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Abstract

Living cells are divided into specific compartments, each responsible for a different cellular
function. The identification of protein localization (i.e. into which sub-cellular compartment it
is being sorted) is important for understanding protein function, as certain functions can only
be performed in certain environments. Despite advances in high-throughput experiments for
protein localization, the gap between the number of known proteins and the number of
proteins with known localization continues to grow. Several computational approaches have

been developed to predict protein localization, yet many challenges remain to be tackled.

The work at hand describes a series of novel machine learning-based approaches
that predict protein localization from amino acid sequence. Protein localization is predicted
at different resolution levels: (i) a cell, (i) a compartment and (iii) a pathogenic organism.
The first approach employs machine learning (profile kernel Support Vector Machines) to
predict protein sub-cellular localization. Prediction performance is made 25% better by
adding homology-based inference. The improved method was made publicly available as a
web server and was used to annotate over 1,000 entirely sequenced proteomes.

Predicting protein localization at a resolution of a single compartment is a harder
problem due to the lack of experimental data. This work presents another method that
combines homology-based inference with machine learning to predict proteins in 13 sub-
nuclear localizations. In addition, a database that archives all experimentally known nuclear
signals, i.e. “zip codes” that guide nuclear protein import and export, is described. Learned
from the set of experimental signals, the database suggests a two-fold larger set of potential

computationally determined signals that await their experimental verification.

Knowledge of protein localization can assist in the identification of pathogenic
bacteria. The type Il secretion system is a key mechanism for the transport of bacterial
effector proteins directly into the cytoplasm of host cells. Similar to approaches for other
localization problems, the novel method described here combines homology-based
inference with machine learning to predict effector proteins. It improves up to three-fold in
the prediction performance compared to the state-of-the-art. This method was also made

available as a web server and was used to annotate all entirely sequenced prokaryotes.

Finally, a linked annotation resource is envisioned that could by unifying various

annotations from biomedical texts complement annotations in existing biological databases.
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Zusammenfassung

Zellen sind in Kompartimente unterteilt, die jeweils fur eine andere zellulare Funktion
zustandig sind. Viele Proteinfunktionen kdnnen nur in bestimmten Kompartimenten
ausgeubt werden. Deshalb ist die subzellulare Lokalisierung wichtig, um die Funktion
einzelner Proteine umfassend zu verstehen. Wahrend die Anzahl bekannter Proteine stetig
wachst, gestaltet sich die Proteinlokalisierung trotz des Fortschritts in experimentellen
Techniken hingegen problematischer. Die Menge an Proteinen mit bekannter Lokalisierung
steigt daher deutlich geringer. Viele computergestiitzte Methoden wurden entwickelt, um

Proteinlokalisierung vorherzusagen, allerdings kdnnen die Methoden weiterhin verbessert werden.

Die vorliegende Arbeit beschreibt eine Reihe von neuen Machine Learning basierten
Methoden, welche die zellulare Lokalisierung der Proteine anhand ihrer Aminoséuresequenz
vorhersagen. Dies geschieht auf den drei Ebenen: (i) Zelle, (i) Kompartiment und (iii)
pathogener Organismus. Die erste Methode verwendet Machine Learning (Profile Kernel
Support Vector Maschinen), um eine Lokalisierung in verschiedenen subzellularen
Kompartimenten vorherzusagen. Zusatzlich kann die Vorhersagegenauigkeit um weitere
25% verbessert werden, indem Machine Learning mit einer Homologie basierten Inferenz
kombiniert wird. Die Folgemethode wurde als Web Server zur Verfigung gestellt und auf

mehr als 1.000 Proteomen von derzeit sequenzierten Organismen angewendet.

Die Vorhersage von Proteinlokalisierung innerhalb eines einzigen Kompartiments
stellt aufgrund des Fehlens von experimentellen Daten ein grolReres Problem dar. Diese
Arbeit stellt eine weitere Methode vor, die Machine Learning mit Homologie basierten
Inferenz kombiniert, um Proteine in 13 sub-nukleare Kompartimente vorherzusagen.
Daruber hinaus wird eine Datenbank vorgestellt, die alle experimentell bekannten
Nukleuslokalisierungssignale ("Postleitzahlen”) enthélt. Diese steuern den Proteintransport
in und aus dem Zellkern. Basierend auf experimentell bestimmten Signalen, enthalt die
Datenbank eine zweifach groRere Anzahl von potenziellen, neu berechneten Signalen, die

noch auf experimentelle Bestatigung warten.

Die Kenntnis der Proteinlokalisierung kann auch bei der Identifizierung von
pathogenen Bakterien helfen. Das "Typ IllI-Sekretionssystem" ist ein essenzielles System fir
die Sekretion von bakteriellen Effektorproteinen direkt in das Zytoplasma der Wirtszellen.

Ahnlich zu den Methoden fur andere Lokalisierungsprobleme, kombiniert die hier
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beschriebene neue Methode Machine Learning mit Homologie basierten Inferenz, um
Effektorproteine vorherzusagen. Die Methode verbessert die Vorhersageleistung von
Effektorproteinen bis zu einem Dreifachen im Vergleich zu state-of-the-art Methoden. Die
neue Methode wurde auch als Web Server zur Verfiigung gestellt und auf Proteomen aller

vollstandig sequenzierten Prokaryoten angewendet.

Schlielich wird ein Konzept vorgestellt, das verschiedene Annotationen aus
biomedizinischen Texten miteinander verknupft und so Annotationen in existierenden

biologischen Datenbanken erganzt.
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Chapter 1

1 Introduction

1.1 Sub-cellular localization is an aspect of protein function

Compartmentalization of the cell

Prokaryotic cells are generally surrounded by a single plasma membrane (gram-negative
bacteria have an additional outer membrane) that controls the flow of various substances in
and out of the cell. Eukaryotic cells, in contrast, are typically much larger than that of
prokaryotes and are divided into several intracellular membrane-bound compartments,
called organelles, each responsible for a different cellular function. For example, the nucleus
hosts the genetic material resembling a library, and the mitochondria provide the energy
resembling a power plant. Therefore, proteins residing in the same sub-cellular compartment

often contribute to the same cellular function.

A recent study by Bell and colleagues [1] presents potential evidence for the first
forms of life to have evolved as early as 4.1 billion years ago, during the period following
Earth’s formation. For the next two billion years, unicellular prokaryotes (i.e. archaea and
bacteria) presented the only form of life until 2.1 billion years ago, unicellular prokaryotes
aggregated to become multicellular eukaryotes. Remarkably, the event of multicellularity
occurred dozens of times independently [2] and opened completely new ways of life to

become available, i.e. as fungi, animals and plants.

It is widely accepted that one of the critical steps in the formation of eukaryotes was
the event of endosymbiosis — invasion of a host prokaryotic cell by a smaller prokaryotic cell
[3]. For example, both mitochondria and chloroplasts originated in this way. These
organelles are similar to bacteria not only in size, but also in the reproduction by diving in
two. Most importantly, both organelles contain their own DNA, which replicates
independently of the host cell’s cycle [4]. Other eukaryotic organelles, such as the
Endoplasmic reticulum (ER), Golgi apparatus, endosomes and lysosomes are believed to
have evolved from the pitching off of special patches of the plasma membrane [5]. Finally,
the origin of the nucleus remains unclear - whether it formed by an endosymbiont that
corresponds to the nuclear compartment or by the internalization of the plasma membrane

that became organized around the chromatin [6-8].



Chapter 1

Gunter Blobel wins 1999 the Nobel Prize for protein targeting system

A true revolution in the modern cell biology traces back to 1945 when Keith R. Porter, Albert
Claude and Ernest F. Fullam from the Rockefeller Institute for Medical Research published
the first image of a eukaryotic cell as seen with an electron microscope [9]. While earlier light
microscopes allowed seeing the shape of the cell and its major compartment, the nucleus,
the high resolution electron microscope allowed for the first time to see clear structures of
other organelles within a cell (Figure 1). The techniques of electron microscopy were
steadily improved in the next years, which in 1955 led to the identification of ribosomes (first
named “Palade granules”) [10], the molecular machines responsible for the synthesis of
novel proteins. Moreover, it led to the realization that different sub-cellular structures carry
out different cellular functions and in order for a protein to be secreted out of the cell, it must
enter a so-called secretory pathway for its transport from the cytoplasm, where it is

synthesized, to the cell’'s exterior traversing the plasma membrane [11-18].

Figure 1: First published high resolution image of a eukaryotic cell. The figure shows the first
electron microscope image of an intact eukaryotic cell published in 1945 by Keith R. Porter, Albert
Claude, and Ernest F. Fullam [9]. The cell is a cultured fibroblast, originated from a chick embryo.
Magnified 1600 times, this image reveals cell’'s major sub-cellular compartments, including the
nucleus, mitochondria, cytoplasm, Golgi apparatus, the extra-cellular space and a "lace-like
reticulum", which Porter later named the "Endoplasmic Reticulum" [19]. Other major compartments of
a eukaryotic cell, not shown here, are the chloroplasts, plastids (both in plants), lysosomes,
peroxisomes and the vacuole. The image montage was taken from [20].
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Gunther Blobel was the first scientist who described in 1975 the mechanism of how
proteins traverse cellular membranes, including those of organelles, a scientific
breakthrough that was awarded with a Nobel Prize in 1999. More specifically, the Prize was
awarded for the discovery that “proteins have intrinsic signals that govern their transport and
localization in the cell” [21]. In his work, Blobel introduced a zip code-like structure of the
cell, where each protein possesses an organelle-specific “address tag” or a “zip code” in its
amino acid sequence that is recognized by receptors in the membrane of the targeted
organelle. Upon recognition, the protein is translocated to the organelles across a channel in
their membrane where it can then perform its cellular function (Figure 2). Blobel called the
zip codes signal sequences [22] and the theory of protein transfer to the membranes of
organelles, the signal hypothesis [23, 24]. It turned out that the protein targeting mechanism
based on signal sequences, proposed by Blobel, is strongly conserved and is operating
similarly across all three domains of life (i.e. in Archaea, Bacteria and Eukaryota) [25-29].

Figure 2: Blobel’s signal hypothesis for the transfer of proteins across membranes. The figure
illustrates the signal hypothesis introduced by Gulnter Blobel in 1975 [23]. A protein destined for the
secretion from the cell (the mRNA encoding the protein is indicated by a long black line) is
synthesized by ribosomes (white structures surrounding the mRNA) that associate with the ER. The
codons in the region after the initiation AUG codon are signal codons (indicated by a zig-zag line)
whose translation results in a signal sequence (indicated by a dashed line) on the N-terminus of the
nascent protein. Emergence of this signal sequence triggers the attachment of the ribosome to a
channel in the ER membrane, where the ever growing protein can pass through until the signal
sequence is cleaved and the protein is released into the lumen of the ER. Subsequently, the protein
can be transported out of the cell. The figure was taken from [23].
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The vast majority of sorting signals remain unknown

On the basis of previous results, Blobel established in 1980 general principles of the cellular
“protein targeting” machinery [30]. Blobel stated that amino acid sequences of the
transported proteins contain topogenic organelle-specific targeting signals (or signal
peptides), which are recognized by selective signal receptors that physically bind to them.
The interaction between a signal and a receptor then initiates protein transport to cellular
membranes and allows a protein to pass these membranes in its unfolded state. This
protein translocation mechanism was shown to occur at the prokaryotic plasma membrane,
and eukaryotic mitochondrial, chloroplast, thylakoid, ER and peroxisome membranes [30].
Later, Blobel also described the protein nuclear transport through nuclear pore complexes
(NPCs; further described in Chapter 6), which allows proteins to pass the nuclear membrane
in their folded state. This transport mechanism also requires the presence of specific
targeting signals in the amino acid sequences of transported proteins [31, 32]. The
importance of cellular targeting signals was shown by (i) removing them from the sequences
of transported proteins, thus inhibiting their cellular transport and (ii) appending signal
sequences to cytoplasmic proteins, thus mediating their transport to other sub-cellular
compartments. Signal sequences are thus both necessary and sufficient for protein cellular

sorting. Generally, signal sequences can be divided into two classes [5]:

e Signal sequences: are short stretches of consecutive residues in the amino acid
sequences of transported proteins that are exposed when proteins are folded. Signal
sequences usually occur at one of the ends in proteins amino acid sequences, but
can also occur anywhere else in the sequences.

e Signal patches: are formed through amino acids that are physically separated in the
sequences of transported proteins. However, once a protein folds into its three-
dimensional state, the patches come together and form a signal on the surface of a

folded protein.

Signal sequences can vary greatly between proteins destined for the same sub-cellular
compartment (e.g. over 2,000 different nuclear localization signals are reported in Swiss-
Prot [33]; Materials and Methods in Chapter 6). However, their physical properties, such as
hydrophobicity or polarity, often seem to be more important in the signal recognition process
than the exact amino acid sequence (Figure 3). Due to the lack of a consensus sequence
determining a protein translocation to a certain sub-cellular compartment, it is extremely

difficult to determine signal sequences experimentally and for signal patches the situation is
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FUNCTION OF SIGNAL SEQUENCE EXAMPLE OF SIGNAL SEQUENCE

Import into nucleus -Pro-Pro-Lys-Lys-Lys-Arg-lys-Val-

Export from nucleus -Leu-Ala-Leu-Lys-Leu-Ala-Gly-Leu-Asp-lle-

Import into mitochondria *HaN-Met-Leu-Ser-Leu-Arg-GlIn-Ser-lle-Arg-Phe-Phe- Lys-Pro-Ala- Thr-Arg-Thr-
Leu-Cys-Ser-Ser-Arg-Tyr-Leu-Leu-

Import into plastid *HayN-Met-Val-Ala-Met-Ala-Met-Ala-Sci-Leu-Gln-5ci-50-Met-5e-5e-Leu-
Leu-5er-5Ser-Asn-5er-Phe-Leu-Gly-Gln-Pro-Leu-Ser-Pro-lle- Thi-Leu-Ser-Pro-
Phe-Leu-GIn-Gly-

Import into peroxisomes -Lys-Leu-COO

Import into ER *HiN-Met-Met-Ser-Phe-Val-Ser-Leu-Leu-Leu-Val-Gly-lle-Leu-Phe-Trp-Ala- Thr-
Glu-Ala-Glu-Gin-Leu-Thr-Lys-Cys-(lu-Val-Phe-Gin-

Returnto ER -Lys-Asp-Glu-Leu-COO

Some characteristic features of the different classes of signal sequences are highlighted in color. Where they are known to be important
for the function of the signal sequence, positively charged amino acids are shown in red and negatively charged amino acids are shown
in green. Similarly, important hydrophobic amino acids are shown in yellow and hydroxylated amino acids are shown in biue. 'H3N
indicates the N-terminus of a protein; COO" indicates the C-terminus.

Figure 3: Typical signal sequences involved in protein cellular sorting. The figure shows
examples of signal sequences that target protein transport to different sub-cellular compartments.
Typical physical properties of these sequences, which appear to be more important for protein sorting
than the sequences themselves, are highlighted in color. Figure was taken from [5].

even worse, as they require knowledge about the three-dimensional structure of transported
proteins. Thus, a vast majority of sorting signals remains unknown (e.g. Swiss-Prot nuclear
localization signals can be mapped in sequences of less than 10% of all known nuclear
proteins; Results and Discussion in Chapter 6). To remedy this situation, a number of
computational methods have been developed that predict protein sub-cellular localization
through a number of conceptually different approaches. These approaches require

information other than the presence of signal sequences only.

1.2 Applications of protein sub-cellular localization data

The identification of signal peptides allowed a cell biologist for the first time to reconstruct
protein transport in vitro and to analyze cellular functions outside of a living cell, which was
nearly impossible before. This opened new possibilities of a significant impact also in clinical

research, as the sub-cellular localization is essential for the protein’s functional role in a cell.

Knowledge of protein sub-cellular localization can, for example, be used in the
identification of novel drug targets. Over two thirds of known drugs target proteins that are
localized in the extra-cellular space and the plasma membrane [34, 35]. Proteins localized in

these compartments are relatively easy to access, so that drugs targeting them do not
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require substantial modification. This is different for drugs that target proteins in intracellular
compartments. During development, these drugs are designed in a way that they exhibit
cellular sorting signals (i.e. zip codes) that allow them to pass through the plasma
membrane and to reach their appropriate sub-cellular location [36]. For example, anticancer
drugs target various nuclear proteins that are involved in e.g. DNA replication. To reach
these proteins, drugs are often attached to specific viral machineries that lack pathogenic
components but allow drug delivery into the cell nucleus [36]. Mitochondria are also often
targeted in the drug therapy both in host cells and in parasites. In host cells, mitochondrial
proteins can serve as anticancer targets, while in parasitic cells for example inhibiting the
electron transfer chain is a successful antimicrobial intervention [36]. To reach mitochondria,
a drug must contain a mitochondrial targeting signal.

Knowledge of protein sub-cellular localization can further help in understanding the
molecular mechanisms of several human genetic diseases. If a sorting signal gets modified
or disrupted, the protein carrying this signal can no longer reach its correct sub-cellular
destination and becomes mis-localized. Aberrant protein localizations have been observed
in the pathogenesis of human diseases as diverse as metabolic, cardiovascular and
neurodegenerative diseases, as well as cancer [37]. One example are mutations within the
nuclear localization signal of the sex-determining region Y protein (SRY), which prevent the
protein from entering the nucleus and promote its mis-localization in the cell cytoplasm. The
loss of nuclear function of SRY has been linked to a disease where developmental defects
include male-to-female sex reversal, also known as Swyer syndrome [38]. Proteins can also
mis-localize due to alterations in the elements of the protein sorting machinery. For example,
dysregulations of nuclear pore complexes have been linked to the development of
cardiovascular and neurodegenerative diseases [37]. Thus, the identification of disease-
related protein mis-localizations offers an opportunity to normalize or interfere with the

aberrant localization using therapeutic agents.

Finally, because sub-cellular localization limits interacting partners to those proteins
that reside in spatially proximal or equal sub-cellular compartments, knowledge of protein
localization can also be used in assessing protein-protein interaction data, such as those
coming from noisy high-throughput experiments [39]. Interacting proteins are confined to
particular biological processes and are likely to have similar functional annotations.
Therefore, knowledge of the sub-cellular localization of a protein is also important in

assigning function to its interacting partners that are yet un-annotated [40-44].
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1.3 Experimental characterization of protein localization

One of the most prominent experimental techniques to determine in vivo steady-state sub-
cellular localization of proteins is based on green fluorescent protein (GFP) tagging. GFP
was originally isolated from the jellyfish Aequorea victoria. The protein is composed of 238
amino acid residues (27kDa) and exhibits green fluorescence when excited with blue light,
without the need for any co-factors [45-47]. Therefore, any cDNA can be fused with the GFP
coding sequence and the localization of the expressed GFP can be monitored using a
microscope in living cells (Figure 4). Subsequently, the respective cDNAs can be extracted
from cells, cloned and sequenced. This strategy of using GFP has led to a number of sub-
cellular localization screening assays [48-52]. One example is the high-throughput study of
the yeast proteome by Huh et al. [53], where over 4,000 S. cerevisiae proteins (representing
about 60% of the whole proteome) were GFP tagged and analyzed. While the GFP-tagging
method is undoubtedly powerful, it has also limitations. The GFP tag may interfere with the
correct protein localization. While this interference may not apply to each and every protein,
the visualization of each tagged protein is clearly a limiting factor.

| e > \ ~./"

EBFP - Nucleolus ECFP -Mitochondria /i "EGFP - Vimentin®

EYFP - Golgi DsRed2FP - ER HcRed1FP - Nucleus

Figure 4: Fluorescent protein labelling in living cells. The figure shows fluorescence microscope
images of protein markers exclusively localized to five different sub-cellular localizations (nucleolus,
mitochondria, the Golgi apparatus, Endoplasmic Reticulum and nucleus) and of a protein vimentin
that is known to be attached to the nucleus, Endoplasmic Reticulum and mitochondria. The
fluorescent tagging was done using enhanced green fluorescent protein (EGFP) and its derivatives:
blue fluorescent protein (EBFP), cyan fluorescent protein (ECFP), yellow fluorescent protein (YFP)
and red fluorescent proteins (DsRed2FP and HcRed1FP). Figure was taken from [54].
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In the post-genomic era, cheaper and faster solutions are needed to systematically
analyze the localization of proteins in larger proteomes. The pioneering work towards the
analysis of protein localization in human was done by Matthias Uhlen and colleagues [55,
56], who have generated and tested antibodies directed at 700 proteins, representing all
major protein families (e.g. kinases, protein receptors, transcription factors and nuclear
receptors). The localization of antibody-protein interactions was analyzed in nuclear,
cytoplasmic and plasma membrane compartments, which was detected using GFB-based
immunofluorescence. An important bottleneck for this approach, however, is the specificity
and selectivity of antibodies, which need to be rigorously evaluated. Uhlen and colleagues
suggest [55] to use two antibodies, best generated in different laboratories, for targeting the
same gene product.

Significant advances in organelle proteomics allowed extracting entire organelles
(e.g. the Golgi apparatus, mitochondria, lysosomes, peroxisomes, nucleus and the ER) and
analyzing their proteomes [57]. Organelles purification is done through homogenization of
cells and fractionation of its components (i.e. organelles) using a number of centrifugation
techniques. Centrifugation separates the components from each other based on their size
and density. Another fractionation technique that can be used with centrifugation is the
isolation of cellular components using antibodies targeted at the cytoplasmic domain of an
organelle transmembrane protein or a molecular tag. The proteins residing in isolated
organelles can then be identified using Mass Spectrometry (MS) techniques. Though the
MS-based proteomics has provided impressive results, enriching databases with proteins
from various sub-cellular localizations, they have also limitations. Most importantly, they
provide only a snapshot of proteins residing in an organelle at a particular time point. Also,

proteins only transiently associated with an organelle are likely to be missed.

To overcome the limitations of the organellar fractionation techniques listed above,
Matthias Mann and colleagues applied the approach of protein correlation profiling to map
1,404 mouse liver proteins to 10 sub-cellular localizations [58]. This approach was described
in their earlier work that identified over 20 centrosomal proteins that were previously not
known to be localized there [59]. First, cells were disrupted and the centrosomes were
purified by centrifugation. The resulted fractions were digested with proteases and the
peptides analyzed by MS. The abundance of each peptide in each fraction was determined
and the abundancies were compared to the abundance of peptides from known centrosomal

proteins (marker proteins). The correlation between the profiles indicated the likelihood of a
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protein being centrosomal (Figure 5). Thus, the major advantages of this technique are in
the possibility of studying proteins localized to organelles that are difficult to purify and in not
requiring antibodies or other protein tagging. All fractionation methods, however, rely on the
presence of proteins within an organelle during purification. Proteins transiently attached to

membranes or peripheral membrane proteins are difficult to study with these methods.

Despite the huge continuous effort in improving experimental identification
techniques for protein localization, the proteomes of completely sequenced organisms
remain largely un-annotated. For instance, the best studied organism yeast has less than
2/3 of its proteins annotated; for other organisms including human this number is
significantly lower (discussed in Chapters 2 and 3). Therefore, bioinformatics approaches

are sought to extend protein localization maps and support experimental datasets.

Organelle Purification

Proteomics Pipeline

».

/\
X

Organelle Purification

Relative Abundance

»
P

Figure 5: Workflow of the protein correlation profiling analysis. Organelles are purified from cells
and divided into fractions using e.g. centrifugation techniques (top gray box; three types of organelles
are indicated by circles, crosses and triangles). These are then subjected to proteases that break
down in the organelles contained proteins into peptides, which are subsequently analyzed by a
proteomics pipeline (e.g. a mass spectrometer). The abundance profiles of peptides across all
fractions (bottom box; profiles of proteins from three organelles are given by three blue lines) are
compared to the abundance profile of known marker proteins of an organelle of interest (red line).
Proteins whose profiles correlate with those of marker proteins (red line - marker; line with crosses -
candidate) are identified as candidates localized to an organelle, while other proteins are identified as
contaminants. Figure was taken from [60].
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1.4 In silico methods predicting protein sorting

Localization predictions are a common playground for function prediction methods

Predicting the sub-cellular localization of proteins computationally is one of the central
challenges in bioinformatics. Protein localization is one aspect of protein function and in
comparison to other protein functional features much more easily identifiable. Experimental
studies have shown that proteins may travel between different sub-cellular compartments,
yet most of them are functional within a single compartment for the largest part of their
lifetime [53, 58, 61]. Furthermore, the cellular sorting mechanism is relatively well
understood and experimental localization data is available in public databases for a large
number of proteins. For instance, the manually annotated database Swiss-Prot [33] contains
experimental localization information for more than 24,500 proteins (release 2015 12).
These however constitute less than 0.05% of all known proteins (percentage is based on the
UniProt [62] release 2015 12). Best computational methods have already achieved
impressive levels of prediction performance [63, 64] and have been incorporated in
proteome annotation pipelines to complement experiments [44, 65]. However, most of these
methods were developed with the aim of predicting localization either at a specific

localization site or in specific organisms.

The first published computational method that predicted protein localization from the
protein amino acid sequence was PSORT, developed by Nakai and Kanehisa in 1991 [66].
Most reliable annotations however remain those that are derived from sequence homology,
i.e. localization information is transferred from experimentally annotated protein to its un-
annotated sequence homolog. For proteins with no detectable sequence homology to
annotated proteins, de novo machine learning methods have proven to provide reliable
results. Other automatic methods annotate proteins by mining biological literature and
molecular biology databases. These methods however are limited to those proteins whose
annotation has already been experimentally verified and published. Methods aiming at
identifying features of sorting signals and using them for localization prediction have also
reached remarkable levels of performance. Hybrid approaches are those methods that
combine different sources of information (e.g. de novo predictions and sorting signal
information). Finally, meta-predictors integrate various prediction methods into one; the
method with the most accurate prediction is then used for the final annotation transfer. An

overview of currently widely used prediction methods is provided in Table 1.
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Name

Prediction feature; prediction method

Chapter 1

Localization sites

Sequence homology-based method

LOChom [67]

Annotated sequence homologs; PSI-BLAST [68].

10 eukaryotic and 3
bacterial sites

N-terminal sequence-based methods

TargetP 1.1
(69]

SignalP 4.1 [71]

EffectiveT3 [72]

BPBAac [73]

Amino acids composition (AAC) from 100 N-terminal residues for
signal peptide prediction; Neural Network (NN). Cleavage site
discovered using MEME [70].

AAC from 70 N-terminal residues for signal peptide and
cleavage site predictions.

Frequencies of amino acids, short peptides, and residues with
certain physico-chemical properties from 25 N-terminal residues;
Naive Bayes.

AAC from 100 N-terminal residues; Support Vector Machine
(SVM).

chloroplast, mitochondria
(both eukaryotic), extra-
cellular space (eukaryotic
and bacterial)

Extra-cellular space
(eukaryotic and bacterial)

Extra-cellular space
(Gram-negative bacterial)

Extra-cellular space
(Gram-negative bacterial)

Nuclear localization signals (NLS) and nuclear export signals (NES)-based methods

PredictNLS [74]

NLSstradamus
[75]

NESMapper
[76]

“In silico mutagenesis” of known NLS.

AAC within NLS; Hidden Markov Models (HMMs).

AAC within NES and in 25 N-terminal and 25 C-terminal flanking
residues; activity-based profile.

Nuclear import
(eukaryotic)
Nuclear import
(eukaryotic)
Nuclear export
(eukaryotic)

Text mining—-based methods

LocKey [77]

“Rule library” based on Swiss-Prot keywords; M-ary classifiers.

10 eukaryotic sites

Hybrid approaches, including de novo—based methods

LocTree [78]

LocTree2 [79]

LocTree3 [80]

CELLOVv.2.5
[81, 82]

MultiLoc2 [83]

PSORTb 3.0
(84]

WolFP SORT
(86]

Evolutionary profile-based AAC in the entire sequence, 50 N-
terminal residues and three secondary structure states, as well
as output of SignalP (for eukaryotes); SVMs.

Evolutionary profile-based conservation of k-mers; SVMs.

Uses PSI-BLAST homologs if available and LocTree2 otherwise.

Whole sequence-based frequencies of amino acids, di-peptides,
partitioned amino acids and physico-chemical properties of
amino acids; SVMs.

AAC in entire sequence and N-terminal region, presence of
sorting signals, phylogenetic profiles and Gene Ontology terms;
SVMs.

Sequence homologs; BLAST-P, frequent site-specific sub-
sequences; SVMs, motifs and profiles derived from PROSITE
[85], outer membrane motifs and transmembrane helices; HMM,
signal peptides and their cleavage sites; HMM. All predictions
are combined in a Bayesian network.

Sequence length, whole sequence-based AAC, presence of

sorting signals and functional motifs, physico-chemical
properties of amino acids; k-nearest neighbor.

5 animal, 6 plant and 3
prokaryotic sites

18 eukaryotic, 6 bacterial
and 3 archaeal sites
18 eukaryotic, 6 bacterial
and 3 archaeal sites

12 eukaryotic and 5

bacterial sites

9 animal/fungal sites and
10 plant sites

4 archaea/Gram-positive
bacterial sites and 5
Gram-negative bacterial
sites

12 eukaryotic sites

Table 1: Selected methods for sub-cellular localization prediction. For each method the table
lists: (i) its name, (ii) features used for the prediction and the algorithm for classification (iii) predicted
sub-cellular localization sites or their number and the source organism for input sequences.
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Sequence homology-based methods

Homology-based inference for a protein of unknown localization U implies finding a protein
with experimental localization annotation K that is sequence similar to U. This approach
works, because similar sequences have similar function [87-92] and are native to the same
sub-cellular localization [67]. Often, the reason for the connection between sequence
similarity and the same localization is related to the same evolutionary constraints [93].
Several studies have observed a sharp conservation threshold of 50-60% sequence identity,
above which pairs of proteins tend to have the same function and below which the function
is different [94-96]. Other studies however indicate that these levels of sequence similarity
might not be sufficient for accurate transfer of functional annotation [67, 97]. Therefore,
common mistakes when searching databases for sequence homologs include: (i) using the
best database hit omitting the knowledge about adequate conservation threshold for
sequence similarity and (ii) ignoring the domain organization of proteins. Homology-based
inferences are often used in combination with other prediction approaches [80, 98, 99].
Despite being most accurate for annotating protein sub-cellular localization, homology-
based methods cannot annotate entire proteomes, as they are only applicable to proteins for
which annotated homologs are available. For human they annotate 77% of the proteome, for

yeast 66% and for some prokaryotes this number is lower than 1% (Chapter 3).

Sorting sighal-based methods

Many methods have been developed to predict protein localization based on the
identification of local sequence motifs, such as, nuclear localization and export signals for
protein localization in the nucleus [100, 101] and its subsequent export [76, 102], N-terminal
signal peptides for protein secretion [103, 104], or targeting peptides for localization in
mitochondria and chloroplasts [105, 106] .

The first widely used method for the prediction of N-terminal sorting signals
originates from the early work on secretory signal peptides of von Hejne [74, 107-110] and
dates back to 1986 [111]. This method uses weight matrices, calculated from the counts of
amino acids in observed signal peptides, as a linear discriminant function for the prediction
of secretory proteins. The prediction accuracy for this method was reported to be 75-80%.
Modern prediction methods employ machine learning algorithms, such as Neural Networks
and Hidden Markov Models that learn to automatically extract correlations from the

sequence data, using a set of experimentally annotated proteins as input [106, 112]. These
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methods boosted the prediction performance of secreted proteins to 90% accuracy. Now, it
is possible to accurately predict N-terminal signals, such as secretory signals peptides [69,
71, 113, 114], mitochondrial targeting peptides [69, 114-118] and chloroplast targeting
peptides [69, 114, 115, 119, 120] using machine learning-based techniques.

In contrast to N-terminal signal peptides, nuclear localization signals (NLSs) and
nuclear export signals (NES) can occur anywhere in the amino acid sequence [5, 121].
Nuclear signals can be very diverse in the amino acids composition, but in general, NLS
have an abundance of positively charged residues [21] and NES of hydrophobic residues
[76]. One of the first attempts to predict NLS was done by Cokol and Rost [100], who
successfully applied “in silico mutagenesis” approach to predict over 200 novel NLS. Later,
several methods have been developed to predict NLS and NES using machine learning

approaches that use information extracted from the signal sequence [75, 76, 122, 123].

All sorting signals-based methods are limited to those signal sequences that have
already been experimentally verified. The majority of sorting signals however remains yet
unknown and for signal patches the situation is even worse. Moreover, the presence of
secretory peptides does not always guarantee protein secretion, as many proteins with a
signal peptide are retained in the Golgi apparatus, the ER or in vesicles [5]. Alternatively,

many secreted proteins use alternative pathways to cross and exit the cell [124-126].
Text mining-based methods

Before functional annotation can make an entry in a biological database, it needs to be
manually extracted by an expert from the corresponding publication. These publications are
stored in a public knowledgebase, such as PubMed [127]. Currently, PubMed stores over 25
million entries of biomedical literature and 500.000 new entries are added to the database
each year [128]. This enormous source of knowledge is used by automatic text mining
methods that extract protein localization information from the abstracts and full texts of
published articles. All identified gene/protein and organism names, as well as localization
occurrences need to be mapped to a controlled vocabulary or ontology, such as for example
Gene Ontology [129] terms for localizations and UniProt identifiers for proteins. Such
mapping presents one of the largest bottlenecks hampering the prediction performance of
text mining-based methods. The evaluation of text mining methods is done on manually
annotated corpora, such as GENIA for protein names and localization terms [130].

