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Abstract: Image segmentation is a crucial task in the emerging field of object 
oriented image analysis. This paper contributes to the ongoing debate by presenting 
a segmentation procedure currently implemented in SAGA. Key feature at the core 
of the segmentation procedure is the representativeness analysis, performed for each 
pixel using geostatistical (semi-variogram) analysis measures. The representative-
ness layer supports conventional region growing algorithm with necessary start 
seeds, brake of criterions, and additional opportunities for fast performing initial 
image segmentation. The segmentation procedure aims to create spatially discrete 
object primitives and homogenous regions from remotely sensed images as the basic 
entities for further image classification procedures and thematic mapping 
applications. In a comprehensive evaluation study comparing eCognition, RHSEG 
and SAGA segmentation procedures, the SAGA approach was tested as robust and 
fast. SAGA performed at high quality a detailed segmentation of the actual 
landscape pattern represented by the remotely sensed imagery. 
 
 
 
 
 

1 Introduction 
In the last few decades, the fast spreading and increasing availability of vast 
amounts of remotely or proximal sensed data sets affected and fostered method 
developments in all fields of image processing and image analysis. Developing 
sensor standards and improved surface representations of satellite images seemed to 
meet perfectly society’s increasing demands on (quantitative and qualitative) 
environmental information. However, compared to man’s ability to abstract land use 
pattern, topographic features or topological elements from a spatial high resolution 
satellite image, ‘intelligent’ technologies are hardly able to go beyond the metaphor 
of a remotely sensed landscape. Since early standards in spectral pattern recognition 
and particularly pixel based classification algorithms were found to be disadvanta-
geous to inferring semantic information from images, more sophisticated image 
segmentation procedures and object-oriented image analysis approaches became an 
important and challenging main research foci in the entire area of image analysis.  
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In remote sensing, preliminary procedures for image segmentation have already 
been introduced in the mid 1970ies (NEUBERT & MEINEL 2003), however, it took 
more than two decades till segmentation algorithms were established as key 
functional features of contemporary software packages such as eCognition (BAATZ 
& SCHÄPE 2000). The design of segmentation procedures was likewise an important 
issue in the development of SAGA–GIS. Preliminary approaches, which had been 
originally developed to enhance the SAGA terrain analyses options (BÖHNER et al. 
1997; HOFFMANN & BÖHNER 2000) evolved to a suitable SAGA segmentation 
module with sufficient performance even on large image data sets, adaptable and 
applicable to many kinds of raster data types.  

In this paper we intend to briefly inform on the current state of implementation 
of the SAGA segmentation procedure, its methodical structure and its components 
involved. The final evaluation of the applicability and quality of the obtained 
segmentation results refers to the bachelor thesis of STOCK (2005), who compared 
segmentation procedures of eCognition, RHSEG and SAGA on the example of a 
panchromatic Quickbird image of Central Sulawesi (Indonesia), taken on 14th of 
April 2004.  
 

2 Research Objectives and general Concept 
A pixel is the smallest unit in the analysis of remote sensing imagery. The pixel size, 
however, is determined by external factors, i.e. the sensor specifications and thus 
does not necessarily correspond with the dimensions of the features to be studied. 
The generic idea of image segmentation is to firstly infer image primitives and 
homogenous regions, called image objects (or segments) as the basic entities for all 
further thematic classification and refinement applications. Since the digital image is 
no longer considered as a grid of pixels but as a set of image objects, the image 
segmentation step tackles some typical problems of pixel-based classification 
procedures (e.g. the ‘mixed pixel’ problem) but likewise eases the integration of 
expert knowledge in thematic classification procedures and mapping applications. 
Moreover, readily inferable context information and topologic relations between the 
image objects offer extended image analysis options and thus enhance the diagnostic 
capacities of digital images.  

