorber, attachment
of the NES to various points of the rotating beam is
considered. Furthermore, the existence of the saddle-
node bifurcation, Hopf bifurcation and SMR in the F
and � space are investigated. Occurrence of the Hopf
bifurcation is the sign of a weak modulated response
(WMR) happening in the system. In addition, the fre-
quency response curves of the system are depicted. The
most important parameter for study of the NES per-
formance is occurrence of the SMR behavior in the
detuning parameter range. Also, the effects of absorber
position and external force magnitude on vibration
attenuation of the rotating beam are studied. Finally,
the optimal parameters of the NES for maximum per-
formance in the vibration mitigation are determined.

2. Equations of motion

Figure 1 represents a rotating beam with an attached
NES where its free end is under periodic external force.
Indeed, the rotating beam is a simple model of a
Turbomachinery blades. The most important periodic
force, which is applied to the turbomachinery blades, is
known as ‘engine order excitation’. This force is due to
the variable gas stream pressure passing through the
blades. This issue has various reasons from the engine
design and operation viewpoint (Ewins, 2010).
The coupled equations of motion of the rotating
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beam and the attached NES under the periodic external
force are governed by considering the centrifugal
stiffening effect (Genta, 2005)

�A
@2vðr, tÞ

@t2
� �A�2vðr, tÞ þ �A�2r

@vðr, tÞ

@r

� �A
�2

2
ðr20 � r2Þ

@2vðr, tÞ

@r2
þ EI

@4vðr, tÞ

@r4

þ C½vðr, tÞ � uðtÞ�3 þ l
@vðr, tÞ

@t
�
@uðtÞ

@t

� �� �
� �ðr� ðri þ d ÞÞ

¼ F cosð!tþ �Þ�ðr� ðri þ lÞÞ ri 5 r5 ri þ l,

m
@2uðtÞ

@t2
þ C½uðtÞ � vðri þ d, tÞ�3

þ l
@uðtÞ

@t
�
@vðri þ d, tÞ

@t

� �
¼ 0 ð1Þ

It is obvious that in this case the rotating beam is a
clamped-free beam. Here uðtÞ and vðr, tÞ are displace-
ments of the NES and the rotating beam, respectively.
m, C and l are the mass, nonlinearizable stiffness and
damping of the NES, respectively. d represents the dis-
tance of the NES from the base of the beam. �, A, l, ri

and r0 are the mass density, cross sectional area, length,
inner radius and outer radius of the rotating beam,
respectively. � is an angular velocity of the rotating
beam. F and ! are amplitude and angular frequency
of the external force. The rotating beam is modeled
using Euler-Bernoulli beam theory and the centrifugal
stiffening effect is considered.

For the sake of simplicity, the following dimension-
less parameters are defined

�v ¼ v=l, �r ¼ r=l, �t ¼ t=z,

�� ¼ z�, �r0 ¼ r0=l, �ri ¼ ri=l,

�u ¼ u=l, �d ¼ d=l, � ¼ �Al4�2=EI, " ¼ m=�Al,

�! ¼ !z, � ¼ �ACl6=mEI, � ¼ ll2=m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A=EI

p
,

�F ¼ �AFl4=mEI, z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Al4=EI

p
ð2Þ

Using these dimensionless parameters, the following
dimensionless equations of motion are obtained

@2 �vð�r, �tÞ

@�t2
� ��2 �vð�r, �tÞþ ��2 �r

@ �vð�r, �tÞ

@�r
�

��2

2
ð�r20� �r2Þ

@2 �vð�r, �tÞ

@�r2

Figure 1. The rotating beam to which NES is attached.
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Using the Galerkin method, an approximate solution of
the rotating beam displacement is supposed to be as
�vð�r, tÞ ¼

Pn
j¼1 �j ð�rÞqj ð �tÞ. where �j ð�rÞ is the linear mode

shape of the undamped rotating beam. Since, the rotat-
ing beam is clamped-free, the linear mode shape of the
clamped-free beam is used (Meirovitch, 2001). Using
the first mode of the cantilever beam ð�1ð�rÞÞ in the
Galerkin method, the following coupled equations of
the NES and rotating beam are obtained

m11 €q1ð �tÞ þ k11q1ð�tÞ þ "��1ð�ri þ �d Þf�1ð�ri þ �d Þ _q1ð �tÞ

� _�uð �tÞg þ "��1ð�ri þ �d Þf�1ð�ri þ �d Þq1ð�tÞ � �uð�tÞg3

¼ " �F�1ð�ri þ 1Þ cosð �!�tþ �Þ,

"€�uð�tÞ þ "�½_�uð�tÞ � �1ð�ri þ �d Þ _q1ð�tÞ�

þ "�½ �uð �tÞ � �1ð�ri þ �d Þq1ð �tÞ�
3
¼ 0 ð4Þ

m11 and k11 are presented in Appendix A. Starosvetsky
and Gendelman (2008b) showed that in the system
under periodic or narrowband excitation (not impact,
transient or wide-band excitations), when the frequen-
cies of the primary system are well separated, the system
can be considered as a two-degree of freedom system,
which includes the desired mode of the primary system
and NES. Since the natural frequencies of the rotating
beam which is considered, are quite separated from each
other, the coupled rotating beam and NES system can
be considered as a two-degree of freedom system, which
includes the first (and the most important) mode of the
rotating beam and NES. The coefficients of the equation
(4) are functions of the physical and geometrical param-
eters of the system, which are presented in Appendix A.
To simplify the equation (4), the following transform-
ation is introduced as q01ð�tÞ ¼ �1ð�ri þ

�d Þq1ð�tÞ. In this
relation, q1ð�tÞ and q01ð �tÞ are the displacements of the
first mode of the rotating beam and the rotating beam
at the NES position, respectively. By introducing this
relation into equation (4), and using these simplifica-
tions �1ð�ri þ �d Þ ¼ �1d, �1ð�ri þ 1Þ ¼ �1o, m

0
11 ¼ m11=�

2
1d
,

k011 ¼ k11=�
2
1d

and �01o ¼ �1o=�1d, the following equa-
tions are obtained

m011 €q01ð �tÞ þ k011q
0
1ð�tÞ þ "�f _q

0
1ð�tÞ �

_�uð �tÞg

þ "�fq01ð�tÞ � �uð �tÞg3 ¼ " �F�01o cosð �!�tþ �Þ,

"€�uð�tÞ þ "�½_�uð�tÞ � _q01ð �tÞ� þ "�½ �uð �tÞ � q01ð�tÞ�
3
¼ 0 ð5Þ

These equations demonstrate the dynamic behavior of
the coupled rotating beam-NES system.

3. Analytical solution

3.1. Stability and bifurcation analysis

The dynamic behavior of the steady-state responses of
the coupled beam and NES system is analyzed using the
Complexification-Averaging method. This method was
developed by Manevitch for extraction of transient
and steady state response of a systems with
nonlinear energy sink (Manevitch, 2001; Manevitch
and Manevitch, 2005). Some usage of the
Complexification-Averaging could be seen in (Lee
et al., 2006, 2007). The motion of the system can be
separated into two parts: the fast-varying and slow-vary-
ing motions. The fast and slow parts are related to the
natural frequency and amplitude of the vibration,
respectively.

To analyze the behavior of the system around 1:1
resonance of the first natural frequency of the rotating
beam ð!1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k011=m

0
11

p
Þ, it can be considered ð!1 ¼

�!þ "�Þ. Therefore, ð!2
1 ¼ �!2 þ "2�2 þ 2"� �!Þ and by

refraining from higher order of " and assuming
	 ¼ 2"�, it is obtained that ð!2

1 ¼ �!2 þ "	Þ or k011 ¼
m011ð �!

