
TECHNISCHE UNIVERSITÄT MÜNCHEN

Fakultät für Informatik
Lehrstuhl III – Datenbanksysteme

Query Processing and Optimization in
Modern Database Systems

Viktor Leis

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Hans-Joachim Bungartz

Prüfer der Dissertation: Univ.-Prof. Dr. Thomas Neumann,
Prof. Michael Stonebraker, Ph.D. (MIT, Cambridge, USA)
Univ.-Prof. Alfons Kemper, Ph.D.

Die Dissertation wurde am 25.05.2016 bei der Technischen Universität München ein-
gereicht und durch die Fakultät für Informatik am 30.09.2016 angenommen.

Abstract

Relational database management systems, which were designed decades ago, are still
the dominant data processing platform. Large DRAM capacities and servers with many
cores have fundamentally changed the hardware landscape. Traditional database sys-
tems were designed with very different hardware in mind and cannot exploit modern
hardware effectively. This thesis focuses on the challenges posed by modern hard-
ware for transaction processing, query processing, and query optimization. We present
a concurrent transaction processing system based on hardware transactional memory
and show how to synchronize data structures efficiently. We further design a paral-
lel query engine for many-core CPUs that supports the important relational operators
including join, aggregation, window functions, etc. Finally, we dissect the query opti-
mization process in the main memory setting and show the contribution of each query
optimizer component to the overall query performance.

iii

Zusammenfassung

Relationale Datenbankmanagementsysteme, deren ursprüngliche Entwicklung bereits
Jahrzehnte zurückliegt, sind auch heute noch die dominierende Datenverarbeitungs-
plattform. Rechner mit großen DRAM-Kapazitäten und vielen Kernen haben die Hard-
warelandschaft jedoch fundamental verändert. Traditionelle Datenbanksysteme wur-
den für Systeme entwickelt, die sich sehr von aktuellen unterscheiden, und können
deshalb moderne Hardware nicht effektiv nutzen. Die vorliegende Arbeit befasst sich
mit den Herausforderungen moderner Hardware für die Transaktionsverarbeitung, An-
frageverarbeitung und Anfrageoptimierung. Zunächst präsentieren wir ein Transakti-
onsverarbeitungssystem basierend auf Hardware Transactional Memory und zeigen
wie Datenstrukturen effizient synchronisiert werden können. Darüber hinaus entwi-
ckeln wir eine parallele Anfrageverarbeitungkomponente für Rechner mit vielen Ker-
nen, welche unter anderem die wichtigen relationalen Operatoren Verbund, Aggrega-
tion und Windowfunktionen unterstützt. Schließlich untersuchen wir den Anfrageop-
timierungsprozess in Haupspeicherdatenbanken und zeigen den Beitrag der einzelnen
Optimererkomponenten zu der Gesamtanfragegeschwindigkeit.

v

Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Column Stores . 1
1.2 Main-Memory Database Systems . 2
1.3 The Challenges of Modern Hardware 4
1.4 Outline . 6

2 Exploiting Hardware Transactional Memory in Main-Memory Databases 11
2.1 Introduction . 11
2.2 Background and Motivation . 14
2.3 Transactional Memory . 16

2.3.1 Hardware Support for Transactional Memory 17
2.3.2 Caches and Cache Coherency 18

2.4 Synchronization on Many-Core CPUs 21
2.4.1 The Perils of Latching . 22
2.4.2 Latch-Free Data Structures 23
2.4.3 Hardware Transactional Memory on Many-Core Systems . . . 24
2.4.4 Discussion . 28

2.5 HTM-Supported Transaction Management 29
2.5.1 Mapping Database Transactions to HTM Transactions 29
2.5.2 Conflict Detection and Resolution 31
2.5.3 Optimizations . 32

2.6 HTM-Friendly Data Storage . 34
2.6.1 Data Storage with Zone Segmentation 34
2.6.2 Index Structures . 35

2.7 Evaluation . 36
2.7.1 TPC-C Results . 37
2.7.2 Microbenchmarks . 38

2.8 Related Work . 40
2.9 Summary . 41

vii

Contents

3 Efficient Synchronization of In-Memory Index Structures 45
3.1 Introduction . 45
3.2 The Adaptive Radix Tree (ART) . 46
3.3 Optimistic Lock Coupling . 48

3.3.1 Optimistic Locks . 49
3.3.2 Assumptions of Optimistic Lock Coupling 51
3.3.3 Implementation of Optimistic Locks 51

3.4 Read-Optimized Write EXclusion 53
3.4.1 General Idea . 53
3.4.2 ROWEX for ART . 54

3.5 Evaluation . 56
3.5.1 Scalability . 57
3.5.2 Strings . 59
3.5.3 Contention . 59
3.5.4 Code Complexity . 59

3.6 Related Work . 60
3.7 Summary . 61

4 Parallel NUMA-Aware Query Processing 63
4.1 Introduction . 63
4.2 Many-Core Challenges . 66
4.3 Morsel-Driven Execution . 68
4.4 Dispatcher: Scheduling Parallel Pipeline Tasks 71

4.4.1 Elasticity . 72
4.4.2 Implementation Overview 73
4.4.3 Morsel Size . 74

4.5 Parallel Operator Details . 75
4.5.1 Hash Join . 75
4.5.2 Lock-Free Tagged Hash Table 76
4.5.3 NUMA-Aware Table Partitioning 78
4.5.4 Grouping/Aggregation . 79
4.5.5 Set Operators . 80
4.5.6 Sorting . 81

4.6 Evaluation . 82
4.6.1 Experimental Setup . 82
4.6.2 TPC-H . 83
4.6.3 NUMA Awareness . 85
4.6.4 Elasticity . 88
4.6.5 Star Schema Benchmark . 89

4.7 Related Work . 90

viii

Contents

4.8 Summary . 92

5 Window Function Processing in SQL 95
5.1 Introduction . 95
5.2 Window Functions in SQL . 98

5.2.1 Partitioning . 98
5.2.2 Ordering . 99
5.2.3 Framing . 99
5.2.4 Window Expressions . 101

5.3 The Window Operator . 103
5.3.1 Partitioning and Sorting . 103
5.3.2 Pre-Partitioning into Hash Groups 104
5.3.3 Inter- and Intra-Partition Parallelism 105

5.4 Window Function Evaluation . 106
5.4.1 Basic Algorithmic Structure 106
5.4.2 Determining the Window Frame Bounds 107
5.4.3 Aggregation Algorithms . 107
5.4.4 Window Functions without Framing 113

5.5 Database Integration . 115
5.5.1 Query Engine . 115
5.5.2 Multiple Window Function Expressions 115
5.5.3 Ordered-Set Aggregates . 116

5.6 Evaluation . 116
5.6.1 Implementation . 117
5.6.2 Experimental Setup . 117
5.6.3 Performance and Scalability 118
5.6.4 Algorithm Phases . 119
5.6.5 Skewed Partitioning Keys 119
5.6.6 Number of Hash Groups . 120
5.6.7 Aggregation with Framing 121
5.6.8 Segment Tree Fanout . 122

5.7 Related Work . 123
5.8 Summary . 124

6 Evaluation of Join Order Optimization for In-Memory Workloads 127
6.1 Introduction . 127
6.2 Background and Methodology . 129

6.2.1 The IMDB Data Set . 129
6.2.2 The JOB Queries . 130
6.2.3 PostgreSQL . 131

ix

Contents

6.2.4 Cardinality Extraction and Injection 132
6.2.5 Experimental Setup . 133

6.3 Cardinality Estimation . 134
6.3.1 Estimates for Base Tables 134
6.3.2 Estimates for Joins . 135
6.3.3 Estimates for TPC-H . 137
6.3.4 Better Statistics for PostgreSQL 138

6.4 When Do Bad Cardinality Estimates Lead to Slow Queries? 139
6.4.1 The Risk of Relying on Estimates 139
6.4.2 Good Plans Despite Bad Cardinalities 142
6.4.3 Complex Access Paths . 142
6.4.4 Join-Crossing Correlations 143

6.5 Cost Models . 144
6.5.1 The PostgreSQL Cost Model 145
6.5.2 Cost and Runtime . 145
6.5.3 Tuning the Cost Model for Main Memory 147
6.5.4 Are Complex Cost Models Necessary? 148

6.6 Plan Space . 149
6.6.1 How Important Is the Join Order? 149
6.6.2 Are Bushy Trees Necessary? 150
6.6.3 Are Heuristics Good Enough? 151

6.7 Related Work . 153
6.8 Summary . 154

7 Future Work 157

8 Bibliography 161

x

List of Figures

1.1 TPC-H single-machine performance for scale factor 1000 (1 TB) . . . 2
1.2 Number of cores in Intel Xeon server processors (for the largest con-

figuration in each microarchitecture) 5

2.1 HTM versus 2PL, sequential, partitioned 12
2.2 Schematic illustration of static partitioning (left) and concurrency con-

trol via HTM resulting in dynamic partitioning (right) 13
2.3 Lock elision (left), conflict (middle), and serial execution (right) . . . 18
2.4 Intel cache architecture . 19
2.5 Aborts from random memory writes 20
2.6 Aborts from transaction duration . 21
2.7 Intel E5-2697 v3 . 22
2.8 Lookups in a search tree with 64M entries 23
2.9 Lookups in an ART index with 64M integer entries under a varying

number of HTM restarts . 25
2.10 Implementation of lock elision with restarts using RTM operations . . 26
2.11 64M random inserts into an ART index using different memory allo-

cators and 30 restarts . 26
2.12 Incrementing a single, global counter (extreme contention) 28
2.13 Transforming database transactions into HTM transactions 30
2.14 Implementing database transactions with timestamps and lock elision 32
2.15 Avoiding hotspots by zone segmentation 35
2.16 Declustering surrogate key generation 36
2.17 Scalability of TPC-C on desktop system 37
2.18 TPC-C with modified partition-crossing rates 38
2.19 Scalability of TPC-C on server system 39
2.20 HTM abort rate with 8 declustered insert zones 40

3.1 Overview of synchronization paradigms 46
3.2 The internal data structures of ART 47
3.3 Pseudo code for a lookup operation that is synchronized using lock

coupling (left) vs. Optimistic Lock Coupling (right). The necessary
changes for synchronization are highlighted 48

xiii

LIST OF FIGURES

3.4 Pseudo code for insert using Optimistic Lock Coupling. The necessary
changes for synchronization are highlighted 50

3.5 Implementation of optimistic locks based on busy waiting 52
3.6 Path compression changes for inserting “AS” 55
3.7 Scalability (50M 8 byte integers) . 56
3.8 Performance for string data with 20 threads 58
3.9 Performance under contention (1 lookup thread and 1 insert+remove

thread) . 58

4.1 Idea of morsel-driven parallelism: R 1A S 1B T 64
4.2 Parallellizing the three pipelines of the sample query plan: (left) al-

gebraic evaluation plan; (right) three- respectively four-way parallel
processing of each pipeline . 67

4.3 NUMA-aware processing of the build-phase 69
4.4 Morsel-wise processing of the probe phase 70
4.5 Dispatcher assigns pipeline-jobs on morsels to threads depending on

the core . 72
4.6 Effect of morsel size on query execution 74
4.7 Hash table with tagging . 77
4.8 Lock-free insertion into tagged hash table 77
4.9 Parallel aggregation . 79
4.10 Parallel merge sort . 81
4.11 NUMA topologies, theoretical bandwidth 82
4.12 TPC-H scalability on Nehalem EX (32 cores, 64 hardware threads) . . 84
4.13 Intra- vs. inter-query parallelism with 64 threads 88
4.14 Illustration of morsel-wise processing and elasticity 88

5.1 Window function concepts: partitioning, ordering, framing. The cur-
rent (gray) row can access rows in its frame. The frame of a tuple can
only encompass tuples from that partition 98

5.2 Illustration of the range and rows modes for framing. Each tick
represents the value of a tuple’s order by expression 99

5.3 Overview of the phases of the window operator. The colors represent
the two threads . 104

5.4 Basic code structure for window functions with framing 107
5.5 Segment Tree for sum aggregation. Only the red nodes (7, 13, 20)

have to be aggregated to compute the sum of 7, 3, 10, 6, 2, 8, 4 109
5.6 Physical Segment Tree representation with fanout 4 for sum(b) over

(order by a) . 109
5.7 Aggregating from begin below end using a Segment Tree 110

xiv

LIST OF FIGURES

5.8 Pseudo code for the rank function, which ignores framing 113
5.9 Pseudo code for the row number, percent rank, and lag win-

dow functions, which ignore framing 114
5.10 Single-threaded performance of rank query (with 100 partitions) . . 118
5.11 Scalability of rank query . 118
5.12 Varying the number of hash groups for rank query. 120
5.13 Performance of sum query with constant frame bounds for different

frame sizes . 120
5.14 Performance of sum query with variable frame bounds for different

frame sizes . 122
5.15 Segment Tree performance for sum query under varying fanout settings 122

6.1 Traditional query optimizer architecture 127
6.2 Typical query graph of our workload 131
6.3 Quality of cardinality estimates for multi-join queries in comparison

with the true cardinalities. Each boxplot summarizes the error distri-
bution of all subexpressions with a particular size (over all queries in
the workload) . 136

6.4 PostgreSQL cardinality estimates for 4 JOB queries and 3 TPC-H queries138
6.5 PostgreSQL cardinality estimates based on the default distinct count

estimates, and the true distinct counts 139
6.6 Slowdown of queries using PostgreSQL estimates w.r.t. using true car-

dinalities (primary key indexes only) 141
6.7 Slowdown of queries using PostgreSQL estimates w.r.t. using true car-

dinalities (different index configurations) 142
6.8 Predicted cost vs. runtime for different cost models 146
6.9 Cost distributions for 5 queries and different index configurations. The

vertical green lines represent the cost of the optimal plan 150

xv

List of Tables

2.1 Transaction rates for various synchronization methods in HyPer . . . 14

4.1 TPC-H (scale factor 100) statistics on Nehalem EX 86
4.2 TPC-H (scale factor 100) performance on Sandy Bridge EP 86
4.3 Star Schema Benchmark (scale 50) on Nehalem EX 89

5.1 Worst-case complexity of computing aggregates for n tuples 111
5.2 Performance and scalability for the different phases of the window op-

erator (rank query) . 119

6.1 Q-errors for base table selections . 134
6.2 Slowdown for restricted tree shapes in comparison to the optimal plan

(true cardinalities) . 151
6.3 Comparison of exhaustive dynamic programming with the Quickpick-1000

(best of 1000 random plans) and the Greedy Operator Ordering heuris-
tics. All costs are normalized by the optimal plan of that index config-
uration . 152

xvii

1 Introduction

Relational database management systems have stood the test of time and are still the
dominant data processing platform. The basic design of these systems stems from
the 1980s and was largely unchanged for decades. The core ideas include row-wise
storage as well as B-trees on fixed-sized pages backed by a buffer pool, ARIES-style
logging, and Two Phase Locking. Recent years, however, have seen many of the design
decisions become obsolete due to fundamental changes in the hardware landscape. In
the rest of the chapter we give a brief outline of modern database systems and discuss
some of the challenges posed by modern hardware for these systems. This discussion
forms the background and motivation for this thesis. We close by giving an outline of
the following chapters.

1.1 Column Stores

After decades of only minor, incremental changes to the basic database architecture, a
radically new design, column stores, started to gain traction in the years after 2005. C-
store [167] (commercialized as Vertica) and MonetDB/X100 [20] (commercialized as
Vectorwise) are two influential systems that gained significant mind share during that
time frame. The idea of organizing relations by column is, of course, much older [21].
Sybase IQ [125] and MonetDB [22] are two pioneering column stores that originated
in the 1990s.

Column stores are read-optimized and often used as data warehouses, i.e., non-
operational databases that ingest changes periodically (e.g., every night). In compar-
ison with row stores, column stores have the obvious advantage that scans only need
to read those attributes accessed by a particular query resulting in less I/O operations.
A second advantage is that the query engine of a column store can be implemented in
a much more CPU-efficient way: Column stores can amortize the interpretation over-
head of the iterator model by processing batches of rows (“vector-at-a-time”), instead
of working only on individual rows (“tuple-at-a-time”).

The major database vendors have reacted to the changing landscape by combining
multiple storage and query engines in their products. In Microsoft SQL Server, for
example, users now can choose between the

• traditional general-purpose row store,

1

1 Introduction

0

200,000

400,000

600,000

2002 2004 2006 2008 2010 2012 2014 2016
year

qu
er

ie
s

pe
r h

ou
r

system

Actian Vectorwise

Microsoft SQL Server

Oracle

Sybase IQ

Figure 1.1: TPC-H single-machine performance for scale factor 1000 (1 TB)

• a column store [100] for OnLine Analytical Processing (OLAP), and

• in-memory storage optimized for Online transaction processing (OLTP) [37].

Each of these options comes with its own query processing model and specific perfor-
mance characteristics, which must be carefully considered by the database administra-
tor.

The impact of column stores can be seen in Figure 1.1, which shows the perfor-
mance on TPC-H, a widely used OLAP benchmark. Before 2011, multiple vendors
competed for the TPC-H crown, with the lead changing from time to time between
Oracle, Microsoft, and Sybase1. This changed with the arrival of Actian Vectorwise in
2011, which disrupted the incremental “rat race” between the traditional vendors. The
dominance of Vectorwise as official TPC-H leader lasted until 2014, when Microsoft
submitted new results with their column store engine Apollo [100], which is currently
the leading system.

1.2 Main-Memory Database Systems

The lower CPU overhead of column store query engines was of only minor importance
as long as data was mainly stored on disk (or even SSD). In 2000 one had to pay over

1IBM submitted results for other scale factors, but not for scale factor 1000.

2

1.2 Main-Memory Database Systems

1000$ for 1 GB of DRAM2. At these prices, any non-trivial database workload resulted
in a significant number of disk I/O operations, and main-memory DBMSs—which
were a research topic as early as the 1980s [50]—were still niche products. In 2008,
with the same 1000$ one could already buy 100 GB of RAM3. This rapid decrease in
DRAM prices had consequences for the architecture of database management systems.

Harizopoulos et al.’s paper from 2008 [63] showed that on the—suddenly very
common—memory-resident OLTP workloads virtually all time was wasted on over-
head like

• buffer management,

• locking,

• latching,

• heavy-weight logging, and

• an inefficient implementation.

The goal of any database system’s designer thus gradually shifted from minimiz-
ing the number of disk I/O operations to reducing CPU overhead and cache misses.
This lead to a resurgence of research into main-memory database systems. The main
idea behind main-memory DBMSs is to assume that all data fits into RAM and to
optimize for CPU and cache efficiency. Using careful engineering and by making
the right architectural decisions that take modern hardware into account, database
systems can achieve orders of magnitude higher performance. Well-known main-
memory database systems include H-Store/VoltDB [83, 168], SAP HANA [43], Mi-
crosoft Hekaton [102], solidDB [118], Oracle TimesTen [95], Calvin [171], Silo [172],
MemSQL, and HyPer [87].

The work described in this thesis has been done in the context of the HyPer project,
which started in 2010 [86]. HyPer follows some of the design decisions of other main-
memory systems (e.g., no buffer manager, no locks, no latches, and (originally) com-
mand logging). To avoid fine-grained latches, HyPer also initially followed H-Store’s
approach of relying on user-controlled, physical partitioning of the database to enable
multi-threading.

HyPer has, however, a number of features that distinguish it from many other main-
memory systems: From the very beginning, HyPer supported both OLTP and OLAP
in the same database in order to make the physical separation between the transac-
tional and data warehouse databases obsolete. Initially, HyPer used OS-supported
snapshots [87], which were later replaced with a software-controlled Multi-Version

2DRAM prices are taken from http://www.jcmit.com/memoryprice.htm.
3The cost continues to decline. At the time of writing, in 2016, the cost was around 4$ per GB.

3

http://www.jcmit.com/memoryprice.htm

1 Introduction

Concurrency Control (MVCC) approach [143]. The second unique feature of HyPer is
that, via the LLVM [104] compiler infrastructure, it compiles SQL queries and stored
procedures to machine code [139]. Compilation avoids the interpretation overhead in-
herent in the iterator model and thereby enables extremely high performance. LLVM is
a widely used open source compiler backend that can generate efficient machine code
for many different target platforms, which makes this approach portable. In contrast to
previous compilation approaches (e.g., [94]), HyPer compiles multiple relational op-
erators from the same query pipeline into a single intertwined code fragment, which
allows it to keep values in CPU registers for as long as possible.

In terms of architecture, most column stores have converged to a similar design [1],
which was pioneered by systems like Vectorwise [20] and Vertica [167]. In-memory
OLTP systems, in contrast, show more architectural variety. Compilation is, however,
becoming a common building block for OLTP systems, as can be observed by the use
of compilation by HyPer [139], Hekaton [37], and MemSQL. Other high-performance
systems like Silo [172] also implicitly assume (but do not yet implement) compilation,
as the stored procedures are hand-written in C or C++ in these systems. In other
areas like concurrency control (e.g., [172] vs. [98] vs. [143]), indexing (e.g., [108]
vs. [129] vs. [114]), and logging (e.g., [127] vs. physiological) there is much more
variety between the systems.

1.3 The Challenges of Modern Hardware

Besides increasing main-memory sizes, a second important trend in the hardware land-
scape is the ever increasing number of cores. Figure 1.2 shows the number of cores
for server CPUs4. Over the entire time frame, the clock rate stayed between 2 GHz
and 3 GHz and, as a result, single-threaded performance increased only very slowly
(by single-digit percentages per year). Note that the graph only shows “real” cores
for a single socket. Many servers have 2, 4, or even 8 sockets in a single system and
each Intel core nowadays has 2-way HyperThreading. As a result, the affordable and
commonly used 2-socket configurations will soon routinely have over 100 hardware
threads in a single system. Memory bandwidth has largely kept up with the increasing
number of cores and will reach over 100 GB/s per socket with Skylake EP. However, it
is important to note that a single core can only utilize a small fraction of the available
bandwidth, making effective parallelization essential.

Long before the many-core revolution, high-end database servers often combined a
handful of processors—connected by a shared memory bus—in a Symmetric Multi-
Processing (SMP) system. Furthermore, database systems have, for a long time, been

4The data is from https://en.wikipedia.org/wiki/List_of_Intel_Xeon_
microprocessors. For Broadwell EX and Skylake EP server CPUs we show estimates
from the press as they were not yet released at the time of writing.

4

https://en.wikipedia.org/wiki/List_of_Intel_Xeon_microprocessors
https://en.wikipedia.org/wiki/List_of_Intel_Xeon_microprocessors

1.3 The Challenges of Modern Hardware

 NetBurst (Foster)
NetBurst (Paxville)

Core (Kentsfield) Core (Lynnfield)

Nehalem (Beckton)
Nehalem (Westmere EX)

 Sandy Bridge EP

Ivy Bridge EP

Ivy Bridge EX

Haswell EP

Broadwell EP
Broadwell EX

Skylake EP

1

10

20

30

2000 2004 2008 2012 2016
year

co
re

s
pe

r C
PU

Figure 1.2: Number of cores in Intel Xeon server processors (for the largest configura-
tion in each microarchitecture)

capable of executing queries concurrently by using appropriate locking and latching
techniques. So one might reasonably ask if any fundamental changes to the database
architecture are required at all. Modern hardware, however, has unique challenges not
encountered in the past:

Latches are expensive and prevent scaling. Traditional database systems use
latches extensively to access shared data structures from concurrent threads. As long as
disk I/O operations were frequent, the overhead of short-term latching was negligible.
On modern hardware, however, even short-term, uncontested latches can be expensive
and prevent scalability. The reason is that each latch acquisition causes cache line in-
validations for all other cores. As we show experimentally, this effect often prevents
scalability on multi-core CPUs.

Intra-query parallelism is not optional any more. For a long time, many systems
relied on parallelism from the “outside”, i.e., inter-query parallelism. With dozens
or hundreds of cores, intra-query parallelism is not an optional optimization because
many workloads simply do not have enough parallel query sessions. Without intra-
query parallelism, the computational resources of modern servers lie dormant. The
widely used PostgreSQL system, for example, will finally introduce (limited) intra-
query parallelism in the upcoming version 9.6—20 years after the project started.

Query engines should be designed with multi-core parallelism in mind. Some

5

1 Introduction

commercial systems added support for intra-query parallelism a decade ago. This
was often done by introducing “exchange” operators [52] that encapsulate parallelism
without redesigning the actual operators. This pragmatic approach was sufficient at a
time when the degree of parallelism in database servers was low (e.g., 10 threads). To
get good scalability on systems with dozens of cores, the query processing algorithms
should be redesigned from scratch with parallelism in mind.

Database systems should take Non-Uniform Memory Architecture (NUMA)
into account. In contrast to earlier SMP systems, where all processors shared a com-
mon memory bus, current systems are generally based on the Non-Uniform Memory
Architecture (NUMA). In this architecture each processor has its own memory, but can
transparently and cache-coherently access remote memory through an interconnect.
Because remote memory accesses are more expensive than local accesses, NUMA-
aware data placement can improve performance considerably. Thus, database systems
must optimize for NUMA to obtain optimal performance.

Together, these changes explain why traditional systems (e.g., as described in [66])
cannot fully exploit the resources provided today’s commodity servers. To utilize
modern hardware well, fundamental changes to core database components including
storage, concurrency control, low-level synchronization, query processing, logging,
etc. are necessary. Database systems specifically designed for modern hardware can
be orders of magnitude faster than their predecessors.

1.4 Outline

This thesis addresses the challenges enumerated above. The solutions were developed
within a general-purpose, relational database system (HyPer) and most experiments
measure end-to-end performance. Our contributions span the transaction processing,
query processing, and query optimization components.

In Chapter 2 we design a low-overhead, concurrent transaction processing engine
based on Hardware Transactional Memory (HTM). Until recently, transactional memory—
although a promising technique—suffered from the absence of an efficient hardware
implementation. Since Intel introduced the Haswell microarchitecture hardware trans-
actional memory is available in mainstream CPUs. HTM allows for efficient concur-
rent, atomic operations, which is also highly desirable in the context of databases.
On the other hand, HTM has several limitations that, in general, prevent a one-to-one
mapping of database transactions to HTM transactions. We devise several building
blocks that can be used to exploit HTM in main-memory databases. We show that
HTM allows one to achieve nearly lock-free processing of database transactions by
carefully controlling the data layout and the access patterns. The HTM component is
used for detecting the (infrequent) conflicts, which allows for an optimistic—and thus

6

1.4 Outline

very low-overhead execution—of concurrent transactions. We evaluate our approach
on a 4-core desktop and a 28-core server system and find that HTM indeed provides a
scalable, powerful, and easy to use synchronization primitive.

While Hardware Transactional Memory is easy to use and can offer good perfor-
mance, it is not yet widespread. Therefore, Chapter 3 studies alternative low-overhead
synchronization mechanisms for in-memory data structures. The traditional approach,
fine-grained locking, does not scale on modern hardware. Lock-free data structures,
in contrast, scale very well but are extremely difficult to implement and often require
additional indirections. We argue for a middle ground, i.e., synchronization proto-
cols that use locking, but only sparingly. We synchronize the Adaptive Radix Tree
(ART) [108] using two such protocols, Optimistic Lock Coupling and Read-Optimized
Write EXclusion (ROWEX). Both perform and scale very well while being much eas-
ier to implement than lock-free techniques.

Chapter 4 describes the parallel and NUMA-aware query engine of HyPer, which
scales up to dozens of cores. Our “morsel-driven” query execution framework, where
scheduling becomes a fine-grained run-time task that is NUMA-aware. Morsel-driven
query processing takes small fragments of input data (“morsels”) and schedules these
to worker threads that run entire operator pipelines until the next pipeline-breaking
operator. The degree of parallelism is not baked into the plan but can elastically change
during query execution. The dispatcher can react to the execution speed of different
morsels but also adjust resources dynamically in response to newly arriving queries
in the workload. Furthermore, the dispatcher is aware of data locality of the NUMA-
local morsels and operator state, such that the great majority of executions takes place
on NUMA-local memory. Our evaluation on the TPC-H and SSB benchmarks shows
extremely high absolute performance and an average speedup of over 30 with 32 cores.

Chapter 5 completes the description of HyPer’s query engine by proposing a design
for the SQL:2003 window function operator. Window functions, also known as an-
alytic OLAP functions, have been neglected in the research literature—despite being
part of the SQL standard for more than a decade and being a widely-used feature. Win-
dow functions can elegantly express many useful queries about time series, ranking,
percentiles, moving averages, and cumulative sums. Formulating such queries in plain
SQL-92 is usually both cumbersome and inefficient. Our algorithm is optimized for
high-performance main-memory database systems and has excellent performance on
modern multi-core CPUs. We show how to fully parallelize all phases of the operator
in order to effectively scale for arbitrary input distributions.

The only thing more important for achieving low query response times than a fast
and scalable query engine is query optimization. In Chapter 6 we shift our focus
from the query engine to the query optimizer. Query optimization has been studied
for decades, but most experiments were in the context of disk-based systems or were
focused on individual query optimization components rather than end-to-end perfor-

7

1 Introduction

mance. We introduce the Join Order Benchmark (JOB) and experimentally revisit the
main components in the classic query optimizer architecture using a complex, real-
world data set and realistic multi-join queries. We investigate the quality of industrial-
strength cardinality estimators and find that all estimators routinely produce large er-
rors. We further show that while estimates are essential for finding a good join order,
query performance is unsatisfactory if the query engine relies too heavily on these es-
timates. Using another set of experiments that measure the impact of the cost model,
we find that it has much less influence on query performance than the cardinality es-
timates. Finally, we investigate plan enumeration techniques comparing exhaustive
dynamic programming with heuristic algorithms and find that exhaustive enumeration
improves performance despite the sub-optimal cardinality estimates.

8

2 Exploiting Hardware Transactional
Memory in Main-Memory Databases

Parts of this chapter have previously been published in [109, 110].

2.1 Introduction

The support for hardware transactional memory (HTM) in mainstream processors like
Intel’s Haswell appears like a perfect fit for main-memory database systems. Transac-
tional memory [69] is a very intriguing concept that allows for automatic atomic and
concurrent execution of arbitrary code. Transactional memory allows for code that
behaves quite similar to database transactions:

transaction { transaction {
a = a− 10; c = c− 20;

b = b+ 10; a = a+ 20;

} }
Transaction 1 Transaction 2

Semantically, the code sections are executed atomically and in isolation from each
other. In the case of runtime conflicts (i.e., read/write conflicts or write/write conflicts)
a transaction might get aborted, undoing all changes performed so far. The transac-
tion model is a very elegant and well understood idea that is much simpler than the
classical alternative, namely fine-grained locking. Locking is much more difficult to
formulate correctly. Fine-grained locking is error prone and can lead to deadlocks due
to differences in locking order. Coarse-grained locking is simpler, but greatly reduces
concurrency. Transactional memory avoids this problem by keeping track of read and
write sets and thus by detecting conflicts on the memory access level. Starting with the
Intel’s Haswell microarchitecture this is supported by hardware, which offers excellent
performance.

11

2 Exploiting Hardware Transactional Memory in Main-Memory Databases

Th
ro

u
gh

p
u

t

serial execution

2 PL

opt. manual partiti
oning

HTM

Overhead of HTM/TSO

Overhead
SW versus HTM

Cores / Threads

Figure 2.1: HTM versus 2PL, sequential, partitioned

Figure 2.1 sketches the performance benefits of our HTM-based transaction man-
ager in comparison to other concurrency control mechanisms that we investigated. For
main-memory database applications the well-known Two Phase Locking scheme was
shown to be inferior to serial execution [63]! However, serial execution cannot ex-
ploit the parallel compute power of modern multi-core CPUs. Under serial execution,
scaling the throughput in proportion to the number of cores would require an optimal
partitioning of the database such that transactions do not cross these boundaries. This
allows for “embarrassingly” parallel execution—one thread within each partition. Un-
fortunately, this is often not possible in practice; therefore, the upper throughput curve
“opt. manual partitioning” of Figure 2.1 is only of theoretical nature. HTM, however,
comes very close to an optimal static partitioning scheme as its transaction processing
can be viewed as an adaptive dynamic partitioning of the database according to the
transactional access pattern.

However, transactional memory is no panacea for transaction processing. First,
database transactions also require properties like durability, which are beyond the
scope of transactional memory. Second, all current hardware implementations of trans-
actional memory are limited. For the Haswell microarchitecture, for example, the
scope of a transaction is limited, because the read/write set, i.e., every cache line a
transaction accesses, has to fit into the L1 cache with a capacity of 32KB. Further-
more, HTM transactions may fail due to a number of unexpected circumstances like
collisions caused by cache associativity, hardware interrupts, etc. Therefore, it is, in
general, not viable to map an entire database transaction to a single monolithic HTM
transaction. In addition, one always needs a “slow path” to handle the pathological
cases (e.g., associativity collisions).

We therefore propose an architecture where transactional memory is used as a build-

12

2.1 Introduction

T1 T1

T2

T3

T2

T3

Figure 2.2: Schematic illustration of static partitioning (left) and concurrency control
via HTM resulting in dynamic partitioning (right)

ing block for assembling complex database transactions. Along the lines of the general
philosophy of transactional memory we start executing transactions optimistically, us-
ing (nearly) no synchronization and thus running at full clock speed. By exploiting
HTM we get many of the required checks for free, without complicating the database
code, and can thus reach a much higher degree of parallelism than with classical lock-
ing or latching. In order to minimize the number of conflicts in the transactional mem-
ory component, we carefully control the data layout and the access patterns of the
involved operations, which allows us to avoid explicit synchronization most of the
time.

Note that we explicitly do not assume that the database is partitioned in any way.
In some cases, and in particular for the well-known TPC-C benchmark, the degree of
parallelism can be improved greatly by partitioning the database at the schema level
(using the warehouse attribute in the case of TPC-C). Such a static partitioning scheme
is exemplified on the left-hand side of Figure 2.2. VoltDB for example makes use of
static partitioning for parallelism [168]. But such a partitioning is hard to find in gen-
eral, and users usually cannot be trusted to find perfect partitioning schemes [98]. In
addition, there can always be transactions that cross partition boundaries, as illustrated
by Figure 2.2. In the figure the horizontal axis represents time and the colored areas
represent the read/write sets of transactions T1, T2, and T3. The read/write sets do
not overlap, but nevertheless there is no static partitioning scheme (horizontal line)
that isolates the transactions. These transactions have to be isolated with a serial (or
locking-based) approach as the static partitioning scheme cannot guarantee their isola-
tion. If available, we could still exploit partitioning information in our HTM approach,
of course, as then conflicts would be even more unlikely. But we explicitly do not as-
sume the presence of such a static partitioning scheme and rely on the implicit adaptive
partitioning of the transactions as sketched on the right-hand side of Figure 2.2.

The rest of this chapter is structured as follows: First, we discuss the different al-
ternatives for concurrency control within database systems in Section 2.2. Then, we

13

2 Exploiting Hardware Transactional Memory in Main-Memory Databases

synchronization method 1 thread 4 threads
2PL 50,541 108,756
serial execution 129,937 -
manually partitioned, serial 119,232 369,549

Table 2.1: Transaction rates for various synchronization methods in HyPer

discuss the advantages and limitations of hardware transactional memory in Section 2.3
and Section 2.4. In Section 2.5, we present our transaction manager, which uses hard-
ware transactional memory as a building block for highly concurrent transaction ex-
ecution. After that, we explain in Section 2.6 an HTM-friendly data layout which
minimizes false conflicts. Experimental results are explained in Section 2.7. Finally,
after presenting related work in Section 2.8, we summarize this chapter in Section 2.9.

2.2 Background and Motivation

As databases are expected to offer ACID transactions, they have to implement a mech-
anism to synchronize concurrent transactions. The traditional concurrency control
method used in most database systems is some variant of two-phase locking (2PL) [178].
Before accessing a database item (tuple, page, etc.), the transaction acquires a lock
in the appropriate lock mode (shared, exclusive, etc.). Conflicting operations, i.e.,
conflicting lock requests, implicitly order transactions relative to each other and thus
ensure serializability.

In the past this model worked very well. Concurrent transaction execution was nec-
essary to hide I/O latency, and the costs for checking locks was negligible compared
to the processing costs in disk-based systems. However, this has changed in modern
systems, where large parts of the data are kept in main memory, and where query pro-
cessing is increasingly CPU bound. In such a setup, lock-based synchronization con-
stitutes a significant fraction of the total execution time, in some cases even dominates
the processing [63, 134].

This observation has motivated some main-memory based systems to adopt a se-
rial execution model [63]: Instead of expensive synchronization, all transactions are
executed serially, eliminating any need for synchronization. And as a main-memory
based system does not have to hide I/O latency, such a model works very well for short,
OLTP-style transactions.

Table 2.1 shows TPC-C transaction rates under these two models. We used HyPer [87]
as the basis for the experiments. The serial execution mode easily outperforms 2PL.
Due to the inherent overhead of maintaining a synchronized lock manager in 2PL, se-
rial execution achieves 2.6 times the transaction rate of 2PL. This is a strong argument
in favor of the serial execution mode proposed by [63]. On the other hand, the fig-

14

2.2 Background and Motivation

ure also shows the weakness of serial execution: Increasing the degree of parallelism
in 2PL increases the transaction rate. Admittedly the effect is relatively minor in the
TPC-C setting, using 4 threads results in a speedup of only 2, but there still is an ef-
fect. Serial execution cannot make use of additional threads, and thus the transaction
rate remains constant. As the number of cores in modern systems grows while single-
threaded performance stagnates, this becomes more and more of a problem.

Systems like H-Store/VoltDB [168] or HyPer [87] tried to solve this problem by
partitioning the data. Both systems would partition the TPC-C workload along the
warehouse attribute, and would then execute all transactions concurrently that operate
on separate warehouses. If transactions access more than one warehouse, the system
falls back to the serial execution model. In the TPC-C benchmark this occurs for about
11% of the transactions. Nevertheless, this model works relatively well for TPC-C, as
shown in Figure 2.1, where it is about 3 times faster than serial execution for 4 threads.
But it is not very satisfying to depend on static partitioning.

First of all, it needs human intervention. The database administrator has to spec-
ify how the data should be partitioned; HyPer has no automatic mechanism for this,
whereas in H-Store there were attempts to derive such partitioning schemes automat-
ically, e.g., Schism [34]. But, as mentioned by Larson et al. [98], a good partitioning
scheme is often hard to find, in particular when workloads may shift over time. For
TPC-C the partitioning schema is obvious—as it was (artificially) specified as a schema
tree—but for other schemata it is not. Second, the partitioning scheme breaks if trans-
actions frequently cross their partition boundaries. For TPC-C this is not much of a
problem, as only relatively few transactions cross partition boundaries and the work-
load does not change, but in general it is hard to find a partitioning scheme that fits a
complex workload well. And it is important to note that a partition-crossing transaction
does not necessarily conflict with any other transaction! In the static partitioning exe-
cution model two transactions will be serialized if they access the same partition, even
if the data items they access are completely distinct. This is highlighted in Figure 2.2
where all three transactions on the left-hand side are viewed as potentially conflicting
as they (occasionally) cross their partition boundaries.

As this state of the art is not very satisfying, we will in the following develop a syn-
chronization mechanism that is as fine-grained as 2PL and, in terms of overhead, nearly
as cheap as serial execution. With our HTM-supported, dynamically-partitioned exe-
cution model the transactions shown on the right-hand side of Figure 2.2 are executed
in parallel without conflicts as their read/write-sets do not overlap.

Note that in this chapter we concentrate on relatively short, non-interactive transac-
tions. The methods we propose are not designed for transactions that touch millions
of tuples or that wait minutes for user interaction. In HyPer such long-running trans-
actions are moved into a snapshot with snapshot-isolation semantics [87, 134, 143].
As these snapshots are maintained automatically by the OS, there is no interaction be-

15

2 Exploiting Hardware Transactional Memory in Main-Memory Databases

tween these long-running transactions and the shorter transactions we consider here. In
general, any system that adopts our techniques will benefit from a separate snapshot-
ting mechanism to avoid the conflicts with long-running transactions, such as OLAP
queries and interactive transactions.

2.3 Transactional Memory

Traditional synchronization mechanisms are usually implemented using some form of
mutual exclusion (mutex). For 2PL, the DBMS maintains a lock structure that keeps
track of all currently held locks. As this lock structure is continuously updated by
concurrent transactions, the structure itself is protected by one (or more) mutexes [58].
On top of this, the locks themselves provide a kind of mutual exclusion mechanism,
and block a transaction if needed.

The problem with locks is that they are difficult to use effectively. In particular, find-
ing the right lock granularity is difficult. Coarse locks are cheap, but limit concurrency.
Fine-grained locks allow for more concurrency, but are more expensive and can lead
to deadlocks.

For quite some time now, transactional memory has been proposed as an alterna-
tive to fine grained locking [69]. The key idea behind transactional memory is that
a number of operations can be combined into a transaction, which is then executed
atomically. Consider the following small code fragment for transferring money from
one account to another account (using GCC syntax):

transfer(from,to,amount)
transaction atomic {
account[from]-=amount;
account[to]+=amount;
}

The code inside the atomic block is guaranteed to be executed atomically, and in
isolation. In practice, the transactional memory observes the read set and write set of
transactions, and executes transactions concurrently as long as the sets do not conflict.
Thus, transfers can be executed concurrently as long as they affect different accounts,
they are only serialized if they touch a common account. This behavior is very hard
to emulate using locks. Fine-grained locking would allow for high concurrency, too,
but would deadlock if accounts are accessed in opposite order. Transactional memory
solves this problem elegantly using speculation (and conflict detection).

Transactional memory has been around for a while, but has usually been imple-
mented as Software Transactional Memory (STM), which implements transactions on
the programming-language level. Although STM does remove the complexity of lock

16

2.3 Transactional Memory

maintenance, it causes a significant slowdown during execution and thus had limited
practical impact [28].