To date a series of image segmentation algorithms have been proposed, favoring 
either edge detection or region based approaches, the latter, however, are dominating 
in remote sensing (c.f. NEUBERT & MEINEL 2003; MEINEL & NEUBERT 2004; STOCK 
2005). Since remote sensing applications often deal with huge raster data sets of 
varying complexity and resolution, the development of region based approaches 
particularly emphasized on a generic and computational efficient segmentation 
algorithm. One of the probably most prominent examples is the multi-scale image 
segmentation algorithm of eCognition, which is held to be robust and applicable 
under operational settings. Key features such as a user adaptable scale parameter and 
advanced homogeneity cost measures for object merging, which consider spectral 
and, particularly, spatial object properties (shape, smoothness, compactness), 
support qualitatively convincing image segmentation results (BAATZ & SCHÄPE 
2000; MEINEL & NEUBERT 2004).  
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The relevance of object feature scales and spatial dimensions in object oriented 
image analysis is likewise emphasized in the SAGA segmentation approach. 
However, instead of using spatial object characteristics, we utilize the spatial 
representativeness as the basic integrative feature for initial image segmentation. 
The segmentation procedure consists of two major steps: 
1. Representativeness analysis: the spatial representativeness quantifies the 

distance in which one or a set of spectral features of a pixel is representative for 
(i.e. spatially correlated with) the spectral properties in the neighborhood.  

2. Region growing: region growing algorithms merge neighboring pixels to 
homogenous objects primitives. The algorithms starts on a limited number of 
single seed pixels, which are determined by its spatial representativeness.  

An iterative optimization of the initial segmentation results may optionally be 
achieved by object merging, using simple approaches such as global thresholding. 
More complex homogeneity cost measures (e.g. TZOTOS & ARGIALS 2006) or ‘local 
mutual best fitting’ (BAATZ & SCHÄPE 2000) are further sophisticated alternatives.  

The entire procedure is intended to be used as a first (low level) processing part 
in an object oriented image analysis framework, focusing on thematic classification 
of land-cover or vegetation, respectively. Necessary clustering techniques imple-
mented in SAGA, combine the ‘iterated minimum-distance’ method and the ‘hill-
climbing’ method (RUBIN 1967). The first method is a fast cluster algorithm, which 
computes initial cluster centroids, based on least square estimations. Preliminary 
cluster results are subsequently forwarded to the ‘hill-climbing’ algorithm, which 
continuously establishes new clusters, using a least square optimization scheme. One 
major advantage of the combination of both algorithms is the comparably fast 
handling of a great number of segments, which is particularly relevant on large 
image data sets. Moreover, the combination facilitates the generation of clusters 
which cover only a very small fraction of the whole image (BÖHNER et al. 1997).  

Examples of image segmentation and classification results, performed on LISS-
IRS-III multi-spectral images from costal areas in Northern Germany are given in 
DÖPEL et al. (2004). In the following, we solely concentrate on the formal definition 
and discussion of the actual segmentation steps.  

 
3 Calculation of Spatial Representativeness 

Spectral features of adjacent pixels are not accidental since they are determined by 
the land-cover and consequently there are specific underlying rules for the spatial 
distribution of these features. Representativeness analysis is based on the 
assumption that on a continuous surface, the change of spectral signals from one 
surface element (as displayed in a pixel) to neighboring elements depends on their 
distance. In simple words: spectral signals from neighboring pixels (e.g. situated in 
the center of an agricultural field with a uniform crop type and homogenous in terms 
of the phonological state) will more likely have comparable values than spectral 
signals from pixels further apart (e.g. spectral signals from a forest stand).  

A well established geostatistical approach for describing and analyzing the 
distance component in the spatial correlation of locally observed or measured 
features is the semi-variogram analysis. MATHERON (1963, 1973) introduced this 



key analysis function in geostatistics as a method to objectively estimate the distance 
(i.e. the semi-variogram range) up to which point source observations are 
significantly (statistically) correlated. Moreover, the approximation of an empirical 
semi-variogram by a fitted semi-variogram function enables an optimized 
interpolation of irregularly spaced point source information into a regular spaced 
grid network. In this study, we instead apply semi-variograms to receive information 
about the spatial representativeness of a known pixel feature.  