2 þ "	Þ. Consequently, the following equations
of motion are obtained

m011 €q01ð�tÞ þm011ð �!
2 þ "	Þq01ð�tÞ þ "�f _q

0
1ð�tÞ �

_�uð �tÞg

þ "�fq01ð �tÞ � �uð �tÞg3 � " �F�01o cosð �!�tþ �Þ ¼ 0

"€�uð�tÞ þ "�½_�uð�tÞ � _q01ð �tÞ� þ "�½ �uð �tÞ � q01ð�tÞ�
3
¼ 0 ð6Þ

To analyze the effect of the NES on the system behav-
ior, a transformation is defined as

vðtÞ ¼ q01ð �tÞ þ " �uð �tÞ, wðtÞ ¼ q01ð�tÞ � �uð�tÞ ð7Þ

For the sake of simplicity, the prim and bar marks are
omitted in the following equations. Here, vðtÞ is the
deflection of center of mass of the beam and NES, and
wðtÞ is the NES displacement relative to the beam. In the
averagingmethod, the response of the system is obtained
using the sum of the responses of dominant frequencies.
Here, it can be assumed that the system has one domin-
ant frequency. Accordingly, it can be written
as vðtÞ ¼ v1ðtÞ, wðtÞ ¼ w1ðtÞ. According to the
Complexification Averaging method, the following
complex parameters are introduced (Manevitch, 2001)

 1 tð Þ ¼
dv1 tð Þ

dt
þ i �!v1 tð Þ,

 2 tð Þ ¼
dw1 tð Þ

dt
þ i �!w1 tð Þ

ð8Þ
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where i2 ¼ �1. The spatial variables and their deriva-
tives in equation (8), in terms of the new complex vari-
ables, are obtained as

v1 tð Þ ¼
 1 tð Þ �  1 tð Þ
� �

2i �!
,

w1 tð Þ ¼
 2 tð Þ �  2 tð Þ
� �

2i �!
,

dv1 tð Þ

dt
¼
ð 1 tð Þ þ  1 tð ÞÞ

2
,

dw1 tð Þ

dt
¼
ð 2 tð Þ þ  2 tð ÞÞ

2
,

d2v1 tð Þ

dt2
¼

d 1 tð Þ

dt
�
i �!

2
 1 tð Þ þ  1 tð Þ
� �

,

d2w1 tð Þ

dt2
¼

d 2 tð Þ

dt
�
i �!

2
 2 tð Þ þ  2 tð Þ
� �

ð9Þ

The fast and slow parts of the motion are obtained by
dividing the complex responses into two parts as

 1 tð Þ ¼ �1 tð Þei �!t,  1 tð Þ ¼ �1 tð Þe�i �!t,

 2 tð Þ ¼ �2 tð Þei �!t,  2 tð Þ ¼ �2 tð Þe�i �!t
ð10Þ

Here (ei!0t) shows the fast-varying part of the dynamic
of the system (the vibration frequency), and
�k tð Þ, k ¼ 1, 2 indicates the slow-varying, complex-
valued amplitude modulations (the vibration ampli-
tudes). Substituting equations (7) thorough (10) into
equation (6), the ordinary differential equations of the
slow motion are governed by

d�1 tð Þ

dt
�

1

8 �!3ð1þ "Þ

n
"f3i"��2 tð Þ �2 tð Þ

		 		2�21d
� 4"��21d �!3�2 tð Þ þ 4F�1o"�

2
1d �!3

þ 4i	�1 tð Þ �!2 � 4��2 tð Þ �!3�21d

þ 4i"	�2 tð Þ �!2 þ 4F�1o �!3�21d þ 3i��2 tð Þ �2 tð Þ
		 		2

� �21d þ 4��2 tð Þ �!3 � 3i��2 tð Þ �2 tð Þ
		 		2

þ 4� �!3"�2 tð Þ � 3i"��2 tð Þ �2 tð Þ
		 		2

þ 4i �!2�2 tð Þ � 4i �!4�1 tð Þg
o
¼ 0

d�2 tð Þ

dt
�

1

8 �!3ð1þ "Þ

n
3i"2��2 tð Þ �2 tð Þ

		 		2�21d
� 4"2��21d �!3�2 tð Þ þ 4F�1o"

2�21d �!3

þ 4i �!2"	�1 tð Þ � 4"��21d �!2�2 tð Þ

þ 4i �!2"2	�2 tð Þ þ 4F�1o"�
2
1d �!3

þ 3i"��2 tð Þ �2 tð Þ
		 		2�21d � 4� �!3"�2 tð Þ

þ 3i"��2 tð Þ �2 tð Þ
		 		2�21d � 4� �!3"�2 tð Þ

þ 3i"��2 tð Þ �2 tð Þ
		 		2þ3i��2 tð Þ �2 tð Þ

		 		2
� 4� �!3�2 tð Þ � 4i �!4�2 tð Þ þ 4i �!4�1 tð Þ

o
¼ 0 ð11Þ

To obtain the steady sate responses of the system, the
derivative with respect to the time of the slow varying
modulation in equation (11) should be equal to zero
(d�1 tð Þ

dt ¼ 0, d�2 tð Þ
dt ¼ 0). Then, by introducing �1 tð Þ from

the first relation of equation (11) and substituting it
into the second relation of equation (11), the following
relation for variation of �2 tð Þ in the steady state, is
obtained

�20j j
6þ

8 �!4	

3 �!2�21d � 	
� � �20j j4

þ
16 �!6 �2 �!4�21d þ �

2	2 � 2�2 �!2�21d	 þ !
2
0	

2
� �

9 �!2�21d � 	
� �2

�2

� �20j j
2�

16�41d�
2
1oF

2 �!10

9 	2 þ �!4�41d � 2 �!2�21d	
� �

�2
¼ 0 ð12Þ

In this equation �20 indicates fixed points of �2 tð Þ. On
the other hand, �20 is a proper approximation of wðtÞ,
therefore, for higher values of �20, the NES displace-
ment relative to the beam is more increased and the
absorber is more efficient. Assuming Z ¼ �20j j

2 and
substituting it into equation (12) gives

�3Z
3 þ �2Z

2 þ �1Zþ �4 ¼ 0,

�1 ¼
16 �!6 �2 �!4�21d þ �

2	2 � 2�2 �!2�21d	 þ !
2
0	

2
� �

9 �!2�21d � 	
� �2

�2
,

�2 ¼
8 �!4	

3 �!2�21d � 	
� � , �3 ¼ 1,

�4 ¼ �
16�41d�

2
1oF

2 �!10

9 	2 þ �!4�41d � 2 �!2�21d	
� �

�2

ð13Þ

equation (13) has one or three responses depending on
the magnitude of parameters in this equation. In add-
ition, equation (13) reveals that the response of the
system is continuous; therefore, a series of bifurcation
points including the saddle-node and Hopf bifurcations
in the response of the system would occur. In order to
determine saddle node bifurcations, derivatives of
equation (13) should be equal to zero (Nayfeh and
Balachandran, 2004)

3�3Z
2 þ 2�2Zþ �1 ¼ 0 ð14Þ

Furthermore, equation (14), which shows the necessary
condition of the saddle node bifurcation, should be
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applied to equation (13). Eliminating z from these two-
coupled equations ((13) and (14)), the boundary of
existence of the saddle node bifurcation as a function
of the system parameters can be obtained.