2.3.1 Hardware Support for Transactional Memory

This changed with the Haswell microarchitecture from Intel, which offers Hardware
Transactional Memory [73]. Note that Haswell was not the first CPU with hard-
ware support for transactional memory, for example IBM’s Blue Gene/Q supercomput-
ers [176] and System z mainframes [76] offered it before, but it is the first mainstream
CPU to implement HTM. And in hardware, transactional memory can be implemented
much more efficiently than in software: Haswell uses its highly optimized cache co-
herence protocol, which is needed for all multi-core processors anyway, to track read
and write set collisions [155]. Therefore, Haswell offers HTM nearly for free.

Even though HTM is very efficient, there are also some restrictions. First of all,
the size of a hardware transaction is limited. For the Haswell microarchitecture it
is limited to the size of the L1 cache, which is 32 KB. This implies that, in general,
it is not possible to simply execute a database transaction as one monolithic HTM
transaction. Even medium-sized database transactions would be too large. Second, in
the case of conflicts, the transaction fails. In this case the CPU undoes all changes, and
then reports an error that the application has to handle. And finally, a transaction might
fail due to spurious hardware implementation details like cache associativity limits,
interrupts, etc. Some of these failure modes are documented by Intel, while others are
not. So, even though in most cases HTM will work fine, there is no guarantee that a
transaction will ever succeed (if executed as an HTM transaction).

Therefore, Intel proposes (and explicitly supports by specific instructions) using
transactional memory for lock elision [155]. Conceptually, this results in code like
the following:

transfer(from,to,amount)
atomic-elide-lock (lock) {

account[from]-=amount;
account[to]+=amount;

}

Here, we still have a lock, but ideally the lock is not used at all—it is elided. When
the code is executed, the CPU starts an HTM transaction, but does not acquire the
lock as shown on the left-hand side of Figure 2.3. Only when there is a conflict the
transaction rolls back, acquires the lock, and is then executed non-transactionally. The
right-hand side of Figure 2.3 shows the fallback mechanism to exclusive serial execu-
tion, which is controlled via the (previously elided) lock. This lock elision mechanism
has two effects. First, ideally, locks are never acquired and transactions are executed

17

2 Exploiting Hardware Transactional Memory in Main-Memory Databases

Lock

optimistic parallel
execution

T1 T2

Lock

validation fails

T1 T2

Lock

serial execution

T1

T2
T3

Figure 2.3: Lock elision (left), conflict (middle), and serial execution (right)

concurrently as much as possible. Second, if there is an abort due to a conflict or
hardware-limitation, there is a “slow path” available that is guaranteed to succeed.

2.3.2 Caches and Cache Coherency

Even though Intel generally does not publish internal implementation details, Intel did
specify two important facts about Haswell’s HTM feature [155]:

• The cache coherency protocol is used to detect transactional conflicts.

• The L1 cache serves as a transactional buffer.

Therefore, it is crucial to understand Intel’s cache architecture and coherency protocol.
Because of the divergence of DRAM and CPU speed, modern CPUs have multiple

caches in order to accelerate memory accesses. Intel’s cache architecture is shown in
Figure 2.4, and consists of a local L1 cache (32 KB), a local L2 cache (256 KB), and a
shared L3 cache (2-45 MB). All caches use 64 byte cache blocks (lines) and all caches
are transparent, i.e., programs have the illusion of having only one large main memory.
Because on multi-core CPUs each core generally has at least one local cache, a cache
coherency protocol is required to maintain this illusion.

Most CPU vendors, including Intel and AMD, use extensions of the well-known
MESI protocol [67]. The name of the protocol derives from the four states that each
cache line can be in (Modified, Exclusive, Shared, or Invalid). To keep multiple caches
coherent, the caches have means of intercepting (“snooping”) each other’s load and
store requests. For example, if a core writes to a cache line which is stored in multiple
caches (Shared state), the state must change to Modified in the local cache and all

18

2.3 Transactional Memory

Core 0
L1 L2

32KB 256KB

Core 1
L1 L2

32KB 256KB

Core 2
L1 L2

32KB 256KB

Core 3
L1 L2

32KB 256KB

interconnect
(allows snooping and signalling)

copy of
core 0 cache

copy of
core 1 cache

copy of
core 2 cache

copy of
core 3 cache

L3 cachememory controller

Figure 2.4: Intel cache architecture

copies in remote caches must be invalidated (Invalid state). This logic is implemented
in hardware using the cache controller of the shared L3 cache that acts as a central
component where all coherency traffic and all DRAM requests pass through.

The key insight that allows for an efficient HTM implementation is that the L1 cache
can be used as a local buffer. All transactionally read or written cache lines are marked
and the propagation of changes to other caches or main memory is prevented until the
transaction commits. Read/write and write/write conflicts are detected by using the
same snooping logic that is used to keep the caches coherent. And since the MESI
protocol is always active and commits/aborts require no inter-core coordination, trans-
actional execution on Haswell CPUs incurs almost no overhead. The drawback is that
the transaction size is limited to the L1 cache. This is fundamentally different from
IBM’s Blue Gene/Q architecture, which allows for up to 20 MB per transaction using
a multi-versioned L2 cache, but has relatively large runtime overhead [176].

Besides the nominal size of the L1 cache, another limiting factor for the maximum
transaction size is cache associativity. Caches are segmented into sets of cache lines in
order to speed up lookup and to allow for an efficient implementation of the pseudo-
LRU replacement strategy (in hardware). Haswell’s L1 cache is 8-way associative,
i.e., each cache set has 8 entries. This has direct consequences for HTM, because all
transactionally read or written cache lines must be marked and kept in the L1 cache
until commit or abort. Therefore, when a transaction writes to 9 cache lines that happen
to reside in the same cache set, the transaction is aborted. And since the mapping
from memory address to cache set is deterministic (bits 7-12 of the address are used),
restarting the transaction does not help, and an alternative fallback path is necessary
for forward progress.

In practice, bits 7-12 of memory addresses are fairly random, and aborts of very

19

2 Exploiting Hardware Transactional Memory in Main-Memory Databases

0%

25%

50%

75%

100%

0 8KB 16KB 24KB 32KB
transaction size

ab
or

t p
ro

ba
bi

lit
y

Figure 2.5: Aborts from random memory writes

small transactions are unlikely. Nevertheless, Figure 2.5 shows that the abort probabil-
ity quickly rises when more than 128 random cache lines (only about one quarter of the
L1 cache) are accessed1. This surprising fact is caused by a statistical phenomenon re-
lated to the birthday paradox: For example with a transaction size of 16 KB, for any one
cache set it is quite unlikely that it contains more than 8 entries. However, at the same
time, it is likely that at least one cache set exceeds this limit. The hardware ensures
that the eviction of a cache line that has been accessed in an uncommitted transaction
leads to a failure of this transaction, as it would otherwise become impossible to detect
conflicting writes to this cache line.

The previous experiment was performed with accesses to memory addresses fully
covered by the translation lookaside buffer (TLB). TLB misses do not immediately
cause transactions to abort, because, on x86 CPUs, the page table lookup is performed
by the hardware (and not the operating system). However, TLB misses do increase the
abort probability, as they cause additional memory accesses during page table walks.

Besides memory accesses, another important reason for transactional aborts is in-
terrupts. Such events are unavoidable in practice and limit the maximum duration of
transactions. Figure 2.6 shows that transactions that take more than 1 million CPU
cycles (about 0.3 ms) will likely be aborted. This happens due to interrupts and even
if these transaction do not execute any memory operations. These results clearly show
that Haswell’s HTM implementation cannot be used for long-running transactions but
is designed for short critical sections. Despite these limitations we found that Haswell’s
HTM implementation offers excellent scalability as long as transactions are short and
free of conflicts with other transactions.

1The experiments in this section were performed on an Intel i5 4670T.

20

2.4 Synchronization on Many-Core CPUs

0%

25%

50%

75%

100%

10K 100K 1M 10M
transaction duration in cycles (log scale)

ab
or

t p
ro

ba
bi

lit
y

Figure 2.6: Aborts from transaction duration

2.4 Synchronization on Many-Core CPUs

To execute transactional workloads, a DBMS must provide (1) high-level concurrency
control to logically isolate transactions, and (2) a low-level synchronization mechanism
to prevent concurrent threads from corrupting internal data structures. Both aspects are
very important, as each of them may prevent scalability. In this section we focus on the
low-level synchronization aspect, before describing our concurrency control scheme in
Section 2.5. We experimentally evaluate HTM on a Haswell system with 28 cores and
compare it with common synchronization alternatives like latching.

The experiments in this section use a Haswell EP system with two Intel E5-2697
v3 processors that are connected through an internal CPU interconnect, which Intel
calls QuickPath Interconnect (QPI). The processor is depicted in Figure 2.7 and has 14
cores, i.e., in total, the system has 28 cores (56 HyperThreads). The figure also shows
that the CPU has two internal communication rings that connect cores and 2.5 MB
slices of the L3 cache. An internal link connects these two rings, but is not to be
confused with the QPI interconnect that connects the two sockets of the system. The
system supports two modes, which can be selected in the systems’ BIOS:

• The hardware can hide the internal ring internal structure, i.e., our two-socket
system would expose two NUMA nodes with 14 cores each.

• In the “cluster on die” configuration each internal ring is exposed as a separate
NUMA node, i.e., our two-socket system has four NUMA nodes with 7 cores
each.

Using the first setting, each socket has 35 MB of L3 cache but higher latency, because
an L3 access often needs to use the internal link. The cluster-on-die configuration,

21

2 Exploiting Hardware Transactional Memory in Main-Memory Databases

QPI interconnect
(to other socket)

core 0

core 1

core 2

core 3

core 4

core 5

core 6

memory controller

L3

L3

L3

L3

L3

L3

L3

core 10

core 11

core 12

core 13

core 7

core 8

core 9

L3

L3

L3

L3

L3

L3

L3

internal link
(to other ring)

memory controller

Figure 2.7: Intel E5-2697 v3

which we use for all experiments, has lower latency and 17.5 MB of cache per “clus-
ter”, each of which consists of 7 threads.

As has been widely reported, all Haswell systems shipped so far, including our sys-
tem, contain a hardware bug in the Transactional Synchronization Extensions (TSX).
According to Intel, this bug occurs “under a complex set of internal timing conditions
and system events“. We have not encountered this bug during our tests. It seems to be
very rare, as evidenced by the fact that it took Intel over a year to even find it. Further-
more, Intel has announced that the bug will be fixed in upcoming CPU generations.

2.4.1 The Perils of Latching

Traditionally, database systems synchronize concurrent access to internal data struc-
tures (e.g., index structures) with latches. Internally, a latch is implemented using
atomic operations like compare-and-swap, which allow one to exclude other threads
from entering a critical section. To increase concurrency, read/write latches are often
used, which, at any time, allow multiple concurrent readers but only a single writer.
Unfortunately, latches do not scale on modern hardware as Figure 2.8, which performs
lookups in an Adaptive Radix Tree [108], shows. The curve labeled as “rw spin lock”
shows the performance when we add a single read/write latch at the root node of the
tree2. With many cores, using no synchronization is faster by an order of magnitude!
Note that this happens on a read-only workload without any logical contention, and
is not caused by a bad latch implementation3: When we replace the latch with a sin-

2In reality, one would use lock-coupling and one latch at each node, so the performance would be even
worse.

3We used spin rw mutex from the Intel Thread Building Blocks library.

22

2.4 Synchronization on Many-Core CPUs

0

25

50

75

1 14 28 42 56
threads

M
 o

ps
/s

atomic

no sync

rw_spin_lock

Figure 2.8: Lookups in a search tree with 64M entries

gle atomic integer increment operation, which is the cheapest possible atomic write
operation, the scalability is almost as bad as with the latch.

The reason for this behavior is that to acquire a latch, CPUs must acquire exclusive
access to the cache line where the latch is stored. As a result, threads compete for
this cache line, and every time the latch is acquired, all copies of this cache line are
invalidated in all other cores (“cache line ping-pong”). This happens even with atomic
operations like atomic increment, although this operation never fails in contrast to
compare-and-swap, which is usually used to implement latches. Note that latches also
result in some overhead during single-threaded execution, but this overhead is much
lower as the latch cache line is not continuously invalidated. Cache line ping-pong is
often the underlying problem that prevents systems from scaling on modern multi-core
CPUs.

2.4.2 Latch-Free Data Structures

As a reaction to the bad scalability of latching some systems use latch-free data struc-
tures. Microsoft’s in-memory transaction engine Hekaton, for example, uses a lock-
free hash table and the latch-free Bw-Tree [114] as index structures. In the latch-free
approach read accesses can proceed in a non-blocking fashion without acquiring any
latches and without waiting. Writes must make sure that any modification is performed
using a sequence of atomic operations while ensuring that simultaneous reads are not
disturbed. Since readers do not perform writes to global memory locations, this ap-
proach generally results in very good scalability for workloads that mostly consist of
reads. However, latch-free data structure have a number of disadvantages:

23

2 Exploiting Hardware Transactional Memory in Main-Memory Databases

• The main difficulty is that, until the availability of Hardware Transactional Mem-
ory, CPUs provided only very primitive atomic operations like compare-and-
swap, and a handful of integer operations. Synchronizing any non-trivial data
structure with this limited tool set is very difficult and bug-prone, and for many
efficient data structures, including the Adaptive Radix Tree, so far, no latch-free
synchronization protocol exists. In practice, data structures must be designed
with latch-freedom in mind, and the available atomic operations restrict the de-
sign space considerably.

• And even if one succeeds in designing a latch-free data structure, this may not
guarantee optimal performance. The reason is that, usually, additional indirec-
tions must be introduced, which often add significant overhead in comparison
with an unsynchronized variant of the data structure. The Bw-Tree [114], for
example, requires a page table indirection, which must be used on each node
access and incurs additional cache misses.

• Finally, memory reclamation is an additional problem. Without latches, a thread
can never be sure when it is safe to reclaim memory, because concurrent readers
might still be active. An additional mechanism (e.g., epoch-based reclamation),
which again adds some overhead, is required to allow for safe memory reclama-
tion.

For these reasons, we believe that it is neither realistic nor desirable to replace all
the custom data structures used by database systems with latch-free variants. Hardware
Transactional Memory offers an easy to use, and, as we will show, efficient alternative.
In particular, HTM has no memory reclamation issues and one can simply wrap each
data structure access in a hardware transaction. This means that data structures can
be designed without spending too much thought on how to synchronize them—though
some understanding of how HTM works and its limitations is certainly beneficial.

2.4.3 Hardware Transactional Memory on Many-Core Systems

Figure 2.9 shows the performance of HTM on the same read-only workload as Fig-
ure 2.8. We compare different lock elision approaches (with a single global, elided
latch), and we again show the performance without synchronization as a theoretical
upper bound. Surprisingly, the built-in hardware lock elision (HLE) instructions do
not scale well when more than 4 cores are used. The internal implementation of HLE
is not disclosed, but the reason for its bad performance is likely an insufficient number
of restarts. As we have mentioned previously, a transaction can abort spuriously for
many reasons. A transaction should therefore retry a number of times instead of giving
up immediately and acquiring the fallback latch. The graph shows that for a read-only

24

2.4 Synchronization on Many-Core CPUs

0

25

50

75

1 14 28 42 56
threads

M
 o

ps
/s

no sync

7 or more restarts

3 restarts

2 restarts

1 restarts
0 restarts

built-in HLE

Figure 2.9: Lookups in an ART index with 64M integer entries under a varying number
of HTM restarts

workload, restarting at least 7 times is necessary, though a higher number of restarts
also works fine.

Therefore, we implemented lock elision manually using the restricted transactional
memory (RTM) primitives xbegin, xend, xabort, but with a configurable num-
ber of restarts. Figure 2.10 shows the state diagram of our implementation. Initially
the optimistic path (left-hand side of the diagram) is taken, i.e., the critical section is
simply wrapped by xbegin and xend instructions. If an abort happens in the critical
section (e.g., due to a read/write conflict), the transaction is restarted a number of times
before falling back to actual latch acquisition (right-hand side of the diagram). Fur-
thermore, transactions add the latch to their read set and only proceed into the critical
section optimistically when the latch is free. When it is not free, this means that an-
other thread is in the critical section exclusively (e.g., due to code that cannot succeed
transactionally). In this case, the transaction has to wait for the latch to become free,
but can then continue to proceed optimistically using RTM. Note that all this logic is
completely hidden behind a typical acquire/release latch interface, and—once it has
been implemented—it can be used just as easily as ordinary latches or Itel’s Hardware
Lock Elision instructions. Furthermore, as Diegues and Romano [39] have shown, the
configuration parameters of the restart strategy can be determined dynamically.

When sufficient restarts are used, the overhead of HTM in comparison to unsyn-
chronized access is quite low. Furthermore, we found that HyperThreading improves
performance for many workloads, though one has to keep in mind that because each
pair of HyperThreads shares one L1 cache, the effective maximum working set size is
halved, so there might be workloads where it is beneficial to avoid this feature.

Good scalability on read-only workloads should be expected, because only infre-

25

2 Exploiting Hardware Transactional Memory in Main-Memory Databases

xbegin() xabort()

latch is
not free

latch is
free

abort

retry< m
ax

success

xend()

acquire latch

re
try

=
m

ax

release latch

optimistic fallback

pause

increment retry
counter

latch is
free

latch is
not free

critical section critical section

Figure 2.10: Implementation of lock elision with restarts using RTM operations

26.0x

16.1x

12.2x

0.8x
0

30

60

90

120

1 14 28 42 56
threads

M
 o

ps
/s

malloc

pre−allocate

pre−allocate + memset

tcmalloc

Figure 2.11: 64M random inserts into an ART index using different memory allocators
and 30 restarts

26

2.4 Synchronization on Many-Core CPUs

quent, transient failures occur, thus we now turn our attention to more challenging
workloads. Figure 2.11 reports the results for a random insert workload with 30 restarts
and different memory allocators. With the default memory allocator on Linux (labeled
as “malloc”), the insert workload does not scale at all. The tcmalloc4 (Thread-Caching
Malloc) allocator improves scalability considerably, but the speedup with 28 threads
is still only 12.2×. Optimal scalability is only achieved with pre-allocated and pre-
initialized5 memory, which results in a speedup of 26.0× with 28 cores. Initialization
is important, because the first write to a freshly-allocated memory page always causes
the transaction to abort as an operating system trap that initializes the page happens.
Although these page initialization operations are quite infrequent (less than 5% of the
single-threaded execution time), they cause the elided latch to be acquired and there-
fore full serialization of all threads occurs.

So far, in all experiments the memory was interleaved between the four memory
nodes. In order to investigate the NUMA effects on HTM, we repeated the insert
and lookup experiments with 1 and 7 threads, but forced the threads and memory
allocations to one cluster, one socket, or two sockets:

1 cluster 1 socket 2 sockets
insert (1 thread) 5.3 4.3 3.0
insert (7 threads) 30.6 26.8 20.2
lookup (1 thread) 9.2 5.4 3.6
lookup (7 threads) 53.0 36.0 24.5

The results are in M ops/s and show that there are significant NUMA effects: remote
accesses are up to a factor 2.5 more expensive than local accesses. At the same time,
HTM scales very well even across clusters or sockets. To some extent, this is not
very surprising, because NUMA systems have an effective cache coherency protocol
implementation, which is also used for efficient transactional conflict detection.

Finally, let us close this section with an experiment that shows that modern CPUs
do not scale under very high contention regardless of which synchronization primitives
are used. Figure 2.12 shows the performance for an extreme workload where there is
a single atomic counter that is incremented by all threads. We implemented a number
of synchronization primitives:

• Intel’s Hardware Lock Elision feature (“HLE”)

• hardware transactional memory as described in Figure 2.10 (“RTM”)

4http://goog-perftools.sourceforge.net/doc/tcmalloc.html
5Modern operating systems by default do not provide physical memory pages on allocation. Instead, the

first write a to page will cause a context switch into the kernel that will provide the page. Scalability
with HTM is affected because a context switch always aborts the transaction. It is therefore beneficial
to allocate and initialize memory outside of HTM transactions.

27

http://goog-perftools.sourceforge.net/doc/tcmalloc.html

2 Exploiting Hardware Transactional Memory in Main-Memory Databases

0

50

100

150

1 14 28 42 56
threads

M
 o

ps
/s

atomic

CAS

HLE
OS mutex
RTM

Figure 2.12: Incrementing a single, global counter (extreme contention)

• operating system mutex (“OS mutex”)

• atomic increment instruction (“atomic”)

• atomic compare-and-swap instruction (“CAS”)

In all cases performance degrades with more cores due to cache line ping-pong. For
workloads with high contention one needs an approach that solves the root cause, phys-
ical contention, e.g., by duplicating the contended item [137].

2.4.4 Discussion

The great advantage of HTM is that it is the only synchronization approach that of-
fers good performance and scalability while being very easy to use. Our experiments
with hardware transactional memory on a 28-core system with Non-Uniform Memory
Access (NUMA) have shown that HTM can indeed scale to large systems. However,
we have also seen that to get good performance a number of important points must be
considered:

• The built-in Hardware Lock Elision feature does not scale when many cores are
used.

• Instead, one should implement lock elision using the Restricted Transactional
Memory primitives, and set the number of retries to 20 or more.

• Additionally, one has to make sure that the percentage of transactions that cannot
be executed transactionally, e.g., due to kernel traps, is very low. Otherwise

28

2.5 HTM-Supported Transaction Management

failed lock elision will cause serialization, and Amdahl’s Law severely limits
scalability.

• HTM, just like latching or atomic operations, does not scale under very high
contention workloads.

Nevertheless, HTM is a powerful and efficient new synchronization primitive for many-
core systems.

2.5 HTM-Supported Transaction Management

Writing scalable and efficient multithreaded programs is widely considered a very dif-
ficult problem. In particular, it is very hard to decide at which granularity latching/lock-
ing should be performed: if very fine-grained latching is used, the additional overhead
will annihilate any speedup from parallelism; with coarse-grained latches, parallelism
is, limited. For non-trivial programs, this is a very difficult problem, and the most ef-
ficient choice can often only be decided empirically. The granularity problem is even
more difficult for a database system because it must efficiently support arbitrary work-
loads. With hardware support, transactional memory offers an elegant solution: As
long as conflicts are infrequent, HTM offers the parallelism of fine-grained latching,
but without its overhead; if hotspots occur frequently, the best method in main-memory
databases is serial execution, which is exactly the fallback path for HTM conflicts.
Therefore, HTM is a highly promising building block for high performance database
systems.

2.5.1 Mapping Database Transactions to HTM Transactions

As the maximum size of hardware transactions is limited, only a database transaction
that is small can directly be mapped to a single hardware transaction. Therefore, we
assemble complex database transactions by using hardware transactions as building
blocks, as shown in Figure 2.13. The key idea here is to use a customized variant of
timestamp ordering (TSO) to “glue” together these small hardware transactions. TSO
is a classic concurrency control technique, which was extensively studied in the context
of disk-based and distributed database systems [27, 16]. For disk-based systems, TSO
is not competitive to locking because most read accesses result in an update of the
read timestamp, and thus a write to disk. These timestamp updates are obviously
much cheaper in RAM. Fine-grained locking, in contrast, is much more expensive
than maintaining timestamps in main memory, as we will show in Section 2.7.

Timestamp ordering uses read and write timestamps to identify read/write and write/write
conflicts. Each transaction is associated with a monotonically increasing timestamp,
and whenever a data item is read or updated its associated timestamp is updated, too.

29

2 Exploiting Hardware Transactional Memory in Main-Memory Databases

HTM transaction
conflict detection: read/write sets in hardware
elided lock: latch

single tuple access
verify/update tuple timestamps

...

...

database transaction

conflict detection: read/write sets via timestamps
elided lock: serial execution

request a new timestamp, record safe timestamp

release timestamp, update safe timestamp

HTM transaction
conflict detection: read/write sets in hardware
elided lock: latch

single tuple access
verify/update tuple timestamps

HTM
 co

nf
lic

t

HTM
 co

nf
lic

t

tim
es

ta
m

p
co

nf
lic

t

Figure 2.13: Transforming database transactions into HTM transactions

The read timestamp of a data item records the youngest reader of this particular item,
and the write timestamp records the last writer. This way, a transaction recognizes if
its operation collides with an operation of a “younger” transactions (i.e., a transaction
with a larger timestamp), which would be a violation of transaction isolation. In par-
ticular, an operation fails if a transaction tries to read data from a younger transaction,
or if a transaction tries to update a data item that has already been read by a younger
transaction.

Basic, textbook TSO [27] has two issues: First, by default it does not prevent phan-
toms. Second, some care is needed to prevent non-recoverable schedules, as by default
transactions are allowed to read data from older, but potentially non-committed, trans-
actions. To resolve both issues (phantoms and dirty reads), we deviate from basic TSO
by introducing a “safe timestamp”, i.e., a point in time where it is known that all older
transactions have already been committed. With classical TSO, when a transaction
tries to read a dirty data item (marked by a dirty bit) from another transaction, it must
wait for that transaction to finish. In main-memory database systems running at full
clock speed, waiting is very undesirable.

We avoid both waiting and phantom problems with the safe timestamp concept.
The safe timestamp TSsafe is the youngest timestamp with the following property:

30

2.5 HTM-Supported Transaction Management

All transactions with an older timestamp TSold with old ≤ safe have already been
committed or aborted. While regular TSO compares transaction timestamps directly,
we compare timestamps to the safe timestamp of each transaction: Everything that is
older than the safe timestamp can be safely read, and everything that has been read
only by transactions up to the safe timestamp can safely be modified. Note that we
could also access or modify some tuples with newer timestamps, namely those from
transactions that have already committed after this transaction started. But this would
require complex and expensive checks during tuple access, in particular if one also
wants to prevent phantoms. We therefore use the safe timestamp as a cheap, though
somewhat conservative, mechanism to ensure serializability. In the scenario

TS1
TS2

TS3 TS4
TS5

the safe timestamp of TS5 would be set to TS2. So transaction TS5 would validate its
read access such that only data items with a write timestamp TSW ≤ TS2 are allowed.
Write accesses on behalf of TS5 must additionally verify that the read timestamp of
all items to be written satisfies the condition TSR ≤ TS2. Obviously, a read or write
timestamp TS = TS5 is permitted as well—in case a transaction accesses the same
data item multiple times.

2.5.2 Conflict Detection and Resolution

In our scheme, the read and the write timestamps are stored at each tuple. After looking
up a tuple in an index, its timestamp(s) must be verified and updated. Each single
tuple access, including index traversal and timestamp update, is executed as a hardware
transaction using lock elision. The small granularity ensures that false aborts due to
hardware limitations are very unlikely, because Haswell’s hardware transactions can
access dozens of cache lines (cf. Section 2.3).

Nevertheless, two types of conflicts may occur: If HTM detects a conflict (short
blue arrows in Figure 2.13), the hardware transaction is restarted, but this time the
latch is acquired. Rolling back a hardware transaction is very cheap, as it only involves
invalidating the transactionally modified cache lines, and copies of the original content
can still be found in the L2 and/or L3 cache.

For timestamp conflicts, which are detected in software (long red arrows in Fig-
ure 2.13), the system must first roll back the database transaction. This rollback uti-
lizes the “normal” logging and recovery infrastructure of the database system, i.e.,
the undo-log records of the partial database transaction are applied in an ARIES-style

31

2 Exploiting Hardware Transactional Memory in Main-Memory Databases

acquireHTMLatch(account.latch)
tid=uniqueIndexLookup(account, ...)
verifyRead(account, tid)
balance=loadAttribute(account, ..., tid)
releaseHTMLatch(account.latch)

acquireHTMLatch(account.latch)
tid=uniqueIndexLookup(account, ...)
verifyWrite(account, tid)
logUpdate(account, tid, ...)
updateTuple(account, tid, ...)
releaseHTMLatch(account.latch)

BEGIN TRANSACTION;

 SELECT balance
 FROM account
 WHERE id=from;

 IF balance>amount

 UPDATE account
 SET balance=balance-amount
 WHERE id=from;

 UPDATE account
 SET balance=balance+amount
 WHERE id=to;

COMMIT TRANSACTION;

tuple=getTuple(account, tid)
if ((tuple.writeTS>safeTSand tuple.writeTS!=now) OR
 (tuple.readTS>safeTS and tuple.readTS!=now)) {
 releaseHTMLatch(accout.latch)
 rollback()
 handleTSConflict()
}
tuple.writeTS=max(tuple.writeTS, now)

primary key index

Figure 2.14: Implementing database transactions with timestamps and lock elision

compensation [133]. Then, the transaction is executed serially by using a global lock,
rolling the log forward again. This requires logical logging and non-interactive trans-
actions, as we cannot roll a user action backward or forward. We use snapshots to
isolate interactive transactions from the rest of the system [134]. The fallback to se-
rial execution ensures forward progress, because in serial execution a transaction will
never fail due to conflicts. Note that it is often beneficial to optimistically restart the
transaction a number of times instead of resorting to serial execution immediately, as
serial execution is very pessimistic and prevents parallelism.

Figure 2.14 details the implementation of a database transaction using lock elision
and timestamps. The splitting of stored procedures into smaller HTM transactions is
fully automatic (done by our compiler) and transparent for the programmer. As shown
in the pseudo code, queries or updates (within a database transaction) that access a sin-
gle tuple through a unique index are directly translated into a single HTM transaction.
Larger statements like range scans should be split into multiple HTM transactions,
e.g., one for each accessed tuple. The index lookup and timestamp checks are pro-
tected using an elided latch, which avoids latching the index structures themselves.
The implementation of the HTM latch is described in Section 2.4.3.

2.5.3 Optimizations

How the transaction manager handles timestamp conflicts is very important for perfor-
mance. If the conflict is only caused by the conservatism of the safe timestamp (i.e.,

32

2.5 HTM-Supported Transaction Management

regular TSO would have no conflict), it is sometimes possible to avoid rolling back
the transaction. If the conflicting transaction has a smaller timestamp and has already
finished, the apparent conflict can be ignored. This optimization is possible because
the safe timestamp cannot overtake a currently running transaction’s timestamp.

As mentioned before, it is often beneficial to restart an aborted transaction a number
of times, instead of immediately falling back to serial execution. In order for the restart
to succeed, the safe timestamp must have advanced past the conflict timestamp. Since
this timestamp is available (it triggered the abort), the transaction can wait, while pe-
riodically recomputing the safe timestamp until it has advanced sufficiently. Then the
transaction can be restarted with a new timestamp and safe timestamp. The disadvan-
tage of this approach is that during this waiting period no useful work is performed by
the thread.

A more effective strategy is to suspend the aborted transaction and execute other
transactions instead. Once the safe timestamp has advanced past the conflicting trans-
action’s timestamp that transaction can be resumed. This strategy avoids wasteful wait-
ing. We found rollback and re-execution to be quite cheap because the accessed data
is often in cache. Therefore, our implementation immediately performs an abort after
a timestamp conflict, as shown in Figure 2.14, and executes other transactions instead,
until the safe timestamp has sufficiently advanced. We additionally limit the number of
times a transaction is restarted before falling back to serial execution—thus ensuring
forward progress.

While our description here and also our initial implementation uses both read and
write timestamps, it is possible to avoid read timestamps. Read timestamps are a bit
unfortunate, as they can cause “false” HTM conflicts due to parallel timestamp updates,
even though the read operations themselves would not conflict. Semantically the read
timestamps are used to detect if a tuple has already been read by a newer transaction,
which prohibits updates by older transactions (as they would destroy serializability).
However, the read timestamps can be avoided by keeping track of the write timestamps
of all data items accessed (read or written) by a certain transaction. Then, at commit
time, the transaction re-examines the write timestamps of all data items and aborts if
any one of them has changed [45], ensuring serializability. We plan to implement this
technique in future work, and expect to get even better performance in the case of read
hotspots.

It is illustrative to compare our scheme to software transactional memory (STM)
systems. Indeed, our scheme can be considered an HTM-supported implementation of
STM. However, we get significantly better performance than pure STM by exploiting
DBMS domain knowledge. For example, index structures are protected from concur-
rent modifications by the HTM transaction, but are not tracked with timestamps, as full
transaction isolation would in fact be undesirable there. This is similar to B-tree latch-
ing in disk-based systems—however, at minimal cost. The indexed tuples themselves

33

2 Exploiting Hardware Transactional Memory in Main-Memory Databases

are isolated via timestamps to ensure serializable transaction behavior. Note further
that our interpretation of timestamps is different from regular TSO [27]: Instead of
deciding about transaction success and failure as in TSO, we use timestamps to detect
intersecting read/write sets, just like the hardware itself for the HTM part. In the case
of conflicts, we do not abort the transaction or retry with a new timestamp an indefinite
number of times, but fall back to the more restrictive sequential execution mode that
ensures forward progress and guarantees the eventual success of every transaction.

2.6 HTM-Friendly Data Storage

Transactional memory synchronizes concurrent accesses by tracking read and write
sets. This avoids the need for fine-grained locking and greatly improves concurrency
as long as objects at different memory addresses are accessed. However, because HTM
usually tracks accesses at cache line granularity, false conflicts may occur. For exam-
ple, if the two data items A and B happen to be stored in a single cache line, a write to
A causes a conflict with B. This conflict would not have occurred if each data item had
its own dedicated lock. Therefore, HTM presents additional challenges for database
systems that must be tackled in order to efficiently utilize this feature.

2.6.1 Data Storage with Zone Segmentation

With a straightforward contiguous main-memory data layout, which is illustrated on
the left-hand side of Figure 2.15, an insert into a relation results in appending the
tuple to the end of the relation. It is clear that such a layout does not allow concurrent
insertions, because each insert writes to the end of the relation. Additionally, all inserts
will try to increment some variableN which counts the number of tuples. The memory
location at the end of the table and the counter N are hotspots causing concurrent
inserts to fail.

In order to allow for concurrent inserts, we use multiple zones per relation, as shown
on the right-hand side of Figure 2.15. Each relation has a constant number of these
zones, e.g., two times the number of hardware threads. A random zone number is
assigned to each transaction, and all inserts of that transaction use this local zone.
The same zone number is also used for inserts into other relations. Therefore, with
an appropriately chosen number of zones, concurrent inserts can proceed with only a
small conflict probability, even if many relations are affected. Besides the relatively
small insert zones, each relation has a main zone where, for large relations, most tuples
are stored.

The boundary is stored in a counter N . For each zone i, the base Bi and the next
insert position Ni are maintained. When a zone becomes full (i.e., when Ni reaches
Bi+1), it is collapsed into the neighboring zone, and a new zone at the end of the table

34

2.6 HTM-Friendly Data Storage

Ti: insert

Tj: insert

N

main

Ti: insert

Tj: insert

N

N1 Zone1

Zone2

B1

N2
B2

free

free

free

Figure 2.15: Avoiding hotspots by zone segmentation

is created. Note that no tuples are copied and the tuple identifiers do not change, only
the sizes of zones need to be adjusted. As a consequence, collapsing zones does not
affect concurrent access to the tuples. Eventually, the insert zones are collapsed with
the large contiguous main area. For a main-memory databases this guarantees very
fast scan performance at clock speed during query processing. The counters Ni and
Bi should be stored in separate cache lines for each zone, as otherwise unnecessary
conflicts occur while updating these values.

2.6.2 Index Structures

Besides the logical isolation of transactions using 2PL or TSO, database systems must
isolate concurrent accesses to index structures. In principle, any data structure can be
synchronized using HTM by simply wrapping each access in a transaction. In this sec-
tion we first discuss how scalability can be improved by avoiding some common types
of conflicts, before showing that HTM has much better performance than traditional
index synchronization via fine-grained latches.

One common problem is that indexes sometimes have a counter that stores the num-
ber of key/value pairs and prevents concurrent modifications. Fortunately, this counter
is often not needed and can be removed. For data structures that allocate small memory
chunks, another source of HTM conflicts is memory allocation. This problem can be
solved by using an allocator that has a thread-local buffer.

Surrogate primary keys are usually implemented as ascending integer sequences.
For tree-based index structures, which maintain their data in sorted order, this causes
HTM conflicts because all concurrent inserts try to access memory locations in the
same vicinity, as illustrated on the left-hand side of Figure 2.16. This problem is very
similar to the problem of concurrently inserting values into a table discussed above, and

35

2 Exploiting Hardware Transactional Memory in Main-Memory Databases

decluster

Tree-based
Index

Tree-based
Index

cache line
collisions

Figure 2.16: Declustering surrogate key generation

indeed the solution is similar: If permitted by the application, the integer sequence is
partitioned into multiple constant-sized chunks and values are handed out from one of
the chunks depending on the transactions’ zone number. This prevents interference of
parallel index tree insertions as they are spread across different memory locations—as
shown on the right of Figure 2.16. Once all values from a chunk are exhausted, the next
set of integers is assigned to it. Note that hash tables are not affected by this problem
because the use of a hash function results in a random access pattern which leads to a
low conflict probability. But of course, as a direct consequence of this randomization,
hash tables do not support range scans.

2.7 Evaluation

For most experiments we used an Intel i5 4670T Haswell processor with 4 cores, 6 MB
shared L3 cache, and full HTM support through the Intel Transactional Synchroniza-
tion Extensions. The maximum clock rate is 3.3 GHz, but can only be achieved when
only one core is fully utilized. When utilizing all cores, we measured a sustained clock
rate of 2.9 GHz.

By default, HyPer uses serial execution similar to VoltDB [168]; multiple threads are
only used if the schema has been partitioned by human intervention. In the following
we will call these execution modes serial and partitioned. Note that the partitioned
mode used by HyPer (as in other systems) is somewhat cheating, since the partitioning
scheme has to be explicitly provided by a human, and a good partitioning scheme
is hard to find in general. In addition to these execution modes we included a 2PL
implementation, described in [134], as baseline for comparisons to standard database
systems, and the hardware transactional memory approach (HTM) proposed here. We
also include TSO with coarse-grained latches (TSO) instead of HTM to show that TSO
alone is not sufficient for good performance.

For most experiments we used the well-known TPC-C benchmark as basis (without
“think times”, the only deviation from the benchmark rules). We set the number of
warehouses to 32, and for the partitioning experiments the strategy was to partition
both the data and the transactions by the main warehouse. We used the Adaptive Radix
Tree [108] as index structure, although the scalability is similar with hash tables and

36

2.7 Evaluation

0

100,000

200,000

300,000

400,000

1 2 3 4
threads

tra
ns

ac
tio

ns
 p

er
 s

ec
on

d

HTM

partitioned

TSO

serial

2PL

Figure 2.17: Scalability of TPC-C on desktop system

red-black trees. In the following, we first look at scalability results for TPC-C and then
study the interaction with HTM in microbenchmarks.

2.7.1 TPC-C Results

In the first experiment, we ran TPC-C and varied the number of threads up to the num-
ber of available cores. The results are shown in Figure 2.17 and reveal the following:
First, classical 2PL is clearly inferior to all other approaches. Its overhead is too high,
and it is even dominated by single-threaded serial execution. The latching-based TSO
approach has less overhead than 2PL, but does not scale because the coarse-grained
(relation-level) latches severely limit concurrency. Both the partitioned scheme and
HTM scale very well, with partitioning being slightly faster. But note that this is a
comparison of a human-assisted approach with a fully automatic approach. Further-
more, the partitioning approach works so well only because TPC-C is “embarrassingly
partitionable” in this low-thread setup, as we will see in the next experiment.

The reason that partitioning copes well with TPC-C is that most transactions stay
within a single partition. By default, about 11% of all transactions cross partition
boundaries (and therefore require serial execution to prevent collisions in a lock-free
system). The performance depends crucially on the ability of transactions to stay
within one partition. As shown in Figure 2.18, varying the percentage of partition-
crossing transactions has a very deteriorating effect on the partitioning approach, while
the other transaction managers are largely unaffected because, in the case of TPC-C,
partition-crossing does not mean conflicting. Therefore, picking the right partitioning

37

2 Exploiting Hardware Transactional Memory in Main-Memory Databases

0

100,000

200,000

300,000

400,000

0% 25% 50% 75%
partition-crossing transactions

tra
ns

ac
tio

ns
 p

er
 s

ec
on

d

2PL

HTM

partitioned

serial

TSO

Figure 2.18: TPC-C with modified partition-crossing rates

scheme would be absolutely crucial; however, it is often hard to do—in particular if
transactions are added to the workload dynamically.

Figure 2.19 shows results for TPC-C on the 28-core system described in Section 2.4.
To reduce the frequent write conflicts, which occur in TPC-C at high thread counts, we
set the number of warehouses to 200, the number of insert zones to 64, and the number
of restarts to 30. With these settings, our HTM-supported concurrency control scheme
achieves a speedup of 15× and around 1 million TPC-C transactions per second with
28 threads. The other concurrency control schemes show similar performance and scal-
ability characteristics as on the 4-core system. The figure also shows the performance
of the Silo system [172] which we measured by using the publicly available source
code that includes a hand-coded TPC-C implementation in C++. Silo shows very good
scalability, even at high thread counts, but is about 3x slower than HTM-supported
HyPer with single-threaded execution.

2.7.2 Microbenchmarks

Our transaction manager was designed to be lightweight. Nevertheless, there is some
overhead in comparison with an unsynchronized, purely single-threaded implemen-
tation. We determined the overhead by running the TPC-C benchmark using only
one thread and enabling each feature separately: The HTM-friendly memory layout,
including zone segmentation (with 8 zones), added 5% overhead, mostly because of
reduced cache locality. The Hardware Lock Elision spinlocks, which are acquired
for each tuple access, added 7% overhead. Checking and updating the timestamps,

38

2.7 Evaluation

0

250,000

500,000

750,000

1,000,000

1 7 14 21 28
threads

tra
ns

ac
tio

ns
 p

er
 s

ec
on

d

HTM

Silo

partitioned

TSO

serial

2PL

Figure 2.19: Scalability of TPC-C on server system

slowed down execution by 10%. Finally, transaction management, e.g., determining
the safe timestamp, the transaction ID, etc. caused 7% overhead. In total, these changes
amounted to a slowdown of 29%. HyPer compiles transactions to very efficient ma-
chine code, so any additional work will have noticeable impact. However, this is much
lower than the overhead of the 2PL implementation, which is 61%! And of course the
overhead is completely paid off by the much superior scalability of the HTM approach.

