Wirkung aufbereiteter Klärschlammmasche als P-Dünger zu Raps und Mais

S. von Tucher, M. Fleschhut, R. Zeindl, U. Schmidhalter
Lehrstuhl für Pflanzenernährung, TU München, Freising

1. Einleitung

Obwohl Schätzungen über die Reichweite wirtschaftlich abbaubarer P-Reserven großen Unsicherheiten unterliegen, ist der weltweite Vorrat an Rohphosphaten aus Lagerstätten in guter Qualität zur Herstellung mineralischer P-Düngemittel begrenzt (Cordell et al., 2009). Es ist zudem zu erwarten, dass der globale Bedarf an P-Düngemitteln in den nächsten Jahren weiter ansteigen wird.

Klärschlammmaschen stellen eine nicht unbeträchtliche Ressource für das Recycling von Phosphor dar. Untersuchungen mit Klärschlammmaschen zeigten jedoch oft eine unzureichend P-Verfügbarkeit für Pflanzen (Cabeza et al., 2011), da sie Phosphate geringer Löslichkeit enthalten (Sturm et al., 2010). Um Phosphor aus Klärschlammmaschen zurück zu gewinnen, sind derzeit bereits eine Reihe von Verfahren in der Entwicklung bzw. Erprobung (Römer, 2012). Durch die Aufbereitung der Aschen mit Säuren ist ein höherer Anteil an wasserlöslichem P zu erwarten, was zu einer besseren Pflanzenverfügbarkeit führt (Schick et al., 2008). Dies trifft insbesondere auf die Aufbereitung mit Phosphorsäure zu, wodurch zusätzlich eine Erhöhung und Standardisierung der P-Gehalte erreicht werden kann. Mit dieser Technologie konnte ein Verfahren zur Herstellung eines P-Düngemittels entwickelt werden, das allen Vorgaben der Düngemittelverordnung hinsichtlich der Gehalte an Metallen, Metalloiden und perfluorierter Verbindungen entspricht (Weigand et al., 2012).

2. Material und Methoden

2.1 Experiment 1: Kultur-/Bodenvergleich

Der Versuch wurde mit zwei P-armen Böden, beide schluffige Lehme, mit unterschiedlichen pH-Werten durchgeführt (Boden 1: pH 5,5, 1,3 mg CAL-P/100 g; Boden 2: pH 7,5, 0,9 mg CAL-P/100 g). Prüfdünger war eine aufbereitete Klärschlammmasche der Firma Recophos® mit einem Gesamt-P-Gehalt von 29,7 % P₂O₅ (12,97 %,P), davon 20,5 % P₂O₅ wasserlöslich (entspricht 69 % vom Gesamt-P) und einer Granulatgröße bis 2 mm. Als Vergleichsdünger diente das Salz Ca(H₂PO₄)₂. Die gedüngten Mengen beliefen sich auf 250 und 500 mg P/Gefäß (Inhalt 5-Liter; 6,5 kg Boden 1/Gefäß; 7,5 kg Boden 2/Gefäß) für den Prüfdünger und 0,175, 250 und 500 mg P/Gefäß für den Vergleichsdünger. Die Zunäsung zum gesamten Boden erfolgte vor der Saat. Folgende weitere Mineralstoffe wurden gedüngt: 0,9 g (Raps) bis 1,9 g (Mai) N; 1,7 g K; 0,3 g Mg; 0,4 g S/Gefäß. Raps und Mai wurden von November bis Januar für 58 Tage unter Gewächshausbedingungen mit Zusatztbelichtung kultiviert.

Nach der Ernte von Raps wurde eine erneute Aussaat von Mai ohne weitere P-Zufuhr jedoch mit einer Düngung von 1,1 g N/Gefäß durchgeführt. Die Kulturdauer betrug hier 48 (Boden 1) bzw. 42 Tage (Boden 2).

