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Abstract

The amount of collected Earth Observation (EO) images is increasing exponentially
and their growth is currently in the order of several terabytes per day. Therefore,
the ability to automatically store and retrieve these images based on their content is
highly desired. Traditional approaches are not accurate and robust enough to handle
this massive amount of data. However, the combination of artificial intelligence and
human intelligence could deliver promising results. Therefore, this thesis addresses
several challenges in the field of human-machine communication for data mining
applications. This is mainly done by first introducing an Immersive Visual Data
Mining (IVDM) system, including image collections and feature space visualizations,
interactive dimensionality reduction, and active learning for image classification. A
Cave Automatic Virtual Environment (CAVE) is employed to support the user-image
interactions and also immersive data visualization, which allows the user to navigate
through the images and explore them. The feature space is visualized by applying
state-of-the-art dimensionality reduction techniques to reduce the dimensionality
to 3D. Additionally, a novel algorithm based on Non-negative Matrix Factorization
(NMF) is developed to arrange the images in 3D space by decreasing the occlusion
among images and to make use of the display space more efficiently. Two interactive
dimensionality reduction algorithms are introduced to enhance the discriminative
property of the features by incorporating the user-image interactions. To annotate
images, a novel active learning algorithm is proposed to choose the most informative
images for labeling. Finally, experimental evaluations using publicly available data
sets demonstrate the efficiency of the proposed algorithms.
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Zusammenfassung

Die Anzahl aufgenommener Erdoberservationsbilder (EO) steigt exponentiell mit
einem aktuellen Wachstum in der Gréf8enordnung von mehreren Terabyte pro Tag.
Es ist daher notwendig, diese Bilder automatisch nach ihren Inhalten klassifizieren
und durchsuchen zu konnen. Traditionelle Ansétze sind unprazise oder storanfallig
bei solch groflen Datenmengen. Ein vielversprechender Ansatz hingegen ist die
Klassifikation mittels kiinstlicher Intelligenz, welche zuséatzlich durch menschliche
Intelligenz unterstiitzt wird. Diese Dissertation adressiert mehrere Herausforderungen
im Feld der Mensch-Maschine-Kommunikation fiir Anwendungen im Bereich Data
Mining. Dies wird erreicht, indem zunéchst ein Immersives Visuelles Data Mining
(IVDM) System vorgestellt wird, welches die interaktive Darstellung von Bildern
entsprechend ihrer hochdimensionalen Merkmalsrepriasentation ermdoglicht. Mithilfe
aktiven Lernens wird es ermoglicht, in dieser virtuellen Umgebung eine interaktive
Dimensionsreduktion durchzufithren. Zur Foérderung der Nutzerinteraktion und
-immersion werden die Daten in einer Cave Automatic Virtual Environment (CAVE)
dargestellt. So ist eine Navigation und Erkundung der Bilder in 3D mdglich. Der
Merkmalsraum wird durch die Anwendung von aktuellen Algorithmen zur Dimen-
sionsreduktion auf 3D eingegrenzt. Zusatzlich wird ein neuer Algorithmus basierend
auf Nichtnegativer Matrixfaktorisierung (NMF') entwickelt, welcher Uberlappungen
von Bildern durch Repositionierung in der 3D-Darstellung reduziert und den darstell-
baren Raum effizienter ausnutzt. Weiterhin werden zwei interaktive Algorithmen zur
Dimensionsreduktion vorgestellt, welche die Nutzerinteraktionen ausnutzen, um eine
bessere Reprasentation im Merkmalsraum zu erreichen. Um die Bilder zu annotieren,
wird ein neuer aktiver Lernalgorithmus prasentiert, welcher die informativsten Bilder
fiir das Labeling automatisch auswahlt. Zuletzt wird die Effektivitat dieser Algo-
rithmen durch experimentelle Evaluierungen auf offentlich verfiigharen Datenbasen
demonstriert.
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Introduction

Advances in sensing, communication, and storage devices have led to an exponential
growth in the amount and types of data such as multimedia (e.g, image, video, text),
Earth Observation (EO), social networks, astronomy, and scientific and engineering
data. Therefore, searching, analyzing, exploring, and visualizing this massive amount
of data, so-called Big Data, has become a gigantic challenge. Accordingly, the devel-
opment of novel intelligent methods for exploring and understanding the contents
of the available data is highly necessary. Over the past decade, many machine-
learning-based systems have been devised to automatically explore the contents of
the available data. These systems usually require large amounts of annotated data in
their training phase. Moreover, they are normally treated as a black box in which the
human has minimal intervention. Therefore, the gap between human understanding
and machine understanding of the data content, the so-called semantic gap, gives rise
to low performance. One promising solution is bridging this gap by the combination
of machine intelligence with the human intelligence. However, the main challenge
here is how to involve human intelligence in the learning process of machine, which
is actually considered to be one of the main challenges in the area of human-machine
communication.

Over the last two decades, various interactive learning scenarios have been
introduced to include the human in learning process. Perhaps, the simplest human-
machine interaction system is Query by Example (QE). In this system, the user
inputs example data, and the machine delivers similar data samples to the user’s
query. However, the obtained results may not be satisfactory. In order to allow the
user to inform the machine about the relevance of the provided results, the Relevance
Feedback (RF) [Rui+98] system was proposed. This system improves the results
by receiving binary (i.e, relevant or irrelevant) or graded relevancy feedback from
the user in an iterative way. In a more complex system known as Active Learning
(AL) [Set10], annotation and learning is performed at the same time. In AL, the
user first annotates (labels) some samples of the data to train the learning algorithm.
Using the learned model, the machine then labels the unlabeled data. Thereafter,
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the obtained annotations are verified by the user and this process is run iteratively
to annotate all of the entire unlabeled data. One previous study in the AL domain
is [Jin+06] which allows the user to browse an image collection according to the
semantic content of the images. This system shows the images in 2D on a computer
screen based on Multidimensional Scaling (MDS) [TC10], a dimensionality reduction
method. Then, users are provided with a set of interactions such as search by
sample images and content relationship detection. Although this tool can provide the
users with some intuitions about the annotation results, it does not assist them in
understanding the global structure behind the contents of the entire image collection.

In every interactive learning system, both machine and human should communi-
cate effectively via an interface. First, an interactive interface should be developed,
in which the output of the machine is visualized for the human and on the other
hand, the human is able to interact with both machine and data. Second, proper
interactive learning algorithms should be developed such that the human is allowed
to influence their performance. In this thesis, we describe an immersive visual data
mining system that includes immersive visualization of data and interactive learning.

1.1 Immersive visual data mining

The proposed immersive visual data mining system, whose diagram is depicted in Fig-
ure 1.1, includes three processing blocks and an immersive interactive visualization
tool [Bab+13a; Bab+13c; Bab+13b]. The system is built based on the intersection
of Virtual Reality (VR) and Machine Learning (ML). Virtual reality technology
is used to build an immersive interactive visualization tool that is responsible for
visualizing the data and capturing the user interactions. The proposed machine
learning algorithms are implemented as processing blocks embedded in the system.
These algorithms are able to include the user’s interactions in their learning process.
The input of the system is an image repository with corresponding features, where
the primitive feature extraction has been accomplished offline. The processing blocks
are:

e the Visualization of Image Collections block aims to visualize the images
by (1) applying modern dimensionality reduction to the corresponding feature
vectors to determine the position of images in 3D, and (2) a constrained Non-
negative Matrix Factorization (NMF) algorithm that controls the similarity
and occlusion among images. The system allows users to manipulate the
structure of the feature space based on their current understanding of the data.
The manipulation is done by selecting, weighting, moving, and annotating the
feature points or images. For example, the user can move the points to be closer
or farther to the others based on their contents’ similarities. These interactions
in addition to the trajectory of the user in the feature space provide the system
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with highly informative feedback, which is used to set the parameters (e.g.,
switching between the feature descriptors and the dimensionality reduction
techniques).

e the Interactive Dimensionality Reduction block utilizes the user’s in-
teractions to (1) reduce the dimensionality of features, and (2) increase the
discriminative property of new features. There are two novel algorithms based
on NMF incorporating the user’s interactions as constraints in the factorization
process. Basically, a small fraction of images are visualized as a set of clusters
in the Cave Automatic Virtual Environment (CAVE) and the user interacts
with them by moving one image from one cluster to another. These interactions
are fed into the factorization process to generate (learn) new features.

e the Active Learning for Image Annotation and Classification block
aims to annotate the images and train the classifier simultaneously by (1)
visualizing the output of a training model (i.e., classifier), and (2) selecting the
most informative images for annotation. A novel and simple sample selection
algorithm for annotation is introduced that outperforms several state-of-the art
algorithms. There are two classifiers, namely Support Vector Machines (SVM)
and Trace-norm regularized Classifier (TC), which are used as training models.

1.2 Structure of this thesis

This thesis presents the contributions of the proposed visual data mining system.
Each aforementioned processing block is covered thoroughly in a separate chapter.
Moreover, one extra chapter (i.e.,Chapter 2) has been included to introduce and
discuss a novel discriminative NMF algorithm. The chapters are as follows:

e Chapter 2 first presents a review of NMF and its related work. Then it
introduces a discriminative NMF algorithm [Bab+ara|. It starts with a review
of NMF and then describes how the label information of part of the data could
enhance the discriminative property of features. In addition, the required
analysis of the algorithm, including computational complexity, convergence
plots, and experimental validation carried out on several publicly available
data sets, are provided. In the end, we explain how relative attributes, as
semantic information, can be used in the proposed algorithm for dimensionality
reduction and also in dictionary learning.

e Chapter 3 describes first the technology behind the CAVE, including hardware,
visualization software, and external libraries and tools [BRD13a]. Then, the
visualization of feature spaces and image collections in 3D in two different
ways are discussed. First, the images are positioned in 3D space based on
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Figure 1.1: The diagram of the proposed visual data mining system. The contents
of image repository are represented by feature vectors and fed into three processing
blocks, namely interactive dimensionality reduction, visualization, and active learning.
All these three blocks are connected with the CAVE. The learning algorithms
incorporate the user’s feedback from the cave in the learning process and send the
results again into the CAVE (i.e., human in the loop).

applying modern dimensionality reduction techniques to their corresponding
feature vectors. However, this approach could lead to high occlusion among
images, and therefore the visibility of the images decreases. To address this
problem, a second approach is proposed to develop a constrained NMF, aiming
to minimize the occlusion and use the display space more efficiently, while
keeping the structure of the feature space unchanged [Bab+14a; Bab+arb].

e Chapter 4 talks about the interactive dimensionality reduction processing block.
Here, two novel interactive dimensionality reduction algorithms are introduced.
The user-image interactions in the CAVE are incorporated in the form of
a regularizer coupled with the main objective function of NMF. The main
properties and performance of these algorithms are covered at the end of the
chapter.
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e Chapter 5 presents the details of the active learning processing block. It first
elaborates on a recently introduced classifier, the TC, and compares it with SVM
in an active learning scenario [Bab+15a]. Then, a novel active learning algo-
rithm is introduced that outperforms the state-of-the-art algorithms [Bab-15b;
Bab+14Db).

e Chapter 6 provides a summary of the thesis followed by a conclusion and
suggestions for future work.






Discriminative Data
Representation

Today, we are dealing with the problem of processing large amounts of data, like the
tremendous amount of satellite images, the huge number of texture and video files
in databases, and uncountable bits of information on the Internet. In most cases, a
matrix is used to store and represent the content of each data sample, in which each
row (column) represents the content of one data point. For instance, a gray level
image and a color image can be represented by three-dimensional and two-dimensional
matrices, respectively. However, providing the storage space needed to store the data
as well as the computational power necessary to process high-dimensional matrices
pose a big challenge. Under such circumstances, matrix factorization and dictionary
learning are attracting a lot of attention and play a vital role in Big Data processing.
The content of this chapter is derived from our article to appear in the Elsevier
Journal of Neurocomputing [Bab-+ara].

In this chapter, we propose Discriminative Non-negative Matrix Factorization
(DNMF) algorithms in order to generate (learn) discriminative features from original
ones. The main contributions of the chapter are:

e A new label-constrained Non-negative Matrix Factorization (NMF) is intro-

duced by coupling a discriminative regularizer to the main objective function
of NMF.

e The updating rules for the factorization variables to obtain the optimal values
and the convergence proof are obtained.

e The locality preserving property of the algorithm is studied and compared to
a locality preserving NMF method. Additionally, the projection of synthetic
data is compared with another discriminative NMF' technique.

e The usage of relative attributes in matrix factorization is discussed.
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e A new Discriminative Dictionary Learning (DDL) algorithm that uses relative
attributes as semantic information.

Section 2.1 introduces state-of-the-art matrix factorization techniques with special
focus on related works in the area of NMF. Section 2.2 briefly provides the background
of NMF and related works in semi-supervised NMF. Section 2.3 presents the details
of DNMF, followed by its computational complexity and the proof of convergence.
The main difference between DNMF and other semi-supervised NMF methods is
described at the end of this section. We describe the experiments performed on
synthetic and real datasets in Section 2.3.4. We start by introducing our datasets and
the evaluation metrics of the clustering process. Then, we study the convergence rate
of the proposed algorithm. Additionally, the locality preserving property of DNMF is
studied at the end of this section. Finally, in Section 2.6, a summary of the chapter
is presented.

2.1 Related work

Matrix factorization techniques are quite often used in data analysis, storage, and
visualization due to their ability to extract the most useful representation from
the data content [He+05; MS07; GX11; Jol05]. Perhaps the most well-known and
most widely used matrix factorization techniques are Principal Component Analysis
(PCA) [Jol05], Singular Value Decomposition (SVD) [DHS12], and Non-negative
Matrix Factorization [1.S99]. The goal of these methods is to provide a compact
low-dimensional representation of original data for further processes such as learning
and visualization.

NMF itself is an unsupervised learning algorithm that decomposes a non-negative
data matrix into two (or three) non-negative matrices, one of which is considered as
a new representation of original data [WZ13; LS99]. This factorization leads to a
parts-based representation of data, which is widely used in different applications such
as face recognition [LS99], clustering [Liu+13; EF13; XLGO03], hyperspectral unmix-
ing [GP13; JQO09], music enhancement [LLCS13], sparse coding [Vol+14], and graph
matching [Jia+14]. Since the invention of NMF, many variants of this algorithm have
been proposed to obtain a customized representation of data. For example, Graph
Regularized Non-negative Matrix Factorization (GNMF) [Cai+11] preserves the
locality property of data by utilizing the Laplacian of the neighborhood graph in
its regularization term. Dual Graph Regularized Non-negative Matrix Factorization
(DGNMF) [SJW12] and Multiple Graph Regularized Non-negative Matrix Factoriza-
tion (MGNMF) [WBG13] are other variants of GNMF that include more constraints
on the main objective function. Liu et al. [Hai+12] present a semi-supervised NMF
approach, namely Constrained Non-negative Matrix Factorization (CNMF), utilizing
the label information of part of the data embedded in the main objective function
of NMF'. In this algorithm, the data points with the same label are presented as a
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single data point in the new feature space. As another example, Subspace Learning
via Locally Constrained A-optimal Non-negative Projection (LCA), a semi-supervised
local-structure preserving algorithm, is proposed. This uses the regularization term
of GNMF in CNMF to simultaneously enhance the locality preserving and discrimi-
native properties of new features. Nevertheless, the points with the same label are
represented as a single point [Li+13].

The main disadvantage of previous semi-supervised NMF (i.e., CNMF and LCA)
methods is that the data points decrease in number as available label information
increases. The proposed DNMF utilizes the label information in a regularization term.
The key idea of this approach is that the data points belonging to the same class
should be very close together or aligned on the same axis in the new representation,
but should not merge into a single point (like in CNMF or LCA). This regularizer
increases the discriminative property of data points, which is controlled by only a
single parameter. However, the range of this parameter, which delivers the best
result, remains constant for different data sets, as the experiments confirm.

2.2 A review of NMF

Non-negative matrix factorization is a relatively novel framework for dimensional-
ity reduction and data representation. It mainly incorporates the non-negativity
constraint in the factorization process and therefore obtains a parts-based repre-
sentation. In most cases, the observations are stored in data matrices or tensors.
We assume that the content of an image repository is represented by a data ma-
trix X= [x1, ..., xx] € RP*N where x; is the representation (feature vector) of the
1th data sample, N is the number of samples, and D is the dimension of the feature
vectors. With a new reduced dimension K, the NMF algorithm approximates the
matrix X by a product of two non-negative matrices U € RP*K and V& RN*K:

X ~UV" (2.1)

U can be considered as the set of basis vectors and V = [vy, ..., vy|T as the coordinates
of each sample with respect to these basis vectors. Therefore, the matrix V is treated
as the new feature vectors (or data representation). There are several cost functions
that are able to measure the quality of this approximation. The two most popular
cost functions are (1) the square of the Frobenius norm of the matrix differences,
and (2) the Kullback-Leibler Divergence (KLD) of the two matrices [LS01]. For the
Frobenius norm, the cost function is defined as

min Op = | X — UVT|’
st. U=luyg] >0 (2.2)
V= [U]k] > 07
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and for the KLD, the cost function is defined as

min OD = Z <IEU log Zk umvjk — Ty + Z uzk”]k)

1,J

(2.3)

Although both functions are convex with respect to U and V separately, they are
not convex in both variables together. Therefore, many local minima exist. Lee et
al. [LSO1] present the update rules for minimizing these two cost functions and prove
their convergence. For the Frobenius cost function (2.2), the update rules are

(XV)ik (XU
e reanL 24
Uik —u k (UVTV>,Lk U]k — Ujk (VUTU)Jk ( )
and for the divergence cost function (2.3), the update rules are
L5505 Uik V5 (iU kU
i < Ui Z] ( J Jk/ Zk; k Jk> Vi Vi Zl (55 U k/ Zku kng)‘ (2.5)

> Vik ’ > Wik

Next, we consider the case of a semi-supervised setting. Without loss of generality,
we assume that out of the samples X, label information is available for the first N;
samples and there exist S classes in total.

Liu et al. [Hai+12] propose a semi-supervised NMF algorithm, namely CNMF.
They assume that S classes exist and the label of the first N; data points are available.
They introduce a matrix C € RN*S with ¢; ; = 1 if x; is labeled with class j and
¢;,; = 0 otherwise. Based on the matrix C, matrix A is defined as

A= { (03 IN?NZ ] , (2.6)

where I'is an (N — N;) x (N — N,) identity matrix. Then, the matrix V of samples
in the new representation is expressed with the help of matrix A and an auxiliary
matrix Z, where V = AZ. This means that if samples ¢« and j have the same label,
then v; = v;. With the help of the introduced matrices, X is now approximated as
X ~ U(AZ)". This is achieved, as before, by defining a cost function and minimizing
over the variables U and Z [Hai+12]. Although CNMF has good performance, the
samples with the same label merge into a single sample in the new representation,
which may not be desirable in some applications such as visualization. Another
semi-supervised NMF method [Li+13], which is actually a combination of GNMF
and CNMF, uses the same trick to incorporate the label information and therefore
has the same disadvantage.

10
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2.3 Discriminative NMF

A discriminative NMF algorithm should factorize a data matrix such that the data
points of the same class are separable from other data points in the new feature
space. We assume that the label information is stored in matrix Q € R5*N as

{1 if sample j is labeled and belongs to class i
dij =

0 otherwise,

where S is the number of classes (categories) and N is the total number of data
points. For instance, consider the case of N = 8 samples, out of which N, = 5 are
labeled with the sample categories ¢; = 1, ¢co = 2, ¢c3 =1, ¢4 = 3, ¢5 = 2. In this case,
the matrix Q would look like

10100000
Q=01 001000
0001O0O0O0®O0

Having introduced the matrix Q, a regularizer is introduced to be coupled with the
Frobenius-NMF objective

O =al|Q - AV, (2.7)

with V;= [vq,...,vx,,0,...,0]T € RN*¥ and the matrix A € RS which linearly
transforms and scales the vectors in the new representation in order to obtain the
best fit for the matrix Q. The matrix A is allowed to take negative values and is
computed as part of the NMF minimization. This regularizer can be considered as
a linear regression term based on the labeled samples. Therefore, we approach the
following constrained optimization problem:

minO = [ X - UV'||" +a|Q - AV]|” (2.8)
st. U=Juyl >0
V = [Ujk] Z 0.

Since the elements of AV might be negative, the KLD cost function is not
applicable here.

2.3.1 Optimization

To optimize (2.8) and obtain the update rules for U and V, we first expand the
objective function to

O =Tr (XX") — 2Tr (XVU") + Tr (UV'VU") (2.9)
+aTr (QQ") — a2Tr (QV,AT) + aTr (AV,/ V,AT).

11



2. Discriminative Data Representation

where Tr is Trace operator. We introduce Lagrange multipliers ®= [¢;;,] and W= [1);;]
for the constraints [u;;] > 0 and [v,;] > 0, respectively. By adding these Lagrange
multipliers to (2.9) and ignoring the constant terms, we come up with the Lagrangian:

L£=-2Tr (XVU") + Tt (UV'VU") + Tt (®U) + Tr (V)
— a2Tr (QV,AT) + aTr (AV/ V,AT). (2.10)

The partial derivatives of £ with respect to U, V and A are
oL

— = 92XV +2UVIV + 2.11
50 + + (2.11)
% = 2X"U +2VU'U — 02Q"A + a2V,ATA + U (2.12)

oL
To obtain the update rules for U and V, we solve the equations U 0 and

oL
Vo 0 in terms of ® and W, respectively, and apply the Karush-Kuhn-Tucker

(KKT) conditions ¢;u; = 0 and ¢j,v;, = 0 [BV09]. Since there is no Lagrange

0
multiplier for A, its value can be achieved directly by solving the equation A 0.
Finally, we end up with the following update rules:
XV /i
Vin Vs [XTU + OJ(VZATA)i + OZ(QTA)+}]1€ (2 15)
T UMIVUTU + oV ATA) + a(QTA) % '
A~ QVy(VIV)T, (2.16)

where for a matrix M, we define M*, M~ as M* = ([M| + M)/2 and M~ =
(IM| — M)/2. As expected, the update rule for U remains the same as in the
original NMF algorithm [L.SO1], since the newly introduced term depends only on
the variables V and A.

For the objective function of NMF, it is easy to check that if U and V are the
solution, then, UD , VD! will also form a solution for any positive diagonal matrix
D. To eliminate this uncertainty, it is required that the Euclidean length of each
column vector in matrix U (or V) to be 1 [XLLG03]. The matrix V (or U) will be

12



2.3. Discriminative NMF

adjusted accordingly so that UV™T does not change. This can be achieved by

Uige 4 —i (2.17)

\Y iuzzk
Vjk

\/Ej ngk

Please see the Appendix B.1 for a detailed proof of the convergence of V in the
above update rule.

Vg (2.18)

2.3.2 Computational complexity

To estimate the computational complexity of the proposed algorithm, the number
of multiplication, addition/subtraction and division floating point operations is
calculated. For the multiplications involving the matrices V;, we note that only the
first N; rows are relevant, since the others are 0. Therefore, the term V'V, needs
N;K? multiplication and addition operations. Furthermore, for the terms involving
the matrix Q, we take advantage of the property that in each column of Q, only one
entry is different from 0. Thus, the term QT A requires N;K multiplication operations.
The computation of the term V;(V}V;)~! can be performed efficiently with the
QR-decomposition of V; [GV96] and subsequent back and forward substitution. This
requires approximately 2N;K? — 2K3/3 + K(K — 1)/2 multiplication and addition
operation(s) and K division operation(s). The total number of operations for the
update rules of the two algorithms are summarized in Table 2.1. It confirms that
while the number of operations increases for the proposed algorithm, the overall
computational complexity remains O(MNK).

Table 2.1: Computational complexity for each iteration of NMF and DNMF

’ Method ‘ multiplication ‘ addition/subtraction ‘ division ‘ overall ‘
2MNK + 2(M + N)K? )
NMF 2MNK +2(M + N)K M+ N)K | O(MNK
M 4 K +2(M+ NK* | (M+N)K | O(MNK)
2MNK + 2(M + N)K? | 2MNK + 2(M + N)K?
+(M+N)K —2/3K3 | —2/3K? + (3N; + S)K? | (M + N)K
DRME +(3N; + S)K2 + 6N K | +4NK + K(K —1)/2 +K O(MNK)
+K(K-1)/2

2.3.3 Experiment 1

In order to understand how the proposed algorithm (DNMF) differs from other
mentioned semi-supervised algorithms (i.e., CNMF and LCA), an experiment on
synthetic data was performed. The data set consists of two noisy parabolas with

13



2. Discriminative Data Representation

100 samples per parabola and each parabola corresponds to one class. We apply
the algorithms to transform the dataset from the original 2D space to another 2D
space, provided the label information of part of the data is available. The resulting
distributions are shown in Figure 2.1, where the first and second rows present the
results of CNMF, and DNMF, respectively. The first, second and third columns
show the results of experiments when 0%, 40%, 100% label information is provided,
respectively. Evidently, CNMF merges the labeled data points into a single point,
resulting in the reduction of data points. In contrast, in DNMF, the number of
samples remains the same in the new space, which is a big advantage over CNMF
method.
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. A o 2
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Figure 2.1: Application of CNMF, and DNMF on two-parabolas data set with
different degrees of labeling; each row corresponds to one method. Each column
represents the result of the same labeling degree; (a,d) original samples; (b,e) results
of 40% labeling; (c,f) results of 100% labeling.

2.3.4 Experiment 2
2.3.4.1 Data sets

The experiments were performed on three data sets: 1) Yale Faces; 2) Handwritten
Digits; 3) PIE Faces.

Yale Faces data set [Cai+06] contains 32 x 32 gray scale images of the faces of 15
individuals with 11 images per person. Each image is with a different configuration
or facial expression. In total, we have 165 1024-dimensional samples.
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2.3. Discriminative NMF

Handwritten Digits data set contains 10000 gray scale images of handwritten
digits from 0-9 with 1000 images per class. The size of each image is 16 x 16 pixels,
which leads to 256-dimensional feature vectors.

PIE Faces data set [Cai+06] contains 32 x 32 gray scale faces images of 68 people,
with 42 facial images per person. Thus, in total we have 2856 1024-dimensional
samples. Some example images from the Yale Faces and PIE face data sets are
depicted in Figure 2.2.

Figure 2.2: (a) The Yale Faces data set; (b) The PIE Faces data set.

2.3.4.2 Evaluation metrics

To assess the quality of new features, we use them in k-means clustering to compare
their results with other features. Therefore, we need evaluation metrics to assess
the performance of clustering. The two metrics used in this thesis to assess the
performance of clustering are (1) Accuracy (AC), and (2) normalized Mutual Infor-
mation (nMI)[XLGO03; Bab+14c]. The accuracy computes the percentage of correctly
predicted groups, compared to the true labels and normalized mutual information
measures the similarity of two clusters.