Furthermore, condition of existence of the Hopf
bifurcation can be obtained by introducing the small
complex quantities of perturbations, �1ðtÞ and �2ðtÞ,
around the equilibrium points. Reintroducing the
slow-varying modulation as

�1ðtÞ ¼ �10 þ �1ðtÞ, �2ðtÞ ¼ �20 þ �2ðtÞ ð15Þ

Substituting equation (15) into equation (11) and ignor-
ing the nonlinear terms of perturbations, four coupled
ordinary differential equations around the equilibrium
point are obtained

_�1 ¼
1

8!3
0ð1þ "Þ

"f 4i"	 �!2�2 � 3i"��220�
�
2



þ 4� �!3�2 þ 6i��21d�2 �20j j

2�6i��2 �20j j
2

þ 4i �!4�2 þ 6i"��21d�2 �20j j
2�4i �!4�1

þ 4i	 �!2�1 � 4"��21d �!3�2 � 3i��220�
�
2

� 4� �!3�21d�2 þ 4� �!3"�2 þ 3i��21d�
2
20�
�
2

þ3i"��21d�
2
20�
�
2 � 6i��21d�

2
20�2

��
_��1 ¼

1

8 �!3ð1þ "Þ
"f 4� �!3��2 � 4i"	 �!2��2



þ 6i"���2 �20j j
2þ6i���2 �20j j

2�4"��21d �!3��2

� 4��21d �!3��2 þ 4i �!4��1 � 6i"���2 �20j j
2�21d

þ 3i"��220�2 � 4i �!4��2 � 3i��21d�
�2
20�2

� 3i"��21d�
�2
20�2 � 6i��21d �20j j

2��2

þ3i���220�2 � 4i	 �!2��1
��

_�2 ¼
1

8 �!3ð1þ "Þ
�4� �!3�2 � 4"��21d �!3�2



� 4"2��21d �!3�2 þ 3i"��220�
�
2 � 4� �!3"�2

þ 6i��2 �20j j
2�4i �!4�2 þ 4i"2��21d�

2
20�
�
2

þ 4i"	 �!2�1 þ 6i"2��21d�2 �20j j
2þ6i"��21d�2 �20j j

2

þ 4i �!4�1 þ 4i �!2"2	�2 þ 3i��220�
�
2

þ3i"��21d�
2
20�
�
2 þ 6i"��2 �20j j

2
�

_��2 ¼
1

8 �!3ð1þ "Þ
�4� �!2��2 � 4"��21d �!3��2



� 4"2��21d �!3��2 � 6i"2��21d�
�
2 �20j j

2�4� �!3"��2

� 4i"	 �!2��1 � 3i"2��21d�2’
�2
20 � 3i��2�

�2
20

� 3i"��21d�2�
�2
20 � 4i"2	��2 �!2 þ 4i �!4��2

� 6i"��21d �20j j
2��2 � 6i"� �20j j

2��2

�6i� �20j j
2��2 � 3i"� �20j j

2�2
�

ð16Þ

The stars in equation (16) indicate the complex
conjugate of the corresponding parameters. The char-
acteristic polynomial equation of these four coupled
equations is


4 þ �1

3 þ �2


2 þ �3
þ �4 ¼ 0 ð17Þ

The coefficients of equation (17) are presented in
Appendix B. The Hopf bifurcation takes place when
the characteristic polynomial has a pair of pure com-
plex-conjugate roots as 
 ¼ �j�0. In fact, �0 is the
characteristic frequency of the periodic orbits and is
generated from the bifurcation of the fixed points.
Substituting this relation into equation (17) and separ-
ating the real and imaginary parts of the equation gives

�23 � �2�3�1 þ �4�
2
1 ¼ 0 ð18Þ

Equation (18) is the condition of occurrence of the
Hopf bifurcation. Simplifying equation (18) and assum-
ing Z ¼ �20

		 		2, it can be written

v1Z
2 þ v2Zþ v3 ¼ 0 ð19Þ

The coefficients of equation (19) are presented in
Appendix C. Furthermore, equation (19), which
shows the necessary condition of the Hopf bifurcation,
should be applied to equation (13). Eliminating z from
these two-coupled equations ((13) and (19)), the bound-
ary of occurrence of the Hopf bifurcation as a function
of the system parameters can be specified.

3.2. Analysis of occurrence of strongly modulated
responses (SMR)

The fact that the response of the system highly depends
on the initial conditions is one of the important points in
the analysis of the nonlinear systems. The analysis of the
last section are local, hence, they are true only for the
initial conditions which are close enough to the stable
responses. The existence of SMR was analyzed based on
Vakakis et al. (2008). In order to study the strongly
modulated responses of the system, equation (11) is
used. Determining �1 tð Þ and its derivatives in terms of
�2 tð Þ from the second relation of equation (11) and sub-
stituting it into the first relation of equation (11), the
following second order differential equation is obtained

d2�2
dt2
þ
�i"	

2 �!
þ
"��21d þ �þ i �!

2

� �
d�2
dt

�
3i�

8 �!3
ð"�21d þ 1Þ

d

dt
f�2 �2j j

2g

þ
i �!"��21d

4
�
i"	�

4 �!
þ
"	

4

� �
�2
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þ
3"��21d
16 �!2

�
3"	�

16 �!4

� �
�2 �2j j

2�
i �!F�1o"�

2
1d

4
¼ 0 ð20Þ

To solve the above equation, the method of multiple
scales is used. For this purpose, the following time
scales are introduced

�r ¼ "
rt, r ¼ 0, 1, . . . ð21Þ

Thus, the relations between the derivatives of t and the
time scales are

�2 ¼ �2ð�0, �1, . . .Þ,

d

dt
¼

d

d�0
þ "

d

d�1
þ . . . ,

d2

dt2
¼

d2

d�20
þ 2"

d2

d�0d�1
þ . . .

ð22Þ

Substituting equations (22) and (21) into equation (20)
and equating the coefficients of the same power of ", the
following relations are achieved

Oð"0Þ :
@2�2
@�20
þ

i �!þ �

2

� �
@’2
@�0
�

3i�

8 �!3

@

@�0
�2 �2j j

2
� 


¼ 0

Oð"1Þ : 2
@2�2
@�0@�1

þ
i �!þ �

2

� �
@�2
@�1
�

3i�

8 �!3

@

@�1
�2 �2j j

2
� 


þ
��21d
2
�
i	 �!

2

� �
@’2
@�0
�
3i��21d

8

@

@�0
�2 �2j j

2
� 


þ
i �!��21d

2
þ
	

4
�
i	�

4 �!

� �
�2 þ

3��21d
16 �!2

�
3	�

16 �!4

� �
�2 �2j j

2

�
i �!F�1o�

2
1d

4
¼ 0

Oð"2Þ : . . . ð23Þ

The first expression of equation (23) is related to the
fastest time. By integrating this equation, the following
equation is obtained

@�2
@�0
þ

i �!þ �

2

� �
�2 �

3i�

8 �!3
�2 �2j j

2

� �
¼ Eð�1, �2, . . .Þ ð24Þ

In this study, responses that are limited to the time-
scales �0 and �1 are considered. When �0!1, param-
eters in �0 order stay invariant and �2 reaches
an asymptotic equilibrium where �2 ¼ �2ð�1Þ
ð�0!1 : @�2

@�0
¼ 0Þ. Accordingly, the equation (24)

can be written as follow

i �!þ �

2

� �
�2ð�1Þ �

3i�

8 �!3
�2ð�1Þ �2ð�1Þ

		 		2� �
¼ Eð�1Þ ð25Þ

Expressing the complex quantities of equation (25) in
the polar form ð�2ð�1Þ ¼ Nð�1Þe

i�ð�1ÞÞ, and rewriting it,
gives

�Nð�1Þ

2
ei�ð�1Þ þ

�!Nð�1Þ

2
�
3�N3ð�1Þ

8 �!3

� �
iei�ð�1Þ

¼ Eð�1Þ
		 		ei argðEð�1ÞÞ ð26Þ

Using the above equation and assuming Zð�1Þ ¼ N2ð�1Þ,
the following relation is obtained for the magnitude of
the equation terms

�

2

h i2
Zð�1Þ þ

�!

