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Abstract—1In this paper, a node-base susceptible-infected-
recovered-susceptible (SIRS) model on heterogeneous networks
is proposed. The condition for global exponential stability of
the origin in the disease-free case is obtained via Lyapunov
theory. Furthermore, aiming at regulating the probabilities of
being infected and recovered to desired values, the controlled
recovering rates are designed. Taking practical implementation
into consideration, an alternative approach is provided to
calculate the feasible control inputs. Finally, several numerical
simulations validate our results.

I. INTRODUCTION

The whole world is getting more connected than ever
before in human history as a result of technological progress.
Networks which facilitate this connectivity have become
ubiquitous in our daily life. Among all kinds of networks,
no matter whether the components are biological cells, com-
puters, vehicles or human beings, information diffusion on
networks plays an important role. Thus information diffusion
has drawn a lot of attention in recent years [1]-[3].

To describe the diffusion of information, innovation or
influence on networks, a multitude of mathematical models
have been reported. Generally, they can be classified into
macroscopic and microscopic models. Macroscopic models
mostly focus on the phenomena of diffusion on a large scale,
e.g. the proportion of people who are infected with certain
disease or the amount of computers which are attacked by
viruses. The typical epidemic models are essential among all
macroscopic models, among which SI model is fundamental.
By labelling persons as susceptible (S) and infected (I),
differential equations can be utilized to model the process
of a person turning from state S to state I because of the
influence of other characters in state I. Extensions of the SI
model, such as SIS and SIR models are also fully studied
[4], [5], especially on the existence of non-zero threshold,
e.g. the work in [6] on small-world network.

In contrast to macroscopic models, microscopic models
are mainly node-based. They concentrate on the states of
every individual in the whole network, e.g. the possibility
of an individual adopting certain innovation. The Linear
threshold (LT) model [7] describes the way in which a
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person updates his decision, i.e. once the weighted sum
of her activated neighbors reaches her own threshold, she
takes the strategy then. In spite of successful influence of
neighbors, the independent cascade model (ICM) is proposed
in [8], by introducing the propagation possibility. Apart from
that, epidemic models can also be applied microscopically,
for instance by taking the probabilities of an individual
being susceptible and infected as the state variables. The so-
called N-intertwined SIS model has been well studied. The
remarkable property that there exists an epidemic threshold
is given in [9] and the stability of the equilibria in metastable
states is proved in [10]. However, no results on node-based
SIRS model are reported, which motivates our work in
this paper. With the proposed node-based SIRS model, the
recovered state is introduced so that the situation of an
individual in a network can be more precisely described.
From practical point of view, the intermediate state between
active and inactive, e.g. ignorance of political propagation,
traffic radio news and advertisements of certain product in a
period of time, can be modelled as the recovered state, which
cannot be covered by existed models.

Another motivation of this paper is the heterogeneity of
networks. Generally, a feature of heterogeneous network
is the numbers of contacted individuals (neighbors) are
heterogeneously distributed. This is the common phenomena
in biological, social and transportation networks. Traditional
studies, however, focus on homogeneous networks. Kephart
and White [11], who are among the earliest researchers,
built a SIS model on Erdds-Rényi random graph and all
nodes are assumed to have the same degree. Recently, the
study of heterogeneous networks receives more attention.
In [12], the SI model is applied to campaigning in which
not only the different degrees of inspected nodes but also
the degrees of the neighbors are considered. In our paper,
another part of heterogeneity is taken into consideration.
We assume the transition rates of different nodes to be
heterogeneous. The heterogeneity that the rates differ for
different individuals is a shared feature of real systems.
For instance, in social networks, a population often contains
a mix of men and women, weak and strong, or outgoing
and introverted. This diversity of persons ends up in the
heterogeneity of the network. Further examples can also
be found in other networks such as data communication
networks or transportation networks.

The rest of the paper is organized as follows. Section
Il contains, as the preliminaries, the detailed introduction
of networks, graph theory and the SIRS model. The node-
based SIRS model is established in Section III. Equilibria and



stability analysis along with control design are presented in
Section IV, which are the main results of this paper. Numer-
ical studies are given in Section V. Finally, we conclude this
paper in Section VI

II. PRELIMINARIES
A. Networks and Graph Theory

A network, which is the fundamental medium of infor-
mation diffusion, is usually described mathematically by a
graph whose nodes (vertices) and links (edges) represent
the elements of the system and the relations or interactions
among them, respectively [13]. Accordingly, the structure of
human networks, e.g. social networks, can also be modeled
as graphs, where individuals are represented by vertices and
the communication is shown by edges. For convenience,
the words nodes, vertices, players and agents are used
interchangeably in this paper.