One interesting question is if it would be possible to simply execute a database
transaction as one large HTM transaction. To analyze this, we used binary instrumen-
tation of the generated transaction code to record the read and write sets of all TPC-
C transactions. We found that only the delivery and order-status transactions have
a cacheline footprint of less than 7 KB and could be executed as HTM transactions.
The other transactions access between 18 KB and 61 KB, and would usually exhaust
the transactional buffer. Therefore, executing TPC-C transactions as monolithic HTM
transactions is not possible. And other workloads will have transactions that are much
larger than the relatively simple TPC-C transactions. Therefore, a mechanism like our
timestamp scheme is required to cope with large transactions.

As we discussed in Section 2.5, there are two types of conflicts: timestamp conflicts
and HTM conflicts. Timestamp conflicts must be handled by the transaction manager
and usually result in a rollback of the transaction. We measured that 12% of all TPC-C
transactions were aborted due to a timestamp conflict, but only 0.5% required more
than 2 restarts. Most aborts occur at the warehouse relation, which has only 32 tuples
but is updated frequently.

39

2 Exploiting Hardware Transactional Memory in Main-Memory Databases

2%

4%

6%

0 1 2
restarts

H
TM

 a
bo

rt
ra

te

4 threads

3 threads

2 threads

1 thread

Figure 2.20: HTM abort rate with 8 declustered insert zones

While HTM conflicts do not result in a rollback of the entire transaction, they re-
sult in the acquisition of relation-level latches—greatly reducing concurrency. Using
hardware counters, we measured the HLE abort rate of TPC-C, and found that 6% of
all HLE transactions were aborted. This rate can be reduced by manually restarting
transactions after abort by using Restricted Transaction Memory (RTM) instructions
instead of HLE. As Figure 2.20 shows, the abort rate can be reduced greatly by restart-
ing aborted transaction, i.e., most aborts are transient. With 4 threads, restarting has
only a small positive effect on the overall transaction rate (1.5%), because a 6% abort
rate is still “small enough” for 4 threads.

These low abort rates are the outcome of our HTM-friendly storage layout from Sec-
tion 2.6. Because TPC-C is very insert-heavy, with only one zone, the HLE abort rate
rises from 6% to 14%, and the clashes often do not vanish after restarts. Therefore, a
careful data layout is absolutely mandatory to benefit from HTM. Note though that we
did not decluster surrogate key generation, which makes conflicts even more unlikely,
but would have required changes to the benchmark.

2.8 Related Work

Optimizing the transaction processing for modern multi-core and in-memory database
systems is a vibrant topic within the database community. In the context of H-
Store/VoltDB [63, 80] several approaches for automatically deriving a database par-
titioning scheme from the pre-defined workload were devised [34, 147] and methods

40

2.9 Summary

of optimizing partition-crossing transactions were investigated [81]. The partitioning
research focused on distributed databases, but is also applicable to shared memory
systems. Partitioning the database allows for scalable serial transaction execution as
long as the transactions do not cross partition boundaries, which in general is hard
to achieve. In [146] a data-oriented transaction processing architecture is devised,
where transactions move from one processing queue to another instead of being as-
signed to a single thread. The locking-based synchronization is optimized via specu-
lative lock inheritance [79]. Ren et al. [157] found that the lock manager is a critical
performance bottleneck for main memory database systems. They propose a more
lightweight scheme, where, instead of locks in a global lock manager data structure,
each tuple has two counters that indicate how many transactions requested read or write
access. In an earlier evaluation we showed that timestamp-based concurrency control
has become a promising alternative to traditional locking [179].

Tu et al. [172] recently designed an in-memory OLTP system that uses optimistic
concurrency control and a novel B-Tree variant [129] optimized for concurrent access.
Lomet et al. [122] and Larson et al. [98] devised multi-version concurrency control
schemes that, like our approach, use a timestamp-based version control to determine
conflicting operations. Unlike our proposal, their concurrency control is fully software-
implemented, therefore it bears some similarity to software transactional memory [38].

Herlihy and Moss [69, 68] proposed HTM for lock-free concurrent data structures.
Shavit and Touitou [163] are credited for the first STM proposal. A comprehensive
account on transactional memory is given in the book by Larus and Rajwar [103]. Due
to the entirely software-controlled validation overhead, STM found little resonance in
the database systems community—while, fueled by the emergence of the now com-
mon many-core processors, it was a vibrant research activity in the parallel computing
community [70].

Wang et al. [177] combine Haswell’s HTM with optimistic concurrency control to
build a scalable in-memory database systems. Their approach similar to ours, but
requires a final commit phase that is executed in a single hardware transaction and
which encompasses the meta data of the transactions’ read and write set. Karnagel et
al. [84] performed a careful evaluation of HTM for synchronizing B-Tree access. Litz
et al. [119] use multi-versioning, an old idea from the database community, to speed
up TM in hardware.

2.9 Summary

There are two developments—one from the hardware vendors, and one from the
database software developers—that appear like a perfect match: the emergence of
hardware transactional memory (HTM) in modern processors, and main-memory

41

2 Exploiting Hardware Transactional Memory in Main-Memory Databases

database systems. The data access times of these systems are so short that the con-
currency control overhead, in particular for locking/latching, is substantial and can
be optimized by carefully designing HTM-supported transaction management. Even
though transactions in main-memory databases are often of short duration, the limita-
tions of HTM’s read/write set management precludes a one-to-one mapping of DBMS
transactions to HTM transactions.

We therefore devised and evaluated a transaction management scheme that trans-
forms a (larger) database transaction into a sequence of more elementary, single tuple
access/update HTM transactions. Our approach relies on the well-known timestamp
ordering technique to “glue” the sequence of HTM transactions into an atomic and iso-
lated database transaction. Our quantitative evaluation showed that our approach has
low overhead and excellent scalability.

42

3 Efficient Synchronization of In-Memory
Index Structures

Parts of this chapter have previously been published in [112].

3.1 Introduction

In traditional database systems, most data structures are protected by fine-grained
locks1. This approach worked well in the past, since these locks were only acquired for
a short time and disk I/O dominated overall execution time. On modern servers with
many cores and where most data resides in RAM, synchronization itself often becomes
a major scalability bottleneck. And with the increasing number of CPU cores efficient
synchronization will become even more important.

Figure 3.1 gives an overview of the synchronization paradigms discussed in this
chapter. Besides traditional fine-grained locking, which is known to scale badly on
modern CPUs, the figure shows the lock-free paradigm, which offers strong theoret-
ical guarantees, and Hardware Transactional Memory (HTM), which requires special
hardware support. When designing a data structure, so far, one had to decide between
the extreme difficulty of the lock-free approach, special hardware support of HTM,
and poor scalability of locking. In this work, we present two additional points in the
design space that fill the void in between. Optimistic Lock Coupling and ROWEX are
much easier to use than lock-free synchronization but offer similar scalability without
special hardware support.

We focus on synchronizing the Adaptive Radix Tree (ART) [108], a general-purpose,
order-preserving index structure for main-memory database systems. ART is an inter-
esting case study, because it is a non-trivial data structure that was not designed with
concurrency in mind rather with high single-threaded performance. We present a num-
ber of synchronization protocols for ART and compare them experimentally.

1 In this chapter, we always use the term “lock” instead of “latch” since we focus on low-level data
structure synchronization, rather than high-level concurrency control.

45

3 Efficient Synchronization of In-Memory Index Structures

scalability

ease of use

fine-grained locking
(lock coupling)

optimistic
lock coupling

HTM
lock-free

ROWEX

Figure 3.1: Overview of synchronization paradigms

Our main goal in this work, however, is to distill general principles for synchro-
nizing data structures in general. This is important for two reasons. First, besides
index structures, database systems also require other data structures that must be con-
currently accessible like tuple storage, buffer management data structures, job queues,
etc. Second, concurrent programs are very hard to write and even harder to debug. We
therefore present our ideas, which, as we discuss in Section 3.6, are not entirely new,
as general building blocks that can be applied to other other data structures.

The rest of this work is organized as follows: We first present necessary background
about the Adaptive Radix Tree in Section 3.2. The two new synchronization paradigms
Optimistic Lock Coupling and Read-Optimized Write EXclusion are introduced in Sec-
tion 3.3 and Section 3.4. Section 3.5 evaluates the presented mechanisms. Finally,
after discussing related work in Section 3.6, we summarize our results in Section 3.7.

3.2 The Adaptive Radix Tree (ART)

Trie data structures, which are also known as radix trees and prefix trees, have been
shown to outperform classical in-memory search trees [108, 92]. At the same time,
and in contrast to hash tables, they are order-preserving, making them very attractive
indexing structures for main-memory database systems.

What distinguishes ART [108] from most other trie variants is that it uses an adap-
tive node structure. ART dynamically chooses the internal representation of each
node from multiple data structures. The four available node types are illustrated in
Figure 3.2. Initially, the smallest node type (Node4) is selected, and, as entries are

46

3.2 The Adaptive Radix Tree (ART)

Node256

0 1 2
…

3 255

child pointer

4 5

13 129130

key child pointerNode4

0 1 2 3 0 1 2 3

3 8 9 ……

key child pointerNode16

255

0 1 2 0 1 2 1515

Node48

0 1 2
… …

child index child pointer

3 255 47210

Header prefixCount count type prefix

(in front of
each node) 4 3 N4 0 0 0 0

TIDTIDTID TID

TID

Figure 3.2: The internal data structures of ART

inserted into that node, it is replaced with a larger node type. In the figure, if two more
entries would be inserted into the (Node4), which currently holds 3 entries, it would be
replaced by a (Node16).

Another important feature of ART is path compression, which collapses nodes with
only a single child pointer into the first node with more than one child. To implement
this, each node stores a prefix of key bytes in its header. This allows indexing long keys
(e.g., strings) effectively, because the optimization significantly reduces the height of
the tree. The example header shown in Figure 3.2 stores a prefix of 4 zero bytes thus
reducing the height by 4 levels.

In HyPer, where ART is the default indexing structure [88], ART maps arbitrary
keys to tuple identifiers (TIDs). As the figure shows, the TIDs are stored directly
inside the pointers. Pointers and TIDs are distinguished using “pointer tagging”, i.e.,
by using one of the pointer’s bits.

Adaptive node types and path compression reduce space consumption while allow-
ing for nodes with high fanout and thus ensure high overall performance. At the same
time, these features are also the main challenges for synchronizing ART. Tries without
these features are easier to synchronize, which makes ART a more interesting case

47

3 Efficient Synchronization of In-Memory Index Structures

lookup(key, node, level, parent)
readLock(node)
if parent != null

unlock(parent)
// check if prefix matches, may increment level
if !prefixMatches(node, key, level)

unlock(node)
return null // key not found

// find child
nextNode = node.findChild(key[level])

if isLeaf(nextNode)
value = getLeafValue(nextNode)
unlock(node)
return value // key found

if nextNode == null
unlock(node)
return null // key not found

// recurse to next level
return lookup(key, nextNode, level+1, node)

lookupOpt(key, node, level, parent, versionParent)
version = readLockOrRestart(node)
if parent != null

readUnlockOrRestart(parent, versionParent)
// check if prefix matches, may increment level
if !prefixMatches(node, key, level)

readUnlockOrRestart(node, version)
return null // key not found

// find child
nextNode = node.findChild(key[level])
checkOrRestart(node, version)
if isLeaf(nextNode)

value = getLeafValue(nextNode)
readUnlockOrRestart(node, version)
return value // key found

if nextNode == null
readUnlockOrRestart(node, version)
return null // key not found

// recurse to next level
return lookupOpt(key, nextNode, level+1, node, version)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Figure 3.3: Pseudo code for a lookup operation that is synchronized using lock cou-
pling (left) vs. Optimistic Lock Coupling (right). The necessary changes
for synchronization are highlighted

study for synchronizing non-trivial data structures.

3.3 Optimistic Lock Coupling

Lock coupling [12], i.e., holding at most 2 locks at a time during traversal, is the
standard method for synchronizing B-trees. One interesting property of ART is that
modifications affect at most two nodes: the node where the value is inserted or deleted,
and potentially its parent node if the node must grow (during insert) or shrink (during
deletion). In contrast to B-trees [11], a modification will never propagate up to more
than 1 level. Lock coupling can therefore be applied to ART even more easily than to
B-trees.

The left-hand-side of Figure 3.3 shows the necessary changes for synchronizing the
lookup operation of ART with lock coupling. The pseudo code uses read-write locks
to allow for concurrent readers. Insert and delete operations can also initially acquire
read locks before upgrading them to write locks if necessary. This allows one to avoid
exclusively locking nodes near the root, which greatly enhances concurrency because
most updates only affect nodes far from the root.

Lock coupling is simple and seems to allow for a high degree of parallelism. How-
ever, as we show in Section 3.5, it performs very badly on modern multi-core CPUs
even if the locks do not logically conflict at all, for example in read-only workloads.
The reason is that concurrent locking of tree structures causes many unnecessary cache
misses: Each time a core acquires a read lock for a node (by writing to that node), all

48

3.3 Optimistic Lock Coupling

copies of that cache line are invalidated in the caches of all other cores. Threads, in ef-
fect, “fight” for exclusive ownership of the cache line holding the lock. The root node
and other nodes close to it become contention points. Therefore, other synchronization
mechanisms are necessary to fully utilize modern multi-core CPUs.

Optimistic Lock Coupling is similar to “normal” lock coupling, but offers dramat-
ically better scalability. Instead of preventing concurrent modifications of nodes (as
locks do), the basic idea is to optimistically assume that there will be no concur-
rent modification. Modifications are detected after the fact using version counters,
and the operation is restarted if necessary. From a performance standpoint, this opti-
mism makes a huge difference, because it dramatically reduces the number of writes
to shared memory locations.

3.3.1 Optimistic Locks

Figure 3.3 compares the pseudo code for lookup in ART using lock coupling and Op-
timistic Lock Coupling. Clearly, the two versions are very similar. The difference is
encapsulated in the readLockOrRestart and readUnlockOrRestart func-
tions, which mimic a traditional locking interface but are implemented differently. This
interface makes it possible for the programmer to reason (almost) as if she was using
normal read-write locks.

The pseudo code in Figure 3.4 implements the insert operation using optimistic lock
coupling. Initially, the traversal proceed like in the lookup case without acquiring write
locks. Once the node that needs to be modified is found, it is locked. In cases where
the node must grow the parent is also locked. When two nodes need to be locked, we
always lock the parent before its child. This ensures that locks are always acquired in
the same, top-down order and therefore avoids deadlocks.

Internally, an optimistic lock consists of a lock and a version counter. For writ-
ers, optimistic locks work mostly like normal locks, i.e., they provide mutual ex-
clusion by physically acquiring (by writing into) the lock. Additionally, each
writeUnlock operation causes the version counter associated with the lock to
be incremented. Read operations, in contrast, do not actually acquire or release
locks. readLockOrRestart merely waits until the lock is free, before re-
turning the current version. readUnlockOrRestart, which takes a version as
an argument, makes sure the lock is still free and that the version (returned by
readLockOrRestart) did not change. If a change occurred, the lookup opera-
tion is restarted from the root of tree. In our implementation we encode the lock and
the version counter (and an obsolete flag) in a single 64 bit word that is updated atomi-
cally and is stored in the header of each ART node. A full description of the optimistic
lock primitives can be found in Figure 3.5.

Let us mention that, for debugging purposes, it is possible to map the optimistic

49

3 Efficient Synchronization of In-Memory Index Structures

insertOpt(key, value, node, level, parent, parentVersion)
version = readLockOrRestart(node)
if !prefixMatches(node, key, level)

upgradeToWriteLockOrRestart(parent, parentVersion)
upgradeToWriteLockOrRestart(node, version, parent)
insertSplitPrefix(key, value, node, level, parent)
writeUnlock(node)
writeUnlock(parent)
return

nextNode = node.findChild(key[level])
checkOrRestart(node, version)
if nextNode == null

if node.isFull()
upgradeToWriteLockOrRestart(parent, parentVersion)
upgradeToWriteLockOrRestart(node, version, parent)
insertAndGrow(key, value, node, parent)
writeUnlockObsolete(node)
writeUnlock(parent)

else
upgradeToWriteLockOrRestart(node, version)
readUnlockOrRestart(parent, parentVersion, node)
node.insert(key, value)
writeUnlock(node)

return
if parent != null

readUnlockOrRestart(parent, parentVersion)
if isLeaf(nextNode)

upgradeToWriteLockOrRestart(node, version)
insertExpandLeaf(key, value, nextNode, node, parent)
writeUnlock(node)
return

// recurse to next level
insertOpt(key, value, nextNode, level+1, node, version)
return

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Figure 3.4: Pseudo code for insert using Optimistic Lock Coupling. The necessary
changes for synchronization are highlighted

50

3.3 Optimistic Lock Coupling

primitives to their pessimistic variants (e.g., pthread rwlock). This enables thread
analysis tools like Helgrind to detect synchronization bugs. Version/lock combina-
tions have been used in the past for synchronizing data structures (e.g., [30, 24, 129]),
usually in combination with additional, data structure-specific tricks that reduce the
number of restarts. Optimistic Lock Coupling is indeed a very general technique that
allows consistent snapshots over multiple nodes (e.g., 2 at a time for lock coupling).
The region can even involve more than 2 nodes, but should obviously be as small as
possible to reduce conflicts.

3.3.2 Assumptions of Optimistic Lock Coupling

To make Optimistic Lock Coupling work correctly, there are certain properties that
an algorithm must fulfill. After readLockOrRestart has been called, a reader
may see intermediate, inconsistent states of the data structure. An incorrect state will
be detected later by readUnlockOrRestart, but, in some cases, can still cause
problems. In particular, care must be taken to avoid (1) infinite loops and (2) invalid
pointers. For ART, an infinite loop cannot occur. To protect against invalid pointers,
it is necessary to add an additional version check (line 11 in Figure 3.3). Without
this check, nextNode might be an invalid pointer, which may cause the program
to crash. These additional checks are needed before an optimistically read pointer is
dereferenced.

Another aspect that needs some care is deletion of nodes. A node must not be imme-
diately reclaimed after removing it from the tree because readers might still be active.
We use epoch-based memory reclamation to defer freeing such nodes. Additionally,
when a node has been logically deleted, we mark it as obsolete when unlocking the
node (cf. writeUnlockObsolete in Figure 3.5). This allows other writers to de-
tect this situation and trigger a restart.

One theoretical problem with Optimistic Lock Coupling is that—in pathological
cases—a read operation may be restarted repeatedly. A simple solution for ensuring
forward progress is to limit the number of optimistic restarts. After this limit has been
reached, the lookup operation can acquire write locks instead.

To summarize, Optimistic Lock Coupling is remarkably simple, requires few changes
to the underlying data structure, and, as we show in Section 3.5, performs very well.
The technique is also quite general and can be applied to other data structures (e.g.,
B-trees).

3.3.3 Implementation of Optimistic Locks

The pseudo code in Figure 3.5 implements optimistic locks. Each node header stores a
64 bit version field that is read and written atomically. The two least significant bits

51

3 Efficient Synchronization of In-Memory Index Structures

struct Node
atomic<uint64_t> version
...

uint64_t readLockOrRestart(Node node)
uint64_t version = awaitNodeUnlocked(node)
if isObsolete(version)

restart()
return version

void checkOrRestart(Node node, uint64_t version)
readUnlockOrRestart(node, version)

void readUnlockOrRestart(Node node, uint64_t version)
if version != node.version.load()

restart()

void readUnlockOrRestart(Node node, uint64_t version, Node lockedNode)
if version != node.version.load()

writeUnlock(lockedNode)
restart()

void upgradeToWriteLockOrRestart(Node node, uint64_t version)
if !node.version.CAS(version, setLockedBit(version))

restart()

void upgradeToWriteLockOrRestart(Node node, uint64_t version, Node lockedNode)
if !node.version.CAS(version, setLockedBit(version))

writeUnlock(lockedNode)
restart()

void writeLockOrRestart(Node node)
uint64_t version
do

version = readLockOrRestart(node)
while !upgradeToWriteLockOrRestart(node, version)

void writeUnlock(Node node)
// reset locked bit and overflow into version
node.version.fetch_add(2)

void writeUnlockObsolete(Node node)
// set obsolete, reset locked, overflow into version
node.version.fetch_add(3)

// Helper functions
uint64_t awaitNodeUnlocked(Node node)

uint64_t version = node.version.load()
while (version & 2) == 2 // spinlock

pause()
version = node.version.load()

return version

uint64_t setLockedBit(uint64_t version)
return version + 2

bool isObsolete(uint64_t version)
return (version & 1) == 1

Figure 3.5: Implementation of optimistic locks based on busy waiting

52

3.4 Read-Optimized Write EXclusion

indicate if the node is obsolete or if the node is locked, respectively. The remaining
bits store the update counter.

3.4 Read-Optimized Write EXclusion

Like many optimistic concurrency control schemes, Optimistic Lock Coupling per-
forms very well as long as there are few conflicts. The big disadvantage is, however,
that all operations may restart. Restarts are particularly undesirable for reads, because
they are predominant in many workloads. We therefore present a second synchroniza-
tion technique that still uses locks for writes, but where reads always succeed and never
block or restart. We call this technique Read-Optimized Write EXclusion (ROWEX).

3.4.1 General Idea

ROWEX is a synchronization paradigm that lies between traditional locking and lock-
free techniques (cf. Figure 3.1). It provides the guarantee that reads are non-blocking
and always succeed. Synchronizing an existing data structure with ROWEX is harder
than with (optimistic) lock coupling, but generally still easier (i.e., at least possible)
than designing a similar lock-free data structure. The main tool of ROWEX is the write
lock, which provides additional leverage in comparison with lock-free approaches that
must confine themselves with primitive atomic operations like compare-and-swap. The
write locks are acquired only infrequently by writers and never by readers.

The basic idea with ROWEX is that, before modifying a node, the lock for that node
is first acquired. This lock only provides exclusion relative to other writers, but not
readers, which never acquire any locks (and never check any versions). The conse-
quence is that writers must ensure that reads are always consistent by using atomic
operations. As we describe in the following, ROWEX generally requires some modi-
fications to the internal data structures.

Although the name ROWEX indicates that reads are fast, writes are not slow ei-
ther (despite requiring locks). The reason is that writers only acquire local locks at the
nodes that are actually changed, i.e., where physical conflicts are likely. Even lock-free
designs will often have cache line invalidations that impair scalability when writing to
the same node. ROWEX thus provides very good scalability while still being realisti-
cally applicable to many existing data structures.

53

3 Efficient Synchronization of In-Memory Index Structures

3.4.2 ROWEX for ART

One important invariant of ART is that every insertion/deletion order results in the
same tree2 because there are no rebalancing operations. Each key, therefore, has a
deterministic physical location. In B-link trees [105], in contrast, a key may have
been moved to a node on the right (and never to the left due to deliberately omitting
underflow handling).

To synchronize ART using ROWEX, we first discuss local modifications within the
4 node types before describing how node replacement and finally path compression are
handled.

To allow concurrent local modifications, accesses to fields that may be read concur-
rently must be atomic. These fields include the key bytes (in Node4 and Node16),
the child indexes (in Node48), and the child pointers (in all node types). In C++ 11
this is done by using the std::atomic type, which ensures that appropriate mem-
ory barriers are inserted3. These changes are already sufficient for the Node48 and
Node256 types and allow adding (removing) children to (from) these nodes. For the
linear node types (Node4 and Node16), which are structurally very similar to each
other, some additional conceptual changes are necessary. In the original design, the
keys in linear nodes are sorted (cf. Figure 3.2) to simplify range scans. To allow for
concurrent modifications while reads are active, we avoid maintaining the sorted order
and append new keys at the end of the node instead. Deletions simply set the child
pointer to null, and slots are reclaimed lazily by replacing the node with a new one.
With this change, lookups must check all keys (i.e., 4 for Node4 and 16 for Node16).
However, this is not a problem since SIMD instructions can be used to perform the
comparison.

Node replacement can become necessary due to (1) the node becoming too full to
encompass another insert or due to (2) the node becoming underfull. In both cases, the
required steps for replacing a node are the same:

1. Both the node and its parent are locked.

2. A new node of the appropriate type is created and initialized by copying over all
entries from the old node.

3. The location within the parent pointing to the old node is changed to the new
node using an atomic store.

2Note that ART only supports unique keys. In database systems, uniqueness can be ensured by making
the tuple identifier part of the key. As a result, concurrently inserting tuples with equal keys does not
cause a problem.

3 The std::atomic type does not change the physical layout. Also note that on x86 an atomic load
adds very little overhead, as it does not introduce a memory barrier. Making the fields atomic merely
prevents the compiler from reordering instructions but does not introduce additional instructions for
readers.

54

3.4 Read-Optimized Write EXclusion

2

A

ARE ART

E T

I

I

prefixlevel

0

R 2

A

ARE ART

E T

I

I

0

1

AS

SR

R

1. install
new node

2. update
prefix

2

A

ARE ART

E T

I

I

0

1

AS

SR

prefixlevel prefixlevel

prefixlevel prefixlevel

prefixlevelprefixlevel
prefixlevel

Figure 3.6: Path compression changes for inserting “AS”

4. The old node is unlocked and marked as obsolete. The parent node is unlocked.

Like with Optimistic Lock Coupling, once a node is not reachable in the most recent
version of the tree (after step 3), the node must be marked as obsolete before being
unlocked. Any writer waiting for that lock will detect that the node is obsolete and will
restart the entire insert or delete operation. For readers, in contrast, it is safe to read
from obsolete nodes.

Path compression is illustrated in Figure 3.6. In the 2-level tree on the left-hand
side, the blue node contains the “R” prefix. In order to insert the new key “AS”, it
is necessary to (1) install a new (green) node and (2) truncate the prefix (at the blue
node). Individually, both steps can be performed atomically: Installing the new node
can be done by a single (atomic) store. To change the prefix of the node atomically,
we store both the prefix and its length in a single 8 byte value, which can be changed
atomically4.

The main difficulty with path compression is that it is not possible to install a new
node and truncate the prefix in a single operation. As a consequence, a reader may
see the intermediate state in Figure 3.6. To solve this problem, we augment each node
with a level field, which stores the height of the node including the prefix and which
never changes after a node has been created. With this additional information, the
intermediate state in Figure 3.6 is safe, because a reader will detect that the prefix at
the blue node has to be skipped. Similarly, it is also possible that a reader sees the final

4In comparison with the original ART implementation this decision reduces the maximum prefix length
from 9 to 4. On x86, 16 byte values can also be accessed atomically, which would also allow storing
12 byte prefixes.

55

3 Efficient Synchronization of In-Memory Index Structures

0

25

50

75

100

5 10 15 20 5 10 15 20 5 10 15 20
threads

M
 o

pe
ra

tio
ns

/s
ec

on
d

no sync.

lock coupling

Opt. Lock Coupling

ROWEX

HTM

Masstree

Figure 3.7: Scalability (50M 8 byte integers)

state of the blue node without having seen the green node before. In that situation, the
reader can detect the missing prefix using level field and retrieve the missing key
from the database.

To summarize, whereas in Optimistic Lock Coupling readers detect changes and
restart, with ROWEX it is the responsibility of writers to ensure that reads are safe.
Thus ROWEX is not a simple recipe that can be applied to any data structure, but must
be carefully adapted to it. In some cases, it might even prove impossible without major
changes to the underlying data structure. Nevertheless, we believe that ROWEX is an
interesting design point between lock-free techniques and locking.

3.5 Evaluation

In this section we experimentally compare a number of ART variants: unmodified ART
without support for concurrent modifications, lock coupling with read-write spinlocks,
Optimistic Lock Coupling, ROWEX, and hardware transactional memory (HTM) with
20 restarts using a global, elided lock as fallback (as described in [110]). The additional
space consumption per node is 4 bytes for lock coupling, 8 bytes for Optimistic Lock
Coupling, and 12 bytes for ROWEX. As a competitor we chose Masstree [129], which,
to the best of our knowledge, is the fastest publicly available5, synchronized, order-
preserving data structure. Note that the comparison between ART and Masstree is not
really “apples-to-apples”, as both the synchronization protocol and the data structures
themselves differ. All implementations use the jemalloc memory allocator and,
when required, low-overhead epoch-based memory reclamation. We use a Haswell
EP system with an Intel Xeon E5-2687W v3 CPU, which has 10 cores (20 “Hyper-

5https://github.com/kohler/masstree-beta

56

https://github.com/kohler/masstree-beta

3.5 Evaluation

Threads”) and 25 MB of L3 cache.

3.5.1 Scalability

In our first experiment we investigate the scalability using 50M random (sparse) 8-byte
integers. This is a low contention workload, because conflicts are unlikely with ran-
dom keys. Figure 3.7 shows the results for individually executing lookup, insert, and
remove. As expected, the variant without synchronization, which is only shown for the
read-only experiment, performs best. Lock coupling does not scale well, even in the
lookup experiment and although we use read-write locks. Optimistic Lock Coupling
and ROWEX, in contrast, scale very well and have very similar performance, with Op-
timistic Lock Coupling being slightly (around 7%) faster for lookup. The HTM variant
also performs very well on the lookup experiment, but is slightly slower for insert and
significantly slower for remove. We verified that the reason for this is (unnecessary)
contention in the memory allocator causing frequent aborts. Masstree scales well but
with short keys its overall performance is significantly lower than with ART.

To better understand the lookup results in Figure 3.7, we measured some important
CPU statistics:

1 thread / 20 threads [per lookup]
cycles instruct. L1 misses L3 misses

no sync 211 / 381 123 / 124 4.3 / 4.5 1.7 / 1.8
lock coupling 418 / 2787 242 / 243 5.2 / 9.0 1.8 / 2.0
Opt. Lock Coup. 348 / 418 187 / 187 5.3 / 5.7 1.8 / 2.0
ROWEX 375 / 427 248 / 249 5.6 / 5.8 1.9 / 1.9
HTM 347 / 428 132 / 135 4.3 / 4.5 1.7 / 2.1
Masstree 982 / 1231 897 / 897 20.5 / 21.1 6.5 / 7.1

Single-threaded, the overhead of Optimistic Lock Coupling in comparison with the
non-synchronized variant is around 65%, mostly due to additional instructions. With
20 threads, the overhead is reduced to only 10%, likely due to longer delays in the
memory controller. With lock coupling, because of cache line invalidations caused by
lock acquisitions, the number of L1 misses (highlighted) increases significantly when
going from 1 to 20 threads and the CPU cycles increase by a factor of 6.6×. The slow-
down would be even larger on multi-socket systems, since such systems do not have
a shared cache for inter-thread communication. The CPU statistics also explain why
ART is significantly faster than Masstree with integer keys. The Optimistic Lock Cou-
pling variant of ART, for example, requires 4.8× fewer instructions and 3.6× fewer
L3 misses than Masstree.

57

3 Efficient Synchronization of In-Memory Index Structures

lookup insert

0

25

50

75

0

10

20

30

0

10

20

30

40

genom
e

W
ikipedia

U
R

L

no
 sy

nc
.

loc
k c

ou
plin

g

Opt.
 Lo

ck
Cou

p.

ROWEX
HTM

Mas
str

ee

loc
k c

ou
plin

g

Opt.
 Lo

ck
Cou

p.

ROWEX
HTM

Mas
str

ee

M
 o

pe
ra

tio
ns

/s
ec

on
d

Figure 3.8: Performance for string data with 20 threads

lookup

0

5

10

15

20

25

0 1 2 3 0 1 2 3
Zipf parameter (skew)

M
 o

pe
ra

tio
ns

/s
ec

on
d

lock coupling lock coupling

Masstree
Masstree

HTM

HTM

ROWEX

ROWEXOpt. Lock Coupling

OLC

insert + remove

Figure 3.9: Performance under contention (1 lookup thread and 1 insert+remove
thread)

58

3.5 Evaluation

3.5.2 Strings

Besides integer keys, we also measured the lookup performance for three real-world
string data sets. The “genome” data set has 256K strings of average length 10.0,
“Wikipedia” contains 16M article titles of average length 22.4, and “URL” has 6.4M
URLs of average length 63.3. The lookup and insert performance with 20 threads
is shown in Figure 3.8. Masstree closes its performance gap to ART with longer
keys. Again, lock coupling is very slow and the synchronized ART variants are slightly
slower than the unsynchronized variant.

3.5.3 Contention

In order to show the effect of contention, we measured simultaneous lookup and update
operations (insert+remove) in a tree with 10M dense 8 byte integer keys. We used 1
lookup thread and 1 update thread and varied the skewness of the keys going from uni-
form to extremely skewed (reading and modifying the same key 83% of the time). The
lookup results (left-hand side of Figure 3.9) show that with higher skew most variants
initially become faster (due to better cache locality), before eventually slowing down
under very high contention. ROWEX is the only exception, as its lookup performance
stays very high even under extreme contention due to the non-blocking reads. The
performance of the update thread (right-hand side of Figure 3.9) is generally similar
to the lookup performance. One exception is HTM, which has higher performance
for the update thread than for the lookup thread, because Intel’s transactional memory
implementation favors writers over reader [126].

3.5.4 Code Complexity

To give a rough indication for the relative complexity of the implementations, we
counted the core algorithmic C++ code lines excluding the lock implementations,
garbage collection, comments, and empty lines:

lookup insert remove
no synchronization 29 95 87
HTM 30 96 88
lock coupling 41 136 139
Optimistic Lock Coupling 44 148 143
ROWEX 34 200 156

Using HTM is quite trivial, it merely requires wrapping each transaction in a hard-
ware transaction, which we implemented with a Transaction object that starts the
HTM transaction in the constructor and commits the transaction in the destructor. The
two lock coupling variants require more changes, with the optimistic variant being only

59

3 Efficient Synchronization of In-Memory Index Structures

marginally larger. ROWEX requires most additional code, in particular for the insert
and remove operations. The ROWEX numbers actually underestimate the complexity
of ROWEX, since its protocol is fairly subtle in comparison with the other variants.

3.6 Related Work

Concurrency control is one of the major areas in the database field. Most prior work,
however, focuses on high-level user transactions, and not so much on low-level syn-
chronization of data structures, which is what we study in this work.

Hand-over-hand locking, i.e., the idea underlying Optimistic Lock Coupling, was
used to synchronize binary search trees [24]. ROWEX-like ideas have also been used
before, for example by the FOEDUS system [91]. The goal of this work has been to
consolidate these ideas and to present them as general building blocks as opposed to
clever tricks used to synchronize individual data structures.

The traditional method of synchronizing B-trees, lock coupling, was proposed by
Bayer and Schkolnick [12]. Graefe’s surveys [56, 54] on low-level synchronization
of B-trees, which summarize decades of accumulate wisdom in the database commu-
nity, focus on fine-grained locking. Unfortunately, as was already observed by Cha et
al. [30] in 2001, lock coupling simply does not scale on modern multi- and many-core
CPUs. Since then, the problem has become even more pronounced and the trend is
likely to continue. Like Optimistic Lock Coupling, Cha et al.’s solution (OLFIT) uses
versions to detect changes within a node. In contrast to Optimistic Lock Coupling,
OLFIT does not keep track of versions across multiple nodes, but uses the B-link tree
idea [105] to support concurrent structure modification operations.

Both the Bw-Tree [114] and Masstree [129] are two B-tree proposals published in
2012, and both eschew traditional lock coupling. The Bw-Tree is latch-free and its
nodes can be, due to their relatively large size, moved to disk/SSD [115]. To allow
concurrent modifications, delta records are pre-pended to a list of existing changes and
the (immutable) B-tree node at the end of the list itself. Nodes do not store physical
pointers but offsets into a mapping tables that points to the delta lists and allows one to
atomically add new delta records. After a number of updates the deltas and the node
are consolidated to a new node. The Bw-Tree has been designed with concurrency in
mind and its synchronization protocol is highly sophisticated; structure modification
operations (e.g., node splits) are very complex operations involving multiple steps.

Masstree [129] is a hybrid B-tree/trie data structure and, like ART, exclusively fo-
cuses on the in-memory case. Like the Bw-Tree, Masstree was designed with concur-
rency in mind, but the designers took different design decisions. The synchronization
protocol of Masstree relies on a mix of local locks, clever use of atomic operations, and
hand-over-hand locking (the idea underlying Optimistic Lock Coupling). Like Opti-

60

3.7 Summary

mistic Lock Coupling, but unlike ROWEX, Masstree lookups must, in some cases, be
restarted when a conflict with a structure-modifying operation is detected.

Previous work has shown that Hardware Transactional Memory can be used to syn-
chronize ART [109, 110] and B-trees [84] with very little effort using elided coarse-
grained HTM locks. Makreshanski et al. [126] confirmed these findings in an in-depth
experimental study but found that performance with HTM can degrade with large tu-
ples or heavy contention. Cervini et al. [29] found that replacing fine-grained locks
with (elided) HTM locks at the same granularity does not improve performance. HTM
also has the obvious disadvantage of requiring special hardware support, which is not
yet widespread.

3.7 Summary

We presented two synchronization protocols for ART that have good scalability despite
relying on locks. The first protocol, Optimistic Lock Coupling is very simple, requires
few changes to the underlying data structure, and performs very well as long as con-
flicts are not too frequent. The Read-Optimized Write EXclusion (ROWEX) protocol
is more complex, but has the advantage that reads never block. ROWEX generally
requires changes to the data structure itself, as opposed to simply adding a lock at each
node. However, in our experience, while synchronizing an existing, non-trivial data
structure using ROWEX may be non-trivial, it is, at least, realistic. Truly lock-free al-
gorithms, in contrast, are much more complicated. They also generally require radical
changes and additional indirections to the underlying data structure. The Bw-Tree, for
example, requires an indirection table that causes additional cache misses whenever a
node is accessed. Similarly, the state-of-the-art lock-free hash table, the split-ordered
list [162], requires “dummy” nodes—again at the price of more cache misses.

It is an open question how a lock-free variant of ART would look like and how well
it would perform. We speculate that it would likely be significantly slower than the
Optimistic Lock Coupling and ROWEX implementations. We therefore argue that one
should not discount the use of locks as long as these locks are infrequently acquired
like in our two protocols. Optimistic Lock Coupling and ROWEX are two pragmatic
paradigms that result in very good overall performance. We believe both to be highly
practical and generally applicable.

61

4 Parallel NUMA-Aware Query
Processing

Parts of this chapter have previously been published in [106].

4.1 Introduction

The main impetus of hardware performance improvement nowadays comes from in-
creasing multi-core parallelism rather than from speeding up single-threaded perfor-
mance [5]. As we discussed in Section 1.3, mainstream servers with 100 and more
hardware threads will soon be very common. We use the term many-core for such
architectures with tens or hundreds of cores.

At the same time, increasing main memory capacities of up to several TB per server
have led to the development of main-memory database systems. In these systems query
processing is no longer I/O bound, and the huge parallel compute resources of many-
cores can be truly exploited. Unfortunately, the trend to move memory controllers
into the chip and hence the decentralization of memory access, which was needed to
scale throughput to huge memories, leads to non-uniform memory access (NUMA).
In essence, the computer has become a network in itself as the access costs of data
items varies depending on which chip the data and the accessing thread are located.
Therefore, many-core parallelization needs to take RAM and cache hierarchies into
account. In particular, the NUMA division of the RAM has to be considered carefully
to ensure that threads work (as much as possible) on NUMA-local data.

Abundant research in the 1990s into parallel processing led the majority of database
systems to adopt a form of parallelism inspired by the Volcano [52] model, where
operators are kept largely unaware of parallelism. Parallelism is encapsulated by so-
called “exchange” operators that route tuple streams between multiple threads each
executing identical pipelined segments of the query plan. Such implementations of the
Volcano model can be called plan-driven: the optimizer statically determines at query
compile-time how many threads should run, instantiates one query operator plan for

63

4 Parallel NUMA-Aware Query Processing

A
16

18
27

5

7

B
8

33
10

5

23

B
8
33
10

5

23

C
v
x
y

z

u

HT(S)HT(T)

A
16
7
10
27
18
5
7
5
...
...
...
...
...

Z
a
c
i
b
e
j
d
f
...
...
...
...
...

RZ
a
...
...

A
16
...
...

B
8
...
...

C
v
...
...

Result

store
probe(16)

probe(10)

probe(8)

probe(27)store

Z
b
...
...

A
27
...
...

B
10
...
...

C
y
...
...

morsel

morselDispatcher

Figure 4.1: Idea of morsel-driven parallelism: R 1A S 1B T

each thread, and connects these with exchange operators.
In this chapter we present the adaptive morsel-driven query execution framework,

which we designed for HyPer. Our approach is sketched in Figure 4.1 for the three-
way-join query R 1A S 1B T . In HyPer, this query consists of three “pipelines”,
which are fragments of the query that are processed without materializing the data.
The first two pipelines consist of building hash tables for S and T. The third (probe)
pipeline scans R and probes in both hash tables without materializing in between.

Parallelism is achieved by processing each pipeline on different cores in parallel, as
indicated by the two (upper/red and lower/blue) pipelines in the figure. The core idea is
a scheduling mechanism (the “dispatcher”) that allows flexible parallel execution of an
operator pipeline, that can change the parallelism degree even during query execution.
A query is divided into segments, and each executing segment takes a morsel (e.g,
100,000) of input tuples and executes these, materializing results in the next pipeline
breaker. The morsel framework enables NUMA local processing as indicated by the
color coding in the figure: A thread operates on NUMA-local input and writes its result
into a NUMA-local storage area1. Our dispatcher runs a fixed, machine-dependent
number of threads, such that even if new queries arrive there is no resource over-
subscription, and these threads are pinned to the cores, such that no unexpected loss of
NUMA locality can occur due to the OS moving a thread to a different core.

The crucial feature of morsel-driven scheduling is that task distribution is done at
run-time and is thus fully elastic. This achieves perfect load balancing, even in the face
of uncertain size distributions of intermediate results, as well as the hard-to-predict

1NUMA locality is achieved by pinning worker threads to cores (and thereby a specific NUMA node)
and allocating memory on specific memory nodes.

64

4.1 Introduction

performance of modern CPU cores that varies even if the amount of work they get is
the same. It is elastic in the sense that it can handle workloads that change at run-time
(by reducing or increasing the parallelism of already executing queries in-flight) and
can easily integrate a mechanism to run queries at different priorities.