2
�
3�Zð�1Þ

8 �!3

� �2
Zð�1Þ ¼ Eð�1Þ

		 		2 ð27Þ

The relation between angles of the parameters in equa-
tion (26) is derived as

�ð�1Þ ¼ argð Eð�1Þ
		 		Þ þ tan�1

3�Zð�1Þ � 4 �!4

4� �!3

� �
ð28Þ

The number of solutions of equation (27) depends on
the magnitude of �, �, �! and Eð�1Þ

		 		. If equation (27)
has minimum and maximum points, this equation
depending on the magnitude of Eð�1Þ

		 		 has one or
three solutions. In this case, due to change of Eð�1Þ

		 		,
the system can produce the saddle-node bifurcations,
and therefore, the stable and unstable branches occur.
However, if equation (27) has no extremum points, this
equation has one solution. It is important to note that if
the differentiation of homogenous part of equation (27)
has real solutions, the extrema can be obtained as
follows

d

dZ

�

2

h i2
Zð�1Þ þ

�!

2
�
3�Zð�1Þ

8 �!3

� �2
Zð�1Þ

( )

¼ 0) Z1,2 ¼
4 �!3

3�

2

3
�!�

1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�!2 � 3�2
p

� �
ð29Þ

equation (29) indicates that for �5 �!=
ffiffiffi
3
p

(small damp-
ing), the system has a pair of solutions and the saddle-
node bifurcations occur. Also, for �4 �!=

ffiffiffi
3
p

, the
system has one solution and the saddle-node bifurca-
tion does not occur at all (Gendelman, 2004). Figure 2
shows the slow invariant manifold diagram of the
system with parameters: � ¼ 0:5, � ¼ 1 and �! ¼ 1:24.
This concept was used based on Fenichel (2006) and
Savadkoohi et al. (2012). The jump phenomenon,
which is the fast part of the slow-varying response of
the system, the stable and unstable responses and the
saddle-node bifurcations, is shown in Figure 2.

Since, there are two stable regions in the system
response, the jump phenomenon may occur between
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these regions. In order to investigate the occurrence of
jump phenomenon, the system response near the slow
invariant manifold in the time order �1 when �0!1
should be studied. When �0!1, parameters in �0
order stay invariant. However, the time scale �1 is
slower than �0, consequently, these parameters varies
in the order of �1. Assuming �ð�1Þ ¼ lim�0!1 �2ð�0, �1Þ
and considering the above notes, the relation of order "
in equation (23) becomes as the following

i �!þ �

2

� �
@�

@�1
�

3i�

8 �!3

@

@�1
½� �j j2� þ

i �!��21d
2
þ
	

4
�
i	�

4 �!

� �
�

þ
3��21d
16 �!2

�
3	�

16 �!4

� �
� �j j2�

i �!F�1o�
2
1d

4
¼ 0 ð30Þ

Rewriting the above equation gives

i �!þ �

2
�

3i�

4 �!3
�j j2

� �
@�

@�1
�
3i��

8 �!3

@��

@�1
¼ G ,

G ¼
i	�

4 �!
�
i �!��21d

2
�
	

4

� �
�þ

i �!F�1o�
2
1d

4

þ
3	�

16 �!4
�
3��21d
16 �!2

� �
� �j j2 ð31Þ

In order to obtain the expression of @�@�1 which demon-
strates the variations of the slow dynamics of the
system around the slow invariant manifold, equation
(31) and its conjugate are written in a matrix form.
Solving these coupled equations, the following result
can be obtained

@�

@�1
¼

8 �!3½½4� �!3 � 4i �!4 þ 6i� �j j2�Gþ 3i��2G��

16�2 �!6 þ 16 �!8 � 48 �!4� �j j2þ27�2 �j j4
ð32Þ

Assuming � ¼ Nð�1Þe
i�ð�1Þ and substituting it into equa-

tion (32), the following relation is obtained

i �!þ �

2
�

3i�

4!3
0

Nð�1Þ
2

� �

�
@Nð�1Þ

@�1
þ iNð�1Þ

@�ð�1Þ

@�1

� �
ei�ð�1Þ

� �

�
3i�Nð�1Þe

i�ð�1Þ

8!3
0

@Nð�1Þ

@�1
� iNð�1Þ

@�ð�1Þ

@�1

� �
e�i�ð�1Þ

� �

¼
i	�

4 �!
�
i �!��21d

2
�
	

4

� �
Nð�1Þe

i�ð�1Þ

þ
i �!F�1o�

2
1d

4
þ

3	�

16 �!4
�
3��21d
16 �!2

� �
Nð�1Þ

3ei�ð�1Þ ð33Þ

Separating real and imaginary parts of the above equa-
tions, gives two ordinary differential equations and sol-
ving them for @Nð�1Þ@�1

and @�ð�1Þ
@�1

gives

@Nð�1Þ

@�1
¼

2 �!2�41d½4 �!3�Fsinð�ð�1ÞÞþ4 �!4F�1o cosð�ð�1ÞÞ

�3Nð�1Þ
2 cosð�ð�1ÞÞF�1o��4Nð�1Þ �!

4��

( )

½16 �!8þ16�2 �!6þ27�2Nð�1Þ
4
�48 �!4Nð�1Þ

2��

@�ð�1Þ

@�1
¼
�
16 �!8F�1o�

2
1d cosð�ð�1ÞÞ�

�16 �!9F�1o�
2
1d sinð�ð�1ÞÞþ16Nð�1Þ �!

8	

þ27�2	Nð�1Þ
5
�27�2Nð�1Þ

5�21d �!2

�48 �!4	�Nð�1Þ
3
þ16	�2Nð�1Þ �!

6

�16 �!8�2Nð�1Þ�
2
1dþ12�Nð�1Þ

3�21d �!6

þ36 �!5F�1o�
2
1d sinð�ð�1ÞÞ�Nð�1Þ

2



=½2 �!Nð�1Þ½16 �!8þ16�2 �!6

þ27�2Nð�1Þ
4
�48 �!4Nð�1Þ

2��� ð34Þ

Figure 2. The slow invariant manifold diagram of the system with � ¼ 0:5, � ¼ 1 and �! ¼ 1:24; the jump phenomena and the

saddle-node bifurcations.
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The possibility of occurrence of the SMR can be inves-
tigated using phase plane plots of equation (34). This
coupled equations give wealthy information about
dynamics of the system at slow time scale.
Equilibrium points are those which give numerators¼ 0
but denominator 6¼ 0. Fold singularities which can pro-
vide SMR are those which satisfy numerators¼ 0 and
denominator¼ 0. In addition, denominator¼ 0 pro-
vides fold lines of the system (Lamarque et al., 2011;
Gendelman, 2008). It is obvious that, the amplitude of
the system with damping and without external excita-
tion, approaches to zero. However, the necessary con-
dition for occurrence of the SMR is a jump
phenomenon from low to high amplitudes of the
stable slow invariant manifold that has been demon-
strated in Figure 2. The jump phenomenon occurs
when the saddle-node bifurcation takes place in the
Nð�1Þ � �ð�1Þ phase space at the low critical amplitudes
(i.e. as shown in Figure 8), which is equivalent to points
SN1 in Figure 2. It means that the direction of the
dynamic flows in the lower branch is upward which is
in contrast to the standard case (the behavior of the
system with damping and without external excitation).
In order to evaluate the amplitude of the external exci-
tation by which the saddle-node bifurcation occurs, the
numerator of equation (32) should be equal to zero
(Manevitch, 2001; Lee et al., 2007)