Let our problem be described by an undirected connected
graph G(V,E) with N nodes, where )V and £ are the sets
of nodes and edges, respectively. This yields a symmetric
weighted adjacency matrix W of the graph G. For each entry
w;; in W, the following properties hold: a) w;; € {0, 1}, b)
wi; = 0,4 # 7 if and only if agent ¢ and agent j are not
connected and ¢) w;; = 0. The neighborhood N of node v;
is defined as the set of nodes which are connected to it, i.e.

N(v;) = {vj : w; =1,v; € V}.

Since only the connected nodes are assumed to (be able to)
influence each other directly, N (v;) is of great importance
in this paper. Apart from that, A/(v;) is not an empty set for
each v; because only connected graphs are considered.

B. The SIRS Model

The Susceptible-infected-recovered-susceptible (SIRS)
model, which is an extension of classic SIS and SIR models,
has been well studied from the macroscopic point of view
[14]. The fundamental SIRS model is presented as follows

%ﬁt) = —aS(t)I(t) + bR(t),
dI(t)

T{ = aSt)I(t) —cl(t),
dR(t)

—q = cl(t) —bR(2),

where S, I and R € [0, 1] are the proportions of the people
who are susceptible, infected and recovered, respectively.
The parameters a, b and ¢ € R, are the related constant
transition rates. The SIRS model differs from SIS or SIR
model because of the short-term immunity considered in
[15]. The above SIRS model can be derived by utilizing
Kurtz’s theorem while the population is large enough [16].
An intuitive explanation to this model, taking the first equa-
tion as an example, is that the population of susceptible
can change only because of the influence of the infected
population (from S to I) and the number of recovered people
who turns to susceptible (from R to S) again. The SIRS
model has been extended considering natural birth and death
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Fig. . Node-based SIRS model of node v; with transition rates &;, (3;
and ~y; between different states

and a vaccination process from S to R in [17]. Note that the
system above only focuses on the macroscopic behavior of
the population, but does not give insight into single character.
To describe and analyse the behavior of each individual, we
propose a node-based model.

III. NODE-BASED SIRS MODEL

In this paper, we study SIRS models focusing on the
states of nodes in heterogeneous networks. We assume that
there are three possible states in each node, i.e. susceptible
(S), infected (I) and recovered (R), which an individual can
have when facing a disease spreading in the groups where
she belongs to. The disease propagates only via interactions
between people. Thus the person we study has no chance
of getting infected unless at least one of her neighbors is
infected. As is presented in Figure 1, a certain node v;,
representing a person in a network, can change to differ-
ent states with different transition rates. All the processes,
i.e. the transmission process from S to I, the recovering
process from I to R and the process from R back to S,
are all assumed as Poisson processes with positive constant
rates, &y, [3;, i, respectively. The transmission rate &; of
node v; is calculated from mean-field approximation. This
process can be explained that node v; gets more possible
to be infected with a probability a;d¢ resulting from one
connection with an infected neighbor (v;) in a short time
interval d¢. Assuming all the influences from neighbors are
independent and considering the neighor, e.g. v; € N (v;),
is infected with probability p;7, the change possibility of the
node being infected during d¢ is

1- H (1 —aypjr) | dt. (1)
JEN (v;)

By omitting the terms with second and higher orders in
(1), we obtain

N
oy = Zajwijpjla ()
i=1

which is called the average transmission rate of node v;.
According to the transformation relations in Figure 1 and
the transmission rate in (2), the node-based SIRS model for



node v; on a heterogeneous network G is described as

N

Pir(t) = (1= pir(t) — pir(t)) > ajwijpir(t) — Bipir(t),
j=1

Pir(t) = Bipir(t) — Yibir, 3)

where p;1(t) € [0,1] and p;r(t) € [0, 1] are the probabilities
of node v; in infected and recovered states at time instance
t, respectively. Denoting p;s(t) € [0, 1] as the instantaneous
probability of node v; being susceptible, it is obvious that
the differential equation of p;s(t) is redundant because the
node must be in one of the three states, i.e. the equality
pis(t) + pir(t) + pir(t) = 1 always holds.

Remark 1: The derivation of the model in (3) can also be
illustrated similarly with the method in [18], which describes
the process as Markov chain and results in a /N-intertwined
model.

