5.4 Fernerkundungsgestützte Ableitung bodenbürtiger Ertragspotentiale für standortspezifische Bewirtschaftung (TP II-6a, Teil III)

Teilprojektleiter: Prof. Dr. U. Schmidhalter
Bearbeiter: Dr. T. Selige

5.4.1 Zusammenfassung

Summary

Project TP II-6a is investigating site-specific soil properties and site potentials using geophysical mapping, dynamic modelling and remote sensing (see also chapter 2.4 and 3.5). The methodology „crop stand valuation“ to describe crop stand conditions and to forecast yield differences has been improved. The results have been validated for the moment. The investigation for yield forecasting shows the opportunity to forecast the yield differences precisely and at early stages when being based on multi-spectral remote sensing. The soil-related yield potential has been validated using yield measures. The balance of site-specific nutrient supply as well as the ecologically and economically adapted intensity of management underlines the central role of the plant available water capacity for the fertilizer efficiency and for ecologically sustainable land use planning.
5.4.2 Einleitung und Problemstellung

Wenn das ferkundungsbasierte Ertragspotential die relative Differenzierung der Ertragsleistung vorwegnimmt, so kann es auch als Grundlage zur Ertragsvorhersage geeignet sein. Dies wurde validiert.

5.4.3 Material und Methoden

Die hier vorgestellten Ergebnisse beruhen auf den bereits in Kapitel 3.5.3 beschriebenen Daten und Methoden.

5.4.4 Ergebnisse und Diskussion

5.4.4.1 Ableitung des bodenbürtigen Ertragspotentials

Abb. 5.4-1: Zusammenhang zwischen der nutzbaren Feldkapazität im Wurzelraum (nFKWt) und dem Kornertag bei Winterweizen

Fig. 5.4-1: Relation of plant available field capacity in the root zone (AWCrz) and grain yield for winter wheat

5.4.4.2 Ertragsvorhersage

Die Vorhersage von Ertragsleistungen wird um so exakter, je kurzfristiger sie zum Erntetermin erfolgt. Sie ist jedoch um so wertvoller, je früher sie vor dem Erntetermin erfolgen kann. Die zentralen Fragen lauten deshalb: Was sind möglichst frühe geeignete Termine der Bestandesentwicklung, die eine ausreichend gute Ertragsvorhersage ermöglichen? Wie gut lässt sich der Ertrag zu welchen Terminen bestimmen?

Biomasse zum Zeitpunkt der beginnenden Abreife des Aufwuchses bereits die Differenzie-
run gen der späteren Erträge angezeigt (Abb. 5.4-2).

Abb. 5.4-2: Zusammenhang zwischen der Biomasse und dem Korn ertrag bei Winterweizen

Fig. 5.4-2: Relation of fresh biomass and grain yield for winter wheat

Das Bestimmtheitsmaß zwischen Biomasse bei EC 77 und dem Korn ertrag betrug $r^2 = 0.96\text{***}$. Dieses Ergebnis unterstreicht, dass der Aufwuchs Zustand zur Prognose von relati-
ven Korn erträgen und die Erfassung ihres räumlichen Musters innerhalb der Felder geeignet

ist.

5.4.4.3 Bilanzierung des standortspezifischen Düngungsbedarfs

Ausgehend von der Karte des pflanzenverfüg baren Wassers wurde die standortspezifische
Effizienz der Stickstoffdüngung untersucht. In Tabelle 5.4-1 sind die Daten von drei repräsen-
tativen Standorten zusammengestellt.