Based on the empirical semi-variogram function vi, computed for each pixel 
separately, an average semi-variance gradient is calculated as the inverse distance 
weighted mean gv of all semi-variance gradients in the distances d1 to dm with the 
weights 1/d1 to 1/d1 each powered by p [01]. In order to enhance the computational 
efficiency and performance, the image resolution in the circle around the targeted 
pixel decreases with increasing radius di. The metric representativeness rc of a 
pixel’s feature in the spectral channel c is subsequently computed as the distance in 
which 50 % of the global (image) variance vm is reached [02].  
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The measure of representativeness can thus be simply described as the mean 
distance, in which the spectral feature of a pixel is ‘largely’ similar to the 
surrounding pixels. Two examples of empirical semi-variogram functions are given 
in Figure 1. The first is obtained from a central ‘representative’ position in a lake 
and the second is obtained from a setting near the lake front. Both positions are 
marked in the Landsat-7 ETM image from Northern Thuringia.  

The final result of the entire procedure is a representativeness matrix for the 
whole image, i.e. a representativeness value for each pixel. As shown in the analysis 
results of the Landsat image in Figure 2, minima in the matrix of representativeness 
are often arranged in pixel-lineaments, mostly indicating land use borders, whilst 
representativeness maxima typically occur in central parts of huge homogenous 
agricultural fields. The analyses where directly performed on the digital numbers of 
the Landsat-7 ETM subset (see Fig.1).  

As far as different spectral channels are separately analyzed, the representative-
ness layers have to be averaged for further use in region growing initialization. In 
this case, a geometric mean is suggested as a suitable standard measure in order to 
ensure an equally weighted integration of all representativeness layers. However, if 
specific pattern are better represented in certain channels, a weighted mean may be a 
reasonable alternative. Moreover, the representativeness analysis may likewise be 
consistently performed on texture layers, particularly if the spectral variance (i.e. the 
spectral noise) covers characteristic surface pattern (e.g. the spectral noise of natural 
vegetation) in order to extend the predictive capacity of the image. 
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Fig.1: Subset of Landsat-7 ETM (Channel 4, Path 195 / Row 24) taken on 4th of 
September 1999 (above) and selected semi-variogram examples (the empirical semi-
variogram function is standardized by the maximum variance; x-axis distances are 
given in percent of the global distance) 
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4 Region Growing 
Region growing algorithms are clustering techniques which merge neighboring 
pixels, starting on an infinite set of single seed points. The definition of suitable seed 
points however, is a crucial task which distinctly affects the quality of all 
subsequently performed segmentation steps. The representativeness analysis tackles 
this problem in an elegant manner, given that the local maxima of the representative-
ness already indicate typical (i.e. spatially representative) positions within an image 
object. However, in cases with strongly irregular textured surfaces (e.g. the noisy 
pattern of a natural mixed forest stand), the representativeness analysis tends to yield 
many seed points in short distances. An overestimation of seed points likewise 
occurs in cases of extremely irregular shaped image objects, even if the spectral 
features are absolutely homogeneous (e.g. lakes or meandering rivers).  

To overcome this disadvantage, a SAGA image filter algorithm may optionally 
be applied to the representativeness layer, which calculates an inverse distance 
weighted mean for each pixel in a moving circle. The radius sm of the moving circle 
is simply computed as a function of the representativeness itself, by:  

p
gcgm drds )( −=        [03] 

where dg is the grid size and rc the representativeness. The potency p in equation 
[03] controls the intensity of the smoothing effect, however, a potency of 0.5 (= 
square root) proved suitable in most cases (see Fig.3). 

Region growing and object merging algorithms are commonly performed on the 
spectral values of an image and thus require a proper definition for image object 
homogeneity or heterogeneity, respectively. The definition of a homogeneity 
criterion is a precondition to decide which neighboring pixels (or image objects) 
merge at each region growing step. Alternative decision heuristics are defined and 
discussed in BAATZ & SCHÄPE (2000). In SAGA, two alternative region growing 
algorithms are implemented.  