Accuracy represents the percentage of correctly predicted labels compared to
the ground truth labels. Given a data set with N samples, where for each sample,
t; indicates its true label given by the data set and p; is the label predicted by a
clustering algorithm, the accuracy is defined as

AC = S, 6 (ti, map(p;))

N , (2.19)

where 0(x,y) = 1 if x =y and 0 otherwise, and map(p;) is a function that maps
each label to the corresponding label in the data set. The permutation mapping is
determined using the Kuhn-Munkres (KM) algorithm [Kuh55].
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2. Discriminative Data Representation

Normalized mutual information determines the similarity of two clusters.
Given two sets of clusters C = {c1, ..., ¢} and C = {¢4, ..., ¢ }, the mutual information
metric is computed by

2 Ci, ¢;
MI(C,C) = Z p(ci, ¢;) log p(—j,), (2.20)
. p(ci)p(¢))

Cq‘,GC,C]'GC
where p(c;), p(¢;) represent the probability that an arbitrarily selected data point
belongs to the clusters C or Cj, respectively, and p(c;, ¢;) represents the joint
probability that a point belongs to both clusters simultaneously. As the similarity
of the two clusters increases, the mutual information MI(C, C) increases from 0

to max {H(C), H(C)} H(.) is entropy function that means H(C), H(C) represent
the entropy of the clusters C, ¢ respectively. Dividing the mutual information by

max {H(C), H(C)} leads to the normalized mutual information, which takes values
between 0 and 1:

MI(C, C)
max {H(C),H(é)}'

nMI(C, C) = (2.21)

2.3.4.3 Compared algorithms

The performance of the DNMF algorithm in generating new features is compared
with several algorithms by assessing the applied k-means clustering on the computed
features and measure the quality of clustering. The compared algorithms are:

e Original representation (features)

e PCA [Jol05]. PCA is a well-known dimensionality reduction algorithm. It is
expected that if the reduced dimension is set to the number of classes, each
class is aligned along one principal axis.

e NMEF in Frobenius-Norm formulation [LSO01]. Similar to PCA, if we set the
reduced dimension equal to the number of classes, we expect the samples of
each class to be aligned along one dimension.

e GNMF in Frobenius-Norm formulation [Cai+11]. This algorithm extends the
NMF-algorithm with a similarity term, which forces samples that are close to
each other in the original representation to be also close to each other in the
new representation. GNMF aims to preserve the locality of the data.

e CNMF in Frobenius-Norm formulation [Hai+12]. This algorithm is a semi-
supervised algorithm representing the samples with the same known class as
the same point in the new representation.

e The proposed algorithm (i.e., DNMF).

16



2.3. Discriminative NMF

2.3.4.4 Clustering results

In order to compare the performance of the algorithms in clustering, the experiments
were conducted with different numbers of classes, k, extracted from each data set.
To obtain representative results, we repeated the experiments 10 times for each k, by
selecting a random subset of k classes from the data set and computing the average
results. For the dimensionality reduction techniques, we always set the new dimension
equal to the number of classes and applied k-means in the new representation. Then,
we evaluated the clustering results for all algorithms with the introduced metrics
(i.e., AC, nMI). The k-means was repeated 20 times in each experiment and the best
result was selected. To choose the proper parameters, we performed cross-validation
on all algorithms and the parameter with the best results was selected for each data
set.

Figure 2.3, Figure 2.4, and Figure 2.5 show the clustering results for the Yale
faces, Handwritten digit, and PIE faces datasets, respectively. For each dataset, the
first row shows the clustering accuracy and the second row the normalized mutual
information for labeling percentages of 30%, 50% and 70%. For the case of 50%
labeling, the clustering results are additionally presented in Table 2.2, Table 2.3
and Table 2.4 for the three datasets, respectively.

2.3.4.5 Discussion

The results confirm that the proposed algorithm outperforms the other algorithms
in most cases, especially in terms of accuracy. Moreover, by increasing label informa-
tion, the difference in performance between the unsupervised and semi-supervised
algorithms becomes bigger, as expected. As Figure 2.3 shows, DNMF absolutely
outperforms another semi-supervised technique (i.e, CNMF). For the Handwritten
digit data set, DNMF still outperforms the others in terms of accuracy, especially
with high degree of labeling. However, it shows comparable results with CNMF
in terms of nMI. Generally, DNMF has better performance than CNMF. For the
PIE faces data set, DNMF has most of the time absolute performance in terms of
accuracy. But, for the nMI, CNMF shows better performance. In Section 2.3.7, the
locality preserving of DNMF for these three data sets is studied. There, we see that
for both the PIE faces data set and the Handwritten digit data set, the higher degree
of labeling leads to better performance in preserving the locality. However, this is
not true for Yale face dataset.

2.3.5 Convergence study

Here we analyze the convergence speed of the proposed algorithm and compare it
with the original NMF algorithm. Figure 2.6 depicts the converge plots of NMF
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Figure 2.3: Clustering results for Yale Faces dataset. First row shows clustering
accuracy for different percentages of labeling: (a) 30%; (b) 50%; (c) 70%. Second
row shows normalized mutual information for different percentages of labeling: (d)

30%; (e) 50%; (f) 70%.
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Table 2.2: Clustering Results for Yale Faces dataset and 50% labeling: AC (%)

Accuracy(%)

k k-means PCA NMF GNMF CNMF DNMF

2 || 81.5£229 | 86.5£17.8 | 81.5£22.9 | 79.5£21.5 | 86.0£20.5 | 89.5 + 16.2
3 | 66.0+£16.7 | 71.0£15.5 | 68.0£10.6 | 70.3 £13.0 | 82.3£15.0 | 88.0 = 12.9
4 | 60.3+15.7 | 60.5+12.5 | 64.0£14.0 | 61.8+£13.8 | 80.5+11.1 | 87.3 £ 7.0

5 || 582+ 12.8 | 58.6 £8.8 | 52.8+£9.2 | 58.2+9.1 78.8 £8.4 80.8 + 8.5

6 527+9.9 | 53.3+83 | 49.8+9.0 | 51.2+9.6 | 69.0+11.3 | 77.3 £ 8.2

7 | 54.3£10.0 | 52679 | 4944+ 7.7 | 52.1£7.2 | 68.4+£5.8 77.4+5.1

8 523+£6.1 | 55.0£6.7 | 494+6.1 | 50.0£5.3 | 70.0£5.5 | 74.9 £ 8.1

9 50.8 £8.6 | 55.2+£9.5 | 496+£7.9 | 52.1+10.1| 678+56 | 75.9+£7.0

10 || 479471 | 494£85 | 46.0£70 | 488+6.7 | 699+6.1 72.0 £ 5.5

normalized Mutual Information(%)

2 || 56.9+47.2 | 62.0+39.8 | 56.9 +47.2 | 48.3+42.6 | 66.8 +41.9 | 70.8 £+ 36.4
3 || 47.8£22.8 | 54.1£21.7 | 47.8 £18.0 | 50.5£16.8 | 70.3 £20.0 | 75.7 £ 20.7
4 || 44.54+19.6 | 43.4+16.6 | 45.8 +18.1 | 44.8+20.0 | 70.0 £ 14.1 | 72.9 £+ 14.2
5 || 47.9+174 | 473 +£11.7 | 41.7+104 | 465+13.1 | 71.9+£9.3 | 72.3 £ 7.6

6 || 44.6+11.0 | 45.6 +10.4 | 40.9+10.0 | 43.2+12.5 | 63.0+10.2 | 68.1 £10.7
7 ]| 50.1£12.7 | 474+£10.2 | 443+8.1 | 474+9.9 | 66.2+58 | 69.6 £ 7.6

8 50.3£7.9 | 525+£6.9 | 46.1£5.1 | 472+6.1 | 70.2+5.0 | 72.3£7.3

9 || 49.1£10.1 | 55.2+9.2 | 49.1+88 | 50.2+94 | 69.8+4.3 | 71.7 £6.1

10 || 49.8£8.0 | 50.7£7.6 | 46.9+£6.3 | 486+7.0 | 69.5+44 | 70.2+£5.0

and DNMF algorithms on the three data sets. It is clear from the plots that the
convergence speed of the proposed algorithm is comparable with NMF algorithm
and also the algorithm converges after 100 iterations.

2.3.6 Parameter analysis

The performance of the proposed algorithm is controlled by the parameter . By
looking at (2.8), we expect the magnitude of the optimal parameter « to be dependent
on the relative size of the two terms. Specifically, the size of the first term is on
the order of MN and the size of the second term on the order of SN;. In order
to keep the relative weight of the two terms similar among different datasets, we

therefore propose to set a = —Pd, where P indicates the percentage of labeled

samples. Then, the relative weight of the two terms is controlled by the normalized
parameter &. Figure 2.7 shows the performance of the proposed algorithm on the
three data sets for different values of &. Clearly, the best performance is achieved in
all cases, when & is of order 10*.
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Table 2.3: Clustering Results for Handwritten Digits data set and 50% labeling: AC
(%)

Accuracy(%)

k k-means PCA NMF GNMF CNMF DNMF

2 193.1+£10.0 | 92.0+11.1 | 92.0+11.2 | 90.8 +11.8 | 97.3 = 4.3 972+ 44

3 81.9+9.6 | 79.7+104 | 77.3£85 | 82.8+9.9 | 93.6 2.6 92.6 4.6

4 67.8+£9.2 | 644+£9.7 | 61.2+11.3 | 72.3£13.2 89.3+6.8 90.0 & 3.8
) 61.8£49 | 61.8+45 | 56.3£6.8 | 60.7+7.9 86.7£1.5 88.4+ 2.1
6 54.5+£6.7 | 54.5£6.9 | 50.6£6.5 | 54.6+£9.3 | 84.1 5.5 83.6 £3.1

7 53.4+4.5 53.1£5.1 51.8+5.8 54.4+ 3.2 77.7T+8.5 82.8 + 2.8
8 4894+49 | 495+49 | 45.0+£2.7 | 47.8+£28 77.1£6.3 81.94+ 1.7
9 477+£3.8 | 49157 | 446+4.6 | 45.7+4.4 745+ 4.1 81.0+1.3
10 || 45.6£3.0 | 476+28 | 41.9+£28 | 449£5.0 72.5£3.6 80.1 1+ 1.9

normalized Mutual Information(%)

2 || 73.3+£26.5 | 69.2+27.3 | 69.4+28.4 | 68.6+35.8 | 86.4+17.5 | 85.8 +17.8
3 || 579+11.3 | 54.1+10.7 | 489+ 11.5 | 61.9+15.2 | 78.0+ 7.2 | 75.6 +11.2
4 || 50.4+11.8 | 442493 | 42.14+9.7 | 57.7+13.1 | 75.2 £ 8.3 74.6 £6.7

) 4924+6.8 | 454+£72 | 40.1+£5.6 | 51.5£8.0 709+ 2.1 73.3+3.1
6 45.1+£6.7 | 42.3+4.5 37.4+4.3 | 489+10.9 | 70.5 + 4.7 68.0 £4.0

7 46.2+34 | 45.0£24 | 404+3.5 | 50.5£2.0 67.4+£5.2 68.3 + 3.5
8 452+3.2 | 43.9+34 | 385+2.7 | 46.6 2.9 68.0 £ 3.8 68.2 + 2.5
9 46.0+£3.0 | 45.7+£4.2 | 39.7+£4.0 | 46.5£3.9 67.0 £ 3.2 68.0 4+ 2.2
10 || 449424 | 46.1£26 | 38.6£29 | 454+23 66.8 £ 2.6 67.7+ 24

2.3.7 Locality preservation

For the locality preserving property of the DNMF algorithm, we compute the 5
nearest neighbors of each data point before and after applying the algorithm. We call
the average similarity of neighborhoods over all data points the locality preserving
property. DNMF, with different degrees of labeling, and GNMF are applied to all data
sets and their percentages of locality preservation are depicted in Figure 2.8. Here,
the experiments are repeated 10 times for different random subsets of k& classes and
the average results are computed. In all the data sets, DNMF is weaker than GNMF
in terms of locality preservation. This makes sense, since DNMF focuses on increasing
the discriminative property and GNMF focuses on locality preservation. However,
for the Yale faces data set, increase of the number of classes decreases the locality
preserving property, but increase of the amount of label information decreases the
locality preserving property. This confirms that for this data set, the local points
belong to different classes. This phenomenon is reversed for the Handwritten digit
and the PIE faces data sets, where increase of the number of classes and also the
degree of labeling increases the locality preservation. Thus, in this case, locality
preserving has some correlation with discrimination. For the PIE faces data set,
increasing the number of classes does not change the locality preservation.
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Table 2.4: Clustering Results for PIE Faces dataset and 50% labeling: AC (%)

Accuracy(%)

k k-means PCA NMF GNMF CNMF DNMF

2 || 63.7£15.5 | 59.5+£10.9 | 53.3+£4.8 | 53.3+£4.8 | 81.b+14.2 | 83.7T+L 7.4
3 45.14+6.7 | 44.8+6.6 | 582+49 | 56.6 +4.5 | 76.9+12.4 | 82.2 4+ 3.2
4 39.3£9.0 | 39.0£8.6 | 59.3+6.5|587+59 | 787+£10.3 | 81.8 5.1
5 35.8+£73 | 36.0+6.8 | 54.5+4.6 | 55.0 =4.2 78.3 £8.5 82.5+4.4
6 30.3+3.0 | 304+3.3 | 55.1+£6.0|532+7.3| 79.8+82 |81.2+54
7 2956+42 | 292442 | 509+£5.0 | 53.9+5.6 75.8£5.3 80.0 = 3.5
8 33.2£5.0 | 33.7£5.0 | 56.7£6.5 | 55.0 6.4 75.0 £6.2 79.2 £ 5.1
9 312+39 | 31.5+4.1 | 539+74|532+74 71.1+£5.0 77.8+5.7
10 || 31.0£26 | 31.0+£2.6 | 509+4.2 | 52.0£6.0 74.4+ 3.7 77.1+6.8

normalized Mutual Information(%)

2 || 15,1£19.8 | 6.24+9.8 1.0£2.1 1.0+2.1 | 41.6 +=30.8 | 39.8 £19.4
3 94+7.7 89+78 |[348+£76|31.1+86 | 58.6£13.7| 56.4£6.1

4 || 15.94+14.1 | 14.3+13.8 | 46.1+6.2 | 44.3+9.0 | 68.7 = 9.0 64.9 £ 8.2

5 || 180+11.7 | 18.7+11.0 | 454+9.0 | 462+72 | 72.4+6.7 | 69.7+6.4

6 159+36 | 15550 | 47.5+£7.3 | 475+6.8 | 72.6 6.6 71.8£5.5

7 195+53 | 19.2+52 | 50.1+£5.2 | 514+4.1 | 73.0+6.1 71.3£5.8

8 289+6.3 | 282+6.0 | 57.0+£6.8 | 55.5 5.1 73.7£5.8 74.9 + 5.8
9 279+38 | 282+£5.2 | 558+ 5.5 | 55.0£6.3 71.7+34 72.0 £ 4.7
10 || 30.2+3.5 | 20.7+24 | 554+5.1|55.8+44| 75.31+3.0 73.8+5.1

2.4 Attributes constrained NMF

In this section, we explain how relative attributes, instead of binary label information,
can be used in the proposed DNMF to learn discriminative subspaces from the
original features [Bab+15¢; Bab+14d]. First, we provide the background on relative
attributes.

2.4.1 A Review of Relative Attributes

In addition to label information, one may describe an image using some visual
attributes such as if a person is ‘smiling’, but seems to be ‘serious’, or a scene
looks ‘dry’, but not ‘complex’. In contrast to binary attributes (or labels), relative
attributes provides much more semantic information. For instance, we can say that
the person in image A seems to be smiling more than the person in image B, or the
scene in image A looks drier than the scene in image B. The concept of a relative
attribute was proposed for the first time in [PG1la]. Here, the authors assume
that training data presents how objects/scene categories are related according to
different predefined attributes. Then, a ranking function for each attribute is learned
to rank the images based on the existence of the corresponding attribute. Finally,
the learned ranking functions predict the relative strength of each attribute in a test
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Figure 2.6: Convergence of NMF (blue) and DNMF (red) on three datasets.(a) Yale
Faces; (b) Handwritten Digits; (¢) PIE Faces.

image. Figure 2.9 illustrates the difference between binary and relative descriptions
of images.

If there are M predefined attributes A= {a,,}, and M ranking functions wy, for
m = 1..M are learned, then the predicted relative attributes are computed by

() = W, i, (2.22)
such that the maximum number of the following constraints are satisfied:

V(i,7) € Om: Wi 'X; > Wi, X, (2.23)
V(i,]) € Sm: Wm'X; & Wi, X, (2.24)

whereby O,,= {(7, j)} includes ordered image pairs with image i containing a stronger
presence of attribute a,, than image j and S, = {(4,)} is a set of un-ordered pairs
such that images ¢ and j have more or less the same presence of attribute a,,. Parikh
et al. [PG11a] proposed the following optimization problem (similar to an SVM
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Figure 2.7: Parameter analysis of DNMF on three datasets: a) Yale faces; b)
Handwritten digit; ¢) PIE faces.

classifier) by introducing non-negative slack variables:

win (w30 e (65 + X)) (2.25)

st Wi(x; —x5) > 1—¢&5; V(i,7) € On (2.26)

The solution of this optimization problem is a set of RankSVM functions that returns
the ranking vector w,, of input images and their relative order. Therefore, ry,(x;)
presents the relative attribute representation of image x;. By stacking the relative
attributes of all input images, we build a new matrix Quxn, where M denotes the
number of attributes and N is the number of images. More precisely, instead of
having Qsxn (S is the number of classes) we have Qyxx-

In this section and the next section, we show how predicted relative attributes
(instead of label information) can be used as semantic information to enhance the
discriminative property of new features.
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Figure 2.8: Locality preserving of DNMF with different degrees of labeling applied
on the data sets: (a) Yale Faces; (b) PIE Faces; (¢) Handwritten Digit.

2.4.2 Experiments

In this experiment, we used predicted relative attributes, instead of label information
in DNMF to generate a new subspace of images. We performed our experiments
by applying the proposed method to two image data sets, namely Outdoor Scene
Recognition (OSR) and Public Figure Face Database (PubFig) [PG11a] (see Fig-
ure 2.10). The OSR data set contains 2688 images from 8 categories and the PubFig
data set contains 772 images from 8 different individuals. The OSR images are
represented by 512-dimensional GIST [OT0la] features, while PubFig images are
represented by a concatenation of GIST descriptors and a 45-dimensional Lab color
histogram [PG11a]. We also utilized the learned relative attributes for both data sets
from [PG1lal. In 2.11, the list of predefined attributes for each data set is provided.
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2.4. Attributes constrained NMF

Binary descriptions Relative descriptions
not natural more natural than talbuilding, less natural than forest
not open more open than talbuiding, less open than coast
perspective more perspective than talbuiding
not natural more natural than insidecity, less natural than highway
not open more open than street, less open than coast
perspective more perspective than highway, less perspective than insidecity
natural more natural than talbuilding, less natural than mountain
open mare open than mountain
perspective less perspective than opencountry

Figure 2.10: Example images from the PubFig and OSR data sets.

2.4.2.1 Setting

We applied the proposed method (DNMF), PCA, and NMF to the original represen-
tations of both data sets to generate (learn) different subspaces of the data. Then we
applied k-means clustering, with k equal to the dimension of subspaces, to the new
subspaces and also to the original features. We performed the experiments with k
different classes sampled from each data set. In order to obtain representative results,
we repeated the experiments 10 times for each k. The k-means runs 20 times per
experiment and the best result was selected. For the subspace learning techniques
(i.e., PCA, NMF, DNMF), we always set the dimension of the subspace equal to the
number of classes. In DNMF, the regularization parameter was chosen by running a
cross-validation on each data set. For OSR and PubFig, this parameter was 10 and
100, respectively.
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2. Discriminative Data Representation

Figure 2.11: The list of attributes used for each data set, along with the binary and
relative attribute annotations [PG11a]

2.4.2.2 Results

By setting the dimension of the subspace to 2, we can visualize the data sets in 2D.
For OSR and PubFig data sets, the results are depicted in Figure 2.12(a) and Fig-
ure 2.12(b), respectively. Here, it is clearly observable that all images with similar
attributes are located close to each other. For instance, all OSR images with the
openness attribute are placed in the bottom left part of the layout.

The results of clustering applied to the learned subspaces are depicted in Fig-
ure 2.13. Figure 2.13(a) and Figure 2.13(c) show the accuracy and normalized Mutual
Information (nMI) of the clustering results for the PubFig data set. The OSR results
are depicted in Figure 2.13(b) and Figure 2.13(d). It can be seen that the proposed
method outperforms the other techniques significantly in both data sets. For the
PubFig data set, we even achieve 75% — 85% accuracy. The algorithm converges
quickly after 20 iterations and therefore can be considered computationally efficient.

The experimental results confirm that the proposed method generates the sub-
spaces with different semantic attributes successfully.

2.5 Attributes constrained dictionary learning

Since last decade, sparse coding has been widely used in a variety of problems in
computer vision and image analysis including image denoising, image classification,
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2.5. Attributes constrained dictionary learning

Figure 2.12: 2D visualization of the data sets computed by the proposed method
(DNMF); (a) the OSR data set; (b) the PubFig data set. Images with the same
attribute are located close to each other.

Table 2.5: Clustering results of different methods on the PubFig dataset

Accuracy (%)

k O. Feat PCA NMF DNMF

2 || 86.0+14.5 | 85.74+14.6 | 86.0+=14.2 | 85.1+16.1

3 73.44+12.6 | 73.3+124 | 728 +£13.2 | 75.4 £ 11.7
4 66.2 + 8.6 65.44+7.1 71.8+£9.0 76.7 + 9.4

5) 61.9 £ 8.6 59.54+10.2 | 62.4+8.9 68.2 + 8.8

6 58.1+9.6 57.0+9.4 61.4+8.2 67.5 L+ 7.4

7 54.9£5.0 53.7 4.5 589+ 3.5 62.1 = 5.1

8 53.5 2.2 53.3+ 2.4 58.6 = 2.9 62.1 + 3.1

normalized Mutual Information(%)

2 52.24+27.8 | 51.44+28.1 | 51.54+27.7 | 53.2 £+ 34.0
3 43.8+16.1 | 42.8+16.0 | 40.7 +18.6 | 48.4 £+ 15.3
4 41.8+11.3 39.94+94 | 47.0+11.1 | 55.7 &= 10.5
5 423+ 7.7 41.0+7.2 43.1 £8.1 50.0 + 9.3
6 41.3+9.5 40.9+94 43.4+7.5 49.6 + 6.6
7 41.5+4.3 40.2 +4.1 43.4+ 2.8 46.6 + 4.2
8 426 +1.6 41.9+1.1 449+ 1.6 48.6 + 3.3

and image restoration. K-SVD algorithm [AEB06] and the Method of Optimal
Direction (MOD) [EAH99] are the first approaches proposed for Dictionary Learning
(DL), where no semantic information is used in the learning process. One sub-field of
dictionary learning is discriminative DL, where either the discriminative property of
the signal reconstruction residual, or of the sparse representation itself is enhanced.
The work of Ramirez et al. [RSS10], which includes a structured incoherence term
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Figure 2.13: Clustering results computed by PCA (cyan), NMF (black), DNMF
(blue) and original data (red) evaluated by accuracy (AC) and normalized mutual
information (nMI). (a) and (b) show the AC and nMI for the OSR dataset, respectively.
(c) and (d) show the AC and nMI for the PubFig dataset, respectively.

to find independent sub-directories for each class, focuses on the reconstruction
residual. In the work of Gao et al. [GTM14] sub-dictionaries for the different classes
are learned as well as a shared dictionary over all classes.

Methods aiming at finding discriminative coding vectors learn simultaneously a
dictionary and a classifier. In the work of Zhang et al. [ZL10], the K-SVD algorithm
is extended by a linear classifier. Jiang et al. [JLD11] propose the so called label
consistent KSVD (LC-KSVD) algorithm by introducing an additional discriminative
regularizer. Both of these algorithms show good results for image classification
and face recognition tasks. The approach of Yang et al. [YZF11] combines the
two types of DDL by taking into account the discriminative capabilities of the
reconstruction residual and the sparse representation. Therefore, class specific sub-
dictionaries are learned while maintaining discriminative coding vectors by applying
the Fisher discrimination criterion. In the recent work of Cai et al. [Cai+14], a new
Support Vector Guided Dictionary Learning (SVGDL) algorithm is presented where
the discrimination term consists of a weighted summation over squared distances
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2.5. Attributes constrained dictionary learning

Table 2.6: Clustering results of different methods on the OSR dataset

Accuracy(%)

k O. Feat PCA NMF DNMF

2] 70.3+13.6 | 67.8+14.2 | 63.3+13.7 | 83.9 - 14.8
3| 53.1+£11.1 | 51.3+9.1 53.1+£6.7 | 84.7+6.9
41 46675 | 43.5£6.3 | 45.0+7.2 824+ 4.1
5| 41.2£50 | 40.8+48 | 426+64 75.2 £ 9.2
6| 389+46 | 38.9+4.2 | 39.3+43 | 74.5+5.1
71 36.7+£39 | 36.6+3.6 | 38.0+3.7 | 73.6+4.3
81 340£16 | 349+£14 | 35.1+£1.6 68.7 + 4.2

normalized Mutual Information(%)

2] 193+21.7 | 17.0+21.7 | 11.5+21.1 | 48.1 4+ 26.9
31 16.1+14.3 | 15.4+12.3 | 18.3+8.7 | 59.6 = 9.7
41 16.7+8.7 | 145+£6.6 15.94+8.9 58.3 6.8
5 18.7+6.2 18.2£5.8 19.9+6.4 56.8 7.9
6| 190+4.0 | 188+3.7 | 19.7+35 | 57.0+ 4.8
71 1994+44 | 19.84+4.0 | 209+3.3 | 56.6 £ 3.1
81| 195+1.1 | 20.0+1.7 | 20.7+1.2 | 55.0 & 3.2

between the pairs of coding vectors. The algorithm automatically assigns non-zero
weights to critical vector pairs (the support vectors) leading to an average good
performance in pattern recognition tasks.

2.5.1 Proposed method

We assume Y = [yq,ys, ...¥a] to be the set of p-dimensional n input signals, X =
(X1, X2, ..., X, to be their corresponding k-dimensional sparse representation and De

R**k to be the dictionary. As a consequence, the standard dictionary learning
method is defined by

<D, X >= argrgi}rg“Y—DXH%—i—)\lHXHl, (2.28)

with the regularization parameter ;. In order to take the relative attributes into
account, the objective function has to be extended with an additional term £(X).

<D, X >=argmin [|Y — DX3 + A | X[|1 + AL(X) (2.29)

The RankSVM function maps the original input signal (y;) to a point (g;)
in a relative attribute space. Additionally, we assume that there exists a linear
transformation (i.e., A) that maps the sparse signal (x;) to the point ¢; (see Figure 2.14
and Eq. (2.30)). First, we define the matrix Q € RN*M with the elements g, =

31



2. Discriminative Data Representation

rm(y;), which contains the strength of the (relative) attributes of all signals in Y.
In order to find the transformation of Y into Q, we apply the RankSVM function
known from [PG11a] to the original input signal and obtain the weighting matrix
W = [w];wy; . wiyl.

arguin 1Q — AX]||; = argmin WY — AX|5. (2.30)

The objective is finding a matrix A, which transforms the sparse representation

original feature ranked sparse signal
space attribute space space
Y X

Q
D
Figure 2.14: Signal transformations of x; and x; as close as possible to ¢; and g;.

of the signals into their corresponding relative attribute representations Q with a
minimum distance between wly,; and alx;. By using Eq. (2.30) in Eq. (2.29) as a
loss term, we get the formulation

<D, X >=arg min [|Y — DX |2 4+ M\ || X][1 + X [WY — AX|2. (2.31)

From the first part of the equation, we can see that Y = DX. If the Y in the loss
term for the relative attributes is approximated by DX, then the equation becomes

<D, X >=arg min |Y - DX]||3 + M |1 X]]1 + X2 |[WDX — AX]|3. (2.32)

The third term of Eq. (2.32) is minimized if A = WD. This information can be
used to eliminate A from Eq. (2.31) to arrive at the final objective function:

<D X >=argmin [Y - DXJ3+ M X[ + WY -DX)[3 (2.3

Additionally, we can replace the term || X||; with || X]|3, since the goal is to learn a
discriminative dictionary and not to obtain sparse signals (as in [Cai+14]). However,

32



2.5. Attributes constrained dictionary learning

once the dictionary is learned, the sparse representation is obtained by the orthogonal
matching pursuit [RZE08]. Finally, we end up with the following optimization
problem:

<D, X >=argmin [[Y = DX[[3 + M [[X[3 + Ao W(Y — DX)][5. (2.34)

Since this equation is not a joint convex optimization problem, X and D are optimized
sequentially. The update rules for D and X are found by deriving the objective
function and setting the derivatives to zero.