1

128!7
0

16i� �!8F�1o�
2
1d þ 12i �!6�� �j j2�21d

�
� 48I �!4	�� �j j2�16 �!9���21d þ 16i�2 �!6	�

þ 16 �!9F�1o�
2
1d � 16i�2!8

0��
2
1d � 27i�2 �j j4

���21d �!2 þ 16i �!8	�� 27� �j j2F�1o�
2
1d �!5

þ27i�2 �j j4	�þ 12��2F�1o�
2
1d �!5



¼ 0 ð35Þ

Assuming � ¼ Nð�1Þe
i�ð�1Þ and substituting it into

equation (35) and separating the real and imaginary
parts of the equation, gives

1

128 �!7
16 sinð�ð�ÞÞ� �!8F�1o�

2
1d

�
� 16 �!9�Nð�Þ��21d þ 16 cosð�ð�ÞÞ �!9F�1o�

2
1d

�12 cosð�ð�ÞÞ�Nð�Þ2F�1o�
2
1d �!5



¼ 0

1

128 �!7
16 cosð�ð�ÞÞ� �!8F�1o�

2
1d

�
þ 12 �!6�Nð�Þ3�21d

� 48 �!4	�Nð�Þ3 þ 16�2 �!6	Nð�Þ

� 16 sinð�ð�ÞÞF �!9�1o�
2
1d � 16�2 �!8Nð�Þ�21d

� 27�2Nð�Þ5�21d �!2 þ 16 �!8Nð�Þ

þ 36 sinð�ð�ÞÞ�Nð�Þ2F�1o�
2
1d �!5

þ27�2Nð�Þ5	


¼ 0 ð36Þ

By solving the above equation for cosð�ð�ÞÞ and
sinð�ð�ÞÞ (Lamarque et al., 2011), gives

cosð�ð�ÞÞ ¼
ð�21d �!2 � 	ÞNð�Þ�

�21d �!2F�1o
,

sinð�ð�ÞÞ ¼

Nð�Þ
4 �!4	 � 3N2ð�Þ�	

þ 3N2ð�Þ��21d �!2

 !

4�21d �!5F�1o

ð37Þ

Letting 	 ¼ 0 in equation (37) gives

cosð�ð�ÞÞ ¼
Nð�Þ�

F�1o
, sinð�ð�ÞÞ ¼

3N3ð�Þ�

4 �!3F�1o
ð38Þ

Finally, employing mathematical manipulations, the
angle of occurrence of the saddle node bifurcation
ð�1,2Þ is obtained

�1,2 ¼ sin�1
ð�=�1oÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
3Nð�Þ2�
4�1o �!3 � 1Þ2 þ ð�=�1oÞ

2
q

0
B@

1
CA

� cos�1
ð�Nð�Þ�=F�1oÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
3Nð�Þ2�
4�1o �!3 � 1Þ2 þ ð�=�1oÞ

2
q

0
B@

1
CA

ð39Þ

Substituting the magnitude of the critical amplitudes
N1 and N2 from equation (29) into equation (39),
gives the angles for which the saddle-node bifurca-
tions occur in the low and high amplitudes, respect-
ively. Using equation (39) and considering absolute
value of the argument of cos�1 equal to one, the
critical amplitude of the external excitation for
occurrence of the saddle-node bifurcations is
obtained as

Fcritical ½i� ¼
ðNi�=�1oÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3N2
i �

4�1o �!3 � 1
� �2

þð�=�1oÞ
2

r ð40Þ

When the external excitation is greater than the ampli-
tude of external excitation related to the first critical
amplitude Fcritical ½1�, the saddle-node bifurcation
occurs in the lower critical amplitude (i.e. as shown in
Figure 8). Also, when the external excitation is greater
than the amplitude of the excitation related to the
second critical amplitude Fcritical ½2�, the saddle-node
bifurcation occurs in the upper critical amplitude (i.e.
as shown in Figure 13). Accordingly, for occurrence of
the SMR, the magnitude of the external excitation
should be greater than the first critical amplitude
(F4Fcritical ½1�).
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To ensure the occurrence of SMR behavior in the
system, a map is assumed, which shows that whether
dynamic flow that starts from a point with lower critical
amplitude ðN1Þ and angle between �1 and �2, after pas-
sing through two fast parts of the slow-varying
responses (jumps) and two slow parts of the slow-vary-
ing response, finally returns to this region or not (these
four parts of motion can be seen in the closed loop in
the Figures 2 and 10) (Vakakis et al., 2008). This is
achieved by examining the dynamic flow angle ð�ð�1ÞÞ
over time. If the dynamic flow returns to the primary
region, surely the SMR has been occurred in the system
(e.g. as shown in Figures 9 and 10). In other words, it is
the sufficient condition for existence of the SMR behav-
ior. These figures nominate a sustained jumping map.
Since, occurrence of the jump phenomenon is very fast,
it can be assumed that the total energy of the system
( Cð�1Þ
		 		) in equation (27) is constant. Accordingly, as it
can be seen in Figure 2, when system jumps from a
point with amplitude N1 to a point with amplitude
Nu, by some mathematical manipulations, the ampli-
tude of jump end point ðNuÞ is obtained as

Nu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 �!3

9�
�!þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�!2 � 3�2
ph is

ð41Þ

The magnitude of amplitude Nd is obtained, simi-
larly, by letting the energy of the point with this amp-
litude and the point with amplitude N2 be equal to each
other

Nd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 �!3

9�
�!�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�!2 � 3�2
ph is

ð42Þ

In order to determine the change of angle in each jump,
equation (25) is used. In this relation Cð�1Þ is a con-
stant. Substituting ’2ð�1Þ ¼ Nð�1Þe

i�ð�1Þ into equation
(25) and some mathematical manipulations, one has

�u ¼ �1 þ tan�1
72

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�!2 � 3�2
p

�

393�2 þ 41 �!2 þ 104 �!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�!2 � 3�2
p

 !

ð43Þ

Similarly, the change of angle between two points with
amplitudes N2 and Nd is obtained

�d ¼ �2 � tan�1
72�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�!2 � 3�2
p

393�2 þ 41 �!2 � 104 �!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�!2 � 3�2
p

 !

ð44Þ

4. Numerical solution

The coupled equations of motion of the rotating beam
and NES (equation (5)) are transformed to the state
space. These first-order outcome equations are numer-
ically solved using the Rung Kutta method.

5. Numerical example

In this section, numerical examples are presented. For
this purpose, the following parameters are used:
ri ¼ 0:5m, ro ¼ 1:5m, l ¼ 1 m, A ¼ 25 cm2 and,
� ¼ 25 00 kg=m3. By assuming that the intake fan in
turbine has three blades, the frequency of the external
force �! is three times of the angular velocity of the
rotating beam, ��. The resonance occurs when the
first natural frequency of the rotating beam
ð!1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k011=m

0
11

p
Þ is equal to the angular frequency of

the external force �!. According to the aforementioned
values of parameters, this resonance occurs at �! ¼ 1:24.
It is worth mentioning that for the above-mentioned
parameters, the first, second and third natural frequen-
cies are 3.72, 22.37 and 62.05, respectively, and the exci-
tation frequency is 1.24. Therefore, the coupled system
of the beam and NES can be considered as a two
degrees of freedom system, which includes the first
(and the most important) mode of the rotating beam
and the NES. In order to obtain the optimal parameters
of the NES, existence of the saddle-node bifurcation,
Hopf bifurcation, and the amplitude of the external
force for occurrence of a strongly modulated response
in the parameter space of �, F and d, which are the non-
dimensional damping of the NES, non-dimensional
amplitude of the external force and non-dimensional
distance of the NES position from the root of the rotat-
ing beam, respectively, are studied.