Promising results have been obtained by methods that analyze the impact of GO term co-
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mentions in texts with a Support Vector Machine (SVM) [131] classifier [132-135]. Other
methods combine information from both biomedical texts and protein sequences [130, 133,
136, 137].

Other text mining-based approaches explore the functional annotation provided in
UniProt [62], especially the keyword annotation. Currently, UniProt lists over 1,800 different
keywords, which are organized in a controlled vocabulary of a hierarchical structure (UniProt
release 2015 12). Several methods have been developed that extract rules from keywords
by using machine learning methods like probabilistic Bayesian models [138], C4.5 decision
trees [139, 140] and M-ary classifiers (e.g. k-nearest neighbor [141] and linear least-square
fit [142]) [77].

De novo prediction methods

The most universal prediction methods are de novo methods, as they use no other
information than that encoded in the protein amino acid sequence for their prediction. De
novo methods can be applied to virtually any existing protein sequence. The fist de novo
prediction method was developed by Nishikawa and Ooi who classified intra- and
extracellular proteins based on the composition of their amino acids [143]. The success of
this method is intuitively obvious — each sub-cellular compartment is characterized by its
specific physico-chemical properties, so proteins localized to this compartment must evolve
a different surface in order to adapt to this environment. Indeed, a correlation between
protein amino acid composition and its localization has been shown by Andrade and
colleagues [144]. This finding let to the development of a battery of prediction methods that
exploit protein surface composition in combination with standard statistical methods [66] and
machine learning techniques such as neural networks [145]. Because biological data are
often small and noisy and SVMs are good at dealing with such data [146], SVMs have been
shown to outperform neural networks-based methods [147]. Later developed methods
incorporated information about composition of di-peptides [148] and n-peptides [149]. The
LocTree method, developed by Nair and Rost in 2005 [78], incorporated a humber of SVMs
organized in a binary decision tree that resembled cellular protein sorting. It used amino acid
composition in the entire sequence, the N-terminal region and in three secondary structure
states; the composition was derived from evolutionary profiles. LocTree outperformed all

other methods in the prediction performance.
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1.5 Overview of this work

Proteins are cellular workhorses involved in nearly all processes that make life. Living cells
are divided into specific sub-cellular compartments, each responsible for a different cellular
function. The identification of protein localization within a cell can help in elucidating its
function, as certain functions can only be performed in certain environments. Immense
resources have been spent on experimentally unraveling the sub-cellular localization of
proteins. However, the localization remains experimentally uncharacterized for most

proteins. This calls for in silico methods to fill in the gap.

In Chapter 2, | describe LocTree2, a machine learning-based method for predicting
protein sub-cellular localization that uses new data and lessons learned from other
predictors published over the last two decades. LocTree2 classifies proteins from all three
domains of life (i.e. Archaea, Bacteria and Eukaryota) in the so far largest number of sub-
cellular localization compartments. The method outperforms existing resources and

performs well even when triggered with incomplete and erroneous data.

In Chapter 3, | present LocTree3, an improvement of LocTree2 by remarkable 25
percentage points in the prediction performance. The improvement is done through a simple
trick that combines homology-based inference with machine learning. For a query protein,
LocTree3 first identifies a sequence homolog in the database of experimentally annotated
proteins. If a homolog is available, its annotation is transferred to the query protein.
Otherwise, LocTree? is triggered for a de novo prediction of sub-cellular localization.

In Chapter 4, | describe LocNuclei, a predictor for protein localization at even more
detailed, higher resolution level for nuclear proteins. The nucleus is a very dynamic
compartment consisting of various areas, each responsible for a different function and thus
hosting a different set of proteins. Experimental sub-nuclear annotations are challenging.
LocNuclei is a method that inspired by LocTree3’s success combines homology-based
inference with machine learning to accurately predict proteins in 13 different sub-nuclear

compartments. | used LocNuclei to annotate the entire human proteome.

In Chapter 5, | aim at the discovery of the so-called nuclear localization signals (NLS)
and nuclear export signals (NES) that are short stretches in the amino acid sequences of

nuclear proteins. They can be imagined to be “zip code” signals that help in shuttling

15



Chapter 1

proteins from the cytoplasm into the nucleus (NLS) and from the nucleus back into the
cytoplasm (NES). In this work, | again built upon resources and ideas from many other
groups and increased the set of experimentally known signals by almost an order of

magnitude by reliable potential signals that await experimental verification.

In Chapter 6, | present pEffect, a method that challenges the objective of predicting
pathogenic bacteria from protein sequences. The key to the success lies here again in the
combination of zip code-like signals with homology-based inference and machine learning.
The so-called “type Il secretion system” is a pivotal mechanism for the transport of
pathogenic bacterial proteins (so-called “effectors”) into the targeted host cells. Bacteria
inject their effectors into targeted cells, which during infection convert host resources to work
to bacterial advantage. pEffect is a method that improves up to 3-fold over the state-of-the-
art. Importantly, it also sheds new light on the mechanism of effector secretion.

In Chapter 7, | discuss a “linked annotation resource”, which is an open forum for
convenient collaborations between annotators of biomedical texts. Every important scientific
discovery is published. Many groups put tremendous effort in mining biomedical literature to
extract structured protein/gene annotations from largely unstructured texts. However, the
way of sharing valuable resources still remains at a primitive level (e.g. through exchange of
archived files). An open forum, in contrast, allows collecting annotations of various types
(e.g. sub-cellular localization, binding sites, and effects of amino acid substitutions), linking
them and making publicly available online. On the use case of protein localization | show

that linked annotations can also significantly complement biological database annotations.

Finally, | present the main findings and conclusions of this work.
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Chapter 2
2 LocTree2: prediction of protein cellular sorting in all domains

of life

2.1 Preface

The knowledge of protein sorting within a cell can help in understanding protein function, as
certain functions can only be performed in certain environments [1-3]. Though some
proteins can localize in multiple compartments, most of them are functional within a single
compartment [4-6]. Due to the sub-cellular localization being an easily definable functional

feature, many in silico methods have been developed that predict localization [7-18].

In this publication, we present a novel method LocTree2 that predicts protein
localization and addresses several shortcomings of the existing approaches. Namely, the
method presents a common framework for all proteins in all domains of life that requires only
the amino acid sequence as input. It accurately classifies proteins in the so far largest
number of cellular localization classes: 18 classes for eukaryota, 6 for bacteria and 3 for
archaea. It distinguishes between integral trans-membrane and water-soluble globular
proteins as good as the best expert methods developed explicitly for this task [19, 20]. Even
when tested on erroneous and incomplete sequence data, the method reaches high levels
of performance. Similar to LocTree [13], our method implements a decision tree of
localization classes imitating the protein sorting mechanism of the cell. Different from
LocTree, we make binary decisions at all levels of the tree by searching through proteins of
annotated localization classes with short stretches of k consecutive residues, i.e. potential
localization motifs. As a proof of principle, we investigate some of the k-mers, which are
crucial for protein classification, to be Endoplasmic Reticulum-associated. When compared
to other methods, LocTree2 shows an improved prediction performance on almost all data
sets tested. As suggested by one of our anonymous reviewers, we re-trained LocTree2 on
old data (from year 2005) to show the improvement of our method originating from the

underlying method. Indeed, the data set had only little effect on LocTree2’s performance.

The study design and methodology was conceived by me and Burkhard Rost. |
carried out necessary background search. The programming was performed by me with the
help of Tobias Hamp. All calculations, data analyses and interpretations were done by me

and Burkhard Rost. The manuscript was drafted by me, Tobias Hamp and Burkhard Rost.
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ABSTRACT

Motivation: Subcellular localization is one aspect of protein function.
Despite advances in high-throughput imaging, localization maps
remain incomplete. Several methods accurately predict localization,
but many challenges remain to be tackled.

Results: In this study, we introduced a framework to predict
localization in life's three domains, including globular and membrane
proteins (3 classes for archaea; 6 for bacteria and 18 for
eukaryota). The resulting method, LocTree2, works well even
for protein fragments. It uses a hierarchical system of support
vector machines that imitates the cascading mechanism of cellular
sorting. The method reaches high levels of sustained performance
(eukaryota: Q18=65%, bacteria: Q6=84%). LocTree2 also accurately
distinguishes membrane and non-membrane proteins. In our hands,
it compared favorably with top methods when tested on new data.
Availability: Online through PredictProtein (predictprotein.org); as
standalone version at http://www.rostlab.org/services/loctree2.
Contact: localization@rostlab.org

Supplementary Information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

1.1 Localization related to function

Archaea, bacteria and eukaryota form the three domains of life
(Woese et al., 1990). Archaea and bacteria are prokaryotes,
i.e. organisms that lack a nucleus and other membrane-bound
organelles. Prokaryotic cells surround a single compartment by
the plasma membrane (Gram-negative bacteria add an outer
membrane). Eukaryotic cells are organized into several membrane-
bound compartments. Subcellular localization is one aspect of
cellular function as exemplified in the cellular component in the
gene ontology (GO, Ashburner et al., 2000). Proteins contributing
to the same physiological function often co-localize (Andrade
et al., 1998; Jensen et al., 2002; Rost et al., 2003). Although
proteins can be functional in different compartments (e.g. importins
that shuttle other proteins into the nucleus), most proteins of
known function complete their tasks as ‘natives’ of one particular
compartment. For instance, many nuclear proteins are imported
into the nucleus without being re-exported (Cokol et al., 2000);
virulence-associated proteins are likely to be secreted in many
bacterial pathogens (Durand et al., 2009). Increasing evidence
suggests that proteins form temporary complexes to act in

*To whom correspondence should be addressed.
TThe authors wish it to be known that, in their opinion, the first two authors
should be regarded as joint First Authors.

concert, resembling a macromolecular just-in-time production
facility (Farhah Assaad TUM-WZW, personal communication). The
knowledge of localization may, therefore, be important to understand
protein interactions and cellular mechanisms.

1.2 Better annotations of function by predicting
localization

The sequence-annotation gap refers to the gap between the
number of proteins with known sequences and with comprehensive
functional annotations. Next-generation sequencing explodes this
gap despite increasing high-throughput experiments. Reliable
automated predictions of protein function could counter this trend
(Al-Shahib et al., 2007; Bairoch and Apweiler, 2000). Subcellular
localization is one objective and easily definable aspect of function;
many in silico prediction methods have been developed:

1. Sorting signals: Sorting signals (short motifs recognized
by shuttle proteins) provide ‘biologically meaningful’
explanations for particular predictions. Most localization
signals remain experimentally elusive (Nair and Rost, 2005)
and many of the known signals have little coverage, i.e. allow
the identification of very few proteins known to localize to that
compartment (Wrzeszczynski and Rost, 2004). In addition,
some proteins are sorted non-classically—not signal peptide
triggered (Bendtsen er al., 2004).

2. Homology-based inference: The best localization predictions
use annotations from close homologs (Nair and Rost, 2002b).
This technique has limited reach because reliable inference
requires high sequence similarity. It also has accuracy
limitations: two 500-residue proteins may be sorted differently
due to a S-residue motif.

3. Text-based analyses: Text analysis-based methods infer
localization from experimental information contained in the
literature, such as PubMed abstracts (Brady and Shatkay,
2008) or from controlled vocabularies of curated databases,
such as SWISS-PROT keywords (Nair and Rost, 2002a). All
text-based methods are restricted in coverage as they rely on
existing annotations.

4. De novo: De nove methods predict localization without
requiring significant sequence similarity to annotated proteins.
These methods are solely amino acid composition based
(Chou, 2001; Park and Kanehisa, 2003; Reinhard and
Hubbard, 1998).

5. Hybrid approaches combine several of these original four
concepts (Blum ez al., 2009; Briesemeister er al., 2009;
Hoglund er al., 2006; Horton et al., 2007; Nair and Rost,
2005).

© The Author(s) 2012. Published by Oxford University Press.
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Here, we present a novel sequence-based method for predicting
the subcellular localization of all proteins in all domains of life.
Our method addresses several shortcomings of existing approaches.
(i) We provide a common framework for all domains of life
and this framework is more robust with respect to sequencing
mistakes than other methods. (ii) We increase the number of classes
covered by a single consistent framework: 3 localization classes for
archaea, 6 for bacteria and 18 for eukaryota. Predictions distinguish
between integral trans-membrane and water-soluble globular (non-
membrane) proteins. (iii) Similar to LocTree (Nair and Rost, 2005),
we implemented a decision tree-like architecture of localization
classes imitating the cellular protein sorting mechanisms. A tree-
like structure accommodates the similarity of sorting signals specific
to similar compartments (Alberts et al., 2007; Rusch and Kendall,
1995). (iv) We provide scores for the reliability of a prediction;
these are crucial because they allow focusing on the most relevant
results. All the above advantages were achieved without sacrificing
performance. In our hands, LocTree2 performed significantly better
than other methods on nearly all data sets tested.

2 METHODS

2.1 Data sets for development and evaluation

We extracted protein sequences with explicit annotations of subcellular
localization from SWISS-PROT release 2011_04 (Bairoch and Apweiler,
2000). Excluded were annotations based on non-experimental findings
(‘potential’, ‘probable” or ‘by similarity’). Also excluded were proteins
with multiple or ambiguous localization annotations (e.g. Gram-negative
proteins annotated with ‘cell membrane’ could be in the inner or outer
membrane). Proteins lacking the term ‘membrane’ were considered as ‘non-
membrane’. Transmembrane proteins, i.e. proteins spanning the membrane
at least once, were found using terms ‘single-pass’ or ‘multi-pass’. Through
the NCBI taxonomy (Benson ef al., 2010), proteins were assigned to one
of the three domains (archaeal, bacterial or eukaryotic). Sequence bias was
reduced through UniqueProt (Mika and Rost, 2003), applied independently
for archaea, bacteria and eukaryota. This bias-reduction ascertained that no
pair of proteins in the final set had BLAST2 (Altschul et al., 1990) E-
value (EVAL) <1073 or HSSP-value (HVAL) > 0 (Rost, 1999; Sander
and Schneider, 1991). For alignments longer than 250 residues, HVAL < 0
implies that the maximal pairwise sequence identity was 20% (Rost, 1999).
Filtering by HVAL and EVAL ensured that homology-based inference would
be less accurate than our previous LocTree method (Nair and Rost, 2005).
Alignments of fewer than 35 residues were removed, which is roughly the
maximal length of known localization signals (Cokol et al., 2000). The
final sets contained 59 archaeal, 479 bacterial and 1682 eukaryotic proteins
(Supplementary Table S1).

2.2 Data sets for additional testing

After completing the development, we benchmarked our single best method
against publicly available state-of-the-art methods. This involved the
following independent test sets: (i) 28 bacterial and (ii) 52 eukaryotic proteins
added to SWISS-PROT between releases 2011_04 and 2012_02; (iii) 43
Arabidopsis thaliana and (iv) 201 Homo sapiens proteins taken from LocDB
(Rastogi and Rost, 2011). Proteins with HVAL > 5 to any previously used
protein (including those discarded during the redundancy reduction) were
excluded. This threshold corresponds to 25% pairwise sequence identity over
250 residues aligned. UniqueProt was used to reduce redundancy between the
data sets and within each data set at HVAL > 0 and BLAST2 EVAL < 1077
with the minimum alignment length of 35 residues. We never used any of the
remaining proteins (Supplementary Table S2) for any further improvement
of our method. With the exception of LocTree, which used homology-based

and text analysis-based predictions of SWISS-PROT proteins, and WoLF
PSORT, which extracted an additional set of Arabidopsis thaliana proteins
from Gene Ontology (Ashburner ef al., 2000), the other methods tested here
did not use any of the proteins in these independent test sets, as they were
trained on data from SWISS-PROT releases before April 2011.

2.3 Additional data sets for comparison with LocTree
A question not addressed by the above data sets and comparisons is
as follows: to which extent did our method benefit from the growth of
the databases since 20057 In a separate analysis, all proteins for which
localization had been annotated before 2005 served as training set and all
from the above cross-validation set without sequence similarity (HVAL > 0
and EVAL <1073) to this training set were used to compare LocTree2
and our previous method LocTree (Supplementary Table S3). No parameter
optimization was applied when re-training our new method.

2.4 Prediction method

Each domain of life was considered as a separate learning problem yielding
three different systems of decision trees (archaea: 3 classes, bacteria: 6 and
eukaryota: 18; Fig. 1). Each leaf (rectangles) represents one localization
class, and each internal node (circles) is a binary support vector machine
(SVM). Most methodological aspects of the new method combine existing
ideas. We briefly describe the main aspects here and leave the precise, formal
definitions to the Supplementary Sections 1-3.

2.4.1 Inpur For each protein, sequence profiles were created by BLAST-
ing (Altschul er al., 1997) queries against an 80% non-redundant database
combining SWISS-PROT, TrEMBL (Bairoch and Apweiler, 2000) and the
Protein Data Bank (Berman ef al., 2000). Our method only used information
available through these profiles.

2.4.2 Profile kernel Kernel methods (such as the SVM) differentiate
between the input and the feature space. Here, the input space was spanned
by all possible sequence-profile tuples. The feature space was implicitly
given by the profile kernel (Kuang et al., 2004) that maps such a tuple
to a vector indexed by all possible subsequences of length k from the
alphabet of amino acids. Each element represents one particular k-mer and
gives the number of identical k-mers with a score below a user-defined
threshold o, This score is calculated as the ungapped cumulative substitution
score in the corresponding sequence profile. We can then define the profile
kernel function as the dot product between the two k-mer vectors of the
two sequence-profile tuples. Essentially, the method identifies stretches of k
adjacent residues in the query that are most informative for the prediction of
localization and then matches these in query protein.

2.4.3 SVM training SVMs were trained using a pre-computed kernel
matrix of all training proteins. For the profile kernel, the matrix can be
calculated very efficiently with the suffix tree-based ‘kernel trick” introduced
by the groups of Christina Leslie and Bill Noble (Leslie et al., 2004). We
found other string kernels (Leslie et al., 2004; Lodhi et al., 2002) either
slower in runtime or worse in performance (Supplementary Table S4). The
SVM was implemented by the WEKA (Holmes et al., 1994) sequential
minimal optimization (Platt, 1998). Platt Scaling (Platt, 1999) mapped the
raw SVM score of the predicted class into a reliability between 0.5 and 1.0.

2.4.4 Tree-like hierarchy of SVMs The tree model (Fig. 1) was built by
training binary SVM classifiers: each of those was trained on different sets
of proteins. To this end, we first looked at one of the two child nodes of
an internal node (e.g. internal node: root and child node: non-cytoplasmic;
Fig. la) and collected all the training proteins of its leaf classes (e.g. EXT
and PM; Fig. 1a). They were assigned to class A, Then we did the same for
the second child node (e.g. CYT) and assigned its proteins to class B. Now,
we could train the SVM of the parent node with the proteins in classes A and
B. Repeating this for all internal nodes, we trained the entire tree model.
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(a) ARCHAEAL PROTEIN (b) BACTERIAL PROTEIN
SEQUENCE SEQUENCE

(c) EUKARYOTIC PROTEIN
SEQUENCE

NON- TRANS-
MEMBRANE MEMBRANE

Fig. 1. Hierarchical architecture of LocTree2. The localization prediction follows a different tree for each of the three domains of life: (a) archaea, (b)
bacteria and (c) eukaryota. Each hierarchy mimics the biological sorting mechanism in that domain (in eukaryotes membrane and non-membrane proteins are
treated separately). The branches represent paths of the protein sorting, the leaves the final prediction of one localization class and the internal nodes are the
decision points along the path. These decisions are implemented as binary support vector machines (SVMs). CHL, chloroplast; CHLM, chloroplast membrane;
CYT, cytosol; ER, endoplasmic reticulum; ERM, endoplasmic reticulum membrane; EXT, extra-cellular; FIM, fimbrium; GOL, Golgi apparatus; GOLM,
Golgi apparatus membrane; MIT, mitochondria; MITM, mitochondria membrane; NUC, nucleus; NUCM, nucleus membrane; OM, outer membrane; PERI,
periplasmic space; PER, peroxisome; PERM, peroxisome membrane; PM, plasma membrane; PLAS, plastid; VAC, vacuole; VACM, vacuole membrane

2.4.5 Reliability index The reliability of the predicted class (leaf node) for
a sequence-profile tuple was compiled as the product over the reliabilities of
all parent nodes (as described in [Reinhardt and Hubbard, 1998]). We formed
the LocTree2 reliability index (RI) by multiplying an integer of this value by
100. As the prediction confidence did not change for scores <20, the index
was re-normalized accordingly.

2.5 Cross-validation

For training and testing, stratified 5-fold cross-validation was performed with
each of the three sequence unique development data sets described before.
This required several additional cross-validation layers to optimize various
free SVM and multi-class learning parameters (Supplementary Section 1 for
details). Note that we never used any information of the test split during a
training phase. Entire rounds of cross-validation yielded comparisons to other
multi-class learners (e.g. ENDs [Frank and Kramer, 2004]). Additionally,
the influence of redundancy reduction was monitored; this suggested a
controlled addition of redundancy after an initial reduction to be favorable
(Supplementary Section 4).

2.6 Performance evaluation

Looking at predictions from the perspective of a single localization class L
suggests various performance measures: the accuracy is the ratio between
the number of correctly predicted proteins in localization L and all proteins
predicted to be in L. Coverage is the ratio ‘correctly predicted in L/all proteins
observed in L', Both values are combined in the geometric average gAv.
The overall accuracy Q(n) as the number of correctly predicted proteins
across n classes divided by the number of observed proteins in these
classes provides the perspective across all classes. Standard error for all
measurements was estimated over 1000 bootstrap sets; i.e. randomly select
n proteins without replacement from the original data set (in our experience,
bootstrapping without replacement typically yields error estimates that
are more conservative/long lived than those with replacement). For each
bootstrapped set, the performance x; is estimated (e.g. accuracy). These 1000
estimates provided the standard deviation of x; with the typical standard

error = standard deviation divided by \/(n—1), where n is the number of
bootstrapped sets.

2.7 State-of-the-art prediction methods

‘We compared LocTree2 with the following publicly available state-of-the-art
methods using default parameters.

CELLO 2.5 (Yu et al., 2006) is a system of SVMs that predicts
localization of bacterial proteins to 5 classes and eukaryotic proteins
to 12 classes. Predictions are based on sequence-derived features.

LocTree (Nair and Rost, 2005) predicts localization of non-membrane
proteins from prokaryotes (three classes) and eukaryotes (six classes
for plants and five for others) through the hierarchy of binary
SVMs. The method uses features representing the entire protein and
N-terminus specifics.

MultiLoc2 (Blum et al., 2009) uses SVMs that integrate sequence-
based features with phylogenetic profiles and GO terms. It predicts 9
localization classes for animals/fungi and 10 plant classes (adding in
chloroplast).

PolyPhobius (Kall er al., 2005) uses a hidden Markov model (HMM)
for the prediction of transmembrane protein topology and signal
peptides. It incorporates homology information for the increased
prediction accuracy.

PSORTH 3.0 (Yu et al., 2010) predicts four classes for archaea/Gram-
positives and five for Gram-negatives. It combines several classifiers
by a Bayesian network to generate a final prediction of localization.

Scampi (Bernsel et al., 2008) predicts transmembrane protein
topology through an HMM. Predictions are based on the experimental
scale of position-specific amino acid contributions to the free energy
of membrane insertion coupled with the positive-inside rule.

WoLF PSORT (Horton et al., 2007) is a k-nearest neighbor classifier
that predicts 12 localization classes for eukaryotes from sequence-
based features. Similar to its predecessors (PSORT), it uses a tree
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Fig. 2. High performance in cross-validation. For the cross-validation sets (a: averages over 479 bacterial proteins and b: averages over 1682 eukaryotic
proteins), LocTree2 reached high levels of sustained performance. Overall, performance tended to correlate with the number of representatives (pie charts: inner
ring: composition in the corresponding data set and outer ring: composition in correct predictions). Exceptions were membrane bound classes in eukaryotes
for which the performance tended to be better than that for the corresponding non-membrane bound class (e.g. MIT = mitochondrial proteins versus MITM =
membrane-linked mitochondrial proteins). Localization classes as in Figure 1; performance measures: Acc, accuracy; Cov, coverage; gAv, geometric coverage
of Acc and Cov; Q, overall prediction accuracy (Q6 for six and Q18 for 18 classes). Standard errors were estimated by bootstrapping (see Section 2). Classes

with less than 20 members were excluded

hierarchy resembling cellular sorting and a battery of established
prediction methods.

Unlike all others, PolyPhobius and Scampi do not aim at predicting
localization. Instead, they focus on the prediction of which residues are
inserted as transmembrane helices into the lipid bilayer. In the context
herein, those two methods are compared to demonstrate that LocTree2 could
even stand up to specialists that optimize the distinction of membrane and
non-membrane proteins in their own domain of specialization.

3 RESULTS AND DISCUSSION

3.1 Three prediction trees for three domains of life

Our first hierarchal method, LocTree (Nair and Rost, 2005), used a
concept initially introduced by the work on PSORT carried by Paul
Horton and initiated by Kenta Nakai and Minoru Kanehisa (Horton
et al., 2007; Nakai and Horton, 1999; Nakai and Kanehisa, 1991).
For LocTree2, many alternative trees were tested. Trees mimicking
the cellular protein trafficking using binary models at the internal
nodes (Fig. 1) were similar in performance but much faster than
other multi-class schemes, for example ENDs (Frank and Kramer,
2004) (Supplementary Table S5). Starting at the root classifier (e.g.
non-membrane/trans-membrane; Fig. 1c), the decisions at each node
are followed until reaching a leaf (e.g. mitochondria membrane
[MITMY]). This leaf corresponds to the predicted localization class
(development set in Supplementary Table S1).

3.2 Cross-validated Q18 = 65% for eukaryotes

The first decision for eukaryotic proteins was: does it have an
integral transmembrane region or not (Fig. Ic). This decision
was correct for over 90% of all proteins (Supplementary Figure
S1b). Both membrane and non-membrane proteins were further
classified into ‘secreted’ and ‘not secreted’; this decision reached
Q4 = 83% accuracy (Q4 = four state accuracy, see Section 2
for definition of Qn: Supplementary Figure SIb). Descending

the tree toward the leaves that represent the final predictions,
the distinction between intra-cellular and secretory pathway into
10 classes for non-membrane and 8 classes for transmembrane
proteins was less accurate (Q8 = 75%; Supplementary Figure S1b).
The class with most observations (extra-cellular: 35% of data)
was also predicted best (accuracy: 80%, coverage: 91%, Fig. 2b,
Supplementary Table S6) followed by nuclear proteins (accuracy:
67%, coverage: 72%). The overall accuracy for 18 classes QI8
reached 65% (18-state accuracy, Fig. 2b).

Overall, performance correlated with the amount of available
experimental information (Fig. 2b: inner and outer pies very similar),
with the important exception that membrane-bound proteins tended
to be predicted more accurately than their corresponding non-
membrane bound neighbors (e.g. mitochondria [MIT] versus MITM
in Fig. 2b).

3.3 Highest numerical performance for prokaryotes

LocTree2 performed very well in the cross-validation of archaea
(three classes) with overall levels of accuracy and coverage
numerically suggested to reach 100% (Supplementary Table S7).
These numbers most likely over-estimate performance due to the
limited data. For bacteria (six classes), the overall accuracy was
84% (Fig. 2a); the most accurate sub-classification was the sorting
into plasma membrane (accuracy: 96%, Fig. 2a, Supplementary
Table S6) followed by cytosol (accuracy: 87%).

3.4 Performance best for more reliably predicted
proteins

One way to focus on more reliable predictions is to compile a
consensus for alternative methods. Often, method internal reliability
indices are far superior at spotting the best predictions than
combinations of different methods (Eyrich et al., 2003). LocTree2
computed the reliability index (RI) as the joint probability over all
individual SVM scores (see Section 2, Fig. 3). For instance, the
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3] N 8 classes for LocTree. We excluded vacuolar proteins for MultiLoc2
- - and plasma membrane proteins for LocTree (thereby providing
over-optimistic upper performance levels for those methods). WoLLF
o | lo PSORT may predict multiple localizations, and we always took the
;\? & - < right one for performance estimates (it was verified that this did
et = not impact estimates significantly). WoLF PSORT and CELLO 2.5
@ e = g distinguish cytoskeleton and cytoplasm; here, both were considered
3 D [ 9 as cytoplasmic. Another issue was that other methods do not
£ 38 distinguish membrane from non-membrane proteins. Thus, we
merged these two classes, i.e. treated nuclear and nuclear-membrane
e = proteins identically, although this approach implicitly sacrificed one
Bacteria Eukaryota of the important strengths of our new method, namely the distinction

® Accuracy e Accuracy of these.
3 * Coverage ® Coverage Lg The ‘New SWISS-PROT’ bacterial and eukaryotic sets were

T 4 T
40 60 80
Reliability Index

T T T
0 20 100

Fig. 3. More reliable predictions better. The curves show the percentage
accuracy/coverage for LocTree2 predictions above a given threshold in
the reliability index (from 0 = unreliable to 100 = most reliable). True
positives are the number of correct predictions with reliability indices above
the given threshold, false negatives are the number of correct predictions
with reliability indices below the threshold and false positives are the
number of wrong predictions with reliability indices above the threshold.
The curves were obtained on cross-validated test sets of bacterial (gray
line) and eukaryotic (black line) proteins. Half of all eukaryotic proteins
are predicted at RI>80: for these, Q18 is above 92% (black arrow). As
the number of localization classes is lower for bacteria, the corresponding
number in accuracy is higher (Q6 is above 95% at 50% coverage, gray arrow)

50% of the proteins with highest reliability reached levels of overall
accuracy Q6 = 98% for bacteria (Fig. 3, gray arrow) and Q18 =92%
for eukaryota (Fig. 3, black arrow). To pick another point, almost
40% of all eukaryotic proteins were predicted at RI > 85; for these,
Q18 was above 95%. Thus, two in the top 40 predictions in 100 were
wrong in one of 18 states (e.g. nuclear instead of nuclear membrane).

3.5 LocTree2 competitive for new proteins

There is no value in comparing LocTree2 with other methods based
on values for performance published because of the differences
in, for example data sets and cross-validation setups. Comparisons
based on running other methods on our data are also problematic
due to possible overlap in training and due to possible performance
over-estimates of our own method. The only meaningful way is to
use proteins that are non-redundant with respect to each other and
with respect to any protein used for the development of the methods
tested. Toward this end, we collected the most recently added
annotations in SWISS-PROT. The price for this ‘clean’ comparison
was the tiny data set: 28 bacterial and 52 eukaryotic proteins after
redundancy reduction (explaining high standard errors in Table 1).

CELLO 2.5 and PSORTDb 3.0 classified bacterial proteins into five
classes and LocTree into three. This was accounted for by grouping
bacterial extra-cellular and fimbrium proteins into one common class
for predictions using these external methods. We separated Gram-
positive from Gram-negative bacterial proteins according to Yu et al.
(2010) for a comparison with PSORTb 3.0.

Eukaryotic proteins were classified into twelve classes for CELLO
2.5 and WoLF PSORT, into ten classes for MultiLoc2 and into six

too small to clearly identify the top performing method given
the standard error. However, LocTree2 compared favorably to
other state-of-the-art methods (Table 1). Performance estimates for
the newly annotated proteins tended to be lower than the values
published (except for LocTree and MultiLoc2). For LocTree2, the
overall accuracy was similar for the cross-validation experiment
(84% =+ 4% for bacteria and 65% + 3% for eukaryota; Fig. 2,
Supplementary Table S6) and for the new proteins (86% =+ 16%
for bacteria and 65% =+ 14% for eukaryota; Table 1).

3.6 LocTree2 would already have performed well in
2005

Another way to compare two prediction methods is to train and
test on the same data set. We trained a version of LocTree2 on
proteins for which localization was known when LocTree was
trained and tested both on proteins from our newer cross-validation
set without sequence similarity to the training set (see Section 2 and
Supplementary Table S3). LocTree2 outperformed LocTree reaching
levels of overall accuracy Q3 = 80% =+ 13% for bacteria and Q6 =
61% =+ 8% for eukaryota (LocTree: Q3 =62% =+ 18% and Q6 = 54%
=+ 8%). Thus, the improvement of LocTree2 originated mainly from
the underlying method advancement. LocTree2 trained on the 2011
data reached Q6 =62% + 8% and Q18 =60% =+ 9% which is within
the standard error of what was obtained on the full cross-validation
set (Supplementary Table S6).