2.2 Experiment 2: Platzierung der P-Düngung mit unterschiedlichen Granulatgrößen

Als Boden wurde schluffiger LehmmitpH 7,5 und 0,9 mg CAL-P/100 g verwendet. Die beiden Prüfdünger aus aufbereiteter Klärschlammmasche der Firma Recophos® mit den beiden Granulatgrößen „fein“ (bis 2 mm; 30,3 % Gesamt-P₂O₅) und „grob“ (bis 5 mm; 40,0 % Gesamt-P₂O₅) wurden vor der Saat (1) zum gesamten Boden gegeben oder (2) als Düngerband 3 cm neben und 3 cm unterhalb der Saatreihe in den Mengen 250 und 500 mg P/Gefäß (Inhalt 10-Liter; 13 kg Boden) platziert. Als Vergleichsdünger diente NH₄H₂PO₄, dessen NH₄-N-Anteil für den Prüfdünger ausgeglichen wurde. Die weitere Düngung belief sich auf 1,35 g N, 1,7 g K, 0,3 g Mg und 0,4 g S/Gefäß. Die Kulturdauer betrug unter Gewächshausbedingungen ab Mitte Februar 72 Tage.

2.3 Experiment 3: Langzeitgefäβversuch

Der seit 2001 bestehende Langzeitversuch wurde mit zwei Böden (Lu) mit unterschiedlichen pH-Werten (Boden 1: pH 4,7; Boden 2: pH 7,5) durchgeführt. Die
P-Düngeformen von 2001 bis 2010 waren Superphosphat, Hyperphosphat und eine nicht-aufbereitete Klärschlammasche (KSA), ab 2012 wurde letztere Düngemittel durch ein Recophos®-Produkt (29,7% \(P_2O_5 \); Granulatgröße bis 2 mm) ersetzt. Aufgrund der unterschiedlichen Vorgeschichte betrugen die Boden-\(\text{CAL-P} \)-Gehalte im Boden 1: 0,44 (ohne P), 2,2 (Super-P), 1,75 (Hyper-P), 1,34 (KSA) mg/100 g Boden und im Boden 2: 1,25 (ohne P), 4,99 (Super-P), 1,42 (Hyper-P) und 1,42 (KSA) mg P/100 g Boden. Die jährlich gedüngte P Menge betrug 218 mg P (entspr. 500 mg \(P_2O_5 \)) pro Gefäß (Inhalt 5-Liter; 7,0 kg Boden 1,7,0 kg Boden 2). Sommerweizen wurde jeweils ab März unter Bedingungen einer Vegetationshalle bis zur Kornreife unter Zugabe von 0,7 g N, 0,5 g K und 80 mg S kultiviert.

2.4 Analytische Methoden und statistische Auswertung

Zur Berechnung der P-Aufnahme wurden die P-Gehalte der Pflanzen nach Nassveraschung unter geregelter Druck im Mikrowellenofen nach Zugabe von HNO\(_3\) und \(H_2O_2 \) mittels ICP-OES bestimmt. Die Messung der P-Gehalte im Boden erfolgte kolorimetrisch im CAL-Extrakt.

Für die statische Auswertung der P-Aufnahmen wurden einfaktorielle Varianzanalysen durchgeführt (SPSS Statistics 19). Der Mittelwerts-Test bei \(\alpha = 0,05 \).