The morsel-driven idea extends from just scheduling into a complete query execu-
tion framework because all physical query operators must be able to execute morsel-
wise in parallel in all their execution stages (e.g., both hash-build and probe). This is
a crucial need for achieving many-core scalability in the light of Amdahl’s law. An
important part of the morsel-wise framework is awareness of data locality. This starts
from the locality of the input morsels and materialized output buffers, but extends to
the state (data structures, such as hash tables) possibly created and accessed by the op-
erators. This state is shared data that can potentially be accessed by any core, but does
have a high degree of NUMA locality. Thus morsel-wise scheduling is flexible, but
strongly favors scheduling choices that maximize NUMA-local execution. This means
that remote NUMA access only happens when processing a few morsels per query,
in order to achieve load balance. By mainly accessing local RAM, memory latency
is optimized and cross-socket memory traffic, which can slow other threads down, is
minimized.

In a pure Volcano-based parallel framework, parallelism is hidden from operators
and shared state is avoided, which leads to plans doing on-the-fly data partitioning in
the exchange operators. We argue that this does not always lead to the optimal plan
(as partitioning effort does not always pay off), while the locality achieved by on-the-
fly partitioning can be achieved by our locality-aware dispatcher. Other systems have
advocated per-operator parallelization [99] to achieve flexibility in execution, but this
leads to needless synchronization between operators in one pipeline segment. Never-
theless, we are convinced that the morsel-wise framework can be integrated in many
existing systems, e.g., by changing the implementation of exchange operators to encap-
sulate morsel-wise scheduling, and introduce, e.g., hash-table sharing. Our framework
also fits systems using Just-In-Time (JIT) code compilation [94, 139] as the generated
code for each pipeline occurring in the plan, can subsequently be scheduled morsel-
wise. In fact, HyPer uses this JIT compilation approach [139].

In this chapter, we present a number of related ideas that enable efficient, scalable,
and elastic parallel processing. The main contribution is an architectural blueprint for
a query engine incorporating the following:

• Morsel-driven query execution is a new parallel query evaluation framework
that fundamentally differs from the traditional Volcano model in that it dis-
tributes work between threads dynamically using work-stealing. This prevents
unused CPU resources due to load imbalances, and allows for elasticity, i.e.,
CPU resources can be reassigned between different queries at any time.

65

4 Parallel NUMA-Aware Query Processing

• A set of fast parallel algorithms for the most important relational operators.

• A systematic approach to integrating NUMA-awareness into database systems.

The remainder of this chapter is organized as follows: We start by discussing the
many-core challenges in Section 4.2. Section 4.3 is devoted to a detailed discussion of
pipeline parallelization and the fragmentation of the data into morsels. In Section 4.4
we discuss the dispatcher, which assigns tasks (pipeline jobs) and morsels (data frag-
ments) to the worker threads. The dispatcher enables the full elasticity which allows
to vary the number of parallel threads working on a particular query at any time. Sec-
tion 4.5 discusses algorithmic and synchronization details of the parallel join, aggre-
gation, and sort operators. The virtues of the query engine are evaluated in Section 4.6
by way of the entire TPC-H query suite. After discussing related work in order to
point out the novelty of our parallel query engine architecture in Section 4.7 Finally,
Section 4.8 summarizes our results.

4.2 Many-Core Challenges

In recent years, the importance of parallel query processing has greatly increased, since
computer architects have shifted attention for investing their ever-increasing transistor
budgets away from increasing single-threaded performance towards embedding more
independent CPU cores on the same chip. Mainstream servers with dozens of cores
are now a reality and the trend is continuing unabated; thus we are transitioning from
multi-CPU processing into the “many-core” era.

In this work, we focus on this many-core trend, showing what is required to deal
with truly large amounts of cores. For example, techniques that used to work for 4-8
threads simply do not scale to machines with 64 hardware threads. One observation
is that parallelism needs to be literally everywhere in a query plan to achieve good
scalability with many cores [78]. In the TPC-H Benchmark, for example, 97.4% of
the tuples in joins arrive from the probe side. Thus, on a system with 64 threads,
parallelizing only the probe side limits the theoretical overall speedup to 24.3 instead
of 64, which wastes more than half of the aggregate compute power. While we use the
number 64 as an example, we note that the many-core trend is in full swing and the
number of cores continues to grow.

Another challenge in the many-core era is load balancing. Each of the 64 cores needs
to get exactly the same amount of work. Approaches that divide the work at query
optimization time like Volcano [52] must take into account skew, because intermediate
operators such as selections, aggregations and joins, even if they receive exactly the
same amount of input data may produce (somewhat) differing amounts of result tuples
due to, e.g., data distributions and (slight) correlations with query predicates. Query

66

4.3 Morsel-Driven Execution

BB

BA

S R

v vT

v

Build HT(S)

Build HT(T)

Pipe 1

s...

Scan T

Pipe 1

s...

Scan T

Pipe 1

s...

Scan T

Pipe 2

s...

Scan S

Pipe 2

s...

Scan S

Pipe 2

s...

Scan S

Probe HT(T)

Pipe 3

s...

Scan R

Probe HT(S)

Probe HT(T)

Pipe 3

s...

Scan R

Probe HT(S)

Probe HT(T)

Pipe 3

s...

Scan R

Probe HT(S)

Probe HT(T)

Pipe 3

s...

Scan R

Probe HT(S)

Figure 4.2: Parallellizing the three pipelines of the sample query plan: (left) algebraic
evaluation plan; (right) three- respectively four-way parallel processing of
each pipeline

optimizers could try to use statistics to help divide the work evenly. However, small
errors are still bound to occur and propagate. Thus, operators higher up in the pipeline
may not get the same amount of work.

Moreover, in 64-way parallel plans even variations that are small in the absolute
sense will have strongly detrimental consequences for overall speed-up. Load-balancing
is further complicated by the problem that even if parallel pipelines would get exactly
equally sized amounts of work they are likely to take different time to execute it. This is
caused by the high complexity of modern out-of-order cores. Slight variations in data
distributions among the data given to different threads will cause operators to have
different cache locality, different branch prediction rates, and different levels of data
dependencies. Finally, concurrent scheduling on nearby cores may cause the clock rate
experienced by a thread to get throttled down, and in case of HyperThreading (Simul-
taneous MultiThreading) the instruction mix run by the thread with whom one shares
instruction units may cause unexpected slowdowns.

Another difficulty stems from Non-Uniform Memory Access. Modern database
servers have multiple multi-core CPUs, which are connected through fast intercon-
nects. Though these links are very fast in comparison with normal networks, accesses
to local memory have a lower latency and higher bandwidth than remote accesses to
a different NUMA node [117]. Therefore, in order to fully utilize the compute power
and memory bandwidth of these systems, NUMA must be taken into account.

67

4 Parallel NUMA-Aware Query Processing

4.3 Morsel-Driven Execution

Adapted from the motivating query of Section 4.1, we will demonstrate our parallel
pipeline query execution on the following example query plan:

σ...(R) 1A σ...(S) 1B σ...(T)

Assuming that R is the largest table (after filtering) the optimizer would choose R
as probe input and build hash tables for the other two, S and T . The resulting alge-
braic query plan (as obtained by a cost-based optimizer) consists of the three pipelines
illustrated on the left-hand side of Figure 4.2:

1. Scanning, filtering and building the hash table HT (T) of base relation T ,

2. Scanning, filtering and building the hash table HT (S) of argument S,

3. Scanning, filtering R and probing the hash table HT (S) of S and probing the
hash table HT (T) of T and storing the result tuples.

HyPer uses Just-In-Time (JIT) compilation to generate highly efficient machine
code. Each pipeline segment, including all operators, is compiled into one code frag-
ment. This achieves very high raw performance, since interpretation overhead as expe-
rienced by traditional query evaluators, is eliminated. Further, in HyPer the operators
in the pipelines do not even materialize their intermediate results, as done by modern
column-store query engines [187, 167].

The morsel-driven execution of the algebraic plan is controlled by a so called QEPobject
which transfers executable pipelines to a dispatcher—cf. Section 4.4. It is the QEPobject’s
responsibility to keep track of data dependencies. In our example query, the third
(probe) pipeline can only be executed after the two hash tables have been built, i.e.,
after the first two pipelines have been fully executed. For each pipeline the QEPobject
allocates the temporary storage areas into which the parallel threads executing the
pipeline write their results. Note that morsels are a logical concept: After comple-
tion of the entire pipeline the temporary storage areas are logically re-fragmented into
equally sized morsels; this way the succeeding pipelines start with new homogeneously
sized morsels instead of retaining morsel boundaries across pipelines which could eas-
ily result in skewed morsel sizes. The number of parallel threads working on any
pipeline at any time is bounded by the number of hardware threads of the processor.
In order to write NUMA-locally and to avoid synchronization while writing interme-
diate results the QEPobject allocates a storage area for each such thread/core for each
executable pipeline.

The parallel processing of the pipeline for filtering T and building the hash table
HT (T) is shown in Figure 4.3. Let us concentrate on the processing of the first phase
of the pipeline that filters input T and stores the “surviving” tuples in temporary storage

68

4.3 Morsel-Driven Execution

HT(T)

global
Hash Table

morsel

T

P
h

as
e

 1
: p

ro
ce

ss
 T

 m
o

rs
el

-w
is

e
an

d
 s

to
re

 N
U

M
A

-l
o

ca
lly

P
h

as
e

 2
: s

ca
n

 N
U

M
A

-l
o

ca
l s

to
ra

ge
 a

re
a

an
d

 in
se

rt
 p

o
in

te
rs

 in
to

 H
T

ne
xt

 m
or

se
l

Storage
area of

red core

Storage
area of

green core

Storage
area of

blue coresc
an

sc
an

Insert the pointer

into HT

...(T)v ...(T)v...(T)v

Figure 4.3: NUMA-aware processing of the build-phase

areas. In our figure three parallel threads are shown, each of which operates on one
morsel at a time. As our base relation T is stored “morsel-wise” across a NUMA-
organized memory, the scheduler assigns, whenever possible, a morsel located on the
same socket where the thread is executed. This is indicated by the coloring in the
figure: The red thread that runs on a core of the red socket is assigned the task to
process a red-colored morsel, i.e., a small fragment of the base relation T that is located
on the red socket. Once, the thread has finished processing the assigned morsel it can
either be delegated (dispatched) to a different task or it obtains another morsel (of the
same color) as its next task. As the threads process one morsel at a time the system is
fully elastic. The degree of parallelism can be reduced or increased at any point (more
precisely, at morsel boundaries) while processing a query.

The logical algebraic pipeline of (1) scanning/filtering the input T and (2) building
the hash table is actually broken up into two physical processing pipelines marked as
phases on the left-hand side of the figure. In the first phase the filtered tuples are in-
serted into NUMA-local storage areas, i.e., for each core there is a separate storage area
in order to avoid synchronization. To preserve NUMA-locality in further processing
stages, the storage area of a particular core is locally allocated on the same socket.

After all base table morsels have been scanned and filtered, in the second phase these
storage areas are scanned—again by threads located on the corresponding cores—and

69

4 Parallel NUMA-Aware Query Processing

morsel

R

Storage
area of

red core

HT(T) HT(S)

Storage
area of

green core

Storage
area of

blue core

ne
xt

 m
or

se
l

...(R)v ...(R)v...(R)v

Figure 4.4: Morsel-wise processing of the probe phase

pointers are inserted into the hash table. Segmenting the logical hash table building
pipeline into two phases enables perfect sizing of the global hash table because after
the first phase is complete, the exact number of “surviving” objects is known. This
(perfectly sized) global hash table will be probed by threads located on various sock-
ets of a NUMA system; thus, to avoid contention, it should not reside in a particular
NUMA-area and is therefore is interleaved (spread) across all sockets. As many par-
allel threads compete to insert data into this hash table, a lock-free implementation is
essential. The implementation details of the hash table are described in Section 4.5.2.

After both hash tables have been constructed, the probing pipeline can be scheduled.
The detailed processing of the probe pipeline is shown in Figure 4.4. Again, a thread
requests work from the dispatcher which assigns a morsel in the corresponding NUMA
partition. That is, a thread located on a core in the red NUMA partition is assigned a
morsel of the base relationR that is located on the corresponding “red” NUMA socket.
The result of the probe pipeline is again stored in NUMA local storage areas in order to
preserve NUMA locality for further processing (not present in our sample query plan).

In all, morsel-driven parallelism executes multiple pipelines in parallel, which is
similar to typical implementations of the Volcano model. Different from Volcano,
however, is the fact that the pipelines are not independent. That is, they share data
structures and the operators are aware of parallel execution and must perform synchro-
nization, which is done in a lock-free fashion. A further difference is that the number
of threads executing the plan is fully elastic. That is, the number may differ not only

70

4.4 Dispatcher: Scheduling Parallel Pipeline Tasks

between different pipeline segments, as shown in Figure 4.2, but also inside the same
pipeline segment during query execution—as described in the following.

4.4 Dispatcher: Scheduling Parallel Pipeline Tasks

The dispatcher is controlling and assigning the compute resources to the parallel pipelines.
This is done by assigning tasks to worker threads. We (pre-)create one worker thread
for each hardware thread that the machine provides and permanently bind each worker
to it. Thus, the level of parallelism of a particular query is not controlled by creating
or terminating threads, but rather by assigning them particular tasks of possibly dif-
ferent queries. A task that is assigned to such a worker thread consists of a pipeline
job and a particular morsel on which the pipeline has to be executed. Preemption of
a task occurs at morsel boundaries—thereby eliminating potentially costly interrupt
mechanisms. We experimentally determined that for OLAP queries a morsel size of
about 100,000 tuples yields good tradeoff between instant elasticity adjustment, load
balancing and low maintenance overhead.

There are three main goals for assigning tasks to threads that run on particular cores:

1. Preserving (NUMA-)locality by assigning data morsels to cores on which the
morsels are allocated

2. Full elasticity concerning the level of parallelism of a particular query

3. Load balancing requires that all cores participating in a query pipeline finish
their work at the same time in order to prevent (fast) cores from waiting for
other (slow) cores2.

In Figure 4.5 the architecture of the dispatcher is sketched. It maintains a list of
pending pipeline jobs. This list only contains pipeline jobs whose prerequisites have
already been processed. E.g., for our running example query the build input pipelines
are first inserted into the list of pending jobs. The probe pipeline is only inserted after
these two build pipelines have been finished. As described before, each of the active
queries is controlled by a QEPobject which is responsible for transferring executable
pipelines to the dispatcher. Thus, the dispatcher maintains only lists of pipeline jobs for
which all dependent pipelines were already processed. In general, the dispatcher queue
will contain pending pipeline jobs of different queries that are executed in parallel to
accommodate inter-query parallelism.

2This assumes that the goal is to minimize the response time of a particular query. Of course, an idle
thread could start working on another query otherwise.

71

4 Parallel NUMA-Aware Query Processing

Dispatcher
Code

 d
is

p
at

ch
(0

)

(J
1,

 M
r1
)

P
ip

el
in

e-
Jo

b
 J

1
 o

n
 m

o
rs

el
 M

r1

 o
n

 (
re

d
)

so
ck

et
 o

f
C

o
re

0

Pipeline-
Job
J1

Pipeline-
Job
J2

Mr1

Mr2

Mr3

Mg1

Mg2

Mg3

Mb1

Mb2

Mb3

(virtual) lists of morsels to be processed
(colors indicates on what socket/core

the morsel is located)

Lock-free Data Structures of Dispatcher
List of pending pipeline-jobs

(possibly belonging to different queries)

Core0 Core Core Core

Core Core Core Core

D
R

A
M

Core8 Core Core Core

Core Core Core Core

D
R

A
M

Core Core Core Core

Core Core Core Core

D
R

A
M

Core Core Core Core

Core Core Core Core

D
R

A
M

Socket Socket

inter connect

SocketSocket

Example NUMA Multi-Core Server with 4 Sockets and 32 Cores

Figure 4.5: Dispatcher assigns pipeline-jobs on morsels to threads depending on the
core

4.4.1 Elasticity

The fully elastic parallelism, which is achieved by dispatching jobs “a morsel at a
time”, allows for intelligent scheduling of these inter-query parallel pipeline jobs de-
pending on a quality of service model. It enables the scheduler to gracefully decrease
the degree of parallelism of, say a long-running query Ql at any stage of processing
in order to prioritize a possibly more important interactive query Q+. Once the higher
prioritized query Q+ is finished, the pendulum swings back to the long running query
by dispatching all or most cores to tasks of the long running query Ql. In Section 4.6.4
we demonstrate this dynamic elasticity experimentally. In our current implementation
all queries have the same priority, so threads are distributed equally over all active
queries. A priority-based scheduling component can be based on these ideas but is
beyond the scope of this work.

For each pipeline job the dispatcher maintains lists of pending morsels on which the
pipeline job has still to be executed. For each core a separate list exists to ensure that
a work request of, say, Core 0 returns a morsel that is allocated on the same socket

72

4.4 Dispatcher: Scheduling Parallel Pipeline Tasks

as Core 0. This is indicated by different colors in our architectural sketch. As soon
as Core 0 finishes processing the assigned morsel, it requests a new task, which may
or may not stem from the same pipeline job. This depends on the prioritization of
the different pipeline jobs that originate from different queries being executed. If a
high-priority query enters the system it may lead to a decreased parallelism degree for
the current query. Morsel-wise processing allows one to re-assign cores to different
pipeline jobs without any drastic interrupt mechanism.

4.4.2 Implementation Overview

For illustration purposes we showed a (long) linked list of morsels for each core in
Figure 4.5. In reality (i.e., in our implementation) we maintain storage area bound-
aries for each core/socket and segment these large storage areas into morsels on de-
mand; that is, when a core requests a task from the dispatcher the next morsel of the
pipeline argument’s storage area on the particular socket is “cut out”. Furthermore,
in Figure 4.5 the Dispatcher appears like a separate thread. This, however, would in-
cur two disadvantages: (1) the dispatcher itself would need a core to run on or might
preempt query evaluation threads and (2) it could become a source of contention, in
particular if the morsel size was configured quite small. Therefore, the dispatcher is
implemented as a lock-free data structure only. The dispatcher’s code is then executed
by the work-requesting query evaluation thread itself. Thus, the dispatcher is auto-
matically executed on the (otherwise unused) core of this worker thread. Relying on
lock-free data structures (i.e., the pipeline job queue as well as the associated morsel
queues) reduces contention even if multiple query evaluation threads request new tasks
at the same time. Analogously, the QEPobject that triggers the progress of a particular
query by observing data dependencies (e.g., building hash tables before executing the
probe pipeline) is implemented as a passive state machine. The code is invoked by the
dispatcher whenever a pipeline job is fully executed as observed by not being able to
find a new morsel upon a work request. Again, this state machine is executed on the
otherwise unused core of the worker thread that originally requested a new task from
the dispatcher.

Besides the ability to assign a core to a different query at any time—called elasticity—
the morsel-wise processing also guarantees load balancing and skew resistance. All
threads working on the same pipeline job run to completion in a “photo finish”: they
are guaranteed to reach the finish line within the time period it takes to process a
single morsel. If, for some reason, a core finishes processing all morsels on its par-
ticular socket, the dispatcher will “steal work” from another core, i.e., it will assign
morsels on a different socket. On some NUMA systems, not all sockets are directly
connected with each other; here it pays off to steal from closer sockets first. Under
normal circumstances, work-stealing from remote sockets happens very infrequently;

73

4 Parallel NUMA-Aware Query Processing

0.0

0.2

0.4

0.6

0.8

100 1K 10K 100K 1M 10M
morsel size

tim
e

[s
]

Figure 4.6: Effect of morsel size on query execution

nevertheless it is necessary to avoid idle threads. And the writing into temporary stor-
age will be done into NUMA local storage areas anyway (that is, a red morsel turns
blue if it was processed by a blue core in the process of stealing work from the core(s)
on the red socket).

So far, we have discussed intra-pipeline parallelism. Our parallelization scheme can
also support bushy parallelism, e.g., the pipelines “filtering and building the hash table
of T ” and “filtering and building the hash table of S” of our example are independent
and could therefore be executed in parallel. However, the usefulness of this form of
parallelism is limited. The number of independent pipelines is usually much smaller
than the number of cores, and the amount of work in each pipeline generally differs.
Furthermore, bushy parallelism can decrease performance by reducing cache locality.
Therefore, we currently avoid to execute multiple pipelines from one query in parallel;
in our example, we first execute pipeline T , and only after T is finished, the job for
pipeline S is added to the list of pipeline jobs.

Besides elasticity, morsel-driven processing also enables an elegant implementation
of query canceling. A user may have aborted her query request or a runtime exception
(e.g., a numeric overflow, out-of-memory condition) may have happened. If any of
these events happen, the involved query is marked in the dispatcher. The marker is
checked whenever a morsel of that query is finished, therefore, very soon all worker
threads will stop working on this query. In contrast to forcing the operating system to
kill threads, this approach allows each thread to clean up (e.g., free allocated memory).

4.4.3 Morsel Size

In contrast to systems like Vectorwise [20] and IBM’s BLU [156], which use vec-
tors/strides to pass data between operators, there is no performance penalty if a morsel
does not fit into cache. Morsels are used to break a large task into small, constant-sized

74

4.5 Parallel Operator Details

work units to facilitate work-stealing and preemption. Consequently, the morsel size is
not very critical for performance, it only needs to be large enough to amortize schedul-
ing overhead while providing good response times. To show the effect of morsel size
on query performance we measured the performance for the query
select min(a) from R.
We used 64 threads on a Nehalem EX system, which is described in Section 4.6.

This query is very simple, so it stresses the work-stealing data structure as much as
possible. Figure 4.6 shows that the morsel size should be set to the smallest possible
value where the overhead is negligible, in this case to a value above 10,000. The
optimal setting depends on the hardware, but can easily be determined experimentally.

On many-core systems, any shared data structure, even if lock-free, can eventually
become a bottleneck. In the case of our work-stealing data structure, however, there
are a number of aspects that prevent it from becoming a scalability problem. In our im-
plementation the total work is initially split between all threads, such that each thread
temporarily owns a local range. Each local range is stored in a separate cache line to
ensure that conflicts are unlikely. Only when this local range is exhausted, a thread
will try to steal work from another range. Finally, it is always possible to increase the
morsel size. This results in fewer accesses to the work-stealing data structure. In the
worst case, a too large morsel size results in underutilized threads but does not affect
throughput of the system if enough concurrent queries are being executed.

4.5 Parallel Operator Details

In order to be able to completely parallelize each pipeline, each operator must be capa-
ble of accepting tuples in parallel (e.g., by synchronizing shared data structures) and,
for operators that start a new pipeline, of producing tuples in parallel. In this section
we discuss the implementation of the most important parallel operators.

4.5.1 Hash Join

As discussed in Section 4.3 and shown in Figure 4.3, the hash table construction of our
hash join consists of two phases. In the first phase, the build input tuples are material-
ized into a thread-local storage area3; this requires no synchronization. Once all input
tuples have been consumed that way, an empty hash table is created with the perfect
size, because the input size is now known precisely. This is much more efficient than
dynamically growing hash tables, which incur a high overhead in a parallel setting. In
the second phase of the parallel build phase each thread scans its storage area and in-
serts pointers to its tuples using the atomic compare-and-swap instruction. The details
are explained in Section 4.5.2.

3We also reserve space for a next pointer within each tuple for handling hash collisions.

75

4 Parallel NUMA-Aware Query Processing

Outer join is a minor variation of the described algorithm. In each tuple a marker is
additionally allocated that indicates if this tuple had a match. In the probe phase the
marker is set indicating that a match occurred. Before setting the marker it is advan-
tageous to first check that the marker is not yet set, to avoid unnecessary contention.
Semi and anti joins are implemented similarly.

Using a number of single-operation benchmarks, Balkesen et al. showed that a
highly-optimized radix join can achieve higher performance than a single-table join [10].
However, in comparison with radix join our single-table hash join

• is fully pipelined for the larger input relation, thus uses less space as the probe
input can be processed in place,

• is a “good team player” meaning that multiple small (dimension) tables can be
joined as a team by a probe pipeline of the large (fact) table through all these
dimension hash tables,

• is very efficient if the two input cardinalities differ strongly, as is very often the
case in practice,

• can benefit from skewed key distributions4 [17],

• is insensitive to tuple size, and

• has no hardware-specific parameters.

Because of these practical advantages, a single-table hash join is often preferable to
radix join in complex query processing. For example, in the TPC-H benchmark, 97.4%
of all joined tuples arrive at the probe side, and therefore the hash table often fits into
cache. This effect is even more pronounced with the Star Schema Benchmark where
99.5% of the joined tuples arrive at the probe side. Therefore, we concentrated on
a single-table hash join which has the advantage of not relying on query optimizer
estimates while providing very good (if the table fits into cache) or at least decent (if
the table is larger than cache) performance. We left the radix join implementation,
which is beneficial in some scenarios due to higher locality, for future enhancement of
our query engine.

4.5.2 Lock-Free Tagged Hash Table

The hash table that we use for the hash join operator has an early-filtering optimization,
which improves performance of selective joins, which are quite common. The key idea
is to tag a hash bucket list with a small filter into which all elements of that particular

4One example that occurs in TPC-H is positional skew, i.e., in a 1:n join all join partners occur in close
proximity which improves cache locality.

76

4.5 Parallel Operator Details

d00000100

e10000010

f

hashTable
16 bit tag for early filtering

48 bit pointer

Figure 4.7: Hash table with tagging

1 insert(entry) {
2 // determine slot in hash table
3 slot = entry->hash >> hashTableShift
4 do {
5 old = hashTable[slot]
6 // set next to old entry without tag
7 entry->next = removeTag(old)
8 // add old and new tag
9 new = entry | (old&tagMask) | tag(entry->hash)

10 // try to set new value, repeat on failure
11 } while (!CAS(hashTable[slot], old, new))
12 }

Figure 4.8: Lock-free insertion into tagged hash table

list are “hashed” to set their 1-bit. For selective probes, i.e., probes that would not find
a match by traversing the list, the filter usually reduces the number of cache misses to
1 by replacing a list traversal with a tag check. As shown in Figure 4.7, we encode
a tag directly into 16 bits of each pointer in the hash table. This saves space and,
more importantly, allows updating both the pointer and the tag using a single atomic
compare-and-swap operation when building the hash table.

For low-cost synchronization we exploit the fact that in a join the hash table is insert-
only and lookups occur only after all inserts are completed. Figure 4.8 shows the
pseudo code for inserting a new entry into the hash table. In line 11, the pointer to
the new element (e.g, “f” in the picture) is set using compare-and-swap (CAS). This
pointer is augmented by the new tag, which is computed from the old and the new
tag (line 9). If the CAS failed (because another insert occurred simultaneously), the
process is repeated.

Our tagging technique has a number of advantages in comparison to Bloom fil-
ters, which can be used similarly and are, for example, used in Vectorwise [19], SQL
Server [99], and BLU [156]. First, a Bloom filter is an additional data structure that
incurs multiple reads. And for large tables, the Bloom filter may not fit into cache (or

77

4 Parallel NUMA-Aware Query Processing

only relatively slow last-level cache), as the Bloom filter size must be proportional to
the hash table size to be effective. Therefore, the overhead can be quite high, although
Bloom filters can certainly be a very good optimization in some cases. In our approach
no unnecessary memory accesses are performed. The only additional work is a small
number of cheap bitwise operations. Therefore, hash tagging has very low overhead
and can always be used, without relying on the query optimizer to estimate selectivi-
ties. Besides being useful for joins, tagging is also very beneficial during aggregation
of mostly unique attributes.

The hash table array only stores pointers, and not the tuples themselves, i.e., we do
not use open addressing. There are a number of reasons for this: Since the tuples are
usually much larger than pointers, the hash table can be sized quite generously to at
least twice the size of the input. This reduces the number of collisions without wasting
too much space. Furthermore, chaining allows for tuples of variable size, which is not
possible with open addressing. Finally, probe misses are typically faster with chaining
than with open addressing, because only a single filter needs to be checked rather than
(potentially) multiple open addressing entries.

We use large virtual memory pages (2 MB) both for the hash table and the tuple
storage areas. This has several positive effects: The number of TLB misses is reduced,
the page table is guaranteed to fit into L1 cache, and scalability problems from too
many kernel page faults during the build phase are avoided. We allocate the hash
table using the Unix mmap system call, if available. Modern operating systems do
not eagerly allocate the memory immediately, but only when a particular page is first
written to. This has two positive effects. First, there is no need to manually initialize
the hash table to zero in an additional phase. Second, the table is adaptively distributed
over the NUMA nodes, because the pages will be located on the same NUMA node
as the thread that has first written to that page. If many threads build the hash table, it
will be pseudo-randomly interleaved over all nodes. In case only threads from a single
NUMA node construct the hash table, it will be located on that node—which is exactly
as desired.

4.5.3 NUMA-Aware Table Partitioning

In order to implement NUMA-local table scans, relations have to be distributed over
the memory nodes. The most obvious way to do this is round-robin assignment. A
better alternative is to partition relations using the hash value of some “important”
attribute. The benefit is that in a join between two tables that are both partitioned on the
join key (e.g., by the primary key of one and by the foreign key of the other relation),
matching tuples usually reside on the same socket. A typical example (from TPC-H)
would be to partition orders and lineitem on the orderkey attribute. Note that this is
more a performance hint than a hard partitioning: Work stealing or data imbalance can

78

4.5 Parallel Operator Details

K
8
13

3

V
9
7

10

ht
K
8
3
13
3
3
10
33
4
33
8
...

V
9
2
7
8
4
7
22
17
4
7
...

K
4
33
10
3

V
17
22
7
4

ht

group

group

m
o

rs
el

m
o

rs
el

(12,7) (8,3)

(8,9) (4,30)

spill when ht becomes full

n
ex

t
re

d

m
o

rs
el

K
12

8

4

V
...

...

...

HT

K

13

33

V

...

...

HT

(41,4) (13,7)

(13,14) (33,5)

group

group

group
group

Result ptn 0

Result ptn 1

Phase 1: local pre-aggregation

Phase 2: aggregate partition-wise

Partition 0

Partition 0

...Partition 3 ...

...Partition 3 ...

Figure 4.9: Parallel aggregation

still lead to joins between tuples from different sockets, but most join pairs will come
from the same socket. The result is that there is less cross-socket communication,
because the relations are co-located for this frequent join. This also affects the hash
table array, because the same hash function used for determining the hash partition is
also used for the highest bits of the hash buckets in a hash join. Except for the choice of
the partitioning key, this scheme is completely transparent, and each partition contains
approximately the same number of tuples due to the use of hash-based fragmentation.

4.5.4 Grouping/Aggregation

The performance characteristics of the aggregation operator differs very much depend-
ing on the number of groups (distinct keys). If there are few groups, aggregation is very
fast because all groups fit into cache. If, however, there are many groups, many cache
misses happen. Contention from parallel accesses can be a problem in both cases (if
the key distribution is skewed). To achieve good performance and scalability in all
these cases, without relying on query optimizer estimates, we use an approach similar
to IBM BLU’s aggregation [156].

As indicated by Figure 4.9, our algorithm has two phases. In the first phase, thread-
local pre-aggregation efficiently aggregates heavy hitters using a thread-local, fixed-
sized hash table. When this small pre-aggregation table becomes full, it is flushed to
overflow partitions. After all input data has been partitioned, the partitions are ex-
changed between the threads.

The second phase consists of each thread scanning a partition and aggregating it

79

4 Parallel NUMA-Aware Query Processing

into a thread-local hash table. As there are more partitions than worker threads, this
process is repeated until all partitions are finished. Whenever a partition has been
fully aggregated, its tuples are immediately pushed into the following operator before
processing any other partitions. As a result, the aggregated tuples are likely still in
cache and can be processed more efficiently.

Note that the aggregation operator is fundamentally different from join in that the
results are only produced after all the input has been read. Since pipelining is not pos-
sible anyway, we use partitioning instead of a single hash table as in our join operator.

4.5.5 Set Operators

In contrast to aggregation, which is a unary operator (one input), and join, which is
a binary operator (two inputs), HyPer models the SQL (multi-)set operators UNION,
INTERSECT, EXCEPT, INTERSECT ALL, and EXCEPT ALL as n-ary operators
(2 or more inputs). This is more efficient than implementing set operators as binary
operators, as it allows one to reuse data structures (e.g., hash tables) already built.
Furthermore, our implementation is based on hashing and uses pre-aggregation similar
to the aggregation operator.
UNION treats all inputs symmetrically, i.e., the tuple streams of all inputs are, in

effect, appended. After pre-aggregated (using a fixed-sized hash table as in the aggre-
gation), all tuples are hash partitioned, and finally unique, per-partition hash tables are
built.

The other variants are executed as follows:

1. process first input: Pre-aggregate and then build hash tables for each hash parti-
tion from the first input.

2. merge each additional input: First the input is partitioned (again after pre-
aggregation), then each partition is “merged” into the corresponding, existing
hash table from step 1.

3. output result: The hash tables are scanned and the tuples in it are the final result.

Step 1 is very similar for all variants. The merge in step 2 differs depending on
the variant. EXCEPT simply removes entries from the hash table if it encounters a
match. INTERSECT first removes the key from the hash table and moves it into a new
hash table. This new hash table replaces the original one after all tuples have been
consumed.

Another difference between the variants is duplicate handling. UNION, INTERSECT,
and EXCEPT can simply discard any duplicates. INTERSECT ALL and EXCEPT

ALL, in contrast, count the number of occurrences for each value in the hash table
(during step 1). During the merge for EXCEPT ALL the count is decremented and

80

4.5 Parallel Operator Details

Compute global separators

from the local separators

mergemerge merge

local 1/3

global 1/3 global 2/3

local 2/3

so
rt

so
rt

so
rt

in
-p
la
ce

Figure 4.10: Parallel merge sort

the entry is only removed from the hash table if its count reaches zero. INTERSECT
ALL maintains a second counter in the hash table, which is incremented during the
merge. For INTERSECT ALL, step 3 produces the minimum of the two counters as
the number of output tuples.

4.5.6 Sorting

In main memory, hash-based algorithms are usually faster than sorting [9]. Therefore,
we currently do not use sort-based join or aggregation, and only sort to implement the
order by or top-k clause. In our parallel sort operator each thread first materializes and
sorts its input locally and in place. In the case of top-k queries, each thread directly
maintains a heap of k tuples.

After local sort, the parallel merge phase begins, as shown in Figure 4.10. The
difficulty lies in computing separators, so that merges are independent and can be exe-
cuted in parallel without synchronization. To do this, each thread first computes local
separators by picking equidistant keys from its sorted run. Then, to handle skewed
distribution and similar to the median-of-medians algorithm, the local separators of all
threads are combined, sorted, and the eventual, global separator keys are computed.
After determining the global separator keys, binary (or interpolation) search finds the
indexes of them in the data arrays. Using these indexes, the exact layout of the output
array can be computed. Finally, the runs can be merged into the output array without
any synchronization.

Note that while this merge sort algorithm scales very well, it is not morsel-driven.
Finding an efficient and scalable morsel-driven sorting algorithm is left for future

81

4 Parallel NUMA-Aware Query Processing

DRAM

socket 0

DRAM

socket 1

socket 3 socket 2

DRAM DRAM

DRAM

socket 0

DRAM

socket 1

socket 3 socket 2

DRAM DRAM

Nehalem EX Sandy Bridge EP

25.6GB/s 51.2GB/s

12.8GB/s
(bidirec�onal)

8 cores
24MB L3

8 cores
24MB L3

8 cores
24MB L3

8 cores
24MB L3

8 cores
20MB L3

8 cores
20MB L3

8 cores
20MB L3

8 cores
20MB L3

16.0GB/s
(bidirec�onal)

Figure 4.11: NUMA topologies, theoretical bandwidth

work.

4.6 Evaluation

In this evaluation we focus on ad hoc decision support queries, and, except for declar-
ing primary keys, do not enable any additional index structures. Therefore, our results
mainly measure the performance and scalability of the table scan, aggregation, and join
(including outer, semi, anti join) operators. HyPer supports both row and column-wise
storage; we used the column format in all experiments. All data was stored in RAM.

4.6.1 Experimental Setup

We used two different hardware platforms—both running Linux. Unless indicated oth-
erwise we use a 4-socket Nehalem EX (Intel Xeon X7560 at 2.3GHz). Additionally,
some experiments are performed on a 4-socket Sandy Bridge EP (Intel Xeon E5-4650L
at 2.6GHz-3.1GHz). Such systems are particularly suitable for main-memory database
systems, as they support terabytes of RAM at reasonable cost. Although both sys-
tems have 32 cores, 64 hardware threads, and almost the same amount of cache, their
NUMA topology is quite different. As Figure 4.11 shows, each of the Sandy Bridge
CPUs has twice the theoretical per-node memory bandwidth but is only connected
to two other sockets. Consequently, some memory accesses (e.g., from socket 0 to
socket 2) require two hops instead of one; this increases latency and reduces memory
bandwidth because of cross traffic [117]. Note that the upcoming 4-socket Ivy Bridge
platform will come in two versions, Ivy Bridge EX which is fully connected like Ne-

82

4.6 Evaluation

halem EX, and Ivy Bridge EP with only a single interconnect per node like Sandy
Bridge EP.

As our main competitor we chose Vectorwise, which was the official single-server
TPC-H leader when the experiments were performed. We also measured the perfor-
mance of the open source row store PostgreSQL and a column store that is integrated
into one of the major commercial database systems. On TPC-H, in comparison with
HyPer, PostgreSQL was slower by a factor of 30 on average, the commercial column
store by a factor of 10. We therefore concentrate on Vectorwise (version 2.5) in further
experiments, as it was much faster than the other systems.

In this evaluation we used a classical ad-hoc TPC-H situation. This means that
no hand-tuning of physical storage was used, as this way the plans used are simi-
lar (hash joins everywhere). The Vectorwise results from the TPC web site include
this additional tuning, mainly clustered indexes, which allows executing some of the
larger joins with merge-join algorithms. Additionally, these indexes allow the query
optimizer to propagate range restrictions from one join side to the other [19], which
greatly improves performance for a small number of queries, but does not affect the
query processing itself very much. This tuning also does not improve the scalability of
query execution; on average the speedup is below 10× both with and without tuning.
For completeness, we also provide results for Vectorwise on Nehalem EX with the
settings from the TPC-H full disclosure report:

system geo. mean sum scal.
HyPer 0.45s 15.3s 28.1×
Vectorwise 2.84s 93.4s 9.3×
Vectorwise, full-disclosure settings 1.19s 41.2s 8.4×

In HyPer the data can be updated cheaply in-place, since the column format used
in our experiments does not use compression. Thus, the two TPC-H refresh streams
on scale factor 100 execute in less than 1 second. This is in contrast to heavily read-
optimized systems (e.g., [36]), where updates are expensive due to heavy indexing and
reordering. Our system transparently distributes the input relations over all available
NUMA sockets by partitioning each relation using the first attribute of the primary key
into 64 partitions. The execution times include memory allocation and deallocation
(from the operating system) for intermediate results, hash tables, etc.

4.6.2 TPC-H

Figure 4.12 compares the scalability of HyPer with Vectorwise on the Nehalem sys-
tem; both DBMSs are normalized by the single-threaded execution time of HyPer.
Note that up to 32 threads, “real” cores are used, the rest are HyperThreads. For most
queries, HyPer reaches a speedup close to 30. In some cases a speedup close to or

83

4 Parallel NUMA-Aware Query Processing

 1 2 3 4

 5 6 7 8

 9 10 11 12

13 14 15 16

17 18 19 20

21 22

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

1 16 32 48 64 1 16 32 48 64
threads

sp
ee

du
p

ov
er

 H
yP

er

System

HyPer (full-fledged)

HyPer (not NUMA aware)

HyPer (non-adaptive)

Vectorwise

Figure 4.12: TPC-H scalability on Nehalem EX (32 cores, 64 hardware threads)

84

4.6 Evaluation

above 40 is reached due to HyperThreading. Although Vectorwise has similar single-
threaded performance as HyPer, its overall performance is severely limited by its low
speedup, which is often less than 10. One problem is load balancing: in the—trivially
parallelizable—scan-only query 6 the slowest thread often finishes work 50% before
the last. While in real-world scenarios it is usually data skew that challenges load
balancing, this is not the case in the fully uniform TPC-H. These issues are related
to the use of the Volcano model for parallelizing queries in Vectorwise [6]. This ap-
proach, which is commonly followed (e.g., in Oracle and SQL Server), as it allows
implementing parallelism without affecting existing query operators, bakes the paral-
lelism into the plan at planning time by instantiating a set of query plans on separate
plans and connecting then using “exchange” operators [52]. We point out that fixed
work division combined with lack of NUMA-awareness can lead to significant perfor-
mance differences between threads (Vectorwise up to version 3 is not NUMA-aware,
as confirmed by our experiments in Section 4.6.3).

Figure 4.12 also shows scalability results where we disabled some important fea-
tures of our query engine. Performance is significantly lower when we disable explicit
NUMA-awareness and rely on the operating system instead (cf. “HyPer (not NUMA
aware)”). A further performance penalty can be observed, if we additionally disable
adaptive morsel-wise processing and the performance enhancements introduced in this
work like hash tagging. This gives an impression of the effects of the individual tech-
niques. But note that we still use JIT compilation and highly tuned operator imple-
mentations that try to maximize locality.

Table 4.1 and Table 4.2 allow one to compare the TPC-H performance of the Ne-
halem and Sandy Bridge systems. The overall performance is similar on both systems,
because the missing interconnect links on Sandy Bridge EP, which result in slightly
lower scalability, are compensated by its higher clock rate. Notice that all queries
complete within 3 seconds—on a 100 GB data set using ad hoc hash joins and without
using any index structures.

4.6.3 NUMA Awareness

Table 4.1 shows memory bandwidth and QPI statistics5 for each of the 22 TPC-H
queries. Query 1, which aggregates the largest relation, for example, reads 82.6 GB/s
getting close to the theoretical bandwidth maximum of 100 GB/s. The “remote” col-
umn in the table shows the percentage of data being accessed though the interconnects
(remotely), and therefore measures the locality of each query. Because of NUMA-

5These statistics were obtained using the Open Source tool “Intel Performance Counter Monitor”
(www.intel.com/software/pcm). The “rd.” (read), “wr.” (write), and “remote” values are
aggregated over all sockets. The “QPI” column shows the utilization of the most-utilized QPI link
(though with NUMA-awareness the utilization of the links is very similar). Unfortunately, these
statistics are not exposed on Sandy Bridge EP.