3.7 High-throughput data ambiguous?

LocDB  collects localization annotations mostly from high-
throughput experiments; it provided two data sets for the comparison
of methods: one for the plant Arabidopsis thaliana and the other for
Homo sapiens. Both sets were redundancy reduced, with respect
to each other and with respect to SWISS-PROT version 2011_04.
For all the LocDB proteins, all methods appeared to perform
substantially worse than for the already ‘tough’ set of newly
annotated SWISS-PROT proteins. For the plant, LocTree2 out-
performed others (Table 1). Not so for human: WoLF PSORT
reached Q8 = 45% =+ 8% (versus LocTree2 Q8 = 42% =+
8%). One-third of the correct predictions from WoLF PSORT
were for cytoplasmic proteins, which was overall, the most
populated class for human proteins in LocDB (Supplementary
Table S2).

How to interpret the data from LocDB? As most annotations
in LocDB originate from high-throughput experiments, it is very
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Table 1. Performance comparison on independent data sets

Method New SWISS-PROT LocDB
Bacteria (28) Eukaryota (52) A. thaliana (43) H. sapiens (201)
Q(s) QB3) Q) Q(6) Q) QO Q®) Q©) Q) QN Q©)

LocTree2 86 £ 16 86+ 18 65+ 14 66 + 16 66 + 15 37118 4 +21 49+ 20 42+8 4+9 51+9
CELLOv. 2.5 57422 — 46 £ 16 — — 26+ 18 — — 40+£8 — —
WoLF PSORT — — 62+ 14 — — 19 £ 15 — — 45+8 — —
PSORTb 3.0 71 +21 — — — — — — — — — —
MultiLoc2 — — — 60 £ 16 — — 24+ 18 — — 4249 —
LocTree 77 £ 21 — — 62 £ 17 — — 24 +£18 — — 48+9

Data ‘New SWISS-PROT’: 28 sequence-unique bacterial and 52 eukaryotic proteins added to SWISS-PROT between releases 2011_04 and 2012_02 (sequence unigueness was
ascertained both within this set and from any protein in this set to any other protein previously in SWISS-PROT). Data “A. thaliana’ and *H. sapiens’: 43 Arabidopsis thaliana and
201 Homo sapiens proteins from the LocDB database (as for ‘New SWISS-PROT’: sequence unique with respect to itself and to SWISS-PROT 2011_04). Qn, the overall prediction
accuracy in n classes; highest value in each column in bold; values + standard error (see Section 2).

likely that LocDB contains proportionally more errors than SWISS-
PROT. All methods by far outperformed random, implying that
for random annotation mistakes they would appear to be mostly
wrong. Thus, the higher error rate in LocDB might explain why
all methods perform worse for the LocDB than for the SWISS-
PROT data. Put differently, for a task with over six classes and the
given number of proteins, a few mistakes can reduce the average
considerably. On the other hand, we might also suspect that high-
throughput experiments discover a reality invisible to traditional
experimental methods and some of those invisible facts might
reveal new sorting mechanisms. Such hidden mechanisms might
or might not be ‘discovered’ by prediction methods. If not, those
would explain many incorrect predictions. Supposedly, most experts
would be very surprised if the second argument (new mechanism)
dominated over the first (annotation mistakes of high-throughput
experiments). Most likely there is a little bit of both, but we have no
means of gauging the relative proportions. Zooming into annotations
with several evidences brought the numbers closer, i.e. ‘increased’
the performance, but this was achieved at raising the standard errors
to meaningless values (Supplementary Table S8).

We illustrate the situation for a few extreme predictions. (i)
‘Transmembrane emp24 domain-containing protein 3° (SWISS-
PROT TMED3_HUMAN) is annotated as Golgi apparatus by
LocDB; LocTree2 maps it to the endoplasmic reticulum (ER)
membrane with extremely high reliability (RI=99). This protein
belongs to a family of p24 membrane proteins localizing to the
ER and to the Golgi complex (Jenne et al., 2002). Thus, both
LocTree2 and LocDB annotations are correct. (i) “Protein canopy
homolog 2° (CNPY2_HUMAN) is annotated as cytoplasmic in
LocDB; LocTree2 predicts ER (RI=73). We found experimental
evidence for localization to the ER in HeLa cells (Hirate and
Okamoto, 2006). In this case, LocTree2 is correct and LocDB
is not. (iii) ‘Methylosome subunit pICln’ (ICLN_HUMAN) is
classified as plasma membrane in LocDB, whereas LocTree2
predicts nuclear (RI=55). We could not find any additional
information for this case in PubMed, but the protein localization
annotation in SWISS-PROT is nuclear. (iv) ‘COMM domain-
containing protein 1’ (COMD1_HUMAN) is classified as secreted in
LocDB, whereas LocTree2 predicts nuclear (RI=50). Again, closer

inspection revealed experimental evidence for this protein to be
nuclear (Burstein ef al., 2005).

It remained unclear what to conclude from the above examples.
The predictions judged as incorrect by LocDB but having very high
reliability scores indicate that the low performance inverts the real
picture: rather the annotations are wrong or ambiguous than the
strong predictions. For a set of weakest predictions, we observed the
opposite. For example (i) ‘Stress-associated endoplasmic reticulum
protein 1’ (SERPI_HUMAN) is annotated as ER correctly in
LocDB, but LocTree2 maps it to mitochondria with very low
reliability (RI = 6). (ii) “Spermatogenesis-associated protein 19,
mitochondrial’ (SPT19_HUMAN) is classified as mitochondrial
correctly in LocDB again, whereas LocTree2 predicts nuclear (RI =
13). A more detailed analysis might succeed in quantifying to which
extent the consistent drop in performance for the LocDB data sets
reveals more about problems of high-throughput experiments than
of mega-throughpur computations.

3.8 Accurate distinction between membrane and
non-membrane

As reported before, the SVM that distinguishes between non-/trans-
membrane proteins in eukaryotes achieved an overall accuracy
of 94% £ 2% (Supplementary Figure S1b). This performance
was similar to what PolyPhobius achieved on the same data set
(95% =+ 1%). PolyPhobius appears to be the best expert method
that targets the prediction of integral membrane helices directly
(Kloppman E., Reeb J. and Rost B., unpublished data). LocTree2
correctly classified all plasma membrane proteins from archaea
(Supplementary Table S7), but the data set was too small to
provide meaningful performance estimates. For bacterial proteins,
the plasma membrane/non-membrane distinction reached 96% =+
4% accuracy (Fig. 2a, Supplementary Table S6). Scampi, the
most accurate method for predicting trans-membrane proteins in
prokaryotes (Kloppman E., Reeb J. and Rost B., unpublished) was
significantly less accurate (89% + 3%) for the same data.
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3.9 Advantage over existing methods for sequencing
errors

All prediction methods were also benchmarked on protein fragments
as they may result from erroneous assembly or wrong gene
predictions common in genome projects (Brent and Guigo,
2004). The latter being a special problem for the detection of
N-terminal signals because of the wrong predictions of gene
starts common when using gene prediction software. Three
different ‘models’ simulated worst-case scenarios (over-estimating
sequencing mistakes): cleaving off (i) 30 N-terminal residues for
all proteins, (ii) 30 C-terminal residues and (iii) randomly picking
positions to cleave one third of the sequence. The least ‘damage’ was
done for the C-term cleavage with LocTree2’s accuracy dropping
to 60% = 2% (Supplementary Table S9), which was still within the
standard error of what was obtained using the full-length sequences.
For other prediction methods, performance dropped much more.
Our method also significantly outperformed its competitors on the
N-term cleaved sequences and on the sequences with randomly
cleaved fragments, reaching the levels above 53% + 2% accuracy
(Supplementary Table S9). This is still accurate enough to provide
reliable first estimates of localization for genomic sequences.

4 CONCLUSION

The method introduced here, LocTree2, predicts protein subcellular
localization through a consistent new framework that ignores
many of the relevant features needed for the success of previous
methods (such as no predicted aspects of protein structure and
function). Nevertheless, it seemed to reach high levels of sustained
performance aside from adding new aspects. Among the novel
aspects was the large number of 18 localization classes predicted for
eukaryota, 6 for bacteria and 3 for archaea. LocTree2 outperformed
other methods on almost all data sets tested, implicating an improved
ability to capture localization signals in the protein sequence. One
example for the success in plucking implicit information is the high
precision in the distinction between membrane and globular water-
soluble proteins. Our implicit distinction appeared as good as that
of the best expert method for predicting integral membrane helices.
Another important novelty is the robustness of the method against
sequencing errors and its success when applied to protein fragments.
This is particularly important in light of high-throughput sequencing,
of analyzing ancient DNA with short reads and of the fact that almost
80% of all proteins have multiple domains. This power along with
the overall improvement in performance may recommend this new
tool as an ideal starting point for comparing the proteomes between
organisms and for using localization predictions to aid the prediction
of protein function. We imagine that the framework for the method
will prove extendable and that future methods will become better
simply by using more experimental data and more sequences.
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SOM Section 1: LocTree2 development workflow

We extracted sets of archaeal, bacterial and eukaryotic proteins together with their experimentally de-
termined annotations of subcellular localization from the SWISS-PROT database (Bairoch and Ap-
weiler, 2000) (Methods). We internally homology reduced these data sets to avoid homology-based in-
ference of subcellular localization (Methods). We built three separate classification models, one for
each domain of life (Fig. 1). This means we carried out the entire following procedure three times.

As a first step, we divided a data set into five equally sized subsets (Methods) in order to train and test
various classification models via cross-validation. Applying “stratification”, we made sure that classes
had about the same size in each of the five sets. There was nothing special in the way we carried out
the cross-validation: in one fold, four subsets were used for training and one for testing. Then, all sub-
sets were rotated such that each subset was used for testing exactly once. Finally, we averaged the
performances over all test sets. We always introduced a certain degree of homology within each of the
training sets in order to increase them in size (SOM Section 4). This was found to be beneficial and did
not compromise the similarity between training and test proteins.

In this work, we essentially wanted to study the power of support vector machines (SVMs) (Cortes and
Vapnik, 1995) in combination with string kernels for subcellular localization prediction. A kernel is the
most crucial part of a SVM: it determines the ‘feature space’, i.e. the space into which the objects under
consideration (here: protein sequences) are mapped and where they are linearly separated. The better
the kernel, the better we will be able to discriminate between proteins from different localization
classes. As we have to apply a kernel function during the developmental phase many times for training
and testing, its speed also majorly determines the degree with which we can optimize, e.g. free pa-
rameters and how fast new, unseen proteins can be classified.

In our case, the problem of optimizing free parameters was ubiquitous: it started with the choice of the
multi-class classification scheme and the underlying kernel function. Each kernel, in turn, had at least
two other parameters. Additionally, we had to optimize the SVM complexity parameter C and perform
Platt-Scaling (Platt, 1999) for each binary SVM (Platt Scaling converts SVM scores into probabilities).
Because optimizing all these parameters at once would have created impossible amounts of value
combinations and learning tasks, we decided to solve the problem in three major steps. In other words,
given parameters A,B,C,D this essentially meant that we first optimized parameters A,B, and then C,D
with the best values for A,B. We understand that this does not find a ‘global optimum’ in the sense of
the best parameter combination. As we later show, however, the ‘local optimum’ that we find is better
than most, if not all, other current subcellular localization predictors. Besides, we always put great em-
phasis on not allowing test data to ‘leak’ into the training data, what sometimes led to quite complicated
setups. The WEKA package (Holmes, et al., 1994) was an invaluable help in this process and we pro-
vide command line calls of each step upon request.

In our first step, we compared the performances of three different string-based kernel functions, namely
the String Subsequence Kernel (Lodhi, et al., 2002), the Mismatch Kernel (Leslie, et al., 2004) and the
Profile Kernel (Kuang, et al., 2004; SOM Section 2). At this early stage of our evaluation, we decided to
only use the simplest and fastest multi-class classification approach one-against-all (Allwein and
Singer, 2000). We performed one entire cross-validation (above) for each kernel and then chose the
winner for subsequent steps. In each cross-validation fold, we optimized the different kernel-specific
parameters.
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We optimized kernel specific parameters in a nested ten-fold cross-validation: an ‘outer’ training set
(comprising 4/5 of the original data set; before) was again split into 10 ‘inner’ partitions. We then trained
a one-against-all model with a particular parameter combination on 9 of these splits and tested it on the
remaining one. This was repeated ten times by rotating through the ‘inner’ folds and we obtained the
average performance for this parameter-combination and ‘outer’ training set. Then, we changed the pa-
rameter combination and repeated the nested cross-validation. Finally having calculated the perform-
ance for all parameter combinations, we chose the one leading to the best performance. This combina-
tion was then used to train a model using all 10 inner splits and to predict proteins in the outer test split.
We repeated this procedure five times by rotating through the outer cross-validation folds in order to
predict all proteins. As mentioned before, we chose the kernel leading to the highest overall accuracy
as the winner. This was the Profile Kernel. Depending on the kingdom (archaea, bacteria or eukaryota),
it was found to be either within the standard errors of other kernel functions or significantly more accu-
rate. Additionally, it was much faster in runtime compared to other kernel functions (data not shown).

Having found the best kernel in this way, we assessed in our second step the performance of different
multi-class classification approaches. These were One-Against-All (Allwein and Singer, 2000), Ensem-
bles of Nested Dichotomies (Frank and Kramer, 2004), Ensembles of Class Balanced Dichotomies
(Dong, et al., 2005), Ensembles of Data Balanced Dichotomies (Dong, et al., 2005) and Nested Di-
chotomies of a Fixed Structure (Methods; Fig. 1). We briefly introduce them in SOM Section 3. We
again evaluated the performance for each of the five splits of the training set in a stratified 10-fold
cross-validation. The only difference to before was that instead of three different kernels and one multi-
class approach, we now evaluated one kernel (the Profile Kernel) and five multi-class classification
schemes.

We observed a superiority of dichotomies-based classification approaches over one-against-all, but
could not find a significant difference in prediction performance among them. However, measuring the
classification speed (the number of protein sequences processed per minute) revealed a significant ad-
vantage of nested dichotomies with a fixed structure (Fig. 1; Table SOM_3) and we chose these mod-
els for our final step (note that each dichotomy is different for the three kingdoms because they have
different localization classes).

So far, we have found the optimal kernel (the Profile Kernel) and the multi-class classification scheme
(Nested Dichotomies of a Fixed Structure). We have still neglected the optimization of the SVM cost
parameter C and have not used Platt Scaling. In our third and last step, we included them in the form of
two additional 5-fold cross-validation layers for each binary SVM (increasing the overall number of lay-
ers to 4). For example, in the second outer cross-validation fold, the seventh inner fold, the Profile Ker-
nel parameter combination (k=2 and 0=6), and the root node of the nested dichotomy of a fixed struc-
ture for archaea, we have a binary data set for the corresponding SVM (cytoplasmic vs. non-
cytoplasmic). In order to find its best parameter C, we performed a 5-fold cross-validation for each pos-
sible value (0.01, 0.1, 1.0, 10, 100, 1000). For each of these 5*6=30 folds, we performed Platt-Scaling,
using a 5-fold cross-validation again.

In Fig. 2, we present the average performance over the five outer folds of our model after this
last step.
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The final models (one for each kingdom), which we evaluated against current state-of-the-art prediction
methods for subcellular localization (Methods), and that we installed on our server, were obtained after
a final re-training using all of the five outer folds as training data. The Profile Kernel parameters for our
final models were: k=3 and 0=>5 for archaea, k=5 and 0=9 for bacteria, k=6 and 0=11 for eukaryota.

An in-depth analysis of these models with respect to unknown signal peptides is theoretically possible,

but necessary methodologies are yet to be developed. Nevertheless, we provide a preliminary analysis
of one of our SVMs in SOM Section 5.
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SOM Section 2: The Profile Kernel.

There are a number of sequence-based kernel functions designed for protein classification tasks. In this
work, we applied and compared the String Subsequence Kernel (Lodhi, et al.,, 2002), the Mismatch
Kernel (Leslie, et al., 2004) and the Profile Kernel (Kuang, et al., 2004). The main idea behind them is
to compare two protein sequences by looking at the number of common subsequences of a fixed
length. No biological knowledge is incorporated, in the sense that protein sequences are simply repre-
sented as strings of amino acids. In the following, we introduce the main principles behind the Profile
Kernel, the kernel function selected to be used for the LocTree2 classification system.

Evolutionary sequence profile. The key feature of the Profile Kernel, as the name already states, is the
use of protein sequence profiles. Such a profile is estimated by aligning a target sequence against a
group of homologous (similar) sequences, e.g. obtained via BLAST (Altschul, et al., 1990), and compil-
ing the conservation of each amino acid at each alignment position into a score. Many different ways
have been proposed on how to compute these scores, with the most popular variant arguably being the
one by Altschul et al. and implemented in PSI-BLAST (Altschul et al., 1997). In the profile kernel, the
score is simply the negative logarithm of the amino acid frequency at a particular position, slightly
‘smoothed out’ by pseudo counts (pseudo amino acid probabilities estimated from the training data
[Kuang, et al., 2004]). Consequently, in the n*20 scoring matrix (n being the length of the target se-
guence and 20 the size of the amino acid alphabet), a value around 0.0 indicates that the respective
amino acid has often been observed at a particular position, whereas higher values mean the opposite,
i.e. weak or no conservation. We obtained position specific frequency matrices from PSI-BLAST by
querying the target sequence against a redundancy reduced combination of SWISS-PROT, TrEMBL
(Bairoch and Apweiler, 2000) and PDB (Berman, et al., 2000) (Methods).

Computation of the Profile Kernel. The Profile Kernel makes use of an evolutionary profile Ps of a se-
quence s. The user has to define the length of the subsequences to consider (k) and the conservation

threshold o. The latter defines a filter for k-mers which exhibit high sequence diversity.
More formally: Given k-mer m(s, ),

m(s, j) =s[j+1:j+k]=sj+1...sj+k with Osjs|s‘—k

The kernel looks at the corresponding part of the profile (P(g i’ i.e. the profile Ps reduced to substitution
S, ]

scores between residues j+1 and j+k) and determines all k-mers with a cumulative substitution score

below o :
S = |X
J

with X being the alphabet of 20 amino acids and P . ')(i’xi) the frequency of amino acid xi at position
S,

(

k
xexka - S log P(s,j)(i’xi) <G}
i=1

1=

1 in the sub-profile P .
P s.d)
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Then, we can define the feature map of the kernel;

Mk
PXP)= 3 IxES)
i=0
with xexK

ol (Ps)indicating the value of k-mer x in the feature vector d)(PS) and

1(x) =1if xES,.

Note that (ID(PS) has |2|k - 20% dimensions. Consequently, the Profile Kernel is defined as the dot

product of two feature vectors:

k(Psl ’ PSZ) - CD(PSI ) (D(Psz)

Directly following the procedure above when implementing the kernel would quickly result in unfeasible
runtime and memory requirements. Luckily, we can entirely avoid explicitly mapping a profile into the k-
mer feature space and directly compute the kernel. This is commonly known as the ‘kernel trick’. Addi-
tionally, we can combine the computation of kernel values and create the entire kernel matrix in one
operation. The kernel matrix is an all-against-all comparison of each protein in the data set. Each cell
contains the kernel value of the two proteins under comparison. SVMs either create it on their own dur-
ing training or receive it from the user.

The Profile Kernel applies an efficient data structure that is built on all k-mers, called suffix trie, for the

efficient computation of the kernel matrix. k-long profiles are stored on the path from the root to the leaf.
An internal node of depth d stores a set of pointers to all k-length profiles P(S i whose current cumula-

tive conservation scores are less than the o threshold.
More specifically:

d
=1h - 2 logP .G pll:d =
np { .9 i§1 0g (S’j)(l,si) <GA m(S,J)[ d] Seq(n)}

where n_is the set of k-long sub-profiles stored at node n and seq(n) is the sequence induced by the
p

path from the root to noden.
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Only processing the profiles remaining at the leaf nodes, we can save a lot of computation and com-
pute many kernel values at the same time. We refer to Leslie et al, 2004 and Kuang et al. 2005 for a
more detailed description of the procedure.

Generally, the complexity of computing a Profile Kernel value k(Psl, Psz) depends on how many k-mers

fall below o. It has been empirically observed (Kuang, et al., 2005) that with a typical choice of o, one k-
mer in the original sequence translates into m=1, 2 slightly different k-mers at the same position. It can
then be shown that the worst case complexity of computing a kernel value for a pair of proteins of

lengths l1 and 12is O(km”\z\m(ll +12)). In practice, however, we usually achieve much lower com-

plexity. We again refer to Kuang, et al., 2005 for a more detailed analysis.
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SOM Section 3: Multi-class classification schemes

One-Against-All (Allwein and Singer, 2000). Given a set of n classes, n different binary classifiers are
employed such that each classifier discriminates between the positive training instances belonging to
one class and the negative training instances belonging to the remaining n-7 classes. The classification
result is the output of the classifier that generates the highest value.

Ensemble of Nested Dichotomies (ENDs) (Frank and Kramer, 2004). A set of twenty randomly com-
posed nested dichotomies (NDs) (Fox, 1997), represented as binary trees. Each internal node of the
tree stores one binary classifier and a set of corresponding classes. The root node contains the entire
set of classes and learns to separate it into two subsets — a positive and a negative subset. The two
successor nodes of the root inherit two subsets and the procedure is repeated until the leaf node is
reached. The number of leaf nodes corresponds to the number of localization classes. The result of an
END is the average over the estimates obtained from the individual trees.

Ensemble of Class Balanced Nested Dichotomies (ECBNDs) (Dong, et al., 2005). While ENDs sample
from a space of all possible tree structures, ECBNDs sample from a space of class-balanced tree struc-
tures and built an ensemble of balanced trees. Each internal node in a class-balanced binary tree has
two equal-sized subsets to pass to both its successor nodes, which limits the number of possible sets
of classes a node can inherit. As a result, the number of possible CBDNs is always smaller than the
number of possible NDs.

Ensemble of Data Balanced Nested Dichotomies (EDBNDs) (Dong, et al., 2005). DBNDs are built by
randomly assigning classes to two subsets until the number of instances in one of the subsets exceeds
half the total amount of instances in the parental node. The two data-balanced subsets are then passed
to the successor node. Thus, the heavily populated classes are located high up in the tree structure
making the ensemble of possible DBNDs (EDBNDs) biased towards populous classes. However, it has
been shown in (Dong, et al., 2005) that the accuracy of EDBNDs is comparable to that of ENDs and
ECBNDs on the UCI dataset (Blake and Merz, 1998). This was the reason for investigating this ap-
proach on our data.

Nested Dichotomies of a Fixed structure. The knowledge of general pathways of protein sorting was
used to design hierarchical trees of a fixed architecture for archaeal, bacterial and eukaryotic proteins
(Fig. 1). The difference to ENDs is essentially that we use biological knowledge to define a single ND,
instead of randomly creating multiple random NDs and then averaging.
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SOM Section 4: Size increase of the training sets.

It has been shown that larger data sets improve SVM performance through increased coverage of the
sequence space (Webb and Yu, 2004). Moreover, SVM performance can also be improved through
training on sequence redundant sets. Therefore, we allowed a certain degree of homology within each
of the training sets of archaeal, bacterial and eukaryotic proteins and thus increased the size of our
training data considerably, by almost a factor of 4.

Outline of the algorithm: (1) Start with the homology reduced set and align it against all proteins ex-
tracted from SWISS-PROT (Bairoch and Apweiler, 2000) by a pairwise BLAST (Altschul, et al., 1997)
(e.g. BLAST2 at E-value<10* in our case); (2) Compile HSSP-values (Rost, 1999; Sander and
Schneider, 1991) for each pair of aligned sequences. (3) Find all structural homologs to the sequences
in the homology reduced set at HSSP-value<60; (4) Align all sequences found in the previous step
against each other by a pairwise BLAST; (5) Find all pairs that are structural homologs at HSSP-
values60; (6) Remove sequences from the previous step that have HSSP-value>0 to more than one
sequence in the homology reduced set.
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SOM Section 5: Analysis of k-mers important for endoplasmatic reticulum association.

Although the profile kernel computes dot products implicitly via a kernel trick, the normal vector of the
separating hyperplane can be made explicit (Leslie, et al., 2004). This normal vector defines a weight
for each k-mer, indicating its contribution to the final classification of a protein: the higher the absolute
value, the more the k-mer contributes to the classification of a protein.

However, the biological implications of such a vector are limited (examples given below) and many
technical issues would have to be solved before approaching a systematic analysis of our models with
respect to new localization signals. (The final class of a protein is the result of many SVMs, each with
different normal vectors, to give only one example.)

Nevertheless, for a proof of principle, we computed the explicit normal vector of the SVM separating
soluble proteins of the endoplasmatic reticulum (ER; 26 proteins) from those that are secreted or reside
in the Golgi apparatus (non-ER; 2318 proteins; Fig. 1). Necessary programs were available in the pro-
file kernel package. Each of the 64 M dimensions of this vector determined the weight of one particular
k-mer (<alphabet size>"°" "= 205264 M; weights ranged from 0.6 to -1.4). We manually analyzed
the 100 k-mers with the highest positive weight, i.e. having the highest impact on the classification as
ER-associated (weight range: 0.6 — 0.4). A majority came from the C-terminal domain of Calreticulin
proteins (e.g. CALR_BOVIN) and only consisted of aspartic and glutamic acids (e.g. EDEDDE,
DDEDDE, DEEDEE, ...), rendering the domain very acidic. Their high weights can be explained by fre-
quent occurrence in the 26 ER training proteins and absence in the support vectors of non-ER proteins.
Indeed, due to our including slightly homologous proteins in the training set, the Calreticulin family was
a little overrepresented among ER proteins (6 proteins). The fact that those k-mers weighed higher than
other parts of Calreticulin proteins, however, indicated their particular importance for ER localization.
Several experimental studies confirmed this hypothesis (Villamil Giraldo, et al., 2010).

A second striking class of high scoring k-me rs consisted of leucin stretches (e.g. LLLLLL, LLLLLA).
They could be found in the N-terminal regions of three diverse proteins, namely LDLR chaperone
MESD (MESD_HUMAN), GDP-fucose protein O-fucosyltransferase 1 (OFUT1_RAT) and Orexin
(OREX_RAT) and are all part of known or putative signal peptides (e.g. [Sakurai, et al., 1999]). How-
ever, to our knowledge, exactly this leucin repeat has so far not been identified as a crucial component
of the signal and might therefore be a good target for further experimental analyses.

Curiously, the most well-known ER signaling motif, the KDEL retention sequence, was not among the
top scoring k-mers despite being largely present in our dataset: 10 of 26 ER proteins ended with the
sequence KDEL or HDEL. Further analyses, however, revealed the signal in a different way: There
were 2*20° = 800 possible k-mers ending with HDEL or KDEL. 760 of them had a positive weight, only
36 were slightly negative (4 had weight 0.0). This illustrates the need for better methods to detect con-
served signals and the limits of the current profile kernel: the location of the motif is important for its
function; however it can only partially be captured by our feature space. Many k-mers ending with
HDEL or KDEL were also present in non-ER proteins, but not necessarily at the C-terminus.
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Table SOM_1: Number of proteins in sequence unique data sets used for the development of
LocTree2

Localization Eukaryota Bacteria Archaea
Chloroplast 133 - -
Chloroplast membrane 11 - -
Cytosol 220 179 41
Endoplasmic reticulum 10 - -
Endoplasmic reticulum membrane 65 - -
Extra-cellular space 596 82 5
Fimbrium - 16 -
Golgi apparatus 3 - -
Golgi apparatus membrane 17 - -
Mitochondria 140 - -
Mitochondria membrane 87 - -
Nucleus 320 - -
Nucleus membrane 5 - -
Outer membrane - 6 -
Plasma membrane 40 144 13
Periplasm - 52 -
Peroxisome 6 - -
Peroxisome membrane 2 - -
Plastid 14 - -
Vacuole 3 - -
Vacuole membrane 10 - -
1682 479 59

The table displays the number of sequences per localization in the sequence unique sets of eukaryotic,
bacterial and archaeal proteins. We only used experimentally determined subcellular localization anno-
tations from SWISS-PROT release 2011_04 (Methods).
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Table SOM_2: Number of proteins in sequence unique independent test sets

New SWISS-PROT LocDB
Localization
Bacteria Eukaryota A. thaliana H. sapiens

Chloroplast - - - -
Cytosol 10 5 2 58
Endoplasmic reticulum (ER) - - 3 8
ER membrane - 3 - 1
Extra-cellular space 8 15 8 14
Fimbrium 1 - - -
Golgi apparatus - - 1 6
Golgi apparatus membrane 1 - -
Mitochondria - 3 4 37
Mitochondria membrane - 3 - -
Nucleus 15 3 29
Periplasm 3 - - -
Plasma membrane 6 5 10 43
Peroxisome - - 3 -
Vacuole - - 9 5
Vacuole membrane - 2 - -

28 52 43 201

In this table we show the number of sequences per localization in the sequence unique sets of bacte-
rial and eukaryotic SWISS-PROT proteins added between releases 2011_04 and 2012_02 and of
Arabidopsis thaliana and Homo sapiens proteins derived from LocDB (Rastogi and Rost, 2011; Meth-
ods). The data sets contained no sequence pairs with HSSP-value>0 and no protein sequences with
HSSP-value>5 to any of the sequences used for the development of our prediction method. Note:
LocDB annotations of subcellular localization of A. thaliana proteins do not discriminate between non-
membrane/membrane compartments (with the exception of plasma membrane).
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Table SOM_3: Number of proteins in sequence unique sets used for the additional comparison
with Loctree

Localization Bacteria Eukaryota
Chloroplast - 11
Cytosol 22 22
Extra-cellular space 20 84
Mitochondria - 24
Nucleus - 22
Organelles - 21
Periplasm 3 -

45 184

The table displays bacterial and eukaryotic data sets of protein sequences with localization annotations
added to Swiss-Prot after 2005. These sets were used for the performance comparison of LocTree2 to
LocTree. The sets sequence redundancy reduced internally (HVAL<0 and BLAST2 EVAL<10-3 over
alignments of >=35 residues length; Methods) and to the training sets of LocTree.
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Table SOM_4: Evaluation of prediction accuracy and time of various String Kernels

Method , Mismatch Kernel Profile Kernel
String Subsequence Kernel Lesli | K L. 2004
(Lodhi, et al., 2002) (Leslie, etal.,  (Kuang, et al., 2004;
Performance ' ' 2004) SOM Section 2)
g Q3) 98+3 983 98+ 3
<
e
<<
e Q(6) 89+2 89+2 94 +2
8
3]
@
& © Q(18) 70 £ 1 Not available® 83+1
<3
s
i

Data set: 10-fold cross-validated training sets of 59 archaeal, 479 bacterial and 1682 eukaryotic pro-
teins (Table SOM_1, cross-validation described in Methods and SOM Section 1).

Performance measures: Q(n), overall prediction accuracy for a given hierarchy (Methods, Qn is a 3-
state value for archaea, 6-state value for bacteria and 18-state value for eukaryota); Note: the mis-
match kernel was not able to produce results on our largest data sets of eukaryotic proteins within a

reasonable amount of time.

The averages over all training sets are reported. The multi-class classification approach used was One-
against-all (Allwein, et al., 2000; SOM Section 3).
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Table SOM_5: Evaluation of prediction accuracy and time of various multi-class classification

techniques
Method ENDs ;
one-  (kramer ECBNDs  EDBND  [™xed struc-
against-all ture
(Allwein, et and (Dong, et (Dong, et (Main pa-
Performance al., 2000) Frank, al, 2005)  al., 2005) er: Fig. 1)
& 2004) per. Fig.
§ Q3| 98zx3 98+3 98 +3 98+3 98+3
5 Speed | 60-10° 6.8-10° 89-10° 84-10° 40 - 10°
<
Ry Q)| 94zx2 972 9712 97:2 972
S Speed | 16.5-10° 2-10° 2.6-10° 2.7-10° 15-10°
Q
& o Q(18)| 831 88+ 1 88+ 1 88 + 1 88+ 1
:‘:j g Speed | 4-10° 02-10° 0.3-10° 0.3-10° 6.1-10°

Data set: 10-fold cross-validated training sets of 59 archaeal, 479 bacterial and 1682 eukaryotic pro-

teins (Table SOM_1, cross-validation described in Methods and SOM Section 1).

Methods: please refer to SOM Section 3 for methods description.

Performance measures:

Q(n) used as in Table SOM_3; Speed, the number of protein sequences

processed per minute on a Dell M605 machine with a Six-Core AMD Opteron processor (2.4 GHz, 6MB
and 75W ACP) running on Linux.