O = [[Y = DX5 + Ai[IX][; + 2| W(Y — DX)|3

(2.35)
00 T T T
5D~ 2(Y — DX)X* +2,WH (WY — WDX)X™ =0
=(Y — DX) + 2,2 W'W(Y - DX) =0
=TI+ MW'W)(Y -DX) =0
=D =Y (X"X) X" (2.36)
30 T T T
o5~ 2D (Y — DX) + 2\, X — 2)0,D"WT (WY — WDX) = 0
=D'D+ NI+ HLD"WIWD)X - DY — L,D'TWTY =0. (2.37)

Therefore, we have:
X =(D™D + M\I+ ADTWTWD) (DY + \,DTWTY). (2.38)

The algorithm works as follows. Initially the RankSVM [PG1la] function is used
to learn the ranking matrix W from the original input data Y and its relative ordering
(i.e., sets Op, Sy). The initial dictionary D and the sparse representation of the
data are obtained by first applying the K-SVD algorithm [AEB06]. Afterward, the
dictionary and the sparse representation are alternately optimized until convergence.
In order to avoid scaling issues, the dictionary is L, normalized column-wise. The
whole algorithm can be seen in Algorithm 1. In order to get the sparse representation
from the learned dictionary, we solve the error-constrained sparse coding problem
in Eq. (2.39), with the help of the OMP-Box Matlab toolbox [RZE08], where the
reconstruction error from the training phase is chosen as €. The obtained sparse
signals can then be used for clustering.

X = argm)gn IX]lo st. X=]Y-DX|;<e¢, (2.39)
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2. Discriminative Data Representation

Algorithm 1 Relative Attribute Guided Dictionary Learning
Require: Original signal Y, sets of ordered (O,,) and un-orderd images (Sy,)
Ensure: Dictionary D
W « RankSVM(Y, O, Sin)
Dinit < rndperm(Y)
D, X <+ KSVD(Dj,it, Y)
for + = 0 to numlter do

D« Y(X'X)"'x"

D < normcol(D)

X + (D™D + MI + AD™WTWD) (DTY — \,DTWTY)
end for

2.5.2 Experiments

In order to assess the quality of the learned dictionary, we propose a clustering task
for the two data sets, namely PubFig [Kum-+09] and OSR [OT01a]. We did cross
validation and found parameters A\; = 0.01 and Ay = 1 optimal for all experiments
and data sets. The convergence of algorithm applied to the two data sets is shown
in Figure 2.15.
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Figure 2.15: Convergence of the objective function for the two data sets

As before, we quantify the clustering performance by accuracy and normalized
mutual information metrics.

2.5.2.1 Results

The first experiment is a comparison of Eq. (2.28) and Eq. (2.29). The proposed
algorithm is applied to the two introduced data sets, once with the usage of Eq. (2.28)
and once with Eq. (2.29). This experiment shows the benefit of using the additional
loss term that takes the relative attributes into account. Figure 2.17 shows the
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accuracy (AC) and normalized mutual information (nMI) for 100 iterations of the
algorithm. A clear improvement of clustering for the PubFig and OSR data sets
can be seen.
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Figure 2.16: Evaluation of Ay for the two data sets (from left to right, Pubfig, OSR).
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Figure 2.17: The clustering results obtained from the proposed method with and
without relative attributes for the PubFig (first column) and OSR (second column)
data sets. The first and second rows show the accuracy and the normalized mutual
information (nMI), respectively.

As a benchmark for the results, different unsupervised and supervised (discrim-
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inative) dictionary learning techniques are used, namely (1) K-SVD [AEBO06], (2)
SRC [Wri+09] as unsupervised techniques, and (3) LC-KSVD [ZL.10], (4) FDDL
[YZF11], (5) SVGDL [Cai+14] as supervised techniques. Additionally, the original
features (O. Feat.) are clustered as well by the k-means algorithm to evaluate the
additional value of using relative attributes as semantic information. The results
were compared on the basis of their performance for full label information, varying
dictionary sizes, and a varying amount of training data. Table 2.7 shows the average
accuracy and normalized mutual information for all algorithms tested on the two data
sets, when using all training data, their label information, and a fixed dictionary size
of 130. Evidently, although the proposed algorithm uses a different kind of semantic
information, it reaches a higher performance for both data sets in comparison to
other supervised and unsupervised algorithms.

Accuracy
Method ‘ O.Feat. ‘ SRC ‘ KSVD ‘ LC-KSVD ‘ FDDL ‘ SVGDL ‘ proposed
PubFig | 0.324 | 0.226 | 0.310 0.306 0.584 0.595 0.789
OSR 0.563 | 0.239 | 0.466 0.500 0.680 0.662 0.731
Avg. 0.414 | 0.221 | 0.374 0.369 0.576 0.579 0.661
normalized Mutual Information
PubFig | 0.170 | 0.062 | 0.159 0.161 0.417 0.448 0.600
OSR 0.433 | 0.071 | 0.334 0.342 0.498 0.521 0.564
Avg. 0.308 | 0.065 | 0.251 0.241 0.441 0.459 0.519

Table 2.7: Accuracy and normalized mutual information for several dictionary

learning algorithms applied to the data sets

Runtime (in seconds)

| Method | O.Feat. | SRC | KSVD | LC-KSVD | FDDL | SVGDL | proposed

PubFig - - 3.910 5.652 33.170 | 8.130 1.443
OSR - - 3.803 5.467 32.492 7.628 1.422
Avg. - - 4.276 6.059 31.993 | 8.457 1.749

Table 2.8: Runtime (in seconds) for several dictionary learning algorithms applied to
the data sets.

In Table 2.8, the runtime of the training phase of the algorithms is analyzed,
where the numbers confirm that the proposed algorithm runs much faster than all
other contestants. The experiments were conducted on an Asus N56VZ-S4044V
Notebook with an Intel Core i7-3610QM processor and a clock speed of 2.3 GHz
and the codes for the compared algorithms were extracted from the corresponding
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Figure 2.18: Clustering results for PubFig (first column) and OSR (second column)
data sets for increasing dictionary sizes.

projects or publications pages.

Figure 2.18 shows the behavior of the algorithms for an increasing dictionary
size with all available training data. The dictionary sizes used were [16, 40, 80,
120, 160, 240] for the PubFig and OSR data sets, which corresponds to [2, 5, 10,
15, 20, 30] atoms per class. The number of atoms per class are constrained by the
partition of the data into training and testing. Note that the FDDL algorithm
cannot use all training data, since the dictionary size restricts the size of the training
samples. Therefore, only in the last test case does the algorithm use the complete
training information. The results show that for the proposed algorithm the accuracy
increases with the dictionary size, up to values exceeding the compared algorithms.
Figure 2.19 illustrates the results when the amount of used training data is varied.
In addition, the dictionary sizes were matched to the size of the training data. Again,
the proposed algorithm can exceed the results of the compared approaches up to
a number of training samples in the OSR data set, where the SVGDL and FDDL
algorithms produce comparable results. The number of training samples per class
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Figure 2.19: Clustering results for PubFig (first column) and OSR (second column)
data sets for increasing training data.

were [2, 5, 10, 15, 20, 30| for the PubFig and OSR data sets.

2.6 Summary and conclusion

We presented a novel semi-supervised NMF-formulation, called DNMF. In DNMF,
the new representation is formed by adding an additional constraint that enforces
samples with the same class to be aligned on the same axis in the new representation.
In contrast to other semi-supervised methods, this approach does not merge data
points with the same label into a single point. We showed the DNMF approach in the
F-norm formulation and proposed update rules to solve the optimization problems.
Experimental results on three datasets have shown the good performance of the
algorithm in comparison to other state-of-the-art algorithms. Additionally, in terms
of convergence speed, no performance is lost compared to NMF. Further interesting
work would be to add the locality preserving property to the DNMF. We also explored
the usage of relative attributes as another format of semantic information in the
process of matrix factorization. We showed how this information can be used in
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generating discriminative features. At the end, we proposed a new dictionary learning
algorithm that uses relative attributes in generating sparse representation of the
input signal while enhancing the discriminative property of the signal.
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3

Immersive Visualization of Image
Collections and Feature Space

The world is dealing with a massive amount of collected data, where much of it is
visual data (e.g., images and videos). Facebook reports six billion photo uploads per
month. The amount of Earth Observation (EO) images is on the order of several
terabytes per day. Therefore, browsing and visualizing visual data could help to
design new Visual Data Mining (VDM) systems. In such systems, the content of
each image (e.g., color, texture, shape) is represented by high-dimensional feature
vectors [Low04; SGS10], where the similarity relationship between images is measured
based on the distance between feature points. In VDM, a query image is usually
presented to the system and the resulting similar images are visualized as thumbnails
in a 2D or 3D display space. In interactive VDM [Tal+09; Fog+08; Pan+11], the
interface between human and machine plays a key role in enhancing the performance
of the system. The interface could provide the user, the ability to quickly grasp the
information structure through visualization.

In this chapter, a data visualization system is introduced in order to present
visual data (images) and their various aspects, such as feature space, neighborhood
graph and tree. Dimensionality Reduction (DR) techniques are used to convert the
high-dimensional features into 2D /3D. However, the quality of these techniques must
be addressed. Therefore, we describe a novel approach to assess the quality of DR
techniques that has appeared in [BDR13]. Since visualization of image collections
using DR techniques leads, in most cases, to poor visibility of images, we introduce a
customized DR technique based on Non-negative Matrix Factorization (NMF) that
accounts for the minimum occlusion and preserves structure. This technique will
appear in the Elsevier Journal of Neurocomputing [Bab-+arb]. In summary, the main
contributions of this chapter are:

e introducing immersive data visualization based on virtual reality technology;

e proposing a novel approach to assess the quality of DR techniques;
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(a) (b)

Figure 3.1: (a) A schematic of the CAVE. (b) Cave’s devices (Infrared camera, 3D
glasses, and projectors)

e and introducing a customized dimensionality reduction technique to arrange
image collections in 2D/3D.

In the following, we discuss each aforementioned contribution in detail.

3.1 The Cave Automatic Virtual Environment

Immersive Virtual Reality (IVR) is a technology that enables the user to immerse
him or herself in a vivid, life-like 3D environment, move in a virtual world and
interact with virtual objects. A Cave Automatic Virtual Environment (CAVE) is an
immersive virtual reality environment created by projecting a virtual scene to four
wall-size screens with stereoscopic projectors behind them. The projectors need to
provide a high resolution scene since the user has a very close distance and thus a
small pixel size will create the illusion of reality. The projectors work collaboratively
with each other to create the virtual world around the user. The user wears a pair
of shutter 3D glasses to view the graphics generated by the CAVE. The objects in
the CAVE appear to be floating in the air, meaning that the user has the freedom to
see the objects from different distances, in different angles, and even from inside of
the object. The whole CAVE will bring the user the feeling of reality. A schematic
of the CAVE and its objects is presented in Figure 3.1.

3.1.1 The CAVE’s components

Physically, the CAVE consists of four room-sized walls, projectors, infrared cameras
mounted above the walls, and a PC cluster. The projectors/mirrors are located
behind the walls and directly /indirectly project onto the walls. The tracking system
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is necessary to track the user’s movement, like distance to an object, angle of view,
and the position of objects. Additionally, the tracking system sends the data to the
projection system and the projection system adjusts the view to match the current
position of the user. These two systems work cooperatively to create a vivid world
in the CAVE.

3.1.1.1 PC cluster

The CAVE utilizes a three-layer PC cluster for rendering and visualizing a virtual
scene. The first layer is responsible for capturing the user’s motions and navigation
signals and sends them to the middle layer. Motion capturing is performed by the
tracking system and the navigation signals are generated by a Wii controller (Xbox
controller). Besides motion capturing, the pose (location and orientation) of the
controller is also computed by the tracking system. The middle layer comprises
a master PC which is responsible for generating the virtual scene based on the
incoming signals from the first layer. This PC first designs the scene and sends a
copy of it to each PC in the third layer. Rendering and displaying the scene on the
walls is carried out by four PCs (one for each wall). Each PC renders part of the
scene and outputs to the corresponding projectors. All PCs are connected via a 1GB
Ethernet network to exchange the information. The hardware structure of the CAVE
is depicted in Figure 3.2 [BDR13; BRD13a].

3.1.1.2 Projection system

The projection system consists of four room-size walls, four pairs of projectors and
four PCs. Each pair of projectors consists of two projectors, one for the left eye and
one for the right eye, in order to provide a stereoscopic scene. Each pair of projectors
handles the scene of one wall and all projectors collaboratively present a whole view
for the user who stands inside the CAVE. The two projectors (one emits purple light
and the other one green light) project the scene with a small distance between them.
Normally, the distance is 0.065m, which is equal to the eye distance of a human
being. Thus, a pair of 3D shutter glasses shown in Figure 3.3(a) is needed to see the
3D scene.

3.1.1.3 Tracking

The tracking system consists of six infrared cameras mounted above the walls, one
control software, and one communication software. Basically, when the user moves
his/her head (or position), the scene should be changed accordingly. To simulate this
scenario, the tracking system tracks the user’s position and movement by computing
the positions of markers attached to the glasses. The six infrared cameras are able
to detect the markers in their images with roughly 1mm accuracy. The new position
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Remote

Tracking System Controller
E Network switch

Rendering
System

Figure 3.2: The physical diagram of immersive virtual reality. The visualization
system consists of three layers with different responsibility. The first layer comprises
motion capture (tracking) system and control capturing. A master PC in the middle
layer for the synchronization, and finally four systems for rendering for each wall of
the CAVE. All systems are connected via an Ethernet network.

of the user or objects are sent to the master PC and this PC reads these positions
and arranges the scene accordingly.

3.1.1.4 Software

The visualization software used in the CAVE is called 3DVia Studio Pro developed
by Dassault Systemes. It is offered with a Software Development Kit (SDK) to create
interactive 3D applications in the Windows operating system. In addition, we use
several external libraries for dimensionality reduction, classification (e.g, Support
Vector Machines (SVM)), and clustering. Additionally, we also created our own
software packages to compute k-means clustering, NMF algorithms, etc.

3.1.1.5 Control system

The control system allows the user to do some actions in the CAVE, like movement,
rotation and interaction with objects. The user is provided with an Xbox 360
controller with markers attached. A virtual wand is always displayed which is
controlled by this controller. This means that by moving the controller, the direction
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(a) (b)

Figure 3.3: (a) A pair of shutter glasses with markers attached for tracking the user.
(b) An Xbox 360 controller attached with markers to control the scene.

of the wand is also changing accordingly. Moreover, the user can press its buttons
to navigate inside the virtual environment. An image of the controller is presented
in Figure 3.3(b).

3.2 Data visualization

The CAVE is a suitable tool for interactive 3D data visualization, which is widely
used in many scientific data visualizations. It allows movement in four directions (e.g.,
left, right, forward, or backward) and 180 degree horizontal rotation. This allows
the user to move towards the desired position by simply changing the orientation
of the controller. Zooming is another capability of the system. It is performed by
changing the orientation of the wand when it is directed at the point of interest
on the screen. Figure 3.4(c) and Figure 3.4(d) show zoom-out and zoom-in modes,
respectively.

In any interactive learning technique, the user should be able to interact with and
select the visualized data. Here, the user is allowed to select groups of feature points
or their corresponding images, which makes the manipulation of the data points more
convenient. Using this capability, the user can apply a modification to a number
of data points. The proposed group selection tool is a semi-transparent 3D sphere
controlled by the controller. The user selects the desired points in the sphere hull by
changing the radius and moving the sphere. In order to assist the user, the number
of selected items are shown as text to the user. Figure 3.4(a) and Figure 3.4(b) show
how the group selection tool performs.
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Figure 3.4: (a) The process of selecting a group of data points using a semi-transparent
3D sphere; (b) the number of selected feature points is shown to the user. (c,d)
Navigating and exploring images in the CAVE by zooming in and out.

3.2.1 Neighborhood graph and tree

Neighborhood graph and Minimum Spanning Tree (MST) visualization helps to
understand the structure of the data. Hence, the proposed system has a graph
visualization block that receives a data matrix and then visualizes its neighborhood
graph or minimum spanning tree. Two samples of this visualization are depicted
in Figure 3.5. In Figure 3.5(a), the neighborhood graph of real data is depicted and
in Figure 3.5(b), the MST of synthetic data is presented.

3.2.2 Feature space

Visualization of high-dimensional data (e.g., images) has always been a challenging
problem in the area of information mining and visualization. Perhaps the most com-
mon way to tackle this problem is to utilize DR techniques to map high-dimensional
data to 2D or 3D for visualization. During the last 20 years, numerous methods,
both linear or nonlinear, have been proposed to reduce the dimensionality [MPHO09;
VHO08; PWY14; Pan+13; ZWY15; Pom+14]. The most common linear methods
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(b)

Figure 3.5: Two samples of the visualization of neighborhood graphs (or trees) in
the immersive 3D virtual environment. (a) the neighborhood graph of a real data,;
(b) the Minimum Spanning Tree of a synthetic data set.

are Principal Component Analysis (PCA) [TP91] and Multidimensional Scaling
(MDS) [TC10]. Nonlinear methods assume that the data points are coming from a
manifold embedded in a high-dimensional ambient space. Depending on whether
they preserve the local or global structure of the manifold, they can be categorized,
typically, into local and global methods. Local methods like Locally Linear Em-
bedding (LLE) [RS00] and Laplacian Eigenmap (LE) [BN03] emphasize preserving
the locality of data points in contrast to global methods like Stochastic Neighbor
Embedding (SNE) [HR02a] and Isomap [TDLO00], which emphasize preserving the
global structure of data points [BRD13a].

In the proposed system, feature space is also visualized by applying different
state-of-the-art DR techniques to the original high-dimensional features to map
them to 3D. The pipeline of this visualization is depicted in Figure 3.6, where the
original features are extracted from the content of an image repository and fed into
a dimensionality reduction block to be visualized in the CAVE. The obtained 3D
features could also be used to position the images in the CAVE (see Figure 3.7)

3.3 Assessment of DR using communication
channel model

In the last section, we explained that DR techniques can be used for the visualization
of high-dimensional features. However, in the last two decades, dozens of DR
techniques have been proposed and show different performance in dealing with
different input data sets and tuning parameter(s). Therefore, the question that
comes up is if there are any criteria to measure the quality of DR techniques. Since
the majority of DR techniques focuses on preserving the local neighborhood distances
between data points, state-of-the-art approaches aim at improving their success in
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Figure 3.6: An immersive visualization system provides the user with a visual
representation of data. Here, high-dimensional features are extracted from a database
of Earth Observation images and are fed into a dimensionality reduction technique
to be visualized in an immersive 3D virtual environment.

(a)

Figure 3.7: Two samples of the visualization of features space of optical and SAR
image data sets. (a) optical data set is represented by SIFT feature and MDS
performs the dimensionality reduction; (b) the SAR data set is represented by Gabor
features and Isomap is DR technique.

preserving the distances. These approaches can be categorized into four categories.
The first group evaluates the performance of a technique by assessing the value of
the cost function after convergence [Ber+00; BN03]. Clearly, the approaches in this
group are useful to compare the results of a few techniques that work based on
optimizing a cost function with different parameter(s). The second group focuses on
the reconstruction error [BS02]. However, since the reverse transformation does not
exist for all techniques, it is hard to employ these approaches for all DR techniques.
The third group judges DR techniques based on the classification accuracy applied
to the labeled data [MPHO09]. The main drawback of this group is the need for
labeled data which is not available in most cases. Finally, the last group comprises
approaches concentrating on preserving the structure of data. The current criteria
for the assessment of the preservation of the data structure are the Local Continuity
Meta-Criterion (LCMC) [CB09], the Trustworthiness and Continuity (T&C) [VKO06],
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and the Mean Relative Rank Error (MRRE) [LV07; LV09]. All these criteria analyze
the neighborhoods before and after the dimensionality reduction. Recent work has
put all these criteria into a single framework to compare them [LV09]. The advantage
of this framework is its ability to propose new criteria for the assessment of DR
techniques.

3.3.1 Communication channel model

Modeling the information transmission in a processing pipeline as a communication
channel is quite interesting in different research areas [CJ10; BD13]. We also consider
dimensionality reduction as a communication channel in which data points from a
high-dimensional space are transferred into a low-dimensional space [BDR13]. Thus,
measuring the quality of this channel reflects the quality of the used dimension
reduction technique. Evidently, knowing the fact that recent approaches in DR
attempt to preserve the structure of data during dimensionality reduction, we encode
the structure of data in a matrix, the so-called ranking matrix [LV09].

3.3.1.1 Ranking matrix

Let’s assume a data point in a high-dimensional space is denoted by X; = [xj1, ...Xip]
and its correspondence in a low-dimensional space by Y; = [yi1, ...yik|, where K < D.
The ranking matrices of the data points before and after dimensionality reduction
are A and B, respectively, whose elements are defined by

Aij = | {/i 0, < aij“(ozm = O[ij&/{ < J)} | (31)

Bij = [ {r: Bix < Bijll(Bix = Bi&er <j)} | (3.2)

where | . | yields the cardinality of the set. The «;; and 3;; represent the distance be-
tween the point ¢ and the point j in the high and low dimensional spaces, respectively.
The (i,j).th element of a ranking matrix tells how many data points are closer to the
point ¢ than the point j. Due to the change of distances between data points during
the dimensionality reduction, the ranking matrix of high-dimensional data points
(input ranking matrix) changes to the ranking matrix of low-dimensional points
(output ranking matrix). The ranking matrices can be interpreted as 2D images
and therefore image similarity measures can be employed to quantify the degree
of similarity of the input and output ranking matrices. Inspired by medical image
registration, the proposed criteria is the Mutual Information (MI) of the probability
distribution defined over the joint histogram of ranking matrices.
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3.3.1.2 Co-ranking matrix

The joint histogram of input and output ranking matrices, namely, the co-ranking
matrix [LVO8] is defined by:

M = [my]i<ki<n-1 (3.3)

for N data points, where

my =| {(i,7) : (Aij = k)&(Bi; =)} | . (3.4)

3.3.1.3 Mutual information

Mutual Information (MI) and entropy are two metrics that can be utilized to measure
the similarity degree of ranking matrices. To this end, a joint probability distribution,
namely P(i, j), should be defined over the co-ranking matrix by:

P(i.j) = g =M (3.5)

Therefore, the entropy is defined by
H=->_ > P(i,j)logP(i;) (36)
i

and the mutual information is:
- P(i, j)
MI = P(i,5)log ——— 3.7
2. 2 PV oe fya 3D

Obviously, when a DR technique completely preserves the structure of data points,
both ranking matrices are similar and aligned together. Consequently, the co-ranking
matrix would be a diagonal matrix with N — 1 on diagonal values. In this case, the
mutual information has its maximum value and the entropy has its minimum value.

3.3.2 Experiments

To validate our proposed metrics to measure the quality of dimensionality reduction
techniques, we performed an experiment and then evaluated and visualized the
output of several dimensionality reduction techniques.

3.3.2.1 Data sets

We used two data sets, the first one is the UCMerced-Land-Use data set comprising
2100 images categorized in 21 groups. Each group contains 100 image patches of
the size 256 x 256 pixels from aerial photography. These images are collected such
that they represent rich variation of scene patterns. The second data set is the Corel
image data set. This data set contains 1500 images in 15 different groups, where
each group contains 100 images.
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Figure 3.8: The workflow of the proposed approach. While data points are transferred
from a high-dimensional space to low-dimensional one, the ranking matrices are
built from the data points. These matrices are merged together to build up the
co-ranking matrix that is used to define a joint probability distribution. Mutual
information computed from this probability distribution is used to assess the quality
of dimensionality reduction (here, communication channel) [BDR13].

3.3.2.2 Feature extraction

Three different features, namely, color-histogram [SGS10], SIFT [Low04], and Weber
Local Descriptor (WLD) [Jie+08; BD13] are extracted from images. The extracted
feature descriptors are represented by the Bag-of-Words model, where each image is
described by a vector of 200 visual words.

3.3.2.3 Dimensionality reduction

We applied three different dimensionality reduction techniques to the high-dimensional
features to reduce the dimensionality to 3D for visualization. These techniques are:
1) LE [BNO03], 2) SNE [HRO02a], and 3) LLE [RS00].

3.3.2.4 Results

Mutual information and entropy of the co-ranking matrix are computed for 9 different
combinations of features-DR [namely, 1) color-LE, 2) color-SNE, 3) color-LLE, 4)
sift-LE, 5) sift-SNE, 6) sift-LLE, 7) WLD-LE, 8) WLD-SNE, 9) WLD-LLE] for
both the Merced and the Corel data sets. The computed mutual information and
entropy from co-ranking matrices of these combinations are depicted in Figure 3.9.a
and Figure 3.9.b for Merced and Corel data sets, respectively. The Figure 3.9.c and
Fig. 3.9.d show the 3D plot of the used SNE dimensionality reduction applied to
extracted Weber features from the Merced and the Corel data sets, respectively. By
looking at the corresponding mutual information (values for number 8 in Figure 3.9.a
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and Figure 3.9.b), we conclude that larger mutual information corresponds to better
data visualization in terms of seeing better clustering of the data.
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Figure 3.9: The quality of dimensionality reduction applied to the Merced and Corel
data sets represented by mutual information and entropy of co-ranking matrix. A
combination of three different features (color-histogram, SIFT, and WLD) and three
different DR techniques (LE, SNE, LLE) yields 9 feature-DR methods indexed from
1-9; a) results of the Merced data set; b) results of the Corel data set; c¢) plotted
result of method 8 from the Merced data set; d) plotted result of method 8 from the
Corel data set.

3.4 A customized dimensionality reduction

As mentioned earlier, dimensionality reduction is the most widely employed approach
to determine the position of images [BN03; HR02a] in 2D or 3D. However, the main
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disadvantage of this approach is that images are usually occluded and much of the
display space is not used, giving rise to difficulties for the user to interpret the data.
To address this issue, some solutions were proposed to arrange the images in display
space based on optimizing a predefined cost function [Wan+10; Mog+04; NWOS].
In [Mog+04] and [NWO08], the authors estimate the two-dimensional locations of
the images by minimizing the overlap between them, where the size of images and
display screen are the parameters of the optimization function. They define a cost
function as a compromise between similarity preserving and overlap minimization
and use the gradient descent method to optimize this cost function. Additionally, the
authors in [Wan+10] propose an algorithm that spreads images equally in a given
display area, something achieved by minimizing a cost function, which consists of a
structure-preserving term, an entropy term, and a term that penalizes locations of
images outside the predefined display layout. All the aforementioned methods first
reduce the dimensionality of images and then change the position of the data points
to fulfill the other requirements. In summary, a good visualization of images should
fulfill the three main requirements listed below [NW08]:

(i) Structure preservation: the relations between images, mainly similarity and
dissimilarity, should be preserved;

(i) Visibility: all displayed images should be visible to the user (i.e. less overlap
between images);

(iii) Overview: the user should be able to gain an overview of the distribution of
images as a cluster.