The rather conventional ‘complete linkage algorithm’ considers the spectral 
signatures of one or a set of spectral channels. The implementation of the region 
growing algorithm consists of the following steps.  
• Initialises an array with the position of all positions of the cluster-centroids 

(seeds) and their property space 
• For each cluster-centroid build a list of border points. A border point can be an 

element of multiple cluster  
• Calculate and store for any border point the maximum Euclidean attribute 

distance to its cluster-centroid in the property space. Store its cluster membership 
and its spatial position. 

• Calculate and store for every cluster the n-dimensional border of the property 
space. While the list of border points is not empty repeat: 

• (1) find the border point and the cluster with the minimum maximal Euclidean 
distance in the property space for each cluster, (2) add this border point to this 
cluster and update the border of the property space of this cluster, (3) delete this 
border point from the border point list and add the new border points of the 
grown cluster, (4) for every new border points calculate its cluster membership, 
its attribute distance to the cluster-centroid and its spatial position. 
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Fig.2: Spatial representativeness of the Landsat-7 ETM image (see Fig.1) – values 
range from < 30 m (black) to > 400 m (white) – The box indicates the subset of 
Figure 3 

Fig.3: Starting ‘seed’ points and segmentation results of the ‘complete linkage 
algorithm’ – the image subset is marked in Figure 2 
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The second ‘fast merging algorithm’ is predominantly performed on the representa-
tiveness layer itself. A pixel merges with an adjacent image object (i.e. a seed pixel 
or a merged cluster of pixels), if its representativeness is the local maximum of all 
other neighboring ‘free’ pixels. Instead of growing only by one best fitting pixel in 
each pass, the object growing process enables to assimilate a set of neighboring 
pixels within one pass and is thus of fast performance. The break of criterion is 
reached, if the remaining free pixels all are bordering to concurring image objects. 
These contentious pixels are finally assimilated by the best fitting neighboring image 
object, considering again the best fit criterion already defined in function [04].  

As long as only one spectral channel is analyzed, both region growing 
procedures yield comparable results, thus the ‘fast merging algorithm’ is favorable 
owing to its performance. However, the central task of image segmentation as an 
initial step in object oriented image analysis is particularly to infer image semantics. 
As long as important semantic information of an image are better covered by 
different spectral channels, the ‘complete linkage algorithm’ is clearly advantageous. 
An example of segmentation results, obtained with the ‘complete linkage algorithm’ 
is given in Figure 3.  

 
5 Discussion and Conclusion 

The SAGA segmentation approach is a new and modular concept combining 
represenativeness analysis steps to identify the initial seeds and two alternative 
following region growing procedures. The procedures are adaptable to any kind and 
combination of raster data types. The implementation is tested as robust and has 
produced excellent performance even on large image data sets. There is no limitation 
on data size other than given by the used computer configuration. 

STOCK (2005) compared the SAGA segmentation approach, the eCognition 
software and the RHSEG procedure. The result of the evaluation test is given in 
Table 1. SAGA identified all areas with maximum represenativeness as seeds and 
resulted in a clear separation of e.g. field boundaries. The ecognition approach 
resulted in a less segmented image compared to the RHSEG and SAGA procedure.  
 
Tab.1: Evaluation results of the comparison of eCognition, RHSEG and SAGA by 
STOCK (2005) 

 Handling Segmentation Performance Rating 
eCognition ++ ++ +++ ++ 
RHSEG + ++ ++ + 
SAGA +++ +++ +++ +++ 

 
The SAGA procedure to reduce the seed numbers preserved the relevant locations 
and still resulted in a detailed segment pattern. In regions where raster cell size is 
close to the image object size all procedures have their limitation. The represenative-
ness analysis gives SAGA the opportunity also to calculate the minima of represent-
tativeness to enable even single object identification in small textured areas of a 
raster data set. Further studies will focus on this aspect to better segment textured 
areas. 



 
Fig.4: Result from the eCognition multi-scale image segmentation algorithm 
(STOCK 2005) 
 

 
Fig.5: SAGA segmentation result performed with the ‘complete linkage algorithm’ 
(STOCK 2005) 
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