Die Ergebnisse unterstreichen die zentrale Bedeutung des pflanzenverfüg baren Wassers für
die standortspezifische Effizienz der Stickstoffdüngung. Nach den bisherigen Ergebnissen
sollte die Stickstoffdüngung an die Wasserverfügbarkeit gekoppelt sein. Geringe Wasserver-
fügbarkeit eines Standortes führt bei einheitlich hoher (betriebsüblicher) Stickstoffdüngung
to hohen Mengen an Rest stickstoff im Boden und damit einem hohen Risiko für Stickstoff-
austräge ins Grundwasser oder andere ökologische Nachbarkompartimente wie die Atmo-
sphäre oder Gewässer. Die Stickstoffentzüge durch Korn erträge bei Winterweizen konnten
im Wesentlichen auf die Unterschiede in der bodenbür tigen Wasserverfügbarkeit zurückge-
führt werden ($r^2 = 0.90\text{***}$). Mit der Biomassebildung zum Entwicklungsstadium EC 77
konnte bereits die räumliche Differenzierung der Stickstoffaufnahme ins Korn quantitativ
erfasst werden ($r^2 = 0.94\text{***}$).

Die Ergebnisse zeigen deutlich, dass unter den Bedingungen einer negativen Wasserbilanz
während der Vegetationszeit Bodenkarten der pflanzenverfüg baren Wasserträgerfähigkeit
eine hervorragende, prozessbasierte Grundlage für die Anwendung standortspezifischen Stickstoffmanagements darstellen. Es kann ebenfalls angenommen werden, dass diese Karten als zentrale Grundlage für Managementsysteme zur Aussaat und zur Bestandesführung im Allgemeinen dienen können.

Tab. 5.4-1: Stickstoffbilanzierung für drei repräsentative Böden des Schlages 141, Finkenherd in Wulfen

Tab. 5.4-1: Nitrogen balance for three representative soils at "Finkenherd" field, Wulfen farm

<table>
<thead>
<tr>
<th></th>
<th>Sand</th>
<th>Sandiger Lehm</th>
<th>Lehmiger Schluff</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFKWt (mm)</td>
<td>40</td>
<td>140</td>
<td>220</td>
</tr>
<tr>
<td>Kornertrag (t/ha)</td>
<td>1.1</td>
<td>4.9</td>
<td>8.3</td>
</tr>
<tr>
<td>Stickstoffaufnahme (kg/ha)</td>
<td>35</td>
<td>125</td>
<td>192</td>
</tr>
<tr>
<td>ins Korn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stickstoffdüngung (kg/ha)</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>Stickstoffbilanz (kg/ha)</td>
<td>+145</td>
<td>+55</td>
<td>-12</td>
</tr>
<tr>
<td>Effizienz der (%)</td>
<td>19</td>
<td>69</td>
<td>106</td>
</tr>
</tbody>
</table>

In Abbildung 5.4-3 ist der Zusammenhang zwischen der bis zur Ernte gebildeten Gesamt-Trockenmasse und der Stickstoffaufnahme dargestellt. Abbildung 5.4-4 zeigt den Zusammenhang zwischen Kornertrag und Stickstoffaufnahme ins Korn. Zwischen 70 und 260 kg/ha liegt die Stickstoffaufnahme durch den Pflanzenaufwuchs. 40 bis 200 kg/ha werden den Standorten durch die Kornerträge entzogen. Die enormen Unterschiede der Stickstoffentzüge aus dem Boden zeigen deutlich die Notwendigkeit einer standortangepassten Stickstoffdüngung im Untersuchungsgebiet.
Abb. 5.4-3: Zusammenhang zwischen der Gesamt-Trockenmasse und der Stickstoffaufnahme des Pflanzenaufwuchses von Winterweizen

Fig. 5.4-3: Relation of total dry matter and nitrogen uptake of crop stand for winter wheat

Abb. 5.4-4: Zusammenhang zwischen dem Korntrag und der Stickstoffaufnahme ins Korn bei Winterweizen