The interpretation of the differential equations (3) in the
node-base SIRS model is as follows: a) The change of the
probability of node v; being infected during a time interval
dt consists of two parts, i.e. the influence of the infected
neighbors when node v; is susceptible and the probability of
recovering when infected; b) The change of the probability
of node v; being recovered during time interval dt is also
made of two parts, i.e. the probability of recovering when
node v; is infected and the probability of being susceptible
when recovered.

Another typical practical example for the investigated
model, other than the disease spreading case, is a marketing
campaign. Assuming that a firm aims to sell more goods
to a group of people. Then the propagation of the product
can be described by the SIRS model. The people can be in
one of three states, potential customer (susceptible), willing
to buy (infected), ignoring all the related information of the
product (recovered). The transmission process which is an
interaction of neighboring nodes is explained as the fact that
the arbitrary potential customer may turn to be willing to
buy the product because of the influence by social neighbors
who are willing to buy the product, e.g. word of mouth.

IV. ANALYSIS AND CONTROL

In this section, the equilibria of node-based SIRS model
will be studied as well as the stability conditions.

To start with, the following matrix form of the model in
(3) can be obtained by defining A = diag{a1,9,...,an},
B = diag{p1, B2,...,Bn} and T = diag{v1,72, ..., N}

pi(t) = (I = Pr(t) — Pr(t))WAp:(t) — Bpi (1),
Pr(t) = Bpr(t) — Tpr(t), @

where pr(t) = [pir(t),p2r(t),....pnr(t)]" and Pr(t) =
diag{p1(t), p21(t),...,pn1(t)} are the vector and diagonal
matrix whose entries are the probabilities of all the nodes
being infected at instance ¢, and pr(t) and Pr(t) are defined
equivalently for the recovered states. Hence, denoting p(t) =
[pY,pE]T and P(t) = —(Pr(t) + Pr(t))W A, the overall

model can be written as

p(t) = g/A_ b - }P(t) + { Z))(t)pf(t) } NG

Then we can have the following results.
A. Equilibria
The equilibria of the node-based SIRS model on hetero-

geneous networks can be obtained by setting p;; = 0 and
pir = 0. Thus we have

. a;
P =0 s)ar + 8

. i
e e

N
where af = > ajwipirs 0 = Bi /7i. Fruther analysis of
=1

(6) shows tha{ the reasonable equilibria exist because
1) pj; € [0,1) and pfp € [0,1), which means they are
proper probabilities.
2) (pf; +pir) € [0,1), which infers the existence of pg,
hence
. B
Pis = v a)a; + 6
The origin is one of the equilibria of the node-based SIRS
model in (5). According to the expression of & in (2), the
origin, i.e. pi; = pir = 0, is an equilibrium.

B. Stability of the Origin
The stability of the origin is crucial in disease control
since the disease vanishes when all the people are in state
S. The following theorem provides the condition to have an
exponentially stable origin.
Theorem 1: The node-based SIRS model in (5) is globally
exponentially stable, if the following matrix inequality holds
A:WA: —B 1B
I e ©
Proof: Introduce a Lyapunov function V' = %pr and
we can obtain the time-derivative

V=p"p
=P [B .

WA—B 0
<pT[ }p

)

B T €))
The inequality is correct because p?Pp; < 0 and the
equality holds only when p; = 0. Hence,

V < pF(WA - B)p; + pLBpr — phl'pg
1
= pi (WA= B)pr + 5p1 Bpr

1
+§p£Bp1 — ppIpR. (10)

Since A is a diagonal matrix, we can rewrite (WA — B) as
(A%WA% — B). it is obvious that if (8) holds, V < 0, which
means that the model in (5) is globally asymptotically stable.
Denote the matrix in (8) as A. Since V < P Amax{A}p =
2Amax{ A}V, the system is globally exponentially asymptot-
ically stable. [ ]



C. Control Design

We focus on the control problem of regulating the proba-
bility of infected and recovered to the desired values p7 and
pr via dynamically choosing recovering rates, i.e. replacing
B; with the control input w;(t), of each node. Note that
u;(t) > 0 since recovering rate is non-negative. A practical
way to imply this control strategy is to vaccinate people such
that they can recover quickly. Although the desired value of
the probability of a person being infected is usually 0 when
aiming at impeding the disease spreading, the desired value
differs for other applications. For instance, in marketing, p;;,
which can represent the desired possibility of individual ¢ to
buy the product, is chosen close to 1.