The averages over all training sets are reported. The kernel function used was the Profile Kernel (SOM

Section_2).
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Table SOM_6: LocTree2 on non-redundant test sets of 479 bacterial 1682 and eukaryotic pro-

teins
Localization Nprot Acc Cov gAvV
Cytosol 179 87+6 925 89+6
Extra-cellular 82 63+12 73+ 11 68 + 11
Fimbrium 16 83 + 25** 31+ 32** 51 + 31
Periplasm 52 75+ 16 58 + 16 66 £ 16
Plasma membrane 144 96 + 4 95+4 95+5
Q(6) — Bacteria 84 +4
Chloroplast 133 44 £13 299 367
Chloroplast membrane 11 38 + 48* 27 £ 30 3227
Cytosol 220 45+ 8 44 +8 44 +6
ER membrane 65 44 + 15 42 + 14 43 + 11
Extra-cellular 596 80+4 91+3 85+4
Golgi membrane 17 42 £33 29+24 35+19
Mitochondria 140 45+ 10 46 £ 10 45+ 7
Mitochondria membrane 87 60 £ 15 44 +13 51+10
Nucleus 320 67+6 776 72+6
Plasma membrane 40 68 + 22 48 +19 57 £18
Plastid 14 50 + 50 21+28 33+ 21
Q(18) — Eukaryota 65+ 3

Abbreviations used: Nprot, the number of proteins with known localization; Acc, accuracy; Cov, cov-
erage; gAv, geometric coverage of Acc and Cov; Q(n), overall prediction accuracy. Standard errors
were estimated by bootstrapping (Methods). Note 1: Q(n) is a six-state value for bacteria, i.e. the
overall accuracy for classification in one of six localization classes, and an eighteen-state value for
eukaryota. Note 2: Only performances for localization classes containing more than ten proteins are

reported.

** = unrealistic upper or lower bound given by the standard error due to the small data set size.
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Table SOM_7: LocTree2 on non-redundant test set of 59 archaeal proteins

Localization Nprot Acc Cov gAv
Cytosol 41 100* 100* 100*
Extra-cellular 5 100* 100* 100*
Plasma membrane 13 100* 100" 100"
Q(3) 100*

Chapter 2

Abbreviations used as for Table SOM_6. Note: Q(n) is a three-state value, i.e. the overall accuracy

for classification in one of three localization classes.

* = overoptimistic estimate due to the small data set size.
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Figure SOM_1: LocTree2 performance on cross-validated test sets of 479 bacterial and 1682 eu-
karyotic proteins.
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The curves show the overall prediction accuracy on cross-validated sets of sequence unique bacterial
and eukaryotic proteins used for the development of LocTree2 (Table SOM_1, Methods). (a) Bacteria:
The level 1 accuracy represents the overall two-state accuracy of classifying proteins into cytoplasmic
and non-cytoplasmic classes (Fig. 1b). For example, at 90% coverage, the prediction accuracy was
around 94%. The overall accuracy declined at lower levels in the hierarchical tree. At Level 2 node that
separates proteins into cytosolic, plasma membrane and non-plasma membrane classes, the overall
accuracy decreased to 93% at 90% coverage. For the purpose of simplification, the curve for Level 3
predictions is not here provided. Level 4 accuracy includes the accuracies of the cytosolic, plasma
membrane, periplasmic space, outer membrane and non-outer membrane classes; it was 91% at 90%
coverage. The difference in accuracy between Level 1 and Level 5 predictions that separate proteins in
one of six subcellular localization classes was 9%. (b) Eukaryota: the decision node at Level 1 (Fig. 1c)
separated membrane spanning proteins from those not associated with membranes. At 80% coverage
the accuracy was 96%. Similarly to Fig. 1a, the prediction accuracy declined with the depth of the clas-
sification tree. The predictions at Level 2 nodes, where non-membrane and transmembrane proteins
are separated into secretory pathway/non-secretory pathway proteins, were made at a lower level of
88% accuracy at 80% coverage. Level 3 nodes separated proteins into eight classes at 83% accuracy
and 80% coverage. The prediction into one of eighteen localization classes at Level 7 nodes was per-
formed at a significantly lower accuracy of around 77% at 80% coverage. The performances at Levels
4-6 are explicitly not provided in order to simplify.
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Table SOM_8: Performance comparison on LocDB data with several evidences

LocDB (>2 publications)

A. thaliana = 10 proteins H. sapiens = 18 proteins
Method Q(9) Q(8) Q(6) Q(8) Q(7) Q(6)
LocTree2 4034 44137 60£48 67+27 67%27 85124
CELLOVv. 25 40+34 - - 61128 - -
WoLF PSORT 4034 . - 61127 - -
MultiLoc2 - 22+41 - - 56126 -
LOCtree - - 60+48 - - 85+24

Data set: 10 Arabidopsis thaliana and 18 Homo sapiens sequence-unique proteins from the LocDB da-
tabase with localization annotations supported by more than two publications. Both data sets were re-
dundancy reduced (HVAL<0; Methods) with respect to each other and to SWISS-PROT 2011_04.

Performance measure: in each column, the highest achieved overall accuracy Q(n) is marked in bold
letters; values * standard error (Methods)

Table SOM_9: Estimating the influence of sequencing mistakes

Method Full length 30N removed 30C removed 173 randomly
removed
LocTree2 622 54%2 602 532
CELLO V.25 56 +2 35+2 47 £ 2 48 +
WoLF PSORT 56 +2 40+2 522 492

Data set: combined set of all sequence-unique eukaryotic protein sequences extracted from SWISS-
PROT and LocDB databases (Tables SOM_1 and SOM_2).

Methods: We estimated and compared the effect of sequencing errors on the performance of Loc-
Tree2 and its competitors. Three data sets were used: 30N removed, the first thirty N-terminal amino
acids were cleaved off for all proteins; 30C removed, the first thirty C-terminal amino acids were
cleaved off for all proteins; 1/3 randomly removed, amino acid positions were randomly picked and
cleaved off in-silico until two thirds of the protein sequence remained, which was used to predict local-
ization. Full length, is the performance on full length protein sequences and is shown here for compari-
son.

Performance measure: in each column, the highest achieved overall accuracy is marked in bold let-
ters.
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Chapter 3
3 LocTree3: improved prediction of protein cellular sorting
3.1 Preface

LocTree2 [1], a method described in Chapter 2, accurately predicts proteins in the so far
largest number of localization classes using machine learning. An independent benchmark
study of Mooney et al. [2] proved LocTree2 to be a successor and/or compliment of other
state-of-the-art methods. Another study, of Imai and Nakai [3], suggested a simple
homology-based inference, i.e. annotation transfer from experimentally annotated sequence

homologs, to perform on par with or better than advanced machine learning methods.

In this publication, we compared the performance of LocTree2 (de novo-based
predictions) with that of PSI-BLAST [4] (homology-based inference) on cross-validated
sequence-unique development data of Loctree2. We found that PSI-BLAST could, indeed,
significantly outperform LocTree2 for about half of the proteins in our set, for which
homologous proteins of known localization were available. For other proteins, the homology-
based inference was not possible. Thus, we argued that whole proteome annotations using
sequence homology only are rather limited, and suggested a new protocol that combines
homology-based inference if available with de novo predictions, otherwise. The resulted
method, LocTree3, outperformed its predecessor LocTree2 by remarkable 25%. We applied
LocTree3 to the proteomes of all entirely sequenced organisms and showed that in human,
for instance, localization for 23% of all proteins can only be inferred de novo (for yeast this
number is 32%, A. thaliana 39% and archaea A. pernix 92%). Furthermore, this publication
initiates a discussion that, in our opinion, is of significant importance in the field, as it
addresses questions such as the reliability of experimental data for localization in current

databases and of interpretation of the computational prediction results.

The study design was conceived by me, Henrik Nielsen and Burkhard Rost. | carried
out necessary background search. The initial evaluation of the performances of homology-
based and de novo predictions was performed by students of the “Protein Prediction II”
practical course (winter term 2013/14) under my and Maximilian Hecht's guidance. The
combination of two sources of prediction into LocTree3 and the method’s subsequent
evaluation was done by me and Burkhard Rost. | programmed LocTree3, while the
implementation of the faster version of the Profile Kernel [5, 6] (required for LocTree2) came
from Tobias Hamp. LocTree3’s web server was implemented by me, Maximilian Hecht,

Timothy Karl and Guy Yachdav. The manuscript was drafted by me and Burkhard Rost.
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ABSTRACT

The prediction of protein sub-cellular localization is
an important step toward elucidating protein func-
tion. For each query protein sequence, LocTree2 ap-
plies machine learning (profile kernel SVM) to pre-
dict the native sub-cellular localization in 18 classes
for eukaryotes, in six for bacteria and in three for
archaea. The method outputs a score that reflects
the reliability of each prediction. LocTree2 has per-
formed on par with or better than any other state-
of-the-art method. Here, we report the availability of
LocTree3 as a public web server. The server includes
the machine learning-based LocTree2 and improves
over it through the addition of homology-based infer-
ence. Assessed on sequence-unique data, LocTree3
reached an 18-state accuracy Q18 = 80 + 3% for eu-
karyotes and a six-state accuracy Q6 = 89 + 4% for
bacteria. The server accepts submissions ranging
from single protein sequences to entire proteomes.
Response time of the unloaded server is about 90 s
for a 300-residue eukaryotic protein and a few hours
for an entire eukaryotic proteome not considering the
generation of the alignments. For over 1000 entirely
sequenced organisms, the predictions are directly
available as downloads. The web server is available
at http://www.rostlab.org/services/loctree3.

INTRODUCTION

Many experimental methods annotate protein localiza-
tion, enriching resources such as SWISS-PROT (1). How-
ever, even for the well-studied yeast, the experimental
data are not nearly complete (2,3). Bridging the sequence-
annotation gap (4) for localization, therefore, calls for
cheaper and faster in silico approaches (5,6). Many machine
learning methods predict the native localization of a pro-
tein from its amino acid sequence; among the best known
are CELLO (7). WoLF PSORT (8). YLoc (9) and PSORTb
(10). A recent study suggested homology-based inference to
outperform machine learning (11). Homology-based infer-
ence proceeds as follows: build a data set with all proteins
of known localization, run a simple pairwise BLAST (12)
against this set, and predict the localization of the first hit.

LocTree2 predicts a single localization for all proteins
in all domains of life through machine learning (13). The
method implements a hierarchical system of Support Vec-
tor Machines (SVMs) to imitate the cascading mechanism
of cellular sorting (14). An independent, recent benchmark
proved LocTree2 to be an excellent successor and/or com-
plement to other top-of-the-line prediction methods (15) in
situations in which no experimental information is available
for the query protein or its homologs.

Here, we introduce LocTree3. It provides the web server
front end for LocTree2, and improves over LocTree2 by in-
cluding information about homologs if available. Thereby,
LocTree3 combines ‘the best of both worlds’, employing ho-
mology when possible and machine learning otherwise. The

"To whom correspondence should be addressed. Tel: +49 89 2891 7850; Fax: +49 89 2891 9414; Email: goldberg@rostlab.org
"The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.
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major steps of improvement are as follows: (i) inclusion of
annotation transfer from close homologs with experimen-
tally annotated localization through PSI-BLAST (12); (ii)
runtime reduction of LocTree2 by using a new fast imple-
mentation of the SVM profile kernel (16,17); (iii) Gene On-
tology (18) annotations for prediction results; (iv) caching
of the results for faster processing of the repeated searches
(19,20).

MATERIALS AND METHODS
Data

The number of proteins with experimental annotation for
a single localization in SWISS-PROT release 201104 was
34 583 for eukaryotes (18 localization classes, visualized in
Figure 2), 4765 for bacteria (six classes: cytosol, plasma
membrane, periplasmic space, outer membrane, fimbrium
and extra-cellular) and 237 for archaea (three classes: cy-
tosol, plasma membrane and extra-cellular). LocTree2 was
developed on sequence-unique subsets with 1682 eukary-
otic, 479 bacterial and 79 archaeal proteins (Supplemen-
tary Table S1, Supporting Online Material). Sequence-
redundancy was reduced at HVAL < 0 (21,22) through
UniqueProt (23). This is commonly done because the bias
in data sets from sequence similarity often overestimate per-
formance (24). However, in order to assess the power of
homology-based inference, we had to accept some redun-
dancy because homology-based inference performed below
the level of random across sequence-unique proteins (Sup-
plementary Table S2). We accomplished this by running the
sequence-unique 1682 eukaryotic proteins against all exper-
imentally annotated proteins, i.e. against the same release
of SWISS-PROT putting the redundancy back in to en-
able PSI-BLAST lookups. For 995 of the 1682, PSI-BLAST
found a non-trivial (removal of query protein) at E-value <
1073 (25,26); for 687 it did not.

For further testing, we added three new data sets. We col-
lected all proteins for which experimental annotations had
been added between releases 201104 and 2013_11. We re-
dundancy reduced those at HVAL < 0. This gave the sets
New2013_hval0 (273 for eukaryotes, 57 for bacteria). Ad-
ditional redundancy reduction to LocTree3 development
data provided too small sets (32 eukaryotic and two bac-
terial proteins) for reliable performance estimates. Next, we
simulated the question “how well the method will perform
on the next 1000 new proteins?’ by simply monitoring all
proteins added since we began collecting the data for this
manuscript, i.e. the proteins added since 2013_11 (New2014
with 198 eukaryotic proteins and too few in bacteria to pro-
ceed). Finally, we investigated a third set with all human
proteins (Supplementary Table S3). We deliberately kept
the ‘redundancy’ in this set that exists on the level of an
organism. Note that throughout we have considered only
proteins with single experimental annotations. Our prelim-
inary analysis of proteins with multiple annotations sug-
gested these to constitute a small set of proteins with many
problematic annotations (Supplementary Section S1).
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Methods

(1) Homology-based inference: We translerred localization
annotations by homology through PSI-BLAST (12).
For all proteins with experimentally known localiza-
tion, we generated PSI-BLAST profiles using an 80%
non-redundant database combining UniProt (1) and
PDB (27) with two iterations and E-value < 10 7,
These profiles were then aligned against all proteins
with experimental annotation of a single localization in
SWISS-PROT release 2011_04. PSI-BLAST hits to the
input protein were excluded.

LocTree2 (13) utilizes a hierarchical system of SVMs.
At all levels of the tree are binary decisions, which are
made by searching through proteins of annotated local-
ization with short stretches of k-consecutive residues (k
= 3 for archaca, 5 for bacteria and 6 for cukaryota). The
most informative k-mer hit decides on “left or right” for
each fork in the tree until reaching a leaf, i.e. the final
predicted localization class.

LocTree3: Our final method, LocTree3, combines PSI-
BLAST and LocTree2 in the settings where they per-
form best. A single parameter chooses: homology-
based inference, il a profile-2-sequence PSI-BLAST hits
at E-value < 10 3, else: LocTree2 (‘Results’ section and
Supplementary Figures S1 and S2).

Public methods (CELLO 2.5, WoLF PSORT, YLoc,
PSORTbD 3.0): We compared LocTree3 to four pub-
licly available leading prediction methods: CELLO 2.5
(7), WoLF PSORT (8), YLoc (9) and PSORTb 3.0
(10). If WoLF PSORT or CELLO 2.5 predicted mul-
tiple locations, and one of those was correct, we al-
ways considered the prediction fully correct. Further-
more, these two methods distinguish cytoskeleton and
cytoplasm; here, we considered both as cytosolic. Be-
cause no method other than LocTree2/3 distinguishes
between membranes other than the cell membrane in
eukaryotes, we merged these two classes, 1.e. treated nu-
clear and nuclear-membrane proteins as identical. Plas-
tid and chloroplast proteins were also merged into one
class for a comparison of LocTree3 to other methods.
For a comparison with CELLO 2.5 and PSORTb 3.0
we combined bacterial secreted and fimbrium proteins
into one class and differentiated between Gram-positive
and Gram-negative proteins according to Yu ez al. (10).

(2

—

(3

(4

=

Reliability index

The reliability of a prediction is given through a reliabil-
ity index ranging from 0 (weak prediction) to 100 (confi-
dent prediction). For LocTree2, the reliability indices are
taken directly from its output. For homology-based infer-
ences from PSI-BLAST, the reliability index was compiled
as a simple function of the percentage pairwise sequence
identity (PIDE) with a threshold at the saturation of PIDE
< 20 (Supplementary Figure S1).

Performance evaluation
The performance for a single localization class L was ex-
pressed using accuracy (often also referred to as precision)
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Table 1. Performance for LocTree3 and its sources

Method Eukaryota Q18 (Equation (3)) Bacteria 06 (Equation (3))
Without Without
Set2011_hval0 PSI-BLAST hits ~ With PSI-BLAST Set2011_hval0 PSI-BLAST hits With PSI-BLAST
(1682)™ (687) ™ hits (995)" (479)"* (277)"* hits (202)"°
PSI-BLAST"! 55+ 3 na 93 + 2 40+ 5 na 94 + 4
LocTree2? 65+ 3 61 £5 67 £ 4 84+ 4 84+5 83+ 6
LocTree3"? 80 + 3 89 + 4

Note: "+ values refer to standard errors (Equation (4)); bold face: ‘winner in each column’.

"1 PSI-BLAST: simple look-up of localization from proteins with known localization, excluding self-hits.

2 LocTree2: de novo machine learning-based prediction (cross-validated).

"3 LocTree3: takes PSI-BLAST if available and LocTree2, otherwise.

" Eukaryotic ‘Set2011_hval0’: 1682 sequence-unique eukaryotic proteins with experimental localization annotation from SWISS-PROT release 2011.04;
for 995 of those, PSI-BLAST found hits at E-value < 10~ in the set of all annotations of release 2011.04, for 687 it did not.

"SBacterial ‘Set2011_hval0’: SWISS-PROT release 201104 had localization annotations for 479 sequence-unique bacterial proteins; for 202 PSI-BLAST

identified hits in the remainder of annotated proteins in 201104, for 227 it did not.

and coverage (often also referred to as recall):

TP
Acc(L) = 100 x ™ L PF (€))
TP
L)y=1 —_— 2
Cov(L) 00 x TP+ FN (2)

with: TP, the true positives (i.e. the number of proteins pre-
dicted and observed in localization L); FP, the false posi-
tives (i.e. the number predicted in L and observed in non-L);
FN, the false negatives (i.e. the number observed in L and
predicted in non-L). We measured the overall performance
by the n-state accuracy QOn:

number proteins correctly predicted in n classes
total number proteins observed in n classes

on = 3

Standard errors were estimated over 1000 bootstrap sets,
i.e. randomly select 15% of proteins without replacement
from the original data set (in our experience this non-
standard procedure yields more long-lived estimates). For
each bootstrap set, the performance x; (e.g. accuracy) is es-
timated through its difference from the overall performance
{x). These 1000 estimates provided the standard deviation
of x; with the typical standard error, where n is the number
of bootstrap sets:

n

Standard deviation (o) =

“)

Standard error =

Tq
_

Runtime analysis

For sequences with pre-calculated PSI-BLAST profiles the
LocTree2 runtime was measured on a Dell M605 machine
with a Six-Core AMD Opteron processor (2.4 GHz, 6MB
and 75 W ACP) running on Linux.

RESULTS
LocTree3 balanced PSI-BLAST and LocTree2

Homology-based inference for a protein of unknown local-
ization U implies to find a protein with known localization
K that is sequence similar to U (e.g. sim(U,K) > T and U #
K). We experimented with alternative solutions, but avoided
to ‘over-optimize’. We simply chose the threshold T to be
the standard PSI-BLAST E-value of 10~* (Supplementary
Figure S2, Supporting Online Material). This typically gave
several hits: choosing the one with highest percentage pair-
wise sequence identity slightly outperformed taking the hit
with best E-value (Supplementary Table S4).

Surprisingly, homology inference outperformed our ad-
vanced machine learning tool LocTree2 for half of our orig-
inal data (995 of 1682 eukaryotic and 202 of 479 bacterial
proteins, Table 1). However, when we forced PSI-BLAST
to return hits for all proteins, LocTree2 consistently outper-
formed the PSI-BLAST protocol (Table 1).

These first results suggested a simple protocol: use PSI-
BLAST if applicable, LocTree2 if not. We dubbed the
method that realized this protocol LocTree3. The combi-
nation outperformed both its sources, reaching an overall
performance of Q18 = 80 + 3% in classifying eukaryotic
proteins in 18 classes (10 non-membrane and 8 membrane
classes) and bacterial proteins in six classes at Q6 = 89 +
4%, (Table 1). LocTree3 predicted eukaryotic extra-cellular
proteins best (Acc: 88% and Cov: 96%), followed by nuclear
proteins (Acc: 81% and Cov: 86%; Supplementary Figure
S3A, Supplementary Table S5). For bacteria, the prediction
of plasma membrane proteins was most accurate (Acc: 96%
and Cov: 95%), followed by cytosolic proteins (Acc: 91%
and Cov: 90%; Supplementary Figure S3B, Supplementary
Table S5).

LocTree3 outperformed other methods

For both eukaryotes and bacteria, LocTree3 significantly
outperformed its competitors on all data sets tested (Ta-
ble 2 and Supplementary Table S6). Finally, we used all ex-
perimentally annotated human proteins to benchmark the
methods and found LocTree3 again to provide the most ac-
curate predictions (Supplementary Table S7). The complete
human set contained 5016 proteins; LocTree3 reached Q10
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Table 2. Performance comparison for state-of-the-art prediction methods

Eukaryota Q10 (Equation (3))

Bacteria Q5 (Equation (3))

Set2011_hval0 New2013_hval0

Method (1682)2 (273)7 New2014 (198)™ Set2011_hval0 (479)2  New2013_hval0 (57)*3
Cello 2.5™ 65+ 3 64 + 7 81 + 7 82 + 4 70 + 14
PSORTb 3.07! - - - 57T+5 51+ 15

Wolf Psort™! 60 + 3 65 + 7 77 £ 7 - -

YLoc™ 60 + 3 63+ 7 66 + 8 - -

LocTree2 65 + 3 66 + 7 85+ 6 86 + 4 81 + 11
LocTree3 81 +3 3+7 84+ 6 90 + 3 84 + 11

Note: ‘£’ values refer to standard errors (Equation (4)); bold face: ‘winner in each column’.

"I Cello 2.5 (7), PSORTbH 3.0 (10), Wolf Psort (8), Y Loc (9) as described in ‘Materials and Methods’ section.

*28et2011_hvalO (as in Table 1): 1682 sequence unique eukaryotic and 479 bacterial proteins used for development of LocTree3.

“*New2013_hval0: 273 eukaryotic and 75 bacterial proteins added to SWISS-PROT between releases 2011_04 and 2013_11, sequence homology reduced

at HVAL < 0.

“4New2014: 198 eukaryotic proteins added to SWISS-PROT between releases 2013_11 and 2014.03 (not redundancy-reduced).

= 89%, followed by YLoc, Cello 2.5 and Wolf Psort with
76,75 and 71% respectively (Supplementary Table S7). Loc-
Tree3 appears best when compared on the same number of
classes, and it also is the method that distinguishes in most
detail with 18 classes for eukaryotes (compared to 12 for
Cello 2.5 and Wolf PSORT; 11 for YLoc).

Reliability index enables users to focus on best predictions

LocTree3 measures the confidence of each prediction
through a reliability index (RI) that scales from 0 (low confi-
dence) to 100 (high confidence). Technically, RI reflects the
strength of a prediction. Our task as developers was to pro-
vide a measure that allows users to translate this strength
into estimates for performance. Indeed, our RI strongly cor-
related with accuracy (Figure 1): when choosing the 50%
most strongly predicted eukaryotic proteins, 95% of the pre-
dictions were correct (RI > 70, Figure 1: black arrow).
For bacterial proteins the same level of accuracy was also
reached for about half of all proteins (but at RT > 80, Figure
1: gray arrow). For users not familiar with reliability indices
it is important to point out that the choice of the ‘top N’
does not require knowing the answer. Instead, any user can
make this choice for any prediction and can read of Figure
1 what to expect from the choice.

About 90 s runtime without alignment

At this point, the PredictProtein cache (19,20) holds >11.7
million pre-computed PSI-BLAST profiles that are quickly
retrieved by LocTree3. Due to a recent acceleration of the
profile kernel (16,17), the runtime of LocTree2 could be re-
duced by up to 100 times, such that now an average SVM
kernel lookup takes about 90 s for a typical eukaryotic pro-
tein (bacteria: 4s, archaea: 2s).

Due to considerable ‘start-up’ overhead, the runtime in-
creases sub-linearly with the number of queries. This ren-
ders the server fit for queries with entire proteomes, typi-
cally requiring few minutes for archaeal, <1 h for bacterial
and <1 day for eukaryotic proteomes. If the PSI-BLAST
profiles have to be created first, runtimes increase manifold,
as creating a profile takes 10-500 times longer than running
LocTree2. Interested users may download the LocTree3 De-
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Figure 1. Reliable predictions more accurate. The reliability index (RI)
of LocTree3 relates the strength of a prediction to the performance. The
curves show the percentage accuracy/coverage (‘Materials and Methods’
section) for LocTree3 predictions above a given RI. Increasing the RI im-
plies that we look at some subset of all predictions; the subset is given by the
curves with squares. For instance, half of all eukaryotic proteins are pre-
dicted at RI > 70 (black cross-line). For this top 50%, performance rises
from the average Q18 = 80% to 018 = 95% (black line with circles, black
arrow). Similar values are reached for RI > 80 for bacteria (gray cross-line;
note that in this case Q6 = 95% is a six-state accuracy as opposed to the
18-state value for eukaryotes).

bian package from the web server and run it on their ma-
chines.

Prediction workflow

Users submit one or more FASTA-formatted protein se-
quences. For each sequence, the server first checks for the
pre-calculated results in the PredictProtein cache. 1f avail-
able, the result is returned immediately (minus queue wait-
ing time); if not, the server retrieves a PSI-BLAST profile
through the PredictProtein pipeline (19,20). The profile is
used to identify hits in a database of experimentally anno-
tated proteins. If no hits are identified, the profile triggers a
de novo prediction by LocTree2.
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Figure 2. Example output for protein RPO_HUMAN. For every input pro-
tein sequence the LocTree3 prediction result contains: (i) protein identifier,
(ii) reliability index, (iiiy expected accuracy of the prediction, (iv) localiza-
tion class, (v) GO term(s) and identifier(s) and (vi) source of the prediction.
The predicted localization is highlighted in the schematic representation
of the cell (here: nucleus). For LocTree2 predictions (shown here), we pro-
vide a visualization of the decision tree and the decision path leading to
the final prediction. The reliability index is formed through the product of
values along the decision path. For PSI-BLAST predictions, we provide a
sequence alignment of the query protein to its best hit instead of the tree.

For every query protein, the result contains four basic val-
ues: (i) the protein identifier as provided by the user, (i) the
reliability score of a prediction on a 0-100 scale with 100
being the most confident prediction, (iii) single predicted
localization class and (iv) GO term(s) and GO identifier(s)
matching the predicted class. Every result is supported by
the information on whether it comes from a PSI-BLAST
homology search or a LocTree2 de novo prediction. In case
of the former, the web site provides ‘per click’ on the pre-
diction result the experimental SWISS-PROT annotation
of the best hit and its PSI-BLAST alignment to the query
protein. In case of the latter, ‘the click’ on the result will for-
ward to the visual representation of the LocTree2 decision
tree and the decision path leading to the final prediction.
In addition, every result is supported by a schematic rep-
resentation of the biological cell highlighting the predicted
localization (Figure 2).

Predictions pre-calculated for over 1000 organisms

LocTree3 predictions for over 1000 complete eukary-
otic and prokaryotic proteomes are available on the web
server (http://rostlab.org/services/loctree3/proteomes/). Pre-
dictions are based on sequence sets from the Euro-
pean Bioinformatics Institute (EBI: http://www.ebi.ac.uk/
genomes/ and http://www.ebi.ac.uk/reference_proteomes/).
The high-throughput annotation and prediction of pro-
tein sub-cellular localization allows organism-wide compar-
isons of protein localization patterns and the reconstruc-
tion of evolutionary relations (Goldberg et al., in prepara-
tion). Predictions for the newly completed proteomes will
be added to the web server on a semi-annual basis.

DISCUSSION

PSI-BLAST has certainly changed the way we do sequence
analysis more than any tool (possibly excluding PubMed
and Google). Furthermore, this tool has been improving
continuously since its first publication in 1997 adding im-
portant value beyond that from growing databases (25).

Chapter 3

LocTree2 uses advanced SVM profile kernels (16). Al-
though it explicitly uses local sequence similarity, LocTree2
arguably falls into the class of de novo methods simply be-
cause it reaches its predictions through levels of sequence
similarity that are not available directly from sequence com-
parisons. Nevertheless, we found that a simple PSI-BLAST
protocol could outperform LocTree2 for about half of the
proteins in our data set (Table 1), an observation in line
with the findings of Imai and Nakai (11). Unfortunately,
homology-based inferences became random for the other
proteins, dropping the overall average substantially below
that for LocTree2 (Table 2). Thus, it would be a very bad
idea to annotate an entire proteome only with homology-
based inference.

Our new method LocTree3 successfully navigates a path
through homology-based and de novo prediction of local-
ization (Tables 1-2, Supplementary Tables S5-S7, Section
S2). The method is so good that it reaches 18-state over-
all accuracy (Q18, Equation (3)) >95% for half of all the
proteins that are most strongly predicted, i.e. have highest
reliability (Figure 1). For any new query, users can read off
the results whether or not their protein is likely to fall into
this top set of ‘>95%" (RI > 70 for eukaryotes, RI > 80 for
bacteria, Figure 1), and whether the prediction comes from
a homology search with PSI-BLAST or a de novo prediction
with LocTree2. For instance, LocTree3 predicts 77% of the
entire proteome in human through homology-based infer-
ence (a few other highlights from Supplementary Table S8:
yeast 68%, Arabidopsis 61%, Caenorhabditis elegans 47%).
However, for yeast only 17% of the predictions originated
from direct homology inference, the remainder came from
direct experimental annotations (Supplementary Table S8).
For human, the corresponding numbers were 30% experi-
mental, 47% through homology inference (Supplementary
Table S8). Unfortunately, LocTree2 cannot recover for mis-
takes made by the homology lookup and all our assessment
is based on taking the homology lookup when available.
Investigating reasons why homology-based inference was
wrong did not give a clear answer (Supplementary Section
S3). Due to its high overall performance, reduced prediction
time and cached prediction results, LocTree3 web server op-
timizes well for the handling of large-scale data. Therefore,
this web server and its downloadable software should pro-
vide an ideal starting point to aid the prediction of protein
function through localization predictions.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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Table S1: Data sets for development and evaluation.

Localization Eukaryota Bacteria Archaea
Chloroplast 133 - -
Chloroplast membrane 11 - -
Cytosol 220 179 41
Endoplasmic reticulum 10 - -
Endoplasmic reticulum membrane 65 - -
Extra-cellular space 596 82 5
Fimbrium - 16 -
Golgi apparatus 3 - -
Golgi apparatus membrane 17 - -
Mitochondria 140 - -
Mitochondria membrane 87 - -
Nucleus 320 - -
Nucleus membrane 5 - -
Outer membrane - 6 -
Plasma membrane 40 144 13
Periplasm - 52 -
Peroxisome 6 - -
Peroxisome membrane 2 - -
Plastid 14 - -
Vacuole 3 - -
Vacuole membrane 10 - -
SUM 1682 479 59

Data: number of proteins per localization class with experimentally determined
annotations of a single subcellular localization taken from SWISS-PROT release
2011_04 (1) in at HVAL=<0 (2, 3) sequence-unique sets of eukaryotic, bacterial and
archaeal proteins. The data sets were used for development of LocTree3 and its

predecessor LocTree2 (4).
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Table S2: Homology-based inference from sequence-unique sets

PSI-BLAST E-value Q18 - Eukaryota Q6 - Bacteria
threshold" (1682 proteins) (479 proteins)
107 1+1 0
10° 241 0.4+1
10° 541 242
10" 172 9+3
1 2713 2515
10 3243 39+6
100 2412 3315
100000 2212 2815
Random 22+2 2845

Data: 1682 eukaryotic and 479 bacterial sequence-unique proteins with an
experimental annotation of a single sub-cellular localization extracted from SWISS-
PROT release 2011_04, aligned against themselves.

" PSI-BLAST E-value threshold: defines the E-value (5, 6) threshold for a PSI-
BLAST (7) hit, which is different to the query protein, to be considered for
performance evaluation

2 Random: defines the performance of a random prediction in one of eighteen
classes in Eukaryota and six classes in Bacteria, with respect to the data
distribution among these classes

Note: Q is the overall prediction accuracy (Egn. 3, Methods); “+” values refer to standard
errors  (Eqn. 4, Methods)
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Table S3: Data sets for independent/additional testing.

New2013_hva10*1 New2014* Human’®

Localization

Eukaryota Bacteria Eukaryota Eukaryota
Chloroplast 10 i 8 )
Chloroplast membrane 14 - - -
Cytosol 43 19 25 965
Endoplasmic reticulum (ER) 1 - 1 41
ER membrane 7 - - 175
Extra-cellular space 112 20 121 744
Fimbrium - 1 - -
Golgi apparatus 2 - 2 15
Golgi apparatus membrane 4 - - 83
Mitochondrion 13 - 1 290
Mitochondrion membrane 7 - - 112
Nucleus 43 - 34 1524
Nucleus membrane - - - 7
Quter membrane - 4 - -
Periplasm - 5 - -
Plasma membrane 9 8 6 1020
Peroxisome 1 - 25
Peroxisome membrane 1 - - 13
Plastid - - - -
Vacuole 1 - - -
Vacuole membrane 5 - - 2
SUM 273 57 198 5016

Data: number of sequences per localization class in the sets of SWISS-PROT

proteins used for the independent/additional testing of LocTree3.