3. Ergebnisse

Die P-Aufnahme von Raps zeigte in beiden Böden bis zu einer Zugabe von 500 mg P/Gefäß eine deutliche Abhängigkeit von der P-Düngung (Abb. 1). Sowohl im Boden 1 mit pH 5,5 als auch im Boden 2 mit pH 7,5 erreichte die aufbereitete Klärschlammasche (KSAa) auf beiden P-Düngestufen mindestens die gleiche P-Aufnahme wie voll wasserlösliches \(\text{Ca(H}_2\text{PO}_4)_2 \). Im neutralen Boden mit 500 mg P/Gefäß lag sie mit KSAa sogar signifikant über dem Vergleichsdünger. Ein ähnliches Bild zeigte sich für die P-Aufnahme von Mais im sauren Boden (Abb. 2), wo KSAa und \(\text{Ca(H}_2\text{PO}_4)_2 \) in beiden P-Düngestufen zu vergleichbaren P-Aufnahmen führten. Auf dem neutralen Boden dagegen lag die P-Aufnahme von Mais mit KSAa in beiden Düngestufen nur bei etwas über 60% im Vergleich zur entsprechenden Menge an \(\text{Ca(H}_2\text{PO}_4)_2 \).
Abb. 1: Wirkung einer P-Düngung mit Ca\((\text{H}_2\text{PO}_4)\)_z und aufbereiteter Klär-
 schlammmasche (KSAa) auf die relative P-Aufnahme von Raps in zwei Böden (500 mg Ca-P = 100 %)
 Unterschiedliche Buchstaben kennzeichnen signifikante Unter-
 schiede zwischen den Düngestufen bei \(p < 0.05 \) im Boden mit pH 5.5
 (Kleinbuchstaben) und im Boden mit pH 7.5 (Großbuchstaben).

Wurde Mais ohne erneute P-Düngung als Nachfrucht nach Raps kultiviert, erreichten die mit KSAa erzielten Erträge nicht nur im sauren sondern auch im neutralen Boden auf beiden P-Stufen mindestens das Niveau des voll wasser-
löschlichen Düngers (ohne Abb.).

Nach einer Bandapplikation von KSAa mit Granulatgrößen bis \(\Theta \) 2 mm ("fein")
 und bis 5 mm ("grob") ergaben sich für die P-Aufnahme von Mais im Boden mit
 pH 7.5 auf beiden Düngestufen keine Unterschiede im Vergleich mit dem voll
 wasserlöslichen \(\text{NH}_4\text{H}_2\text{PO}_4 \) (Abb. 3). Eine vergleichsweise geringere P-Auf-
nahme war nur zu beobachten, wenn das gröbere Granulat zum gesamten
 Boden zugesetzt wurde.
Abb. 2: Wirkung einer P-Düngung mit Ca(H₂PO₄)₂ und aufbereiteter Klärschlammasche (KSAa) auf die relative P-Aufnahme von Mais in zwei Böden (500 mg Ca-P = 100 %) (Unterschiedliche Buchstaben kennzeichnen signifikante Unterschiede zwischen den Düngestufen bei p ≤ 0,05 im Boden mit pH 5,5 (Kleinbuchstaben) und im Boden mit pH7,5 (Großbuchstaben))

Abb. 3: P-Aufnahme von Mais nach Düngung mit aufbereiteter Klärschlammasche (KSAa) als Banddüngung bzw. zum gesamten Boden; Granulatgröße „fein“ ≤ 2 mm, „grob“ ≤ 5 mm (Unterschiedliche Buchstaben kennzeichnen signifikante Unterschiede zwischen den Behandlungen bei p ≤ 0,05)
Pflanzliche Produktion

4. Diskussion

Das P-Recycling-Produkt aus mit Phosphorsäure aufbereiteter Klärschlammmasche (KSAa), mit einem Anteil an wasserlöslichem P von ca. 70 %, führte mit Raps, einer Kultur, die eine verstärkte Fähigkeit zur chemischen P-Mobilisierung besitzt (Hoffland et al., 1989), auf beiden Böden zu einer P-Aufnahme, die der nach Düngung mit dem voll wasserlöslichen Ca(H₂PO₄)₂ mindestens vergleich-

5. Zusammenfassende Schlussfolgerungen

Die mit Phosphorsäure aufbereitete Klärslammasche, die als Produkt unter dem Namen Recophos® im Handel ist, zeigte insgesamt eine sehr gute, meist mit voll wasserlöslichem P-Dünger vergleichbare Düngewirkung, die der nicht aufbereiteter Klärslammasche deutlich überlegen war. Durch diese Art der Aufbereitung lassen sich standardisierte, wirksame Düngemittel herstellen, die eine unnötige Anreicherung von P mit geringer Düngewirkung im Boden vermeiden helfen.

6. Literaturangaben

-355-
Pflanzliche Produktion VDLUFA-Schriftenreihe 68