This section proposes a customized dimensionality reduction technique to arrange
image collections in 2D /3D display spaces for image data mining. The main contribu-
tion is the development of a novel regularized NMF' to position image collections by
taking into account the three above requirements. Since each image is represented by
a histogram (i.e, Bag-of-Words), there is no conflict in the non-negativity constraint
of NMF [FP05], which has non-negative values. In the Bag-of-Words model, each
image is treated as a document and its local features as words. The extracted features
from all images are pooled and clustered. Next, a histogram of extracted local features
from each image is constructed based on cluster centers to represent that image. To
consider the aforementioned requirements, a regularization term for each requirement
is introduced, which controls the trade-off among requirements. More specifically,
there is one regularizer for the structure-preserving requirement, one for the overview
requirement and one for the visibility (occlusion-minimizing) requirement. For the
structure preserving, the sum of locality (similarity-preserving) [Cai+11] and farness-
preserving [Bab+14c| values are introduced. The Renyi entropy is employed to define
the visibility regularizer. Finally, the result of clustering, obtained by applying the
k-means algorithm to the original features, is selected to define the overview regu-
larizer. These three regularizers, controlled by some parameters are coupled to the
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main objective function of NMF to formulate the cost function of our dimensionality
reduction for image positioning. The results of the proposed algorithm are visualized

in the CAVE.

3.4.1 Regularized NMF for visualization

In order to achieve a good visualization, we require the following constraints for the
low-dimensional representation:

3.4.1.1 Structure preservation

An optimal dimensionality reduction technique should preserve the structure of
data. In other words, similar images should be placed close to each other and
dissimilar images should be far away from each other. To this end, a similarity
preserving constraint, which was introduced in the Graph Regularized Non-negative
Matrix Factorization (GNMF) algorithm [Cai+11], forces images whose corresponding
features are close to each other to also be close to each other in the low-dimensional
space. This constraint is defined based on a weight matrix W, which represents
the internal structure of the high-dimensional data. This matrix is based on the
construction of a nearest neighbor graph, where for each point x; we find its & nearest
neighbors and put an edge between x; and each neighbor. Based on this graph, there
are many possibilities to construct the matrix W. Here we adopt the heat kernel
weighting, where:

2
X; — X
_|3—l| (3.8)

W =e o ; subject to o >0,

if nodes j and [ are connected and 0 otherwise. Based on W, the authors of [Cai+11]
introduce the following term for similarity preservation in the proposed algorithm
which is:

1 2
OS:§Z||V]'—V1H Wi
il

= Tr(VTLV),

where L=D — W and D is a diagonal matrix, whose entries are column sums of W
(i.e., Dj; = >, wj;) and V is the new data representation.

The constraint for farness, which was introduced in [Bab-+14c]|, forces dissimilar
images to remain far away from each other. For this constraint, [Bab+14c| uses the
complementary matrix W) of W, which is also based on a graph, where each point
x; is connected with its p farthest neighbors. Based on this graph, W/ is computed
by means of binary weighting with

(3.9)

W

=1, (3.10)

jl
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if nodes j and [ are connected and 0 otherwise. Based on W) the authors
of [Bab+14c] introduce the following term for farness preservation:

B 3 2
Of = exXp —5 HV] - VZH W§{)
Jil

= exp [—BTI (VTL(f)V)] ,

(3.11)

where L) = DY) — W) and D) is a diagonal matrix, whose entries are column
sums of W), D%) => W]({ ). Parameter [ controls how much the farness property
should contribute in general. Combining these two terms leads to the structure-
preserving regularization term:

O1 = A {Tr(VTLV) + exp [T (VILYV)] } . (3.12)

3.4.1.2 Occlusion minimization

To minimize the overlap among images and increase the visibility, we propose an
entropy term to be coupled with the main NMF objective function. The entropy
term is the Renyi quadratic entropy measure [Ren61] of the Gaussian mixture of
image positions. We use Renyi entropy because it can be effectively estimated as the
sum of pair-wise distances between Gaussian components. It was previously defined

in [Wan+10] as
1

,J
with

1
Gij = exp (_ﬁ ’Vl' — Vj|2> . (314)

Based on this entropy term, we obtain the following term:

1
4,J
3.4.1.3 Overview

For the overview, we require points that are in the same cluster in the high-dimensional
representation to also be in the same cluster in the low-dimensional representation.
To fulfill this requirement, we cluster the points in the high-dimensional space and
introduce a graph where each point x; is connected with points belonging to the
same cluster. Based on this graph, we define the matrix W) as

o) = 1, (3.16)
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if nodes j and [ are connected and 0 otherwise. Eventually, we introduce the following
term for overview:

Ag o o
05 = 53 llvy = vill* W) = AT (VILOW), (3.17)
7,1

where L(® = D — W and D is a diagonal matrix whose entries are column
sums of W) and Dg;) => w](.(l)). As we can see, the objective for the overview
(3.17) has the same form as the objective for similarity preservation (3.9). Therefore,
we combine the two terms into

O = M Tr(VILV) + A Tr(VILOV) = A Tr(VILV) (3.18)

where \
L=L+22LO). (3.19)

A1

3.4.1.4 Resulting NMF formulation

Adding the introduced terms to the main objective function of NMF leads to the
following objective function:

O =[x~ UV + N Tr (VILV)
1]

In order to obtain the update rules for U and V, we expand this objective to

0 = Tr (XX") = 2Tr (XVU") + Tr (UV'VU") + \Tr (VILV)

]

and introduce Lagrange multipliers ® = [¢;;] and ¥ = [¢;] for the constraints
[wi] > 0 and [v;;] > 0, respectively. This leads to the Lagrangian
£=Tr (XX") = 2Tr (XVU") + Tr (UVIVU") + T (VILV)
1
+ A exp [—(Tr (VTL(f)V)] + A2 log <W Z Gij) +Tr (@U) + Tr (¥V).

i?j

(3.22)
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The partial derivatives of L with respect to U and V are:

o = —2(XV)y + 2(UVIV)y + @y, (3.23)
U,
oL T - B
gy = (XTU+VUTU) 4 (2Lv)
- M2Bexp [-ATr (VILYV)] (LYV)
2
+ )\QO_T¢ ; (Guj (v — )] + (3.24)

where

¢ = Z Gij. (3.25)

Using the KKT-conditions ¢;,u, = 0, ¥;,v;, = 0 [BV09], we arrive at the following
update rules for U and V:

(XV)ik
Uik = Uzkm (3.26)
Vjk < UjkM (327)

and

_ (XU + A (LTV) i+ M BRO(LY) +Vt)gk + z¢ >oi(Gui) (V= VO,
(VUTU) 5 + M (LHV) 5 + MBRD LNV o + 2257 (Gyvf ) (V — VO

(3.28)
where we introduce the following terms:
LY = LW+ - LU~ with LYY = (LY + L) /2, L™ = (LY - L) /2,
(3.29)
L=L" - L~ with L}, = (|L;;| + L;;) /2, L;; = (ILy| — Ly;)/2, (3.30)
RY) = exp [—BTr <( ) LY Vt)} (3.31)

As expected, the update rule for U remains the same as in the original algorithm
[LS01], since the newly introduced terms in the objective (3.20) depend only on the
variable V.

The proof of convergence for the update rule for V' can be found in Appendix B.2.
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3. Immersive Visualization of Image Collections and Feature Space

Figure 3.10: Immersive visualization of image collections in the CAVE

3.4.2 Experiments

We conducted several experiments to study and evaluate the performance of the
proposed dimensionality reduction technique in order to position several image
collections in 3D. To this end, we utilized several different image data sets represented
by different features.

3.4.2.1 Data sets

We performed experiments on three data sets: 1) Caltech; 2) Corel; 3) SAR.
Caltech: This data set contains the 10 biggest groups of the Caltech101 data set,
which is 3379 RGB-images. SIFT [Low04] descriptors were extracted from these
images, then each image is represented by a 128-dimensional vector using the Bag-of-
Word (BoW) model.

Corel: This data set contains 1500 64x64 pixels RGB-images in 15 different groups.
For the experiment, we extracted local SIFT descriptors from each image and by
using the BoW model we created a 200-dimensional feature vector to represent each
image.

SAR: The SAR data set consists of a collection of 3434 160x160 pixels SAR (Synthetic
Aperture Radar) images, which are grouped in 15 classes consisting of various factors
such as presences of forests, water, roads and urban area density. We represented
each image of this data set with a 64-dimensional feature vector computed by
applying BoW model to the extracted SIFT descriptors from the images.
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3.4. A customized dimensionality reduction

3.4.2.2 Setup

For the experiments we selected a random subset of 500 images from each data set
and ran each NMF-algorithm 10 times with different starting points and picked
the best results. We analyzed the algorithm for different combinations of pa-
rameters and for cases where only one of the regularization terms is used. We
obtained the combination parameters through cross-validation for each data set
separately. More precisely, parameters A\; and A3 had a value from the range
of {107°,107%,1073,1072,107%,10°, 10, 102,103, 10, 10°} and parameter \y from a
range of {1071, 1,101,102, 103, 10%, 10°}. Therefore, we had 847 (11*11*7) different
combinations to test. For the parameters 3 and o, we chose the values 8 = 1074
and o = 0.9 for all data sets obtained from cross validation. The other parameters
were also found in the same way and set to Ay = 0.1, Ay = 1000, A3 = 0.01 for
the Caltech data set, \y = 1, Ay = 1000, A3 = 0.01 for the Corel data set and
A1 = 0.4, Ay = 1000, A3 = 0.01 for the SAR data set. Then for the visualization
and convergence plots, we chose either the combination of the parameters or set the
parameter of one regularization term to the given value and others to zero.

For the analysis of each regularization term, we set the other parameters to zero,
varied the corresponding parameter and computed the structure preserving, overview,
and occlusion for each parameter value. For the occlusion, we treated each image as
a cube with constant edge size and computed the overlapping volume of all cubes.
For structure preservation, we used the equation

1 T

For the overview, we clustered the images before and after applying the algorithm
and computed the percentage of images with the same label. We normalized the
resulting values to be in the range [0,1].

Finally, we analyzed the effect of each regularization term on the clustering
accuracy of the resulting image distribution. For these experiments, we used the
parameters given before for each regularization term and then applied the algorithm
on a random subset of 500 images for each data set, grouped the resulting distribution
into clusters and compared the cluster labels with the ground truth labels. For the
comparison, we computed the accuracy and the normalized mutual information to
assess the clustering. For details on these metrics please see [Bab+14c]. We repeated
each experiment 10 times with different subsets of images and computed the mean
value and standard deviation.

3.4.2.3 Results

The resulting image visualizations are depicted in Figure 3.11, Figure 3.14, and Fig-
ure 3.17 for the Caltech, Corel and SAR data sets, respectively. The results show that
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increasing the parameters for overview or structure preservation leads to distributions
where similar images are placed close to each other, but at the same time the available
space is not used optimally and thus the occlusion of images increases. Using a
regularization with high entropy causes the images to be spread over the available
space, increasing the image visibility, but at the same time losing the structure of
the original distribution. Therefore, a combination of all regularization parameters
is required to achieve a high image visibility while preserving the structure of data.

In Figure 3.13(a-e), Figure 3.16(a-e), and Figure 3.19(a-e), we analyze the con-
vergence rate of each algorithm for the three data sets. The plots show that the
algorithm converges for each regularization term as well as for their combination.
While the entropy term leads to a slight decrease in convergence speed, the overall
convergence speed is not significantly impacted.

The behavior of the regularization parameters is analyzed in Figure 3.12, Fig-
ure 3.15, and Figure 3.18 for the three data sets. The results show that, as expected,
the overview and structure preservation do generally increase when the parameters
for either are increased, which, however, increases image occlusion. On the other
hand, increasing the parameter for entropy in general leads to a decrease in image
occlusion, but at the same time loses the structure and overview.

The results for clustering accuracy in Figure 3.13(f), Figure 3.16(f), and Fig-
ure 3.19(f) confirm that by introducing the structure or overview regularization, the
performance in most cases increases compared to the NMF. However, for the Caltech
data set, the performance slightly decreases for the structure term. Increasing the
entropy parameter leads to a decrease in clustering accuracy for all data sets. Fi-
nally, the combination of structure, overview and entropy still outperforms the NMF
algorithm for the Corel and SAR data sets, but not for the Caltech data set.
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3.4. A customized dimensionality reduction

Figure 3.11: Visualizations of the Caltech data set (a) Combination of regularization
terms (b) Entropy regularization (¢) Overview regularization (d) NMF.
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Figure 3.14: Visualizations of the Corel dataset (a) Combination of regularization
terms (b) Entropy regularization (c) Overview regularization (d) NMF.
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(c) (d)

Figure 3.17: Visualization of the SAR dataset (a) Combination of regularization
terms (b) Entropy regularization (c) Overview regularization (d) NMF.
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Figure 3.19: SAR dataset convergence plots (a) Combination of regularization
terms (b) Entropy regularization (c¢) Overview regularization (d) NMF without
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different regularization terms

66



3.5. Summary and conclusion

3.5 Summary and conclusion

In this chapter, we focused on the visualization of high-dimensional data. First,
we provided detailed information about the CAVE as a 3D virtual environment
for interactive data visualization. There, we employed a library of dimensionality
reduction to map the data to three dimensions visualization. However, we mentioned
that using pure dimensionality reduction might not be a good idea if we have a
limited display screen and would like to have less occlusion among images. So, we first
proposed a novel evaluation metric to measure the quality of different dimensionality
reduction techniques based on the concept of information theory. Then, we proposed
a customized dimensionality reduction based on non-negative matrix factorization
that takes into account the structure preserving, occlusion, and overview conditions.
Specifically, the NMF-algorithm was coupled with proper regularization terms for
structure preservation, overview and entropy in order to achieve high visibility, while
similar images are still placed close to each other. Experimental results have shown
that when a combination of the introduced regularization terms is used, the desired
image distribution can be achieved. The update rules for the resulting algorithm
have the same form as for the original NMF and convergence is achieved quickly in
all cases. One disadvantage of the proposed algorithm is the additional parameters
introduced by the regularization terms. Therefore, one possible direction for future
work is to reduce the number of parameters by finding the optimal relationship
between them.
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Interactive Dimensionality
Reduction

Many data analysis techniques deal with massive amounts of data that are rep-
resented by very high-dimensional feature vectors. However, the large number of
variables in each vector does not necessarily mean that all variables are meaningful
and informative. Therefore, it can be useful to obtain a compact and meaningful
representation from the content of each data sample. Dimensionality reduction
techniques have been widely used to address this problem. However, these techniques
are not necessarily devised to generate discriminative low-dimensional features. One
way to deal with this issue is to develop interactive techniques, where the user is
involved in the process of dimensionality reduction.

In this chapter, we propose several interactive dimensionality reduction techniques
based on the framework of non-negative matrix factorization [Bab-+14e; Bab+15d].
With an appropriate visualization interface (i.e., the Cave Automatic Virtual Environ-
ment (CAVE)), the proposed techniques allow the user to interact with data (images)
and provide some constraints to the algorithms. This chapter first begins with an
overview of related work and then describes the proposed interactive techniques for
dimensionality reduction.

4.1 Related work

In this section, we briefly review several related works in the area of interactive
dimensionality reduction and data representation.

IN-SPIRE [Wis99] is a well-known visual analytic system for document process-
ing, mainly comprising dimensionality reduction and clustering. It first extracts
high-dimensional features from documents utilizing a Bag-of-words model and then
applies k-means clustering (with pre-defined number of clusters) to the features for
data reduction. In order to visualize these features, Principal Component Analysis
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(PCA) is first used to reduce feature dimensionality to just two dimensions before
the features are plotted on a screen. Another visual analytic system for document
processing is Jigsaw [SGLO8], which uses named entities for visualization. In this
system, clustering is performed by the k-means algorithm and the results are plot-
ted on a screen. iPCA [Jeo+09] also applies PCA to high-dimensional data for
dimensionality reduction. Additionally, it visualizes both low-dimensional data along
with the principal axes in high-dimensional space via parallel coordinates. Finally,
Testbed [Cho+13] claims to offer an interactive visual system based on a built-in
library for dimensionality reduction and clustering. This system aims to help the user
to understand data by visualizing the results of different dimensionality reduction
and clustering methods. The algorithm claims to reveal valuable knowledge from
data and assists the user to choose the most appropriate processing path along with
proper parameter(s).

Since the last decade, numerous projects have utilized virtual reality for infor-
mation visualization. For instance, VRMiner provides a 3D interactive tool for
visualizing multimedia data utilizing virtual reality [Azz+05]. In this system, a set
of numeric and symbolic attributes, along with multimedia data (e.g., music, video,
and websites), are presented in a 3D virtual environment. One drawback of the
system, however, is that images and videos need to be displayed on a second PC in
order to have a real-time system. Another sample illustrating the usage of virtual
reality for information visualization is an application named 3D MARS [NHO1]. This
application is mainly for content-based image retrieval, in which the user browses
and queries images in an immersive 3D virtual environment. The main aim of this
system is visualizing the results in 3D space.

Besides the aforementioned technologies for the visualization and exploration of
data, Human-Computer Interaction (HCI) has shown valuable contribution in the
domain of data mining and knowledge discovery. The main goal is to provide the
user with a way to learn how to analyze the data in order to get knowledge to make
proper decisions. For example, Holzinger [Hol12] has investigated HCI for interactive
visualization of biomedical data. As another example, Wong et al [WXH11] have
shown first the similarity between intelligent information analysis and medical diag-
nosis, and then proposed which aspects should be considered during the design of an
interactive information visualization to facilitate intelligent information analysis.

Evidently, the main processing step in every visual analytic system is dimension-
ality reduction. Since the last decade, numerous linear and nonlinear DR techniques
have been proposed in different research areas. While linear approaches assume
data lies in a linear d-dimensional subspace of a high-dimensional feature space,
nonlinear approaches consider data as a d-dimensional manifold embedded in a
high-dimensional space. Perhaps the most famous linear algorithm is PCA that
projects data into d eigenvectors corresponding to d largest eigenvalues of the co-
variance matrix of the data. Among nonlinear methods, Locally Linear Embedding
(LLE) [RS00] aims to preserve the structure of data during dimension reduction. It
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assumes that the data belongs to a low-dimensional smooth and nonlinear manifold
that is embedded in an ambient high-dimensional space. The data points are mapped
to a lower-dimensional space while preserving the neighborhood.

Laplacian Eigenmap (LE) [BN03] is a nonlinear technique in the domain of spectral
decomposition methods and locally transforms data into low-dimensional space. It
performs this transformation by building a neighborhood graph from the given data,
whose nodes represent data points and whose edges depict the proximity of neigh-
boring points. This graph approximates the low-dimensional manifold embedded in
a high-dimensional space. The eigen-functions of the Laplace Beltrami operator on
the manifold serve as the embedding dimensions.

Stochastic Neighbor Embedding (SNE) [HR02a] is a probabilistic based approach
attempting to preserve the neighborhoods of points based on converting the dis-
tances into probabilities. Therefore, the neighborhood relation between two data
points is represented by a probability such that closer points to a specific point
have larger probability than further points. Thereafter, data points are mapped
to low-dimensional space such that the computed probabilities are preserved. This
is done by minimizing the sum of the Kullback-Leibler Divergence (KLD) of the
probabilities.

4.2 Immersive data visualization

We have implemented an immersive 3D virtual environment (i.e., CAVE) in order to
visualize images and allow the user to interact with them. The 3D positions of images
in the CAVE are determined by the clustering result of k-means method and the
distances between the images and their corresponding centers. The user can easily
navigate inside the data and check the result of k-means clustering. If an image is
mis-clustered, the user can correctly connect this image to all its semantically similar
images. For convenience, the user can directly connect this image to a target cluster
center instead of connecting it individually to all the images of the target cluster.
Additionally, the distance between an image and its cluster center is proportional to
its distance to the cluster center in the high-dimensional space. Thus, the user can
first scan the images that are far away from their centers because they are prone to
be mis-clustered. A snapshot of the visualization of images in the CAVE is depicted
in Figure 4.1(a) and Figure 4.1(d) for SAR and optical data, respectively. Compared
to the approaches that present images for labeling to the user sequentially, the main
advantage of the immersive visualization technology is that it provides the user an
overview of the whole data set, assisting the user to find those images that should
be matched more efficiently. The 3D visualization of images with sample interaction
for two different datasets is depicted in Figure 4.1(c), Figure 4.1(d).
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Figure 4.1: (a) the visualization of the clustering result in the CAVE. Images are
positioned around their cluster centers based on their distances. A sample image of
each cluster is used to depict the cluster center. (b) and (c) show user interactions
on a desktop. A mis-clustered image is connected to a semantically cluster center
by a green line. (d) a mis-clustered image (the image with red border) is connected
(green line) to the cluster center of target cluster (with blue border) for SAR images.
This interaction updated the semantic similarity matrix W, which is used in our
novel NMF algorithms.

4.3 Interactive algorithms

Presented in this section are several novel interactive Dimensionality Reduction
(DR) algorithms based on non-negative matrix factorization. These algorithms are:
1) Variance Regularized Non-negative Matrix Factorization (VNMF); 2) Center-Map
Non-negative Matrix Factorization (CMNMF); 3) Pair-wise Constrained NMF; and
4) Set-wise Constrained NMF. The first two algorithms use the same user interface in
which images are visualized as a cluster obtained by k-means algorithm. A snapshot
of this visualization is presented in Figure 4.1. Images in the user interface of last two
algorithms are visualized based on the their position computed by a dimensionality
reduction. Here, the user chooses a DR technique and the images are displayed in
the position of their corresponding 3D features.
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4.3.1 Variance constrained NMF

The goal of VNMF is to factorize some input data X into two non-negative matrices
U and V, subject to a minimum value for the variance of V (i.e., o%). More precisely,
we minimize the following objective function:

F=|X-UVT|}+ \o?

s.t. U= [uy] >0,
The user interactions are kept in the matrix W € RN whose elements w;; are
1 if the images ¢ and j are connected or 0 if they are not. To compute the variance
of new features, their expectation value should be computed first. Thus, we scale the
matrix W so that its rows always sum to 1, yielding matrix W. The multiplication
of W and V finally results in a matrix V, holding the mean features of similar
images. For example, given a dataset of four images, where image 1 is connected to
image 2, we get:

1/2 1/2 0 0 V11 V12 U113 V4
X7 _\rT o 1/2 1/2 0 0 V21 Vg2 V23 UVyg
V=Wv= 0 0 120 U31 V32 V33 U4
0 0 01 U4l Vg2 Vg3 U4
(4.2)
By introducing new matrix T =1 — W, we can write
—2 —~ 2 9
o2 =|[V-V|} = HV—WVHF — | TVI>2. (4.3)

In order to control the variance, another scalar parameter 6 is introduced inside the
regularizer. Finally, the objective function to be minimized is

2
C =X - UV + AN — [ TV])

= ; Z (i — ; Uz‘kvjk)2
+A(N9—ii(fuzj —@j)2>2. (4.4)

where A controls the overall contribution of the regularizer.
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4.3.1.1 Optimization rules

To minimize the cost function given in (4.4), we first expand it to

0= Tr((X ~UVT)(X — UVT)T)

+ A(NQ - Tr((TV)(TV)T))2 (4.5)
= Tr(XXT) — 2Tr(XVU?) + Tr(UVTVUTY) + \Z2,

where
Z = Nf — Tr(TVV'ITT). (4.6)

We define Lagrange multipliers o, and 3, with the constraints u;, > 0 and v;, > 0,
respectively. Therefore, by defining ® = [o;,] and ¥ = [5;x], the Lagrangian £ is

L =Tr(XX") - 2Tr(XVU") + Tr(UVTVUT)
+ \Z? + Tr(@U) 4 Tr(PV). (4.7)

The partial derivatives of £ with respect to U and V are

oL

= = XV +2UVIV+® 4.
50 + + (4.8)
g—ff = 2XTU 4+ 2VUTU — 20 ZTTTV + ¥. (4.9)

Using the Karush-Kuhn-Tucker (KKT) conditions [BV09], where a;ju;; = 0 and
Bjrv;r = 0, the following equations are obtained:

— (XV)apuix + (UVIV)jguy = 0 (4.10)
[-XTU + VU'U = MZT"TV] v, = 0 (4.11)

With the symmetric matrices T = T+ — T, where T}, = (|T;;| + Ty;)/2 and
T;; = (|Tij| — Ty;)/2, the update rules for U and V can be rewritten as:

Uik Uik—(UvTV)ik (4.12)
XTU - 20\ZT*T"V);
Vjk < Vjk ( )Jk (413)

VUTU — MZT+T+V — AZT-T-V)
J
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4.3.2 Center Map NMF

In CMNMEF, the user-interaction/semantic information is incorporated/injected
inside the main function of NMF. First, we create a symmetric diagonal matrix
Wi (N is the number of images) with 1 in the main diagonal that holds the
semantic similarity of images. When the user links an image ¢ to a cluster center ¢
containing p images, the corresponding p elements of the row ¢ of matrix W would be
1. In other words, w;; # 0 shows the images ¢ and j are semantically similar to each
other. Finally, matrix W is updated as a weight matrix with w;; = Z?il wy =1,
where M is the total number of non-zero elements in row ¢. In addition, we introduce
an auxiliary matrix Z in order to get matrix V. For example, suppose there are four
images, the operation is:

_wz o | 2
V=Wz=| " |
0 0

211 212 13 <14
222 223 224
<31 R32 <33 R34
241 242 243 244

O = O O
_— o O O
N
no
=

Z11 + 221 212 T 299 213 + 223 214+ 224

2 2 2 2
211+ 221 212+ 292 213+ 223 214+ 24
- 2 2 2 2 (4.14)
231 239 233 <34
241 249 243 244

From this example, we can see that the new representation guarantees that
the first two images (first two rows of V) will be assigned to the same cluster
center. Adding the introduced terms to the NMF formulation leads to the following
minimization objective:

. . _ Ty T
I[IJ}I%IO = I[I}lélHX Uz"w'|| (4.15)
where X, the original image representations, is decomposed into U and V, V being

the new representation of the images and U being the bases. For the derivation of
the update rules we expand this objective to

O = Tr((X — UZ"WT)(X — UZTWT)T)

4.16

= Tr(XX") - 2Tr(XWZU") + Tr(UZ"WTWZUT) (4.16)

and introduce Lagrange multipliers ® = [¢;;] and ¥ = [¢;] for the constraints
[u;r] > 0 and [v;] > 0, respectively. This leads to the Lagrangian

L=0+Tr(®UY) 4 Tr(¥Z") (4.17)
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The partial derivatives of £ with respect to U and Z are

% = —9XWZ +2UZ"WTWZ + & (4.18)
OL T~T T T
9z = 2WIX'U+2WIWZUTU + ¥ (4.19)

Using the Karush-Kuhn-Tucker (KKT) conditions [BV09], we arrive at the following
update rules for U and Z:

7 UZTWTWZ),,
(W X"0)s 4.21
J

4.3.3 Immersive interface

We utilized a 3D interactive application development software, namely 3D Via Studio,
to create our interactive user interface. The application can be run on a desktop
PC or in a CAVE [BRD13a]. The 3D positions of images are determined by the
clustering result of the k-means method, as well as the distances between the images
and their corresponding centers. More precisely, the distance between an image and
its cluster center is proportional to its actual distance in the high-dimensional space.
Thus, the user can first assess the images that are far away from their respective
cluster centers, because they are prone to be mis-clustered.

In addition to the CAVE, we also implemented a desktop version of our application
that ran on a single PC. A snapshot of the immersive visualization of the clustering
results in the CAVE is depicted in Figure 4.1(a). Figure 4.1(b) and Figure 4.1(c) depict
two views of a clustering result visualized on a desktop PC. The main advantage of
using the immersive visualization technology is that the user gets an overview of the
whole dataset and can therefore identify those images that should be relabeled more
efficiently. This is especially important if the user is dealing with a high amount of
images that cannot be visualized on a monitor with limited space.