Figure 3 shows existence of the saddle-node bifurca-
tion in the parameter space of �, F and d, for 	 ¼ 1. It
can be seen that for 05 d5 0:52, the saddle-node
bifurcation would occur. Therefore, for 	 ¼ 1, if the
NES position is at the rotating beam tip, the saddle-
node bifurcation does not occur. Moreover, by increas-
ing d, the amplitudes of the external force in which the
saddle-node bifurcation happens, are decreased. Also,
if the NES position is at the rotating beam root, in a
wider range of the NES damping, the saddle-node
bifurcation occurs. It is shown that the occurrence of
saddle-node bifurcation is dependent on the detuning
parameter ð	Þ. For example, for 	 ¼ �3, the saddle-
node bifurcation occurs for the entire length of the
rotating beam ð05 d5 1Þ.

Figure 4 depicts the occurrence of the Hopf bifurca-
tion in the parameter space of �, F and d, for 	 ¼ 1. It
can be seen that the Hopf bifurcation takes place for
the entire length of the rotating beam ð05 d5 1Þ. In
addition, in this case, similar to the saddle-node
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bifurcation, by increasing d, the amplitudes of the
external force in which the Hopf bifurcation happens,
are decreased. It is shown that unlike the saddle-node
bifurcation, dependency of the existence of the Hopf
bifurcation to the detuning parameter ð	Þ is small.

In Figure 5, the critical amplitude of the external
force for occurrence of the SMR in the parameter
space is plotted. Unlike the conditions of occurrence
of Hopf and saddle bifurcations, the amplitudes of
the external force for existence of the SMR behavior
are increased by increasing the distance of the absorber
position from the base of the rotating beam. As it can
be seen, by changing the absorber position, the range of
damping in which the SMR occurs, would be invariant.
This range would be 05�5 �!=

ffiffiffi
3
p

and can be
obtained from equation (29).

The above results demonstrate that the dynamic
behavior of the coupled system of NES and rotating

beam is strongly dependent on the position of the
NES on the rotating beam ðd Þ. Therefore, in order to
investigate optimal parameters of the NES, four sec-
tions of the rotating beam for connecting the NES to
a rotating beam are examined. These sections are
selected as d ¼ 0:3, d ¼ 0:5, d ¼ 0:86 and d ¼ 0:99.
For this purpose, firstly the existence of the Hopf and
saddle-node bifurcations and the amplitudes of the
external force for occurrence of the SMR in the F-�
space are investigated in these sections (Gendelman
et al., 2008). Then, for the parameters at which afore-
mentioned bifurcations occur, the amplitude versus
detuning parameter (frequency response curve) is illu-
strated, and the range of the occurrence of the SMR in
the detuning parameter region is considered (Vakakis
et al., 2008).

The first attachment position of the NES to the
rotating beam, at which the dynamic behavior of the

Figure 3. The existence of saddle-node bifurcation in the parameter space of �, F and d for 	 ¼ 1.

Figure 4. The existence of Hopf bifurcation in the parameter space of �, F and d for 	 ¼ 1.
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system is investigated, is at the end of the rotating
beam. In this case, spatial parameters of the system
are d ¼ 0:99, �1o ¼ 1:013, �1d ¼ 1:972 for 	 ¼ 1.
Figure 6 represents the Hopf and saddle-node bifurca-
tions and the amplitudes of the external force for occur-
rence of the SMR in the F-� space for this section. As it
can be seen, the saddle-node bifurcation does not occur
for 	 ¼ 1 at this section. The coupled rotating beam-
NES system has a different dynamical behavior,
depending on the parameters of the system located at
each zone of the F-� space. Therefore, the dynamical
behavior of the system in four points of the F-� space
are investigated accurately. The numbers of these
points in Figure 6 are selected 4, 5, 6 and 7. The
phase plane of the slow motion and the sustained

jumping map of the system, for the parameters relevant
to these points are investigated.

In Figure 7, the phase plane of the slow motion for
d ¼ 0:99, 	 ¼ 1, F ¼ 0:5 and � ¼ 0:5 is illustrated.
These parameters are relevant to point 4 in Figure 6.
It is shown that all trajectories in this figure approach
to a node. Since, this figure relates to the slow motion
dynamic, the node in this figure demonstrates a periodic
motion of the system in the real time (according to
equation (10)). The amplitude of the external force cor-
responding to point 4 in Figure 6 is smaller than the
amplitude of the external force for the occurrence of the
SMR. Therefore, the system has periodic behavior and
the SMR will not occur. It is shown that, the numerical
results have a good consistency with the analytical ones

Figure 5. The amplitudes of the external force for occurrence of the SMR in the parameter space of �, F and d.

Figure 6. The existence of the Hopf and saddle bifurcations and the amplitudes of the external force for occurrence of the SMR in

the F � � space for 	 ¼ 1 and d ¼ 0:99.
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and the system is attracted to a periodic motion for any
arbitrary initial condition and the SMR and WMR for
all values of ð	Þ would not occur.

The phase portrait of the slow motion for d ¼ 0:99,
	 ¼ 1, F ¼ 1 and � ¼ 0:5 is shown in Figure 8. These
parameters are related to point 5 in Figure 6. It can be
seen in Figure 8, since the bifurcations exist in the lower
critical amplitude ðN1Þ, a jump from the lower ampli-
tude to an upper amplitude takes place. This phenom-
enon is a probable reason of the SMR. To ensure the
occurrence of SMR, the sustained jumping map is
plotted in Figure 9. In this figure, the end angle of the
dynamic flow is obtained after thousand oscillations,
(each oscillation includes two jumps and two slow
parts of the slow-varying response). As it can be seen,
all trajectory angles approach to a unit angle
ð� ¼ 0:2 radianÞ. This result shows that the SMR
occurs in the system. The trajectory of the system in
the slow motion is demonstrated in Figure 10. All tra-
jectories approach a closed loop, which is a demonstra-
tor of the SMR in this space.

In Figure 11, the frequency response curves of the
system are plotted for aforementioned parameters. As it
can be seen, the saddle-node and hopf bifurcations
occur in this case. Also, for some values of 	, there
are three types of responses. It should be noted that
for �4:45 	5 12:1 and �4:475 	5 2:64, the SMR
and the WMR (Hopf bifurcation) occur, respectively.
For 65 	5 11, the high amplitude periodic motion
exists. It is seen that for 	 ¼ 8, three different solutions
take place as the high amplitude periodic motion, low
amplitude periodic motion and SMR. The numerical
results demonstrate that only the low amplitude peri-
odic motion occur for 	 ¼ 8. Also, for 	 ¼ �2, based
on this analytical results, two different responses exist
as the WMR and the SMR. But the numerical results
illustrate that only the SMR exists for 	 ¼ �2. In this
case, due to the existence of the SMR, the dynamic
behavior of the system does not approach to the
WMR. The temporal response of the system with an
arbitrary initial condition for the above-mentioned
parameters is shown in Figure 12 to demonstrate that

Figure 7. The phase plane of the slow motion of the system for d ¼ 0:99, 	 ¼ 1, F ¼ 0:5 and � ¼ 0:5 (point 4 in Figure 6).

Figure 8. The phase plane of slow motion of the system for d ¼ 0:99, 	 ¼ 1, F ¼ 1 and � ¼ 0:5 (point 5 in Figure 6).
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Figure 9. The sustained jumping map for d ¼ 0:99, 	 ¼ 1, F ¼ 1 and � ¼ 0:5 (point 5 in Figure 6).

Figure 10. The trajectory of the slow motion of the system in the phase plane for d ¼ 0:99, 	 ¼ 1, F ¼ 1 and � ¼ 0:5 (point 5 in

Figure 6.

Figure 11. The Frequency response curves of the system for d ¼ 0:99, � ¼ 0:5 and F ¼ 1 (point 5 in Figure 6).
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the system has SMR in the time domain. Additionally,
the temporal response of the system with two and three
first Galerkin modes are depicted in this figure. It is
obvious that the steady state response of the system
with the first one, two or three Galerkin modes are
equal to each other. Indeed, this figure proves that
the higher number of Galerkin modes are effective
only for the transient behavior. Therefore, as it was
mentioned before, since the system is excited with a
periodic force, and the steady state dynamic of the
system is examined, the single-mode Galerkin approxi-
mation is sufficient.