85

www.intel.com/software/pcm

4 Parallel NUMA-Aware Query Processing

HyPer [%] Vectorwise [%]
TPC-H time scal. rd. wr. remote time scal. rd. wr. remote

[s] [×] [GB/s] QPI [s] [×] [GB/s] QPI
1 0.28 32.4 82.6 0.2 1 40 1.13 30.2 12.5 0.5 74 7
2 0.08 22.3 25.1 0.5 15 17 0.63 4.6 8.7 3.6 55 6
3 0.66 24.7 48.1 4.4 25 34 3.83 7.3 13.5 4.6 76 9
4 0.38 21.6 45.8 2.5 15 32 2.73 9.1 17.5 6.5 68 11
5 0.97 21.3 36.8 5.0 29 30 4.52 7.0 27.8 13.1 80 24
6 0.17 27.5 80.0 0.1 4 43 0.48 17.8 21.5 0.5 75 10
7 0.53 32.4 43.2 4.2 39 38 3.75 8.1 19.5 7.9 70 14
8 0.35 31.2 34.9 2.4 15 24 4.46 7.7 10.9 6.7 39 7
9 2.14 32.0 34.3 5.5 48 32 11.42 7.9 18.4 7.7 63 10
10 0.60 20.0 26.7 5.2 37 24 6.46 5.7 12.1 5.7 55 10
11 0.09 37.1 21.8 2.5 25 16 0.67 3.9 6.0 2.1 57 3
12 0.22 42.0 64.5 1.7 5 34 6.65 6.9 12.3 4.7 61 9
13 1.95 40.0 21.8 10.3 54 25 6.23 11.4 46.6 13.3 74 37
14 0.19 24.8 43.0 6.6 29 34 2.42 7.3 13.7 4.7 60 8
15 0.44 19.8 23.5 3.5 34 21 1.63 7.2 16.8 6.0 62 10
16 0.78 17.3 14.3 2.7 62 16 1.64 8.8 24.9 8.4 53 12
17 0.44 30.5 19.1 0.5 13 13 0.84 15.0 16.2 2.9 69 7
18 2.78 24.0 24.5 12.5 40 25 14.94 6.5 26.3 8.7 66 13
19 0.88 29.5 42.5 3.9 17 27 2.87 8.8 7.4 1.4 79 5
20 0.18 33.4 45.1 0.9 5 23 1.94 9.2 12.6 1.2 74 6
21 0.91 28.0 40.7 4.1 16 29 12.00 9.1 18.2 6.1 67 9
22 0.30 25.7 35.5 1.3 75 38 3.14 4.3 7.0 2.4 66 4

Table 4.1: TPC-H (scale factor 100) statistics on Nehalem EX

1 2 3 4 5 6 7 8 9 10 11
time [s] 0.21 0.10 0.63 0.30 0.84 0.14 0.56 0.29 2.44 0.61 0.10
scal. [×] 39.4 17.8 18.6 26.9 28.0 42.8 25.3 33.3 21.5 21.0 27.4

12 13 14 15 16 17 18 19 20 21 22
time [s] 0.33 2.32 0.33 0.33 0.81 0.40 1.66 0.68 0.18 0.74 0.47
scal. [×] 41.8 16.5 15.6 20.5 11.0 34.0 29.1 29.6 33.7 26.4 8.4

Table 4.2: TPC-H (scale factor 100) performance on Sandy Bridge EP

86

4.6 Evaluation

aware processing, most data is accessed locally, which results in lower latency and
higher bandwidth. From the “QPI” column6, which shows the saturation of the most
heavily used QPI link, one can conclude that the bandwidth of the QPI links is suffi-
cient on this system. The table also shows that Vectorwise is not NUMA optimized:
most queries have high percentages of remotely accessed memory. For instance, the
75% remote accesses in query 1 shows that its buffer manager is not NUMA-aware.
However, the QPI links are utilized fairly evenly, as the database relations seem to be
spread over all 4 NUMA nodes. This prevents a single memory controller and the QPI
links to it from becoming the bottleneck.

Most experiments so far used our NUMA-aware storage layout, NUMA-local scans,
the NUMA-aware partitioning, which reduces remote accesses in joins, and the fact
that all operators try to keep data NUMA-local whenever possible. To show the overall
performance benefit of NUMA-awareness we also experimented with plausible alter-
natives: “OS default”, where the placement is performed by the operating system7, and
“interleaved”, where all memory is allocated round robin over all nodes. We report the
geometric mean and maximum speedup of our NUMA-aware approach on TPC-H:

Nehalem EX Sandy Bridge EP
geo. mean max geo. mean max

OS default 1.57× 4.95× 2.40× 5.81×
interleaved 1.07× 1.24× 1.58× 5.01×

Clearly, the default placement of the operating system is sub-optimal, as the memory
controller of one NUMA node and the QPI links to it become the bottleneck. These
results also show that on Nehalem EX, simply interleaving the memory is a reason-
able, though not optimal strategy, whereas on Sandy Bridge EP NUMA-awareness is
much more important for good performance. The reason is that these two systems are
quite different in their NUMA behavior, as can be seen from a micro benchmark that
compares NUMA-local accesses with a random mix of 25% local and 75% remote
(including 25% two-hop accesses on Sandy Bridge EP) accesses:

bandwidth [GB/s] latency [ns]
local mix local mix

Nehalem EX 93 60 161 186
Sandy Bridge EP 121 41 101 257

On Sandy Bridge EP only a small fraction of the theoretical memory bandwidth can

6The QPI links are used both for sending the actual data, as well as for broadcasting cache coherency
requests, which is unavoidable and happens even for local accesses. Query 1, for example, reads
82.6 GB/s, 99% of it locally, but still uses 40% of the QPI link bandwidth.

7In practice, the database itself is located on a single NUMA node, because the data is read from disk
by a single thread. Other allocations are local to the thread that first wrote to that memory. Thus, hash
tables are distributed randomly over the nodes.

87

4 Parallel NUMA-Aware Query Processing

0.0

0.5

1.0

1.5

1 2 4 8 16 32 64

th
ro

ug
hp

ut
 [q

ue
rie

s/
s]

64 32 16 8 4 2 1
threads per query stream

number of query streams

Figure 4.13: Intra- vs. inter-query parallelism with 64 threads

worker 0

worker 1

worker 2

worker 3

�meq14 startq13 start q14 finish

Figure 4.14: Illustration of morsel-wise processing and elasticity

be reached unless most accesses are local, and the latency it 2.5× higher than for local
accesses. On Nehalem EX, in contrast, these effects are much smaller, which explains
why the positive effect of NUMA-awareness is smaller on this system. The importance
of NUMA-awareness clearly depends on the speed and number of the cross-socket
interconnects.

4.6.4 Elasticity

To demonstrate the elasticity of our approach, we performed an experiment where
we varied the number parallel query streams. The 64 available hardware threads are
distributed uniformly over the streams, and each stream executes random permutations
of the TPC-H queries. Figure 4.13 shows that the throughput stays high even if few
streams (but many cores per stream) are used. This allows to minimize response time
for high priority queries without sacrificing too much throughput.

Figure 4.14 illustrates morsel-wise processing by showing an annotated execution
trace from our parallel profiler. Each color represents one pipeline stage and each
block is one morsel. For graphical reasons we used only 4 threads in this experiment.
We started by executing TPC-H query 13, which received 4 threads; after some time,
TPC-H query 14 was started. As the trace shows, once the current morsels of worker

88

4.6 Evaluation

SSB time scal. read write remote QPI
[s] [×] [GB/s] [GB/s] [%] [%]

1.1 0.10 33.0 35.8 0.4 18 29
1.2 0.04 41.7 85.6 0.1 1 44
1.3 0.04 42.6 85.6 0.1 1 44
2.1 0.11 44.2 25.6 0.7 13 17
2.2 0.15 45.1 37.2 0.1 2 19
2.3 0.06 36.3 43.8 0.1 3 25
3.1 0.29 30.7 24.8 1.0 37 21
3.2 0.09 38.3 37.3 0.4 7 22
3.3 0.06 40.7 51.0 0.1 2 27
3.4 0.06 40.5 51.9 0.1 2 28
4.1 0.26 36.5 43.4 0.3 34 34
4.2 0.23 35.1 43.3 0.3 28 33
4.3 0.12 44.2 39.1 0.3 5 22

Table 4.3: Star Schema Benchmark (scale 50) on Nehalem EX

thread 2 and 3 are finished, these threads switch to query 14 until it is finished, and
finally continue working on query 13. This experiment shows that it is possible to dy-
namically reassign worker threads to other queries, i.e., that our parallelization scheme
is fully elastic.

As mentioned in the introduction, the Volcano approach typically assigns work to
threads statically. To compare with this approach, we emulated it in our morsel-driven
scheme by splitting the work into as many chunks as there are threads, i.e., we set
the morsel size to n/t, where n is the input size and t is the number of threads. As
long as we only execute a single TPC-H query at a time, this change alone does not
significantly decrease performance, because the input data is uniformly distributed on
this workload. However, if we add some interference from other processes, this picture
changes. For example, when we ran the TPC-H queries while another, unrelated single-
threaded process occupied one core, query performance dropped by 36.8% with static
approach, but only 4.7% with dynamic morsel assignment.

4.6.5 Star Schema Benchmark

Besides TPC-H, we also measured the performance and scalability of our system on
the Star Schema Benchmark (SSB) [144], which mimics data warehousing scenarios.
Table 4.3 shows that our parallelization framework works very well on this workload,
achieving a speedup of over 40 for most queries. The scalability is higher than on
TPC-H, because TPC-H is a much more complex and challenging workload. TPC-H
contains a very diverse set of queries: queries that only scan a single table, queries

89

4 Parallel NUMA-Aware Query Processing

with complex joins, queries with simple and with complex aggregations, etc. It is
quite challenging to obtain good performance and scalability on such a workload, as
all operators must be scalable and capable of efficiently handling very diverse input
distributions. All SSB queries, in contrast, join a large fact table with multiple smaller
dimension tables where the pipelining capabilities of our hash join algorithm are very
beneficial. Most of the data comes from the large fact table, which can be read NUMA-
locally (cf. column “remote” in Figure 4.3), the hash tables of the dimensions are much
smaller than the fact table, and the aggregation is quite cheap in comparison with the
rest of the query.

4.7 Related Work

This work is related to three distinct lines of work: papers that focus on multi-core join
or aggregation processing in isolation, full systems descriptions, and parallel execution
frameworks, most notably Volcano.

The radix hash join was originally designed to increase locality [128]. Kim et al. pro-
posed it for parallel processing based on repeatedly partitioning the input relations [90].
Blanas et al. [17] were the first to compare the radix join with a simple, single global
hash table join. Balkesen et al. [10, 9] and Schuh et al. [160] comprehensively inves-
tigated hash- and sort-based join algorithms. Ye et al. evaluated parallel aggregation
algorithms on multi-core CPUs [183]. Polychroniou and Ross designed an aggregation
algorithm to efficiently aggregate heavy hitters (frequent items) [149].

A number of papers specifically focus on NUMA. In one of the first paper that pin-
points the relevance of NUMA-locality, Teubner and Müller [169] presented a NUMA-
aware window-based stream join. In another early NUMA paper, Albutiu et al. de-
signed a NUMA-aware parallel sort merge join [3]. Li et al. refined this algorithm by
explicitly scheduling the shuffling of the sorted runs in order to avoid cross traffic in
the NUMA interconnection network [117]. However, despite its locality-preserving
nature this algorithm turned out to be less efficient than hash joins due to the high cost
of sorting [9, 96]. Lang et al. [96] devised a low synchronization overhead NUMA-
aware hash join, which is similar to our algorithm. It relies on a single latch-free hash
table interleaved across all NUMA nodes into which all threads insert the build input.

Unfortunately, the conclusiveness of these single-operator studies for full-fledged
query engines is limited because the micro-benchmarks used for testing usually have
single simple keys (sometimes even containing hash values), and typically use very
small payloads (one column only). Furthermore, each operator was analyzed in isola-
tion, which ignores how data is passed between operators and therefore, for example,
ignores the different pipelining capabilities of the algorithms. In our morsel-driven
database system, we have concentrated on (non-materializing) pipelined hash joins,

90

4.7 Related Work

since in practice, often one of the join sides is much larger than the others. Therefore,
teams of pipelined joins are often possible and effective. Further, for certain often-
traversed large joins (such as orders-lineitem in TPC-H), pre-partitioned data storage
can achieve NUMA locality on large joins without need for materialization.

The IBM BLU query engine [156] and Microsoft’s Apollo project [101] are two
prominent commercial projects to exploit modern multi-core servers for parallel query
processing. IBM BLU processes data in “Vectorwise” fashion, a so-called stride at
a time. In this respect there is some resemblance to our morsel-wise processing tech-
nique. However, there was no indication that the strides are maintained NUMA-locally
across processing steps/pipelines. In addition, the full elasticity w.r.t. the degree of par-
allelism that we propose was not covered. Very similar to Volcano-style parallelization,
in Oracle the individual operators are largely unaware of parallelism. [15] addresses
some problems of this model, in particular reliance on query optimizer estimates, by
adaptively changing data distribution decisions during query execution. In an exper-
imental study Kiefer et al. [89] showed that NUMA-awareness can improve database
performance considerably. Porobic et al. investigated [152] and improved NUMA-
placement in OLTP systems by partitioning the data and internal data structures in a
NUMA-aware way [151]. Heimel et al. presented a hardware-oblivious approach to
parallelization that allows operators to be compiled to different hardware platforms
like CPUs or GPUs [65]. In this work we focus on classical, query-centric paralleliza-
tion, i.e., parallelizing individual queries in isolation. Another fruitful approach is to
exploit common work from multiple queries. This operator-centric approach is used
by QPipe [64] and SharedDB [51].

The seminal Volcano model [52] forms the basis of most current query evaluation
engines enabling multi-core as well as distributed [53] parallelism. Note that Vol-
cano in a non-parallel context is also associated with an interpreted iterator execution
paradigm where results are pulled upwards through an operator tree, by calling the
next() method on each operator, which delivers the next tuple. Such a tuple-at-a-time
execution model, while elegant in its implementation, has been shown to introduce
significant interpretation overhead [139]. With the advent of high-performance ana-
lytical query engines, systems have been moving from this model towards vector or
batch-oriented execution, where each next() method works on hundreds or thousands
of tuples. This vector-wise execution model appears in Vectorwise [6], but also in
the batch-mode execution offered by ColumnStore Index tables in SQL Server [101]
(the Apollo project), as well as in stride-at-a-time execution in IBM’s BLU engine for
DB2 [156]. In HyPer we rely on a compiled query evaluation approach as first postu-
lated by Krikellas et al. [94] and later refined by Neumann [139] to obtain the same, or
even higher raw execution performance.

As far as parallelism is concerned, Volcano differentiates between vertical paral-
lelism, where essentially the pipeline between two operators is transformed into an

91

4 Parallel NUMA-Aware Query Processing

asynchronous producer/consumer model, and horizontal parallelism, where one oper-
ator is parallelized by partitioning the input data and have each parallel thread work
on one of the partitions. Most systems have implemented horizontal parallelism, since
vertical and bushy parallelism are less useful due to their unbalanced nature, as we
observed earlier. Examples of such horizontal Volcano parallelism are found in e.g.,
Microsoft SQL Server and Vectorwise [6].

While there may be (undisclosed) implementation differences between these sys-
tems, morsel-driven execution differentiates itself by making parallel query schedul-
ing fine-grained, adaptive at run-time and NUMA-aware. The parallel query engine
described here relies on chunking of the input data into fine-grained morsels. A morsel
resides completely in a single NUMA partition. The dispatcher assigns the processing
of a morsel to a thread running on a core of the same socket in order to preserve NUMA
locality. The morsel-wise processing also facilitates the full elasticity, meaning that the
degree of parallelism can be adjusted at any time, e.g., at mid-query processing. As
soon as a morsel is finished, the thread can be assigned a morsel belonging to the same
query pipeline or be assigned a different task of, e.g., another more important query.
This way the dispatcher controls parallelism explicitly as opposed to the recently pro-
posed approach by Psaroudakis et al. [153] where the number of threads is changed
based on the core utilization.

4.8 Summary

We presented the morsel-driven query evaluation framework for parallel query pro-
cessing. It is targeted at solving the major bottlenecks for analytical query performance
in the many-core age, which are load-balancing, thread synchronization, memory ac-
cess locality, and resource elasticity. We demonstrated the good scalability of this
framework in HyPer on the full TPC-H and SSB query workloads. It is important to
highlight, that at the time of this writing, the presented results are by far the fastest
achieved (barring the hand-written queries on a fully indexed and customized stor-
age scheme [36]8) on a single-server architecture. This is not being noted to claim
a performance record—these are academic and non-audited results—but rather to un-
derline the effectiveness of the morsel-driven framework in achieving scalability. In
particular, one needs to keep in mind that it is much easier to provide linear scalabil-
ity on computationally slow systems than it is on fast systems such as HyPer. The
comparison with the state-of-the-art Vectorwise system, which uses a classical imple-
mentation of Volcano-style parallelism [6], shows that beyond 8 cores, in many-core
territory, the morsel-driven framework speeds ahead; and we believe that its principles

8 The paper by Dees and Sanders [36], while interesting as an extreme take on TPC-H, visibly violates
many of its implementation rules, including the use of precomputed joins, precomputed aggregates,
and full-text indexing. It generally presents a storage structure that is very expensive to update.

92

4.8 Summary

in fine-grained scheduling, full operator parallelization, low-overhead synchronization
and NUMA-aware scheduling can be used to improve the many-core scaling in other
systems as well.

The work presented in this chapter focused on single-node scalability. Work by Wolf
Rödiger et al. investigated how to achieve scalability on multiple nodes. Building on
top of HyPer, their work achieves excellent scalability and performance by implement-
ing Exchange operators optimized for high-speed networks. They also show that, when
Exchange operators are used for single- as well as multi-node parallelism, the quadratic
number of communication channels (cores times nodes) becomes a major performance
problem. Thus, indirectly, our approach contributes to improving multi-node scalabil-
ity.

93

5 Window Function Processing in SQL

Parts of this chapter have previously been published in [111].

5.1 Introduction

Window functions, which are also known as analytic OLAP functions, are part of the
SQL:2003 standard. This SQL feature is widely used: The TPC-DS benchmark [136],
for example, uses window functions in 9 out of 99 queries and a recent study [77]
(of non-expert SQL users) reports that 4% of all queries use this feature. Almost all
major database systems, including Oracle 1, Microsoft SQL Server 2, IBM DB2 3, SAP
HANA 4, Vertica 5, PostgreSQL 6, Actian Vectorwise [72], Cloudera Impala [93], and
MonetDB 7 implement the functionality described in the SQL standard—or at least
some subset thereof.

Window functions allow one to easily formulate certain business intelligence queries
that include time series analysis, ranking, top-k, percentiles, moving averages, cumu-
lative sums, etc. Without window function support, such queries either require difficult
to formulate and inefficient correlated subqueries, or must be implemented at the ap-
plication level.

In the following we present example queries that highlight the usefulness and versa-
tility of the window operator. The first example query, which might be used to detect
outliers in a time series, illustrates the use of window functions in SQL:

1http://docs.oracle.com/database/121/DWHSG/analysis.htm
2http://msdn.microsoft.com/en-us/library/ms189461(v=sql.120).aspx
3http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.
ibm.db2.luw.sql.ref.doc/doc/r0023461.html

4http://help.sap.de/hana/SAP_HANA_SQL_and_System_Views_Reference_en.
pdf

5https://my.vertica.com/docs/7.1.x/HTML/Content/Authoring/
SQLReferenceManual/Functions/Analytic/AnalyticFunctions.htm

6http://www.postgresql.org/docs/9.4/static/tutorial-window.html
7https://www.monetdb.org/Documentation/Manuals/SQLreference/
WindowFunctions

95

http://docs.oracle.com/database/121/DWHSG/analysis.htm
http://msdn.microsoft.com/en-us/library/ms189461(v=sql.120).aspx
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0023461.html
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0023461.html
http://help.sap.de/hana/SAP_HANA_SQL_and_System_Views_Reference_en.pdf
http://help.sap.de/hana/SAP_HANA_SQL_and_System_Views_Reference_en.pdf
https://my.vertica.com/docs/7.1.x/HTML/Content/Authoring/SQLReferenceManual/Functions/Analytic/AnalyticFunctions.htm
https://my.vertica.com/docs/7.1.x/HTML/Content/Authoring/SQLReferenceManual/Functions/Analytic/AnalyticFunctions.htm
http://www.postgresql.org/docs/9.4/static/tutorial-window.html
https://www.monetdb.org/Documentation/Manuals/SQLreference/WindowFunctions
https://www.monetdb.org/Documentation/Manuals/SQLreference/WindowFunctions

5 Window Function Processing in SQL

select location, time, value, abs(value-

(avg(value) over w))/(stddev(value) over w)

from measurement

window w as (

partition by location

order by time

range between 5 preceding and 5 following)

The query normalizes each measurement by subtracting the average and dividing by
the standard deviation. Both aggregates are computed over a window of 5 time units
around the time of the measurement and at the same location. Without window func-
tions, it is possible to state the query as follows:

select location, time, value, abs(value-

(select avg(value)

from measurement m2

where m2.time between m.time-5 and m.time+5

and m.location = m2.location))

/ (select stddev(value)

from measurement m3

where m3.time between m.time-5 and m.time+5

and m.location = m3.location)

from measurement m

In this formulation, correlated subqueries are used to compute the aggregates, which
in most query processing engines results in very slow execution times due to quadratic
complexity. The example also illustrates that to implement window functions effi-
ciently, a new relational operator is required. Window expressions cannot be replaced
by simple aggregation (i.e., group by) because each measurement defines a separate
window.

The second example query determines medalists for an Olympic-style competition
where the same number of points results in the same medal (and an omitted lesser
medal):

select name, (case rank when 1 then ’Gold’

when 2 then ’Silver’

else ’Bronze’ end)

from (select name, rank() over w as rank

from results

window w as (order by points desc))

where rank <= 3

96

5.1 Introduction

The percentile of each participant in a competition, partitioned by gender can be
computed as follows:

select name, gender,

percent_rank() over (partition by gender order by time)

from competition

Finally, the rate of change for each measurement in comparison with the previous
measurement (e.g., “transactions per second”) is also easy to compute:

select time,

(value - lag(value) over w) / (time - lag(time) over w)

from measurement

window w as (order by time)

Despite the usefulness and prevalence of window functions “in the wild”, the win-
dow operator has mostly been neglected in the literature. One exception is the pioneer-
ing paper by Cao et al. [26], which shows how to optimize multiple window functions
that occur in one query by avoiding unnecessary sorting or partitioning steps. In this
work, we instead focus on the core algorithm for efficient window function computa-
tion itself. The optimization techniques from [26] are therefore orthogonal and should
be used in conjunction.

To the best of our knowledge, we present the first detailed description of a complete
algorithm for the window operator. Our algorithm is universally applicable, efficient in
practice, and asymptotically superior to algorithms currently employed by commercial
systems. This is achieved by utilizing a specialized data structure, the Segment Tree,
for window function evaluation. The design of the window operator is optimized for
high-performance main-memory databases like HyPer [87], which is optimized for
modern multi-core CPUs [106].

As commodity server CPUs with dozens of cores are becoming widespread, it be-
comes more and more important to parallelize all operations that depend on the size
of the input data. Therefore, our algorithm is designed to be highly scalable: instead
of only supporting inter-partition parallelism, which is a best-effort approach that is
simple to implement but not applicable to all queries, we show how to parallelize all
phases of our algorithm. At the same time, we opportunistically use low-overhead,
partitioning-based parallelization when possible. As a result, our implementation is
fast and scales even for queries without a partitioning clause and for arbitrary, even
highly skewed, input distributions.

The rest of the chapter is organized as follows: Section 5.2 gives an overview of the
syntax and semantics of window functions in SQL. The core of our window operator
and our parallelization strategy is presented in Section 5.3. The actual computation of
window function expressions, which is the last phase of our operator, is discussed in

97

5 Window Function Processing in SQL

order by

partition by

frame

Figure 5.1: Window function concepts: partitioning, ordering, framing. The current
(gray) row can access rows in its frame. The frame of a tuple can only
encompass tuples from that partition

Section 5.4. Section 5.5 describes how to integrate the algorithm into database systems.
In Section 5.6 we experimentally evaluate our algorithm under a wide range of settings
and compare it with other implementations. Finally, after presenting related work in
Section 5.7, we summarize the results in Section 5.8.

5.2 Window Functions in SQL

One of the core principles of SQL is that the output tuple order of all operators (except
for sort) is undefined. This design decision enables many important optimizations, but
makes queries that depend on the tuple order (e.g., ranking) or that refer to neighboring
tuples (e.g., cumulative sums) quite difficult to state. By making it possible to refer
to neighboring tuples (the “window”) directly, window functions allow one to easily
express such queries.

In this section, we introduce the syntax and semantics of SQL window functions. To
understand the semantics two observations are important. Firstly, window function ex-
pressions are computed after most other clauses (including group by and having),
but before the final sorting order by and duplicate removal distinct clauses.
Secondly, the window operator only computes additional attributes for each input tu-
ple but does not change or filter its input otherwise. Therefore, window expressions are
only allowed in the select and order by clauses, but not in the where clause.

5.2.1 Partitioning

Window function evaluation is based on three simple and orthogonal concepts: parti-
tioning, ordering, and framing. Figure 5.1 illustrates these concepts graphically. The
partition by clause partitions the input by one or more expressions into inde-
pendent groups, and thereby restricts the window of a tuple. In contrast to normal

98

5.2 Window Functions in SQL

order by
2.5 4 5 6 107.5 8.5 12

range between 3 preceding and 3 following

rows between 3 preceding and 3 following

Figure 5.2: Illustration of the range and rows modes for framing. Each tick repre-
sents the value of a tuple’s order by expression

aggregation (group by), the window operator does not reduce all tuples of a group
to a single tuple, but only logically partitions tuples into groups. If no partitioning
clause is specified, all input rows are considered as belonging to the same partition.

5.2.2 Ordering

Within each partition, the rows can be ordered using the order by clause. Semanti-
cally, the order by clause defines how the input tuples are logically ordered during
window function evaluation. For example, if a ranking window function is used, the
rank is computed with respect to the specified order. Note that the ordering only af-
fects window function processing but not necessarily the final order of the result. If
no ordering is specified, the result of some window functions (e.g., row number) is
non-deterministic.

5.2.3 Framing

Besides the partitioning clause, window functions have a framing clause which allows
restricting the tuples that a window function acts on further. The frame specifies which
tuples in the proximity of the current row (based on the specified ordering) belong to
its frame. Figure 5.2 illustrates the two available modes.

• rows mode directly specifies how many rows before or after the current row
belong to the frame. In the figure, the 3 rows before and after the current row
are part of the frame, which also includes the current row therefore consists of
the values 4, 5, 6, 7.5, 8.5, 10, and 12. It is also possible to specify a frame that
does not include the current row, e.g., rows between 5 preceding and

2 preceding.

• In range mode, the frame bounds are computed by decrementing/incrementing
the order by expression of the current row8. In the figure, the order by

expression of the current row is 7.5, the window frame bounds are 4.5 (7.5− 3)
and 10.5 (7.5− 3). Therefore, the frame consists of the values 5, 6, 7.5, 8.5, and
10.

8range mode is only possible if the query has exactly one numeric order by expression.

99

5 Window Function Processing in SQL

In both modes, the framing bounds do not have to be constants, but can be arbitrary
expressions and may even depend on attributes of the current row. Most implemen-
tations only support constant values for framing bounds, whereas our implementation
supports non-constant framing bounds efficiently. All rows in the same partition that
have the same order by expression values are considered peers. The peer concept
is only used by some window functions, but ignored by others. For example, all peers
have the same rank() but a different row number().

Besides preceding and following, the frame bounds can also be set to the
following values:

• current row: the current row (including all peers in range mode)

• unbounded preceding: the frame starts at the first row in the partition

• unbounded following: the frame ends with the last row in the partition

If no window frame was specified and there is an order by clause, the de-
fault frame specification is range between unbounded preceding and

current row. This results in a window frame that consists of all rows from the
start of the current partition to the current row and all its peers, and is useful for com-
puting cumulative sums. Queries without an order by clause, are evaluated over the
entire partition, as if having the frame specification range between unbounded

preceding and unbounded following. Finally, it is important to note that
the framing clause only affects some window functions, namely intra-window navi-
gation functions (first value, last value, nth value), and non-distinct ag-
gregate functions (min, max, count, sum, avg). The remaining window functions
(row number, rank, lead, . . .) and distinct aggregates are always evaluated on the
entire partition.

For syntactic convenience and as already shown in the first example of the introduc-
tion, SQL allows one to name a particular combination of partitioning, ordering, and
framing clauses. By referring to this name the window specification can then be reused
by multiple window expressions to avoid repeating the clauses, which often improves
the readability of the query, as shown in the following example:

select min(value) over w1, max(value) over w1,

min(value) over w2, max(value) over w2

from measurement

window w1 as (order by time

range between 5 preceding and 5 following),
w2 as (order by time

range between 3 preceding and 3 following)

100

5.2 Window Functions in SQL

5.2.4 Window Expressions

SQL:2011 defines a number of window functions for different purposes. The following
functions ignore framing, i.e., they are always evaluated on the entire partition:

• ranking:

– rank(): rank of the current row with gaps

– dense rank(): rank of the current row without gaps

– row number(): row number of the current row

– ntile(num): distribute evenly over buckets (returns integer from 1 to
num)

• distribution:

– percent rank(): relative rank of the current row

– cume dist(): relative rank of peer group

• navigation in partition:

– lead(expr, offset, default): evaluate expr on preceding row
in partition

– lag(expr, offset, default): evaluate expr on following row
in partition

• distinct aggregates: min, max, sum, . . . : compute distinct aggregate over parti-
tion

There are also window functions that are evaluated on the current frame, i.e., a subset
of the partition:

• navigation in frame:

– first expr(expr), last expr(expr), nth expr(expr,

nth): evaluate expr on first/last/nth row of the frame

• aggregates: min, max, sum, . . . : compute aggregate over all tuples in the cur-
rent frame

As the argument lists of these functions indicate, most functions require an arbitrary
expression (the expr argument) and other additional parameters as input.

To syntactically distinguish normal aggregation functions (computed by the group
by operator) from their window function cousins, which have the same name but are
computed by the aggregation operator, window function expressions must be followed

101

5 Window Function Processing in SQL

by the over keyword and a (potentially empty) window frame specification. In the
following query, the average is computed using the window operator, whereas the sum
aggregate is computed by the aggregation operator:

select cid, year, month, sum(price),

avg(sum(price)) over (partition by customer_id)

from orders

group by customer_id, year, month

For each customer and month, the query computes the sum of all purchases of this cus-
tomer (using aggregation) and the average of all monthly expenditures of this customer
(using window aggregation without framing).

In some cases, window function queries can directly be translated to aggregation
queries:

select location, time, value,

avg(value) over ()

from measurement

In this query, the average is computed using the window operator over the entire input
because no partition by or order by clauses were specified. Therefore the
query can be rewritten using aggregation as follows:

select location, time, value,

(select avg(value) from measurement)

from measurement

This transformation avoids the sorting phase and should be performed when the frame
encompasses the entire partition.

Distinct aggregates, which in contrast to normal aggregates cannot be used with
framing, are always best executed without using the window operator. Instead, distinct
aggregates can be executed efficiently using normal aggregation and an additional join.
For example, the query

select sum(distinct x) over (partition by y)

from r

is equivalent to:

select d.cd from r,

(select sum(distinct x) as cd, y

from r group by y) d

where r.y = d.y

102

5.3 The Window Operator

5.3 The Window Operator

Depending on the window function and the partitioning, ordering, and framing clause
specified (or omitted) in a particular query, the necessary algorithmic steps differ
greatly. In order to incorporate all aspects into a single operator we present our al-
gorithm in a modular fashion. Some phases can simply be omitted if they are not
needed for a particular query.

The basic algorithm for window function processing directly follows from the high-
level syntactic structure discussed in Section 5.2 and involves the following phases:

1. Partitioning: partition the input relation using the partition by attributes

2. Sorting: sort each partition using the order by attributes

3. Window function computation: for each tuple

a) Compute window frame: Determine window frame (a subset of the parti-
tion)

b) Evaluate window function: Evaluate window function on the window frame
and output tuple

In this section we focus on the first two phases, partitioning and sorting. Phase 3,
window function evaluation, is discussed in Section 5.4.

5.3.1 Partitioning and Sorting

For the initial partitioning and sorting phases there are two traditional methods:

1. The hash-based approach fully partitions the input using hash values of the
partition by attributes before sorting each partition independently using
only the order by attributes.

2. The sort-based approach first sorts the input by both the partition by and
the order by attributes. The partition boundaries are determined “on-the-fly”
during the window function evaluation phase (phase 3), e.g., using binary search.

From a purely theoretical point of view, the hash-based approach is preferable. As-
suming there are n input rows and O(n) partitions, the overall complexity of the hash-
based approach is O(n), whereas the sort-based approach results in O(n log n) com-
plexity. Nevertheless, the sort-based approach is often used in commercial systems—
perhaps because it requires less implementation effort, as a sorting phase is required
anyway. In order to achieve good performance and scalability we use combination of
both methods.

103

5 Window Function Processing in SQL

hash partitioning (thread-local)

thread 1 thread 2

combine hash groups

3.1. inter-partition parallelism

3.2. intra-partition parallelism

sort/evaluation

00
01
10
11

00
01
10
11

00
01
10
11

00
01
10
11

Figure 5.3: Overview of the phases of the window operator. The colors represent the
two threads

In single-threaded execution, it is usually best to first fully partition the input data
using a hash table. With parallel execution, a concurrent hash table would be required
for this approach. We have found, however, that concurrent, dynamically-growing
hash tables (e.g., split-ordered lists [162]) have a significant overhead in comparison
with unsynchronized hash tables. The sort-based approach, without partitioning first,
is also very expensive. Therefore, to achieve high scalability and low overhead, we use
a hybrid approach that combines the two methods.

5.3.2 Pre-Partitioning into Hash Groups

Our approach is to partition the input data into a constant number (e.g., 1024) of hash
groups, regardless of how many partitions the input data has. The number of hash
groups should be a power of 2 and larger than the number of threads but small enough
to make partitioning efficient on modern CPUs. This form of partitioning can be done
very efficiently in parallel due to limited synchronization requirements: As illustrated
in Figure 5.3, each thread (distinguished using different colors) initially has its own
array of hash groups (4 in the figure)9. After all threads have partitioned their input

9In our implementation in HyPer, the thread-local hash groups physically consist of multiple, chained
arrays, since no random access is necessary and the chunks are copied into a combined array anyway.

104

5.3 The Window Operator

data, the corresponding hash groups from all threads are copied into a combined array.
This can be done in parallel and without synchronization because at this point the sizes
and offsets of all threads’ hash groups are known. After copying, each combined hash
group is stored in a contiguous array, which allows for efficient random access to each
tuple.

After the hash groups copied, the next step is to sort them by both the partitioning
and the ordering expressions. As a result, all tuples with the same partitioning key are
adjacent in the same hash group, although of course a hash group may contain multiple
partitioning keys. When necessary, the actual partition boundaries can be determined
using binary search as in the sort-based approach during execution of the remaining
window function evaluation step.

5.3.3 Inter- and Intra-Partition Parallelism

At first glance, the window operator seems to be embarrassingly parallel, as parti-
tioning can be done in parallel and all hash groups are independent from each other:
Since sorting and window function evaluation for different hash groups is indepen-
dent, the available threads can simply work on different hash groups without needing
any synchronization. Database systems that parallelize window functions usually use
this strategy, as it is easy to implement and can offer very good performance for “good-
natured” queries.

However, this approach is not sufficient for queries with no partitioning clause, when
the number of partitions is much smaller than the number of threads, or if the partition
sizes are heavily skewed (i.e., one partition has a large fraction of all tuples). There-
fore, to fully utilize modern multi- and many-core CPUs, which often have dozens
of cores, the simple inter-partition parallelism approach alone is not sufficient. For
some queries, it is additionally necessary to support intra-partition parallelism, i.e., to
parallelize within hash groups.

We use intra-partition parallelism only for large hash groups. When there are enough
hash groups for the desired number of threads and none of these hash groups is too
large, inter-partition parallelism is sufficient and most efficient. Since the sizes of all
hash groups are known after the partitioning phase, we can dynamically assign each
hash group into either the inter- or the intra-partition parallelism class. This classifi-
cation takes the size of the hash group, the total amount of work, and the number of
threads into account. In Figure 5.3, intra-partition parallelism is only used for hash
group 11, whereas the other hash groups use inter-partition parallelism. Our approach
is resistant to skew and always utilizes the available hardware parallelism while ex-

Furthermore, all types conceptually have a fixed size (variable-length types like strings are stored as
pointers), which allows the partitioning and sorting phases to work on the tuples directly instead of
pointers.

105

5 Window Function Processing in SQL

ploiting low-overhead inter-partition parallelism when possible.
When intra-partition parallelism is used, a parallel sorting algorithm must be used.

Additionally, the window function evaluation phase itself must be parallelized, as we
describe in the next section.

5.4 Window Function Evaluation

As mentioned before, some window functions are affected by framing and some ig-
nore it. Consequently, their implementations are quite different and we discuss them
separately. We start with those window functions that are affected by framing.

5.4.1 Basic Algorithmic Structure

After the partitioning and sorting phases, all tuples that have the same partitioning key
are stored adjacently, and the tuples are sorted by the order by expressions. Based
on this representation, window function evaluation can be performed in parallel by
assigning different threads to different subranges of the hash group. In single-threaded
execution or with inter-partition parallelism the entire hash group is assigned to one
thread.

To compute a window function, the following steps are necessary for each tuple:

1. determine partition boundaries

2. determine window frame

3. compute window function over the frame and output tuple

The first step, computing the partition boundaries, is necessary because a hash group
can contain multiple (logical) partitions, and is done using binary search. The two re-
maining steps, determining the window frame bounds and window function evaluation,
which is the main algorithmic challenge, are discussed in the following two sections.

Figure 5.4 shows the algorithmic template for window functions that are affected by
framing in more detail. The code computes the result for a sub-range in a hash group
(from begin below end). This interface allows one to parallelize window function
evaluation within a hash group by assigning threads to different ranges, e.g., using a
parallel for construct that dynamically distributes the range of values between
threads. In single-threaded execution, begin and end can be set to the start and end
of the hash group. Since a hash group can contain multiple partitions, the code starts
by computing the partition bounds (line 2 and 3), and then updates them as needed
(lines 5, 6, and 7). In line 10 one of the aggregation algorithms in Section 5.4.3 can be
used.

106

5.4 Window Function Evaluation

1 evalOverFrame(begin, end)
2 pBegin = findPartitionBegin(0, begin+1)
3 pEnd = findPartitionEnd(begin)
4 for (pos from begin below end)
5 if (pos = pEnd)
6 pBegin = pos
7 pEnd = findPartitionEnd(pos)
8 wBegin = findWindowBegin(pos,pBegin)
9 wEnd = findWindowEnd(pos, pEnd)

10 result[pos] = eval(wBegin, wEnd)

Figure 5.4: Basic code structure for window functions with framing

5.4.2 Determining the Window Frame Bounds

For window functions that are affected by framing, for each tuple it is necessary to
determine the indexes of the window frame bounds. Since we store the tuples in arrays,
the tuples in the frame can then easily be accessed. The implementation of rowsmode
is obvious and fast; one simply needs to add/subtract the index of the current row to
the bounds while ensuring that the bounds remain in the current partition.
range mode is slightly more complicated. If the bounds are constant, one can keep

track of the previous window and advance the start and end window one-by-one as
needed10. It is clear that the frame start only advances by at most n rows in total (and
analogously for the frame end). Therefore, the complexity for finding the frame for n
tuples is O(n). If, in range mode, the bounds are not constant, the window can grow
and shrink arbitrarily. For this case, the solution is to first add/subtract the bounds from
the current ordering key, and then to use binary search which results in a complexity
of O(n log n). The complexity of computing the window frame for n rows can be
summarized as follows:

mode constant non-constant
rows O(n) O(n)

range O(n) O(n log n)

5.4.3 Aggregation Algorithms

Once the window frame bounds have been computed for a particular tuple, the final
step is to evaluate the desired window function on that frame. For the navigation func-
tions first expr, last expr, and nth expr this evaluation is simple and cheap

10Note that the incremental approach may lead to redundant work during intra-partition parallelism and
with large frame sizes. Thus, to achieve better scalability with intra-partition parallelism, binary
search should be employed even for constant frame bounds.

107

5 Window Function Processing in SQL

(O(1)), because these functions merely select one row in the window and evaluate an
expression on it. Aggregate functions, in contrast, need to be (conceptually) evaluated
over all rows of the current window, which makes them more expensive. Therefore,
we present and analyze 4 algorithms with different performance characteristics for
computing aggregates over window frames.

Naı̈ve Aggregation

The naı̈ve approach is to simply loop over all tuples in the window frame and
compute the aggregate. The inherent problem of this algorithm is that it of-
ten performs redundant work, resulting in quadratic runtime. In a running-
sum query like sum(b) over (order by a rows between unbounded

preceding and current row), for example, for each row of the input rela-
tion all values from the first to the current row are added—each time starting anew
from the first row, and doing the same work all over again.

Cumulative Aggregation

The running-sum query suggests an improved algorithm, which tries to avoid redun-
dant work instead of recomputing the aggregate from scratch for each tuple. The cu-
mulative algorithm keeps track of the previous aggregation result and previous frame
bounds. As long as the window grows (or does not change), only the additional rows
are aggregated using the previous result. This algorithm is used by PostgreSQL and
works well for some frequently occurring queries, e.g., the default framing specifica-
tion (range between unbounded preceding and current row).