4.3.4 Experiment 1

In this experiment, we evaluate the performance of our two introduced interactive
dimensionality reduction algorithms.
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4.3.4.1 Data set

The data set used in our experiments is a Synthetic Aperture Radar (SAR) data
set [Bab+14c] represented by three different features. It consists of a collection of
3434 SAR images of the size 160 x 160 pixels, pre-categorized into 15 classes/labels (by
a SAR expert) based on the presences of forests, water, roads and urban area density.
For instance, one image is categorized as “sea” and another as “industrial part”.
Three different feature vectors, namely Weber Local Descriptor (WLD) [Jie+408],
Mean-Variance [CDD13] and Image Intensity [CDD13] were extracted from the
images, leading to a total of 64 dimensions in these three cases. All features are
normalized to lie between 0 and 1. The information about this data set is presented
in Appendix A.

4.3.4.2 Evaluation metrics

Two evaluation metrics, namely Accuracy (AC) and normalized Mutual Information
(nMI) are used to assess the quality of k-means clustering applied on the original
and learned representations of images [XLGO3].

4.3.4.3 Design

Given a set of N images, we randomly selected 10 — 15 percent of the images as
training data. In our experiment, 500 images are chosen as training data. For this
new image set, we applied k-means clustering algorithm and visualized the images by
the cluster-based visualization system. We visualized the images by 15 clusters. The
user navigated inside the data and corrected the mis-clustered images by drawing
a green line between the image and the center of the desired target cluster. The
interactions were saved in a matrix with 2 columns and I rows, where I is the number
of interactions. The first column stored the ID of the interacted image and the
second column saved the ID of the target cluster. The interactive matrix was used to
create the weighted similarity matrix for systems based on VNMF and CMNMF. For
example, the user moved image i to the cluster c;. And there were two images i and
17 belonged to co. The images i, i and 27 would be regarded as similar images and
the positions in similarity matrix (2,6), (2,7), (6,2),(6,7),(7,2) and (7,6) would be
set to 1. After updating the matrix W, the matrix W was determined by calculating
row-wise average, namely
wij

Z?I:I Wit
where N was the number of images in total. Then, for VNMF, the matrix T was
updated by T =1 — W where I was an identity matrix. The new matrix T is used in
VNMEF fto calculate the new data representation V where V shows better clustering
result in low dimensional space. For CMNMF, the matrix W was directly used in

'LUZ']' =

(4.22)
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updating rules to obtain the new data representation. All similar images would be
mapped to their semantic centers and as a result, the new representations provided
good clustering accuracy.

The dimension of new representation matrix V was set to the number of images
by the number of classes. For our SAR data set, the dimension of V was set to be
N x 15. For CMNMF, the similarity matrix was directly applied to the updating
rules since the matrix V was replaced by WZ. Thus, no parameter was needed. For
VNMEF, the regularization parameter was used to control the contribution of the user
interactions. The parameter was chosen by tuning the value A by searching the grid
{1077,107%,1075, ..., 10%,10%}. Since the new representation V consisted of small
values (0 ~ 0.6), and the updating rules were sensitive to the regularization terms,
the parameter between 107 and 1072 was chosen in most cases.

After training, we used these three learning algorithms in two different ways for
test data: 1) cluster the test data following the change of interaction number and 2)
cluster the test data following the change of the dimension of new representations.

Traditionally, after training, the test data was processed as a whole data set
(batch processing). Since the size of test data set is much larger than the size of
training data, divide-and-conquer processing is used when clustering the test data.
Compared with batch processing, divide-and-conquer processing provides similar
performance in clustering accuracy with much less running time. The test data was
divided into parts with the same size of training data. We then mixed the training
data with each part and applied learning algorithms to obtain new representations
for each part. The clustering results of k-means algorithm on each part were averaged
as the final result of the whole data set. A schematic of this process is depicted
in Figure 4.2.

When clustering the test data following the change of interaction number, the
dimension of the matrix V is fixed to the number of images by the number of
classes. Based on different numbers of interactions, the test data are classified and
the clustering results are calculated.

When clustering the test data following the change of the dimension of new
representations, the number of interactions is fixed to 180. The new representation
matrix V will have the size of N x k, where N is the number of images, k changes in
the range 3,6,9,12, 15 for the SAR data set. For matrix V with different sizes, the
clustering results are calculated and compared with other algorithms.

To enhance the user’s effect, the locality property was used to propagate the
user’s interaction. In other words, the user’s interaction on training data would be
applied to their nearest neighbors in test data. The idea is shown in Figure 4.3. The
usage of the locality property could produce errors since it uses Euclidean distance to
find nearest neighbor. However, it strengthened the user interaction and the learning
algorithm would correct the error produced by the locality property.
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Figure 4.2: A schematic view of the proposed divide-and-conquer approach to get a
new representation of the data for clustering. Here, the training data is mixed with
each part of test data and is fed into VNMF/CMNMF to get new representation V.
The k-means algorithm is applied on each V separately and the results are mixed as
the final results of clustering.

@)~

Figure 4.3: The objects in blue are the training data, and in green are test data.
The square and circle indicates different classes. The dash line shows the similarity
interaction. The blue dash interactions are done by the user while training the
data. The green dash interactions are done by the system while applying the locality

property
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4.3.4.4 Results

We compared the clustering results of new representations obtained from VNMF and
CMNMF with that of the k-means clustering algorithm on original high-dimensional
features, PCA, and NMF as a function of number of interactions and dimension of
subspace separately. The three columns in both Figure 4.4 and Figure 4.5 show the
results of SAR images represented by Mean Variance, Image Intensity, and WLD
features, respectively.

Figure 4.4 shows the experimental results of clustering test data with the change
of interaction number. As Figure 4.4 shows, by increasing the number of interactions,
the clustering accuracy of VNMF and CMNMF for all data sets is increased by
10 — 15%. The user interaction provides more improvement in Mean-Variance and
WLD features than Image Intensity features. For mutual information, all algorithms
present similar performance within the range of £3%, which is reasonable for heuristic
algorithms.

Figure 4.5 presents the experimental results of clustering test data with the
change of dimension of subspace. Here, the dimension of subspace is the number of
columns of new data representation V. As shown in the Figure 4.5, with the increase
of the dimension of new representations, all algorithms, except k-means, show the
improvement in accuracy and mutual information. Among these algorithms, VNMF
and CMNMF, shown in green and blue line respectively, offers better performance
than other algorithms for all dimensions. It provides about 5 — 10% improvement
over other algorithms. Compared among these three features, the user interaction
improves the accuracy most for Mean-Variance features by more than 10%. For
the mutual information, all algorithms have similar performances. Additionally, by
observing the accuracy in Figure 4.5, we can find that for feature Mean-Variance
and Image Intensity, once the dimension of subspace reaches 6, further increment in
dimension of subspace cannot improve the clustering results in accuracy and mutual
information. For WLD feature, after the dimension reaches 9, the accuracy and
mutual information also reach their highest points in this dimension range. The
results imply that, instead of setting the dimension of new representation to the
number of classes, choosing some smaller values, like 6 for Mean-Variance and Image
Intensity and 9 for WLD, will not affect the clustering result but will decrease the
size of new representations substantially.

4.3.4.5 Convergence

Figure 4.6 shows the convergence speed of NMF, VNMF and CMNMF for features
Mean-Variance, Image Intensity and WLD.

As shown in figures above, these three algorithms converge within 10 iterations.
VNMF provides a better objective value that is much smaller than that in NMF and
CMNMF provides smallest objective value. Figure 4.6 shows the convergence speed
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of Non-negative Matrix Factorization (NMF), VNMF, and CMNMF for features
Mean-Variance, Image Intensity and WLD of SAR. As shown in figures above, these
three algorithms converge within 10 iterations. VNMF provides a better objective
value that is much smaller than that in NMF and CMNMF provides smallest objective

value.
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The computation times of divide-and-conquer and batch processing are depicted
in Figure 4.7. The results confirm that the divide-and-conquer approach is about
four times faster than batch processing. Fortunately, all matrix elements are updated
independently from each other. Therefore, the factorization can be implemented on
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Figure 4.6: The convergence speed for NMF, VNMF and CMNMF applied to the
SAR data set represented by a) Mean-Variance; b) Image Intensity; and ¢) WLD

features.

GPU and consequently, the computation times can be decreased further.

4.4 Pair-wise constrained NMF

Having introduced two interactive algorithms, we propose another interactive algo-
rithm for dimensionality reduction based on NMF. As we mentioned before, in content
based image retrieval, the content of an image is represented by a feature vector,
where these vectors have non negative values since they are built from the histogram
of local features. Basically, the similarity between two images is measured by a kind
of distance (e.g., Euclidean distance) between their corresponding feature vectors.
However, semantically similar images might be interpreted as dissimilar images by
the machine and vice versa (i.e., semantic gap). To bridge this semantic gap, we
propose an NMF based algorithm with the following two semantic constraints:

1. Dissimilar images (in the view of machine) should be close together in the new
representation, if they are semantically similar.

83



4. Interactive Dimensionality Reduction
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Figure 4.7: Computation times of divide-and-conquer compared to batch processing
for all three datasets. The experiments were executed on a desktop PC with an Intel
Core2Quad 2,8GHz CPU and 8GB of RAM. The divide-and-conquer approach is on

average four times faster than batch processing.

2. Similar images (in the view of machine) should be far away in the new repre-
sentation, if they are semantically dissimilar.

Here, we formulate the two aforementioned constraints, namely similarity preserving
and farness preserving, as regularization terms for the NMF. For both similarity and
dissimilarity, we build two adjacency matrices W and W) respectively, initialized
with 0. If image % is connected with image j as similar images, then W;; = 1.
Conversely, if image 2 is connected with image 7 as dissimilar images, then Wz(jf )= 1.
By coupling this constraint to the main function of NMF, we reach the following
objective function:

A
O, = 71 D s —wy|P Wiy = MTe(VILV), (4.23)
i\j

where L = D — W and D is a diagonal matrix whose entries are column sums of
W, Dj; = >, W,,. Such a cost function has been used before for the purpose of
structure preservation in [Cai+11]. For dissimilar images, we would like that their
new representation be far away from each other. Therefore, we formulate another
cost function:

B
Oy =Nyexp [=5 > llo; —wi|* Wi’
il

= Apexp [—BTr (VILYV)],

(4.24)
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where LU D W(f and D) is a diagonal matrix, whose entries are column

sums of W/ => W(f :
Adding the mtroduced terms to the NMF formulation leads to the following
minimization objective:

O=|X-UVT|"+\Tr (VTLV)

+ Xexp [-ATr (VILYV)], (4.25)

where X, the original data, is decomposed to U and V, where V is the new
representation of the data. Using the KKT-conditions [BV09], we arrive at the
following update rules for U and V:

(XV)ik
Uik = uik—(UVTV)ik (4.26)
XT L V). MW +VT

(VUTU)]k + M (LTV) i + /\2/BR(f)( VT)
where we introduced the terms L) = L)+ — L)~ with L — (le(]f)| 4 LE;))/Q,
LY~ = (LY -LP)/2, L = L — L with L}, = (|LZ]\+L”)/2 L = (|Ly| - Ly)/2
and RY) = exp [—BTI (VL(f)VT)]

The proof of convergence is given in Appendix B.5.

4.4.1 Experiment 2
4.4.1.1 Data sets

The data sets used in our experiments were 1) the Caltech data set and 2) the Corel
data set.

the Caltech data set contains 9144 images in 102 different groups. SIFT [Low04]
feature vectors are extracted from these images, where each image is described by a
128-dimensional vector. For the experiment, we used the images from the 10 biggest
groups.

the Corel data set contains 1500 images in 15 different groups, where each group
contains 100 images. SIFT features [Low04] were extracted from these images,
leading to 128 dimensional feature vectors.

4.4.1.2 Results and discussion

We compared the results of k-means clustering on the high-dimensional space with the
results of k-means clustering on the new space generated by the proposed algorithm
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with an increasing number of user interactions. For the simulation of the labeling
process, we mapped the data to the 3D space using PCA, as is done in the CAVE.
For each number of user interactions, we then annotated for the similarity term the
given number of image pairs that have the same label and highest distance from each
other in the obtained 3D space. We also annotated for the dissimilarity term the
given number of images that have different labels, but are closest to each other in the
obtained 3D space. Adding a pair of similar images corresponds to connecting them
with a green line in the CAVE while adding a pair of dissimilar images corresponds
to connecting them with a red line (see Figure 4.8). In order to get the average
results, we repeated the experiments 10 times for each data set and chose a random
subset of 500 images from each data set. The parameters were selected for each data
set by performing cross-validation and selecting of the parameters that produce the
best results. The new dimension of NMF, K, was set equal to the number of classes
for each data set. Every time the k-means algorithm was applied, it was repeated
10 times and the best result was selected. The results are depicted in Figure 4.9.
Clearly, the proposed algorithm outperforms the k-means algorithm for all data sets
as the number of user interaction increases.

(b)

Figure 4.8: 3D visualization of the data sets using PCA and connecting similar
and dissimilar images with green and red links. a) snapshot of interface from a far
distance. b) snapshot of interface from a close distance. Here, two images that are
close together but don’t belong to the same class are linked with a red line.

4.5 Set-wise constrained NMF

In this method, once the images are visualized in the CAVE (by applying dimension-
ality reduction algorithm to the features), the user aims at creating several convex
hulls around groups of similar images. The images that are inside one convex hull
are assigned a single label. These labels are used to create a label matrix Q to be
used in the Discriminative Non-negative Matrix Factorization (DNMF) algorithm
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Figure 4.9: Clustering results for Caltech and Corel data sets. a) Caltech; b) Corel; ¢)
The convergence rate of algorithm applied to the Caltech data set; d) The convergence
of algorithm applied to the Corel data set.

that was explained in Chapter 2. Clearly, both the number of convex hulls and the
amount of images in each convex hull depend on the type of features. Additionally,
we also use PCA and NMF to create new representations. In the experiments, we
choose at each time a subset of K clusters and set the dimension of PCA, NMF, and
DNMF equal to K. The k-means algorithm is applied to do the clustering on these
new representations. The clustering accuracy is used to demonstrate the performance
of each representation. Figure 4.10 shows two snapshots of the user inside the CAVE
while creating several convex hulls around similar images. In Table 4.1, the statistics
of created convex hulls for the SAR data set is presented. As the Table shows,
we have here 7 different sets that contain images from 6 different classes, namely
C1,Cs,...,Cq. The second column show the number of images in each set. For
instance set 1 contains 16 images that 93.75% of them belong to class C; and the
rest belong to class C,. This table also shows how our created convex sets contain
the images from one specific class. If one convex set contains images from many
different classes, then this would not be a good set. A good set is a set that contains
images from one class. As an example, Convex set number 7 contains images from
all different classes.
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| Set | Number of Images | C1 C2 C3 C4 C5 C6 |
1 [16 93.75  6.25 0 0 0 0
2 |59 1.69 2373 7458 0 0 0
3 |45 2.2 9556 2.22 0 0 0
4 | 266 6.39 4.89 226 67.29 1.13 18.05
5 1292 1438 .34 8527 0 0 0
6 |91 8791 659 1.1 33 1.1 0
7 | 147 884 204 408 6.12 34 7551

Table 4.1: The statistics of created convex hulls. The percentage of similar images
(C1-C6) in each convex hull is presented. Additionally, the total number of images
in each set is given in the second column. The seven created convex hulls contain
different number of images. The images are coming from 6 different classes (C1-C6).

As the results show, by increasing the number of classes, the accuracy of clustering
decreases. Both normalized Mutual Information and Accuracy of clustering are
decreasing for all methods. However, our proposed algorithm outperforms the PCA
and NMF algorithms. This improvement is more significant and visible for SIFT
features. It should be noticed that the performance of this algorithm is weaker than
the performance of CMNMF and VNMF. The main reason is that the created convex
sets are enough accurate. The more accurate are the sets, the better performance we
can anticipate from the algorithm. The advantage of this algorithm is that the user
can select many images in a short time and assign label. This is useful in Active
Learning scenarios, where the goal is to annotate the data point while learning a
classifier.

(a)

Figure 4.10: Sample snapshots of creating convex hulls (sets) around similar images
in a Virtual Reality environment. a) a desktop display is used for visualization and
interaction; b) the CAVE is used for creating sets.
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Figure 4.11: Clustering results for the SAR data set represented by WLD and SIFT
features. First and second row show the accuracy and normalized mutual information,
respectively. The first and second columns are the results of WLD and SIFT features,
respectively.
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4.6 Summary and conclusions

In this chapter, several interactive dimensionality reduction algorithms have been
proposed. These techniques have two things in common: 1) all algorithms are devised
in the context of non-negative matrix factorization by incorporating user interactions
as constraints coupled to the main objective function of NMF and 2) an immersive
3D virtual reality is used as the user interface to support user-data interaction. Three
types of interactions have been defined which are: 1) the images are visualized as a
set of clusters obtained by k-means algorithm and the the user links a mis-clustered
image to the target cluster. CMNMF and VNMF are two interactive algorithms that
use this interface; 2) the images are visualized using PCA and then pairs of similar
and dissimilar images are linked, where Pair-wise NMF is used as DR algorithm;
3) the images are visualized using a dimensionality reduction technique and the
user searches for a group of similar images and then draws a convex hull around
them. A set-wise constrained NMF that utilizes the obtained convex sets is used to
reduce the dimensionality. We performed several experiments for each technique and
demonstrated that CMNMF and VNMF deliver better performance in comparison
to the other algorithms. As future work, one can use the introduced constraints and
user interface in the context of kernel learning to reduce the dimensionality of the
data.
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Today we are dealing with a phenomenon, known as Big Data, where the amount
of collected data has been increasing exponentially since the last decade [MC13].
Additionally, the complexity of the data is very high such that, usually, very high-
dimensional features represent the data content. Automatic storage and retrieval of
this data requires large-scale learning algorithms that rely on a large set of labeled
data for training. On the one hand, providing labeled data is expensive and time
consuming. On the other hand, unlabeled data is freely and cheaply available on a
large scale. Therefore, active learning has gained much attention due to its ability
to label the data and to train the classifier simultaneously [Set10; Tui+11; Set12;
Per+14; Pat14].

In this chapter, we address the problem of active learning to annotate Synthetic
Aperture Radar (SAR) image repositories. This chapter is mainly based on our recent
article published in IEEFE Journal of Selected Topics in Applied Farth Observation
and Remote Sensing (JSTARS) [Bab+15b]. The main contributions of this chapter
are:

e to provide a review of active learning;
e to study the state-of-the-art active learning algorithms;

e to employ a trace-norm regularizer classifier as the training model in an active
learning framework to annotate the SAR images;

e to study in depth the trace-norm classifier;
e to introduce a novel active learning algorithm based on visualization; and

e to conduct experiments to study the performance of the proposed active learning
algorithm.

91



5. Active Learning

The rest of the chapter is organized as follows. Section 5.1 provides an overview
of the concept of active learning. In Section 5.2, we review the state-of-the-art
active learning algorithms. We illustrate the concept of multiclass classification
with the trace-norm regularized classifier in Section 5.3.1. Here, we first study the
proposed classifier and compare it in depth with Support Vector Machines (SVM).
Then, we formulate one active learning algorithm solely based on this classifier. In
Section 5.3.3, we introduce a novel active learning algorithm. Section 5.4 demonstrates
our experiments conducted on a real SAR image data set. Finally, we provide a
summary of the chapter in Section 5.5.

5.1 A review of active learning

The goal of active learning is to label a pool of unlabeled data and simultaneously
train a classifier to categorize them. First, a set of labeled data L is used to
initially train a classifier (e.g., SVM). Next, a subset of unlabeled data U along
with their predicted label (computed by the classifier) is selected to query the true
labels from an oracle (the user). The user examines the predicted labels and rela-
bels the data points (if necessary) and adds them to the pool of labeled data for
retraining the classifier. This loop continues until all unlabeled data are labeled
(annotated) and thus the classifier is trained. A schematic of the active learning
cycle is provided in Figure 5.1. The three components impacting the performance
of an active learning system are: 1) the choice of the training model; 2) the sample
selection strategy; and 3) the user interface used for the communication of the user
and the algorithm (i.e., interactive visualization). Successful active learning relies
on proper combination of these components to handle huge volume of data. For
instance, as the amount of data increases, the performance of the classifier does not
improve significantly. More specifically, the challenge of informative sample selection
is important when the amount of labeled data is low. Once the volume of labeled data
increases, the over-fitting problem in the optimization process of the classifier appears.

There are three well-known active learning scenarios which are: 1) membership
query synthesis; 2) stream-based selective sampling; and 3) pool-based active learning
[Set10]. Figure 5.2 provides an overview of these scenarios along with existing sample
selection strategies.

5.1.1 Membership query synthesis

Perhaps the first proposed active learning scenario is Membership Query Synthesis
(MQS), where the learning program might query an instance from the input space,
including synthesized samples that do not actually exist in the training data [Set10].
This scenario is mainly used to predict the absolute coordinates of a robot, given
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Figure 5.1: The active learning cycle (source [Set10])

/' Membership Query Synthesis ]

/ /Risk Reduction

/ { Uncertainty Sampling J

/

\

1 Query-By-Committee J

" Pool-Based Active Learning ( Expected Model Change ]

Diversity
\f Density

\ ( Optimum Experimental Design J

\

\
\

\

[ Stream-Based Selective Sampling ]

Figure 5.2: Overview of active learning scenarios and sample selection strategies

the joint angles of its mechanical arm or the autonomous execution of biological
experiments. However, it also has been applied to classification and recognition
problems, in which synthesized unrecognizable images or unreadable texts are given
to the user to annotate [Set10].

5.1.2 Stream-based selective sampling

Stream-Based Selective Sampling (SBSS) is suitable for situations in which obtaining
an unlabeled instance from the pool of unlabeled data set is inexpensive, while obtain-
ing a labeled instance is involved with a high cost on the part of the human [Set10].
Therefore, the algorithm sequentially draws samples from the pool of unlabeled
data and decides whether or not to label them. Since the samples are often drawn
from the data set one at a time, this approach is also called stream-based selective
sampling. The main challenge in stream-based selective sampling is how to make
the decision. One solution is based on the prediction certainty of a trained classifier
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for this sample. For instance, it can be done by defining a certainty threshold and
querying all samples whose certainty is below a threshold. Moreover, it can be done
based on training different classifiers on the same available labeled data and querying
those unlabeled samples on which the classifiers disagree. Stream-based selection
has been successfully applied to part-of-speech tagging, sensor scheduling, and word
sense disambiguation problems.

5.1.3 Pool-based active learning

Pool-Based Active Learning (PBAL) assumes that a big pool of unlabeled data U
is available for free and all data samples are accessible at the same time [Set10].
This scenario exists in many real world applications such as image or document
classification. Basically, the pool of unlabeled data &/ does not change during the
training process. The main challenge in PBAL is to select the most informative
samples from the pool of unlabeled data and to add them to the pool of labeled data L.
One solution is to define a certainty measure and then to select the least certain sample,
which imposes the most change into the classifier model. Another possible solution
is to select a sample that has the best representation of the whole data distribution,
e.g. based on clustering or statistical properties. The main difference between SBSS
and PBAL is the amount of accessible samples from the pool of unlabeled data.
Both PBAL and SBSS are often applicable to the same scenario and the decision
of which of the two to use depends on the training circumstances, on memory
restrictions, or on the availability of the whole data set at the same time. PBAL is
preferred in text classification, information extraction, image classification, video
classification, speech recognition, and cancer diagnosis [Set10].

Generally, two big groups of strategies exist for the selection of samples in pool-based
active learning [WHI11]. The first one is the selection of samples based on some
properties of the current trained model. Strategies from this group are the following:
1) risk reduction selects samples that reduce the empirical risk of the classifier; 2)
uncertainty sampling selects samples that the classifier is least certain about; 3)
query by committee selects samples on which a committee of classifiers disagrees with
most; and 4) expected model change selects samples that are expected to introduce
the biggest change in the training model. The second group contains strategies
that select samples based on their spatial distribution and ignore the current state
of the training model. Strategies from this group are: 1) diversity-based selection,
which involves selecting the most diverse samples; 2) density-based selection, which
selects samples around which the data distribution is very dense; and 3) optimum
experimental design, which selects samples that minimize the variance of a metric
derived from the data set. The detailed description of these strategies are presented
in the following sections.

94



5.1. A review of active learning

5.1.3.1 Risk reduction

Expected risk minimization is a widely used criterion in machine learning[WH11],
which is defined by:

/ Ex [(5(x) — y(x))” [x] p(x)dx (5.1)

where y(x) is the true label of x, y(x) is the label predicted by the classifier, p(x)
is the probability density function for x and Et denotes the expectation over the
training data and possible label values. This leads to the idea of extending the goal
of empirical risk minimization to active learning by computing the empirical risk
reduction from the labeling of each sample and selecting the sample that reduces
empirical risk the most. One method for achieving this was proposed in [CZJ96] by
decomposing the risk into three terms:

Er [(§(x) = y(x))* |x] =E [(v(x) = Ely(x)])*[x] + Ec[(7(x) = Ely(x)])*[x] (5.2)
+EL[(¥(x) — EL[y(x)])*[x],

where Ej, is the expectation over the labeled data and E is the expectation over the
conditional density P(y|x). The first term describes the variance over the true label
y based on x. The second term describes the prediction error induced by the model
and the third term describes the mean squared error of prediction with respect to
the true model. The authors in [CZJ96] propose to estimate the reduced variance
after adding each sample to the training set and to select the sample that minimizes
the variance term the most. However, estimating the expected variance reduction is
a challenging problem and very expensive for most classifiers, especially when we
apply them to very large-scale data sets [WH11].

5.1.3.2 Uncertainty sampling

The uncertainty strategy chooses those samples for labeling that the classifier is
least certain about. The certainty measure can be defined for most classifiers. For
example, for binary classifiers, which estimate a boundary between different classes,
the uncertainty can be defined based on the distance to the classifier boundary. Here,
the classifier is most certain about samples that are far away from the boundary and
least certain about samples that are close to the boundary. SVMactive [TCO1], which
is coupled to a SVM classifier, is the most well-known algorithm in this category.
Moreover, for the most binary classifiers, a probability p(y;|x) is defined to estimate
the probability that sample x has label y;. Therefore, one typical uncertainty measure
is the entropy [WHI11]:

certainty(x) = — Z p(yilx) log p(y:[x). (5.3)
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and the sample selection strategy is selecting the samples with the highest entropy.
For multiclass classification problems, one popular strategy is to select the samples
based on the probabilities of the best and second best predictions [JPP09] defined
by:

certainty(x) = p(y1[x) — p(y2/x), (5.4)

where y; and y, denote the classes with highest and second highest probability,
respectively. If this difference is small, the model is less certain about which class is
the correct one for that sample.

5.1.3.3 Query-by-committee

Query-By-Committee (QBC) is based on creating a committee of different training
models C = {6, ..., 09}, which are trained on the labeled data set £ [SOS92].
Therefore, each committee member has different predictions for input samples. Next,
each committee member votes on each sample based on its predicted label and finally
the sample which causes the most disagreement within the committee is chosen
for labeling. The degree of disagreement between committee members presents
an uncertainty degree for the sample label. Hence, QBC is also mentioned in the
framework of uncertainty sampling. We should note that the key points are the
choice of committee members, the committee size, and the disagreement measure.
Basically, there are two approaches for measuring the disagreement degree. The first
one is the vote entropy [Set10] defined by:

= Vgi> log V(C“), (5.5)

i

where i ranges over all possible labels, V(y;) denotes the number of committee
members that voted for this label and C is the total number of committee members.
The second approach is computing the average Kullback-Leibler Divergence (KLD)
over all committee members [Set10] computed by:

1 C
6 Z D(Pg(c)
=1

Pco), (5.6)

where

P(yilx; 6'))

D(Py |Pc) = ZP (vi|x; 09 log Py, )

(5.7)

and ) denotes a committee member. Thus, this measure picks in each iteration the
sample for labeling whose average difference between the decision of a committee
member and the whole committee is maximum.
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5.1.3.4 Expected model change

Expected Model Change (EMC) aims at picking those samples that impose the
biggest possible change onto the training model (i.e., classifier) [Set10]. Those
classifiers that are based on gradient descent, and the EMC is directly predictable by
the length of the training gradient once the sample is labeled. Since the true label of
the sample is not known before labeling, the training gradient can be predicted by
computing the expected value of its magnitude over all possible labels. Let [ (£;0)
denote the optimization function of the classifier with parameter 6 with respect to
the training set £ and VI (L U (x,y;);6) denote the resulting gradient after sample
x with label y; is added to the training set. Then, the expected magnitude of the
training gradient is given by [SCS08]:

ZP(inX; O IVI(LU (x,y:);0)], (5-8)

where P(y;|x; 6) denotes the probability of sample x having label y;, based on the
classifier with parameter 6. The sample with the highest expected gradient magnitude
is then added to the set of labeled samples. Although this approach has been shown
to perform well in experiments, it can become very expensive if the dimension of
feature vectors or the number of labels is large [Set10].