Fig. 5.4-4: Relation of grain yield and grain nitrogen uptake for winter wheat

5.4.4.4 Beurteilung der angepassten Bewirtschaftungsintensität – ökologische und ökonomische Potentiale

Bewirtschaftung ist nur dann an den Standort angepasst, wenn sie ökologische Risiken vermeidet und ökonomische Potentiale ausschöpft. Die vorgestellten Ergebnisse verdeutlichen, dass Standorte mit geringem Wasserangebot nur eine extensivere Bewirtschaftung vertragen, um an die ökologischen Bedingungen (keine Befrachtung von Nachbarkompartimenten)
und an einen ökonomisch vernünftigen Ressourceneinsatz (Düngereffizienz) angepasst zu sein. Die Ergebnisse zeigen deutlich auf, dass mit geringerer Wasserverfügbarkeit eine extensivere Bewirtschaftungsintensität der Standorte realisiert werden muss. Solche Standorte stellen gleichzeitig wertvolle Ackerbiotope für den Artenschutz dar (Tab. 5.4-2; aus Harrach, 1993). Ihre extensivere Bewirtschaftung stellt damit gleichzeitig eine ökologische Leistung des landwirtschaftlichen Betriebes im Sinne der Biodiversität des Artenschutzes dar, ohne dass damit Einkommenseinbußen verbunden sein müssen.

Tab. 5.4-2: Ökologische Bedeutung der nutzbaren Feldkapazität im Wurzelsaum (nFKw)

<table>
<thead>
<tr>
<th>Ertragspotential des Bodens</th>
<th>hoch</th>
<th>gering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ertragssicherheit</td>
<td>hoch</td>
<td>gering</td>
</tr>
<tr>
<td>Nährstoffentzug bei der Ernte</td>
<td>hoch</td>
<td>gering</td>
</tr>
<tr>
<td>Verwertung der Nährstoffe</td>
<td>hoch</td>
<td>gering</td>
</tr>
<tr>
<td>Wasserverbrauch durch die Pflanzen</td>
<td>hoch</td>
<td>gering</td>
</tr>
<tr>
<td>Grundwasserniedrigung¹</td>
<td>gering</td>
<td>hoch</td>
</tr>
<tr>
<td>Nitrateintragsgefährdung</td>
<td>gering</td>
<td>hoch</td>
</tr>
<tr>
<td>Potentielle Eignung des Standortes für Biotope²</td>
<td>gering</td>
<td>hoch</td>
</tr>
</tbody>
</table>

¹Sickerwasserspende bei durchlässigem Unterboden und Untergrund
²bei extensiver, naturschutzgerechter Bewirtschaftung

5.4.5 Ausblick

dungen. Hier sind insbesondere Bilanzierungen der standortspezifischen Ressourcen-
auwendung zu nennen. Die Arbeiten zur Entwicklung von Aufwuchsbonituren als Basis
für die Entwicklung eines Anforderungskataloges an ein Referenzdatensystem zum Control-
ing von Managementsystemen werden fortgesetzt.

Ertragsprognose: Die Analyse der Möglichkeiten zur Vorhersage von Ertragsunterschieden
mittels multisperskrter Fernerkundung werden fortgeführt. Neben Winterweizen werden
auch Zuckerrüben und Wintergerste in die Arbeiten einbezogen.

5.4.6 Literatur

winter wheat cultivation. In: Horst et al. (Eds.): Plant Nutrition – Food security and sustainability of

unter besonderer Berücksichtigung der Standortverhältnisse. Scientific Conference on New Strategies
for Sustainable Rural Development, 22.-25. 3. 1993, Gödöllő, Ungarn

IBSNAT (1999): DSSAT3.5, A Decision Support System for Agrotechnology Transfer, University of Hawai,
Honolulu, Hawaii

using airborne remote sensing. In: Tupper, G. (Ed.) Proceedings of the Australian Geospatial Informa-
tion and Agriculture Conference incorporating Precision Agriculture in Australasia 5th Annual Sympo-
sium, NSW Agriculture, Orange, NSW, Australia, 308-314

Publication, Piscataway, N.Y., USA, 3138-3140

Selige, T; A. Werner T. Muhr; U. Schmidhalter (2001): Interdisciplinary research for precision agriculture –
preagro: the German joint project for an integrated management system. In: Tupper, G. (Ed.) Proceed-
ings of the Australian Geospatial Information and Agriculture Conference incorporating Precision Ag-
riculture in Australasia 5th Annual Symposium, NSW Agriculture, Orange, NSW, Australia, 507-527