However, this approach only works well as long as the window frame grows. For
queries where the window frame can both grow and shrink (e.g., sum(b) over

(order by a rows between 5 preceding and 5 following)), one
can still get quadratic runtime, because the previous aggregate must be discarded every
time.

Removable Cumulative Aggregation

The removable cumulative algorithm, which is used by some commercial database
systems, is a further algorithmic refinement. Instead of only allowing the frame to
grow before recomputing the aggregate, it permits removal of rows from the previous
aggregate. For the sum, count, and avg aggregates, removing rows from the current
aggregate can easily be achieved by subtracting. For the min and max aggregates, it is
necessary to maintain an ordered search tree of all entries in the previous window. For
each tuple this data structure is updated by adding and removing entries as necessary,
which makes these aggregates significantly more expensive.

108

5.4 Window Function Evaluation

5 7 3 10 6 2

12 13 8

25

45

12

8 4

20

Figure 5.5: Segment Tree for sum aggregation. Only the red nodes (7, 13, 20) have to
be aggregated to compute the sum of 7, 3, 10, 6, 2, 8, 4

0 1 2 3
level 0: sorted tuples

(attributes a,b)

0-3 4-70-7

6 7

A,5 B,7 C,3 D,10 F,6 U,2 V,8 W,4
4 5

25 2045 level 1level 2

Figure 5.6: Physical Segment Tree representation with fanout 4 for sum(b) over
(order by a)

The removable cumulative approach works well for many queries, in particu-
lar for sum and avg window expressions, which are more common than min

or max in window expressions. However, queries with non-constant frame
bounds (e.g., sum(b) over (order by a rows between x preceding

and y following)) can be a problem: In the worst case, the frame bounds vary
very strongly between neighboring tuples, such that the runtime becomes O(n2).

Segment Tree Aggregation

As we saw in the previous section, even the removable cumulative algorithm can result
in quadratic execution time because caching the result of the previous window does
not help when the window frame changes arbitrarily for each tuple. We therefore
introduce an additional data structure, the Segment Tree, which allows evaluating an
aggregate over an arbitrary frame in O(log n). The Segment Tree stores aggregates for
sub ranges of the entire hash group, as shown in Figure 5.5. In the figure sum is used
as the aggregate, thus the root node stores the sum of all leaf nodes. The two children
of the root store the sums for two equi-width sub ranges, and so on. The Segment Tree
allows computing the aggregate over an arbitrary range in logarithmic time by using
the associativity of aggregates. For example, to compute the sum for the last 7 values
of the sequence, we need to compute the sum of the red nodes 7, 13, and 20.

For illustration purposes, Figure 5.5 shows the Segment Tree as a binary tree with

109

5 Window Function Processing in SQL

1 traverseSTree(levels, begin, end)
2 agg = initAggregate()
3 for (level in levels)
4 parentBegin = begin / fanout
5 parentEnd = end / fanout
6 if (parentBegin = parentEnd)
7 for (pos from begin below end)
8 agg = aggregate(level[pos])
9 return agg

10 groupBegin = parentBegin * fanout
11 if (begin != groupBegin)
12 limit = groupBegin + fanout
13 for (pos from begin below limit)
14 agg = aggregate(level[pos])
15 parentBegin = parentBegin + 1
16 groupEnd = parentEnd * fanout
17 if (end != groupEnd)
18 for (pos from groupEnd below end)
19 agg = aggregate(level[pos])
20 begin = parentBegin
21 end = parentEnd

Figure 5.7: Aggregating from begin below end using a Segment Tree

pointers. In fact, our implementation stores all nodes of each tree level in an array and
without any pointers, as shown in Figure 5.6. In this compact representation, which
is similar to that of a standard binary heap, the tree structure is implicit and the child
and parent of a node can be determined using arithmetic operations. Furthermore, to
save even more space, the lowest level of the tree is the sorted input data itself, and
we use a larger fanout (4 in the figure). These optimizations make the additional space
consumption for the Segment Tree negligible. Additionally, the higher fanout improves
performance, as we show in an experiment that is described in Section 5.6.7.

In order to compute an aggregate for a given range, the Segment Tree is traversed
bottom up starting from both window frame bounds. Both traversals are done simulta-
neously until the traversals arrive at the same node. As a result, this procedure stops
early for small ranges and always aggregates the minimum number of nodes.

The pseudo code in Figure 5.7 computes the aggregate for the range from begin

below end using a Segment Tree. Line 3 loops over the levels of the Segment Tree
starting at the bottom-most level and proceeding upwards. In line 4 and 5 the parent
entries of begin and end are computed using integer division, which can be imple-
mented as bit shifting if fanout is a power of 2. If the parent entries are equal, the range
of values between begin and end is aggregated and the search terminates (lines 6-
9). Otherwise, the search continues at the next level with the parent nodes becoming

110

5.4 Window Function Evaluation

rows between ... Case
1 preceding and current row 1
unbounded preceding and current row 2
CONST preceding and CONST following 3
VAR preceding and VAR following 4

Case Naı̈ve Cumulative Removable Cumulative Segment Tree
1 O(n) O(n) O(n) O(n log n)
2 O(n2) O(n) sum: O(n), min: O(n log n) O(n log n)
3 O(n2) O(n2) sum: O(n), min: O(n log n) O(n log n)
4 O(n2) O(n2) sum: O(n2), min: O(n2 log n) O(n log n)

Table 5.1: Worst-case complexity of computing aggregates for n tuples

the new begin and end boundaries. It is first necessary, however, to aggregates any
“protruding” values at the current level (lines 10-18).

In addition to improving worst-case efficiency, another important benefit of the
Segment Tree is that it allows parallelizing arbitrary aggregates, even for running
sum queries like sum(b) over (order by a rows between unbounded

preceding and current row). This is particularly important for queries
without a partitioning clause, which can only use intra-partition parallelism to avoid
executing this phase of the algorithm serially. The Segment Tree itself can easily be
constructed in parallel and without any synchronization, in a bottom-up fashion: All
available threads scan adjacent ranges of the same Segment Tree level (e.g., using a
parallel for construct) and store the computed aggregates into the level above it.

For aggregate functions like min, max, count, and sum, the Segment Tree uses the
obvious corresponding aggregate function. For derived aggregate functions like avg
or stddev, it is more efficient to store all needed values (e.g., the sum and the count)
in the same Segment Tree instead of having two such trees. Interestingly, besides effi-
cient aggregation, the Segment Tree is also useful for parallelizing the dense rank

function, which computes a rank without gaps. To compute the dense rank of a par-
ticular tuple, the number of distinct values that precede this tuple must be known. A
Segment Tree where each segment counts the number of distinct child values is easy to
construct11, and allows threads to work in parallel on different ranges of the partition.

111

5 Window Function Processing in SQL

Algorithm Choice

Table 5.1 summarizes the worst-case complexities of the 4 algorithms. The naı̈ve al-
gorithm results in quadratic runtime for many common window function queries. The
cumulative algorithm works well as long as the window frame only grows. Addition-
ally, queries with frames like current row and unbounded following or
1 preceding and unbounded following can also be executed efficiently
using the cumulative algorithm by first reversing the sort order. The removable algo-
rithm further expands the set of queries that can be executed efficiently, but requires
an additional ordered tree structure for min and max aggregates and can still result in
quadratic runtime if the frame bounds are not constant.

Therefore, the analysis might suggest that the Segment Tree algorithm should al-
ways be chosen, as it avoids quadratic runtime in all cases. However, for many simple
queries like rows between 1 preceding and current row, the simpler
algorithms perform better in practice because the Segment Tree can incur a signifi-
cant overhead both for constructing and traversing the tree structure. Intuitively, the
Segment Tree approach is only beneficial if the frame frequently changes by a large
amount in comparison with the previous tuple’s frame. Unfortunately, in many cases,
the optimal algorithm cannot be chosen based on the query structure alone, because
the data distribution determines whether building a Segment Tree will pay off. Fur-
thermore, choosing the optimal algorithm becomes even more difficult when one also
considers parallelism, because, as mentioned before, the Segment Tree algorithm al-
ways scales well in the intra-partition parallelism case whereas the other algorithms do
not.

Fortunately, we have found that the majority of the overall query time is spent in
the partitioning and sorting phases (cf. Figure 5.2 and Figure 5.13), thus erring on the
side of the Segment Tree is always a safe choice. We therefore propose an opportunis-
tic approach: A simple algorithm like cumulative aggregation is only chosen when
there is no risk of O(n2) runtime and no risk of insufficient parallelism. This method
only uses the static query structure, and does not rely on cardinality estimates from the
query optimizer. A query like sum(b) over (order by a rows between

unbounded preceding and current row), for example, can always safely
and efficiently be evaluated using the cumulative algorithm. Additionally, we choose
the algorithm for inter-partition parallelism and the intra-partition parallelism hash
groups separately. For example, the small hash groups of a query might use the cumu-
lative algorithm, whereas the large hash groups might be evaluated using the Segment
Tree to make sure evaluation scales well. This approach always avoids quadratic run-

11Each node of the Segment Tree for dense rank stores the number of distinct values for its segment.
To combine two adjacent segments, one simply needs to add their distinct value counts and subtract
1 if the neighboring tuples are equal. Note that the Segment Tree is only used for computing the first
result.

112

5.4 Window Function Evaluation

1 //rank of the current row with gaps
2 rank(begin, end)
3 pBegin = findPartitionBegin(0, begin+1)
4 pEnd = findPartitionEnd(begin)
5 p=findFirstPeer(pBegin,begin)-pBegin+1
6 result[begin] = p
7 for (pos from begin+1 below end)
8 if (pos = pEnd)
9 pBegin = pos

10 pEnd = findPartitionEnd(pos)
11 if (isPeer(pos, pos-1))
12 result[pos] = result[pos-1]
13 else
14 result[pos] = pos-pBegin+1

Figure 5.8: Pseudo code for the rank function, which ignores framing

time, scales well on systems with many cores, while achieving optimal performance
for many common queries.

5.4.4 Window Functions without Framing

Window functions that are not affected by framing are less complicated than aggregates
as they do not require any complex aggregation algorithms and do not need to compute
the window frame. Nevertheless, the high-level structure is similar due to supporting
intra-partition parallelism and the need to compute partition boundaries. Generally, the
implementation on window functions that are not affected by framing consists of two
steps: In the first step, the result for the first tuple in the work range is computed. In the
second step, the remaining results are computed sequentially by using the previously
computed result.

Figure 5.8 shows the pseudo code of the rank function, which we use as an ex-
ample. To compute the rank of an arbitrary tuple at index begin, the index of the
first peer is computed using binary search (done by findFirstPeer in line 5). All
tuples that are in the same partition and have the same order by key(s) are considered
peers. Given this first result, all remaining rank computations can then assume that the
previous rank has been computed (lines 10-13). All window functions without framing
are quite cheap to compute, since they consist of a sequential scan that only looks at
neighboring tuples.

Figure 5.9 shows additional examples for window functions that are always evalu-
ated on the entire partition. Most of the remaining functions have a structure similar to
one of these examples.

113

5 Window Function Processing in SQL

// the row number
row_number(begin, end)

pBegin = findPartitionBegin(0, begin+1)
pEnd = findPartitionEnd(begin)
for (pos from begin below end)

if (pos = pEnd)
pBegin = pos
pEnd = findPartitionEnd(pos)

result[pos] = pos-pBegin+1

//relative rank
percent_rank(begin, end)

pBegin = findPartitionBegin(0, begin+1)
pEnd = findPartitionEnd(begin)
firstPeer = findFirstPeer(pBegin, begin)
rank = (firstPeer-pBegin)+1
pSize = pEnd - pBegin
result[begin] = (rank-1) / (pSize-1)
for (pos from begin+1 below end)

if (pos = pEnd)
pBegin = pos
pEnd = findPartitionEnd(pos)
pSize = pEnd-pBegin

if (isPeer(pos, pos-1))
result[pos] = result[pos-1]

else
rank = pos+1
result[pos] = (rank-1) / (pSize-1)

// evaluate expr at preceding row
lag(expr, offset, default, begin, end)

pBegin = findPartitionBegin(0, begin+1)
pEnd = findPartitionEnd(begin)
for (pos from begin below end)

if (pos = pEnd)
pBegin = pos
pEnd = findPartitionEnd(pos)

if (pos-offset < pBegin)
result[pos] = default

else
result[pos] = expr(pos-offset)

Figure 5.9: Pseudo code for the row number, percent rank, and lag window
functions, which ignore framing

114

5.5 Database Integration

5.5 Database Integration

In this section we describe how to integrate the algorithm described above and further
optimizations and use cases.

5.5.1 Query Engine

Our window function algorithm can be integrated into different database query en-
gines, including query engines that use the traditional tuple-at-a-time model (Vol-
cano iterator model), vector-at-a-time execution [20], or push-based query compila-
tion [139]. Of course, the code structure heavily depends on the specific query engine.
The pseudo code in Figure 5.8 is very similar to the code generated by our implemen-
tation, which is integrated into HyPer and uses push-based query compilation.

The main difference is that in our implementation and in contrast to the pseudo code
shown, we do not store the computed result in a vector (lines 6,12,14), but directly
push the tuple to the next operator. This is both faster and uses less space. Also note
that, regardless of the execution model, the window function operator is a full pipeline
breaker, i.e., it must consume all input tuples before it can produce results. Only during
the final window function evaluation phase, can tuples be produced on the fly.

The parallelization strategy described in Section 5.3 also fits into HyPer’s parallel
execution framework, which breaks up work into constant-sized work units (“morsels”).
These morsels are scheduled dynamically using work stealing, which allows distribut-
ing work evenly between the cores and to quickly react to workload changes. The
morsel-driven approach can be used for the initial partitioning and copying phases, as
well as the final window function computation phase.

5.5.2 Multiple Window Function Expressions

For simplicity of presentation, we have so far assumed that the query contains only one
window function expression. Queries that contain multiple window function expres-
sions, can be computed by adding successive window operators for each expression.
HyPer currently uses this approach, which is simple and general but wastes optimiza-
tion opportunities for queries where the partitioning and ordering clauses are shared
between multiple window expressions. Since partitioning and sorting usually domi-
nate the overall query execution time, avoiding these phases can be very beneficial.

Cao et al. [26] discuss optimizations that avoid unnecessary partitioning and sorting
steps in great detail. In our compilation-based query engine, the final evaluation phase
(as shown in Figure 5.8), could directly compute all window expressions with shared
partitioning/ordering clauses. We plan to incorporate this feature into HyPer in the
future.

115

5 Window Function Processing in SQL

5.5.3 Ordered-Set Aggregates

Ordered-set aggregates are an SQL feature that allows one to compute common sum-
mary statistics like median and mode. The following example query computes the
mode of the column a12 for each group of b:

select b, mode() within group (order by a)

from r

group by b

Another use case is to compute percentiles using percentile disc(fraction)

or percentile cont(fraction). The first is the discrete variant, which can be
used for arbitrary data types, whereas the latter version is continuous and linearly in-
terpolates when the number of entries is even. The parameter fraction specifies the
desired percentile (from 0 to 1). A fraction of 0.5 thus computes the median.

Semantically, ordered-set aggregates are a mix between window functions and nor-
mal aggregates. Like normal aggregates, they only produce one result per group. Like
window functions, they require full materialization (and sorting) of the input tuples.
In systems like HyPer that rely on hash-based (not sort-based) aggregation, one ele-
gant way to implement ordered-set aggregates is by combining both operators. In this
approach mode, percentile disc, and percentile cont are implemented as
window functions. The group by operator receives this result and aggregates it. In
effect, the example query is rewritten as follows:

select b, any(m)

from (select b, mode() over (partition by b order by a) m

from r)

group by b

Note that in this approach the window function operator is placed below the aggre-
gation, whereas normally it must be placed above it. The additional overhead of the
aggregation is usually very small, as the tuples arrive at the aggregation in an order
that makes pre-aggregation very effective.

5.6 Evaluation

We have integrated the window operator into HyPer. In this section, we experimentally
evaluate our implementation and compare its performance with other systems.

12Only one attribute can be specified in the order by clause.

116

5.6 Evaluation

5.6.1 Implementation

HyPer uses the data-centric query compilation approach for query processing [139,
142]. Therefore, our implementation of the window operator is a compiler that uses the
LLVM compiler infrastructure to generate machine code for arbitrary window function
queries instead of directly computing them “iterator style”. One great advantage of
compilation is that it allows omitting steps of an algorithm that may be necessary in
general but not needed for a particular query. For example, if the framing end is set
to unbounded following, it never changes within a partition. Therefore, there
is no need to generate code that recomputes the frame end for each tuple. Due to
its versatile nature, the window function operator offers many opportunities like this
for “optimizing away” unnecessary parts of the algorithm. However, it would also be
possible to integrate our algorithm into iterator-based or vectorized [20] query engines.

For sorting large hash groups (intra-partition parallelism), we use the parallel multi-
way merge sort implementation from the GNU libstdc++ library (“Parallel Mode”) [154].

5.6.2 Experimental Setup

We initially experimented with the TPC-DS benchmark, which contains some queries
with window functions. However, in these queries expensive joins dominate and the
window expressions are quite simple (no framing clauses). Therefore, in this evalu-
ation, we use a synthetically-generated data set which allows us to evaluate our im-
plementation under a wide range of query types and input distributions. Most queries
are executed with 10 million input tuples that consist of two 8-byte integer columns,
named a and b. The values of b are uniformly distributed and unique, whereas the
number of unique values and the distribution of a differs between the experiments.

The experiments were performed on a system with an Intel Core i7 3930K processor,
which has 6 cores (12 hardware threads) at 3.2 GHz and 3.8 GHz turbo frequency. The
system has 12 MB shared, last-level cache and quad-channel DDR3-1600 RAM. We
used Linux as operating system and GCC 4.9 as compiler.

For comparison, we report results for a number of database systems with varying
degrees of window function support. Vectorwise (version 2.5) is very fast in com-
parison with other commercial systems, but has limited support for window functions
(framing is not supported). PostgreSQL 9.4 is slower than Vectorwise but offers more
complete support (range mode support is incomplete and non-constant frame bounds
are not supported). Finally, we also experimented with a commercial system (labeled
“DBMS”) that has full window function support.

117

5 Window Function Processing in SQL

0

2M

4M

6M

HyPer VectorWise PostgreSQL DBMS

M
 tu

pl
es

/s
Figure 5.10: Single-threaded performance of rank query (with 100 partitions)

0

15M

30M

45M

1 2 4 6 8 10 12
threads

M
 tu

pl
es

/s

10M partitions

100 partitions

1 partition

Figure 5.11: Scalability of rank query

5.6.3 Performance and Scalability

To highlight the properties of our algorithm, we initially use the following ranking
query:

select rank() over (partition by a order by b) from r

Figure 5.10 compares the performance of the ranking query. HyPer is 3.4× faster
than Vectorwise, 8× faster than PostgreSQL, and 14.1× faster than the commercial
system. Note that we used single-threaded execution in this experiment, because Post-
greSQL does not support intra-query parallelism at all and Vectorwise does not support
it for the window operator. Other window functions that, like rank, are also not af-
fected by framing have similar performance; only aggregation functions with frames
can be significantly more expensive (cf., Figure 5.15).

In the next experiment, we look at the scalability of our implementation. We used
different distributions for attribute a creating 10 million partitions, 100 partitions,
or only 1 partition. The partitions have approximately the same size, so our algo-
rithm chooses inter-partition parallelism with 10 million and 100 partitions, and intra-
partition parallelism with 1 partition. Figure 5.11 shows that our implementation scales
almost linearly up to 6 threads. After that, HyperThreading gives an additional perfor-
mance boost.

118

5.6 Evaluation

10M partitions 100 partitions 1 partition
time speedup time speedup time speedup

phase [ms] [ms] [ms]
partition 46 2.5× 32 2.9× 32 2.3×
sort 139 7.7× 184 6.7× 198 6.9×
rank 12 7.0× 6 5.9× 10 7.4×
= total 197 6.5× 223 6.2× 239 6.3×

Table 5.2: Performance and scalability for the different phases of the window operator
(rank query)

5.6.4 Algorithm Phases

To better understand the behavior of the different phases of our algorithm, we measured
the runtime with 12 threads and the speedups over single-threaded execution for the
three phases of our algorithm. The results are shown in Table 5.2. The overall speedup
is over 6× for all data distributions, which is a very good result with 6 cores and
12 HyperThreads. The majority of the query execution time is spent in the sorting
and partitioning phases, because the evaluation of the rank function consists of a
very fast and simple sequential scan. The table also shows that, all else being equal,
input distributions with more partitions result in higher overall performance. This is
because sorting becomes significantly more expensive with larger partitions due to both
asymptotic and caching reasons. The partitioning phase, on the other hand, becomes
only slightly more expensive with many partitions since we only partition into 1024
hash groups, which is always very efficient.

When many threads are used for the partitioning phase, the available memory band-
width is exhausted, which explains the slightly lower speedup during partitioning. Of
course, systems with higher memory bandwidth can achieve higher speedups. We also
experimented with tuples larger than 16 bytes, which increases execution time due to
higher data movement costs. However, the effect is not linear; using 64-byte tuples
instead of 16-byte tuples reduces performance by 1.6×.

5.6.5 Skewed Partitioning Keys

In the previous experiments, each query used either inter-partition parallelism (100 or
10M partitions) or intra-partition parallelism (1 partition), but never a combination of
the two. To show that inter-partition parallelism alone is not sufficient, we created an
extremely skewed data set where 50% of all tuples belong to the largest partition, 25%
to the second largest, and so on. Despite the fact that there are more partitions than
threads, when we enforced inter-partition parallelism alone, we achieved a speedup
of only 1.9× due to load imbalances. In contrast, when we enabled our automatic

119

5 Window Function Processing in SQL

0

15M

30M

45M

16 64 256 1024 4096 16384 65536
number of hash groups (log scale)

M
 tu

pl
es

/s

10M partitions

100 partitions

1 partition

Figure 5.12: Varying the number of hash groups for rank query.

0

15M

30M

45M

1 100 10K 1M
window frame size (log scale)

M
 tu

pl
es

/s

rem. cumulative

Segment Tree

naive/cumulative

Figure 5.13: Performance of sum query with constant frame bounds for different frame
sizes

classification scheme that uses intra-partition parallelism for the largest partitions and
inter-partition parallelism for the smaller partitions we measured a speedup of 5.9×.

5.6.6 Number of Hash Groups

So far, all experiments used 1024 hash groups. Figure 5.12 shows the overall perfor-
mance of the rank query with a varying number of hash groups. Having more hash
groups can result in slower partitioning due to cache and TLB misses but faster sort-
ing due to smaller partitions. Using 1024 hash groups results in performance close to
optimal regardless of the number of partitions, because on modern x86 CPUs 1024 is
small enough to allow for very cache- and TLB-friendly partitioning. Therefore, we
argue that there is no need to rely on the query optimizer to choose the number of hash
groups, and a value around 1024 generally seems to be a good setting.

120

5.6 Evaluation

5.6.7 Aggregation with Framing

In the next experiment, we investigate the performance characteristics of the 4 different
aggregation algorithms, which we implemented in C++ for this experiment because
HyPer only implements the cumulative and the Segment Tree algorithm. Using 12
threads, we execute the following query with different constants for the placeholder:

select sum(a) over
(order by b

rows between ? preceding and current row)
from r

By using different constants, we obtain queries with different frame sizes (from 1
tuple to 10M tuples). The frame “lags behind” the current row and should therefore
be ideal for the removable cumulative aggregation algorithm, whereas the naı̈ve and
cumulative algorithms must recompute the result for each tuple.

Figure 5.13 shows that for very small frame sizes (<10 tuples), even the simple
naı̈ve and cumulative algorithms perform very well. The Segment Tree approach is
slightly slower in this range of frame sizes as it must pay the price of initially con-
structing the tree that is quite useless for such small frames. However, the overhead
is quite small in comparison with the sorting and partitioning phases which dominate
the execution time. For larger window sizes (10 to 10, 000 tuples), the naı̈ve and cu-
mulative algorithms become very slow due to their quadratic behavior in this query.
This also happens when we run such queries in PostgreSQL (not shown in the graph),
which uses the cumulative algorithm.

As expected, the removable cumulative algorithm has good performance for the en-
tire range, as the amount of work per tuple is constant and no ordered tree is necessary
because the aggregation is a sum and not a minimum or maximum. However, for very
large window sizes (>10,000 tuples), where the query, in effect, becomes a running
sum over the entire partition, the removable cumulative algorithm does not scale and
becomes as slow as single-threaded execution. The reason is that each thread must
initially compute a running sum over the majority of all preceding tuples. We repeated
this experiment on a 60-core system, where the Segment Tree algorithm surpasses the
removable cumulative algorithm for large frames with around 20 threads. The perfor-
mance of Segment Tree traversal cost decreases only slightly with increasing frame
sizes and is always high.

In the previous experiment, for each query the frame bound was a constant. In the
experiment shown in Figure 5.14, the frame bound is an expression that depends on
the current row and varies very strongly in comparison with the previous frame bound.
Nevertheless, the Segment Tree algorithm performs well even for large and extremely
fluctuating frames. The performance of the other algorithms, in contrast, approaches
0 tuples/s for larger frame sizes due to quadratic behavior. We observed the same

121

5 Window Function Processing in SQL

0

15M

30M

45M

1 100 10K 1M
window frame size (log scale)

M
 tu

pl
es

/s Segment Tree

rem. cumulative
naive/cumulative

Figure 5.14: Performance of sum query with variable frame bounds for different frame
sizes

0

50

100

150

200

2 4 8 16 32 64 128 256
fanout of Segment Tree (log scale)

ev
al

ua
tio

n
ph

as
e

[m
s]

1 preceding

unbounded preceding

Figure 5.15: Segment Tree performance for sum query under varying fanout settings

behavior with the commercial database system, whereas PostgreSQL does not support
such queries at all.

To summarize, the Segment Tree approach usually has higher overhead than the
simpler algorithms, and it certainly makes sense to choose a different algorithm if the
query structure allows one to statically determine that this is beneficial. However, this
not possible for many queries. The Segment Tree has the advantage of being very
robust in all cases, and is dominated by the partitioning and sorting phases for all pos-
sible frame sizes. Additionally, the Segment Tree always scales very well, whereas the
other approaches cannot scale for large window sizes, which becomes more important
on large systems with many cores.

5.6.8 Segment Tree Fanout

The previous experiments used a Segment Tree fanout of 16. The next experiment
investigates the influence of the fanout of the Segment Tree on the performance of
aggregation and tree construction. Figure 5.15 uses the same sum query as before

122

5.7 Related Work

but varies the fanout of the Segment Tree for two very extreme workloads. The time
shown includes both the window function evaluation and Segment Tree construction.
For queries where the frame size is very small (cf., curve labeled as “1 preceding”),
using a higher fanout is always beneficial. The reason is that such queries build a
Segment Tree but do not actually use it during aggregation due to the small frame size.
For queries with large frames (cf., curve labeled as “unbounded preceding”), a fanout
of around 16 is optimal. For both query variants, the Segment Tree construction time
alone (without evaluation, not shown in the graph) starts at 23ms with a fanout of 2
and decreases to 5ms with a fanout of 16 or higher.

Another advantage of a higher fanout is that the additional space consumption for the
Segment Tree is reduced. For the example query, the input tuples use around 153 MB.
The additional space overhead for the Segment Tree with a fanout of 2 is 76 MB (50%).
The space consumption is reduced to 5 MB (3.3%) with a fanout of 16, and to 0.6 MB
(0.4%) with a fanout of 128. Thus, a value close to 16 generally seems to be a good
setting that offers a good balance between space consumption and performance.

5.7 Related Work

Window functions were introduced as an (optional) amendment to SQL:1999 and were
finally fully incorporated into SQL:2003 [186]. SQL:2011 added support for window
functions for referring to neighboring tuples in a window frame. Oracle has been the
first database system to implement window function support in 1999, followed by IBM
DB2 LUW in 2000. Successively, all major commercial and open source database
systems, including Microsoft SQL Server (in 2005), PostgreSQL (in 2009), and SAP
HANA followed13.

As mentioned before, we feel there is a gap between the importance of window func-
tions in practice and the amount of research on this topic in the database systems com-
munity, for example in comparison with other analytic SQL constructs like rollup and
cube [61]. An early Oracle technical report [14] contains motivating query examples,
optimization opportunities, and parallel execution strategies for window functions. In
a more recent paper, Bellamkonda et al. [15] observed that using partitioning only to
achieve good scalability is not sufficient if the number of distinct groups is lower than
the desired degree of parallelism. They proposed to artificially enlarge the partitioning
key with additional attributes (“extended distribution keys”) to achieve a larger num-
ber of partitions and therefore increased parallelism. However, this approach incurs
additional work due to having an additional window consolidator phase and relies on
cardinality estimates. We sidestep these problems by directly and fully parallelizing

13Two widely-used systems that do not yet offer window function support are MySQL/MariaDB and
SQLite.

123

5 Window Function Processing in SQL

each phase of the window operator and by using intra-partition parallelism when nec-
essary.

There are a number of query optimization papers that relate to the window opera-
tor. Cao et al. [26] focus on optimizing multiple window functions occurring in one
query. They found that often the majority of the execution time for the window oper-
ator is spent in the partitioning and sorting phases. Therefore, it is often possible to
avoid some of the partitioning and/or sorting work by optimizing the order of the win-
dow expressions. The paper shows that finding the optimal sequence is NP-hard and
presents a useful heuristic algorithm for this problem. Though the window operator
is very useful its own right, other papers [188, 13] propose to introduce window ex-
pressions for de-correlating subqueries. In such scenarios, a fast implementation of the
window operator is important even for queries that do not originally contain window
functions. Due to a different approach for unnesting [141], HyPer currently does not
introduce window operators when unnesting queries. In the future, we plan to investi-
gate whether might be beneficial with our approach. Window functions have also been
used to speed up the translation of XQuery to SQL [18].

Yang and Widom [182] introduced the Segment B-Tree for temporal aggregation,
which is very similar to our Segment Tree except that we do not need to handle updates
and can therefore represent the structure more efficiently without pointers.

5.8 Summary

We have presented an algorithm for window function computation that is very efficient
in practice and avoids quadratic runtime in all cases. Furthermore, we have shown
how to execute window functions in parallel on multi-core CPUs, even when the query
has no partitioning clause. We have demonstrated both the high performance and the
excellent scalability in a number of experiments that cover very different query types
and input distributions.

124

6 Evaluation of Join Order Optimization
for In-Memory Workloads

Parts of this chapter have previously been published in [107].

6.1 Introduction

The problem of finding a good join order is one of the most studied problems in the
database field. Figure 6.1 illustrates the classical, cost-based approach, which dates
back to System R [161]. To obtain an efficient query plan, the query optimizer enu-
merates some subset of the valid join orders, for example using dynamic program-
ming. Using cardinality estimates as its principal input, the cost model then chooses
the cheapest alternative from semantically equivalent plan alternatives.

Theoretically, as long as the cardinality estimations and the cost model are accurate,
this architecture obtains the optimal query plan. In reality, cardinality estimates are
usually computed based on simplifying assumptions like uniformity and independence.
In real-world data sets, these assumptions are frequently wrong, which may lead to
sub-optimal and sometimes disastrous plans.

In this chapter we investigate the three main components of the classical query op-
timization architecture in order to answer the following questions:

SELECT ...
FROM R,S,T
WHERE ...

v

B

B

R
S

T

HJ

INLcardinality
estimation

cost
model

plan space
enumeration

Figure 6.1: Traditional query optimizer architecture

127

6 Evaluation of Join Order Optimization for In-Memory Workloads

• How good are cardinality estimators and when do bad estimates lead to slow
queries?

• How important is an accurate cost model for the overall query optimization pro-
cess?

• How large does the enumerated plan space need to be?

To answer these questions, we use a novel methodology that allows us to isolate the
influence of the individual optimizer components on query performance. Our experi-
ments are conducted using a real-world data set and 113 multi-join queries that provide
a challenging, diverse, and realistic workload. Another novel aspect of this work is that
it focuses on the increasingly common main-memory scenario, where all data fits into
RAM.

The main contributions of this chapter are listed in the following:

• Based on the IMDB data set, we design a challenging workload named Join Or-
der Benchmark (JOB). The benchmark is publicly available to facilitate further
research.

• To the best of our knowledge, we present the first end-to-end study of the join
ordering problem using a real-world data set and realistic queries.

• By quantifying the contributions of cardinality estimation, the cost model, and
the plan enumeration algorithm on query performance, we provide guidelines for
the complete design of a query optimizer. We also show that many disastrous
plans can easily be avoided.

The rest of this chapter is organized as follows: We first discuss important back-
ground and our new benchmark in Section 6.2. Section 6.3 shows that the cardinality
estimators of major relational database systems produce bad estimates for many re-
alistic queries, in particular for multi-join queries. The conditions under which these
bad estimates cause slow performance are analyzed in Section 6.4. We show that it
very much depends on how much the query engine relies on these estimates and on
how complex the physical database design is, i.e., the number of indexes available.
Query engines that mainly rely on hash joins and full table scans, are quite robust
even in the presence of large cardinality estimation errors. The more indexes are avail-
able, the harder the problem becomes for the query optimizer resulting in runtimes that
are far away from the optimal query plan. Section 6.5 shows that with the currently-
used cardinality estimation techniques, the influence of cost model errors is dwarfed
by cardinality estimation errors and that even quite simple cost models seem to be
sufficient. Section 6.6 investigates different plan enumeration algorithms and shows
that—despite large cardinality misestimates and sub-optimal cost models—exhaustive

128

6.2 Background and Methodology

join order enumeration improves performance and that using heuristics leaves perfor-
mance on the table. Finally, after discussing related work in Section 6.7, we present
our conclusions in Section 6.8.

6.2 Background and Methodology

Many query optimization papers ignore cardinality estimation and only study search
space exploration for join ordering with randomly generated, synthetic queries (e.g., [138,
47]). Other papers investigate only cardinality estimation in isolation either theoreti-
cally (e.g., [75]) or empirically (e.g., [184]). As important and interesting both ap-
proaches are for understanding query optimizers, they do not necessarily reflect real-
world user experience.

The goal of this work is to investigate the contribution of all relevant query optimizer
components to end-to-end query performance in a realistic setting. We therefore per-
form our experiments using a workload based on a real-world data set and the widely-
used PostgreSQL system. PostgreSQL is a relational database system with a fairly
traditional architecture making it a good subject for our experiments. Furthermore, its
open source nature allows one to inspect and change its internals. In this section we
introduce the Join Order Benchmark, describe all relevant aspects of PostgreSQL, and
present our methodology.

6.2.1 The IMDB Data Set

Many research papers on query processing and optimization use standard benchmarks
like TPC-H, TPC-DS, or the Star Schema Benchmark (SSB). While these benchmarks
have proven their value for evaluating query engines, we argue that they are not good
benchmarks for the cardinality estimation component of query optimizers. The reason
is that in order to easily be able to scale the benchmark data, the data generators are
using the very same simplifying assumptions (uniformity, independence, principle of
inclusion) that query optimizers make. Real-world data sets, in contrast, are full of
correlations and non-uniform data distributions, which makes cardinality estimation
much harder. Section 6.3.3 shows that PostgreSQL’s simple cardinality estimator in-
deed works unrealistically well for TPC-H. TPC-DS is slightly harder in that it has a
number of non-uniformly distributed (skewed) attributes, but is still too easy due to not
having correlations between attributes.

Therefore, instead of using a synthetic data set, we chose the Internet Movie Data
Base1 (IMDB). It contains a plethora of information about movies and related facts
about actors, directors, production companies, etc. The data is freely available2 for

1http://www.imdb.com/
2ftp://ftp.fu-berlin.de/pub/misc/movies/database/

129

http://www.imdb.com/
ftp://ftp.fu-berlin.de/pub/misc/movies/database/

6 Evaluation of Join Order Optimization for In-Memory Workloads

non-commercial use as text files. In addition, we used the open source imdbpy3 pack-
age to transform the text files into a relational database with 21 tables. The data set
allows one to answer queries like “Which actors played in movies released between
2000 and 2005 with ratings above 8?”. Like most real-world data sets IMDB is full of
correlations and non-uniform data distributions, and is therefore much more challeng-
ing than most synthetic data sets. Our snapshot is from May 2013 and occupies 3.6 GB
when exported to CSV files. The two largest tables, cast info and movie info

have 36 M and 15 M rows, respectively.

6.2.2 The JOB Queries

Based on the IMDB database, we have constructed analytical SQL queries. Since
we focus on join ordering, which arguably is the most important query optimization
problem, we designed the queries to have between 3 and 16 joins, with an average of
8 joins per query. Query 13d, which finds the ratings and release dates for all movies
produced by US companies, is a typical example:

SELECT cn.name, mi.info, miidx.info

FROM company_name cn, company_type ct,

info_type it, info_type it2, title t,

kind_type kt, movie_companies mc,

movie_info mi, movie_info_idx miidx

WHERE cn.country_code = ’[us]’

AND ct.kind = ’production companies’

AND it.info = ’rating’

AND it2.info = ’release dates’

AND kt.kind = ’movie’

AND ... -- (11 join predicates)

Each query consists of one select-project-join block4. The join graph of the query is
shown in Figure 6.2. The solid edges in the graph represent key/foreign key edges (1 :

n) with the arrow head pointing to the primary key side. Dotted edges represent foreign
key/foreign key joins (n : m), which appear due to transitive join predicates. Our query
set consists of 33 query structures, each with 2-6 variants that differ in their selections
only, resulting in a total of 113 queries. Note that depending on the selectivities of the
base table predicates, the variants of the same query structure have different optimal

3https://bitbucket.org/alberanid/imdbpy/get/5.0.zip
4Since in this work we do not model or investigate aggregation, we omitted GROUP BY from our

queries. To avoid communication from becoming the performance bottleneck for queries with large
result sizes, we wrap all attributes in the projection clause with MIN(...) expressions when ex-
ecuting (but not when estimating). This change has no effect on PostgreSQL’s join order selection
because its optimizer does not push down aggregations.

130

https://bitbucket.org/alberanid/imdbpy/get/5.0.zip

6.2 Background and Methodology

movie_info_idx

movie_companies

title

info_type

company_type

company_name kind_type

movie_info

info_type

Figure 6.2: Typical query graph of our workload

query plans that yield widely differing (sometimes by orders of magnitude) runtimes.
Also, some queries have more complex selection predicates than the example (e.g.,
disjunctions or substring search using LIKE).

Our queries are “realistic” and “ad hoc” in the sense that they answer questions that
may reasonably have been asked by a movie enthusiast. We also believe that despite
their simple SPJ-structure, the queries model the core difficulty of the join ordering
problem. For cardinality estimators the queries are challenging due to the significant
number of joins and the correlations contained in the data set. However, we did not
try to “trick” the query optimizer, e.g., by picking attributes with extreme correlations.
Also, we intentionally did not include more complex join predicates like inequalities
or non-surrogate-key predicates, because cardinality estimation for this workload is
already quite challenging.

We propose JOB for future research in cardinality estimation and query optimiza-
tion. The query set is available online:
http://www-db.in.tum.de/˜leis/qo/job.tgz

6.2.3 PostgreSQL

PostgreSQL’s optimizer follows the traditional textbook architecture. Join orders, in-
cluding bushy trees but excluding trees with cross products, are enumerated using dy-
namic programming. The cost model, which is used to decide which plan alternative
is cheaper, is described in more detail in Section 6.5.1. The cardinalities of base ta-
bles are estimated using histograms (quantile statistics), most common values with
their frequencies, and domain cardinalities (distinct value counts). These per-attribute
statistics are computed by the analyze command using a sample of the relation. For

131

http://www-db.in.tum.de/~leis/qo/job.tgz

6 Evaluation of Join Order Optimization for In-Memory Workloads

complex predicates, where histograms can not be applied, the system resorts to ad hoc
methods that are not theoretically grounded (“magic constants”). To combine con-
junctive predicates for the same table, PostgreSQL simply assumes independence and
multiplies the selectivities of the individual selectivity estimates.

The result sizes of joins are estimated using the formula

|T1 ./x=y T2| =
|T1||T2|

max(dom(x), dom(y))
,

where T1 and T2 are arbitrary expressions and dom(x) is the domain cardinality of
attribute x, i.e., the number of distinct values of x. This value is the principal input for
the join cardinality estimation. To summarize, PostgreSQL’s cardinality estimator is
based on the following assumptions:

• uniformity: all values, except for the most-frequent ones, are assumed to have
the same number of tuples

• independence: predicates on attributes (in the same table or from joined tables)
are independent

• principle of inclusion: the domains of the join keys overlap such that the keys
from the smaller domain have matches in the larger domain

The query engine of PostgreSQL takes a physical operator plan and executes it using
Volcano-style interpretation. The most important access paths are full table scans and
lookups in unclustered B+Tree indexes. Joins can be executed using either nested loops
(with or without index lookups), in-memory hash joins, or sort-merge joins where the
sort can spill to disk if necessary. The decision which join algorithm is used is made
by the optimizer and cannot be changed at runtime.

6.2.4 Cardinality Extraction and Injection

We loaded the IMDB data set into 5 relational database systems: PostgreSQL, HyPer,
and 3 commercial systems. Next, we ran the statistics gathering command of each
database system with default settings to generate the database-specific statistics (e.g.,
histograms or samples) that are used by the estimation algorithms. We then obtained
the cardinality estimates for all intermediate results of our test queries using database-
specific commands (e.g., using the EXPLAIN command for PostgreSQL). We will later
use these estimates of different systems to obtain optimal query plans (w.r.t. respective
systems) and run these plans in PostgreSQL. For example, the intermediate results of
the chain query

σx=5(A) ./A.bid=B.id B ./B.cid=C.id C

132

6.2 Background and Methodology

are σx=5(A), σx=5(A) ./ B, B ./ C, and σx=5(A) ./ B ./ C. Additionally, the
availability of indexes on foreign keys and index-nested loop joins introduces the need
for additional intermediate result sizes. For instance, if there exists a non-unique index
on the foreign keyA.bid, it is also necessary to estimateA ./ B andA ./ B ./ C. The
reason is that the selection A.x = 5 can only be applied after retrieving all matching
tuples from the index on A.bid, and therefore the system produces two intermediate
results, before and after the selection. Besides cardinality estimates from the different
systems, we also obtain the true cardinality for each intermediate result by executing
SELECT COUNT(*) queries5.