5.1.3.5 Diversity

The diversity criterion is especially important in cases where multiple samples
are selected for labeling during each iteration. Reasons for this might be that
the retraining of the model is expensive or that multiple humans are available
for labeling. In these cases, in addition to previously introduced metrics such as
uncertainty minimization, it is also desirable that the selected samples are as diverse
as possible [WH11]. Given a distance metric K, the angle between two samples is
defined as:

cos(x;,X;) = [Kixi, x;) (5.9)

VE(xi, %) K (x;,%;)

Based on this, one way to estimate the diversity is [WH11]:

K )
Diversity(x) = 1 — max [K(xi, x)| . (5.10)
K (i, %) K(x, %)
Another popular method for diversity estimation is based on Shannon entropy. For
a set of points S = {xi, ..., X, } the empirical entropy is defined as [DRHO06]:

h(sS) = —%Zlog (%ZK(xi,xj)) (5.11)

97



5. Active Learning

Then, those samples are selected that maximally reduce empirical entropy. The
diversity criterion is usually not used by itself, but as a weighted combination of
diversity and one of the previously introduced metrics.

5.1.3.6 Density

The density measure is based on the fact that points of high density regions in the
feature space are usually more representative than the points of low density regions
in a data set [WH11]. One way to estimate the density is to use a kernel density
function [Zha+09a]. Given a Kernel function K(x) with the properties K(x) > 0 and
J K(x)dx =1 and a set of points {x1, ...,X,}, a probability density function is first
defined by

p(x) = %ZK(X—XZ.). (5.12)

Next, the density measure is defined by normalizing p(x) to [0, 1] as follows [WHI11]:

22:1 K(x — x;)
max; » o K(x —x;)

Density(x) = (5.13)

Finally, the points with the highest density are chosen for labeling. Similar to
the diversity, the density measure is typically used in conjunction with one of the
previously introduced metrics of uncertainty. Other density-based methods are those
that first apply a clustering algorithm to the data set and then select those samples
that are closest to the cluster centers [NS04; Qi+06]. Since the cluster centers are
usually at the locations of highest density, these methods can also be considered
density-based techniques [WH11].

5.1.3.7 Optimum experimental design

Optimum Experimental Design (OED) is an active learning method based on the
statistical principle of variance minimization [ADTO07]. In OED, each sample x is
called an experiment and its label y a measurement. An experimental design aims
at designing experiments to minimize the variance of a parametrized model (here,
classifier). There are two popular ways to employ experimental design in active
learning: 1) select the samples minimizing the variance of the parameters of the
training model and 2) select the samples minimizing the variance of the prediction
value of the classifier. An experimental design is usually performed in combination
with a linear regression model:

y=wix+e (5.14)
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with the parameter vector w € R? and the measurement noise € with zero mean
and variance o2, Given the selected points matrix Z = [x,,, ..., X, ]T, the optimal
solution according to the least squares formulation is given by

w' = (Z2"Z)"'Z2"y, (5.15)
and its covariance matrix by [ADTO07]:
Cov (W*) = 0*(Z"Z)~*. (5.16)

One way to apply experimental design is to select samples that minimize some
parameters of the covariance matrix of w*. For example, D-optimal design minimizes
the determinant of Cov (w*), A-optimality (average) design minimizes the trace of
Cov (w*) and E-optimality (eigenvalue) design maximizes the minimum eigenvalue
of Cov (w*) [ADTO07]. Another way is to select samples that minimize the variance
of the predicted value of the classifier (for a test point v), which is given by w*Tv

and whose predictive variance is computed by
vICov (W) v. (5.17)

Two common ways to minimize the above criteria are using I-optimal design to
minimize the average predictive variance over a set of test points and using G-optimal
design to maximize the predictive variance over a set of test samples [ADTO07].

5.1.4 Training models

As we discussed earlier, most sample selection strategies select samples based on some
properties of an associated training model (classifier). Hence, the classifier selection
is a crucial part for a successful development of an active learning algorithm. In this
section, we provide an overview of the most widely used classifiers in active learning.
These classifiers are the following: 1) Support Vector Machine (SVM), which aims
at estimating a classification boundary between different classes by determining
support vectors; 2) Regularized Least Squares (RLS), which aims at estimating the
classification boundary by minimizing the squared loss of a linear classifier over all
samples; and 3) k Nearest Neighbors (k-NN), which predicts the label of a sample
based on the labels of its k nearest neighbors.

5.1.4.1 Support vector machine

We first consider the maximum margin classifier for a binary classification problem.
Let a set of samples X = {x,...,X,, }, X; € R? be assigned with the labels y; € {—1,1}
and a linear classifier w'x. We initially assume that the samples from the two classes
are linearly separable. Then, the labels predicted by the classifier are given by
sign(w?'x). However, there are infinite by many options for selecting w such that the
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sign of all training labels can be predicted correctly. The maximum margin classifier
suggests selecting a value for w that maximizes the classification margin [CS00]. The
margin is defined as the distance between the classification boundary and the closest
sample that can be computed by constructing two hyperplanes passing through the
closest samples from each class and parallel to the classification boundary. The two
hyperplanes are defined by

wix=1and wx = —1. (5.18)

All training samples must lie outside the classifier margin, which means the following

conditions should be fulfilled:

wix;, >1 ify, =1,
T . (5.19)
wx; <1 ify,=—1.
Holding the above conditions is equal to holding the following condition
yi(w'x) > 1. (5.20)

Therefore, the size of the margin is given by half the distance between the two
hyperplanes that can be determined by geometric considerations to 1/ ||w||. Thus,
maximizing the margin is equivalent to minimizing ||w|| or the simpler form ; |w]?.
This leads to the following optimization problem for the maximum margin classifier:

1
minimize |wl? (5.21)
subject to  yi(w'x;) > 1.

The disadvantage of maximum margin classifier is its sensitivity to noise, mislabeled
points or outliers. It might even be impossible to define a hyperplane that separates
the data into two classes. To remedy this situation, a soft margin has been pro-
posed that allows some of the training samples to slip into the margin to a certain
degree [CS00]. In order to define a soft margin, non-negative slack variables &; are
introduced for each sample, and the condition (5.20) is replaced by

vi(whx) +& > 1. (5.22)

In order to penalize the effect of samples slipping into the margin, the optimization
objective is extended by the weighted sum of all slack variables. This leads to the
SVM optimization problem [CS00]:

N S -
— C i 5.23
minimize lwl” + ;f (5.23)
subject to  y;(wix;) +& > 1
& > 0.
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The optimization problem (5.23) is a quadratic optimization problem. It can be either
solved directly or in its dual form. The dual form is obtained by introducing non-
negative Lagrange multipliers «; for the constraints (5.22) and applying the Karush-
Kuhn-Tucker (KKT) conditions [BV09]. These lead to the following relationship
between w and the Lagrange multipliers:

i=1
The dual optimization problem can then be derived to
- 1
maximize Z =3 Z a0y (X - X;j) (5.25)
i=1 ij

subject to 0 < a; < C.

The Lagrange multipliers determine the degree of which each sample contributes to
the computation of w. In practice, only some Lagrange multipliers are greater than
zero. The samples corresponding to these Lagrange multipliers are called Support
Vectors, which leads us to name the classifier SVM. So far, the type of classification
boundary has been restricted to linear. It is also possible to apply the SVM to a
nonlinear classification problem by using the kernel trick [CS00]. The kernel trick
involves projecting the samples that are not separable by a linear boundary in the
original space, to a space of higher dimension, where a linear boundary can separate
them. This is achieved by applying a mapping function ¢(x) that projects each
sample to the new space. In the optimization problem of SVM, the samples x are
then replaced by their mapped features ¢(x) in equations (5.23) or (5.25) and labels
are predicted based on the product w'¢(x). In equation (5.25) the training samples
are introduced into the optimization problem by the dot product x; - x;. By applying
the feature mapping, this is replaced by the dot product ¢(x;) - ¢(x;). It can be
shown [CS00] that this is equivalent to applying a kernel function k(x;, x;) to the
original space. The kernel function allows to implicitly introduce the high dimensional
mapping, without actually performing the projection for the computations. This
even makes it possible to use implicit mappings to infinite dimensional spaces. Some
popular kernel functions are the polynomial kernel of degree p:

k(xi,%x;) = (x; - x5 + 1)P, (5.26)
the Gaussian Radial Basis Function (RBF)
k(x;, x;) = exp (=7 [|x; — Xj”2) : (5.27)
with the parameter v and the hyperbolic tangent:
k(x;,x;) = tanh (kx; - x; + ¢), (5.28)
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with the parameters x > 0 and ¢ < 0.
Introducing the kernel function into the optimization problem (5.25) leads to the
following new optimization problem:

. - 1
maximize ; a=g ; a0y 5 K(xi, x5) (5.29)
subject to 0 < a; < C.

Additionally, the product wT¢(x) can now be expressed by introducing the feature
mapping into equation (5.24) as:

wlp(x) = ZaiYiK(Xian)~ (5.30)

Another important extension of the SVM is its application to multiclass scenario.
One popular strategy is the One-Versus-Rest (OVR) approach. For k different classes,
it involves solving k different binary problems. For each class 1, the samples of that
class are labeled with 1 and the samples of all other classes with —1. Next, after
training, a vector w; corresponding to the class | is obtained. The label of a sample
x is then predicted by

y = arg maxwj X. (5.31)
I=1,..k

5.1.4.2 Regularized least squares

In Regularized Least Squares (RLS), the multiclass classification problem with k
classes is treated as a regression problem [EPP00]. Let X = [xy,...,x,|T € R**d
denote the training samples matrix and Y € R™* denote the label information
matrix. Then, the matrix Y = [Y; ;] is defined as follows:

Y., = Y= (5.32)
’ 0 otherwise.

The RLS involves training a classifier W € R%¥ by minimizing the sum of a
regularization term and the squared difference of the predicted labels to the provided
training labels [EPP00]:

Y — XW|* +~ W], (5.33)

with the positive regularization parameter 7. This problem can be solved analytically
by [EPPO0]:

W= (X™X ++1) XTY. (5.34)
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The labels are then predicted for each sample by picking the column with the maximal
value of the product x*W:

y = arg max(x* W),. (5.35)
1=1

-----

As with the SVM, the RLS classifier can also be used in combination with a kernel
function. The authors in [EPP00] claim that in this case the product x™W becomes
a linear combination of the kernel functions over all points:

(x"W), = Z Cik(xi, x), (5.36)

with the coefficient matrix C = [C; ;] € R"**. This is obtained by minimizing the
following function [EPP00]:

Y — KC|* + vTr[CTKC], (5.37)
with the kernel matrix over all training samples K = [K; ;] € R™*" defined as
The solution can be again computed analytically by

C=(K+-I)'Y. (5.39)

5.1.4.3 k-nearest neighbors

The k-Nearest Neighbors (kNN) algorithm computes a sample label based on the
labels of its k nearest neighbors [Alt92]. Given a test sample v, a distance metric
d(x1,x3) (e.g., euclidean distance), and the parameter k, the kNN computes the
distances of all samples in the training set to the test sample

d(V, XZ'), (540)

and estimates the set N, = x;,,...,X;, of the k closest samples. The label of the test
sample is determined based on the labels of its neighbors. Normally, the number
of times each class occurs among the neighbors is counted, and next, the class that
occurs most is picked as the label of the test sample. There is a disadvantage to
this method. When the samples are not equally distributed among all classes, the
dominant class is very often chosen for labeling since it has many occurrences among
the neighbors. To resolve this issue, another way is to make the vote of each neighbor
dependent on its distance to the test sample. Then, the weight for class i is given by
[A1t92]

b= Y o (5.41)
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and the label of v by

arg max b. (5.42)

Although the kNN classifier is fast and requires no training model, it is very sensitive
to the local structure of the data and outliers.

5.2 State-of-the-art algorithms

Having provided an overview of different active learning scenarios and more specifically
of general strategies in pool-based active learning and the associated classifiers, here
we present several state-of-the-art active learning algorithms in more detail. These
algorithms are: 1) Transductive Experimental Design (TED); 2) Locally Linear
Reconstruction (LLR); 3) Manifold Adaptive Experimental Design (MAED); and 4)
SVMactive- Out of these methods, TED, LLR and MAED belong to the category
of optimum experimental design and therefore select samples independently of the
classifier. However, unless stated otherwise, it is assumed that the SVM classifier
is used for training on the selected samples. SVMative belongs to the strategy of
uncertainty-based active learning and as the name suggests, selects samples based on
the uncertainty of the SVM classifier. We also used these algorithms as benchmark
in our experiments and compared them with our proposed algorithms introduced in
the next sections.

5.2.1 Transductive experimental design

The Transductive Experimental Design algorithm [YBT06] is a variant of experimental
design algorithms [ADT07]. The key idea is to select points based on the minimization
of a statistical variance metric of the trained classifier:

y=w'x+e (5.43)

TED considers the Regularized Least Squares formulation:

W = argmin {J = Z (vi — wai)2 + ||W||2} : (5.44)

w i=1

with the regularization parameter . The solution of this problem can be obtained
by

W= (XTX +4I) " Xy, (5.45)
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where I is an identity matrix. Next, the variance of the predictive error can be
estimated by [YBT06]:

o® =Tr (X(X'X +1I)7'X") . (5.46)

The goal is to select points Z C X that minimize the predictive variance. Therefore,
the TED active learning problem is formulated as:

min Tr (X(Z"Z +~I)7'X") (5.47)
subject to Z C X, |Z| =m

After some mathematical derivations [YBT06], the above problem can be transformed
into

iy > I~ 2tal o 5.18)
subject to Z C X, |Z| =m

with a;, € R™, i = 1,...,n. This formulation shows that TED tends to select the
points that can linearly reconstruct the whole data set more precisely with the
smallest possible coefficients a;. However, the problem (5.47) is NP-hard and thus is
very difficult to solve [YBT06]. A sequential algorithm for finding an approximate
suboptimal solution was proposed in [YBTO06]. The authors in [Yu+08] propose a
non-greedy algorithm, which solves the following relaxation problem (5.47):

B, ER™ £

n m 2
. 2 Qg
min ZHXi—XT%’” +Z L+ 40181, (5.49)
i=1 j=1 Bi
subject tox; € X, 3, >0, j=1,...,n
where a; = |1, ...,ozi,n]T. This problem is convex and has a global minimum

[Yu+08]. For its solution, the following update rules are derived, which are repeated
until convergence:

1 n

Bj —Za?j forj=1,...,n (5.50)
=

o; + (diag(8) ™"+ XXT)fl Xx; fori=1,...,n. (5.51)

There, diag(3) denotes the diagonal matrix whose diagonal elements are set to the
corresponding elements of 5.
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5.2.2 Locally linear reconstruction

For those data sets that are coming from a manifold embedded in an ambient
space, LLR has been proposed as an effective active learning algorithm [Zha+11]. The
authors in [Zha+11] propose an algorithm that gains information about the manifold
by computing a local reconstruction matrix and then selects those points that can
most precisely reconstruct the whole data set based on the local reconstruction matrix.
The reconstruction matrix was first introduced in [RS00] as part of the Locally Linear
Embedding (LLE) algorithm and is computed by solving the following optimization
problem:

n 2
min
WER“X n
=1

(5.52)

n
i=1

n
subject to Zwij =1,71=1,...n
j=1

wij = 0 1f Xj ¢ Np(XZ'>,

where N, (x) denotes the p nearest neighbors of x. After the matrix W has been
computed, [Zha+11] introduces the inverse problem of reconstructing a set of points
{qi, ---,qn} based on the reconstruction matrix and a set of selected data points
{Xs,, s Ts,, }- This is achieved by solving the following problem:

min > [lag, — X [P+ 2> |lai = > wia
=1 i=1 j=1

At ln 4=

where g is a constant. In the cost function of this problem, the first term aims at
fixing the selected points, while the second term aims at reconstructing the points
based on the reconstruction matrix W. By setting X = [xy,...,x,|T, Q = [qu, ..., qu]*
and introducing the diagonal matrix A with A;; = 1if ¢ € {sy, ..., s,}, this problem is
transformed into the following form [Zha+11]:

minTH(Q - X)"A(Q - X)) + 4TH(QTMQ), (5.54)

2

, (5.53)

with M = (I — W)T(I — W) and its solution becomes
Q=M+ A)'AX. (5.55)

The authors in [Zha+11] propose to measure the representativeness of the selected
points by the reconstruction error. This error is the difference between points Q and
the original points X:

e=|X-Ql% (5.56)
= [|(uM + M) M X
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where ||||% is the matrix Frobenius norm. This leads to the following Active Learning
(AL) problem of selecting the most representative points:

min H(uM—I—A)_luMX”i,
s.t. A € R™™" is diagonal (5.57)
Aii S {0, 1},2 = 1, 11

n
E Ay = m,
i=1

where, based on the matrix A, the points with A;; = 1 are selected. However, due
to its combinatorial nature, this problem is NP-hard and very difficult to solve.
Therefore, [Zha+11] proposes two optimization schemes to compute an approximate
solution of (5.57). The first one is a greedy sequential algorithm, which selects
one sample at a time and the second is based on solving the convex relaxation of
(5.57). Since the convex relaxation method has been shown to be very complex and
time-consuming for large-scale data sets [Zha-+11], only the sequential algorithm is
described in this section.

In the sequential algorithm, we start with a set of 1 points Z = {xy,, ..., X5, } and
the matrix A; as a diagonal n X n matrix whose diagonal entries corresponding to the
selected points {si, ...,s;} are set to 1 and the others to 0. Additionally, the matrix
I'; is defined as the n x n matrix, whose diagonal entry at (i,4) is set to 1 and all
other entries to 0. Next, the successive points to be added are found by solving the
following problem:

Si41 = argmin H(uM + A+ I‘i)_l,uMXHi : (5.58)

i¢{s1,...,51}

This process is repeated until the desired number of points are selected. The details
of this algorithm are presented in [Zha+11].

5.2.3 Manifold adaptive experimental design

The MAED algorithm [CH12] is an active learning algorithm for data sets that
lie in a manifold embedded in the high dimensional space. It is an extension of
the TED algorithm [YBTO06] with a manifold adaptive kernel [VP05], which allows
the representativeness of the data points to be computed based on the geodesic
distance on the manifold. The authors in [VP05] propose to incorporate manifold
information into a classifier in order to achieve a better estimation of the classification
boundary. Let H represent the space of functions with the kernel K. The manifold
adaptive kernel space is the space H with the kernel

K(x,z) = K(x,z) — Ak} (I + MK) 'Mk,, (5.59)
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where M is a positive definite matrix, I is an identity matrix, K is the kernel matrix
in H, A > 0 is a weighting constant, and the vector k, is defined by:

ke = (K(x,%1), ..., K(x,Xp)) . (5.60)

The authors in [VP05] show that the space H is still a Reproducing Kernel Hilbert
Space (RKHS), where the matrix M controls how the kernel space is deformed based
on the intrinsic data geometry.

Cai et al. [CH12] suggest to set M to the graph Laplacian. In order to compute
the graph Laplacian, a nearest neighbor graph G is constructed first by drawing
an edge between each data point x; and its k nearest neighbors x;. Next, a weight
matrix W € R* x R" is computed as:

- {1, if x; and x; are connected by an edge (5.61)

0, otherwise.

Finally, the graph Laplacian is defined as L = D — W, with the diagonal matrix
D given by D;; = > ; Wiz Setting M = L leads to the following manifold adaptive
kernel matrix Ky = [Kwi ]

where K denotes the original kernel matrix and k; denotes the i-th column vector of K.

Applying the convex TED to the derived RKHS leads to the following optimization
problem:

(o'

2
=+ 1181, (5.63)
Bi

subject tox; € X, 8; >0, j=1,...,n

By, €ER™ £

min Z pnr(x:) — dar(X)aui]|” + Z
=1 J=1

with the feature mapping ¢y : RY — H from the original space to the RKHS. By
setting ¢y (X) = [dm(X1), .-, O (Xn)], we have the following property between the fea-
ture mapping and the kernel matrix: Ky = ¢n(X) Ty (X). After some derivations,
we arrive at the following update rules, which are repeated until convergence [CH12]:

1< .
B; < ;Za%j for j=1,...,n (5.64)
i=1

a;  (diag(B) "'+ Ky) w fori=1,...,n. (5.65)

There, diag(5) denotes the diagonal matrix whose diagonal elements are set to
the corresponding elements of 5 and u; is the i-th column vector of Ky;. After
convergence, the data points are ranked according to f;, (j =1, ...,n) in descending
order and the top m data points are selected.

108



5.2. State-of-the-art algorithms

5.2.4 Support vector machine active learning

The SVM pctive [TCO1] algorithm is directly coupled to the SVM classifier. The main
idea is to select samples that minimize the version space of the classifier (i.e. the
space of all possible classifier values w). In the SVMaive algorithm, we consider
SVMs in the binary classification setting with the data X and the labels Y. For the
binary classification problem, y; € {—1,1}. For a general RKHS, the SVM classifier
is of the form

f(x) = <Z ailC(xi,x)) . (5.66)

Additionally, if there exists a corresponding feature mapping ¢ : R¢ — #H, K can be
written as K(u,v) = ¢(u) - ¢(v) and [ as:

f(x) =w - ¢(x), where w = Z a;p(X;). (5.67)

Based on the introduced classifier, [TCO1] proposes the SVM problem in the following
form:

maxiryr{lize min {y;(w - ¢(x;))} (5.68)
we 7
subject to: lw| =1

vilw - o(x;)) >0,i=1,...,n

and define the version space )V as the set of possible solutions w, that satisfy the
constraints:

V={weH|w|=1yi(w-é(x))>0,i=1,..n}. (5.69)

These definitions show a dual relationship between the classifier vectors w and the
feature vectors ¢(x). If viewed in the space of ¢(x), the vectors w are hyperplane
normal vectors, that separate the points ¢(x), based on the condition y;(w - ¢(x;)).
However, if viewed in the space of w, ¢(x) are hyperplane normal vectors, that
constrain the possible values of points w. Thus, in the space of w the version space
can be viewed as part of a sphere with radius 1, centered in the origin, that is
constrained by hyperplanes based on the conditions y;(w - ¢(x;)). Additionally, the
SVM optimization problem (5.68) now has the geometric interpretation of finding the
center of the largest radius hypersphere, whose center can be placed in the version
space and whose surface does not intersect with any of the constricting hyperplanes.
Furthermore, the hyperplanes that are touched by the largest radius hypersphere,
are exactly those hyperplanes, that correspond to the support vectors ¢(x;) in the
dual space [TCO1].
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Based on these observations, Tong et al. [TCO01] prove that an optimal active
learning algorithm should choose samples that halve the area of the version space in
each iteration. More specifically, for the SVM problem this involves selecting new
samples for labeling in such a way their corresponding hyperplanes in the space of
w halve the area of the unit sphere, corresponding to the condition ||w| = 1. To
address this question, Tong et al. [TCO1] propose three different methods. The
simple margin algorithm is based on the geometric interpretation that the unit vector
w obtained from the optimization is the center of the largest radius sphere that does
not intersect any of the constricting hyperplanes. Thus, w also lies approximately at
the center of the version space and therefore selecting the sample whose hyperplane
is closest to the the current vector w corresponds to selecting the sample that is
closest to bisecting the version space. This leads to the following rule, for selecting
the next sample ¢* for labeling in each iteration:

i =argmin |[w - ¢(x;)] . (5.70)

)

Additionally, the simple margin algorithm can be interpreted in the space of ¢(x)
as selecting in each iteration the sample i, whose feature vector lies closest to the
classifier hyperplane and therefore about which the classifier is less certain.

5.3 Proposed method

In this section, we describe our proposed active learning algorithm that uses a
trace-norm regularized classifier as a training model and a visualization-based sample
selection. Although this training model has been introduced recently, we further
study its properties and compare it with the SVM.

5.3.1 Trace-norm regularized Classifier (TC)

The motivation for using a low-rank regularizer in classification comes from the obser-
vation that, when the SVM classifier is trained on large-scale data sets, the singular
values of learning parameters (matrix W) have an exponential decay [Har+12]. By
looking at the dimensions of W, this can either be interpreted as the samples lying
on a subspace of a lower dimension or as the classes being linear combinations of
a smaller set of underlying prototype classes. Therefore, the authors of [Har+12]
propose to leverage this property (i.e., the singular values of W have an exponential
decay) by minimizing the rank of the matrix W and therefore keeping only the
singular values with high magnitude.

We consider the set of n feature vectors X = {xy,...,x,} of dimension d and
the corresponding class labels YV = {yi,...,y,} with a total number of k classes.
The general linear multiclass classification problem involves learning a classifier
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g(x) = argmaxl:17___7leTx, that predicts a class [, for each point x. The classifier is
specified by the k& weight vectors w;. The general procedure to train the classifier
involves minimizing the regularized empirical risk function:

1 n
L AQ(W) + Z L(W:x;,v;) (5.71)
with the regularization penalty €2, the loss function L and the weight matrix W =
[wW1,...,wy]. One popular method for training the classifier is the OVR strategy
[RK04], which involves splitting the problem into 1 binary classification problems,
where for each class, the labels corresponding to this class are set to 1 and the labels
corresponding to other classes to —1. The binary problems can then be solved by
an SVM classifier [Vap82]. The first problem which arises when trying to apply the
low-rank regularizer to the OVR optimization problem, is that each of the columns
of W is trained independently on the corresponding binary problem, while the low
rank constraint requires the treatment of the matrix W as a whole. Therefore, the
authors of [Har+12] propose to use the multinomial logistic loss function, which
treats all classes simultaneously. Introducing the low-rank enforcing penalty and
the multinomial logistic loss function into (5.71), leads to the following objective
function for minimization:

Gin Asrank (W) + A, W5 + R, (W) (5.72)
where
1 n
R, (W) n;< X, ¥i) (5.73)
and
L(W;x,y)=log [ 1+ Z exp{w?x—ng} . (5.74)
1ey\{y}

This is a non-smooth non-convex optimization problem, which is difficult to solve.
However, in [Har+12] a solution is provided, where the low-rank penalty is replaced
by its convex surrogate, the trace-norm. The whole algorithm is summarized in
Algorithm 2.