1 “New2013_hval0” set: at HVAL<0 redundancy reduced sets of 273 eukaryotic
and 57 bacterial proteins, thus containing no protein pair with >20% pairwise
sequence identity over 250 residues aligned. Redundancy reduced set of
archaeal proteins was too small (18 proteins) to provide meaningful

performance estimates and was thus excluded from the analysis.

2 “New2014” set: all eukaryotic proteins added to SWISS-PROT between
releases 2013_11 and 2014_03, not redundancy reduced. Because the
number of corresponding bacterial proteins was too small (10 proteins), they

were excluded from the analysis.

reduced.
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Section S1: LocTree3 assessment on multi-localized proteins

LocTree2 and LocTree3 were developed on proteins from the Swiss-Prot release
2011_04. The number of multi-localized proteins in this release was 48 for bacteria
(all annotated with two localization classes) and 4556 for eukaryota (4376 with two
localization classes, the others with 23). Due to the small number, we dropped
bacteria. Reducing redundancy at HVAL=<0 on these 4556 left us with 72 sequence-
unique proteins. We applied LocTree3 to these and considered the prediction
correct if one of the experimentally observed classes had been predicted. Result:
Q18=65+12%; while similar to the performance of LocTree2 on the 1682 cross-
validate proteins, it compared less favourable to 80+3% for LocTree3. Why did
performance drop on those proteins? Clearly, the random expectation was the
opposite, i.e. since we allow one mistake we have a higher random performance:
picking one right from 18 is tougher than picking 2 and choosing the best-of-two. In
short, our suspicion is that today’s double annotations as a whole set are not good
enough.

We looked at LocTree3 predictions for five misclassified proteins (i.e. proteins for
which none of the experimentally annotated localization classes could be picked by
LocTree3) with the highest reliability scores (Rls). One of the five proteins
(YG4O_YEAST, RI=38) was an uncharacterized protein while for the remaining four
we were able to find the experimental evidence for the predicted localization classes
in other sources rather than Swiss-Prot: (1) ZYM1_SCHPO is a metallothionein,
which is annotated to be localized to the nucleus and the cytoplasm in SWISS-
PROT. LocTree3 predicts this protein to be secreted with the RI=98, we found an
experimental evidence for metallothioneins to be secreted in Moltedo et al. (8); (2)
GPX41_MOUSE is annotated to localize to the mitochondrion and the cytoplasm,
while LocTree3 predicts nucleus with the RI=93, which is confirmed by Yant et al.
(9); (3) NPC2_ASPOR is annotated to be cytoplasmic and a Golgi apparatus protein,
LocTree3 however predicts it to be vacuolar with the RI=43, which is true for the
protein’s ortholog NPC2_YEAST; (4) PEN2_CAEEL is annotated to be localized to
the ER membrane and Golgi membrane, LocTree3 predicts mitochondria membrane
with RI=36 which is true according to the work of Hansson et al. (10). Interestingly,
for the protein with the lowest prediction reliability index (CSN4_BRAOL, RI=6) and
the predicted localization class chloroplast we could find an evidence in Xiangjun et
al. (11) stating that the protein acts as a suppressor of chloroplast development.
SWISS-PROT annotates the protein to be nuclear and cytoplasmic.

From these findings we conclude that the number of sequence-unique mulii-
localized proteins as we have them today in SWISS-PROT is rather small and the
annotations of multiple localization may be fuzzy and incomplete. Therefore,
assessing prediction methods on these proteins may lead to underestimated results
and incorrect implications.
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Figure S1:
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Fig. S1: PSI-BLAST sequence identities to LocTree3 reliability scores. Localization
annotation from sequence homologs is more accurate at higher PSI-BLAST pairwise
sequence identity (PIDE) values. Here we show the percentage Accuracy/Coverage
(Methods) at the given sequence identity thresholds for 995 eukaryotic and 202 bacterial
proteins that had a PSI-BLAST hit with E-value<10® (6, 7). Since method’s performance did
not change for PIDE<20, we formed LocTree3’s reliability index by normalizing the
sequence identity values according to (PIDE-20)*10/8.

Note, the slight decrease of the Accuracy curves at PIDE approaching 100% results from
the changed annotations in SWISS-PROT between releases 2011_04 and 2013_11.
Though these proteins are predicted to be localized correctly in 2013_11, they are
considered as false predictions in the current evaluation (Eukaryota: AIM37_YEAST,
ECP_MACFA; Bacteria: ESPR_MYCTU).
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Fig. S2: E-value thresholds for the homology-based inference from all experimentally
annotated proteins in SWISS-PROT release 2011_04

The accuracy of localization annotation transfer from sequence homologs (entire SWISS-
PROT release 2011_04: 34583 eukaryotic and 4765 bacterial proteins) varies at different
PSI-BLAST E-values. Shown is the overall accuracy of LocTree3 (dark grey) and PSI-
BLAST (light grey) in predicting 18 localization classes (Q18, Methods) for eukaryotes
(Panel A) and 6 classes for bacteria (Panel B) at the given E-value cut-off. PSI-BLAST E-
value thresholds reached their peak at high E-value<10. However, in order to determine the
threshold at which value to use LocTree2 and at which PSI-BLAST, we also need to
consider the performance of the final merger LocTree3 at the same threshold. The optimal
threshold for LocTree3 seemed to be much more conservative, namely at E-value<10?.
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Table S4: Strategies for annotation transfer by homology.

Method Minimum Maximum Maximum Majority
E-val HVAL PIDE vote
Performance

&8 | Q18), 1682

‘x 1

Q S proteins 5443 53+3 55+3 53+3
' ©

§ S (;)J(rg);;nzg 406 38+5 40+5 39+5

Data: sequence-unique sets of 1682 eukaryotic and 479 bacterial proteins extracted
from SWISS-PROT release 2011_04. For each protein a PSI-BLAST profile was
built using a combination of UniProt (1) and PDB (12) databases redundancy
reduced at 80% sequence identity. The profiles were then aligned at the standard E-
value of 10® (6, 7) against 34583 experimentally annotated eukaryotic and 4765
bacterial proteins available in SWISS-PROT in 2011_04. Given a list of homologs
for a query protein we investigated which of the following strategies contributed most
to the overall performances Q18 (i.e. correct classification of a protein in one of 18
classes) for Eukaryota and Q6 (i.e. correct classification of a protein in one of 6
classes; Methods) for Bacteria:

Minimum E-val: take the annotation of the hit with the minimum expectation value
Maximum HSSP-val: take the annotation of the hit with the maximum HVAL (9, 10)

Maximum PIDE: take the annotation of the hit with the maximum pairwise sequence
identity

Majority vote: take the localization class of most hits
When more than one hit fit the same (e.g. maximum PIDE), we picked the first.
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Figure S3:
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Fig. S3: Class-wise performance comparison of LocTree3 to its sources

PSI-BLAST marks a simple ‘lookup’ in the database of experimentally annotated proteins
from the SWISS-PROT release 2011_04 (i.e. 34583 eukaryotic and 4765 bacterial
proteins), self-hits are excluded; LocTree2 is a de novo machine learning-based predictor,
results shown here are valid for cross-validation on 1682 eukaryotic and 479 bacterial
proteins. LocTree3 combines the results of previous two methods by taking PSI-BLAST hits
with E-value<10® and maximum PIDE, if available, and LocTree2 predictions otherwise. We
tested on a non-redundant data set of (A) 1682 eukaryotic and (B) 479 bacterial proteins
extracted from SWISS-PROT release 2011_04. The localization classes (compartments) on
the x-axes mark the averages over all proteins in that class. Note that the x-axes are
sorted by the prevalence of that class in the experimental annotations (as given by the inlet
pie-charts). In this graph, we force PSI-BLAST to always return a prediction. The y-axes
show the geometric average (gAv, Methods) between accuracy and coverage. The pie
charts in the centre show the fraction of proteins belonging to each class. LocTree2
predicted classes with most experimental annotations best (A: EXT+NUC, B:
CYT+IM+EXT). We could not confirm the same trend for the simple PSI-BLAST protocol.
Overall, our new method, LocTree3, published in the web server still maintains a small
correlation between performance and experimental annotations with respect to the
compartments.

Abbreviations: gAv, geometric average; CHL, chloroplast; CYT, cytosol; ERM,
endoplasmic reticulum membrane; EXT, extra-cellular; FIM, fimbrium; GOLM, Golgi
apparatus membrane; MIT, mitochondria; MITM, mitochondria membrane; NUC, nucleus;
PERI, periplasmic space; PM, plasma membrane.
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Table S5: LocTree3 assessment on sequence-unigue sets of 479 bacterial and 1682

eukaryotic proteins

Localization Nprot Acc Cov 9AvV
Extra-cellular 596 88+3 96 +2 92+4
Nucleus 320 81+5 86+5 83+6
Cytosol 220 68 +7 64 +8 66+7
Mitochondria 140 74 £10 66 +10 70+8
Chloroplast 133 72+9 73 +10 72+9
Mitochondria membrane 87 77 £ 11 69 £ 11 73 £ 11
ER membrane 65 6716 57 +14 62 +13
Plasma membrane 40 84 + 15 78 +16 81 +16
Golgi membrane 17 69 + 31 53 + 29 61 +27
Plastid 14 50 + 50 29 + 31 38 +23
Chloroplast membrane 11 80 + 29* 73 £ 29* 76 £ 32*
ER 10 71+ 47" 50 +35 60 + 33
Vacuole membrane 10 100* 40 + 31 63 +32
Q(18) — Eukaryota 1682 80+3

Cytosol 179 91+5 90+5 917
Plasma membrane 144 96 +4 95 +4 96 +5
Extra-cellular 82 75+ 11 87+9 80 + 11
Periplasm 52 82+ 14 77 £ 14 79£15
Fimbrium 16 83 + 25* 63 £ 35 72+ 26
Q(6) — Bacteria 479 89+4

Data sets and the LocTree3 performance estimation as in Figure S3. Abbreviations
used: Nprot, the number of proteins with known localization; Acc, accuracy; Cov,
coverage; gAv, geometric coverage of Acc and Cov; Q(n), overall prediction

accuracy. Standard errors were estimated by bootstrapping (Methods).

Note 1: Q(n) is a six-state value for bacteria, i.e. the overall accuracy for
classification in one of six localization classes, and an eighteen-state value for

Eukaryota (Methods). Note 2: Only performances for localization classes containing
more than ten proteins are reported.
* = unrealistic upper or lower bound given by the standard error due to the small

data set size.
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Table S6: Performance comparison on LocTree3’s development data

Eukaryota Bacteria
Method “Complete” -PSI-BLAST  PSI-BLAST “Complete” -PSI-BLAST PSI-BLAST
etno set hits hits set hits hits
(1682) " 687)" (995)"" 479)"8 (277)"8 (202) 8
Cello 2.5 6543 6045 70+4 82+4 8145 8346
PSORTb 3.02 5 - 5745 47+7 717
Wolf Psort®  |o| 603 5745 6353 | - -
YLoc™ C| 60:3 5545 gara |© ; ;
LocTree2® 65+3 62+4 6814 8614 8615 8516
LocTree3*® 8143 62+4 94+2 903 8615 94+4

Cello 2.5: employs a system of Support Vector machines to classify eukaryotic proteins
in 12 and bacterial in 5 classes using sequence-derived features (13)

PSORTb 3.0: predicts four classes for Gram-positive and five classes for Gram-negative
bacteria through a combination of several classifiers into a Bayesian network (14)

Wolf Psort: k-nearest neighbour classifier that predicts 12 localization classes for
eukaryotes from sequence-derived features (15)

YLoc: uses sequence-derived features together with GO terms to classify eukaryotic
proteins in 11 localization classes through Naive Bayes (16)

LocTree2: de novo machine learning-based method, results valid for cross-validation
LocTree3: combines de-novo (LocTree2) and homology-based (PSI-BLAST) searches; it
uses PSI-BLAST predictions (lookup at E-value<10™ in a database of experimentally
annotated proteins) if available and LocTree2 (results from the cross-validation setting),
otherwise

data set Eukaryota: 1682 sequence-unique eukaryotic proteins in SWISS-PROT release
2011 _04; for 995 of those we found PSI-BLAST hits, for 687 we did not

data set Bacteria: 479 sequence-unique bacterial proteins in SWISS-PROT release
2011_04; for 202 of those we found PSI-BLAST hits, for 227 we did not

Note: Q is the overall prediction accuracy (Egn. 3, Methods); “t” values refer to standard
errors (Eqn. 4, Methods); bold face: “winner in each column”
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Table S7: Performance comparison on human protein data

Q10 (Eqn. 3, Methods)

Method “Human proteins” set (5016)"
Cello 2.5 7511
Wolf Psort? 7141
YLOC'a 7611
LocTree2* 7611
LocTree3™® 89+1

% Methods as in Table S6

K data set “Human proteins”: 5016 human proteins with an experimental annotation of
exactly one localization class in SWISS-PROT release 2014_03. A vast majority of
these proteins constitutes the training sets of the methods tested.

Note: “t” values refer to standard errors (Eqn. 4, Methods); bold face: “winner in each

column”

Table S8: Proteome-wide localization predictions using PSI-BLAST

_ #PSI-BLAST #Self-hits™®
Organism name fiproteins, predictions (% in relation to #PSI-
predicted (% in relation to BLAST predictions)
#proteins predicted)
H. sapiens 20249 15671 (77%) 4638 (30%)
S. cerevisiae 6434 4372 (68%) 2209 (51%)
A. thaliana 27270 16527 (61%) 1843 (11%)
C. elegans 20791 9780 (47%) 346 (4%)
B. weihenstephanensis 5650 1862 (33%) 1(<1%)
A. pernix 1700 133 (8%) 2 (1%)

" number proteins predicted with LocTree3 in the proteomes of six completely
sequenced organisms downloaded from http://www.ebi.ac.uk/genomes/

2 number of proteins predicted by PSI-BLAST. The numbers in parenthesis are
fractions in relation to the total number proteins predicted in an organism

& number of PSI-BLAST self-hits, i.e. hits that were identical to query proteins. The
numbers in parenthesis are fractions in relation to the total number proteins
predicted by PSI-BLAST
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Section S2: LocTree3 is much more reliable than blind homology-inference.
Two recent advances in molecular biology make it impossible to blindly trust
annotations. The first are high-throughput experiments that typically change the
value of an annotation from, e.g. “protein Q is native in the Golgi” to “protein Q has
been detected to have entered the secretory pathway with a probability of 0.7
Clearly, using the second statement to annotate Q as extra-cellular would be very
wrong. But what if we added “secretory pathway” as a new “class”, should we then
annotate it as in that class, or should we maintain the probability? If we maintained
the probability: should this be counted as “localization annotated”? What about a
protein Q2 that is sequence similar to Q: should we annotate its localization also to
be “secretory pathway with 70% chance’? One simple experimental data point
generates so many questions that cannot be answered without generating new
problems! Thousands of such data points are being created by modern molecular
biology every month.

The second problem is contained in the first, but much more prevalent in
today’'s databases that are still heavily based upon detailed biochemical
experiments. Assume that we have a reliable annotation for Q as Golgi: how to treat
proteins that are related to Q7 For instance, those related in terms of sequence
similarity. This brings up the argument of Imai & Nakai (17), namely that PSI-BLAST
predicts localization more accurately than de novo methods. Here we showed that
this is true to some extent (Table 1: for some proteins PSI-BLAST is better than
LocTree2), but that if predictions are forced, the opposite becomes true (Table 1:
averaged over all proteins PSI-BLAST is much less accurate than LocTree2).
Clearly, the tool we make available now, LocTree3, settles the discussion. Even if
we were right that LocTree3 is the best method currently available to predict protein
localization, should we apply it to annotate localization in databases that are
exclusively based on experiments such as SWISS-PROT (1)? We suggest a
negative answer: leave experimental annotations as clean as possible. Should we
then remove almost 90% of (stand Feb. 2014) all annotations about localization in
SWISS-PROT (i.e. those based on non-experimental findings)? What about a
database that pulls in automated annotations such as UniProt and/or GO (18)?
Naive users querying UniProt might get the impression that over 5m (million)
proteins have annotations for localization when the best we can do to develop
prediction methods is dig out a list of may be 25k (thousand), i.e. 200 times fewer
than suggested by that naive sieve through UniProt. Clearly, we argue that it would
be better to remove the 5m-25k inferred annotations and replace those by LocTree3
predictions marked as predictions and by possibly augmenting this with predictions
for all other 45m proteins in today’s UniProt (total 52m in Feb. 2014).
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Section S3: Possible sources for PSI-BLAST mis-predictions

The idea behind LocTree3 is to use PSI-BLAST if it finds hits and LocTree2,
otherwise. Thus if a prediction of the sub-cellular localization is incorrect and is
derived from PSI-BLAST, it cannot be ‘corrected’ by LocTree2 anymore.

Nevertheless, we looked into the cases for which PSI-BLAST annotated
proteins incorrectly. In our development eukaryotic data of 1682 eukaryotic proteins,
995 proteins were classified by PSI-BLAST and for remaining 687 proteins it failed to
identify a homolog in the data set of all experimentally annotates proteins. Of 995
predicted proteins 69 were misclassified. The most commonly mis-classified pairs of
classes (one observed, the other looked up from homolog) were: mitochondria and
chloroplast (9 times), plastid and chloroplast (8 times), cytoplasm and nucleus (8
times), cytoplasm and secreted (6 times), cytoplasm and mitochondria (5 times).

These pairs either resembled compartments that are either close in space
(e.g. cytoplasm and nucleus), closely related (chloroplasts present one of the three
types of plastid) or are very similar in their structure (chloroplast and mitochondria).
Therefore, the PSI-BLAST mis-classifications may originate from incorrect
experimental annotations, as well as from similarity in translocation signals. About
33% of the mistakes originated from “honest orthologs” (e.g. RK32_EUGGR
annotated chloroplast but predicted plastid as its ortholog RK32_ASTLQ). The mis-
classification with the highest score (PIDE=88%) was made for ECP_MACFA, a
protein for which the SWISS-PROT has changed since LocTree3 development from
cytosol to be secreted, the latter correctly identified by PSI-BLAST. In other word,
this mistake was based on an incorrect earlier annotation.
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Chapter 4

4 Prediction of nuclear import and nuclear protein sorting

4.1 Introduction

The nucleus is a membranes-enclosed organelle found in eukaryotic cells. It was the first
organelle to be discovered as early as in the 17" century [1]. The nucleus contains most of
the genetic material, organized into chromosomes, and is also the side for DNA replication
and transcription. Nuclear proteins are synthesized in the cytoplasm and their transportation
into the nucleus operates differently than to the other sub-cellular compartments, as it
occurs through a large structure in the nucleus double membrane, the nuclear pore complex
[3]. For this reason, proteins can be transported in their fully folded confirmation. Protein
transport can occur between the cytoplasm and the nucleus bi-directionally; often this is
done through binding to specific proteins, called karyopherins. Karyopherins bind via
recognition of nuclear localization signals (NLS) for protein import or nuclear export signals

(NES) for nuclear export in the amino acid sequence of their cargo proteins [4].

Similar to the compartmentalization of a cell, the nucleus is divided into several
morphologically distinct compartments, each associated with a different function. However,
unlike cellular compartments, nuclear compartments are not membrane-enclosed and are
highly dynamic. Studies have shown that nuclear components can be in continuous flux
between the compartments and some compartments are formed only during certain cell
stages through interaction with proteins, RNA and DNA [5, 6]. It has been suggested that
protein translocation within the nucleus also operates through NLS- and NES-like signals [7,

8]. However, this mechanism is not well understood [5].

In this Chapter, novel method, LocNuclei, is described that associates nuclear
proteins with 13 sub-nuclear compartments at a high level of overall accuracy Q13 = 62%.
Similar to LocTree3 (described in Chapter 3), this is done through the combination of
homology information to proteins with known sub-nuclear association and machine learning
predictions. In addition, the method is able to predict if a nuclear protein is functional in other
sub-cellular compartments (e.g. the mitochondria) at the level of overall accuracy Q2 = 72%.
Applied to 6,230 human proteins, predicted to localize to the nucleus, we identified 77% of
them to be functional at the nucleoplasm (30% of all annotations), chromatin (17%),
nucleolus (17%) or PML bodies (13). Plugging in protein-protein interaction data, we found

most intra-nuclear interactions to occur between proteins of these four localizations.
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4.2 Compartmentalization of the nucleus

In this work, we distinguished between 13 sub-nuclear compartments, shown in Figure 1

and briefly described below.

Cajal bodies: Cajal bodies are small structures that contain coiled threads of the
marker protein, coilin. The interaction of coilin with other proteins within the Cajal bodies
appears to increase their functional efficiency, e.g. the modification and assembly of splicing
machinery [9]. The number and size of the Cajal bodies varies between tissues and
organisms, as well as during different differentiation and development stages [10].
Generally, Cajal bodies are found in cells of high transcriptional activity and splicing

demands, such as in neuronal and cancer cells [11].

Chromatin: Chromatins are fibrous structures forming the chromosomes. The major
proteins of the chromatin are histones, whose function has been shown to be mediated
through post-translational modifications [12]. The chromatin is formed through binding of
histones to the DNA. Its functions include the regulation of gene expression, DNA replication
and segregation during cell division, as well as DNA damage recognition and repair [13].
Chromatin-associated proteins contain a high diversity of motifs, many of which are specific
to protein-protein interactions. Thus, chromatin proteins appear to abundantly interact
among each other and with other nuclear proteins, e.g. proteins involved in transcription and

replication [14].

Nuclear envelope: The nuclear envelope is a barrier that separates the contents of
the nucleus from the cytoplasm, and regulates the trafficking of proteins and other
molecules between these two compartments. In addition, nuclear envelope serves as an
anchoring site for chromatin that correctly positions the chromosomes within the nucleus,
and for the cytoskeleton that correctly positions the nucleus within the cell [15]. The nuclear
envelope consists of two membranes, the outer and the inner nuclear membranes, which
are like other cellular membranes are phospholipid bilayers [12]. The membranes are
continuous with the Endoplasmic Reticulum (ER), though each of them is associated with

proteins that are not enriched in the ER [15].
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Figure 1. Sub-nuclear compartments. The figure shows sub-nuclear compartments predicted by
LocNuclei (the spindle apparatus and the kinetochores are not shown). Figure adapted from [16].

Nuclear lamina: The nuclear lamina is an essential component of metazoan cells, but
is not found in unicellular organisms and plants [17] . It is localized at the interface between
chromatin and the inner nuclear membrane. The nuclear lamina is composed of lamins, type
V intermediate filament proteins, and many lamins-interacting proteins. This layer was found
to be also closely associated with the nuclear pore complexes [17]. The functions of the
nuclear lamina include DNA replication, RNA transcription, chromatin organization, cell cycle

regulation, cell development and differentiation, nuclear migration, and apoptosis [18, 19]

Nuclear matrix: The nuclear matrix is a network of fibrous structure extending
throughout the whole interior of the nucleus [20]. The exact function role if the nuclear matrix
remains unclear [21] . Though, proteins that were found to be associated with the matrix are
known to be involved in a number of nuclear activities, such as DNA replication and

transcription, and RNA processing and transport [22].

Nuclear pore complex: A nuclear pore complex is a highly structured assembly of
proteins that form a tunnel across the nuclear envelope for the regulated transport of
proteins and other molecules across it. A single nuclear pore complex comprises up to 500
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copies of approximately 50 highly conserved distinct proteins [15, 23]. The nucleus of the
human cell can contain up to 3,000 nuclear pore complexes [23]. In addition to the main
function as the nuclear gatekeepers, the proteins of the nuclear pore complexes were found

to be associated with other functions, such as the regulation of gene expression [23].

Nuclear speckles: Nuclear speckles are dynamic structures located in the
interchromatin region of the nucleoplasm and enriched in pre-mRNA splicing factors. They
serve as the side of storage, assembly and modification of splicing factors. The splicing
event however does not occur at nuclear speckles. The size and the number of nuclear
speckles vary between different cell types and within a cell type. Furthermore, the
components of nuclear speckles can be exchanged with the nucleoplasm and other nuclear

compartments [24]. Some of the speckle components exhibit a speckle targeting signal [14].

Nucleolus: The nucleolus is the largest, densest and the best studied sub-nuclear
compartment. There are one or several nucleoli in mot eukaryotic cells [25]. Although
nucleoli are most famous for the functional role in the biogenesis of ribosomes, they are also
involved in numerous other processes, including RNA modification, cell-cycle control and
stress response [26]. Furthermore, the nucleolus constraints the movement of chromatin,
which implicates its role in higher-order chromatin arrangement [27]. Over 700 distinct
proteins have been associated to localize in the nucleolus [28] and a nucleolar targeting
signal has recently been described [29].

Nucleoplasm: The nucleoplasm is, similarly to the cytoplasm, a highly gelatinous
liquid that is held within the nuclear envelope and that acts as a suspension substance for
nuclear compartments. It is rich in protein enzymes and other material required for the
synthesis of RNA and DNA [30, 31]. Another major constituent of the nucleoplasm are
chromosomes. The nucleoplasm plays an important role in the maintenance of the nuclear

shape and the transport of molecules between the nucleus and the cytoplasm.

Perinucleolar compartment: The perinucleolar compartment is an irregularly shaped
structure found at the periphery of the nucleolus. This compartment is largely found in
transformed and cancer cells [32, 33]. It forms at late telophase and disassembles at the
beginning of mitosis [32]. The perinucleolar compartment in enriched with by RNA
polymerase Il transcribed RNAs and RNA-binding proteins, many of which are exchanged

with other sub-nuclear compartments [33].
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PML bodies: PML bodies are dynamic nuclear matrix-associated structures that
require the ProMyelocytic Leukaemia (PML) protein for their formation and incorporate a
number of other proteins that shuffle between the PML bodies and other sub-nuclear
compartments [34]. PML bodies play a role in transcription, apoptosis promotion, post-
translational modifications, suppression of oncogenic transformation, DNA repair and

antiviral defense [15, 34].

Kinetochore: The kinetochores are multiprotein control modules that anchor
segregating chromosomes to spindle microtubules and enforce their correct movement to
two opposite poles of the spindle apparatus. The kinetochores are assembled during cell
division (mitosis and meiosis), and many of their components are highly dynamic and cycle

between the kinetochores and the spindle apparatus [34].

Spindle apparatus: The spindle apparatus segregates chromosomes during cell
division in two daughter cells. The spindle apparatus is organized by centrosomes and
constitutes spindle poles, kinetochores and hundreds of microtubule-associated proteins
[35]. The apparatus is located at two opposite poles of the cell to ensure the separation of
replicating chromosomes in two exactly equal sets. The failure of correct chromosomes
segregation can lead to chromosomal instability, aneuploidy or tetraploidy (both leading to

cancer) and cell death [35].
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4.3 Materials and Methods

Data sets for development and evaluation

We downloaded experimentally annotated nuclear proteins together with their annotations of
the sub-nuclear localization, if available, from the HPRD [36], NMPdb [37], NOPdb [38],
NPD [39], NSort/DB [40] and Swiss-Prot [41] databases. Because databases use different
terms for annotations of some sub-nuclear compartments, we normalized annotations from
different databased to a set of fixed keywords, e.g. we normalized ‘PML-NBs’ and ‘Nuclear
dots’ to ‘PML bodies’ (Supplementary Table S1 in the Appendix). This resulted in a set of 13

distinct keywords describing our sub-nuclear data set.

Out of total 12,055 proteins annotated experimentally as nuclear, only 3,522 (29%)
proteins were additionally annotated to be associated with one or more sub-nuclear
compartment. We homology reduced this set at HVAL < 20 [42, 43] using UniqueProt [44].
For alignments longer than 250 residues, HVAL < 20 implies a maximal pairwise sequence
identity of 40% [43]. At lower HVALs, the data set became too small for meaningful
performance estimates (e.g. at HVAL < 0, we had in five of 13 classes less than 10 proteins
annotated to be localized in the corresponding class). The final sequence unique sub-

nuclear set comprised 1,934 proteins (Table S2).

Furthermore, out of total 12,055 nuclear proteins, 4,722 were annotated to be
localized in at least one additional sub-cellular compartment (e.g. the mitochondria). We
homology reduced this set of 12,055 proteins at HVAL < 0 (maximal pairwise sequence
identity of 20% over 250 residues aligned) and obtained 1,098 sequence-unique proteins, of

which 559 were annotated to exclusively localize to the nucleus.

The resulted prediction method was thus trained to differentiate between (i) proteins
localized to the nucleus and proteins localized to the nucleus and other sub-cellular

compartments, as well as between (ii) proteins of 13 sub-nuclear localization classes.
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Prediction methods

Similarly to LocTree3 [45], a high performance method for the prediction of protein sub-
cellular localization (Chapter 3), LocNuclei combines homology-based predictions if
available with de novo predictions otherwise. We determined all parameters for our final
predictor LocNuclei in a five-fold cross-validation setting, i.e. we split the entire Development
set into five equally-sized subsets. We trained five models, each on a different combination

of four of these subsets, and tested them on the remaining one.

Homology-based predictions: We transferred annotations by homology using PSI-
BLAST [46] alignments. For all proteins of known localization, we generated PSI-BLAST
profiles with two iterations and E-value < 10° using an 80% non-redundant database
combining UniProt [47] and PDB [48]. We then aligned these profiles at E-value < 103
against non-redundant proteins in our Development set (1,888 proteins for the prediction of
13 sub-nuclear localizations and 1,037 proteins for the prediction of nuclear proteins
shuffling to other sub-cellular compartments). For performance estimates, we excluded the
PSI-BLAST self-hits. Similar to LocTree3, we transferred annotation to the query protein
from the hit with the highest pairwise sequence identity of all retrieved alignments.

De novo prediction: We used the Support Vector Machine (SVM) [49] implementation
of LibSVM [50] and the Profile Kernel function [51, 52] (Chapter 2). We trained 13 different
SVM classifiers to predict 13 sub-nuclear localizations, where each classifier was trained to
discriminate between proteins of a particular sub-nuclear class and proteins of all other
classes. To predict nuclear proteins that are travelers to other sub-cellular compartments,

we separately trained another SVM.

NSort: NSort [53] is a framework, developed in 2010, of eight Bayesian Network-
based classifiers that predict protein sub-nuclear localization in eight classes (nucleolus,
perinucleolar region, PML bodies, nuclear speckle, Cajal bodies, chromatin and nuclear
pore complexes). Each classifier operates from biological features including protein
sequence, proteins interactions, domain and post-translational modification. Each prediction

of NSort can be traced back to the feature contributing most to the result.
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4.4 Results and Discussion

High performance values: Q13 = 62% and Q2 = 72%

LocNuclei is a predictor developed to discriminate between (i) proteins of 13 sub-nuclear
localization classes and (ii) proteins localized to the nucleus only and proteins localized to
the nucleus and other sub-cellular compartments. For each of these two prediction tasks, we
developed our predictor in a five-fold cross-validation setting using the sequence-unique
Development set (Chapter 4.2) and optimized the parameters of its components (PSI-

BLAST and SVM-based inferences) separately.

For the prediction task of 13 sub-nuclear compartments, the homology-based
inference for proteins for which experimentally annotated homologs were available achieved
the highest level of overall performance (Chapter 2.2) Q13 = 68% at E-value < 10™° (Figure
2, black arrow). However, when applied to the complete set, the performance at the same E-
value dropped significantly to Q13 = 18%. This results was still significantly above random
(<8%), showing that the homology-based inference works, though the annotations of sub-
nuclear localizations are largely missing. On the same test set, our de novo-based inference
employing a battery of 13 SVM classifiers achieved an almost 3-fold higher level of Q13 =
59%. This result encouraged us to use a simple protocol, introduced in our previous work,
LocTree3 [45], that unites PSI-BLAST whenever possible and the SVM if no PSI-BLAST
results were available. We chose the PSI-BLAST E-value of 10*° as the decision threshold
between PSI-BLAST and de novo inferences. The combined method, LocNuclei,
outperformed both its components, reaching an overall accuracy Q13 = 62 + 3% (Figure 2).

Similarly, for the second prediction task, we combined homology-based PSI-BLAST
with the Profile Kernel SVM to predict nuclear proteins functional in other sub-cellular
compartments. We found LocNuclei to perform best at the PSI-BLAST E-value < 107,
reaching an overall performance Q2 = 72 + 2% (Figure S1 in the Appendix).