We further modified PostgreSQL to enable cardinality injection of arbitrary join
expressions, allowing PostgreSQL’s optimizer to use the estimates of other systems
(or the true cardinality) instead of its own. This allows one to directly measure the
influence of cardinality estimates from different systems on query performance. Note
that IBM DB2 allows a limited form of user control over the estimation process by
allowing users to explicitly specify the selectivities of predicates. However, selectivity
injection cannot fully model inter-relation correlations and is therefore less general
than the capability of injecting cardinalities for arbitrary expressions.

6.2.5 Experimental Setup

The cardinalities of the commercial systems were obtained using a laptop running Win-
dows 7. All performance experiments were run on a server with two Intel Xeon X5570
CPUs (2.9 GHz) and a total of 8 cores running PostgreSQL 9.4 on Linux. PostgreSQL
does not parallelize queries, so that only a single core was used during query process-
ing. The system has 64 GB of RAM, which means that the entire IMDB database is
fully cached in RAM. Intermediate query processing results (e.g., hash tables) also
easily fit into RAM, unless a very bad plan with extremely large intermediate results is
chosen.

We set the memory limit per operator (work mem) to 2 GB, which results in
much better performance due to the more frequent use of in-memory hash joins in-
stead of external memory sort-merge joins. Additionally, we set the buffer pool size
(shared buffers) to 4 GB and the size of the operating system’s buffer cache used
by PostgreSQL (effective cache size) to 32 GB. For PostgreSQL it is gen-
erally recommended to use OS buffering in addition to its own buffer pool and keep
most of the memory on the OS side. The defaults for these three settings are very low
(MBs, not GBs), which is why increasing them is generally recommended. Finally, by
increasing the geqo threshold parameter to 18 we forced PostgreSQL to always
use dynamic programming instead of falling back to a heuristic for queries with more

5For our workload it was still feasible to do this naı̈vely. For larger data sets the approach by Chaudhuri
et al. [32] may become necessary.

133

6 Evaluation of Join Order Optimization for In-Memory Workloads

median 90th 95th max
PostgreSQL 1.00 2.08 6.10 207
DBMS A 1.01 1.33 1.98 43.4
DBMS B 1.00 6.03 30.2 104000
DBMS C 1.06 1677 5367 20471
HyPer 1.02 4.47 8.00 2084

Table 6.1: Q-errors for base table selections

than 12 joins.

6.3 Cardinality Estimation

Cardinality estimates are the most important ingredient for finding a good query plan.
Even exhaustive join order enumeration and a perfectly accurate cost model are worth-
less unless the cardinality estimates are (roughly) correct. It is well known, however,
that cardinality estimates are sometimes wrong by orders of magnitude, and that such
errors are usually the reason for slow queries. In this section, we experimentally inves-
tigate the quality of cardinality estimates in relational database systems by comparing
the estimates with the true cardinalities.

6.3.1 Estimates for Base Tables

To measure the quality of base table cardinality estimates, we use the q-error, which
is the factor by which an estimate differs from the true cardinality. For example, if
the true cardinality of an expression is 100, the estimates of 10 or 1000 both have a
q-error of 10. Using the ratio instead of an absolute or quadratic difference captures
the intuition that for making planning decisions only relative differences matter. The q-
error furthermore provides a theoretical upper bound for the plan quality if the q-errors
of a query are bounded [132].

Table 6.1 shows the 50th, 90th, 95th, and 100th percentiles of the q-errors for the
629 base table selections in our workload. The median q-error is close to the optimal
value of 1 for all systems, indicating that the majority of all selections are estimated
correctly. However, all systems produce misestimates for some queries, and the quality
of the cardinality estimates differs strongly between the different systems.

Looking at the individual selections, we found that DBMS A and HyPer can usually
predict even complex predicates like substring search using LIKE very well. To esti-
mate the selectivities for base tables HyPer uses a random sample of 1000 rows per ta-
ble and applies the predicates on that sample. This allows one to get accurate estimates
for arbitrary base table predicates as long as the selectivity is not too low. When we

134

6.3 Cardinality Estimation

looked at the selections where DBMS A and HyPer produce errors above 2, we found
that most of them have predicates with extremely low true selectivities (e.g., 10−5 or
10−6). This routinely happens when the selection yields zero tuples on the sample, and
the system falls back on an ad-hoc estimation method (“magic constants”). It therefore
appears to be likely that DBMS A also uses the sampling approach.

The estimates of the other systems are worse and seem to be based on per-attribute
histograms, which do not work well for many predicates and cannot detect (anti-
)correlations between attributes. Note that we obtained all estimates using the default
settings after running the respective statistics gathering tool. Some commercial sys-
tems support the use of sampling for base table estimation, multi-attribute histograms
(“column group statistics”), or ex post feedback from previous query runs [165]. How-
ever, these features are either not enabled by default or are not fully automatic.

6.3.2 Estimates for Joins

Let us now turn our attention to the estimation of intermediate results for joins, which
are more challenging because neither sampling nor histograms work well across joins.
Figure 6.3 summarizes over 100,000 cardinality estimates in a single figure. For each
intermediate result of our query set, we compute the factor by which the estimate
differs from the true cardinality, distinguishing between over- and underestimation.
The graph shows one “boxplot” (note the legend in the bottom-left corner) for each
intermediate result size, which allows one to compare how the errors change as the
number of joins increases. The vertical axis uses a logarithmic scale to encompass
underestimates by a factor of 108 and overestimates by a factor of 104.

Despite the better base table estimates of DBMS A, the overall variance of the join
estimation errors, as indicated by the boxplot, is similar for all systems with the ex-
ception of DBMS B. For all systems we routinely observe misestimates by a factor
of 1000 or more. Furthermore, as witnessed by the increasing height of the box plots,
the errors grow exponentially (note the logarithmic scale) as the number of joins in-
creases [75]. For PostgreSQL 16% of the estimates for 1 join are wrong by a factor
of 10 or more. This percentage increases to 32% with 2 joins, and to 52% with 3
joins. For DBMS A, which has the best estimator of the systems we compared, the
corresponding percentages are only marginally better at 15%, 25%, and 36%.

Another striking observation is that all tested systems—though DBMS A to a lesser
degree—tend to systematically underestimate the results sizes of queries with multiple
joins. This can be deduced from the median of the error distributions in Figure 6.3. For
our query set, it is indeed the case that the intermediate results tend to decrease with an
increasing number of joins because more base table selections get applied. However,
the true decrease is less than the independence assumption used by PostgreSQL (and
apparently by the other systems) predicts. Underestimation is most pronounced with

135

6 Evaluation of Join Order Optimization for In-Memory Workloads

PostgreSQ
L

D
BM

S A
D

BM
S B

D
BM

S C
H

yPer

1e8

1e6

1e4

1e2 1

1e2

1e4

0
1

2
3

4
5

6
0

1
2

3
4

5
6

0
1

2
3

4
5

6
0

1
2

3
4

5
6

0
1

2
3

4
5

6
num

ber of joins

← underestimation [log scale] overestimation →

95th percentile

5th percentile

m
edian

75th percentile

25th percentile

Figure
6.3:Q

uality
ofcardinality

estim
ates

form
ulti-join

queries
in

com
parison

w
ith

the
true

cardinalities.E
ach

boxplotsum
m

arizes
the

errordistribution
ofallsubexpressions

w
ith

a
particularsize

(overallqueries
in

the
w

orkload)

136

6.3 Cardinality Estimation

DBMS B, which frequently estimates 1 row for queries with more than 2 joins. The
estimates of DBMS A, on the other hand, have medians that are much closer to the
truth, despite their variance being similar to some of the other systems. We speculate
that DBMS A uses a damping factor that depends on the join size, similar to how many
optimizers combine multiple selectivities. Many estimators combine the selectivities
of multiple predicates (e.g., for a base relation or for a subexpression with multiple
joins) not by assuming full independence, but by adjusting the selectivities “upwards”,
using a damping factor. The motivation for this stems from the fact that the more
predicates need to be applied, the less certain one should be about their independence.

Given the simplicity of PostgreSQL’s join estimation formula (cf. Section 6.2.3) and
the fact that its estimates are nevertheless competitive with the commercial systems,
we can deduce that the current join size estimators are based on the independence
assumption. No system tested was able to detect join-crossing correlations. Further-
more, cardinality estimation is highly brittle, as illustrated by the significant number
of extremely large errors we observed (factor 1000 or more) and the following anec-
dote: In PostgreSQL, we observed different cardinality estimates of the same simple
2-join query depending on the syntactic order of the relations in the from and/or the
join predicates in the where clauses! Simply by swapping predicates or relations,
we observed the estimates of 3, 9, 128, or 310 rows for the same query (with a true
cardinality of 2600)6.

Note that this section does not benchmark the query optimizers of the different sys-
tems. In particular, our results do not imply that the DBMS B’s optimizer or the result-
ing query performance is necessarily worse than that of other systems, despite larger
errors in the estimator. The query runtime heavily depends on how the system’s opti-
mizer uses the estimates and how much trust it puts into these numbers. A sophisticated
engine may employ adaptive operators (e.g., [23, 33]) and thus mitigate the impact of
misestimations. The results do, however, demonstrate that the state-of-the-art in cardi-
nality estimation is far from perfect.

6.3.3 Estimates for TPC-H

We have stated earlier that cardinality estimation in TPC-H is a rather trivial task. Fig-
ure 6.4 substantiates that claim by showing the distributions of PostgreSQL estimation
errors for 3 of the larger TPC-H queries and 4 of our JOB queries. Note that in the
figure we report estimation errors for individual queries (not for all queries like in Fig-
ure 6.3). Clearly, the TPC-H query workload does not present many hard challenges
for cardinality estimators. In contrast, our workload contains queries that routinely

6 The reasons for this surprising behavior are two implementation artifacts: First, estimates that are
less than 1 are rounded up to 1, making subexpression estimates sensitive to the (usually arbitrary)
join enumeration order, which is affected by the from clause. The second is a consistency problem
caused by incorrect domain sizes of predicate attributes in joins with multiple predicates.

137

6 Evaluation of Join Order Optimization for In-Memory Workloads

JOB 6a JOB 16d JOB 17b JOB 25c TPC-H 5 TPC-H 8 TPC-H 10

1e4

1e2

1

1e2

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
number of joins

 ←
 u

nd
er

es
tim

at
io

n

 [l
og

 s
ca

le
]

ov
er

es
tim

at
io

n
→

Figure 6.4: PostgreSQL cardinality estimates for 4 JOB queries and 3 TPC-H queries

lead to severe overestimation and underestimation errors, and hence can be considered
a challenging benchmark for cardinality estimation.

6.3.4 Better Statistics for PostgreSQL

As mentioned in Section 6.2.3, the most important statistic for join estimation in Post-
greSQL is the number of distinct values. These statistics are estimated from a fixed-
sized sample, and we have observed severe underestimates for large tables. To de-
termine if the misestimated distinct counts are the underlying problem for cardinality
estimation, we computed these values precisely and replaced the estimated with the
true values.

Figure 6.5 shows that the true distinct counts slightly improve the variance of the
errors. Surprisingly, however, the trend to underestimate cardinalities becomes even
more pronounced. The reason is that the original, underestimated distinct counts re-
sulted in higher estimates, which, accidentally, are closer to the truth. This is an exam-
ple for the proverbial “two wrongs that make a right”, i.e., two errors that (partially)
cancel each other out. Such behavior makes analyzing and fixing query optimizer
problems very frustrating because fixing one query might break another.

138

6.4 When Do Bad Cardinality Estimates Lead to Slow Queries?

PostgreSQL PostgreSQL (true distinct)

1e4

1e2

1

0 1 2 3 4 5 6 0 1 2 3 4 5 6
number of joins

←
 u

nd
er

es
tim

at
io

n

[lo
g

sc
al

e]

Figure 6.5: PostgreSQL cardinality estimates based on the default distinct count esti-
mates, and the true distinct counts

6.4 When Do Bad Cardinality Estimates Lead to Slow
Queries?

While the large estimation errors shown in the previous section are certainly sobering,
large errors do not necessarily lead to slow query plans. For example, the misesti-
mated expression may be cheap in comparison with other parts of the query, or the
relevant plan alternative may have been misestimated by a similar factor thus “cancel-
ing out” the original error. In this section we investigate the conditions under which
bad cardinalities are likely to cause slow queries.

One important observation is that query optimization is closely intertwined with the
physical database design: the type and number of indexes heavily influence the plan
search space, and therefore affects how sensitive the system is to cardinality misesti-
mates. We therefore start this section with experiments using a relatively robust phys-
ical design with only primary key indexes and show that in such a setup the impact of
cardinality misestimates can largely be mitigated. After that, we demonstrate that for
more complex configurations with many indexes, cardinality misestimation makes it
much more likely to miss the optimal plan by a large margin.

6.4.1 The Risk of Relying on Estimates

To measure the impact of cardinality misestimation on query performance we injected
the estimates of the different systems into PostgreSQL and then executed the resulting
plans. Using the same query engine allows one to compare the cardinality estimation

139

6 Evaluation of Join Order Optimization for In-Memory Workloads

components in isolation by (largely) abstracting away from the different query execu-
tion engines. Additionally, we inject the true cardinalities, which computes the—with
respect to the cost model—optimal plan. We group the runtimes based on their slow-
down w.r.t. the optimal plan, and report the distribution in the following table, where
each column corresponds to a group:

<0.9 [0.9,1.1) [1.1,2) [2,10) [10,100) >100
PostgreSQL 1.8% 38% 25% 25% 5.3% 5.3%
DBMS A 2.7% 54% 21% 14% 0.9% 7.1%
DBMS B 0.9% 35% 18% 15% 7.1% 25%
DBMS C 1.8% 38% 35% 13% 7.1% 5.3%
HyPer 2.7% 37% 27% 19% 8.0% 6.2%

A small number of queries become slightly slower using the true instead of the
erroneous cardinalities. This effect is caused by cost model errors, which we discuss
in Section 6.5. However, as expected, the vast majority of the queries are slower when
estimates are used. Using DBMS A’s estimates, 78% of the queries are less than 2×
slower than using the true cardinalities, while for DBMS B this is the case for only 53%
of the queries. This corroborates the findings about the relative quality of cardinality
estimates in the previous section. Unfortunately, all estimators occasionally lead to
plans that take an unreasonable time and lead to a timeout. Surprisingly, however,
many of the observed slowdowns are easily avoidable despite the bad estimates as we
show in the following.

When looking at the queries that did not finish in a reasonable time using the esti-
mates, we found that most have one thing in common: PostgreSQL’s optimizer decides
to introduce a nested-loop join (without an index lookup) because of a very low cardi-
nality estimate, whereas in reality the true cardinality is larger. As we saw in the previ-
ous section, systematic underestimation happens very frequently, which occasionally
results in the introduction of nested-loop joins.

The underlying reason why PostgreSQL chooses nested-loop joins is that it picks
the join algorithm on a purely cost-based basis. For example, if the cost estimate is
1,000,000 with the nested-loop join algorithm and 1,000,001 with a hash join, Post-
greSQL will always prefer the nested-loop algorithm even if there is a equality join
predicate, which allows one to use hashing. Of course, given the O(n2) complexity
of nested-loop join and O(n) complexity of hash join, and given the fact that underes-
timates are quite frequent, this decision is extremely risky. And even if the estimates
happen to be correct, any potential performance advantage of a nested-loop join in
comparison with a hash join is very small, so taking this high risk can only result in a
very small payoff.

Therefore, we disabled nested-loop joins (but not index-nested-loop joins) in all fol-
lowing experiments. As Figure 6.6b shows, when rerunning all queries without these

140

6.4 When Do Bad Cardinality Estimates Lead to Slow Queries?

default + no nested-loop join + rehashing

(a) (b) (c)

0%

20%

40%

60%

[0.
3,0

.9)

[0.
9,1

.1)
[1.

1,2
)
[2,

10
)

[10
,10

0)
>1

00

[0.
3,0

.9)

[0.
9,1

.1)
[1.

1,2
)
[2,

10
)

[10
,10

0)
>1

00

[0.
3,0

.9)

[0.
9,1

.1)
[1.

1,2
)
[2,

10
)

[10
,10

0)
>1

00

Figure 6.6: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardi-
nalities (primary key indexes only)

risky nested-loop joins, we observed no more timeouts despite using PostgreSQL’s
estimates.

Also, none of the queries performed slower than before despite having less join
algorithm options, confirming our hypothesis that nested-loop joins (without indexes)
seldom have any upside. However, this change does not solve all problems, as there
are still a number of queries that are more than a factor of 10 slower (cf., red bars) in
comparison with the true cardinalities.

When investigating the reason why the remaining queries still did not perform as
well as they could, we found that most of them contain a hash join where the size of
the build input is underestimated. PostgreSQL up to and including version 9.4 chooses
the size of the in-memory hash table based on the cardinality estimate. Underestimates
can lead to undersized hash tables with very long collisions chains and therefore bad
performance. The upcoming version 9.5 resizes the hash table at runtime based on the
number of rows actually stored in the hash table. We back-ported this patch to our code
base, which is based on 9.4, and enabled it for all remaining experiments. Figure 6.6c
shows the effect of this change in addition with disabled nested-loop joins. Less than
4% of the queries are off by more than 2× in comparison with the true cardinalities.

To summarize, being “purely cost-based”, i.e., not taking into account the inher-
ent uncertainty of cardinality estimates and the asymptotic complexities of different
algorithm choices, can lead to very bad query plans. Algorithms that seldom offer a
large benefit over more robust algorithms should not be chosen. Furthermore, query
processing algorithms should, if possible, automatically determine their parameters at
runtime instead of relying on cardinality estimates.

141

6 Evaluation of Join Order Optimization for In-Memory Workloads

PK indexes PK + FK indexes

(a) (b)

0%

20%

40%

60%

[0.
3,0

.9)

[0.
9,1

.1)
[1.

1,2
)
[2,

10
)

[10
,10

0)
>1

00

[0.
3,0

.9)

[0.
9,1

.1)
[1.

1,2
)
[2,

10
)

[10
,10

0)
>1

00

Figure 6.7: Slowdown of queries using PostgreSQL estimates w.r.t. using true cardi-
nalities (different index configurations)

6.4.2 Good Plans Despite Bad Cardinalities

The query runtimes of plans with different join orders often vary by many orders of
magnitude (cf. Section 6.6.1). Nevertheless, when the database has only primary key
indexes, as in all in experiments so far, and once nested loop joins have been disabled
and rehashing has been enabled, the performance of most queries is close to the one
obtained using the true cardinalities. Given the bad quality of the cardinality estimates,
we consider this to be a surprisingly positive result. It is worthwhile to reflect on why
this is the case.

The main reason is that without foreign key indexes, most large (“fact”) tables need
to be scanned using full table scans, which dampens the effect of different join orders.
The join order still matters, but the results indicate that the cardinality estimates are
usually good enough to rule out all disastrous join order decisions like joining two
large tables using an unselective join predicate. Another important reason is that in
main memory picking an index-nested-loop join where a hash join would have been
faster is never disastrous. With all data and indexes fully cached, we measured that
the performance advantage of a hash join over an index-nested-loop join is at most
5× with PostgreSQL and 2× with HyPer. Obviously, when the index must be read
from disk, random IO may result in a much larger factor. Therefore, the main-memory
setting is much more forgiving.

6.4.3 Complex Access Paths

So far, all query executions were performed on a database with indexes on primary key
attributes only. To see if the query optimization problem becomes harder when there

142

6.4 When Do Bad Cardinality Estimates Lead to Slow Queries?

are more indexes, we additionally indexed all foreign key attributes. Figure 6.7b shows
the effect of additional foreign key indexes. We see large performance differences
with 40% of the queries being slower by a factor of 2! Note that these results do not
mean that adding more indexes decreases performance (although this can occasionally
happen). Indeed overall performance generally increases significantly, but the more
indexes are available the harder the job of the query optimizer becomes.

6.4.4 Join-Crossing Correlations

There is consensus in our community that estimation of intermediate result cardinali-
ties in the presence of correlated query predicates is a frontier in query optimization
research. The JOB workload studied in this work consists of real-world data and its
queries contain many correlated predicates. Our experiments that focus on single-
table subquery cardinality estimation quality (cf. Table 6.1) show that systems that
keep table samples (HyPer and presumably DBMS A) can achieve almost perfect es-
timation results, even for correlated predicates (inside the same table). As such, the
cardinality estimation research challenge appears to lie in queries where the correlated
predicates involve columns from different tables, connected by joins. These we call
“join-crossing correlations”. Such correlations frequently occur in the IMDB data set,
e.g., actors born in Paris are likely to play in French movies.

Given these join-crossing correlations one could wonder if there exist complex ac-
cess paths that allow one to exploit these. One example relevant here despite its original
setting in XQuery processing is ROX [82]. It studied runtime join order query opti-
mization in the context of DBLP co-authorship queries that count how many Authors
had published Papers in three particular venues, out of many. These queries joining
the author sets from different venues clearly have join-crossing correlations, since au-
thors who publish in VLDB are typically database researchers, likely to also publish in
SIGMOD, but not—say—in Nature.

In the DBLP case, Authorship is a n : m relationship that links the relation
Authors with the relation Papers. The optimal query plans in [82] used an index-
nested-loop join, looking up each author into Authorship.author (the indexed
primary key) followed by a filter restriction on Paper.venue, which needs to be
looked up with yet another join. This filter on venue would normally have to be calcu-
lated after these two joins. However, the physical design of [82] stored Authorship

partitioned by Paper.venue.7 This partitioning has startling effects: instead of one
Authorship table and primary key index, one physically has many, one for each
venue partition. This means that by accessing the right partition, the filter is implic-

7In fact, rather than relational table partitioning, there was a separate XML document per venue, e.g.,
separate documents for SIGMOD, VLDB, Nature and a few thousand more venues. Storage in a
separate XML document has roughly the same effect on access paths as partitioned tables.

143

6 Evaluation of Join Order Optimization for In-Memory Workloads

itly enforced (for free), before the join happens. This specific physical design therefore
causes the optimal plan to be as follows: first join the smallish authorship set from
SIGMOD with the large set for Nature producing almost no result tuples, making the
subsequent nested-loops index lookup join into VLDB very cheap. If the tables would
not have been partitioned, index lookups from all SIGMOD authors into Authorships
would first find all co-authored papers, of which the great majority is irrelevant be-
cause they are about database research, and were not published in Nature. Without
this partitioning, there is no way to avoid this large intermediate result, and there is
no query plan that comes close to the partitioned case in efficiency: even if cardinal-
ity estimation would be able to predict join-crossing correlations, there would be no
physical way to profit from this knowledge.

The lesson to draw from this example is that the effects of query optimization
are always gated by the available options in terms of access paths. Having a par-
titioned index on a join-crossing predicate as in [82] is a non-obvious physical de-
sign alternative which even modifies the schema by bringing in a join-crossing column
(Paper.venue) as partitioning key of a table (Authorship). The partitioned DBLP
set-up is just one example of how one particular join-crossing correlation can be han-
dled, rather than a generic solution. Join-crossing correlations remain an open frontier
for database research involving the interplay of physical design, query execution and
query optimization. In our JOB experiments we do not attempt to chart this mostly
unknown space, but rather characterize the impact of (join-crossing) correlations on
the current state-of-the-art of query processing, restricting ourselves to standard PK
and FK indexing.

6.5 Cost Models

The cost model guides the selection of plans from the search space. The cost models
of contemporary systems are sophisticated software artifacts that are resulting from
30+ years of research and development, mostly concentrated in the area of traditional
disk-based systems. PostgreSQL’s cost model, for instance, is comprised of over 4000
lines of C code, and takes into account various subtle considerations, e.g., it takes into
account partially correlated index accesses, interesting orders, tuple sizes, etc. It is
interesting, therefore, to evaluate how much a complex cost model actually contributes
to the overall query performance.

First, we will experimentally establish the correlation between PostgreSQL’s cost
model—a typical cost model of a disk-based DBMS—and the query runtime. Then,
we will compare PostgreSQL’s cost model with two other cost functions. The first cost
model is a tuned version of PostgreSQL’s model for a main-memory setup where all
data fits into RAM. The second cost model is an extremely simple function that only

144

6.5 Cost Models

takes the number of tuples produced during query evaluation into account. We show
that, unsurprisingly, the difference between the cost models is dwarfed by the cardinal-
ity estimates errors. We conduct our experiments on a database instance with foreign
key indexes. We begin with a brief description of a typical disk-oriented complex cost
model, namely the one of PostgreSQL.

6.5.1 The PostgreSQL Cost Model

PostgreSQL’s disk-oriented cost model combines CPU and I/O costs with certain weights.
Specifically, the cost of an operator is defined as a weighted sum of the number of ac-
cessed disk pages (both sequential and random) and the amount of data processed in
memory. The cost of a query plan is then the sum of the costs of all operators. The
default values of the weight parameters used in the sum (cost variables) are set by the
optimizer designers and are meant to reflect the relative difference between random
access, sequential access and CPU costs.

The PostgreSQL documentation contains the following note on cost variables:

“Unfortunately, there is no well-defined method for determining ideal val-
ues for the cost variables. They are best treated as averages over the entire
mix of queries that a particular installation will receive. This means that
changing them on the basis of just a few experiments is very risky.”

For a database administrator, who needs to actually set these parameters these sug-
gestions are not very helpful; no doubt most will not change these parameters. This
comment is of course, not PostgreSQL-specific, since other systems feature similarly
complex cost models. In general, tuning and calibrating cost models (based on sam-
pling, various machine learning techniques etc.) has been a subject of a number of
papers (e.g, [180, 120]). It is important, therefore, to investigate the impact of the
cost model on the overall query engine performance. This will indirectly show the
contribution of cost model errors on query performance.

6.5.2 Cost and Runtime

The main virtue of a cost function is its ability to predict which of the alternative query
plans will be the fastest, given the cardinality estimates; in other words, what counts is
its correlation with the query runtime. The correlation between the cost and the runtime
of queries in PostgreSQL is shown in Figure 6.8a. Additionally, we consider the case
where the engine has the true cardinalities injected, and plot the corresponding data
points in Figure 6.8b. For both plots, we fit the linear regression model (displayed as a
straight line) and highlight the standard error. The predicted cost of a query correlates
with its runtime in both scenarios. Poor cardinality estimates, however, lead to a large
number of outliers and a very wide standard error area in Figure 6.8a. Only using the

145

6 Evaluation of Join Order Optimization for In-Memory Workloads

PostgreSQL estimates true cardinalities

1

1e2

1e4

1

1e2

1e4

1

1e2

1e4

standard cost m
odel

tuned cost m
odel

sim
ple cost m

odel

1e+05 1e+07 1e+03 1e+05 1e+07
cost [log scale]

ru
nt

im
e

[m
s]

 [l
og

 s
ca

le
]

(a) (b)

(c) (d)

(e) (f)

Figure 6.8: Predicted cost vs. runtime for different cost models

146

6.5 Cost Models

true cardinalities makes PostgreSQL’s cost model a reliable predictor of the runtime,
as has been observed previously [180].

Intuitively, a straight line in Figure 6.8 corresponds to an ideal cost model that al-
ways assigns (predicts) higher costs for more expensive queries. Naturally, any mono-
tonically increasing function would satisfy that requirement, but the linear model pro-
vides the simplest and the closest fit to the observed data. We can therefore interpret
the deviation from this line as the prediction error of the cost model. Specifically,
we consider the absolute percentage error of a cost model for a query Q: ε(Q) =
|Treal(Q)−Tpred(Q)|

Treal(Q) , where Treal is the observed runtime, and Tpred is the runtime pre-
dicted by our linear model. Using the default cost model of PostgreSQL and the true
cardinalities, the median error of the cost model is 38%.

6.5.3 Tuning the Cost Model for Main Memory

As mentioned above, a cost model typically involves parameters that are subject to
tuning by the database administrator. In a disk-based system such as PostgreSQL,
these parameters can be grouped into CPU cost parameters and I/O cost parameters,
with the default settings reflecting an expected proportion between these two classes
in a hypothetical workload.

In many settings the default values are sub optimal. For example, the default pa-
rameter values in PostgreSQL suggest that processing a tuple is 400x cheaper than
reading it from a page. However, modern servers are frequently equipped with very
large RAM capacities, and in many workloads the data set actually fits entirely into
available memory (admittedly, the core of PostgreSQL was shaped decades ago when
database servers only had few megabytes of RAM). This does not eliminate the page
access costs entirely (due to buffer manager overhead), but significantly bridges the
gap between the I/O and CPU processing costs.

Arguably, the most important change that needs to be done in the cost model for a
main-memory workload is to decrease the proportion between these two groups. We
have done so by multiplying the CPU cost parameters by a factor of 50. The results of
the workload run with improved parameters are plotted in the two middle subfigures
of Figure 6.8. Comparing Figure 6.8b with d, we see that tuning does indeed improve
the correlation between the cost and the runtime. On the other hand, as is evident from
comparing Figure 6.8c and d, parameter tuning improvement is still overshadowed by
the difference between the estimated and the true cardinalities. Note that Figure 6.8c
features a set of outliers for which the optimizer has accidentally discovered very good
plans (runtimes around 1 ms) without realizing it (hence very high costs). This is
another sign of “oscillation” in query planning caused by cardinality misestimates.

In addition, we measure the prediction error ε of the tuned cost model, as defined in
Section 6.5.2. We observe that tuning improves the predictive power of the cost model:

147

6 Evaluation of Join Order Optimization for In-Memory Workloads

the median error decreases from 38% to 30%.

6.5.4 Are Complex Cost Models Necessary?

As discussed above, PostgreSQL’s cost model is quite complex. Presumably, this com-
plexity should reflect various factors influencing query execution, such as the speed of
a disk seek and read, CPU processing costs, etc. In order to find out whether this
complexity is actually necessary in a main-memory setting, we will contrast it with a
very simple cost function Cmm. This cost function is tailored for the main-memory
setting in that it does not model I/O costs, but only counts the number of tuples that
pass through each operator during query execution:

Cmm(T) =

τ · |R| if T = R ∨ T = σ(R)

|T |+ Cmm(T1) + Cmm(T2) if T = T1 ./
HJ T2

Cmm(T1)+ if T = T1 ./
INL T2,

λ · |T1| ·max(|T1./R|
|T1| , 1) (T2 = R ∨ T2 = σ(R))

In the formula aboveR is a base relation, and τ ≤ 1 is a parameter that discounts the
cost of a table scan in comparison with joins. The cost function distinguishes between
hash ./HJ and index-nested loop ./INL joins: the latter scans T1 and performs index
lookups into an index on R, thus avoiding a full table scan of R. A special case occurs
when there is a selection on the right side of the index-nested loop join, in which case
we take into account the number of tuple lookups in the base table index and essentially
discard the selection from the cost computation (hence the multiplier max(|T1./R|

|T1| , 1)).
For index-nested loop joins we use the constant λ ≥ 1 to approximate by how much
an index lookup is more expensive than a hash table lookup. Specifically, we set λ = 2

and τ = 0.2. As in our previous experiments, we disable nested loop joins when the
inner relation is not an index lookup (i.e., non-index nested loop joins).

The results of our workload run with Cmm as a cost function are depicted in Fig-
ure 6.8e and f. We see that even our trivial cost model is able to fairly accurately
predict the query runtime using the true cardinalities. To quantify this argument, we
measure the improvement in the runtime achieved by changing the cost model for true
cardinalities: In terms of the geometric mean over all queries, our tuned cost model
yields 41% faster runtimes than the standard PostgreSQL model, but even a simple
Cmm makes queries 34% faster than the built-in cost function. This improvement is
not insignificant, but on the other hand, it is dwarfed by improvement in query runtime
observed when we replace estimated cardinalities with the real ones (cf. Figure 6.6b).
This allows us to reiterate our main message that cardinality estimation is much more
crucial than the cost model.

148

6.6 Plan Space

6.6 Plan Space

Besides cardinality estimation and the cost model, the final important query optimiza-
tion component is a plan enumeration algorithm that explores the space of semantically
equivalent join orders. Many different algorithms, both exhaustive (e.g., [131, 46]) as
well as heuristic (e.g, [164, 138]) have been proposed. These algorithms consider a
different number of candidate solutions (that constitute the search space) when pick-
ing the best plan. In this section we investigate how large the search space needs to be
in order to find a good plan.

The experiments of this section use a standalone query optimizer, which implements
Dynamic Programming (DP) and a number of heuristic join enumeration algorithms.
Our optimizer allows the injection of arbitrary cardinality estimates. In order to fully
explore the search space, we do not actually execute the query plans produced by the
optimizer in this section, as that would be infeasible due to the number of joins our
queries have. Instead, we first run the query optimizer using the estimates as input.
Then, we recompute the cost of the resulting plan with the true cardinalities, giving
us a very good approximation of the runtime the plan would have in reality. We use
the in-memory cost model from Section 6.5.4 and assume that it perfectly predicts the
query runtime, which, for our purposes, is a reasonable assumption since the errors
of the cost model are negligible in comparison the cardinality errors. This approach
allows us to compare a large number of plans without executing all of them.

6.6.1 How Important Is the Join Order?

We use the Quickpick [174] algorithm to visualize the costs of different join orders.
Quickpick is a simple, randomized algorithm that picks joins edges at random until
all joined relations are fully connected. Each run produces a correct, but usually slow,
query plan. By running the algorithm 10,000 times per query and computing the costs
of the resulting plans, we obtain an approximate distribution for the costs of random
plans. Figure 6.9 shows density plots for 5 representative example queries and for three
physical database designs: no indexes, primary key indexes only, and primary+foreign
key indexes. The costs are normalized by the optimal plan (with foreign key indexes),
which we obtained by running dynamic programming and the true cardinalities.

The graphs, which use a logarithmic scale on the horizontal cost axis, clearly illus-
trate the importance of the join ordering problem: The slowest or even median cost is
generally multiple orders of magnitude more expensive than the cheapest plan. The
shapes of the distributions are quite diverse. For some queries, there are many good
plans (e.g., 25c), for others few (e.g., 16d). The distribution are sometimes wide (e.g.,
16d) and sometimes narrow (e.g., 25c). The plots for the “no indexes” and the “PK
indexes” configurations are very similar implying that for our workload primary key

149

6 Evaluation of Join Order Optimization for In-Memory Workloads

JOB 6a JOB 13a JOB 16d JOB 17b JOB 25c

no indexes
PK indexes

PK + FK indexes

1 1e2 1e3 1e4 1 1e2 1e3 1e4 1 1e2 1e3 1e4 1 1e2 1e3 1e4 1 1e2 1e3 1e4
cost relative to optimal FK plan [log scale]

Figure 6.9: Cost distributions for 5 queries and different index configurations. The
vertical green lines represent the cost of the optimal plan

indexes alone do not improve performance very much, since we do not have selections
on primary key columns. In many cases the “PK+FK indexes” distributions have ad-
ditional small peaks on the left side of the plot, which means that the optimal plan in
this index configuration is much faster than in the other configurations.

We also analyzed the entire workload to confirm these visual observations: The
percentage of plans that are at most 1.5× more expensive than the optimal plan is
44% without indexes, 39% with primary key indexes, but only 4% with foreign key
indexes. The average fraction between the worst and the best plan, i.e., the width of
the distribution, is 101×without indexes, 115×with primary key indexes, and 48120×
with foreign key indexes. These summary statistics highlight the dramatically different
search spaces of the three index configurations.

6.6.2 Are Bushy Trees Necessary?

Most join ordering algorithms do not enumerate all possible tree shapes. Virtually
all optimizers ignore join orders with cross products, which results in a dramatically

150

6.6 Plan Space

PK indexes PK + FK indexes
median 95% max median 95% max

zig-zag 1.00 1.06 1.33 1.00 1.60 2.54
left-deep 1.00 1.14 1.63 1.06 2.49 4.50
right-deep 1.87 4.97 6.80 47.2 30931 738349

Table 6.2: Slowdown for restricted tree shapes in comparison to the optimal plan (true
cardinalities)

reduced optimization time with only negligible query performance impact. Oracle goes
even further by not considering bushy join trees [2]. In order to quantify the effect of
restricting the search space on query performance, we modified our DP algorithm to
only enumerate left-deep, right-deep, or zig-zag trees.

Aside from the obvious tree shape restriction, each of these classes implies con-
straints on the join method selection. We follow the definition by Garcia-Molina et
al.’s textbook, which is reverse from the one in Ramakrishnan and Gehrke’s book: Us-
ing hash joins, right-deep trees are executed by first creating hash tables out of each
relation except one before probing in all of these hash tables in a pipelined fashion,
whereas in left-deep trees, a new hash table is built from the result of each join. In
zig-zag trees, which are a super set of all left- and right-deep trees, each join operator
must have at least one base relation as input. For index-nested loop joins we addition-
ally employ the following convention: the left child of a join is a source of tuples that
are looked up in the index on the right child, which must be a base table.

Using the true cardinalities, we compute the cost of the optimal plan for each of
the three restricted tree shapes. We divide these costs by the optimal tree (which may
have any shape, including “bushy”) thereby measuring how much performance is lost
by restricting the search space. The results in Table 6.2 show that zig-zag trees offer
decent performance in most cases, with the worst case being 2.54× more expensive
than the best bushy plan. Left-deep trees are worse than zig-zag trees, as expected, but
still result in reasonable performance. Right-deep trees, on the other hand, perform
much worse than the other tree shapes and thus should not be used exclusively. The
bad performance of right-deep trees is caused by the large intermediate hash tables that
need to be created from each base relation and the fact that only the bottom-most join
can be done via index lookup.

6.6.3 Are Heuristics Good Enough?

So far, in our experiments we have used the dynamic programming algorithm, which
computes the optimal join order. However, given the bad quality of the cardinality esti-
mates, one may reasonably ask whether an exhaustive algorithm is even necessary. We
therefore compare dynamic programming with a randomized and a greedy heuristics.

151

6 Evaluation of Join Order Optimization for In-Memory Workloads

PK indexes
PostgreSQL estimates true cardinalities
median 95% max median 95% max

Dynamic Programming 1.03 1.85 4.79 1.00 1.00 1.00
Quickpick-1000 1.05 2.19 7.29 1.00 1.07 1.14
Greedy Operator Ordering 1.19 2.29 2.36 1.19 1.64 1.97

PK + FK indexes
PostgreSQL estimates true cardinalities

median 95% max median 95% max
Dynamic Programming 1.66 169 186367 1.00 1.00 1.00
Quickpick-1000 2.52 365 186367 1.02 4.72 32.3
Greedy Operator Ordering 2.35 169 186367 1.20 5.77 21.0

Table 6.3: Comparison of exhaustive dynamic programming with the Quickpick-1000
(best of 1000 random plans) and the Greedy Operator Ordering heuristics.
All costs are normalized by the optimal plan of that index configuration

The “Quickpick-1000” heuristics is a randomized algorithm that chooses the cheap-
est (based on the estimated cardinalities) 1000 random plans. Among all greedy heuris-
tics, we pick Greedy Operator Ordering (GOO) since it was shown to be superior to
other deterministic approximate algorithms [44]. GOO maintains a set of join trees,
each of which initially consists of one base relation. The algorithm then combines the
pair of join trees with the lowest cost to a single join tree. Both Quickpick-1000 and
GOO can produce bushy plans, but obviously only explore parts of the search space.
All algorithms in this experiment internally use the PostgreSQL cardinality estimates
to compute a query plan, for which we compute the “true” cost using the true cardinal-
ities.

Table 6.3 shows that it is worthwhile to fully examine the search space using dy-
namic programming despite cardinality misestimation. However, the errors introduced
by estimation errors cause larger performance losses than the heuristics. In contrast
to some other heuristics (e.g., [25]), GOO and Quickpick-1000 are not really aware
of indexes. Therefore, GOO and Quickpick-1000 work better when few indexes are
available, which is also the case when there are more good plans.

To summarize, our results indicate that enumerating all bushy trees exhaustively of-
fers moderate but not insignificant performance benefits in comparison with algorithms
that enumerate only a sub set of the search space. The performance potential from
good cardinality estimates is certainly much larger. However, given the existence of
exhaustive enumeration algorithms that can find the optimal solution for queries with
dozens of relations very quickly (e.g., [131, 46]), there are few cases where resorting
to heuristics or disabling bushy trees should be necessary.

152

6.7 Related Work

6.7 Related Work

Our cardinality estimation experiments show that systems which keep table samples
for cardinality estimation predict single-table result sizes considerably better than those
which apply the independence assumption and use single-column histograms [74]. We
think systems should be adopting table samples as a simple and robust technique, rather
than earlier suggestions to explicitly detect certain correlations [71] to subsequently
create multi-column histograms [150] for these.

However, many of our JOB queries contain join-crossing correlations, which single-
table samples do not capture, and where the current generation of systems still ap-
ply the independence assumption. There is a body of existing research work to bet-
ter estimate result sizes of queries with join-crossing correlations, mainly based on
join samples [60], possibly enhanced against skew (end-biased sampling [42], cor-
related samples [184]), using sketches [159] or graphical models [173]. This work
confirms that without addressing join-crossing correlations, cardinality estimates de-
teriorate strongly with more joins [75], leading to both the over- and underestimation
of result sizes (mostly the latter), so it would be positive if some of these techniques
would be adopted by systems.

Another way of learning about join-crossing correlations is by exploiting query feed-
back, as in the LEO project [165], though there it was noted that deriving cardinality
estimations based on a mix of exact knowledge and lack of knowledge needs a sound
mathematical underpinning. For this, maximum entropy (MaxEnt [130, 85]) was de-
fined, though the costs for applying maximum entropy are high and have prevented its
use in systems so far. We found that the performance impact of estimation mistakes
heavily depends on the physical database design; in our experiments the largest impact
is in situations with the richest designs. From the ROX [82] discussion in Section 6.4.4
one might conjecture that to truly unlock the potential of correctly predicting cardinali-
ties for join-crossing correlations, we also need new physical designs and access paths.