The algorithm so far has only been described for the linear case. Even though
it is possible to introduce a high-dimensional mapping for data sets with nonlinear
mappings, as shown for SVM, this method is not used here. The reason is that the
trace-norm regularized classifier was specifically developed for real data sets with
high-dimensional feature spaces. In state-of-the-art methods, high-dimensional image
descriptors are used in combination with linear classifiers [Har+12].
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Algorithm 2 Solving trace-norm-regularized optimization problem (summary of
algorithm in [Har+12])

Input: regularization parameters \; and Ao
initial point Wy,, convergence threshold e
training points X and labels Y

Output: e-optimal Wy
Algorithm:

for t=0,1,2,... do
Compute top singular vector pair {uy, v} of —VR, (W)
Let ge = A + (VRa(Wi), uevy)
if gi < —€/2 then
W1 = Wi + duyvy with § found by line-search
0t+1 - 5
Ory1 = [0y, Oii1]
else
Check stopping conditions:

Viel: aﬁg(;i(e) + A > —c

Vie Tl A0 | T 4 A | <6
if stopping conditions satisfied then
stop and return W,
else
Compute 6;,1 as a solution of the following restricted problem:
Jmin a3 B+ Ra (Zjll OjujVJT>
subject to 0 > 0,j=1,...,;s
end if
end if

end for

5.3.1.1 Comparison to the SVM algorithm

The introduced low-rank based classifier has some similarities to the SVM algorithm.
Both estimate the classification boundary through the matrix W by minimizing the
regularized loss over the set of samples. However, there are also some important
differences. These are: 1) the way multiclass problems are treated; 2) the type of
loss functions; and 3) the regularizers used, which might lead to the existence of
support vectors.
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Multiclass problem

The first difference is that the SVM algorithm cannot deal with multiple classes
simultaneously and therefore has to resort to the (OVR) strategy, which involves
solving multiple binary training problems simultaneously. One problem of this
approach is that the resulting binary problems are imbalanced. By increasing the
number of classes, the degree of imbalance increases. The second problem is that
the matrix W is not treated as a whole. Instead, each column of W is estimated
independently by a separate classifier. Thus, the matrix W cannot be regularized as
a whole and its columns might be imbalanced relative to each other.

Loss function and regularizer

The next difference is the type of loss function and regularizers used by the two
algorithms. The SVM algorithm is a constrained optimization problem with the
hinge loss function [CS00]. The hinge loss for the vector w and a sample x; with
label y; is defined as:

I(w) = max{0,1 — yyw'x;}. (5.75)

With the help of the hinge loss, the SVM optimization problem can be transformed
into the following unconstrained optimization problem [CS00]:

1 n
min A |w|® + = Z max{0,1 — y;w'x;}. (5.76)
w n

=1

This makes it possible to highlight the differences between the two classifiers more
clearly. The TC uses a weighted combination of the L, norm and the trace-norm of
W. Additionally, as mentioned in the SVM, the Ly norm of each column of W is
minimized independently, while for the TC, the two norms are minimized as a whole.
Regarding the loss function, the SVM uses the non-smooth hinge loss function for
the binary problem of whether a sample belongs to that class or not. Instead, the TC
uses the multiclass logistic loss function, which is smooth and considers the difference
of a sample class to all other classes simultaneously.

Support vectors

Another difference between the two classifiers is the existence of support vectors. In
the SVM classifier, due to the non-smooth hinge loss function, only a subset of the
vectors contributes to the training of the classifier. These vectors are the support
vectors. The existence of support vectors makes it possible to reduce the training
time of the SVM significantly, since the computations have to be performed only
over this subset of vectors. In the TC, support vectors do not exist explicitly due
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to the smooth multiclass logistic loss function. However, it might be desirable to
find an approximation of support vectors for some applications, e.g. reduction of the
number of samples for training. In the following, an approach for approximating the
support vectors is presented.

The approach is based on the hinge loss function of the SVM classifier (5.75).
Let y; denote the true label of sample x;. Then for each column w; of W, the hinge
loss is computed by:

Iy = max{0,1 — 3,w; x;}, (5.77)
where 7; = 1 if | = y;, and §; = —1 otherwise. If any of the resulting hinge loss terms
is greater than zero, i.e:

g >0,1=1,. kK, (5.78)

then sample x; is selected as a support vector of the TC. Figure 5.3 shows an
example of the support vectors computed from a synthetic data set. The data set
consists of three classes, with 100 samples per class. The positions of the samples
are computed by Gaussian distributions. The support vectors are denoted by black
crosses. Figure 5.3(a) shows the support vectors of the SVM classifier and Figure 5.3(b)
shows the support vectors of the TC computed by inserting the columns of W into
the hinge loss function. In the SVM classifier, the support vectors come up due
to the non-smooth loss function. The number of support vectors is controlled by
the regularization parameter and with an increasing amount of support vectors
over-fitting occurs. In the TC classifier, the smooth multiclass logistic loss function
is used instead, which takes all samples into account and therefore by default has
no support vectors. The usage of this loss function is required in order to use the
trace-norm regularization term, which treats the matrix W as a whole. This is not
possible with the OVR approach and the usage of the SVM hinge loss, which treats
the multiclass problem as multiple binary problems. However, even though the TC
classifier takes all samples into account, the over-fitting problem is avoided with the
added trace-norm regularization term. The disadvantage of taking all samples into
account in the TC classifier is the increased computation time, however a higher
accuracy is achieved through this. The support vectors shown in Figure 5.3(b) for the
TC classifier are an approximation, which are estimated by introducing the hinge loss
function into the matrix computed by the TC classifier and can be used in order to
determine which vectors have the highest contribution to the optimization problem.

Computational complexity

The computational complexity is an important factor for the comparison of the
SVM to the TC. For the solution of the SVM optimization problem, many different
optimization techniques have been developed over the years. Therefore, it is difficult
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®
% o O%@QM&
o & P X%

Figure 5.3: Visualization of support vectors for a synthetic dataset. Black crosses
denote the support vectors (a) Support Vectors of SVM classifier (b) Support Vectors
of the TC, approximated by hinge loss function. In the TC, more features are
considered support vectors.

to estimate the overall computational complexity. For the LibSVM library [CL11],
which is the SVM implementation used in this work, the overall computational
complexity has been estimated to be O(ndp) for the binary problem, where n is the
number of samples, d is the dimension of the feature vectors and p is the number of
iterations. For the extension of the binary problem to the multiclass problem with k
classes, the binary problem has to be solved k times in total. This leads to an overall
time complexity of O(kndp).

For the TC, the most expensive steps are the computation of Vf{n(W) and
of the top singular vector pair of VR,(W). The top singular vector pair can be
computed by the Lanczos method [Che05], which has a time complexity of O(dk).
The computation of VR, (W) involves two steps, the matrix products wix;, which
have a computational complexity of O(ndk) and the summation of the logistic
function over all terms, which has a computational complexity of O(nk). Thus,
the overall computational complexity of the TC is also on the order of O(kndq),
with q denoting the number of training iterations. It should be noted, however,
that the TC requires more training iterations in total and more computations are
performed during each training iteration. In this work, the training of the trace-norm
regularized classifier was implemented in the scientific programming package Matlab.
The most expensive calculations, like VR, (W), have been implemented in C++ in
the format of mex files. Table 5.1 summarizes the training complexities and the
measured training times on a real data set for the different implementations. The
real data set consists of 500 samples of the Synthetic Aperture Radar (SAR) data
set, grouped in 15 classes. Each image is represented by the Bag-of-Word (BoW)
model of SIFT local descriptors extracted from images.
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Classifier SVM | TC (Matlab) | TC (C++)
Time Complexity || O(kndF) O(kndq) O(kndq)
Runtimes [s] 0.262 386.228 23.220

Table 5.1: Computational complexity and actual training times of classifiers on SAR
data set represented by BoW of SIFT feature descriptors.

5.3.2 Active learning with TC

The TC can be employed in an active learning framework as the training model.
For instance, it can be based on iteratively training the classifier on the available
subset of labeled samples and selecting the next sample for labeling as the point
which is closest to the current boundary of the classifier, similar to the SVM active
algorithm [TCO1]. Let X denote the set of all available samples and £ denotes the
set of labeled samples. With the current weight matrix W = [wy, ..., wy| the margin
of each sample is:

pi = AKX W, X;. (5.79)

)

The index of the next sample for labeling is then given by:

ij = argmin{u,|x; € X\L}. (5.80)

Training the classifier with each new labeled sample can be done efficiently by storing
the matrix W and setting it as the starting point for the next training iteration.
The whole active learning algorithm is summarized in Algorithm 3.

5.3.3 Visualization-based sample selection

In this section, a novel active learning method is introduced, which is based on the
principles of uncertainty and expected model change. Compared to the existing
active learning algorithms, the difference here is that the sample selection strategy
is also coupled to the visualization method in addition to the classifier. In the
visualization, a ranked list of predictions ordered by confidence is shown to the user
and the user is asked to select the first incorrectly predicted sample from one class.
The algorithm can be used in combination with any classifier, for which a confidence
metric can be computed, including the SVM and the TC introduced in the previous
section.

For the description of the algorithm we consider the set of n samples with
feature vectors X = {x, ..., x,} of dimension d and the corresponding class labels
Y ={y1,...,yn} with a total number of k classes. Additionally, let £ denotes the
labeled samples.

116



5.3. Proposed method

Algorithm 3 Active learning with TC [Bab+15b]

. Input: training points X and labels Y
initial set of labeled samples £
total number of points to label m

Output: new set of labeled samples £
weight matrix W

Algorithm:

for t=0,1,2,... do

obtain W, by applying Algorithm 2 on £; with initial weight matrix W;_;

if |£;| = m then

stop and return W, L,

end if

Compute margin y; for each sample according to (5.79)

Select point x; with smallest margin according to (5.80) and set £;,; = L, U{x;}
end for

The main idea of this algorithm is to select samples for labeling, which introduces
the highest change into the model of a trained classifier. This is achieved by letting the
algorithm predict labels during each iteration and asking the user to correct a label,
which the algorithm is certain about, but predicts incorrectly. As the measure of
certainty, we use the extension of the margin as suggested in the SVMjcive algorithm
[TCO1] to a multiclass classifier. Given the current weight matrix W = [wy, ..., W]
of the classifier, we define the margin y; of each sample as

pi = max W] X; (5.81)

geeey

and the predicted label y; of each sample as

§; = arg maxw, x;. (5.82)
I=1,...k

Let I;; denote the image of the unlabeled sample x;,; € & \L, predicted with label

1. Then the algorithm during each iteration arranges these images in a table with
increasing margins for each class, i.e.

P> > (5.83)

as suggested in Table 5.2 and lets the user select the first sample x;. in a class that
is labeled incorrectly, i.e.

Vi 7 Vim a0d yi; = ¥7; fori=1,..,m —1 (5.84)
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Table 5.2: Predicted samples images presented to the user during each iteration

and relabel it. Since the samples are sorted with decreasing certainty, we can expect
to achieve a big correction in the model by selecting the first incorrectly labeled
sample. For the next iteration, the relabeled samples are added to the set of labeled
samples L.

L=LU{X, X} - (5.85)

This is repeated for the desired number of iterations. Since the algorithm lets the
user select a sample in the wrong class in each iteration, it is called First Certain
Wrong Labeled (FCWL). The algorithm is summarized in Algorithm 4.

Algorithm 4 FCWL: Active Learning with incorrect label correction by user

' Input: training points X and labels Y
initial set of labeled samples Ly
total number of iterations p

Output: new set of labeled samples L
Algorithm:

fort=0,1,2,...,p do
Obtain W; by training classifier on Ly
Compute margin y; for each sample according to (5.81)
Predict label y; for each sample according to (5.82)
Present samples to user according to table 5.2 and equation (5.83)
Let user relabel first sample xj, with incorrect predicted label from one class
and set Ly = Ly U {Xi;p . .

end for

return L;

A schematic diagram of the FCWL algorithm for an optical data set is presented
in Figure 5.4. On the top row we see images representing the different categories
of the data set. Then, below them, the algorithm places the images based on their
predicted labels in the corresponding categories. In this example, the algorithm
already has many correct predictions in class 2 with the only incorrect prediction
being the last one. So by selecting this image, the user can label all previous images
from this category as correct and relabel the incorrect one.

In [Set10], active learning algorithms are categorized based on the sample
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Figure 5.4: Example list of images presented by the algorithm for an optical dataset.
The first row contains images representing each class. The sample images are
arranged in the columns, which correspond to the predicted class, with decreasing
margin [Bab-+14b].

selection heuristic, such as uncertainty sampling, expected model change, query by
committee and variance reduction. Our proposed active learning algorithm fits into
the categories of uncertainty sampling and expected model change. However, the
difference in which these principles are applied in this algorithm is that the samples
are presented to the user in an ordered fashion and then the user selects which sample
to label. This is contrary to previous active learning algorithms, where the samples
for labeling are directly selected by the algorithm. Additionally, the expected model
change of the classifier in the previous algorithms is estimated based on the gradient
magnitude of the classifier optimization function for each sample. Here, the samples
with the highest expected model change based on the correction introduced by the
user are selected.

For the training of a classifier with the FCWL algorithm, a user interface was
developed during this work. The user interface presents the list of ranked images to
the user, as described in the previous section, and asks the user to select the first
incorrectly predicted image from one category and relabel it. Additionally, some
information about the training progress is given. A sample screenshot of the user
interface for the SAR data set is presented in Figure 5.5. In this example, the training
is currently at iteration 40 and 209 images have been labeled so far. Additionally,
the plots show that the prediction accuracy on the test and training set is currently
at about 50%.
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Figure 5.5: Snapshot of the user interface for the FCWL algorithm on SAR data set
after 40 iterations

5.4 Experiments

After introducing two novel methods for active learning, we now turn to experiments
conducted to compare the introduced methods to state-of-the-art algorithms. The
data set used for evaluation is the SAR data set, from which different types of
feature vectors are extracted. In the experiments, the accuracy of the different
active learning algorithms will be presented for an increasing number of samples.
Additionally, some results will be presented that show the effects of the different
regularization parameters used in the algorithms.

5.4.1 Data sets

The SAR data set consists of a collection of 3434 images of the size 160 x 160 pixels,
which are grouped in 15 classes. The content of each image is represented by a
feature vector computed by the Bag-of-Word (BoW) model different local descriptors,
namely SIFT [Low04], BoW model of Weber Local Descriptor (WLD) [Jie+08] and
Gabor [LW02]. Each feature vector is of length 64, which leads to a matrix of size
3434 x 64. Furthermore, the whole feature matrix is normalized to the range of
[—1, 1] for each experiment. The SAR data set is fully introduced in Appendix A.
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5.4.2 Setup

In addition to our proposed method, the following active learning methods were also
applied to the data set.

e TED [YBTO06], which defines a cost function based on the covariance of the
prediction error of a least squares classifier. Then, in each iteration the sample
that minimizes the value of the cost function is selected for labeling.

e MAED [CHI12], which extends the TED algorithm with a manifold adaptive
kernel in order to incorporate the manifold structure into the selection process.

e LLRActive [Zha+11], which minimizes the error of reconstructing the data
set from the selected samples and the matrix describing the locally linear
embedding.

e SVMactive [TCO1], which iteratively adds points closest to the boundary of an
SVM classifier to the training set and trains the classifier on the new set. To
extend this algorithm to multiple classes, an OVR classifier is used and the
margin of each point is computed based on its distance to the corresponding
winning classifier.

e Random sampling method, which randomly selects a given number of points

For the compared Active Learning algorithms, the SVM with OVR scheme was
used for training and classification. Several kernels such as Gaussian, Chi-square,
and linear were used and the best results were achieved by using linear kernel. The
metric used for comparison is the classification accuracy of the associated classifier.
In order to obtain stable results, multiple tests were performed on different subsets
of the data set and the average accuracy over all subsets computed. During each
experiment, a random subset was chosen from the whole data set for training and
testing. For the classifier parameter selection, we performed cross validation on each
data set by increasing each parameter exponentially from the value 10~ to the value
10* and training the classifier for each parameter. Then, the parameter with the
highest prediction accuracy was chosen for each data set. Similarly, we performed
cross validation for the parameter selection of other active learning algorithms. Each
active learning algorithm was applied to each data set for exponentially increasing
parameter values between 10~# and 10* and 10 training samples. Then, the parameter
with the highest prediction accuracy was chosen for the experiments.

5.4.3 Design 1: Active learning using TC

In this experiment, the performance of the TC-based active learning method is
compared to the introduced algorithms. In addition to the proposed algorithm,
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Figure 5.6: Classification results of three features representing the SAR data set.
The first and second columns show the mean and the standard deviation of accuracy,
respectively. The first, second, and third rows show the results of the Gabor, SIFT,
and WLD features, respectively.

which selects samples based on their distance to the TC boundary, the TC is also
applied to the samples selected by the other active learning algorithms.
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The experiments were repeated 10 times for each data set and during each test
a subset of 500 random samples was selected from the data set. Then each active
learning algorithm selected an increasing number of samples from 20 to 200. For
classification, the samples selected by each active learning algorithm were used as a
training set and other samples of the subset were used as a test set. The classification
results for all three features are presented in Figure 5.6.

The results show that the overall accuracy of the algorithms depends on the
chosen feature descriptors. Best results are achieved with the WLD feature descriptor,
where some algorithms achieve an accuracy of about 90%. Next comes the Gabor
feature descriptor, which has on average 10% lower accuracy. Finally, there is the
SIFT feature descriptor, which has 10% less average accuracy than Gabor. For all
active learning algorithms, we notice that coupling the algorithm with the TC nearly
always leads to a higher accuracy compared to coupling the algorithm with the
SVM-classifier. The proposed active learning algorithm performs poorly on the SIFT
feature descriptors, but improves in performance on the Gabor feature descriptors. It
outperforms the other algorithms for an increasing number of samples on the WLD
feature descriptors, which are the most important, since overall the highest accuracy
is achieved here.

In general, we notice that algorithms based on the sample distribution, like
LLR Active and MAED, perform well for a small number of samples and that algorithms
based on the available label information and trained classifier perform better as
the number of samples increases. This is because in the beginning the trained
classifier usually lies far away from the real classification boundary, and therefore the
selected samples might actually be samples that do not contribute much information
for training. However, as the number of samples increases and the classifier finds
the position of the real boundary, the samples it selects for labeling have a high
probability of becoming support vectors in the next training iteration. On the other
hand, algorithms that select samples based on the sample distribution might achieve
high accuracy in the beginning. These samples provide a good overall picture of how
the data set is distributed in the feature space. However, as the number of training
samples increases, selecting samples in this way provides less new information, since
they are usually located further away from the class boundary in the feature space
and therefore have a lower probability of becoming support vectors.

5.4.3.1 TC parameter analysis

In order to analyze the behavior of the TC associated with the proposed active
learning algorithm, experiments were also conducted on each data set with different
values of A\; and \;. For these experiments, 1000 samples from each data set were
selected randomly as a test set and 100 randomly selected samples as a training
set. Then, the TC was trained with different values of the parameters \; and \s.
The results show that the parameter \y has less effect on the behavior and that in
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the results of the Gabor, SIFT, and WLD features, respectively.

general, the best results are achieved when )\, scales similarly to \;. Therefore, in
the figures showing the behavior of the classifier with respect to the parameters, Ao
was always chosen as Ay = 0.1);.

Figure 5.7(a), Figure 5.7(c), and Figure 5.7(e) show the resulting matrix rank
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and trace-norm of the matrix W for different values of A\; around the area where
the matrix rank drops from the maximum rank to zero for Gabor, SIF'T, and WLD
features, respectively. The results show that an increase of the value of \; leads
to a decrease in the trace-norm and therefore a decrease in the rank of the matrix
from the maximum value to zero. Additionally, Figure 5.7(b), Figure 5.7(d), and
Figure 5.7(f) show the resulting singular values of W for different values of \;. Again,
we see that as the value of \; increases, the average value of the singular values
decreases and more singular values become zero.

5.4.4 Design 2: Visualization-based active learning

Similar experiments were performed for the analysis of the interactive visualization-
based active learning. The proposed active learning algorithm was applied in
conjunction with the TC and SVM classifiers, while for the other algorithms, only
the SVM classifier was used as classifier. The experiments were repeated again 10
times for each data set, but here in order to keep the results objective due to the
multiple point selection of the proposed active learning classifier, different subsets
were used for training and for testing. Specifically, during each experiment, a subset
of 500 samples was selected as a training set and a different subset of 500 samples as
a test set. Making the test set completely separated from the training set leads to
a reduction in accuracy for all algorithms. The classification results are presented
for the three features representing the SAR data set. Figure 5.8(a), Figure 5.8(c)
and Figure 5.8(e) show the mean of classification accuracy for the Gabor, SIFT,
and WLD features, respectively. Moreover, the standard deviations of classification
accuracy are presented in Figure 5.8(b), Figure 5.8(d), and Figure 5.8(f) for the
Gabor, SIFT, and WLD features, respectively. Again we see a dependence of the
overall accuracy on the choice of feature descriptors with WLD leading to the highest
accuracy and SIFT to the lowest. The plots show that the FCWL algorithm with
the TC classifier outperforms the other active learning algorithms with all feature
descriptors for an increasing number of interactions. The improved performance
of the FCWL algorithm with TC compared to FCWL with SVM can be explained
again by the ability of the TC to deal with a high dimension of the feature space
and a high number of samples. This gets amplified even more in the case of FCWL,
where multiple samples are selected per iteration, leading to an overall higher number
of samples. Thus, the FCWL with TC can repeatedly make more accurate predic-
tions, which lead to even more samples being labeled correctly and thus an even
higher performance after training. This property becomes clear in the plots, where
the FCWL with TC significantly outperforms the other algorithms, as the number
of selected samples increases beyond 200. However, the effect of the increasing
performance due to the increased accuracy and therefore higher amount of cor-
rectly predicted labels, can be observed with the FCWL and SVM classifier, that for
200 samples it has a high difference in performance, compared to the other algorithms.
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Figure 5.8: Classification accuracy of different active learning algorithms on SAR
dataset. The first and second columns show the mean and the standard deviation of
accuracy, respectively. The first, second and third rows show the results of Gabor,

SIFT, and
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Figure 5.9: Matrix rank and trace-norm of FCWL algorithm with TC on SAR data
represented by: (a) Gabor; (b) SIFT; and (¢) WLD features.

The FCWL algorithm does worse than the other algorithms for a small number
of samples. The reason for this can be found as before in the difference between
classifiers and sample distribution based algorithms. When the number of samples is
small, the predictions of the FCWL are still inaccurate and therefore the samples
labeled by the user might not be the most informative. Additionally, it is possible
that at the initial steps, the FCWL-based approaches know only a part of the classes
and therefore do not predict some classes at all, which can lead to a further decrease
in accuracy. However, as the number of samples increases, all classes can be predicted
and the overall accuracy increases faster. On the other hand, algorithms like MAED
and TED perform well at the beginning due to the selection of a more diverse set of
samples that usually contains all classes but keep getting slower in accuracy later as a
high sample diversity is no longer coupled to a high increase in classifier performance
at this point.

Figure 5.9(a), Figure 5.9(b), and Figure 5.9(c) show the evolution of the matrix
rank and trace-norm for the FCWL algorithm with trace-norm classifier and an
increasing number of samples. These plots make the behavior of the FCWL algorithm
with the trace-norm classifier more clear. At the beginning, we see a low matrix
rank which means only a small subset of classes are known. The number of samples
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required until all classes are identified varies for each feature descriptor. For example,
for the Gabor descriptor all classes are known after 80 samples have been selected,
for the SIFT descriptor 40 samples are necessary, and for the WLD descriptor 70.
However, even at this point some of the new classes might still be represented only
weakly. Therefore, the accuracy plots show that the FCWL algorithm with trace-
norm classifier achieves good performance after the number of samples is beyond
the point where all classes have been identified. The plots of the trace-norm value
in Figure 5.9(a), Figure 5.9(b), and Figure 5.9(c) show how the trace-norm behaves
as a relaxation of the matrix rank. It keeps increasing fast at the beginning as the
rank of the matrix is growing and has a lower slope in the end when the rank of the
matrix is constant.

5.5 Summary and conclusion

This chapter investigated active learning for the annotation and classification of
image data sets. First, a solid background of active learning, including the concept
and related work, was provided. We introduced a novel active learning algorithm
by using a trace-norm regularized classifier as the training model and visualization-
based sample selection as the sample selection strategy, in which by increasing the
number of samples to label, the effects of overfitting can be reduced. The performed
experiments on a SAR data set represented by three different features confirmed the
quality of the proposed algorithm in comparison to other state-of-the-art techniques,
where the proposed algorithm achieves the highest accuracy for an increasing number
of samples. However, a disadvantage of the algorithm is the increasing computational
effort required to solve the objective function with a coordinate descent algorithm.
Developing more efficient methods to solve the optimization problem is therefore one
possible direction for future work. Additionally, as the experimental results show, for
a small number of selected samples the proposed algorithm is outperformed by other
algorithms that select points based on the sample distribution. Therefore, another
possible direction for future work can be combining the two approaches in order
to develop an algorithm that takes sample distribution and label information into
account and consistently provides high accuracy.
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This thesis has introduced a novel visual data mining system that mainly comprises
interactive visualization and learning. Precisely, this work focuses on the intersection
of machine learning and virtual reality and addresses multiple current issues in the
area of human-machine communication for data mining applications. Most learning
algorithms are based on the non-negative matrix factorization framework and the
interactive visualization is based on the virtual reality technology. Virtual Reality
was used to build up an immersive interactive 3D virtual environment for interactive
data visualization. The main contributions of this work are: (1) discriminative
data representation and dimensionality reduction based on non-negative matrix
factorization and dictionary learning and the use of label or relative attributes
information; (2) immersive interactive visualization of image collections and feature
space; (3) interactive dimensionality reduction and data representation by introducing
novel NMF based algorithms; (4) active learning for simultaneous annotation classifier
learning. Each contribution has been fully introduced and discussed in a separate
chapter.

In the following, the aforementioned contributions of this work are summarized
and finally a concluding summary and an outlook are provided.

6.1 Summary

Discriminative data representation is introduced in Chapter 2. The main idea
was to integrate label information in the matrix factorization process for dimen-
sionality reduction and/or image (data) representation [Bab-ara|. A constrained
optimization problem is presented where multiplicative update rules are proposed to
find the solution to this problem. In addition to the label information, we showed that
relative attributes can also be used as semantic information to generate discriminative
features. At the end of this chapter, we proposed a novel relative attributes guided
dictionary learning to generate discriminative sparse representation. We conducted
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experiments to confirm the performance of this algorithm in comparison to other
modern dictionary learning algorithms.

Immersive visualization of image collections and feature space is presented
in Chapter 3. The first part of this chapter starts with a description of the im-
mersive visualization system (i.e., Cave Automatic Virtual Environment (CAVE)).
It provides information about the CAVE’s components and how it is constructed.
Then, the pipeline of data visualization, composed of feature extraction and dimen-
sionality reduction, is discussed. Several examples of data visualization in the CAVE
are provided. In the second part, a novel dimensionality reduction based on Non-
negative Matrix Factorization (NMF) is introduced that takes into account the
concerns of image visualization [Bab+arb]. This technique reduces the dimension-
ality and minimizes the occlusion among images, while preserving the structure
of the data as much as possible. Experimental results show that this technique
is flexible (by changing the controlling parameters) and optimal for data visualization.

Interactive dimensionality reduction is presented in Chapter 4. There, sev-
eral algorithms were proposed that utilize the user’s feedback from the CAVE, which
is considered as a constraint in dimensionality reduction. All proposed methods are
developed in the framework of non-negative matrix factorization [Bab+15d] and
formulate the user’s feedback as regularizers in the main objective function. The
conducted experiments on both Earth Observation (EO) data and optical images
confirm that the more feedback is used, the more discriminative property of the new
feature is enhanced.

Immersive active learning for the annotation of images is an AL scenario
proposed in Chapter 5. The three specifics of this system are: (1) the CAVE is used
as the interface between the user and machine, where the results of the classifier
(the distribution of images) are visualized; (2) the user decides which images should
be selected for annotation and (3) a modern classifier (i.e., Trace-norm regularized
classifier) is used as a training model [Bab-+15b]. In contrast to other algorithms,
where the machine selects images for annotation, in the proposed algorithm the user
selects the images. The experimental results show that this approach outperforms
the others.