The dynamical behavior of the system at point 6 is
similar to the one at point 5, and as a result, the SMR
occurs in this case. In addition, at point 7, the behavior
of the system is similar to points 5 and 6. The only
difference between the dynamical behaviors at point 7
with points 5 and 6 is the existence of the node in the

slow motion phase plane for high amplitude region.
The phase portrait of the slow motion of the system
for parameters of point 7 is demonstrated in Figure 13.

In Figure 14, the frequency response curves of the
system for point 6 are illustrated. For �10:35 	5 16:3
and �10:285 	5 8:45, the SMR and WMR occur,
respectively. In Figure 15, the frequency response
curves of the system for point 7 is illustrated. The
range of existence of the SMR is �14:55 	5 2:5 in
this condition. Also, The range of existence of the
WMR is �14:115 	5 � 5:35 and 10:355 	5 12:1.

The next choice of the position of the NES is at
d ¼ 0:86. In this case, spatial parameters of the
system are d ¼ 0:86, �1o ¼ 1:238 and �1d ¼ 1:614. It
should be noted that in this case 	 ¼ 1 is considered.
Figure 16 represents the existence of the Hopf and
saddle-node bifurcations and the amplitudes of the
external force for the occurrence of SMR in the F� �

Figure 12. Time response of the system (occurrence of the SMR) for d ¼ 0:99, � ¼ 0:5 and F ¼ 1 (point 5 in Figure 6) and 	 ¼ �2.

Figure 13. The Phase plane of slow motion of the system for d ¼ 0:99, 	 ¼ 1, F ¼ 2 and � ¼ 0:5 (point 7 in Figure 6).
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space. It can be seen that, the saddle node bifurcation
does not occur. Furthermore, the dynamic behavior of
the system at points 0, 1, 2 and 3 of Figure 16 are
investigated.

As discussed in the preceding case, system with par-
ameters of point 0 in Figure 16 has a periodic motion.
Figure 17 shows the phase plane of the slow motion of
the system corresponding to point 1 in Figure 16. Since
in this condition the parameters of the system are
located outside and lower than the Hopf bifurcation
area, the node exists in the lower amplitude. In add-
ition, there is a possibility of occurrence of the SMR.
The sustained jumping map is investigated and cer-
tainty of the occurrence of SMR is approved. In
Figure 18, frequency response curves of the system

are depicted. The range of existence of the SMR and
WMR are �3:35 	5 2:3 and �3:255 	5 0:38,
respectively. It can be seen that for 	 ¼ 1, the low amp-
litude periodic motion and SMR exist in the system.
Figure 19 shows dependency of types of the system
response to various initial conditions within
�15 q01, _q01, �u5 1 and _�u ¼ 0. It is shown that both
types of motions occur. Of course, in most cases, in
the range of the above-mentioned initial conditions,
the SMR occurs. It is clear that for the lower values
of initial conditions, the SMR will be less likely to
occur.

The dynamical behavior of the system at point 2 is
identical to those of point 1 and the SMR happens. The
only difference between the dynamical behaviors at

Figure 14. The Frequency response curves of the system for d ¼ 0:99, � ¼ 0:5 and F ¼ 1:75 (point 6 in Figure 6).

Figure 15. The Frequency response curves of the system for d ¼ 0:99, � ¼ 0:5 and F ¼ 2:3 (point 7 in Figure 6).
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Figure 16. The occurrence of Hopf and saddle-node bifurcations, and the amplitudes of the external force for occurrence of the

SMR in the F � � space for 	 ¼ 1 and d ¼ 0:86.

Figure 17. The phase plane of slow motion of the system for d ¼ 0:86, 	 ¼ 1, F ¼ 0:5 and � ¼ 0:3 (point 1 in Figure 16).

Figure 18. The frequency response curves of the system for d ¼ 0:86, � ¼ 0:3 and F ¼ 0:5 (point 1 in Figure 16).
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point 2 and point 1 is the existence of node in the slow
motion phase plane. Since at point 2, the parameters of
the system are located inside the Hopf bifurcation area,
the node does not exist in the slow motion phase plane.
The range of existence of the SMR and WMR are
�6:25 	5 5:7 and �7:695 	5 3:7, respectively.
Also, for the parameters of point 3, the SMR occurs
and the node exists in the high amplitude region of the
slow motion phase plane.

The next section for the NES position is d ¼ 0:5. In
this case, spatial parameters of the system are d ¼ 0:5,
�1o ¼ 2:945, �1d ¼ 0:679 for 	 ¼ 1. Figure 20 shows the
occurrence of hopf and saddle node bifurcations and
the amplitudes of the external force for occurrence of
SMR in the F� � space. It can be seen, unlike the
previous cases, the saddle node bifurcation in this

condition occurs for 	 ¼ 1. In this case, for points 8,
9, 10, 11 and 12 the dynamic behavior of the system is
studied which is shown in Figure 20.

As previously discussed, the system with parameters
of point 8 in Figure 20 has a periodic motion. The
numerical results demonstrate that in comparison
with the previous case, the transient response has a
longer time. By studying the phase plane of the slow
motion of the system related to point 9, it is clear that
there is a possibility of occurrence of SMR. The sus-
tained jumping map shows that the SMR does not
occur. In Figure 21, the trajectory of the slow motion
of the system in the phase plane is plotted. As it can be
seen, the dynamic of the system after several motions in
the closed orbit (demonstrating the SMR) is absorbed
to the low amplitude node (demonstrating the low

Figure 19. Dependency of the system response to initial conditions within �15 q01, _q01, �u5 1 and _�u ¼ 0 for d ¼ 0:86, � ¼ 0:3 and

F ¼ 0:5 (point 1 in Figure 16) and 	 ¼ 1.

Figure 20. The existence of the Hopf and saddle-node bifurcations and the amplitudes of the external force for occurrence of the

SMR in the F � � space for 	 ¼ 1 and d ¼ 0:5.
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amplitude periodic motion). For �0:35 	5 0:9 and
�0:335 	5 0:1, the SMR and WMR occur,
respectively.

Figure 22 shows the phase plane of the slow motion
of the system related to point 10 in Figure 20. Since the
parameters of system are located inside of the saddle
node bifurcation area, two nodes exist in the lower and
higher amplitudes, in the slow motion phase plane.
Also, there is a possibility of the occurrence of SMR.
The sustained jumping map is calculated and the occur-
rence of SMR is confirmed. The range of occurrence of
the SMR and WMR in this situation are
�1:15 	5 2:1 and �1:2155 	5 0:98, respectively.
The dynamical behavior of the system in point 11 is
identical to that of point 10, and therefore, the SMR
occurs. The main difference between the dynamical
behaviors in points 11 and 10 is that one of two
nodes in the slow motion phase plane is disappeared.
Also, for the parameters of point 12, the SMR occurs

and the node in the slow motion phase plane exists in
the higher amplitude region.

The last section for the NES position is d ¼ 0:3,
which is close to the roots of the beam. In this case,
spatial parameters of the system are d ¼ 0:3,
�1o ¼ 7:327, �1d ¼ 0:273 for 	 ¼ 1. Figure 23 depicts
the occurrence of hopf and saddle-node bifurcations
and amplitudes of the external force for occurrence of
the SMR in the F-� space. Also, the dynamic behavior
of the system is evaluated for parameters of the points
13, 14, 15, 16 and 17 in Figure 23.