LocNuclei best on novel proteins

Comparing prediction performance of our method to the published performance of NSort
(the only available sub-nuclear predictor during the development of LocNuclei) has only little
value due to differences in the training and test sets. Running NSort on our independent
sets (i.e. proteins experimentally annotated after the development of NSort) was also

problematic, because NSort’'s source code was no longer available. Thus, the only
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Figure 2: E-value thresholds for the homology-based component of LocNuclei (prediction of
13 sub-nuclear classes). The accuracy Q13 (Chapter 2.2) for classifying proteins in 13 sub-nuclear
compartments using the homology-based inference with PSI-BLAST (based on 3,522 experimentally
annotated proteins) varies at different E-value thresholds. For proteins for which a homolog is
available, the highest accuracy Q13 = 68% is achieved at E-value < 10°*° (black arrow). However, if
considering proteins for which no homology is available, this value drops to 18%. The performance of
SVMs on the same set is Q13 = 59% (black horizontal line, dotted lines mark the values considering
the standard error). To determine, at which E-value threshold to use PSI-BLAST and at which the
ensemble of 13 SVMs, we needed to consider the performance of the final method LocNuclei at the
same threshold. We found LocNuclei to be most conservative at E-value < 10,

meaningful way to benchmark the performance of these two methods was to train and test
LocNuclei on the exactly same set as NSort was trained and tested upon. Towards this end,
we downloaded the data set of LocNuclei from http:/nsort.org/db/ and split it into five
subsets to train our model on four of them and to test on the remaining one. We rotated
these sets five times, so that each protein in the NSort set was tested exactly once. We
computed area under the ROC curve (AUC) from the average of five splits as the
performance estimate. For training, we used the parameters that we found to perform best
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fg:];;r‘t’ﬁ;t Number of proteins AUC NSort AUC LocNuclei
Perinucleolar 24 0.80 0.82
Cajal body 49 0.60 0.72
Nuclear pore complex 51 0.79 0.91
Nuclear lamina 77 0.70 0.83
PML bodies 91 0.77 0.81
Chromatin 323 0.71 0.80
Nuclear speckle 403 0.71 0.79
Nucleolus 598 0.60 0.74
Sum/ Mean 1,285 0.71 0.80

Table 1: Performance comparison of LocNuclei to NSort. We used the development data of
NSort, comprising 1,285 sequence-unique proteins annotated with eight sub-nuclear localization
classes to train LocNuclei. For training, we used those parameters that we found to perform best on
our development set. On proteins from all eight sub-nuclear localizations tested, LocNuclei
outperformed NSort. The overall cross-validated prediction accuracy of LocNuclei was 0.80, while
that of NSort was 0.71. The values for NSort were extracted from the corresponding publication [53].

on LocNuclei’s development set. The data set of NSort contained proteins of eight sub-
nuclear localizations; for all of them LocNuclei outperformed NSort (Table 1). The mean
AUC (over all eight compartments) was 0.71 for NSort and 0.80 for LocNuclei. Thus, we
could show that the improvement of LocNuclei originated from the underlying method

advancement and not from the difference in the composition of the data sets.
Over 30% of nuclear proteins predicted to reside in the nucleolus

After completing the development, we applied LocNuclei to the human nucleosome protein
data. Towards this end, we downloaded the reference human proteome from the European
Bioinformatics Institute (EBI: http://www.ebi.ac.uk/reference_proteomes) and identified
nuclear and nuclear membrane proteins in it using LocTree3 [45]. The resulted data set of
6,230 proteins was then provided to LocNuclei as input. We predicted over 1/3 of them to be
travelers, i.e. localize to additional sub-cellular compartments other than nucleus. For about

11% of all nuclear proteins we could not predict any sub-nuclear localization, for 36%
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Figure 3: Composition of sub-nuclear compartments in the human proteome and LocNuclei’s
development set. The inner ring of the pie chart represents the composition of LocNuclei’s
development set (assembled from nuclear proteins of various organisms), while the outer ring
represents the composition of human 6,230 nuclear proteins (predicted by LocTree3 [45] from EBI’s
human reference proteome). Both data sets differ significantly in their composition. Thus, the
composition of the predicted human nucleosome is not just a reflection of the development set.
proteins we predicted localization in one sub-nuclear compartment, and for remaining 53%
localization in at least two compartments. Furthermore, we predicted 30% of all proteins to
be associated with the nucleoplasm (Figure 3), which is a large aquatic compartment
surrounding the nucleus interior. Many proteins including enzymes, specific receptors of
hormones and of other effectors, proteins of yet unknown function, as well as proteins
shuttling between the nucleus and the cytoplasm are found in the nucleoplasm [30, 31]. The
second largest predicted sub-nuclear localization compartment was chromatin (17%), a
structure that is built from the interaction with the DNA. The role of the chromatin is in the
maintenance of DNA and the regulation of its transcription. It is known that many proteins
that compose the chromatin are exchanged with other sub-nuclear compartments, such as
the nucleolus [14, 54], which is the third largest class of human nuclear proteins (17%)
predicted by LocNuclei. Overall, the composition of predicted sub-nuclear compartments in
human did not resemble that of our development set, suggesting that there is no correlation
between the predictions of both sets and the predicted compartmentalization of the human
nucleosome is likely to reflect its true composition.
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Most protein-protein interactions take place between four sub-nuclear compartments

Protein-protein interactions (PPIs) are central to almost all biological processes. Thus, to
better understand biological mechanisms, the knowledge of PPls that underlie them is
indispensable [55]. We used the set of human proteins with the predicted annotations of
sub-nuclear localizations and mapped them to the experimentally determined protein-protein
interaction data from the Human Protein Reference Database (HPRD) [36]. We found most
protein-protein interactions to occur within and between four largest sub-nuclear
compartments, i.e. nucleoplasm, chromatin, nucleolus and PML bodies (Figure 4).

Furthermore, the proteins of nuclear speckles appeared to abundantly interact with the
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PML body |
- 1200
None —

Spindie apparatus | 2 - 1000

Nuclear Speckle —|
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Figure 4: Number of protein-protein interactions (PPIs) in the human nucleosome. The figure
plots the number of PPIs within and between 13 sub-nuclear compartments. We extracted
experimentally annotated PPIs from the HPRD database [36] and mapped those in human proteins of
predicted 13 sub-nuclear compartments. PPIs are most frequent within four largest compartments
(nucleoplasm, chromatin, nucleolus and PML bodies; light gray colored cells) and between them.
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proteins localized at nucleoplasm and nucleolus. Interestingly, we identified perinucleolar
proteins, which compose the smallest class of by LocNuclei predicted sub-nuclear
compartments (<0.4% of all annotations in the human nucleosome), to be another outlier in
the high number of PPIs. Namely, we identified perinucleolar proteins to often bind proteins

of the neighboring compartments: nucleolus, nucleoplasm and chromatin.
Nuclear proteins tend to be disordered

Recent studies have shown that in order to function, some proteins may not adopt unique
three dimensional structures in isolation [56]. Instead, functional proteins may contain
largely unstructured regions (30 amino acids and more) that sample a large portion of their
available conformational space. These proteins are called disordered. Studies of different
genomes have shown that disorder is very abundant in nature and can be more frequently
observed in eukaryotes than in other domains of life [56-60]. Furthermore, it has been
shown that many disordered proteins are nuclear [61], involved in e.g. DNA and RNA
binding [62, 63], nuclear pore transport [64] and transcription [65]. In this experiment, we
analyzed the prevalence of protein disorder within the nucleus and compared it to other sub-
cellular compartments. We predicted protein disorder with NorsNet [66], a machine learning-
based method that predicts unstructured regions of 70 or more consecutive residues.

Using NorsNet on human proteins with by LocTree3 predicted sub-cellular
localization annotations, we identified disordered proteins to be over five times more
frequent in the nucleus than in mitochondria (mean: 55% vs. 10%; Figure 5A) and almost
twice as frequent in the nucleus than in the extra-cellular space (mean: 55% vs. 31%). The
distribution of disordered proteins within the individual sub-nuclear compartments also
varied substantially (Figure 5B). We identified strongest preferences for disordered proteins
at the compartments of dynamic structures, such as nuclear matrix (mean: 98%) and
nuclear speckles (mean: 86%). The lowest percentage of disordered proteins was identified
at rather stable complexes, such as nuclear lamina, nuclear envelope, kinetochores and the

nuclear pore complexes (all below 15%; Figure 5B).
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Figure 5: Distribution of disordered proteins in the nucleus and other sub-cellular
compartments. We predicted protein disorder (at least 70 unstructured consecutive residues) using
NorsNet [66] and plotted the fraction of disordered proteins (Y-axis) in different sub-cellular and sub-
nuclear compartments (X-axis). Numbers in parenthesis are numbers of proteins annotated to
localize in a particular compartment. (A) The highest fraction of disordered proteins appears to be in
the nucleus (mean: 55%), compared to mitochondrial (10%) and secreted (31%) proteins. Note,
nuclear proteins with additional localizations in other sub-cellular compartments are less disordered
(travelers: 44%) than the sum of all nuclear proteins (55%). (B) Within the nucleus, the most
disordered are nuclear matrix and nuclear speckle proteins, while the least disordered are proteins
localized at nuclear pore complexes, kinetochores, nuclear envelope and nuclear lamina.
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Chapter 5

5 NLSDb2.0: a database of nuclear import and export signals

5.1 Introduction

Eukaryotic cells transport proteins in and out of the nucleus through nuclear pore
complexes. This transport is often mediated by specific molecules, called karyopherins, that
recognize nuclear localization signals (NLS) or nuclear export signals (NES) in their cargo
proteins [1]. The best experimentally described NLS are monopartite and bipartite signals [2-
4]. Monopartite signals are characterized by a short stretch of amino acids, which are mostly
basic, and bipartite signals are composed of two monopartite signals separated by a
variable 10-12 amino acid linker region [5]. A more recently observed signal is the Proline-
Tyrosine NLS (PY-NLS) [6]. PY-NLS can be classified as hydrophobic or basic, dependent
on its N-terminal region that is followed by the consensus sequence of an arginine (R),
lysine (K) or histidine (H), then a proline and tyrosine (R/H/KX-;5-PY). The classical NES
are represented by leucine-reach NES, first identified in HIV-1 [7, 8]. Several solutions have
been proposed to describe the consensus sequence of NES [9-11], but they did not suffice
to identify new NES-containing proteins [12]. Note that not all nuclear proteins are
transported via the signals described above [13, 14]. Furthermore, sequences of many non-

nuclear proteins match the sequences of nuclear import and export signals.

NLSdb is a comprehensive database that for the first time attempted to collect all
experimentally verified NLS in a single resource [15]. It contains 114 NLS published before
2000. In addition, the database provides amino acid sequences of 194 potential NLS,
discovered through “in silico mutagenesis” from the set of experimental signals [16]. Several

of these potential NLS have already been confirmed experimentally (e.g. [17-22] ).

In this Chapter, an update of NLSdb to the current state of available data is
described. We collected experimentally verified 2,391 NLS published in literature after 2000,
and 817 experimentally verified and published NES. We applied the procedure of “in silico
mutagenesis” [16] to these sets and discovered novel 4,310 potential NLS and 1,768
potential NES. Our final set matched 43% and 28% of all known nuclear proteins with NLS
and NES, respectively, and none currently known non-nuclear protein. By clustering the
sequences of experimental signals, we identified a clear separation of NLS in 40 distinct
clusters and of NES in 27 clusters. Thus, the consensus sequence describing each of these
clusters can be used as a consensus for a different type of a nuclear signal. NLSdb 2.0 is

available online at https://rostlab.org/services/nisdb?2/.
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5.2 Materials and Methods

Collection of a trusted set of nuclear signals

We extracted amino acid sequences of experimentally annotated NLS and NES from
literature [5, 6, 11, 23-27] and the ValidNES [28], NESbase [10], NESdb [29] and Swiss-Prot
(release 2015_01) [30] databases. For literature searches we used the criteria described by
the authors of NLSdb [26]. Namely, to accept a signal as experimentally confirmed, the
signal needs to be proven sufficient to mediate the nuclear transport of a non-nuclear
protein to the nucleus and its deletion must result in the prevention of protein nuclear
transport. For Swiss-Prot searches we used keywords ‘importin binding signal‘, ‘in vitro
NLS', ‘nuclear localization signal‘, ‘bipartite NLS‘, ‘PY-NLS’, ‘nuclear import signal’ and
‘signal for nuclear transport’ to identify NLS. Accordingly, we used keywords ‘nuclear export
signal’ and ‘nuclear export sequence’ to identify NES. We included only those annotations
that were supported with the following Evidence Codes Ontology (ECO) [31] codes: (i)
ECO0:0000269 (manually curated information for which there is published experimental
evidence); (i) EC0O:0000250 (manually curated information which has been propagated from
a related experimentally characterized protein); (iii) EC0O:0000305 (manually curated
information which has been inferred by a curator based on his/her scientific knowledge or on
the scientific content of an article); and (iv) EC0O:0000255 (manual assertions for information
which has been generated by the UniProt automatic annotation system or by various
sequence analysis programs). Signal sequences from other databases were included only if
their annotations were supported by experimental findings. Table 1 provides an overview of

the number of nuclear signal sequences extracted from each source.

s Lange et al.[23] Lee et al. [6] & SeqNLS [24] NLSdb [16] Swiss-Prot [30]
ource
Suel et al. [25]

Number of
unique NLS 104 19 69 114 2,227

Garcia- NESbase [10] VALIdNES [28] NESdb [29] Swiss-Prot [30]
Source .

Santisteban [27]

Number of
unique NES 32 73 261 175 433

Table 1: Composition of the initial set of NLSdb 2.0 signals. The numbers of unique sequences of
nuclear localization signals (NLS) and nuclear export signals (NLS) extracted from each source are
provided. Total numbers of unique signals extracted from all sources: 2,391 for NLS and 817 for NES.
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Sets of nuclear and non-nuclear proteins

We downloaded protein sequences with specific annotations of sub-cellular localization from
Swiss-Prot (release 2015 _01). Included were only experimental annotations: (i) tagged with
the ECO code ECO0:0000269 (manually curated information for which there is published
experimental evidence) and (i) annotations lacking any ECO code and also lacking
keywords ‘potential, ‘probable’ or ‘by similarity’, denoting non-experimental evidence. Based
on the localization annotation, we sorted proteins in two sets: (i) nuclear proteins (true
positives; 6,538 proteins) and (ii) non-nuclear proteins (true negatives; 23,028 proteins). We
applied UniqueProt [32] at HSSP-value < 0 [33, 34] to each of these sets individually and
identified 761 distinct structural families for nuclear proteins and 2,434 distinct structural
families for non-nuclear proteins. We used sets of nuclear and non-nuclear proteins to test
the validity of all potential signals, obtained through the “in silico mutagenesis” approach
(described below). We required sequences of valid NLS and NES to match in nuclear

proteins and to not match in non-nuclear proteins.

In silico mutagenesis

To increase the set of trusted (i.e. experimentally annotated or by experts verified) NLS and
NES by potential, experimentally yet un-identified signals, we applied the “in silico
mutagenesis” approach, similar to that described in [16]. We performed the following steps:

0] Starting from the trusted set of 2,391 NLS and 817 NES, we removed signals
matching sequences of any 23,028 non-nuclear proteins extracted from Swiss-
Prot. The resulted trusted set of signhals comprised 310 NLS and 166 NES.

(ii) Then, we changed amino acids at each position of each signal in the reduced
trusted set (19 substitutions for each amino acid) and mapped new signals in the
sequences of nuclear and non-nuclear proteins. We kept only those potential
NLS and NES that matched nuclear proteins and no non-nuclear protein.

(iii) Finally, we shortened each signal from our potential set by one amino acid at
each end of the sequence and repeated step (ii). For each potential signal we
kept only its shortest sub-sequence matching exclusively in nuclear proteins. The
final set of potential signals comprised 4,310 NLS and 1,768 NES.
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Signal clustering

To analyze sequence variability of nuclear signals in our sets, we performed the following

steps to each of our trusted sets of NLS and NES separately:

(i)

(ii)

(iii)

(iv)

Construct an evolutionary distance matrix for sequences of all signals. We
aligned all-against-all sequences of nuclear signals in our set using the maximum
likelihood method, described by Thorne et al. [35]. The JTT matrix from the work
of Jones et al. [36] was used as a rate matrix.

Derive a phylogenetic tree from the distance matrix. We used the “Neighbor”
implementation from the PHYLIP package [37] to apply the UPGMA clustering
method [38] on the distance matrix to calculate the evolutionary tree.

Determine sub-groups within the tree. To identify distinct subgroups within the
tree, or clusters of sequence-similar nuclear signals, we applied a graph-pruning
method suggested by Krause et al. [39]. Briefly summarized, starting from each
leaf until reaching the root, the method calculates at each node of the tree the
ratio between the size of the tree of a parent node and the size of the tree at the
current note. The node at which the ratio is largest is used as a cut-point and its
subtree as a distinct cluster. Following this approach, each leaf (i.e. nuclear
signal) is assigned to exactly one cluster.

Calculate a consensus sequence for each cluster. For each cluster identified in
the previous step, we represented its consensus sequence as a position weight
matrix (PWM), generated by aligning all sequences of a cluster using MAFFT
[40]. We visualized PWMs as sequence logos [41] using WebLogo [42].
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5.3 Results and Discussion

Known signals vary in length and protein sequences they occur in

Our trusted data set of unique nuclear signals contained 1,960 monopartite nuclear
localization signals (NLS; 61.1% of the whole data set), 413 bipartite NLS (12.9%), 18 PY-
NLS (0.6%) and 817 nuclear export signals (NES; 25.4%). The length distribution of these
signals is shown in Figure 1. About one third of signals in our set was formed through
monopartite NLS of length ranging between 4 and 10 amino acids (60.2% of all monopartite
NLS can be found in this range; Supplementary Figure S2 in the Appendix). Interestingly,
the second largest group of monopartite signals (20.1%) falls into the range between 15 and
19 amino acids, where the most of bipartite NLS (61%; Figure S2) can be found. This result
suggests possible annotation mistakes of monopartite NLS in this range. Possibly, all
monopartite NLS outside the range of the first peak (i.e. longer than 15 amino acids, 30% of
all monopartite NLS) are in fact bipartite signals. All PY-NLS in our set were between 16 and
36 amino acids long. Finally, typical NES seemed to have a sequence length varying

between 9 and 13 amino acids.

Further, we tested whether protein sequences containing similar nuclear signals also
tend have a high overall sequence similarity. The monopartite NLS in our trusted set were
annotated to localize in sequences of 4,243 unique proteins, the bipartite NLS in sequences
of 808 unique proteins, the PY-NLS in sequences of 19 unique proteins and the NES in
sequences of 1,715 unique proteins. In total, 3,208 unigue signal sequences in our trusted
set were annotated in 4,492 unique proteins, indicating that, on average, each signal
occurred in more than one protein (the ratio between the number of proteins and the number
of signals occurring in these proteins was 1.40; Table 2). We applied cd-hit [43] to the
protein set to reduce it at 100%, 80%, 60% and 40% sequence identity and UniqueProt [32]
to eliminate all proteins with a pairwise sequence identity over 20%. At 100% sequence
identity, we had 4,120 unique proteins with annotations of 3,138 unique nuclear signals
(ratio 1.31), implying that at this high sequence identity, the prediction of NLS and NES from
sequences of annotated homologous proteins is in principle possible. This is, however,
different at lower sequence identity levels. Namely, at sequence identity of 80%, proteins do
not have annotations of exactly the same nuclear targeting signals anymore. Thus, the
prediction of nuclear signals from sequence homology at levels below 80% sequence

identity is likely to fail.
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Figure 1. Sequence length distribution of nuclear signals in the trusted set. The trusted set
comprised unique 1,960 monopartite NLS, 413 bipartite NLS, 18 PY-NLS and 817 NES, which
together formed 100% of the data shown in the figure. Most monopartite signals peak at 4-10 and 15-
19 amino acids, with the latter being also the peak for bipartite signals. Probably, monopartite signals
with sequence length exceeding 13 residues are erroneously annotated bipartite signals. Note, we do
not show results for signals longer than 70 amino acids, as they constitute <1.2% of our trusted set.

. Sequence identity Number of_ unique Number of_unique Ratio: number o_f proteins/
proteins nuclear signals number of signals
All proteins 4,492 3,208 1.40
100% 4,120 3,138 1.31
80% 1,968 2,375 0.82
60% 1,552 1,948 0.79
40% 1,280 1,667 0.77
20% 216 291 0.74

Table 2: Different proteins contain different nuclear signals. The data set of 4,492 distinct
proteins containing 3,208 distinct nuclear signals from our trusted set was homology reduced at
100%, 80%, 60% and 40% sequence identity using cd-hit [32] and at 20% sequence identity using
UniqueProt [36]. For each redundancy reduced protein set, we monitored the number of annotated
nuclear signals in the set. While proteins of high sequence similarity tend to share some of nuclear
signals, this is not the case already at similarity levels <80%.
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Most annotated nuclear signals are human

Nuclear targeting signals in our trusted set were annotated in a high number of 486 distinct
species (Table 3). Of all signals, 70% were of virus origin and 29% were eukaryotic. Only
monopartite NLS were annotated in bacteria. The high diversity within the virus domain
clearly shows the focus of virus-oriented biological research, which is of significant
importance for public health [44, 45]. During the infection process, a virus requires host
cell’'s resources to replicate. Most DNA and RNA viruses use nuclear proteins for this
process [46-49]. Therefore, the viral genome must enter the nucleus of the host cell. This
can only be done using the host nuclear protein transport machinery [47, 50, 51], which is

often activated through the recognition of nuclear targeting signals (NLS and/or NES).

Despite the high diversity of species annotations in our trusted set of nuclear signals,
the vast majority of them were annotated in sequences of only few species. Figure 2 shows
top twelve most frequent species annotations for over 69% of trusted monopartite NLS in
our set. We mapped annotations of other signal types in these species and found them to
cover over 62% of trusted bipartite NLS, 100% of trusted PY-NLS and over 70% of trusted
NES (the distribution of most frequent species annotations for each signal type individually
is shown in Figure S3 in the Appendix). Most frequent annotations for all signal types,
except PY-NLS (comprising only 19 signals in our set), were made in Influenza A virus,
which is of all infectious viruses one of the leading causes of death worldwide [52, 53]. The
other viruses within the top twelve species were Hepatitis C virus, affecting primarily the liver
of over 30 million patients alone in the United States [54], and Human immunodeficiency

virus type 1 (HIV-1) of group M subtype B, the dominant HIV subtype in the Americas,

Domain of | Monopartite NLS Bipartite NLS PY-NLS NES All signals
organism (401 species) (153 species) (2 species) (151 species) (486 species)
Virus 290 (72.3%) 86 (56.2%) - 97 (64.2%) 341 (70.1%)
Eukaryota 107 (26.7%) 67 (43.8%) 2 (100%) 54 (35.6%) 141 (29.1%)
Bacteria 4 (1%) - - - 4 (0.8%)

Table 3: Species annotations in our trusted set of nuclear signals. The numbers of unique
sequences of nuclear localization signals (NLS) and nuclear export signals (NLS) extracted from each
source are provided. The total number of unique sequences extracted from all sources was 2,391 for
NLS and 817 for NES. For all signal types, most annotations were done in viruses. PY-NLS held
annotations only in Eukaryota. Monopartite NLS were the only signals with annotations in Bacteria.
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Figure 2. Top twelve most frequent organism annotations of trusted NLS and NES. Over 50%
of monopartite NLS, bipartite NLS, and NES, as well as 100% of PY-NLAS are most frequently
annotated in proteins of twelve model organisms shown in this figure.

Western Europe and Australasia [55], causing a progressive failure of the immune system of
infected patients and a subsequent increased life-threatening risk of opportunistic diseases
and cancer [56-58].

In eukaryotes, most annotations of monopartite NLS, PY-NLS and NES were done in
human and other model organisms (Figure 2). Interestingly, bipartite NLS annotations
mostly came from yeast S. cerevisiae (14% of all bipartite NLS annotations) and plants A.
thaliana and O. sativa subsp. Japonica (15.6%; Figure S3B). It is possible that this
observation was due to the fact that most research on bipartite signals has so far been done
in yeast and plant organisms. However, it is also possible that bipartite signals are more
frequent in yeast and plants than in other organisms. To test the second hypothesis we
analyzed the distribution of bipartite and monopartite signals (of which one third are likely to
be annotation mistakes of bipartite signals; Figure 1) in human, Arabidopsis and yeast
(Figure S4). For all organisms, the length distributions formed two clear peaks, between 6
and 9 amino acids (typical range for monopartite NLS; Figure 1), and between 16 and 19
amino acids (typical range for bipartite NLS; Figure 1). Though, the frequencies of these
peaks were different. Bipartite NLS appeared indeed to be most frequent in yeast and

monopartite NLS most frequent in Arabidopsis.
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Nuclear signals form many different clusters of similar sequences

We grouped sequences in each set of monopartite NLS, bipartite NLS, PY-NLS and NES
from our trusted set to identify clusters of similar sequences. To describe briefly, this was
done by all-against-all aligning sequences from each set separately. Based on the alignment
results we built four phylogenetic trees (one tree for each signal type). We identified clusters
within these trees, aligned sequences within each cluster and visualized the results as

sequence logos [41].

The phylogenetic tree for 1,960 monopartite NLS divided signals in two clusters, a
major cluster (“Major”) forming 39 sub-clusters and one cluster (“Minor”) containing
sequences of 13 NLS (Figure S5 in the Appendix). In contrast to the common definition of
monopartite NLS being a stretch of basic amino acids, amino acids forming the “Minor”
cluster appear to be largely acidic and hydrophobic, as shown by the sequence logo in
Figure 3. This was different for signals of the “Major” cluster. Figure 4 displays examples of
sequence logos of nine randomly chosen its sub-clusters. The logos largely display
stretches of highly conserved basic amino acids, though there are also exceptions. For
example, Cluster Il shows a conserved pattern of basic amino acids that on the N-terminus
is preceding by a strongly conserved hydrophobic proline and on the C-terminus is following
by three variable residues and a conserved hydrophobic leucine. Similarly, in Cluster Ill, the
core of basic amino acids is preceded by hydrophobic residues and is followed by highly

conserved asparagine and valine.
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Figure 3: Sequence logo representation of the “Minor” monopartite NLS cluster. Amino acid
sequences of 13 monopartite NLS deviate, in contrast to all other monopartite NLS sequences, from
the standard description of a stretch of basic amino acids. Thus, these 13 sequences form a separate
(“Minor”) cluster in the phylogenetic tree of 1,960 unique monopartite NLS. The sequence logo was
generated using WebLogo [42]. Amino acids are colored according to their chemical properties: polar
amino acids (G,S,T,Y,C,Q,N) are green, basic (K,R,H) blue, acidic (D,E) red and hydrophobic
(AV,L,I,P,W,F,M) amino acids are black. At each position, amino acids are represented from most
frequent (placed on top of a letter stack) to least (placed at bottom). The letter conservation is given
by bits (Y-axis) with 4.32 bits being the maximum possible conservation.
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Figure 4. Sequence logo representation of nine randomly chosen monopartite NLS clusters.
While sequences of most clusters follow the general “rule” of being a short stretch of basic amino
acids for monopartite NLS, there are also exceptions. For example, Clusters I, 1ll and VI contain in
addition to highly conserved basic amino acids also highly conserved hydrophobic amino acids.
Sequence logos were generated as described in Figure 3.

Sequences of 413 bipartite NLS formed 39 distinct clusters. The phylogenetic tree of
these clusters is displayed in Figure S6. Nine randomly chosen clusters of bipartite NLS are
shown in Figure 5. Most bipartite signals followed the standard “rule” of two stretches of
basic residues separated by a variable linker region. There were, however, also exceptions.
For example, Cluster | rather resembles a cluster of monopatrtite signals: (i) the signal is too
short to be bipartite, (i) it is overall basic and (iii) has no variable linker region. Thus, the
signal type annotation of sequences from Cluster | is likely to be wrong. The linker region of
Cluster 1l is dominated by polar and acidic residues. Whereas, the linker region of Clusters
Il and V has hydrophobic residues conserved. Thus, different patterns of conservation of
linker regions might indicate at their different function role, e.g. during binding to

karyopherins for nuclear import.
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Figure 5: Sequence logo representation of nine randomly chosen bipartite NLS clusters.
Similar to monopartite signals, sequences of most bipartite NLS follow the general “rule” of two short
stretches of basic amino acids separated by a variable linker region, though there are also
exceptions. For example, Cluster | resembles monopartite NLS, and Clusters Il and V have
conserved hydrophobic residues in their linker region. Sequence logos were generated as in Figure 4.

We had 19 PY-NLS annotated in our data set. Unfortunately, this set was too small
to detect reliable consensus sequences for PY-NLS. The phylogenetic tree divided PY-NLS
in five clusters and from the sequence logo of its largest cluster (7 sequences), the strongly
conserved proline and tyrosine at the C-terminal region could be seen, as well as basic

histidine and arginine at the N-terminal region (Figure S7).

Finally, the phylogenetic tree of 817 NES, divided signal sequences in 27 different
clusters (Figure S8). The sequence logo of six randomly chosen clusters is presented in
Figure 6. NES seemed overall to be less conserved than NES, but overall richer in leucine
and other hydrophobic, acidic and polar residues. The, for NLS specific, basic residues were

rare in our set of trusted NES.
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Figure 6: Sequence logo representation of six randomly chosen NES clusters. In contrast to
NLS, the sequences of NES are less conserved. In their chemical properties NES are also different
from NLS in being mostly built of acidic, hydrophobic and polar residues. Sequence logos were
generated as described in Figure 4.

NLSdb 2.0: NES are new and the number of NLS has grown 21-fold

The data set of experimentally determined nuclear localization signals, collected in 2000 for
the first version of NLSdb, contained 114 signals. Fifteen years later, the new dataset of
trusted, experimentally and by experts annotated, samples contained 2,391 NLS. This
number is a 21-fold increase to the data set size from 2000. In addition, the new data set
holds sequences of 817 NES, which have not part of the first version of NLSdb.

We applied the “in silico mutagenesis” approach [16] to our set of trusted samples.
During mutagenesis, we mutated or removed amino acids at different positions of nuclear
signals from our trusted set and monitored their matches in nuclear proteins (true signals)
and in non-nuclear proteins (false signals). We discarded any potential signal matching in
non-nuclear proteins. By doing so, we increased our data set by 4,310 novel potential NLS
and by 1,768 novel potential NES.
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NLSdb 2.0 vs. NLSdb: increasing coverage from 19 to 50%

We extracted 6,538 sequences of experimentally annotated nuclear proteins from the
Swiss-Prot release 2015 01. Of these, 596 proteins (9%) were annotated with NLS.
Querying 6,538 proteins with experimental and potential nuclear signals from the first
version of NLSdb, we identified NLS in additional 10% of the data (total number of matched
proteins was 1,261), thus increasing the coverage from 9% (Swiss-Prot) to 19% (NLSdb).
Querying the same data set of nuclear proteins with NLS from NLSdb2.0, we identified
signal matches in 3,259 proteins, which correspond to 50% of all proteins. Compared to

NLSdb, NLSdb 2.0 increased the coverage in predicting nuclear proteins from 19 to 50%.

About 5% of nuclear proteins in our set had a Swiss-Prot annotation of NES.
Querying nuclear proteins with trusted and potential NES of NLSdb 2.0, we could increase

this number by 23%. Thus, the percentage of NES-containing nuclear proteins was 29%.
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5.4 Database description

Input formats

The online database of NLSdb 2.0 can be accessed via https://rostlab.org/services/nisdb?2/.

A user can query the database either by nuclear signals, to check if his/her signal of interest
is contained in our trusted or potential sets, or by nuclear proteins to predict the occurrence
of NLS and NES in them. Submissions of proteins can be done through providing: (i) their
amino acid sequence in FASTA [59] format, (ii) their UniProt [60] accession humbers (ACs),

or (iii) their gene and/or protein names (Figure 7).

NlsdoL

a databarse of nuclear localization signals

Sequence (Fasta) AC (UniProt) NL Signal Gene/Protein Name
.

Provide one or more UniProt Acceession Numbers {AC), one AC per line, e_g.:

QAUICS
060356

Figure 7: Screenshot of the NLSdb 2.0 submission page. NLSdb 2.0 accepts submissions of four
types. Results are returned to the user after clicking one of the four submission buttons which expect:
(i) Sequence (Fasta): one or more protein sequences in FASTA [59] format; (i) AC (UniProt): one or
more UniProt [60] accession numbers; (iii) NL Signal: one or more sequences of NLS and/or NES;
and (iv) Gene/Protein Name: names of one or more genes and/or proteins. Hovering with the mouse
over the submission buttons displays information about the expected format of a submission (as
shown by the black box). Example queries are by default provided also in the text input field.
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Data Output

Submissions of nuclear signals (NLS and NES) are simple lookups in our sets of trusted and

potential signals. Submissions of protein sequences in FASTA format trigger the matching of

all signals stored in our database in sequences of query proteins. Submissions of proteins

as UniProt ACs fetch their corresponding FASTA sequences from UniProt to process them

as if FASTA sequences were provided as input. Finally, submissions of protein/gene names

map these to UniProt ACs, based on pairs of protein/gene names and ACs downloaded

from UniProt (version 2012 _10), and process them as if UniProt ACs were provided as

input. For each query, the output is organized in eleven following fields:

(i)
(ii)

(iii)

(iv)

(v)

(vi)

(vii)
(viii)
(ix)
(x)

(xi)

NL Signal: amino acid sequence of the query signal.

Signal type: the signal is a monopartite NLS, bipartite NLS, PY-NLS, NES,
potential NLS or potential NES.