Another finding in this work is that the adverse effects of cardinality misestimations
can be strongly reduced if systems would be “hedging their bets” and not only choose
the plan with the cheapest expected cost, but take the probabilistic distribution of the
estimate into account, to avoid plans that are marginally faster than others but bear
a high risk of strong underestimation. There has been work both on doing this for
cardinality estimates purely [132], as well as combining these with a cost model (cost
distributions [8]).

The problem with fixed hash table sizes for PostgreSQL illustrates that cost mises-
timation can often be mitigated by making the runtime behavior of the query engine
more “performance robust”. This links to a body of work to make systems adaptive
to estimation mistakes, e.g., dynamically switch sides in a join, or change between
hashing and sorting (GJoin [55]), switch between sequential scan and index lookup

153

6 Evaluation of Join Order Optimization for In-Memory Workloads

(smooth scan [23]), adaptively reordering join pipelines during query execution [116],
or change aggregation strategies at runtime depending on the actual number of group-
by values [135] or partition-by values [15].

A radical approach is to move query optimization to runtime, when actual value-
distributions become available [140, 40]. However, runtime techniques typically re-
strict the plan search space to limit runtime plan exploration cost, and sometimes
come with functional restrictions such as to only consider (sampling through) oper-
ators which have pre-created indexed access paths (e.g., ROX [82]).

Our experiments with the second query optimizer component besides cardinality es-
timation, namely the cost model, suggest that tuning cost models provides less benefits
than improving cardinality estimates, and in a main-memory setting even an extremely
simple cost-model can produce satisfactory results. This conclusion resonates with
some of the findings in [180] which sets out to improve cost models but shows major
improvements by refining cardinality estimates with additional sampling.

For testing the final query optimizer component, plan enumeration, we borrowed
in our methodology from the Quickpick method used in randomized query optimiza-
tion [174] to characterize and visualize the search space. Another well-known search
space visualization method is Picasso [62], which visualizes query plans as areas in
a space where query parameters are the dimensions. Interestingly, [174] claims in its
characterization of the search space that good query plans are easily found, but our
tests indicate that the richer the physical design and access path choices, the rarer good
query plans become.

Query optimization is a core database research topic with a huge body of related
work, that cannot be fully represented in this section. After decades of work still hav-
ing this problem far from resolved [121], some have even questioned it and argued
for the need of optimizer application hints [31]. This work introduces the Join Order
Benchmark based on the highly correlated IMDB real-world data set and a method-
ology for measuring the accuracy of cardinality estimation. Its integration in systems
proposed for testing and evaluating the quality of query optimizers [175, 59, 48, 124]
is hoped to spur further innovation in this important topic.

6.8 Summary

In this work we have provided quantitative evidence for conventional wisdom that
has been accumulated in three decades of practical experience with query optimizers.
We have shown that query optimization is essential for efficient query processing and
that exhaustive enumeration algorithms find better plans than heuristics. We have also
shown that relational database systems produce large estimation errors that quickly
grow as the number of joins increases, and that these errors are usually the reason for

154

6.8 Summary

bad plans. In contrast to cardinality estimation, the contribution of the cost model to
the overall query performance is limited.

The unsatisfactory quality of cardinality estimators has been observed before [121],
and we hope that this important problem will receive more attention in the future.
Nevertheless, the cardinality estimates contain information that is often sufficient for
avoiding very bad query plans. Query optimizers can therefore usually find decent join
orders for most queries. However, the more access paths a database offers, the harder
it becomes to find a plan close to the optimum. We also showed that it is better to use
estimates only when necessary (e.g., for determining the join orders), but not to set
parameters that can be determined automatically at runtime (e.g., hash table sizes).

155

7 Future Work

In this work we have shown that a modern database system that is carefully optimized
for modern hardware can achieve orders of magnitude higher performance than a tra-
ditional design. However, there are still many unsolved problems, some of which we
plan to address in the future.

One important research frontier nowadays lies in supporting mixed workloads in a
single database. Many systems that start out as pure OLTP systems, over time add
OLAP features thus blurring the distinction between the two system types. Even in
HyPer, which was a mixed-workload system from the start [87], the research focus
shifted from topics like indexing [108] to parallel query processing [106, 158] and
compression [97]. While there may be sound technical reasons for running OLTP and
OLAP in separate systems, in reality, OLTP and OLAP are more platonic ideals than
truly separate applications. Therefore, there will always be pressure to support both
workloads. One major consequence is that, even for main-memory database systems,
the convenient assumption that all data fits into RAM generally does not hold. There
has been lots of research into supporting data sets larger than RAM in main-memory
database systems (e.g., [35, 113, 4, 41, 57, 49, 166]). Nevertheless, we believe that the
general problem of efficiently maintaining a global replacement strategy over relational
as well as index data is still not fully solved.

Major changes are also happening on the hardware side and database systems must
keep evolving to benefit from these changes. One aspect is the ever increasing number
of cores per CPU. While it is not clear whether servers with 1000 cores will be common
in the near future—if this indeed happens—it will have a major effect on database
architecture. It is a general rule, that the higher the degree of parallelism, the more
difficult scalability becomes [185]. Any efficient system that scales up to, for example,
100 cores, will likely require some major changes to scale up to 1000 cores. Thus,
some of the architectural decisions may need to be revised if the many-core trend
continues.

A potentially even greater challenge is the increasing heterogeneity of modern hard-
ware, which has the potential of disrupting the architecture of database systems. The
following trends can already be observed now:

• The Single Instruction, Multiple Data (SIMD) register width of modern CPUs is
increasing and will soon reach 512 bits (with Intel’s Skylake EP).

157

7 Future Work

• Graphics Processing Units (GPUs) have much higher nominal computational
power as well as memory bandwidth than general-purpose CPUs.

• Accelerated Processing Units (APUs), which combine a CPU with a GPU on a
single chip, in contrast, have lower communication cost between the two devices
but less memory bandwidth than GPUs.

• Special purpose accelerators like Oracle’s SPARC M7 on-chip data analytics
accelerator offer database-specific functionality like selection or decompression
in hardware.

• The emerging FPGA technology blurs the line between hardware and software.

In the past hardware evolved quickly too, but this mainly manifested in higher clock
frequency, higher bandwidth, etc. From the point of view of a software developer, over
time, software became faster “automatically”. The hardware technologies mentioned
above have, however, one thing in common: Programmers have to invest effort to get
any benefit from them. Programming for SIMD, GPUs, or FPGAs is very different
(and more difficult) than using the instruction set of a conventional, general-purpose
CPU. Therefore, as has been observed by Mark D. Hill, software is becoming a pro-
ducer of performance1 instead of a consumer of performance.

Consider a scenario in the not too far future, where a database server is equipped
with a 100-core CPU, 512-bit-wide SIMD instructions, a hardware accelerator for data-
intensive operations, a 10 TFLOP GPU, and an FPGA. Although much research has
been done on how to process data using these technologies (e.g., [65, 148, 170]), de-
signing a database system that effectively uses a mix of devices poses many additional
challenges. A database system will have to decide which part of a query should be exe-
cuted on which device, all while managing the data movement between the devices and
the energy/heat budget of the overall system. Put simply, no one currently knows how
to do this and no doubt it will take at least a decade of research to find a satisfactory
solution.

Whereas the technologies mentioned above promise faster computation, new storage
technologies like PCIe-attached NAND flash and non-volatile memory (NVM) [7, 123,
91, 145] like Phase Change Memory threaten to disrupt the way data is stored and
accessed. In order to avoid changing the software stack much, it is certainly possible to
hide modern storage devices behind a conventional block device interface, which was
originally designed for rotating disks. However, this approach leaves performance on
the table as it ignores the specific physical properties like the block erase requirement
of NAND flash or the byte-addressability of non-volatile memory. Thus, research is

1http://www.systems.ethz.ch/sites/default/files/file/TALKS/Gustavo/
GA-Keynote-ICDE-2013.pdf

158

http://www.systems.ethz.ch/sites/default/files/file/TALKS/Gustavo/GA-Keynote-ICDE-2013.pdf
http://www.systems.ethz.ch/sites/default/files/file/TALKS/Gustavo/GA-Keynote-ICDE-2013.pdf

required to find out how these new storage technologies are best utilized by database
systems.

Finally, even the venerable field of query optimization still has many unsolved prob-
lems. One promising approach is to rely more heavily on sampling (e.g., [180, 181]),
which is much cheaper than in the past when CPU cycles were costly and random disk
I/O would have been required. Sampling, for example across indexes, opens up new
ways to estimate the cardinality of multi-way joins, which after decades of research, is
still done naively in most systems.

159

8 Bibliography

[1] D. Abadi, P. A. Boncz, S. Harizopoulos, S. Idreos, and S. Madden. The design
and implementation of modern column-oriented database systems. Foundations
and Trends in Databases, 5(3):197–280, 2013.

[2] R. Ahmed, R. Sen, M. Poess, and S. Chakkappen. Of snowstorms and bushy
trees. PVLDB, 7(13):1452–1461, 2014.

[3] M.-C. Albutiu, A. Kemper, and T. Neumann. Massively parallel sort-merge
joins in main memory multi-core database systems. PVLDB, 5(10), 2012.

[4] K. Alexiou, D. Kossmann, and P. Larson. Adaptive range filters for cold data:
Avoiding trips to Siberia. PVLDB, 6(14):1714–1725, 2013.

[5] G. Alonso. Hardware killed the software star. In ICDE, 2013.

[6] K. Anikiej. Multi-core parallelization of vectorized query execution. Master’s
thesis, University of Warsaw and VU University Amsterdam, 2010. http:

//homepages.cwi.nl/˜boncz/msc/2010-KamilAnikijej.pdf.

[7] J. Arulraj, A. Pavlo, and S. Dulloor. Let’s talk about storage & recovery methods
for non-volatile memory database systems. In SIGMOD, pages 707–722, 2015.

[8] B. Babcock and S. Chaudhuri. Towards a robust query optimizer: A principled
and practical approach. In SIGMOD, pages 119–130, 2005.

[9] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu. Multi-core, main-memory
joins: Sort vs. hash revisited. PVLDB, 7(1), 2013.

[10] C. Balkesen, J. Teubner, G. Alonso, and M. T. Özsu. Main-memory hash joins
on multi-core CPUs: Tuning to the underlying hardware. In ICDE, 2013.

[11] R. Bayer and E. M. McCreight. Organization and maintenance of large ordered
indices. Acta Informatica, 1:173–189, 1972.

[12] R. Bayer and M. Schkolnick. Concurrency of operations on B-trees. Acta In-
formatica, 9, 1977.

161

http://homepages.cwi.nl/~boncz/msc/2010-KamilAnikijej.pdf
http://homepages.cwi.nl/~boncz/msc/2010-KamilAnikijej.pdf

8 Bibliography

[13] S. Bellamkonda, R. Ahmed, A. Witkowski, A. Amor, M. Zaı̈t, and C. C. Lin.
Enhanced subquery optimizations in Oracle. PVLDB, 2(2):1366–1377, 2009.

[14] S. Bellamkonda, T. Bozkaya, B. Ghosh, A. Gupta, J. Haydu, S. Subramanian,
and A. Witkowski. Analytic functions in Oracle 8i. Technical report, Oracle,
2000.

[15] S. Bellamkonda, H.-G. Li, U. Jagtap, Y. Zhu, V. Liang, and T. Cruanes. Adaptive
and big data scale parallel execution in Oracle. PVLDB, 6(11):1102–1113, 2013.

[16] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

[17] S. Blanas, Y. Li, and J. M. Patel. Design and evaluation of main memory hash
join algorithms for multi-core CPUs. In SIGMOD, 2011.

[18] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner.
Pathfinder: XQuery - the relational way. In VLDB, pages 1322–1325, 2005.

[19] P. Boncz, T. Neumann, and O. Erling. TPC-H analyzed: Hidden messages and
lessons learned from an influential benchmark. In TPCTC, 2013.

[20] P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-pipelining query
execution. In CIDR, pages 225–237, 2005.

[21] P. A. Boncz, S. Manegold, and M. L. Kersten. Database architecture evolution:
Mammals flourished long before dinosaurs became extinct. PVLDB, 2(2):1648–
1653, 2009.

[22] P. A. Boncz, W. Quak, and M. L. Kersten. Monet and its geographic extensions:
A novel approach to high performance GIS processing. In EDBT, pages 147–
166, 1996.

[23] R. Borovica-Gajic, S. Idreos, A. Ailamaki, M. Zukowski, and C. Fraser. Smooth
scan: Statistics-oblivious access paths. In ICDE, pages 315–326, 2015.

[24] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. A practical concurrent
binary search tree. In PPOPP, pages 257–268, 2010.

[25] N. Bruno, C. A. Galindo-Legaria, and M. Joshi. Polynomial heuristics for query
optimization. In ICDE, pages 589–600, 2010.

[26] Y. Cao, C.-Y. Chan, J. Li, and K.-L. Tan. Optimization of analytic window
functions. PVLDB, 5(11):1244–1255, 2012.

162

[27] M. J. Carey. Modeling and evaluation of database concurrency control algo-
rithms. PhD thesis, 1983.

[28] C. Cascaval, C. Blundell, M. M. Michael, H. W. Cain, P. Wu, S. Chiras, and
S. Chatterjee. Software transactional memory: why is it only a research toy?
Commun. ACM, 51(11), 2008.

[29] D. Cervini, D. Porobic, P. Tözün, and A. Ailamaki. Applying HTM to an OLTP
system: No free lunch. In DaMoN, 2015.

[30] S. K. Cha, S. Hwang, K. Kim, and K. Kwon. Cache-conscious concurrency
control of main-memory indexes on shared-memory multiprocessor systems. In
VLDB, 2001.

[31] S. Chaudhuri. Query optimizers: time to rethink the contract? In SIGMOD,
pages 961–968, 2009.

[32] S. Chaudhuri, V. R. Narasayya, and R. Ramamurthy. Exact cardinality query
optimization for optimizer testing. PVLDB, 2(1):994–1005, 2009.

[33] M. Colgan. Oracle adaptive joins. https://blogs.oracle.com/

optimizer/entry/what_s_new_in_12c, 2013.

[34] C. Curino, Y. Zhang, E. P. C. Jones, and S. Madden. Schism: a workload-driven
approach to database replication and partitioning. PVLDB, 3(1), 2010.

[35] J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and S. B. Zdonik. Anti-
caching: A new approach to database management system architecture. PVLDB,
6(14):1942–1953, 2013.

[36] J. Dees and P. Sanders. Efficient many-core query execution in main memory
column-stores. In ICDE, 2013.

[37] C. Diaconu, C. Freedman, E. Ismert, P. Larson, P. Mittal, R. Stonecipher,
N. Verma, and M. Zwilling. Hekaton: SQL server’s memory-optimized OLTP
engine. In SIGMOD, pages 1243–1254, 2013.

[38] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In DISC, 2006.

[39] N. Diegues and P. Romano. Self-tuning intel transactional synchronization ex-
tensions. In ICAC, 2014.

[40] A. Dutt and J. R. Haritsa. Plan bouquets: query processing without selectivity
estimation. In SIGMOD, pages 1039–1050, 2014.

163

https://blogs.oracle.com/optimizer/entry/what_s_new_in_12c
https://blogs.oracle.com/optimizer/entry/what_s_new_in_12c

8 Bibliography

[41] A. Eldawy, J. J. Levandoski, and P. Larson. Trekking through Siberia: Managing
cold data in a memory-optimized database. PVLDB, 7(11):931–942, 2014.

[42] C. Estan and J. F. Naughton. End-biased samples for join cardinality estimation.
In ICDE, page 20, 2006.

[43] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner. SAP
HANA database: data management for modern business applications. SIGMOD
Record, 40(4), 2011.

[44] L. Fegaras. A new heuristic for optimizing large queries. In DEXA, pages 726–
735, 1998.

[45] P. Felber, C. Fetzer, P. Marlier, and T. Riegel. Time-based software transactional
memory. IEEE Trans. Parallel Distrib. Syst., 21(12), 2010.

[46] P. Fender and G. Moerkotte. Counter strike: Generic top-down join enumeration
for hypergraphs. PVLDB, 6(14):1822–1833, 2013.

[47] P. Fender, G. Moerkotte, T. Neumann, and V. Leis. Effective and robust pruning
for top-down join enumeration algorithms. In ICDE, pages 414–425, 2012.

[48] C. Fraser, L. Giakoumakis, V. Hamine, and K. F. Moore-Smith. Testing cardi-
nality estimation models in SQL Server. In DBtest, 2012.

[49] F. Funke, A. Kemper, and T. Neumann. Compacting transactional data in hybrid
OLTP&OLAP databases. PVLDB, 5(11):1424–1435, 2012.

[50] H. Garcia-Molina and K. Salem. Main memory database systems: An overview.
IEEE Trans. Knowl. Data Eng., 4(6):509–516, 1992.

[51] G. Giannikis, G. Alonso, and D. Kossmann. SharedDB: Killing one thousand
queries with one stone. PVLDB, 5(6), 2012.

[52] G. Graefe. Encapsulation of parallelism in the Volcano query processing system.
In SIGMOD, 1990.

[53] G. Graefe. Query evaluation techniques for large databases. ACM Comput.
Surv., 25(2), 1993.

[54] G. Graefe. A survey of B-tree locking techniques. ACM Trans. Database Syst.,
35(3), 2010.

[55] G. Graefe. A generalized join algorithm. In BTW, pages 267–286, 2011.

164

[56] G. Graefe. Modern B-tree techniques. Foundations and Trends in Databases,
3(4):203–402, 2011.

[57] G. Graefe, H. Volos, H. Kimura, H. A. Kuno, J. Tucek, M. Lillibridge, and A. C.
Veitch. In-memory performance for Big Data. PVLDB, 8(1):37–48, 2014.

[58] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Mor-
gan Kaufmann, 1993.

[59] Z. Gu, M. A. Soliman, and F. M. Waas. Testing the accuracy of query optimiz-
ers. In DBTest, 2012.

[60] P. J. Haas, J. F. Naughton, S. Seshadri, and A. N. Swami. Selectivity and cost
estimation for joins based on random sampling. J Computer System Science,
52(3):550–569, 1996.

[61] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes
efficiently. In SIGMOD, pages 205–216, 1996.

[62] J. R. Haritsa. The Picasso database query optimizer visualizer. PVLDB,
3(2):1517–1520, 2010.

[63] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker. OLTP through
the looking glass, and what we found there. In SIGMOD, 2008.

[64] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. QPipe: A simultaneously
pipelined relational query engine. In SIGMOD, 2005.

[65] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and V. Markl. Hardware-
oblivious parallelism for in-memory column-stores. PVLDB, 6(9), 2013.

[66] J. M. Hellerstein, M. Stonebraker, and J. R. Hamilton. Architecture of a database
system. Foundations and Trends in Databases, 1(2):141–259, 2007.

[67] J. L. Hennessy and D. A. Patterson. Computer Architecture - A Quantitative
Approach (5. ed.). Morgan Kaufmann, 2012.

[68] M. Herlihy. Fun with hardware transactional memory. In SIGMOD, 2014.

[69] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for
lock-free data structures. In ISCA, 1993.

[70] M. Herlihy and N. Shavit. The art of multiprocessor programming. Morgan
Kaufmann, 2008.

165

8 Bibliography

[71] I. F. Ilyas, V. Markl, P. J. Haas, P. Brown, and A. Aboulnaga. CORDS: automatic
discovery of correlations and soft functional dependencies. In SIGMOD, pages
647–658, 2004.

[72] D. Inkster, M. Zukowski, and P. Boncz. Integration of VectorWise with Ingres.
SIGMOD Record, 40(3):45–53, 2011.

[73] Intel architecture instruction set extensions programming reference. http:

//software.intel.com/file/41417, 2013.

[74] Y. E. Ioannidis. The history of histograms (abridged). In VLDB, pages 19–30,
2003.

[75] Y. E. Ioannidis and S. Christodoulakis. On the propagation of errors in the size
of join results. In SIGMOD, 1991.

[76] C. Jacobi, T. J. Slegel, and D. F. Greiner. Transactional memory architecture
and implementation for IBM system z. In MICRO, 2012.

[77] S. Jain, D. Moritz, D. Halperin, B. Howe, and E. Lazowska. SQLShare: Results
from a multi-year SQL-as-a-service experiment. In SIGMOD, 2016.

[78] R. Johnson and I. Pandis. The bionic DBMS is coming, but what will it look
like? In CIDR, 2013.

[79] R. Johnson, I. Pandis, and A. Ailamaki. Improving OLTP scalability using
speculative lock inheritance. PVLDB, 2(1), 2009.

[80] E. Jones and A. Pavlo. A specialized architecture for high-throughput OLTP
applications. HPTS, 2009.

[81] E. P. C. Jones, D. J. Abadi, and S. Madden. Low overhead concurrency control
for partitioned main memory databases. In SIGMOD, 2010.

[82] R. A. Kader, P. A. Boncz, S. Manegold, and M. van Keulen. ROX: run-time
optimization of XQueries. In SIGMOD, pages 615–626, 2009.

[83] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. B. Zdonik, E. P. C.
Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi. H-store:
a high-performance, distributed main memory transaction processing system.
PVLDB, 1(2), 2008.

[84] T. Karnagel, R. Dementiev, R. Rajwar, K. Lai, T. Legler, B. Schlegel, and
W. Lehner. Improving in-memory database index performance with intel R©

transactional synchronization extensions. In HPCA, 2014.

166

http://software.intel.com/file/41417
http://software.intel.com/file/41417

[85] R. Kaushik, C. Ré, and D. Suciu. General database statistics using entropy
maximization. In DBPL, pages 84–99, 2009.

[86] A. Kemper and T. Neumann. HyPer - hybrid OLTP&OLAP high performance
database system. Technical report, TUM, 2010.

[87] A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP main memory
database system based on virtual memory snapshots. In ICDE, 2011.

[88] A. Kemper, T. Neumann, J. Finis, F. Funke, V. Leis, H. Mühe, T. Mühlbauer, and
W. Rödiger. Transaction processing in the hybrid OLTP & OLAP main-memory
database system HyPer. IEEE Data Eng. Bull., 36(2):41–47, 2013.

[89] T. Kiefer, B. Schlegel, and W. Lehner. Experimental evaluation of NUMA ef-
fects on database management systems. In BTW, 2013.

[90] C. Kim, E. Sedlar, J. Chhugani, T. Kaldewey, A. D. Nguyen, A. D. Blas, V. W.
Lee, N. Satish, and P. Dubey. Sort vs. hash revisited: Fast join implementation
on modern multi-core CPUs. PVLDB, 2(2), 2009.

[91] H. Kimura. FOEDUS: OLTP engine for a thousand cores and NVRAM. In
SIGMOD, pages 691–706, 2015.

[92] T. Kissinger, B. Schlegel, D. Habich, and W. Lehner. KISS-Tree: Smart latch-
free in-memory indexing on modern architectures. In DaMoN, 2012.

[93] M. Kornacker, A. Behm, V. B. T. Bobrovytsky, C. Ching, A. Choi, J. Erick-
son, M. Grund, D. Hecht, M. Jacobs, I. Joshi, L. Kuff, D. Kumar, A. Leblang,
N. Li, I. Pandis, H. Robinson, D. Rorke, S. Rus, J. Russell, D. Tsirogiannis,
S. Wanderman-Milne, and M. Yoder. Impala: A modern, open-source SQL
engine for Hadoop. In CIDR, 2015.

[94] K. Krikellas, S. Viglas, and M. Cintra. Generating code for holistic query eval-
uation. In ICDE, 2010.

[95] T. Lahiri, M. Neimat, and S. Folkman. Oracle TimesTen: An in-memory
database for enterprise applications. IEEE Data Eng. Bull., 36(2):6–13, 2013.

[96] H. Lang, V. Leis, M.-C. Albutiu, T. Neumann, and A. Kemper. Massively par-
allel NUMA-aware hash joins. In IMDM Workshop, 2013.

[97] H. Lang, T. Mühlbauer, F. Funke, P. Boncz, T. Neumann, and A. Kemper. Data
blocks: Hybrid oltp and olap on compressed storage using both vectorization
and compilation. In SIGMOD, 2016.

167

8 Bibliography

[98] P.-Å. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and M. Zwill-
ing. High-performance concurrency control mechanisms for main-memory
databases. PVLDB, 5(4), 2011.

[99] P.-Å. Larson, C. Clinciu, C. Fraser, E. N. Hanson, M. Mokhtar,
M. Nowakiewicz, V. Papadimos, S. L. Price, S. Rangarajan, R. Rusanu, and
M. Saubhasik. Enhancements to SQL Server column stores. In SIGMOD, 2013.

[100] P.-Å. Larson, C. Clinciu, E. N. Hanson, A. Oks, S. L. Price, S. Rangarajan,
A. Surna, and Q. Zhou. SQL Server column store indexes. In SIGMOD, 2011.

[101] P.-Å. Larson, E. N. Hanson, and S. L. Price. Columnar storage in SQL Server
2012. IEEE Data Eng. Bull., 35(1), 2012.

[102] P.-Å. Larson, M. Zwilling, , and K. Farlee. The Hekaton memory-optimized
OLTP engine. IEEE Data Eng. Bull., 36(2), 2013.

[103] J. R. Larus and R. Rajwar. Transactional Memory. Morgan & Claypool Pub-
lishers, 2006.

[104] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program
analysis and transformation. pages 75–88, Mar 2004.

[105] P. L. Lehman and S. B. Yao. Efficient locking for concurrent operations on
B-trees. ACM Trans. Database Syst., 6(4):650–670, 1981.

[106] V. Leis, P. Boncz, A. Kemper, and T. Neumann. Morsel-driven parallelism: A
NUMA-aware query evaluation framework for the many-core age. In SIGMOD,
pages 743–754, 2014.

[107] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How
good are query optimizers, really? PVLDB, 9(3), 2015.

[108] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: ARTful indexing
for main-memory databases. In ICDE, 2013.

[109] V. Leis, A. Kemper, and T. Neumann. Exploiting hardware transactional mem-
ory in main-memory databases. In ICDE, pages 580–591, 2014.

[110] V. Leis, A. Kemper, and T. Neumann. Scaling HTM-supported database trans-
actions to many cores. IEEE Trans. Knowl. Data Eng., 28(2):297–310, 2016.

[111] V. Leis, K. Kundhikanjana, A. Kemper, and T. Neumann. Efficient processing of
window functions in analytical SQL queries. PVLDB, 8(10):1058–1069, 2015.

168

[112] V. Leis, F. Scheibner, A. Kemper, and T. Neumann. The ART of practical syn-
chronization. In DaMoN, 2016.

[113] J. J. Levandoski, P. Larson, and R. Stoica. Identifying hot and cold data in
main-memory databases. In ICDE, pages 26–37, 2013.

[114] J. J. Levandoski, D. B. Lomet, and S. Sengupta. The Bw-tree: A B-tree for new
hardware platforms. In ICDE, 2013.

[115] J. J. Levandoski, D. B. Lomet, and S. Sengupta. LLAMA: a cache/storage
subsystem for modern hardware. PVLDB, 6(10):877–888, 2013.

[116] Q. Li, M. Shao, V. Markl, K. S. Beyer, L. S. Colby, and G. M. Lohman. Adap-
tively reordering joins during query execution. In ICDE, pages 26–35, 2007.

[117] Y. Li, I. Pandis, R. Müller, V. Raman, and G. M. Lohman. NUMA-aware algo-
rithms: the case of data shuffling. In CIDR, 2013.

[118] J. Lindström, V. Raatikka, J. Ruuth, P. Soini, and K. Vakkila. IBM solidDB:
In-memory database optimized for extreme speed and availability. IEEE Data
Eng. Bull., 36(2), 2013.

[119] H. Litz, D. R. Cheriton, A. Firoozshahian, O. Azizi, and J. P. Stevenson. SI-
TM: reducing transactional memory abort rates through snapshot isolation. In
ASPLOS, 2014.

[120] F. Liu and S. Blanas. Forecasting the cost of processing multi-join queries via
hashing for main-memory databases. In SoCC, pages 153–166, 2015.

[121] G. Lohman. Is query optimization a “solved” problem? http://wp.

sigmod.org/?p=1075, 2014.

[122] D. B. Lomet, A. Fekete, R. Wang, and P. Ward. Multi-version concurrency via
timestamp range conflict management. In ICDE, 2012.

[123] L. Ma, J. Arulraj, S. Zhao, A. Pavlo, S. R. Dulloor, M. J. Giardino, J. Parkhurst,
J. L. Gardner, K. Doshi, and S. B. Zdonik. Larger-than-memory data manage-
ment on modern storage hardware for in-memory OLTP database systems. In
DaMoN, 2016.

[124] L. F. Mackert and G. M. Lohman. R* optimizer validation and performance
evaluation for local queries. In SIGMOD, pages 84–95, 1986.

[125] R. MacNicol and B. French. Sybase IQ multiplex - designed for analytics. In
VLDB, pages 1227–1230, 2004.

169

http://wp.sigmod.org/?p=1075
http://wp.sigmod.org/?p=1075

8 Bibliography

[126] D. Makreshanski, J. J. Levandoski, and R. Stutsman. To lock, swap, or elide: On
the interplay of hardware transactional memory and lock-free indexing. PVLDB,
8(11), 2015.

[127] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. Rethinking main
memory OLTP recovery. In ICDE, pages 604–615, 2014.

[128] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing main-memory join
on modern hardware. IEEE Trans. Knowl. Data Eng., 14(4), 2002.

[129] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for fast multicore key-
value storage. In EuroSys, 2012.

[130] V. Markl, N. Megiddo, M. Kutsch, T. M. Tran, P. J. Haas, and U. Srivastava.
Consistently estimating the selectivity of conjuncts of predicates. In VLDB,
pages 373–384, 2005.

[131] G. Moerkotte and T. Neumann. Dynamic programming strikes back. In SIG-
MOD, pages 539–552, 2008.

[132] G. Moerkotte, T. Neumann, and G. Steidl. Preventing bad plans by bounding
the impact of cardinality estimation errors. PVLDB, 2(1):982–993, 2009.

[133] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES: a trans-
action recovery method supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Trans. Database Syst., 17(1), 1992.

[134] H. Mühe, A. Kemper, and T. Neumann. Executing long-running transactions in
synchronization-free main memory database systems. In CIDR, 2013.

[135] I. Müller, P. Sanders, A. Lacurie, W. Lehner, and F. Färber. Cache-efficient
aggregation: Hashing is sorting. In SIGMOD, pages 1123–1136, 2015.

[136] R. O. Nambiar and M. Poess. The making of TPC-DS. In VLDB, pages 1049–
1058, 2006.

[137] N. Narula, C. Cutler, E. Kohler, and R. Morris. Phase reconciliation for con-
tended in-memory transactions. In OSDI, 2014.

[138] T. Neumann. Query simplification: graceful degradation for join-order opti-
mization. In SIGMOD, pages 403–414, 2009.

[139] T. Neumann. Efficiently compiling efficient query plans for modern hardware.
PVLDB, 4(9), 2011.

170

[140] T. Neumann and C. A. Galindo-Legaria. Taking the edge off cardinality estima-
tion errors using incremental execution. In BTW, pages 73–92, 2013.

[141] T. Neumann and A. Kemper. Unnesting arbitrary queries. In BTW, pages 383–
402, 2015.

[142] T. Neumann and V. Leis. Compiling database queries into machine code. IEEE
Data Eng. Bull., 37(1):3–11, 2014.

[143] T. Neumann, T. Mühlbauer, and A. Kemper. Fast serializable multi-version
concurrency control for main-memory database systems. In SIGMOD, pages
677–689, 2015.

[144] P. O’Neil, B. O’Neil, and X. Chen. The star schema benchmark (SSB), 2007.
http://www.cs.umb.edu/˜poneil/StarSchemaB.PDF.

[145] I. Oukid, D. Booss, W. Lehner, P. Bumbulis, and T. Willhalm. SOFORT: a
hybrid SCM-DRAM storage engine for fast data recovery. In DaMoN, 2014.

[146] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki. Data-oriented transac-
tion execution. PVLDB, 3(1), 2010.

[147] A. Pavlo, C. Curino, and S. B. Zdonik. Skew-aware automatic database parti-
tioning in shared-nothing, parallel OLTP systems. In SIGMOD, 2012.

[148] O. Polychroniou, A. Raghavan, and K. A. Ross. Rethinking SIMD vectorization
for in-memory databases. In SIGMOD, pages 1493–1508, 2015.

[149] O. Polychroniou and K. A. Ross. High throughput heavy hitter aggregation for
modern SIMD processors. In DaMoN, 2013.

[150] V. Poosala and Y. E. Ioannidis. Selectivity estimation without the attribute value
independence assumption. In VLDB, pages 486–495, 1997.

[151] D. Porobic, E. Liarou, P. Tözün, and A. Ailamaki. ATraPos: Adaptive transac-
tion processing on hardware islands. In ICDE, 2014.

[152] D. Porobic, I. Pandis, M. Branco, P. Tözün, and A. Ailamaki. OLTP on hardware
islands. PVLDB, 5(11), 2012.

[153] I. Psaroudakis, T. Scheuer, N. May, and A. Ailamaki. Task scheduling for highly
concurrent analytical and transactional main-memory workloads. In ADMS
Workshop, 2013.

[154] F. Putze, P. Sanders, and J. Singler. MCSTL: the multi-core standard template
library. In PPOPP, pages 144–145, 2007.

171

http://www.cs.umb.edu/~poneil/StarSchemaB.PDF

8 Bibliography

[155] R. Rajwar and M. Dixon. Intel transactional synchronization extensions. http:
//intel.com/go/idfsessions, 2012.

[156] V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk, V. KulandaiSamy,
J. Leenstra, S. Lightstone, S. Liu, G. M. Lohman, T. Malkemus, R. Mueller,
I. Pandis, B. Schiefer, D. Sharpe, R. Sidle, A. Storm, and L. Zhang. DB2 with
BLU acceleration: So much more than just a column store. In VLDB, 2013.

[157] K. Ren, A. Thomson, and D. J. Abadi. Lightweight locking for main memory
database systems. PVLDB, 6(2), 2013.

[158] W. Rödiger, T. Mühlbauer, A. Kemper, and T. Neumann. High-speed query
processing over high-speed networks. PVLDB, 9(4):228–239, 2015.

[159] F. Rusu and A. Dobra. Sketches for size of join estimation. TODS, 33(3), 2008.

[160] S. Schuh, J. Dittrich, and X. Chen. An experimental comparison of thirteen
relational equi-joins in main memory. In SIGMOD, 2016.

[161] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.
Access path selection in a relational database management system. In SIGMOD,
pages 23–34, 1979.

[162] O. Shalev and N. Shavit. Split-ordered lists: Lock-free extensible hash tables.
J. ACM, 53(3):379–405, 2006.

[163] N. Shavit and D. Touitou. Software transactional memory. In PODC, 1995.

[164] M. Steinbrunn, G. Moerkotte, and A. Kemper. Heuristic and randomized opti-
mization for the join ordering problem. VLDB J., 6(3):191–208, 1997.

[165] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO - DB2’s learning
optimizer. In VLDB, pages 19–28, 2001.

[166] R. Stoica and A. Ailamaki. Enabling efficient OS paging for main-memory
OLTP databases. In DaMoN, 2013.

[167] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,
E. Lau, A. Lin, S. Madden, E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and
S. B. Zdonik. C-store: A column-oriented DBMS. In VLDB, pages 553–564,
2005.

[168] M. Stonebraker and A. Weisberg. The VoltDB main memory DBMS. IEEE
Data Eng. Bull., 36(2), 2013.

172

http://intel.com/go/idfsessions
http://intel.com/go/idfsessions

[169] J. Teubner and R. Müller. How soccer players would do stream joins. In SIG-
MOD, 2011.

[170] J. Teubner and L. Woods. Data Processing on FPGAs. Synthesis Lectures on
Data Management. Morgan & Claypool Publishers, 2013.

[171] A. Thomson, T. Diamond, S. Weng, K. Ren, P. Shao, and D. J. Abadi. Calvin:
fast distributed transactions for partitioned database systems. In SIGMOD,
pages 1–12, 2012.

[172] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy transactions in
multicore in-memory databases. In SOSP, 2013.

[173] K. Tzoumas, A. Deshpande, and C. S. Jensen. Lightweight graphical models for
selectivity estimation without independence assumptions. PVLDB, 4(11):852–
863, 2011.

[174] F. Waas and A. Pellenkoft. Join order selection - good enough is easy. In
BNCOD, pages 51–67, 2000.

[175] F. M. Waas, L. Giakoumakis, and S. Zhang. Plan space analysis: an early
warning system to detect plan regressions in cost-based optimizers. In DBTest,
2011.

[176] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton, R. Silvera,
and M. M. Michael. Evaluation of Blue Gene/Q hardware support for transac-
tional memories. In PACT, 2012.

[177] Z. Wang, H. Qian, J. Li, and H. Chen. Using restricted transactional memory to
build a scalable in-memory database. In EuroSys 2014, 2014.

[178] G. Weikum and G. Vossen. Transactional Information Systems: Theory, Algo-
rithms, and the Practice of Concurrency Control and Recovery. Morgan Kauf-
mann, 2002.

[179] S. Wolf, H. Mühe, A. Kemper, and T. Neumann. An evaluation of strict time-
stamp ordering concurrency control for main-memory database systems. In
IMDM, 2013.

[180] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigümüs, and J. F. Naughton. Pre-
dicting query execution time: Are optimizer cost models really unusable? In
ICDE, pages 1081–1092, 2013.

[181] W. Wu, J. F. Naughton, and H. Singh. Sampling-based query re-optimization.
In SIGMOD, 2016.

173

8 Bibliography

[182] J. Yang and J. Widom. Incremental computation and maintenance of temporal
aggregates. In ICDE, pages 51–60, 2001.

[183] Y. Ye, K. A. Ross, and N. Vesdapunt. Scalable aggregation on multicore pro-
cessors. In DaMoN, 2011.

[184] F. Yu, W. Hou, C. Luo, D. Che, and M. Zhu. CS2: a new database synopsis for
query estimation. In SIGMOD, pages 469–480, 2013.

[185] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker. Staring into the
abyss: An evaluation of concurrency control with one thousand cores. PVLDB,
8(3):209–220, 2014.

[186] F. Zemke. What’s new in SQL:2011. SIGMOD Record, 41(1):67–73, 2012.

[187] M. Zukowski and P. A. Boncz. Vectorwise: Beyond column stores. IEEE Data
Eng. Bull., 35(1), 2012.

[188] C. Zuzarte, H. Pirahesh, W. Ma, Q. Cheng, L. Liu, and K. Wong. WinMagic:
Subquery elimination using window aggregation. In SIGMOD, pages 652–656,
2003.

174

	List of Figures
	List of Tables
	Introduction
	Column Stores
	Main-Memory Database Systems
	The Challenges of Modern Hardware
	Outline

	Exploiting Hardware Transactional Memory in Main-Memory Databases
	Introduction
	Background and Motivation
	Transactional Memory
	Hardware Support for Transactional Memory
	Caches and Cache Coherency

	Synchronization on Many-Core CPUs
	The Perils of Latching
	Latch-Free Data Structures
	Hardware Transactional Memory on Many-Core Systems
	Discussion

	HTM-Supported Transaction Management
	Mapping Database Transactions to HTM Transactions
	Conflict Detection and Resolution
	Optimizations

	HTM-Friendly Data Storage
	Data Storage with Zone Segmentation
	Index Structures

	Evaluation
	TPC-C Results
	Microbenchmarks

	Related Work
	Summary

	Efficient Synchronization of In-Memory Index Structures
	Introduction
	The Adaptive Radix Tree (ART)
	Optimistic Lock Coupling
	Optimistic Locks
	Assumptions of Optimistic Lock Coupling
	Implementation of Optimistic Locks

	Read-Optimized Write EXclusion
	General Idea
	ROWEX for ART

	Evaluation
	Scalability
	Strings
	Contention
	Code Complexity

	Related Work
	Summary

	Parallel NUMA-Aware Query Processing
	Introduction
	Many-Core Challenges
	Morsel-Driven Execution
	Dispatcher: Scheduling Parallel Pipeline Tasks
	Elasticity
	Implementation Overview
	Morsel Size

	Parallel Operator Details
	Hash Join
	Lock-Free Tagged Hash Table
	NUMA-Aware Table Partitioning
	Grouping/Aggregation
	Set Operators
	Sorting

	Evaluation
	Experimental Setup
	TPC-H
	NUMA Awareness
	Elasticity
	Star Schema Benchmark

	Related Work
	Summary

	Window Function Processing in SQL
	Introduction
	Window Functions in SQL
	Partitioning
	Ordering
	Framing
	Window Expressions

	The Window Operator
	Partitioning and Sorting
	Pre-Partitioning into Hash Groups
	Inter- and Intra-Partition Parallelism

	Window Function Evaluation
	Basic Algorithmic Structure
	Determining the Window Frame Bounds
	Aggregation Algorithms
	Window Functions without Framing

	Database Integration
	Query Engine
	Multiple Window Function Expressions
	Ordered-Set Aggregates

	Evaluation
	Implementation
	Experimental Setup
	Performance and Scalability
	Algorithm Phases
	Skewed Partitioning Keys
	Number of Hash Groups
	Aggregation with Framing
	Segment Tree Fanout

	Related Work
	Summary

	Evaluation of Join Order Optimization for In-Memory Workloads
	Introduction
	Background and Methodology
	The IMDB Data Set
	The JOB Queries
	PostgreSQL
	Cardinality Extraction and Injection
	Experimental Setup

	Cardinality Estimation
	Estimates for Base Tables
	Estimates for Joins
	Estimates for TPC-H
	Better Statistics for PostgreSQL

	When Do Bad Cardinality Estimates Lead to Slow Queries?
	The Risk of Relying on Estimates
	Good Plans Despite Bad Cardinalities
	Complex Access Paths
	Join-Crossing Correlations

	Cost Models
	The PostgreSQL Cost Model
	Cost and Runtime
	Tuning the Cost Model for Main Memory
	Are Complex Cost Models Necessary?

	Plan Space
	How Important Is the Join Order?
	Are Bushy Trees Necessary?
	Are Heuristics Good Enough?

	Related Work
	Summary

	Future Work
	Bibliography