The system with parameters of point 13 in Figure 23
has a periodic motion. In Figure 24, the trajectory of
the slow motion of the system in the phase plane for
parameters of point 14 is demonstrated. It can be seen,
the system is attracted slowly to the low amplitude
node. This is the sign of the longer transient response
in this case. It can be explained that when the absorber
is connected to the root side of the rotating beam, the

Figure 21. The trajectory of the slow motion in the phase plane for d ¼ 0:5, 	 ¼ 1, F ¼ 0:3 and � ¼ 0:5 (point 9 in Figure 20).

Figure 22. The Phase plane of slow motion for d ¼ 0:5, 	 ¼ 1, F ¼ 0:6 and � ¼ 0:5 (point 10 in Figure 20).
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vibration amplitude of the rotating beam is smaller at
this position and as a result, absorber needs a longer
time to transfer the system toward the desired motion
regime. The range of the occurrence of the SMR and
the WMR are 0:055 	5 0:15 and �0:4155 	5 0:04,
respectively.

The range of existence of the SMR and WMR for
parameters of point 15 are 0:055 	5 0:15 and
�1:125 	5 0:19, respectively. The SMR for param-
eters of the points 16 and 17 does not occur, at all. It
can be seen, the SMR as a sign of the absorber per-
formance, is limited and often does not occur at all in
this NES position.

Finally, efficiency of the optimal NES (correspond-
ing to point 6 in Figure 6 parameters) is compared with
the optimal linear absorber. The parameters related to

point 6 (in Figure 6) and around it, are selected as the
optimal parameters for the NES, because in this point,
the range of occurrence of the SMR in the frequency
response curve is the greatest (�10:35 	5 16:3) in
compare to other points parameters of the system.
The optimal linear absorber parameters are derived
from Den Hartog relation (1985). To compare these
two cases, the absorbers mass and damping have the
same magnitude. The absorbers stiffnesses are obtained
according to the tuning of the parameters for the opti-
mal absorbers. In addition, the amplitude and the
angular frequency of the external forces for two cases
have the same magnitude.

To compare the efficiency of the linear absorber and
the NES in the vibration mitigation of the rotating
beam, the variance of the displacement of the rotating

Figure 23. The existence of the Hopf and saddle-node bifurcations and the amplitudes of the external force for the occurrence of

the SMR in the F � � space for 	 ¼ 1 and d ¼ 0:3.

Figure 24. The trajectory of the slow motion of the system in the phase plane for d ¼ 0:3, 	 ¼ 1, F ¼ 0:1 and � ¼ 0:1 (point 14 in

Figure 23).
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beam for different values of external force angular fre-
quency, around resonance frequency is calculated.

Figure 25 shows the variance of the displacement of
the rotating beam without any absorber, with attached
optimal NES (one, two and three first Galerkin modes
of the beam), and the attached optimal linear absorber
under external force with different angular frequency
ð!Þ. Obviously, the steady state responses of the beam
with attached NES are the same when considering one,
two or three first Galerkin modes. As it can be seen, the
linear optimal absorber right on and near the resonance
frequency is more efficient than the NES. It can be seen,
according to the classical properties of the linear absor-
bers, the resonance frequency of the system is divided
into two frequencies around itself. At these frequencies,
the rotating beam has a large amplitude that is an
improper property of the linear absorbers. Right on
and near the resonance frequency, the response of the
rotating beam with the NES is non-smooth. The ana-
lytical solution demonstrates that in this region the
system behavior is the SMR. Outside this region, the
response of the rotating beam with the NES is smooth.
The reason for this phenomenon is that the SMR does
not occur and the system is attracted to a low amplitude
periodic motion in this region.

In general, one can say that the optimal linear absor-
ber is more efficient than the NES, right on and near the
resonant frequency. However, in a large frequency
range around the resonance frequency, the NES is
more appropriate than the optimal linear absorber.
When a system has a variable natural frequency or is
under a variable external excitation frequency, this
characteristic of the NES is significant. For example,
a turbine blades may have a variant natural frequency

due to erosion over time, lack of precision in manufac-
turing process, etc.

6. Conclusions

In this paper, the performance of a smooth NES to
mitigate vibration of a rotating beam under external
force is investigated. The rotating beam is modeled
using the Euler-Bernoulli beam theory and the effect
of centrifugal stiffening is considered. It is assumed
that the nonlinear energy sink has a linear damping
and an essentially nonlinear (nonlinearizable or cubic)
stiffness. The conditions of occurrence of the Hopf
bifurcation, saddle-node bifurcation and the SMR are
investigated. The influences of position and the damp-
ing of the NES and the magnitude of external force on
the vibration mitigation of the rotating beam are stu-
died. The most important results of this paper can be
represented as:

. The range of the parameters in which the SMR and
the WMR occur simultaneously is the best status for
attenuating purposes. In this case, the system
dynamic behavior is usually attracted to the SMR
that is a desirable dynamic regime.

. Also, the range of the parameters in which low amp-
litude periodic motion, high amplitude periodic
motion, and SMR occur simultaneously is desirable,
if this range is close to the occurrence range of SMR
and WMR, simultaneously. In addition, in this con-
dition, system is usually attracted to the SMR.

. Generally, for various NES positions, the SMR
occurs in the middle range of the external force amp-
litude. Also, for different NES positions, the range of

Figure 25. Thevariance of the displacement of the rotating beam without any absorber, with the optimal NES (with one, two and

three first Galerkin modes of the beam), and the optimal linear absorber attached to the end of the beam ðd ¼ 0:99Þ.
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magnitude of external force for occurrence of the
SMR is different. This is one of the advantages of
using NES in compare to the linear absorbers as the
vibration absorber for the rotating beam.

. In general, we can say that the optimal linear absor-
ber is more efficient than the NES, right on and near
the resonant frequency. However, in the large fre-
quency range around the resonance frequency, the
NES is more appropriate.

. Occurrence of the saddle-node bifurcation has not
definitive effects on the desirable behavior of the
system.

. In addition, generally the appropriate range of the
detuning parameter 	 is negative.

. The best position of the NES is at the beam tip.
When the NES position is near the root, with the
best parameters of that section, the range of occur-
rence of SMR in the frequency response curve is
smaller and transient response has a longer time.
However, when the NES is attached to the outer
section of the rotating beam, the range of occurrence
of the SMR in the frequency response curve is
greater and transient response has a shorter time.
Based on these facts, the best range of the NES par-
ameters for efficient vibration attenuation corres-
ponds to point 6 in Figure 6.
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Appendix D (notation)

d The distance of the NES position
from the root of the rotating
beam

m, C, l The mass, nonlinearizable
(cubic) stiffness and damping of
the NES, respectively

q1ð �tÞ The displacement of the first
mode of the rotating beam

q01ð �tÞ The displacement of the first
mode of the rotating beam at
the NES position

ri, ro The inner and outer radiuses of
the rotating beam

uðtÞ, vðr, tÞ The displacement of NES and
rotating beam, respectively

vðtÞ The displacement of the center
of mass of the beam and the
NES

wðtÞ The NES displacement relative
to the beam

F, ! The amplitude and the angular
frequency of the external force

Nð�1Þ � �ð�1Þ The amplitude and phase of the
slow motion of the NES displa-
cement relative to the beam,
respectively

Oð"Þ Order of magnitude of "
�1ðtÞ, �2ðtÞ The small complex quantities of

perturbation around the equili-
brium point ’10 and ’20,
respectively

" Small parameter
�j ð�rÞ The linear mode shapes of the

rotating beam
�k tð Þ, k ¼ 1, 2 slow-varying, complex-valued

amplitude modulations
�, A, l The mass density, cross sectional

area and length of the rotating
beam

	 The detuning parameter

�r ¼ "
rt, r ¼ 0, 1, . . . , The time scales

!1 The first natural frequency of
the rotating beam

� The angular velocity of the
rotating beam
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