ConfidenceNuc: the number of structural families of nuclear proteins the signal
can be found in.

ConfidenceNuc: the number of structural families of non-nuclear proteins the
signal can be found in.

Annotation Type: whether the signal annotation is based on experimental
findings or it is derived through “in silico mutagenesis”. For experimentally
determined signals, the source of annotation is provided, if available. The source
can be the PubMed identifier or the UniProt accession number of the
experimental evidence.

UniProtKB AC: UniProt accession number of the source protein(s) the signal is
annotated to localize.

Start: start position of the signal in the annotated protein.

End: end position of the signal in the annotated protein.

Organism: organism annotation of the source protein.

SubLocalization: sub-cellular localization annotation of the source protein,
extracted from Swiss-Prot, if available.

Reference: The source of the signal annotation, provided for experimentally
determined signals only. The source is provided as an active link to either the

PubMed article or the database source.
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For protein submissions, the annotations of identified nuclear signals are also supported
by a graphical visualization. Figure 8 shows NLSdb 2.0 result for the human nuclear protein
1 (UniProt AC: 060356). The protein is identified to contain 0 NES and 4 NLS, of which 1 is
a potential signal and 3 are experimentally derived monopartite NLS. These NLS are of
human, Human herpesvirus 2 and yeast origins. Both yeast and virus NLS are 4 amino
acids long and are frequent matches in sequences of other nuclear and non-nuclear
proteins. The sequence of the input protein is shown below the results table and the
schematic representation of identified NLS is shown below the sequence. Three of four
signals (yellow rectangles) match the C-terminal region of the query protein. The longest of
three signals is the virus signal, which overlaps with two other experimentally determined

eukaryotic monopartite NLS.

" " .
a databarse of nuclear localization signals
NL 5db query result
Query: sp| 060356 | NUPR1_HUMAN Nuclear protein 1
0 NES and 4 NLS found
_ _ Confid N Confid, No A jon T UniProtKB A = S
NL Signal SignalType  Start End e s ype c Organism Sublocalization Reference
QEWKLONSERKKRGA Monoparte NL 54 81 1761 012434 Byanepet 080356 Homo sapiens (Human) Nucleus. UniProtDB
Monopartite NL Human herpesvirus 2 (st Host nucleus. Virion tegu
GRTK 3 P 43 46 24781 85/2434 By an expert  P39463 rain HG52) (HHV-2) (Hument. Host Gelgi apparatUniProtDB
man h us. Host cyteplasm
. Experimental Af Saccharomyces cerevisia
RKKR MonopartieNL 74 77 1247761 15512434 inity Capture-M P47027 e (strain ATCC 204508 / Nucleus. PMID: 17170104
= S 528
KLWTKLQ Potential NLS 64 70 1761 012434 Potential NiA NiA i
Z00OM %1 POSITION 54 a
Sequence MATFPPATSAPQQPPGPEDEDSSLDESDLYSLAHSYLGGGGREGRTKREAAANTNRPSPGGHERKLVTEKLQNSERKKRGARR
Signals)

Figure 8: Screenshot of the NLSdb 2.0 results page. Shown is the NLSdb 2.0 result for the query
human nuclear protein 1 (UniProt AC: O60356). The header of the result page provides the name of
the query protein and the number of nuclear signals identified. Below, the results table provides an
overview of signal annotations (e.g. signal annotation type, position in the query sequence, source
protein and organism). Finally, the positions of identified NLS and NES in the sequence of the query
protein are visualized at the bottom of the page. For visualization we used the feature-viewer
implementation [61] from the BioJS library [62].
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Chapter 6

6 pEffect: prediction of bacterial type Il effector proteins

6.1 Introduction

The type Il secretion system is a key mechanism for the transport of effector proteins of
pathogenic and endosymbiotic Gram-negative bacteria into the cytoplasm of host cells [1-5].
During infection, effectors convert host resources to work to bacterial advantage. Previous
computational methods for the prediction of type Ill effectors have mainly employed
information encoded in the N-terminal sequence [6-9], as it contains most important signals
that govern the translocation of effectors through the type lll secretion machinery [1]. An
independent, recent benchmark study showed that current state-of-art-methods predict type
Il effectors at comparable levels of at best 80% accuracy and 80% coverage [10]; thus,

there still seems to be room for substantial improvement.

In this Chapter, a new method, pEffect, is introduced that predicts type Il effector
proteins from the information encoded in the entire protein amino acid sequence. It
combines sequence similarity-based inferences (PSI-BLAST [11]) with de novo predictions
using machine learning (Profile Kernel Support Vector Machines [12-14]). To allow users to
focus on most relevant results, pEffect provides a score reflecting the strength of each
prediction. The method was developed using a positive data set comprising type Il effectors
extracted from literature and UniProt [15] and a negative data set combining bacterial non-
effector proteins and effector sequence-similar eukaryotic proteins. Tested on a non-
redundant test set, pEffect reaches high levels of 87£7% accuracy and 95+5% coverage.
The method importantly improves over its competitors, boosting performance by at least 7%
for bacterial effectors and as much as 3-fold on data sets containing eukaryotic proteins.
This result suggests that the information required for distinguishing effectors is not confined
to any particular part of the amino acid sequence, but is rather distributed over the entire
protein sequence. This biological feature helps pEffect to maintain a high level of accuracy
even when tested on sequence fragments. pEffect can thus be effectively applied directly to
metagenomic read data, facilitating studies of microbial community interactions. Applied to
proteomes of all fully sequences prokaryotic organisms, pEffect identifies a wide variety of
recently evolved effectors. These highlight the possibility of a type Il secretion ancestor
dating to times prior to the archaea/bacteria split. pEffect is available as a public web server

and as a standalone version for download at http://www.bromberglab.org/services/pEffect.
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6.2 Materials and Methods

Data sets for development and evaluation

Our positive data set of known type IIl effector proteins was extracted from literature [6, 16-
23] and the Pseudomonas-Plant Interaction web site [24]. The corresponding amino acid
sequences were taken from the UniProt database [15], 2012_01 release. We additionally
queried UniProt with keywords ‘type Il effector’, ‘type three effector and ‘T3SS effector’ and
manually curated the results for experimentally identified effectors. Our positive data set
comprised 1,388 proteins.

To compile our negative data set of non-type Il effectors we used experimentally
annotated Swiss-Prot proteins [25], 2012_01 release. We extracted all bacterial proteins that
were NOT annotated as type Il effectors and had no significant sequence similarity (BLAST
[26] E-value > 10) to any type Il effector in our positive set. We also added all eukaryotic
proteins applying no sequence similarity filters. Our negative set contained roughly 470,000
proteins.

We removed from our sets all proteins annotated as ‘uncharacterized’, ‘putative’, or
‘fragment’. We reduced sequence redundancy independently in each set using UniqueProt
[27], ascertaining that no pair of proteins in one set had alignment length of less than 35
residues or a positive HSSP-value (HVAL = 0) [28, 29]. After redundancy reduction our
sequence-unique sets contained 115 type Il effector proteins from 43 different bacterial
species and 3,460 non-effector proteins (of which 37% were bacterial). Here, we term this
set of sequences (positive and negative sets together) as the Development set. All pEffect
performance results reported here across the Development set and its subsets are based on
five-fold cross-validation experiments, i.e. we split the entire set into five similarly-sized
subsets and trained five models, each on a different combination of four of these subsets,

and tested each model on every subset exactly once.
Data sets for additional testing
We benchmarked pEffect against other methods using the following data sets:

(1) We collected all type Il effectors added to UniProt between releases 2012_01 and

2014 _08 and non-type Il bacterial and eukaryotic proteins added between same releases to
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Swiss-Prot. These were redundancy reduced at HVAL< 0 to produce the UniProt’14yya o test

set (107 effectors and 1,159 non-effectors).

(2) To answer the question “how well will pEffect perform on protein sequences added to
databases within the next six months?” we collected the proteins added to UniProt (type llI
effectors) and Swiss-Prot (non-effector bacterial and eukaryotic sequences) after the

2014 08 release, producing the set UniProt’15¢,, (498 effectors and 1,509 non-effectors).

(3) We also extracted all bacterial type Ill effectors from the T3DB database [30] — T3DBgy,
set (218 effectors and 831 non-effectors). We deliberately kept the redundancy in this set

(up to HVAL = 66, i.e. over 85% pairwise sequence identity over 450 residues aligned).

(4) Finally, we redundancy reduced T3DB set at HVAL<O0. This gave the T3DBuya0 Set (66
effectors and 128 non-effectors).

Prediction method pEffect

Inspired by the high prediction performance of LocTree3 [31] (Chapter 3), pEffect similarly

combined homology-based predictions if available and de novo predictions otherwise:

Sequence similarity-based predictions: We transferred type lll effector annotations by

homology using PSI-BLAST [11] alignments. For every query sequence we generated a
PSI-BLAST profile (two iterations, inclusion threshold E-value < 10-3) using an 80% non-
redundant database combining UniProt [15] and PDB [32]. We then aligned this profile
(inclusion E-value < 10-3) against all type lll effectors in our Development set (1,388
proteins). For known effectors, we excluded PSI-BLAST self-hits. We transferred annotation
to the query protein from the hit with the highest pairwise sequence identity of all retrieved

alignments.

De novo predictions: We used the Support Vector Machine (SVM) [12] implementation of
WEKA [33] and the Profile Kernel function [13, 14] (Chapter 2) to discriminate between type

Il effector and non-effector proteins. We found the Profile Kernel parameters k=4 and o=7
to provide best results. Note we determined the parameters for the SVM and the Profile
Kernel separately for each fold in our 5-fold cross-validation and, thus, never optimized them

on the test sets.
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State-of-the-art predictors for type lll effector proteins

We used the following state-of-the-art methods with their default parameters that predict

bacterial type 1l effector proteins and that are publicly accessible:

1. BPBAac [7] uses an SVM to predict type Il effectors. Predictions are based on the
position-specific amino acid composition (Aac) profiles within 100 N-terminal
residues of a protein sequence. BPBAac was trained on non-redundant sets of 154
type Il effectors curated manually from literature and 308 non-effectors randomly
selected from various bacteria, followed by removal of the known effectors and their
homologs. BPBAac is available at

http://biocomputer.bio.cuhk.edu.hk/softwares/BPBAac.

2. Effective T3 [6] applies the Naive Bayes classification to predict type Il effectors on
the basis of various features of the 25 N-terminal residues, including frequencies of
amino acids, short peptides, and residues with certain physico-chemical properties.
Effective T3 was trained on a positive set of 100 manually curated type Il effectors
from literature. The negative set of 200 non-effector proteins was collected by
randomly choosing proteins from animal and plant pathogens, omitting known
effectors. Effective T3 is available at http://www.effectors.org/.

3. T3_MM[9] is based on BPBAac and uses Aac profiles of adjacent residues to predict
type lll effectors. It employs a Markov model to calculate the Aac probability
difference between type lll effector and non-effector proteins. T3_MM was trained on
BPBAac training data. Predictions are made using 100 N-terminal residues. T3_MM
is available at http://biocomputer.bio.cuhk.edu.hk/T3DB/T3 _MM.php.

T3DB ortholog clusters of the type Ill secretion system (T3SS) machinery

T3DB is a database of experimentally annotated T3SS-related proteins in 36 bacterial taxa.
Proteins of the same function and the same evolutionary origin are clustered in T3DB into
T3 Ortholog clusters [34]. The proteins of these clusters form ten components of the T3SS.
Proteins of five of these components (export apparatus, inner membrane ring, outer
membrane ring, cytoplasmic ring, and ATPase) are present in all 36 taxa in T3DB. We thus
defined the minimum number of five components necessary for the formation of the T3SS
machinery. Four of these, with the exception of the outer membrane ring, have also been

defined as core in [35].
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Evolutionary distances

We extracted evolutionary distances from the phylogenetic tree in the Newick format of
2,966 bacterial and archaeal taxa, which has been inferred from 38 concatenated genes
[36].

6.3 Results

pEffect: high cross-validated performance of F1 =0.91

The accuracy of the PSI-BLAST sequence similarity-based inference, i.e. a look up for a
sequence-similar experimentally annotated type Il effector protein, was comparable to that
of our de novo prediction method on the cross-validated Development set (Table 1: 91% vs.
92%). However, its coverage was significantly higher (84% vs. 60%). This result encouraged
us to use a simple protocol, introduced in our recent work, LocTree3 [31], that unites PSI-
BLAST whenever possible (Table 1: F1 = 0.87 on the complete Development set) and the
SVM if no PSI-BLAST results were available (Table 1: F1 = 0.67 on proteins with no PSI-
BLAST hit). The combined method, pEffect, outperformed both its components, reaching an
F1 measure of 0.91 (Table 1).

Method Pozritji\?es Nelz;iﬁ\?es ngltis\?es Ne-lg;g:ie\)/es Acc? Cov® F1°

PSI-BLAST! 97 18 10 3450 91+7 84+8 0.87+0.09
De novo? 69 46 6 3454 9248 6011 0.73+0.11
D€ NOVONo,_PSI-BLAST hit- 12 6 6 3444 67425 67428  0.67+0.23
pEffect’ 109 6 16 3444 87+7 9515 0.91+0.08

Table 1: Performance of pEffect and its components on the Development set

'PSI-BLAST: sequence similarity-based inference component of pEffect on all 3,755 proteins of the
full Development set.

’De novo: SVM-based prediction component on the full Development set.

*De NOVONo psi-aLasT hit: SVM-based prediction component tested on the set of 3,468 proteins that did
not align to any effector using PSI-BLAST.

*pEffect: PSI-BLAST predictions, if available, and de novo otherwise on the full Development set.
®Performance measures: Acc, accuracy; Cov, coverage; ‘t’ standard errors (Chapter 2.1);
F1=2-Acc-Cov/(100-[Acc+CovV]). Highest value in each column is in bold.
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pEffect outperforms other methods

We compared pEffect's performance to the publicly available methods: BPBAac [7],
Effective T3 [6] and T3_MM [9]. In contrast to pEffect, all these methods focus exclusively
on the protein’s N-terminal sequence features. BPBAac and T3_MM rely solely on amino
acid composition, while Effective T3 combines amino acid composition and secondary
structure information. We compared the prediction performance of these methods to pEffect
on UniProt protein sequences, which were NOT used for the development of any method,
and on T3DB proteins, some of which were used for the development of all methods,
including pEffect. Our method outperformed its competitors on all data sets (Figure 1A).
Interestingly, the F1 performance of pEffect was at least 0.58 higher than of other methods
when tested on any data set containing eukaryotic proteins (0.58 difference T3_MM vs.
pEffect on both UniProt sets). Thus, pEffect is the most accurate method in distinguishing
type 1l effectors from other bacterial sequences (F1 > 0.64) and from eukaryotic sequences
(F1 > 0.85). The latter ability will be important when considering, for example, sequences

from unfiltered metagenomic samples [37].
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Figure 1: pEffect benchmarking against other methods. We measured the performance of
BPBAac [7], EffectiveT3 [6], T3_MM [9] and our own method, pEffect, using the F1 measure (Table
1). We also measured F1 for de novo (SVM-based) and PSI-BLAST predictions alone.
Panel (A) shows performance on additional data sets for testing, which include:

lUniProt’14HVAL0: 107 effectors and 1,159 non-effector bacterial and eukaryotic proteins, added to
UniProt between releases 2012_01 and 2014 08, sequence homology reduced at HVAL< 0
2UniProt'15¢,; 498 effectors and 1,509 non-effector bacterial and eukaryotic proteins added to
UniProt after 2012_08 release, NOT homology reduced

*T3DByvaLo: 66 effectors and 128 non-effector bacterial proteins from the T3DB database, sequence
homology reduced at HVAL <0

4T3DBFU.|: 218 effectors and 831 non-effector bacterial proteins from T3DB, NOT homology reduced
Panel (B) shows performance on protein fragments produced from the T3DBg,* set, which include:
®30N Cleaved: 30 N-terminal amino acids cleaved off

®30C Cleaved: 30 C-terminal amino acids cleaved off

"1/3 Randomly Cleaved: randomly selected one third of amino acids cleaved off

®Random Fragments: randomly selected fragments of a typical translated read length (Figure 2)

122



Chapter 6
pEffect maintains high performance even for sequence fragments

To evaluate pEffect’'s ability to annotate effectors from incomplete sequences, we
fragmented the proteins from the T3DBg set — the set for which methods developed by
others performed best (Figure 1A). We used four different approaches to generate protein
fragments: (i) retaining the entire protein sequence, but removing 30 N-terminal residues, (ii)
retaining the entire protein sequence, but removing 30 C-terminal residues, (iii) randomly
removing one third of residues for each protein sequence and (iv) randomly picking from

each sequence a single fragment of a typical translated read length (Figure 2).

pEffect outperformed all external methods for all types of protein fragments (Figure
1B). All methods, as expected from their training, performed best on the C-term cleaved
fragments (approach ii). The worst performance was for random sequence fragments
(approach iv). Interestingly, the performance for pEffect changed insignificantly from
F1 = 0.69 to F1 = 0.67 on the random fragments set. In general, for all fragment sets the
pEffect and PSI-BLAST performances were within the standard error of what was obtained
using full-length sequences (T3DBg, set; Figure 1A). These results suggest that the
features distinguishing type Il effectors are spread over the entire protein sequence and are

picked up PSI-BLAST or the more advanced k-mer comparisons of the SVM Profile Kernel.

250
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50
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Figure 2: Distribution of a typical translated read length. "Pyrosequencing reads”: amino acid
lengths of open reading frames translated (between start and stop codons) from eight different snow
and soil-collected metagenomic data sets (collaborator data) using the getorf [38] program. “T3DB”:
amino acid lengths of randomly picked fragments (one fragment per sequence) from the T3DBg, set.
The distribution of translated read lengths in the T3DB set follows the distribution of read lengths in
“real” metagenomic samples and averages at 110 amino acids.
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Reliability index provides more confidence in predictions

pEffect provides a reliability index (RI) to measure the confidence of a prediction. Rl is a
value between 0 and 100, with 100 denoting most confident predictions. For PSI-BLAST
searches, Rls are normalized values of percentage pairwise sequence identities read of the
alignments. For de novo predictions, Rls are values corresponding to SVM scores. Sampling
at lower RIs results in a higher number of predicted samples, though at reduced accuracy.
Higher accuracy predictions are obtained by sampling at higher RIs, thus reducing the total
number of predicted samples. For example, at the default threshold of Rl > 50, over 87% of
all predictions of type Il effectors are correct and of all effectors in our set 95% are identified
(Figure 3: black arrow). At a higher reliability index, RI > 80, effector predictions are correct
96% of the time, but only 78% of all effectors in the set are identified (Figure 3: gray arrow).
Thus, a user can make a choice for the reliability of a prediction that is most fitting to his or
her purposes: identifying more effectors at lower accuracy or fewer high confidence
effectors. Moreover, he or she can focus only on de novo predictions (i.e. of new, previously
unseen, effectors) or on PSI-BLAST predictions (i.e. validated homologs of known
effectors), as the source of a prediction is provided for each result.
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Figure 3: Reliable predictions are more accurate. The figure shows the cumulative percentage of
Accuracy/Coverage (Chapter 2) of pEffect’s predictions at or above a given reliability index (RI). The
graphs were obtained using the Development set of 115 type Il effector and 3,460 non-effector
proteins in a five-fold cross-validation. At the default reliability score of Rl = 50 (black vertical line),
95% of type lll effectors are identified at 87% accuracy (black arrow). At a higher Rl = 80 (gray
vertical line), prediction accuracy increases to 97% at the cost of lower coverage of 78% (gray arrow).
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Type lll effectors prediction in full proteomes

We used pEffect to annotate type Ill effectors in the proteomes of fully sequenced 862
bacterial (274 gram-positive and 588 gram-negative bacteria) and 90 archaeal organisms

downloaded from the European Bioinformatics Institute (EBI, [39]).

pEffect predicted each bacterium to contain at least one type lll effector (Figure 4; a
minimum of 0.8% of a proteome is predicted as effectors). For some gram-negative bacteria
over 750 type Il effectors were predicted (e.g. 1,207 effectors in Sorangium cellulosum So
ceb6, 870 effectors in Stigmatella aurantiaca DW4/3-1, 826 effectors in Corallococcus
coralloides DSM 2259 and 792 effectors in Haliangium ochraceum DSM 14365). Stigmatella
aurantiaca DW4/3-1 is hypothesized to have the type Il secretion system and its effectors

[40]. For the other three species we could not find any literature record.

Overall, the number of predicted type Il effectors ranged between 1% and 15% of
the whole proteome in gram-negative bacteria, and between 1% and 10% in gram-positive
bacteria (Figure 4). To further understand our predictions, we retrieved UniProt keywords of
predicted effectors. Their annotations varied widely (Table 2), with the most common for
both types of bacteria being transferase, depicting a large class of enzymes that are
responsible for the transfer of specific functional groups from one molecule to another,
nucleotide-binding, a common functionality of effector proteins, ATP-binding that is also an
essential component of the type Il secretion system (T3SS), and kinase, which is necessary
for the expression of the T3SS genes. About one fourth (26-29% per proteomes) of

predicted type Il effectors were functionally “unknown” (Table 2).

Interestingly, we also predicted type lll effectors in all archaeal proteomes, with over
100 effectors identified in the proteomes of Haloterrigena turkmenica DSM 5511 and
Methanosarcina acetivorans C2A (126 and 105 effectors, respectively). On average, there
were fewer effectors predicted in archaea than in bacteria: 1.9% is the overall per-organism
number for archaea vs. 3.4% for gram-positive and 4.6% gram-negative bacteria (Figure 4).
The most frequent annotations of predicted archaeal effectors were similar to those for
predicted bacterial effectors, namely “unknown”, nucleotide-binding, ATP-binding and

transferase (Table 2).
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UniProt keywords. . Frequency UniProt keywords . Frequency

(PSI-BLAST predictions) (SVM de novo predictions)

Uncharacterized protein 29.9% Uncharacterized protein 40.1%
A Hydrolase 5.6% Oxidoreducatase 5.1%
R | Cytoplasm 5.2% Plasmid 4.8%
¢ Nucleotide-binding 5.2% Transferase 4.1%
Z ATP-binding 4.9% Metal-binding 3.7%
E Metal-binding 4.5% Flavoprotein 3.6%
A | Zinc 4.0% FAD 3.3%

Chaperone 4.0% Lyase 2.4%

Uncharacterized protein 25.6% Uncharacterized protein 25.6%
f\ Transferase 6.4% Transferase 6.7%
C Hydrolase 6.0% Nucleotide-binding 6.6%
T | Nucleotide-binding 5.3% ATP-binding 6.5%
2 ATP-binding 4.7% Kinase 3.7%
/ Kinase 4.7% Oxidoreductase 3.7%
A Cytoplasm 4.1% Phosphoprotein 3.0%
*) Serine/threonine-protein kinase 2.7% Metal-binding 2.3%
B Uncharacterized protein 27.8% Uncharacterized protein 29.1%
A Hydrolase 4.9% Transferase 7.6%
? Cytoplasm 4.5% Nucleotide-binding 5.4%
E Transferase 4.4% Kinase 5.3%
R | Metal-binding 3.9% ATP-binding 5.3%
,Iq Nucleotide-binding 3.9% Phosphoprotein 4.7%
(-) ATP-binding 3.3% Oxidoreductase 2.4%

Kinase 3.2% Membrane 2.1%

Table 2: Top eight most frequent UniProt keywords associated with pEffect’s predicted
effectors. The table lists top eight most frequent keywords retrieved from UniProt for the proteins
predicted as type Il effectors in the proteomes of 90 archaeal, 274 gram-positive bacterial and 588
gram-negative bacterial species.
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Figure 4: Percentage of predicted effectors in full proteomes. The figure shows the box-plot-and-
instance representation of percentages of pEffect’s predicted type Il effectors (Y-axis) in 90 archaeal,
274 gram-positive and 588 gram-negative bacterial organisms (X-axis), which are shown as dots. At
least 50% of effector predictions in all, except 11 organisms in our set were predicted de novo. In the
figure, the colors represent the percentage of de novo predictions for each organism: from green
(50% de novo, 50% PSI-BLAST) to blue (100% de novo, 0% PSI-BLAST). While effectors predicted
in archaea and gram-positive bacteria are often picked up by PSI-BLAST, effectors in gram-negative
bacteria are mostly de novo predictions.

T3SS likely defined by 5 type lll machinery components and 25% predicted effectors

We aimed to identify those proteomes that are likely to have the type Ill secretion system
(T3SS) machinery. For this, we BLASTed (E-value < 10) proteins of five T3DB Ortholog
clusters against the full proteomes of our 862 bacteria and 90 archaea set. We found that,
as expected, archaea never contain a full T3SS (maximum three out of five components;
Figure 5A). In gram-negative bacteria, the number of predicted effectors correlated much
better with the number of type Ill machinery components than in gram-positive bacteria
(Figures 5B-C; Pearson’s correlation r=0.37 and r=0.13, respectively). Based on our

observations in archaea and gram-positive bacteria, we suggest, as a rule of
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Figure 5: Conservation of T3SS machinery components in full proteomes. (A) 90 archaeal, (B)
274 gram-positive and (C) 588 gram-negative bacterial proteomes, shown as dots in the figure, were
scanned for the presence of T3SS. The percentage of type Il effectors per proteome predicted by
pEffect (Y-axis) is compared to the number of T3SS machinery components identified in these
proteomes (X-axis). While type Il effectors compose up to 3.7% of an archaeal proteome (mean
1.9%, blue horizontal line), this number is much larger for bacteria, reaching up to 10% of an entire
proteome for gram-positive (mean 3.4%), and 15% for gram-negative bacteria (mean 4.6%). Six
gram-negative bacterial species did not contain detectable homologs of any of five machinery
components, indicating that their genomes are further diverged than those of other species.

thumb, that the conservation of five type Il machinery components and 25% of the genome
dedicated to effectors provide a strong evidence for the presence of a T3SS in an organism.
With these cutoffs, we identified 20% (120 species) of the gram-negative bacteria in our set
as type lll secreting. No archaeal species and only five gram-positive bacteria fit these
cutoffs. We searched the literature for annotation of ten randomly chosen gram-negative
bacteria likely to have the T3SS. We found evidence of type Ill machinery in seven of the

ten organisms [41-47]. For three bacteria the secretion machinery has not been studied.
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6.4 Discussion

pEffect successfully combines PSI-BLAST and de novo predictions

PSI-BLAST is a commonly used tool for protein function annotation through sequence
similarity. PSI-BLAST was first published nearly two decades ago and is continuously
improving through growing databases and better alignment techniques [48]. Applied to our
sequence-unique Development set, PSI-BLAST correctly annotated type Ill effector proteins
at 91+7% accuracy and 84+8% coverage (F1 = 0.87 + 0.09) through sequence comparisons
against a set of known type Il effectors (Table 1). The Profile Kernel SVM is a de novo
prediction approach that finds short motifs of consecutive residues in a database of proteins
with known type Il effector function annotation, i.e. it uses sequence similarity information
that is not available directly from sequence comparisons. Applied to all protein sequences,
the Profile Kernel SVM annotated 60 = 11% type Ill effectors at 92 + 8% accuracy
(F1 = 0.73 £ 0.11). Our new method, pEffect, successfully combines the complementary
homology-based and de novo predictions, reaching high levels of 87 + 7% accuracy and
95 + 5% coverage (F1 = 0.91 £+ 0.08) and outperforming each of its individual components.
In fact, pEffect is so good that about 80% of effector proteins in our Development set are

predicted at 97% accuracy (Rl > 80, Figure 1).

pEffect predicts from the entire sequence — a useful feature for metagenomic

analyses

pEffect distinguishes type Il effectors from other bacterial and eukaryotic proteins using the
full length sequence of proteins. The detection of N-terminal signals, often used as the only
source of evidence for predicting type lll effectors computationally, presents a special
problem for metagenomic data because of the erroneous gene predictions and potentially
absent reads in contig assemblies [49]. To bypass the assembly errors in evaluating the
presence of type Il secretion activity in a particular metagenomic sample, it would be helpful
to annotate as coming from effector sequences protein fragments translated directly from
the DNA reads. pEffect’s ability to distinguish effectors from these fragments can provide, for
further experimental follow-up, a broad overview of interactions taking place in the
sequenced microbiomes. Notably, for all fragment sets tested, pEffect performance was

within the standard error of that achieved using full-length sequences (Figure 1). This result
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suggests that the features distinguishing type Il effectors are present throughout the protein

sequence and are not solely confined to the N-terminal region. Moreover, pEffect results can

help establish the presence or absence of pathogenic organisms in a particular

environment.
Gram-negative bacteria with full T3SS have the highest number of predicted effectors

The loss of type Il secretion components in gram-negative bacteria is accompanied by the
loss of effectors, indicating the lack of necessity to further diversify in the absence of the
complete machinery (Figure 5C). This type of correlation between the completeness of
T3SS and the number of effectors in gram-negative bacteria is not present for non-type Il
secreting gram-positive bacteria (Figure 5B) or archaea (Figure 5A).

Most of pEffect predictions are SVM-based

Type lll effectors were predicted in all types of prokaryotes that we tested. As expected, the
number of effectors in gram-positive bacteria and archaea that are not known to utilize T3SS
was lower than in gram-negative bacteria that do use the system (Figures 4-5). Interestingly,
homology searches, i.e. PSI-BLAST results, have identified roughly equal numbers of
effectors (1%; Figure 6) in both types of bacterial genomes. As some effectors often co-
localize with the T3SS machinery in “pathogenicity islands” [50-52], these findings are in line
with the inheritance of the early complete secretory system, including the machinery and the

secreted proteins.

Overall, the percentage of by similarity predicted effectors ranged for bacteria
between 3% and 71% (maximum in Onion yellows phytoplasma OY-M, an intracellular
gram-negative plant pathogen [8]), and averaged at 1%. Conversely, a significantly larger
fraction, on average ~76% of all effector predictions in whole proteomes, was made de
novo. The percentage of de novo predictions in gram-negative bacteria was significantly
larger than in gram-positive ones (79 + 0.4% vs. 70 £ 0.5%, respectively; Figure 4). Note,
however, that 70% is still a drastically large fraction to appear in bacteria that seemingly
have no use for them. Furthermore, the number of “new” (i.e. de novo) effectors has grown
over evolutionary time (Figure 7), suggesting functional innovation due to environmental
pressures. The set of de novo identified effectors found across bacteria is thus a good

starting point for further investigation into effector origins.
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Figure 6: pEffect’s whole proteome predictions identified by source. pEffect predicted type lli
effector proteins in the proteomes of 294 gram-negative and 29 gram-positive bacteria having full
T3SS. The proteomes are shown as dots. Green dots indicate the percentage of proteins predicted
as effectors (Y-axis) by homology searches and blue dots are de novo predictions. For each
proteome, the evolutionary distance from the last common ancestor (X-axis) was extracted from [36].
While PSI-BLAST appears to consistently pick up ~1% of each proteome of all organisms (green
horizontal trend-line), the de novo predicted effectors diversify further over evolutionary distance, as
indicated by the increase in the number of de novo predictions.