To tackle this control issue, e (t) = ps(t)—p} and eg(t) =
pr(t) —p}, are introduced as error variable vectors. Thus the
system in (4) can be written as

[E(t) = U@)] (ex(t) + p1),
ér(t) = U(t)er(t) — Ler(t) + Up; — I'pk,

where Z(t) (I — E((t) — Eg(t) — P; — P)WA.
E((t) = diag{eis,ear,...,enr} and FEg(t) =
diag{eir,e2pr,...,enr} are the diagonal matrices of
the errors whose entries are the same with those of e(t)
and eg(t); U(t) = diag{ui(t),ua(t),...,un(t)} is the
diagonal matrix of control inputs. The problem of designing
the control strategy can be transformed to find dynamic
U(t) such that the origin of the closed-loop system in (11)
is stable. Thus we obtain the following theorem as a result
for this problem.

Theorem 2: The closed-loop node-based SIRS model on
heterogeneous networks in (11) is globally asymptotically
stable if A\pax{Z(t) — U(¢)} < 0 for every time instance ¢.

Proof: First we prove the stability in a special case, i.e.
the local stability. Rewrite the system in (11) as

.
~
—~

~
~—

I

(1)

ér(t) = fler(t), er(t)),
éR(t) :g(ej(t),eR(t)). (12)

Note that f and ¢ are continuously differentiable. Then
the Jacobian of the system in (12) can be obtained as

of  of

5= J J:
| o aan | _| N 2
Jlaeg] 8?]{(]@) —F}’

dey der
where
N
. - apwik(err(t) +pi;) —ui(t), =17,
Ti(ij) = k; kwik (e (t) + i) — wi(t) j
(1 —eir — eir — piT — Pip)jwij, @ # J,
N
.. — apwik(err(t) + i), =7,
Ta(i j) = z; rwik(€xr(t) + prp) J

=1
0, i#j.

Recalling (2) and defining o/ = diag{aj,as,...,ay},

we have the Jacobian in the origin

[(I—Pf—Pﬁ)WA—U—d —d]

7(0)

U -T
[U-Pr=PpWA-U 0
=lv 1T

L

0o —ir |

The Jacobian is Hurwitz when [(I — P} — PL)WA — U]
is Hurwitz, because .JJ(0) can then be expressed as the sum
of two Hurwitz matrices. Note that the result is equal to
Amax{Z(t) —U(t)} < 0 when e; = 0,eg = 0. Thus the
system in (11) is locally asymptotically stable [19].

As for the global asymptotic stability, because U(t) is
the control input diagonal matrix that we design, we can
choose proper U (t) such that (E(t) — U(t)) is Hurwitz, i.e.
Amax{Z(t)—U(t)} < 0. Since f and g are both continuously
differentiable, it follows that J is always Hurwitz, which
leads to the global asymptotic stability of the origin in (11).

|

Remark 2: By similarity transformation with {A% , A3},
(E = U) can be turned into a symmetric matrix, which
manifests that the eigenvalues of (£ — U) are all real
numbers and the condition given in Theorem 2 can be simply
presented as A\pmax{Z(t) — U(t)} < 0.

Theorem 2 only provides a theoretic method to find a
control input, which is not good enough for practical use,
because the eigenvalues should be calculated for unknown
U (t). Note that the entries of (Z(t) — U(t)) are the same as
those of J; (). While calculating the eigenvalue, the equation

det(\I — (E(t) — U(t))) = 0.

is generally of Nth order. From the application point of
view, one has to solve the above equation in every sampling
instance and execute the trial and error process to check the
negativeness of the largest eigenvalue, which requires a large
amount of computation capacity. To tackle this problem, a
more applicable algorithm is necessary, which is given in the
following proposition.

Proposition 1: The system in (11) is globally asymptoti-
cally stable with the control input

ui(t) = Amax{Z2(t)} + €, 1=1,2,... N.

where €; is an arbitrarily small positive real number.
Proof: For any non-zero vector x € RV, if the
expression in (13) holds, we obtain

LB - U®t)z < 2T2(t)z —

13)

)\maX{E(t)}xTa: <0,

where the second inequality invariably holds according to
the property of Rayleigh quotient. Thus the condition in
Theorem 2 is fulfilled and we complete the proof. [ ]

Note that the knowledge of the entire states of the nodes
are required by the controller, which is a maybe conservative
but reasonable assumption for a controller from outside of the
system. Taking disease spreading for example, the doctors
and researchers who try to control the disease are able to



know the situations of each potential patient. In marketing, as
another instance, the information of potential customers can
be obtained by questionnaires or analysing online comments.