6.2 Conclusion and outlook
Human-Machine communication for visual recognition and search is a challenging
problem in pattern recognition and data mining. This thesis addresses this issue

by introducing a novel immersive visual data mining system, in which immersive
interactive data visualization and interactive learning algorithms play key roles. This
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system comprises interactive dimensionality reduction, data representation and also
active learning for the annotation of images.

Data representation and/or dimensionality reduction is a key step in every data
mining application, where the content of the data is represented by a compact and
informative feature vector. Therefore, interactive algorithms that are able to generate
discriminative features are highly important in clustering and classification appli-
cations. In this thesis, we have used NMF as the basis of our proposed interactive
dimensionality reduction and data representation algorithms. We found that NMF
is a powerful computational tool in data representation and could be extended to
generate customized features. However, it would also be interesting to investigate
kernel learning techniques for dimensionality reduction in combination with the user
interactions captured from the CAVE.

Visualization of image collections or feature space is essential for browsing and
exploring image contents. Although dimensionality reduction techniques are widely
used for data visualization, novel techniques are needed to consider display specifics
such as the size and shape of display size. The proposed novel NMF- based technique
aims at reducing the occlusion among images and shows excellent results based on
the constraints defined by the user. However, for future work, it would be interesting
to consider other constraints and extend the proposed technique to cover them. This
would be possible by defining new regularizers that fulfill the required constraints
and coupling them to the main objective function.

Active learning is a promising approach in annotating large amounts of unlabeled
data. This approach aims to combine human and machine in classifier learning and
data labeling. In this work, we proposed a novel approach that showed excellent
results in comparison with state-of-the-art techniques. The proposed approach has
great potential to assist the user in learning the classifier and decreasing the annota-
tion time. It is envisioned that the proposed active learning algorithm can be further
used in other applications such as activity recognition, human pose estimation, and
natural language processing.

This thesis has investigated all the aforementioned challenges in detail and pro-
posed several novel algorithms. We hope the community can benefit from this work.
Although combining human and machine intelligence to solve data mining problems
is still a long way off, the proposed algorithms may be used in future data mining
applications.
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Several data sets have been used in experimental results through this thesis. This
appendix provides detailed information about the used data sets.

A.1 Synthetic Aperture Radar (SAR)

SAR systems are imaging systems that illuminate the scene of interest with Elec-
tromagnetic (EM) radiation at microwave frequencies (300 MHz to 300 GHz) and
measure the voltage returned from a scene of targets. The Radar Cross-Section (RCS)
of the obtained voltage states how large a target is in a radar image. SAR systems
are typically mounted on an aircraft and utilize the motion of a radar antenna over
a target region in order to provide finer spatial resolution. Specifically, higher values
for RCS show up bright targets, while lower values are dim. Targets with rough sur-
faces tend to scatter EM radiation back towards the radar. Thus, manmade targets
such as buildings, vehicles, and roads have a high RCS. Since the ground is relatively
flat, it scatters EM radiation away from the radar and its RCS is low [CL13]. SAR
images are used in many different applications including surveillance, reconnaissance,
foliage penetration, moving target indication, and environmental monitoring. SAR
is often preferred over optical imaging systems since its performance is independent
of daylight and visibility.

This data set! consists of 3434 SAR image patches with the size of 100 x 100 pixels.
There are several descriptors used to extract local feature from each patch. Using
the BoW model, the extracted descriptors are coded into a single feature vector. The
length of feature vector is equal to the number of visual words. The used descriptors
are:

1. Image intensity- A sliding window with a size of 15 pixels is moving through
the image and the image pixel intensities are concatenated to create a descriptor.

!The images are collected from TerraSAR-X data by Shiyong Cui, Remote Sensing Technology
Institute (IMF), German Aerospace Center (DLR), Germany
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Next, using the BoW model, the computed descriptors from each image are
coded to generate a single feature vector.

2. Gabor- A Gabor filter is applied to the images and a sliding window is
moving through the image and then the Gabor coefficients in each window are
concatenated to build up a descriptor. Next, using the BoW, the computed
descriptors from each image are coded to generate a single feature vector.

3. Weber- A sliding window is moving through the image and the Weber Local
Descriptors (WLD) are extracted and concatenated. The descriptors are coded
using the BoW model to generate a single feature vector for each image.

4. SIFT- SIFT local descriptors are extracted from each image and then using
the BoW model, the extracted descriptors are coded into a single feature vector.

Figure A.1: Some sample images of the SAR image data set. Each image corresponds
to one category.

A.2 Caltechl0

This data set contains the 10 biggest groups of the Caltech101 data set?, which
is 3379 RGB-images. SIFT [Low04] descriptors were extracted from these images,
then each image is represented by a 128-dimensional vector using the BoW model.
In Figure A.2 some images of this data set are depicted.

A.3 UC Merced Land Use

This data set contains 2100 images in 21 different categories with 100 images®. These
categories are: agricultural, airplane, baseball-diamond, beach, buildings, chaparral,

http://www.vision.caltech.edu/Image_Datasets/Caltech101
3http:/ /vision.ucmerced.edu/datasets/landuse.html
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Figure A.2: Some sample images of the Caltech10 data set. Each image corresponds
to one category.

dense-residential, forest, freeway, golf-course, harbor, intersection, medium-residential,
mobile-home-park, overpass, parking-lot, river, runway, sparse-residential, storage-
tanks, and tennis-court. From these images, SIFT descriptors are extracted and
using the BoW model, each image is represented with a feature vector of length 64.
In Figure A.3, some images of this data set are depicted.

Figure A.3: The UC Merced Land Use is a manually labeled data set containing 21
classes of land-use scenes. Each image represents one sample of each group.

A.4 Corel

This data set contains 1500 images from 15 categories 4, which are: Africa, Beach,
Bus, Card, Dyno, Elephant, Flower, Food, Grote, Horse, Mountain, Portrait, Rome,
Sunset, and Tiger . First, the SIFT descriptors are extracted from each image. The
extracted descriptors from each image are coded using the BoW model to create a
128-dimensional feature vector. Some sample images from this data set are depicted
in Figure A.4

“https://archive.ics.uci.edu/ml/datasets/Corel+Image+Features
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Figure A.4: The Corel images data set. Each image represents one sample of each
category.

A.5 CMU PIE Faces

The CMU PIE face data set contains 3232 gray scale face images of 68 persons. Each
person has 42 facial images under different light and illumination conditions. Each
image is represented by the intensity values of its pixels that is a 1024-dimensional
feature vector.

Figure A.5: Some sample images of the CMU PIE faces data set. Each image
corresponds to one category.

A.6 AT&T ORL Faces

The AT&T ORL data set® consists of 10 different images for each of 40 distinct
subjects, thus 400 images in total. For some subjects, the images were taken at
different times, varying the lighting, facial expressions (open/closed eyes, smiling/not
smiling), and facial details (glasses/no glasses). All the images were taken against a
dark homogeneous background with the subjects in an upright, frontal position. In

Shttp://www.uk.research.att.com/facedatabase.html
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all experiments, images were preprocessed so that faces could be located. Original
images were first normalized in scale and orientation such that the two eyes are
aligned at the same position. Then, the facial areas were cropped into the final
images for clustering. Each image is 32 x 32 pixels with 256 gray levels per pixel.

Figure A.6: Some sample images of the ORL faces data set. Each image corresponds
to one category.

A.7 Yale Faces

The Yale faces data set % contains 165 gray-scale images of 15 individuals. There are
11 images per subject, one per different facial expression or configuration. These are:
center-light, with glasses, happy, left-light, without glasses, normal, right-light, sad,
sleepy, surprised, and wink. We do the same preprocessing for this data set as for
the ORL faces data set. Thus, each image is also represented by a 1024-dimensional
vector in image space.

Figure A.7: Some sample images of the PIE faces data set. Each image corresponds
to one category.

Shttp://cve.yale.edu/projects/yalefaces/yalefaces.html
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A.8 Handwritten Digits

The Handwritten Digits data set” contains 10000 gray scale images of handwritten
digits from 0-9 with 1000 images per class. The size of each image is 16 x 16 pixels
and hence its content is represented by a 256-dimensional feature vector.

Figure A.8: Some sample images of the Handwritten Digits data set. Each image
corresponds to one category.

Thttp://www.cs.nyu.edu/~roweis/data.html

138



Convergence Proofs

B.1 Convergence Proof of DNMF

Theorem B.1.1. The objective function in (2.8) is nonincreasing under the update
rules (2.14), (2.15) and (2.16). The objective function is invariant under these
update rules if and only if U, V and A are at a stationary point.

We first note that the newly introduced terms don’t depend on U. Thus, the update
rule for U remains the same as in the original formulation [L.S01] and Theorem
B.1.1 is true for (2.14). For the convergence proof of the proposed update rule for
V, we follow a similar procedure as in [LS01]. We use an auxiliary function as the
one introduced for the expectation maximization algorithm [DLR77]. The following
property is true for an auxiliary function:

Lemma B.1.2. [f there exists an auxiliary function G for F(x) with the properties
G(x,x") > F(x) and G(x,x) = F(x), then F is non-increasing under the update

x'" = argmin G(x, ). (B.1)

Proof. F(x™1) < G(x*! x') < G(x%,x*) = F(x") ]

The equality F(x'*1) = F(x') holds only if x* is a local minimum of F(x). By
iteratively applying update rule (B.1), x converges to the local minimum of F(x). We
will now show that the update rule (2.15) for variable V corresponds to minimizing
an auxiliary function for the objective in (2.8). Since the update rule is essentially
element wise, it is enough to show that the objective is non-increasing under the
update for each element V,,. We first compute the derivatives of the objective
function with respect to the variable V.

/

Foo(Vap) = (—2X"U +2VU'U — a2Q"A + 20V, ATA) (B.2)
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. {2 EUTU +aATA), ifa<N, B3)

F (V)=
ab(Vab) 9 UTU)bb otherwise.

Based on this, we introduce the auxiliary function as follows:

Lemma B.1.3. Let F.,(Va,) denote the part of F relevant to V... Then, the
function

G(Vap, Vi) =Fap(VI) + Fop (VE)(V = V1),

1
v

L VIUTU + a(VIATA) + (@A) Ta(V - V3, Y

is an auziliary function for Fa,(Vap).

Proof. 1t is straightforward to check that G(V%,, VL, ) = F(VE,). For the condition
G(Vab, VL) > F(Va), we compare the auxiliary function to the Taylor series
expansion

Fu(V) =Fun(V) 4 Fiy (Vi) (V = Va4 SFG(V = V% (B)

Comparing the second order terms of the auxiliary function with the second order
terms of the Taylor series expansion, we get the condition:

1 _ :
v <~ [VU'U + o(VIATA)" + a(QTA) |y > (UTU +0ATA) | ifa <N,
1 _
V_;b[VtUTU]ab > (U'U),, otherwise
(B.6)

We now check the inequality for each term on the left side of the equation with its
corresponding term on the right side. For the NMF-term, we have for both cases:
(VIUTU),, = th (UTU)ap = VI, (UT U, + Y VE(UTU)g,
c#b

(B.7)
(VtUTU)ab T
————— > (U'U)y,
Vib
For the label-term in the case a < N;, where V; =V holds we have:
[(VIATA)" +(QTA) |, > [VIATALL, = ZVz ac(ATA)q,
= Vip(ATA) + Y Vi (ATA), (B.8)
c#b
1

th[ a(VIATA)Y + a(Q"A) T > (@ATA)
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B.1. Convergence Proof of DNMF

Since the inequality holds for all terms in both cases, it holds also for the sum of
them and (B.6) is true. Thus, Lemma B.1.3 is true.
]

Proof of Theorem B.1.1. Inserting the auxiliary function (B.4) into (B.1) leads
to the update rule (2.15). Thus, Theorem B.1.1 is true for (2.15). The convergence
of the update rule (2.16) for A follows directly by its definition. Since this update
rule was derived by setting the derivative of the Lagrangian with respect to A to 0
and A is unconstrained, it follows from the convexity of the objective (2.9) in A that
this is equivalent to minimizing the objective with respect to A in each iteration.
Thus, Theorem B.1.1 is true for (2.16). O
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B.2 Convergence Proof of VISNMF

Theorem B.2.1. The objective function in (3.20) is non-increasing under the update
rules (3.26) and (3.27). The objective function is invariant under these update rules
iof and only of U, and 'V are at a stationary point.

Lemma B.2.2. [f there exists an auxiliary function G for F(x) with the properties
G(x,x) > F(x) and G(x,x) = F(x), then F is non-increasing under the update

x' = argmin G(x,x). (B.9)

Proof. F(x't1) < G(x'* x') < G(x',x") = F(x) O

The equality F(x'™') = F(x!) holds only if x' is a local minimum of F(x). By
iteratively applying update rule (B.9), x converges to the local minimum of F(x). We
will now show that the update rule (3.27) for variable V corresponds to minimizing
an auxiliary function for the objective in (3.20). Since the update rule is essentially
element wise, it is enough to show that the objective is non-increasing under the
update for each element V,,. We first compute the derivatives of the objective
function with respect to the variable V.

F(V) = =2Tr (XVU") + Tr (UVIVU") 4\ Tr (VILV)

1 (B.10)
+ M exp [T (VILOV)] + Ao log | 15> Gy

1,J

’

Fiu(V) = (-2X"U+2VU'U)  + 0 (2LV)

—M2Bexp [-FTr (VILYV)] (LYV) (B.11)
2
+ )\2% : [Gia (Vib - Vab)]

"

Fab(V> =2 (UTU) bb + )\12f1aa
22 [282 (LOV)S, — L) exp [T (VILOV))]

2)\2 1 9 2 9
+O'T¢ (1 + F ZZ: Gia (Vib - Vab) - zl: Gia - O‘Tgb 21: Gia (Vib - Vab) )

(B.12)
Based on the computed derivatives, we introduce the following auxiliary function:
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B.2. Convergence Proof of VISNMF

Lemma B.2.3. Let F,,(Va,) denote the part of F relevant to V,,. Then, the
function
G(V, V") =Fa(V") + Fop, (V)(V = V'),

(V-V9%,

P {(VUTO £ ATV
ab

+A1 0 exp [—B Tr ((Vt) TL(f)Vt>] LYV, + U)\Tib Z(Giavfb)

(B13)
is an auziliary function for Fa,(Vap).
Proof. 1t is straightforward to check that G(V*, V') = F(V*). For the condition
G(V, V") > F(V) we compare the auxiliary function to the Taylor series expansion
1 17

Fap(V) =Fap (V) + Fiy(V)(V = Vi SF (V= V2, + O(VE,).  (B.14)

Comparing the second order terms of the auxiliary function with the second order
terms of the Taylor series expansion we get the condition:

(VIUTU)w, M (LTVY),,

Vi, Vi,

WAL VOwexp [-ATr (VITLOV)] o 56, v
" Véb o2 ng

> (UTU),, + MLaa
+ 8 28 (LOVY)? — L] exp [-4Tr (V) LOVY)]

1 t t 2 t t )2
(B.15)
We now check the inequality for each term on the left side of the equation with its
corresponding term on the right side. For the NMF-term we have:
(VIUTU),, = va (UTU)o, = VL, (UT U, + ) VE(UTU),
c#b

(B.16)

(VtUTU)ab T

——— > (U Uy,

v,
For the similarity-preserving / overview- term:
(£+Vt)ab Z (£+Vt)ab - (]Z_Vt)ab = (i‘Vt)ab = f‘aavtab + Z f‘acvib
c#£b
. (B.17)
(LTVH,, ~
=N ——— > A\ L.
Vi
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B. Convergence Proofs

The inequality of the farness preserving term depends on the parameter 5. For
decreasing 3, we have:

(LY=VH),,
Vi
(LY)=V?), exp [—ﬂTr ((Vt)T L(f)Vtﬂ (B.18)

Vi
> M8 (28 LIV =LY | exp [-6Tr (V) 'LV

> 28 (LOV)] — L)

= )\16

For the entropy term, we have:

Zi(GiaVﬁ) . Gaavgb + Zi;éa(GiaVitb) >1

= B.19
v, v, . 1
Furthermore, for increasing ¢ this can be expanded to
Zi(Gianb> 1 t t 2
V;b Z 1 + ; Z Gia (Vlb - Vab)
Ao 32i(Gia Vi)
o2p Vi
Azllevtvt o — Gia (V= V1)
26 +;; i (Vi = Vi) Z " T2g Z w (Vs = Vi) | |-
(B.20)

Since the inequality holds for each term of the equation for the right choice of
parameters  and o, it does also hold for the sum of all terms and (B.15) is true. For
the higher order terms of the Taylor series expansion we note, that the derivatives
disappear for the NMF-and similarity-preserving- / overview- term and that all
derivatives of the farness-preserving- and entropy-term are scaled by the factors 3 or
1/0?, respectively. Therefore, for decreasing 3 and increasing o those also become
negligible and the condition G(V,V*) > F(V) is true. Experimental results have
shown that the values of parameters § and o, required for good results, lie within

the range where the algorithm converges.
O

Proof of Theorem B.2.1. Inserting the auxiliary function (B.13) into (B.9) leads
to the update rule (3.27). Thus, Theorem B.2.1 is true for (3.27). O
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B.3 Convergence Proof of CMINMF

Theorem B.3.1. The objective function in (4.15) is non-increasing under the update
rules (4.20) and (4.21). The objective function is invariant under these update rules
if and only if U, and Z are at a stationary point.

Lemma B.3.2. If there exists an auxiliary function G for F(x) with the properties
G(x,x") > F(x) and G(x,x) = F(x), then F is non-increasing under the update

x' = arg min G(x,x'). (B.21)

Proof. F(x't!) < G(x'* x') < G(x',x") = F(x) O

The equality F(x**1) = F(x!) holds only if x* is a local minimum of F(x). By iteratively
applying update rule (B.21), x converges to the local minimum of F(x). We will
now show that the update rule (4.21) for variable V corresponds to minimizing an
auxiliary function for the objective in (4.16). Since the update rule is essentially
element wise, it is enough to show that the objective is non-increasing under the
update for each element Z,,. We first compute the derivatives of the objective
function with respect to the variable V.

Fan(Z) = Fan(Zy,) + Fop(Z — Ziy) + gFan(Z — Z;y,)? (B.22)
F,(Z) = (—2W™XTU + 2W'WU"TU),, (B.23)
Fin(Z) = 2(W'W),.(UTU)y, (B.24)

Based on the computed derivatives, we introduce the following auxiliary function

Lemma B.3.3. Let F,,(Zay,) denote the part of F relevant to Z.y,. Then, the function

G(Z,Z.,) = Fan(ZL,) + Fiop (ZL,)(Z — ZL))
(WITWZUTU),,
+
Z,

(B.25)

(Z - Z;,)*

is an auziliary function for F.,(Zap).

Proof. Obviously, G(Z!,Z") = F(Z"). In order to show G(Z,Z") > F(Z), we use the
Taylor series expansion

. 2(WITW),.(UTU)y,

Fun(Z) = Fup(Zl) + oy (Z — Z4) (@ -7,  (B.26)

145



B. Convergence Proofs

By comparing (B.25) and (B.26), we can see that G(Z,Z.,) > F.,(Z) is equal to
show

(WTWZUTU),,
Z,,

By expanding the left side of the above inequality, we come up with

> (W'W),.(UTU)yp. (B.27)

(W'WZU'U),, 3, (WIWZ)(UTU),,

A Z,
_ (WIWZ), (U Uy,
B Z,
> Zf:l (WTW)alZfb(UTU)bb (B28)
B Z,
o WIW),Z, (UTU)w
B Z,
= (WTW)aa(UTU>bb

L
Proof of Theorem B.3.1. Substitute the G(Z,Z") in (B.30) by (B.25), we have

the optimization rule
(WTXTU)ab
(WTWZUTU),,

Zgjl) = arg mzin G(Z,Z,) =7, (B.29)

As shown above, (B.25) is an auxiliary function and F,;,(Z) is non-unceasing under
the optimization rule. [
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B.4 Convergence Proof of VNMF

Theorem B.4.1. The objective function in 4.4 is non-increasing under the update
rules (4.12) and Eq.(4.13). The objective function is invariant under these update
rules if and only if U, and V are at a stationary point.

Lemma B.4.2. [f there exists an auxiliary function G for F(v) with the properties
G(v,v9) > F(v) and G(v,v) = F(v), then F is non-increasing under the update

v = argmin G(v, v") (B.30)

Proof. F(v®™) < G(v®D 0?) < G(vt,0t) = F(v?) O

For any element V,;, in V|, let F,;, denote the part of O which is only relevant to Vy,.
Since the updating rules shown in (4.13) are element wise, showing the objective
function is non-increasing is equal to show the F,}, is non-increasing.

we first compute the objective function relevant to the variable V and its derivatives
with respect to V:

/ 1 "
Fan(V) = Fan (Vi) + Fupn(V = Vi) + 5Fu(V = Vi)’ (B.31)
, oL
F, = (52)a = (—2X"U + 2VU"
ab (av)ab ( U + vVU'U (B32)
—4AA(NO — Tr(TVVITT)TTTV),,
F,, = 2(UTU)y, — 4\((N6 — Te(TVVITI)TIT),., (B.33)

—4NTTTV)?,

Lemma B.4.3. Let F,,(Va,) denote the part of F relevant to V,,. Then, the
function

G(V, VL) =Fu (Vi) + Fop (VI (V = Vi)

VUTU 4+ 2\(Tr(TVVTTT) — No
(B.34)
TTT*V+T T V)), '
g 2 Do v — v,
ab

is an auzxiliary function for Fa,(Vap).

Proof. 1t is obvious that G(V%,, VL) = F.,(VL). We only need to show that
G(Vap, Vi) > F(Vap). To do this, we expand F,,(V) by Taylor series expansion

/ ]. "
Fap(V) = Far (Vi) + Fap(V = Vi) + 5Fan(V = Vi)’ (B.35)
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B. Convergence Proofs

Therefore, it is only needed to prove that

(VUTU + 2X\(Tre(TVVTITT) — NO)(T+T+V + T-T~V))w,

Va, (B.36)
> (UTU)yp, — 2M(NO — Te(TVVIT)T'T),0 ‘
—2M\(TTTV)2,
We can expand VUTU as
k
(VUTU)u, = > v} (UTU),, > v, (UTU)y, (B.37)

i=1
For the rest terms, we have
(TTTTV)a, = Y (THTT), Vi, + (TTTH), Vi,
c#a (B38)
Z (TTT)athab

As the 6 is set to a small value, Tr(TVVTTT) converge to N6 from positive direction,
we have

Tr(TVVITY) —No >0 (B.39)
Thus, by multiplying Eq.B.38 with Eq.B.39 on both sides, we get
2A((Tr(TVVITT) = NOTTTTV),,

> —2X\(NO — Te(TVVIT)TTT) 00t (B.40)

It is obvious that
2A((Tr(TVVITY) — NOT T V)., > 0> —2)\TTTV)Z, (B.41)
thus, the inequality of (B.36) holds because of the validation of (B.37), (B.40) and
B.41). O

Proof of Theorem.B./.1. Replace G(v,v") in (B.30) with (B.34), we have the
optimization rule

/

F
V(t+1) — Vi — V! ab
ab B T o(VUTU 4+ 2X(Tr(TVVTITT) — N§)

(T*T+HV + T~-T~V))w,
(XTU 4+ 4A(Te(TVVTTT) — NO)T+T~ V).
(VUTU + 2A(Tr(TVVTTT) — No)
(TTTHV + T"T"V))a

(B.42)

= Vab

As proved above, (B.34) is an auxiliary function, F,}, is non-increasing under this
optimization rule. O
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B.5 Convergence Proof of Pairwise-NMF

Theorem B.5.1. The objective function in (4.25) is non-increasing under the update
rules (4.26), (4.27). The objective function is invariant under these update rules if
and only of U, V are at a stationary point.

Here we prove the convergence of the derived update rules. Since the newly introduced
terms depend only on V|, the update rule for U remains the same as in the original
NMEF algorithm [LLSO1]. For the convergence proof of the proposed update rule for
V, we follow a similar procedure as in [L.S01].

Lemma B.5.2. [f there exists an auxiliary function G for F(x) with the properties
G(x,x") > F(x) and G(x,x) = F(x), then F is non-increasing under the update

x'! = argmin G(x,¥). (B.43)

Proof. F(x't!) < G(x'*1 x') < G(x',x") = F(x) O

We first compute the objective function relevant to the variable V and its derivatives
with respect to V:

F(V)=—-2Tr (XVU") + Tr (UV'VU")

B.44
+ M Tr (VILV) + Ay exp [-8Tr (VILYV))] (B44)
where its first derivative is given by
F. (V)= (—2XTU +2VUTU) , + )\ (2LV
(V) = ( ) A1 (2LV),, (B.45)

—M2Bexp [T (VILUV)[ (LVV),,

and finally its second derivative is

1

F,,(V) =2(U"U),, + \i2L,,
+ N2 282 (L) — LY | (B.46)
«exp [—BTr (VILYV)]

Lemma B.5.3. Let F,,(Va,) denote the part of F relevant to V,,. Then, the
function

G(V, V') =Fu, (V') + Fy, (V) (V = V')

1
+ —{(VIUTU),, + M (LTVY),
ng{( Jab + A1 ( )ab (BAT)

+ M Bexp[—BTr((VHTLYIVY)]
* (L(f)fvt);rb}(v - Vt)ib'

is an auxiliary function for Fa,(Vap).
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B. Convergence Proofs

We introduce the auxiliary function.
It is straightforward to check that G(V*, V') = F(V"). For the condition G(V, V*) >
F(V), we compare the auxiliary function to the Taylor series expansion

Fab(V) =Fap(V') + Fop, (VH(V = V1)
1

) . ) (B.48)
+ §Fab(v -V )ab + O(Vab)'

Comparing the second order terms of the auxiliary function with the second order
terms of the Taylor series expansion, we get the condition:

(VtUTU)ab n A (LTVH,,
Vi Vi
MLV g exp [—5Tr (V) LV |
Vi (B.49)

+
> (UTU),, + \iLaa

+ 8 28 LIV~ L] exp [-4Tr (V) LOVY)].

We now check the inequality for each term on the left side of the equation with its
corresponding term on the right side. For the NMF-term, we have:

(VIUTU)a, = Y VL(UTU),

= Vi, (UTU), + Y VE(UTU),

B.
por (B.50)
(VIUTU),, T
—r—— = (U Uy,
Vi
For the similarity-term:
(L+Vt)ab Z (L+Vt>ab - (L_Vt)ab
= (LVt)ab = Laavtab + Z LaCVf:b
(LTVY),
=M—gr— = Ml
Vi

The inequality of the dissimilarity-term depends on the parameter 5. For decreasing

150



B.5. Convergence Proof of Pairwise-NMF

[, we have:

(L(f)_Vt)ab 2

v 2 26 (LYV) — L)

LDV exp |8 (V) LDV (B.52)
Vi,

> \f [2ﬁ (L(f)Vt)Zb — LELJ;)] * exp [—(Tr ((Vt)TL(f)Vt)} ‘

= Alﬁ

Since the inequality holds for each term of the equation for the right choice of param-
eter (3, it does also hold for the sum of all terms and (B.49) is true. For the higher
order terms of the Taylor series expansion we note, that the derivatives disappear
for the NMF- and similarity-term and that all derivatives of the dissimilarity-term
are scaled by the factor 5. Therefore, for decreasing 5 those also become negligible
and the condition G(V,V?) > F(V) is true.

Proof of Theorem B.5.1. Inserting the auxiliary function (B.47) into (B.43) leads

to the update rule (4.27). Thus, Theorem B.5.1 is true for (4.27).
[
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