Further insight into evolution of bacterial T3SS

pEffect’s high prediction accuracy raises an interesting question about its predictions of
effectors in gram-positive bacteria, which are not known to utilize T3SS. Roughly one fourth
of their predicted effectors are of yet unknown function (Table 2). Bacterial proteins of
annotated function are mostly transferases, hydrolases, ATP-binding proteins or kinases, all
of which are necessary for flagellar motility. This finding is in line with evidence of shared
ancestry between bacterial flagellar and type Ill secretion systems [35]. It is not known
whether T3SS evolved from the flagellar apparatus or if the two systems evolved in parallel.
However, gene genealogies [53] and protein network analysis approaches [54] both suggest
independent evolution from a common ancestor, which comprised a subset of proteins
forming a membrane-bound complex. The fact that the flagellar system can also secrete
proteins [55] suggests that this ancestor may have played a secretory role [35]. The

pervasiveness of the flagellar apparatus across the bacterial space suggests that the
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ancestral complex existed prior to the split of the cell-walled and double-membrane
organisms, indicated by the differences in gram staining. The common ancestor protein
complex of T3SS and flagellar system would have then been encoded in an even earlier
ancestral genome. Thus, it is not surprising that we find T3SS component homology in
gram-positive bacteria even in the absence of type Ill secretion functionality. Interestingly,
our results show that the loss of the complete T3SS and, inherently, the associated loss in
type Il functionality has proceeded at a roughly similar rate in gram-positive and gram-
negative bacteria (Figure 7A); i.e. once the T3SS is incomplete (4 components), and
arguably non-functional, further loss of components consistently follows. A complete T3SS,
however, is only visible in early gram-positive bacteria, but preserved across time in gram-
negative bacteria (Figure 7B), further confirming the presence of the ancestral secretory

complex in the last common bacterial ancestor.
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Figure 7: Loss of T3SS functionality differentiates gram-positive and gram-negative bacteria.
274 gram-positive bacteria (blue dots) and 588 gram-negative bacteria (red dots) were screened for
the number of conserved components of T3SS (max. 5 T3DB Ortholog clusters) in their genomes (Y-
axis) and plotted against the evolutionary distance from the most recent common ancestor (X-axis).
(A) Once the T3SS is lost, i.e. less than five components are present, further rate of loss of
components is the same for all bacteria. (B) The number of gram-negative bacteria with the complete
system, i.e. all five components are present, however, remains constant across evolutionary time,
while the number of gram-positive bacteria declines.
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Did T3SS exist before the split of archaea and bacteria?

pEffect predicts a significant number of effectors in archaea. However, the presence of the
beginnings of T3SS in the common ancestor of bacteria and archaea is neither directly
supported nor negated by our results. Archaeal flagella have little or no structural similarities
to bacterial flagella, but share homology with the bacterial type IV secretion system [56].
Some of the type IV secretion system and T3SS components are homologous, e.g. VirB11-
like ATPases [57]. However, despite this observed homology none of the archaea that we
tested had the complete set of T3SS components (Figure 5). If the common ancestor of
archaea and bacteria did encode the core ancestral complex, these observations would
indicate a loss of functionality in archaea. Another possibility is that the T3SS in bacteria,
like the flagellar apparatus [58], may have been built over time from duplicated and
diversified paralogous genes of the core complex after the archaea/bacteria split. In both of
these scenarios, the prediction of type lll effectors in archaea would then indicate re-
purposing of the proteins secreted by the ancestral complex. In fact, 0.5% of an average
archaeal genome is identified by homology (PSI-BLAST) to known effectors and another
0.9% de novo identified proteins are homologous (PSI-BLAST E-value < 10®) to predicted
effectors of gram-negative bacteria. These proteins must have been re-purposed in modern
archaea; they are usually annotated as hydrolases, transferases, and metal-binding proteins
(Table 2). The use of an additional 0.5% of the archaeal proteome that is picked up by
pEffect’s de novo and has no homologs in bacteria remains an enigma. While a certain level
of similarity exists between archaeal proteins and bacterial type Il effectors machinery, the
observed signal is insufficient to draw definitive conclusions regarding common ancestry. It
is, however, significant for further exploration — if roughly one tenth of the identified effectors
of gram-negative bacteria and half of the machinery have homologs in archaea, could there
have been a common ancestral secretion complex that has developed early on in

evolutionary time and has given root to many systems observed today?
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Chapter 7
7 LocText: a manually annotated text corpus for protein

localization data

7.1 Preface

Scientific literature is the central repository for scientific knowledge. Having access to this
accumulated knowledge enables researched to efficiently generate novel knowledge. For
example, PubMed [1] is a widely used database [2] that stores over 25 million records for
biomedical literature; 500,000 new records are added to the database each year [3]. At this
high rate of knowledge extension, it is impossible to manually extract structured data (e.g.

aspects of protein structure and function) from unstructured texts (i.e. literature records).

Many databases have been developed to store structured data from scientific
publications and to make it instantly available for researchers online. In the area of life
sciences, the most prominent examples are UniProt [4], GenBank [5], Ensembl [6] and
others. Another resource that stores structured data from scientific publications is presented
by text corpora that are developed to train machine learning methods for automated text
recognition [7-9]. While database curators aim to annotate a single entity (usually a gene or
protein) with a wide range of information extracted from literature, the curators of text
corpora focus on a detailed markup of only a few entities and relationships in a limited
number of literature records. Because of the different focus and the annotation strategies of

the two communities, collaborations between them remained stunningly limited.

In this publication, we envision a linked annotation resource unifying many corpora
and database entries to be a game changer. By connecting the annotations of different
types of entities, a linked resource could have a much greater coverage and diversity than
any single resource. As proof-of-concept, we annotated protein sub-cellular localization in
100 abstracts cited by UniProt. By comparing our new corpus with the original UniProt
annotations, we found novel annotations for 42% of the protein entries. Thus, we showed

that a linked resource could complement database annotations with those from text corpora.

The study design was conceived by me, Juan Miguel Cejuela and Lars Juhl Jensen.
Abstract annotations were done by me, Juan Miguel Cejuela and Shrikant Vinchurkar. All
calculations were done by me with the help of Lars Juhl Jensen. The manuscript was

drafted by me, Lars Juhl Jensen and Burkhard Rost.
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Summary

Annotators of text corpora and biomedical databases
carry out the same labor-intensive task to manually
extract structured data from unstructured text. Tasks
are needlessly repeated because text corpora are widely
scattered. We envision that a linked annotation resource
unifying many corpora could be a game changer. Such
an open forum will help focus on novel annotations and
on optimally benefiting from the energy of many
experts. As proof-of-concept, we annotated protein sub-
cellular localization in 100 abstracts cited by UniProtKB.
The detailed comparison between our new corpus and
the original UniProtKB annotations revealed sustained
novel annotations for 42% of the entries (proteins). In a
unified linked annotation resource these could immedi-
ately extend the utility of text corpora beyond the text-
mining community. Our example motivates the central
idea that linked annotations from text corpora can com-
plement database annotations.

Background

The natural language processing (NLP) and biomedical
research communities have in common that they invest
great effort into making high-quality manual annotation
of biomedical literature. The focus and the annotation
strategies of the two communities have, however,
differed so much that collaborations remained stun-
ningly limited. Most text corpora contain detailed
markup of only a few types of entities and relationships
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Technical University of Munich (TUM), 85748 Garching, Germany
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Denmark

Full list of author information is available at the end of the article

( ) BioMed Central

in a limited number of abstracts or articles [1] (with
exceptions such as the CRAFT corpus [2]). In contrast,
manually curated databases such as Swiss-Prot/Uni-
ProtKB [3] aim at annotating each entity with a wide
range of information extracted from literature, but with
less focus on the text structure.

We envision linked annotations as a possible middle
ground for the two important strategies to curate litera-
ture that could synergistically link the efforts of two dis-
tinct communities. By connecting the annotations of
different types of entities and relationships annotated in
existing and future corpora, a linked annotation resource
could be constructed, which would have much greater
coverage and diversity of annotations than any existing
text corpus. Such a corpus would be valuable to NLP
researchers and database curators alike.

Here, we present a case study on protein subcellular
localization to demonstrate that the corpus annotation
strategy can improve database annotation. The localiza-
tion of a protein is one aspect of protein function and
therefore constitutes one of the three hierarchies to cap-
ture protein function employed by the Gene Ontology
(GO) [4].

The LocText corpus
We assembled a corpus of 100 PubMed abstracts refer-
enced by UniProtKB. We focused on three model organ-
isms: Homo sapiens (50 entries), Saccharomyces
cerevisiae (baker’s yeast with 25 entries), and Arabidopsis
thaliana as a plant (25 entries). We used 46 of the 100
abstracts to develop our annotation guidelines that are
available at https://www.tagtog.net/-corpora/loctext.

Two of us (TG & SV) then annotated the remaining 54
abstracts. The two annotations agreed at F1 = 94% for
entities and at F1 = 80% for relationships. We normalized

© 2015 Goldberg et al,; This is an Open Access article distributed under the terms of the Creative Cornmons Attribution License (http://
creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and repreduction in any medium, provided the
original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/

zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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protein names to UniProtKB and localizations to GO
identifiers. The resulting corpus contains 306 annotated
relationships in 201 different UniProtKB proteins with 48
GO distinct localization terms. All annotations were made
within the framework of the tagtog system (Figure 1;
http://tagtog.net) [5] and Reflect was used to aid protein
name normalization (http://reflect.ws) [6]. The corpus is
available for download at https://www.tagtog.net/-corpora/
loctext under the Creative Commons Attribution 4.0
(CC-BY 4.0) license.

Corpus provides novel annotations
Linked annotations from text corpora can complement
database annotations only if manual corpus annotations
identify relationships not captured by existing databases.
Therefore, all our annotations were done from scratch
without using database annotations. Comparing our
“from scratch” annotations with those from UniProtKB
revealed important novelty added by our text corpus.
We found novel or more detailed localization annota-
tions with respect to UniProtKB for 84 of 201 (42%)
proteins in 34 abstracts (Table 1); for example, Arabi-
dopsis RabF2a (UniProtKB entry RAF2A_ARATH) is
localized to endosomes (Figure 1). We found that for
over half of these proteins with additional annotations
(47/84 = 56%) UniProtKB did not cite the abstracts.

Chapter 7

Page 2 of 3

Table 1. Localization annotations in our corpus and in
UniProtKB. The table categorizes the corpus relationships
by organism relative to whether they represent existing
annotations in UniProtKB, more detailed annotations, or
truly novel annotations. It further subdivides the counts
based on whether or not the relationships involve
UniProtKB proteins that cite the abstract

Category Existing More detailed Novel
Citing protein  Yes No Yes No Yes No
Human 29 15 1 1 14 13
Budding yeast 22 14 5 3 6 15
Arabidopsis 19 7 5 2 6 7
Other 2 9 0 0 0 6
Subtotal 72 45 11 6 26 41
Total 17 17 67

This is likely explained by the way proteins are anno-
tated, one protein at a time: if a curator works on one
protein and an abstract mentions also the localization of
another, which is not the focus of curator, the localiza-
tion of the latter might not be annotated.

Perspectives
Our case study clearly showed that corpora containing
manual annotations of the sub-cellular localization of

interactors.

A cysteine-rich receptor-like kinase
pathogen-induced protein kinase

and a
are Rop GTPase

In plants, Rop/Rac GTPases have emerged as central regulators of diverse signalling pathways in plant growth and
pathogen defence. When active, they interact with a wide range of downstream effectors. Using yeast two-hybrid
screening we have found three previously uncharacterized receptor-like protein kinases to be Rop GTPase-interacting
molecules: a cysteine-rich receptor kinase, named NBRK. and two receptor-like cytosolic kinases from the Arabidopsis
RLCK-VIb family, named REBK# and RBE2. Uniquely for Rho-family small GTPases, plant Rop GTPases were found to
interact directly with the protein kinase domains. RS bound NIBRE preferentially in the GTP-bound conformation as
determined by flow cytometric fluorescence resonance energy transfer measurements in insect cells. The kinase REKA
did not phosphorylate R@# in vitro, suggesting that the protein kinases are targets for Rop signalling. Bimolecular
fluorescence complementation assays demonstrated that RGPS interacted in vivo with NBRE and RBEE at the plant
ESENE |n[Arabidopsigprotoplasts, NBRE was hyperphosphorylated and partially co-localized with the
small GTPase| Gene expression analysis indicated that the single-copy NBRE gene was
relatively upregulated in vasculature, especially in developing tracheary elements. The seven Arabidopsis RLCK-Vib
genes are ubiquitously expressed in plant development, and highly so in pollen, as in case of RBE@ We show that the
developmental context of REBI gene expression is predominantly associated with vasculature and is also locally
upregulated in leaves exposed to Phytophthora infestans and Botrytis cinerea pathogens. Our data indicate the
existence of cross-talk between Rop GTPases and specific receptor-like kinases through direct molecular interaction

Figure 1 Curation of protein subcellular localization. The simplified tagtog web interface shown assisted in the manual annotation of the
corpus (abstract of [7]). Colours highlight names of organisms (yellow), genes/proteins (green), and localization terms (magenta). Linking the
Arabidopsis protein RabF2a (UniProtkB ID: RAF2A_ARATH) to endosomes adds a novel annotation to UniProtKB.
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proteins are able to contribute novel information to
curated databases such as UniProtKB. Notably, this is
even true in the worst-case example when limiting
annotations only to abstracts of articles that have
already been utilized by the database curators. We
expect our findings to generalize to most types of pro-
tein annotation, including disease associations and tissue
expression.

Today databases avoid the trouble of integrating these
annotations, because most text corpora are too limited
in size and scope. Having the corpus developers com-
bine their annotations into a single, unified linked anno-
tation resource could thus be an important step towards
integration of corpus annotations into databases, thus
making them to richer data collection systems. Even
before integration with databases happens, it will be
possible for researchers to use semantic web technolo-
gies to combine the information in the linked annota-
tion resource with that in existing databases, since
UniProtKB and many other databases are already
Resource Description Framework (RDF) compliant.

We envision a linked annotation resource to continu-
ously grow, supported by annotation tools making it easy
for corpus developers to link future annotations; for
example, through a standard JSON format. Not all linked
annotations need to be made manually, though. Includ-
ing also results from automatic text mining pipelines
would help address the challenge of the prohibitively
high costs of large-scale manual annotation [2]. Associa-
tions extracted from both open and non-open access
journals can be linked, as redistribution of extracted facts
is not prohibited by most publishers’ licenses.
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Chapter 8

8 Conclusions

8.1 Our work in the context of developments in the field

In silico prediction of protein cellular sorting is one of the main testing grounds for the
development of prediction methods for protein function. Over the last two decades, more
experimental data for protein localization became available, and many methods have been
developed to predict protein localization. The methods apply various algorithms for their
predictions. The widely used methods are those that apply machine learning (ML)

techniques to extract information encoded in the amino acid sequences of proteins.

In our work, we built upon the experience of previously published methods and
developed a novel method for sub-cellular localization prediction [1]. We employed Support
Vector Machines (SVM) [1], an ML technique that was previously shown to perform best for
localization predictions [2]. We implemented SVMs in a hierarchical tree to mimic the protein
sorting mechanism, an idea originally introduced by Nair and Rost [3]. However, we ignored
many of the relevant features used for the success of other methods (e.g. we ignored
aspects of protein structure and function [3, 4], signal peptides [3] and other functional
motifs [5-7], and physicochemical properties of amino acids [7-9]). Instead, we used
advanced SVM Profile Kernels [10, 11] that at all levels of the tree search through proteins
of annotated localization with short stretches of k-consecutive residues (k=6 for eukaryota, 5
for bacteria and 3 for archaea) and match those in a query protein. The most informative k-
mer hit then decides on the “left or right” at each decision point in the tree until reaching a
leaf, i.e. the predicted localization class. Thus, SVMs reach their predictions through levels

of sequence similarity that are not available directly through sequence comparisons.

The novel method LocTree2 predicted protein localization in all domains of life in the
so far largest number of protein localization compartments (18 classes for eukaryota, 6 for
bacteria and 3 for archaea). It outperformed other methods, including experts specialized in
distinguishing between proteins of two classes [12, 13], implicating an improved ability of our
method to capture localization signals in the protein sequence. Another important
improvement was the robustness of the method against sequencing errors and its success
when applied to protein fragments. This is particularly important in light of high-throughput
sequencing, of analyzing ancient DNA with short reads and of the fact that almost 80% of all

proteins have multiple domains [14].
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We could further improve LocTree2 by remarkable 25% by including information
about homologs if available. These were obtained through PSI-BLAST [15] searches. PSI-
BLAST has certainly changed the way we do sequence analysis more than any tool and it
has been continuously improving since its publication in 1997 adding important value
beyond that from growing databases [16]. We found that in development set of LocTree2,
about half of all proteins have experimentally annotated homologs. For these proteins, a
simple PSI-BLAST protocol significantly outperformed LocTree2, which is in line with the
findings of Imai and Nakai [17]. For the other half of proteins, the homology-based inference
became random, dropping the performance significantly below that of LocTree2. Our new
method, LocTree3, successfully combined homology-based and de novo predictions of
localization, reaching an 18-state accuracy Q18 = 80 + 3% for eukaryotes and a six-state
accuracy Q6 = 89 £ 4% for bacteria. We made the method publicly available as a web
server, allowing submissions to range from single protein sequences to entire proteomes.
Due to its high prediction performance, short prediction time and cached results, LocTree3
optimized well for the handling of large-scale data and aiding the prediction of protein

function through localization predictions.

The prediction results of LocTree2 and LocTree3 have already been found useful for
complementing experimental annotations and for improving protein function prediction
methods. For example, both methods were cited for identifying proteins of the human
multicellular signaling network [18], improving predictions of protein-protein interactions [19,
20], determining cell surface proteins of the human immune system [21], localizing proteins
of human cancer cells [22], identifying plant pathogens [23] and characterizing proteins that
improve resistance in plants [24-26]. We believe that the framework for our methods will
prove extendable and that future methods will become better simply by using more

experimental data and more sequences.

The success of LocTree3’s approach — use homology information if available and a
de novo prediction otherwise — has proven to hold true also for other classification problems,
such as the prediction of sub-nuclear localization compartments and of bacterial pathogens.

In the following, I will summarize some of the main findings of our research.
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8.2 Summary of our main findings

LocTree2: Highest performance due to improved underlying method

We rigorously benchmarked the prediction performance of LocTree2 to a number of state-
of-the-art methods using several independent data sets. LocTree was one of the
benchmarked methods; it originally introduced the hierarchical system of SVMs that
resembles cellular sorting. LocTree2 outperformed LocTree on all data sets tested. Even
when trained and tested on LocTree’s development data (3 localization classes for bacteria
and 6 classes for eukaryota), we observed LocTree2’s overall prediction accuracy to (i) stay
within the standard error of what was achieved on LocTree2’s development set (6 years
older set) and (ii) increase by 18% for bacteria and by 7% for eukaryota. Thus, the
improvement of LocTree2 originated mainly from the underlying method advancement and
not the increased training data set.

In silico predictions reveal problems of high-throughput experiments

LocDB is a database collecting localization annotations mostly from high-throughput
experiments [27]. We compared the prediction performance of LocTree2 and of other
methods using sequence-unique sets (sequence-unigue with respect to all proteins in the
set and to the training set of all methods tested) on LocDB proteins. We found all methods
to perform substantially worse on LocDB data than on sequence-unique proteins from
Swiss-Prot [28], whose localization annotations are mostly derived from low-throughput
experiments. For example, on the A. thaliana set, LocTree2’s performance decreased by
28% and WoLF PSORT’s performance by 43%. How to interpret the data from LocDB?

As most annotations in LocDB originate from high-throughput experiments, it is very
likely that LocDB contains proportionally more errors than Swiss-Prot, which might explain
why all methods perform worse for the LocDB than for the Swiss-Prot data. On the other
hand, we might also suspect that high-throughput experiments discover a reality invisible to
traditional experimental methods and some of those invisible facts might reveal new sorting
mechanisms. Such hidden mechanisms might or might not be ‘discovered’ by prediction

methods. If not, those would explain many incorrect predictions.

Each prediction of LocTree2 is accompanied by a reliability index (RI) denoting the
strength of a prediction (from unreliable RI=0 to highly trustable RI=100). Zooming into

annotations of by LocTree2 misclassified proteins with a high reliability (RI1>50), we found
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examples of proteins for which low-throughput annotations in literature contradicted high-
throughput annotations in LocDB. Thus, the predictions judged as incorrect by LocDB but
having very high LocTree2’s RI scores indicated that the low performance inverts the real
picture: rather LocDB annotations are wrong or ambiguous than the strong LocTree2

predictions. For a set of weakest LocTree2 predictions (RI<15), we observed the opposite.
Eukaryotic secreted and bacterial plasma membrane proteins predicted best

LocTree3 combined homology-based inferences of PSI-BLAST with de novo predictions of
LocTree2. Assessed on a non-redundant data set, LocTree3 performed very well for
archaeal proteins (three classes) with the overall level of accuracy suggested to reach
100%. This number is most likely an over-estimate due to the limited data. For bacteria (six
classes), the overall accuracy was Q6 = 89 * 4% and for eukaryota (18 classes) it was
Q18 = 65 * 3%. For bacteria, LocTree3 predicted best plasma membrane (accuracy: 96%,
coverage: 95%) and cytoplasmic proteins (accuracy: 91%, coverage: 90%). For eukaryota,
the best predicted class was secreted (accuracy: 88%, coverage: 96%), followed by nucleus
(accuracy: 81%, coverage: 86%). While LocTree2 predicted classes with most experimental
annotations best, we could not confirm the same trend for the PSI-BLAST protocol. Overall,
our new method, LocTree3, still maintained a small correlation between performance and

experimental annotations with respect to the compartments.
Multi-localized proteins difficult to assess

Studies have shown that up to one third of all proteins in a proteome are localized to more
than one sub-cellular compartment [29-31]. Annotations of multi-localized proteins are also
contained in Swiss-Prot. However, applying sequence redundancy reduction (through
UniqueProt [32] at HSSP-value < 0 [33, 34] to these proteins, their number dropped to 72
eukaryotic proteins. We applied LocTree3 to these proteins and considered the prediction
correct if one of the experimentally observed classes had been predicted. Prediction result
of Q18 = 65 + 12% compared less favorably to Q18 = 80 £ 3% when assessed on single-
localized proteins. This contradicted the intuition - picking one right from 18 is tougher than

picking 2 and choosing the best-of-two. Why did performance drop on those proteins?

Our suspicion is that today’s double annotations as a whole set are not good
enough. We looked at LocTree3 predictions for five misclassified proteins with the highest

RIs. One protein was uncharacterized, while for the remaining four we found experimental
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evidence for the predicted localization classes in other sources than Swiss-Prot. From these
findings we concluded that the number of sequence-unique multi-localized proteins as we
have them today in Swiss-Prot is rather small and the annotations of multi-localizations may
be incomplete. Therefore, assessing prediction methods on these proteins may lead to

underestimated results and incorrect implications.
Homology-based inferences not sufficient for whole proteome annotations

We annotated proteomes of more than 1,000 fully sequences organisms from all three
domains of life with LocTree3. We observed that none of the proteomes could be fully
annotated with homology searches (i.e. by PSI-BLAST). For example, for human, LocTree3
annotated remarkable 77% of the proteome through homology-based inference, of which
30% came from direct experimental annotations. For other organisms these numbers were
lower. For yeast, LocTree3 annotated 68% of the proteome by PSI-BLAST, of which 51%
were experimental annotations; for A. thaliana these numbers were 61% and 119%,
respectively. For a prokaryote A. pernix, LocTree3 annotated only 8% of the proteome by

PSI-BLAST,; the remaining annotations came from its de novo component LocTreee2.
Q13 = 62% for predicting sub-nuclear compartments

Though sub-organellar compartments are difficult to predict due to sparse experimental
data, LocNuclei adapted the prediction strategy of LocTree3 (combine homology information
with de novo predictions) and classified sub-nuclear proteins in 13 classes at the high level
of overall accuracy Q13 = 62 + 3%. LocNuclei outperformed, the only during LocNuclei’s
development available other method for sub-nuclear localization prediction, NSort [35] (we
re-trained LocNuclei on NSort’'s development data). We used LocNuclei to annotate the
entire human nucleosome (6,230 proteins predicted as nuclear by LocTree3) and found
77% of all proteins to localize to the following four sub-nuclear compartments: nucleoplasm
(30% of all annotations), chromatin (17%), nucleolus (17%) and PML bodies (13%). Adding
in experimental protein-protein interaction data [36], we found most protein interaction pairs
to occur within and between these four compartments. Interestingly, we found a high
number of protein interactions also between perinucleolar proteins, composing <0.4% of all
annotations in the human nucleosome, and proteins residing in the nucleoplasm, chromatin
and nucleolus. Compared to proteins from other sub-cellular compartments, nuclear proteins
tend to be most disordered. This feature allows nuclear proteins to diversify their functional

roles, which is in line with experimental findings [37-39].
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NLS can be mapped in 50% of nuclear proteins and NES in 29%

NLSdb [40] was the first database that attempted to collect known nuclear localization
signals in a single resource. It also introduced the concept of “in silico mutagenesis” [41] that
extended experimental signals by potential ones. Fifteen years later, we updated NLSdb
with novel data, which now contains both nuclear localization signals (NLS) and nuclear
export signals (NES). By doing so, we increased the number of by experts manually verified
signals 28-fold and of potential signals 20-fold. Looking at the length distributions of verified
NLS, we observed possible annotation mistakes for at least 20% of monopartite signals.
While most of the signals in our verified set were of virus and human origin, we observed an
enrichment of bipartite signals in plants and yeast. When clustered verified signals by
sequence similarity, we identified consensus sequences for 40 clusters of monopartite NLS,
38 clusters of bipartite NLS, 5 clusters of PY-NLS and 27 clusters of NES. Currently, Swiss-
Prot annotates 9% of nuclear proteins with NLS and 5% of nuclear proteins with NES. The
original version of NLSdb increases the coverage for NLS to 19%, while the updated version
increases the coverage to 50% for NLS and 29% for NES.

Bacterial type lll secretion signal distributed over the entire protein sequence

The bacterial type Il secretion system injects the so-called effector proteins directly into the
cytoplasm of a host cell to promote infection. pEffect is a method that showed that a
combination of homology searches and de novo predictions can successfully be applied to
the prediction of effector proteins at 87% accuracy and 95% coverage. While other methods
mainly employ information encoded in the N-terminal region of protein sequences for their
predictions [42-44], pEffect uses information from the entire protein sequence. When
compared to other methods on full length protein sequences, pEffect performed best on all
data sets tested. Especially on data sets containing eukaryotic proteins, pEffect’'s exceeded
by more than 0.58 in the F1 performance measure. When tested on sequence fragments
similar in length to shotgun sequencing reads, pEffect’s performance was not significantly
different. These improvements are particularly important to e.g. annotate results from
metagenomic studies. Moreover, they suggest that the features distinguishing type |lli

effectors are spread over the entire protein sequence and are picked up by pEffect.
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9 Appendix

9.1 Supplementary Figures

Figure S1: E-value thresholds for the homology-based component of LocNuclei
(prediction of nuclear travelers in two classes)

" psi-BLAST [l svM [ LocNuclei —— PSI-BLAST (with hits)
75 -
70 -
65 -
60 -
55 -
50 -
45 -
40 -
35 -
30 -
25 -
20 -
15 -
10 -

Q2 (%)

10°% 10%° 10* 10*" 10° 107 10° 10° 0.1 1 10 10* 10°

E-value

The figure shows the accuracy Q2 (Chapter 2.2) in classifying proteins in two classes
(nuclear proteins exclusively localized to the nucleus and nuclear proteins localized also to
other sub-cellular compartments) by LocNuclei and its components. The homology-based
inference using PSI-BLAST from the set of experimentally annotated 12,055 nuclear
proteins performs best (Q2 = 78%) at the stringent E-value < 10°°. However, when
evaluated on the entire test set (i.e. also on proteins for which PSI-BLAST homology is not
available), the performance drops significantly to Q2 = 9%. The performance of the SVM on
the same set, however, reaches Q2 = 66% (the performance is marked by black lines). To
determine, at which E-value threshold to use PSI-BLAST and at which the SVM, we needed
to consider the performance of the final method LocNuclei at the same threshold. We found
LocNuclei to reach highest Q2 = 72 + 2% at E-value < 10®.
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Figure S2: Length distribution of all known nuclear signals
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The figure shows the amino acid sequence length distribution of 1,960 monopartite NLS, 413 bipartite
NLS, 18 PY-NLS and 817 NES in our trusted set (Chapter 5.2). The frequencies for each signal type
sum up to 100%. Typical lengths for each signal type are represented by peaks: 4-10 and 15-19
amino acids for monopartite NLS (the latter is probably due to bipartite signals erroneously annotated
as monopartite); 16-19 amino acids for bipartite NLS; 15-20 and 22-26 for PY-NLS; and 9-13 amino

acids for NES.
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Figure S3: Top 20 most frequent species annotations for nuclear signals
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The figure shows top twenty of the most frequent organism species annotations for (A) monopartite
NLS, (B) bipartite NLS and (C) NES. PY-NLS were annotated in human and Baker’s yeast only and
are not shown here. For each signal type, most frequent annotations were made in human and other
eukaryotic model organisms, as well as in Influenza A virus. Virus species are colored red.
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Figure S4: Length distribution of nuclear signals in human, yeast and plant
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The curves show the distribution of unique nuclear signals (NLS and NES) annotated in human
(Homo sapiens, 505 signals, blue line), yeast (Saccharomyces cerevisiae, 229 signals, red line) and
plant (Arabidopsis thaliana, 156 signals, green line). The frequencies for each signal type sum up to
100%. Note we do not show results for sequences longer than 30 amino acids, as they constituted
less than 1% of the data. For all organisms, the length of monopartite signals peaks in the range
between 6 and 9 amino acids and of bipartite signals in the range between 16 and 19 amino acids.
Monopartite signals appear to be most frequent in plant, while bipartite signals in yeast.
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Figure S5: Phylogenetic tree representation of 1,960 monopartite NLS
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The sequences of 1,960 monopartite NLS from our trusted set (Chapter 5.2) were aligned
against each other to construct an evolutionary distance matrix. This matrix was then used
as input to the UPGMA clustering method [1] of the PHYLIP [2] package. The resulted
phylogenetic tree separated all signals in two clusters: (i) “Minor” cluster of 13 sequences
and (ii) Major cluster of all other sequences. The Major cluster was further sub-divided into
39 distinct clusters. Signal sequences in the tree are colored by the average charge of their
amino acids. Only sequences of the “Minor” cluster appear to be negatively charged.

155



Chapter 9

Figure S6: Phylogenetic tree representation of 413 bipartite NLS
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The phylogenetic tree for 413 sequences of bipartite NLS was constructed as in Figure S4.
The bipartite signals formed 38 distinct sub-clusters. These are depicted by different colors.
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Figure S7: Phylogenetic tree representation of 19 PY-NLS and the sequence logo of
its largest sub-cluster
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The data set of annotated PY-NLS comprised only 19 sequences, which were used to
calculate the phylogenetic tree (A). The tree split the data in five clusters. The sequence

logo representation (B) of the largest cluster (Cluster 1) shows high conservation of amino

acid residues at the flanking regions of the signal: basic residues in the N-terminal region
and proline-tyrosine in the C-terminal region.
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Figure S8: Phylogenetic tree representation of 817 NES

The phylogenetic tree for 817 sequences of NES was constructed as in Figure S4. The
signals formed 27 distinct sub-clusters.
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Table S1: Normalization of sub-nuclear localization terms

Databases term

Normalized term

Cajal body, cajal bodies, gem

Cajal bodies

Chromatin, centromere, chromosome,

heterochromatin, telomere, unsynapsed
chromosome axes

Chromatin

Nuclear envelope, nuclear membrane,
nucleus membrane

Nuclear envelope

Nuclear lamina, nuclear periphery,
nucleus lamina

Nuclear lamina

Nuclear matrix, nucleus matrix

Nuclear matrix

Nuclear pore

Nuclear pore complex

Nuclear speckle

Nuclear speckles

Nucleolus, nucleolar

Nucleolus

Nucleoplasm

Nucleoplasm

Perinucleolar

Perinucleolar compartment

PML body, nuclear dots, PML-NBs,
PML/ND10 bodies

PML bodies

Kinteochore

Kinetochore

Spindle apparatus, spindle microtubules,
spindle midzone, spindle poles

Spindle apparatus

Databases HPRD [3], NMPdb [4], NOPdb [5], NPD [6], NSort/DB [7] and Swiss-Prot [8],
annotate sub-nuclear proteins using synonyms for some terms. We extracted these terms
and normalized them to 13 sub-nuclear localization classes. The normalization was done
case-insensitive; terms of the same class are separated by comma.
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Table S2: Composition of the sub-nuclear development set for LocNuclei

Sub-nuclear N _ g 3 3
o T | = [
compartment _ % s 8 g £ > ~ 3| &
(number of 5 @ = 5 o <~ | © . & 8 ol ] s | =
i © 0 ] 9 £ = ) < o £ — S =

proteins per SRS o 2 g = = < |5 e o o | ©

compartment) £ 4 o ¥ f£ E ¢ & & | 8|09 & | 8
: § 5§ 8 8§ 5§ § =5 8 &8 3 32
S 5 5|2 ©| o | o 8 S © g £ <
< S S = S S S @© S 0 = £ o )
(@) z z o zZ 2 z O |z2| =z ~ n o

Chromatin (697) | 584

Nucleolus (653) | 68 | 483

Nuclear speckle

(292) 22 79 | 176

PML body (95) | 23 | 18 & 9 | 49

Nuclear lamina

(80) 5 8 2 3 51

Nuclear matrix

(74) 4 3 3 2 1 63

Nuclear

envelope (72) 2 0 0 1 3 1 63

Cajal body (42) 3 |15 14| 4 2 0 0 | 15

Nuclear pore

complex (35) 5 6 3 2 17 0 0 2 12

Nucleoplasm

(29) 3 8 3 1 0 2 2 0 0 13

Kinetochore

(25) 3 4 0 0 1 0 0 0 2 1 15

Spindle

apparatus (14) 2 1 0 1 4 1 1 0 1 0 3 6

Ze;)'””c'eo'ar 3 4,621 0/0 1,0/ 03 0 2

The table displays nhumbers of sequence-unique proteins (HVAL [9, 10] < 20) across 13 sub-
nuclear localization classes in the development set of LocNuclei (Chapter 4). We only used
proteins with experimental annotations extracted from HPRD [3], NMPdb [4], NOPdb [5],
NPD [6], NSort/DB [7] and Swiss-Prot [8]. The numbers of unique sequences per
localization are given in parentheses. The numbers on the diagonal describe sequences
with the annotation of one localization class (e.g. 584 sequences in our set were annotated

160



Chapter 9

to localize at the chromatin only). Other numbers are annotations of two sub-nuclear
compartments. Note that some sequences had annotations of more than two compartments.

9.3
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