V. NUMERICAL EXAMPLES

A random undirected connected graph with N = 20 nodes
is generalized for the simulation to demonstrate the results in
this paper. The average degree of the graph is (k) = 2.3 with
the degree span from 1 to 4. The heterogeneity of transferring
rates is achieved by randomly selecting within different
regions. The ranges of the parameters of each simulation
are listed in Table I.

TABLE I
THE RANGES OF PARAMETERS

a; Bi Yi
Figure 2 (0.05,0.15) (0.25,0.35) (0.3,0.4)
Figure 3 (0.1,0.2) (0.6,0.8) (0.3,0.5)
Figure 4(a) & 5(a) (0.45,0.55) (0.85,0.95) 0.4,0.5)
Figure 4(b) & 5(b) (0.45,0.55) Ug 0.4,0.5)

Firstly, we examine the approximation made in the ex-
pression in (1). The residual sums of squares (RSS) of p;
and pr are chosen as the criterion. In detail, the following
system is considered.

Pir(t) = (1= pir(t) — pir(t)) [ 1— H (1= a;pjr)
JEN (vs)
—Bipir(t),

Pir(t) = Bipir(t) — Vibir- (14)
By comparing the system in (14) with the system in (3), we
define the RSS of p; and pr as ||p; — prl|3 and ||pr — Prl|3.
respectively. As is manifested in Figure 2, the influence of the
replacement towards system variables, pr and pr, converges,

which demonstrates the effectiveness of our approach.

x1074
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Fig. 2. Estimation errors of py and pr for neglecting higher order terms
in (1)
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Fig. 3. Global exponential stability of origin of the SIRS model in a
random graph with 20 nodes

0.7 T T T T T T T T

06 [-————————————————— — — — — — ]

[0 T

— — — 20 nodes without control

0.2 20 nodes with control i
— — — 100 nodes without control
100 nodes with control
01+ — — — 1000 nodes without control 4

1000 nodes with control

0 10 20 30 40 50 60 70 80 90
Time

Fig. 4. (a) Probabilities of being infected in graphs with 20, 100 and 1000
nodes with and without control

Secondly the global stability of origin is presented in
Figure 3. The initial conditions, i.e. p;(0) and pgr(0), are
chosen randomly such that p;;(0),p;r(0), (pir + pir) €
[0,1]. When the condition given in Theorem 1 is fulfilled,
the probabilities of being infected and recovered converge to
0 within finite time.

Finally, for the control design, the desired probabilities of
infected and recovered are both set to 0. Considering the
influence of the complexity of the graph, we take the graphs
with 20, 100 and 1000 nodes as examples. For contrast, both
the graph structure and the parameters («; and -y;) are the
same for the graphs with the same number of nodes. We can
see that under the same initial conditions, p; and pr can be
regulated to target value under control (solid lines in Figure
4 '5) but fail to reach the desired value when the system
is under no control (dash lines in Figure 4 and Figure 5).



0.6 T T T T T T T T
— — — 20 nodes without control

20 nodes with control
05 — — — 100 nodes without control E

100 nodes with control

1000 nodes without control

1000 nodes with control
0.4 i

p
3 1
0.2 i
Ol AN === — — — —
N e e e e e e A NS e e e e e
0 L L L L N

0 10 20 30 40 50 60 70 80 90
Time

Fig. 5. Probabilities of being recovered in graphs with 20, 100 and 1000
nodes with and without control
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Fig. 6. Control input of each node in a 20-node graph

There is no doubt that as the number of nodes increases, the
simulation is more time-consuming because the maximum
eigenvalue of a square matrix of larger dimension needs to
be computed. Also note that the sudden overshoots in Figure
5 come from the increase of the recovering rates, which
leads to the infected more likely to turn to be recovered.
The control input presented in Figure 6, taking the graph
with 20 nodes for instance, is calculated according to the
method given in Proposition 1 with the arbitrary parameter
¢; randomly chosen in the region (0,0.2).

VI. CONCLUSION

The node-base SIRS model on heterogeneous networks
that describes the interactions between the nodes is proposed.

The existence of the equilibria has been proved via analysing
the steady-state of the model. Taking origin as a special
case, the condition for its global exponential stability has
been obtained, which is also the condition for disease free

case. Considering the control problem of reaching desired
states, a controller to dynamically generate recovering rates
is designed via analysing the Jacobian.

Future work will focus on the study of the stability of
non-zero equilibria and optimal controller design. Reducing
the number of controlled nodes and the information needed
for controller design will also be inspected.
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