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Abstract 

Living cells are divided into specific compartments, each responsible for a different cellular 

function. The identification of protein localization (i.e. into which sub-cellular compartment it 

is being sorted) is important for understanding protein function, as certain functions can only 

be performed in certain environments. Despite advances in high-throughput experiments for 

protein localization, the gap between the number of known proteins and the number of 

proteins with known localization continues to grow. Several computational approaches have 

been developed to predict protein localization, yet many challenges remain to be tackled. 

The work at hand describes a series of novel machine learning-based approaches 

that predict protein localization from amino acid sequence. Protein localization is predicted 

at different resolution levels: (i) a cell, (ii) a compartment and (iii) a pathogenic organism. 

The first approach employs machine learning (profile kernel Support Vector Machines) to 

predict protein sub-cellular localization. Prediction performance is made 25% better by 

adding homology-based inference. The improved method was made publicly available as a 

web server and was used to annotate over 1,000 entirely sequenced proteomes.  

Predicting protein localization at a resolution of a single compartment is a harder 

problem due to the lack of experimental data. This work presents another method that 

combines homology-based inference with machine learning to predict proteins in 13 sub-

nuclear localizations. In addition, a database that archives all experimentally known nuclear 

signals, i.e. “zip codes” that guide nuclear protein import and export, is described. Learned 

from the set of experimental signals, the database suggests a two-fold larger set of potential 

computationally determined signals that await their experimental verification. 

Knowledge of protein localization can assist in the identification of pathogenic 

bacteria. The type III secretion system is a key mechanism for the transport of bacterial 

effector proteins directly into the cytoplasm of host cells. Similar to approaches for other 

localization problems, the novel method described here combines homology-based 

inference with machine learning to predict effector proteins. It improves up to three-fold in 

the prediction performance compared to the state-of-the-art. This method was also made 

available as a web server and was used to annotate all entirely sequenced prokaryotes. 

Finally, a linked annotation resource is envisioned that could by unifying various 

annotations from biomedical texts complement annotations in existing biological databases. 
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Zusammenfassung 

Zellen sind in Kompartimente unterteilt, die jeweils für eine andere zelluläre Funktion 

zuständig sind. Viele Proteinfunktionen können nur in bestimmten Kompartimenten 

ausgeübt werden. Deshalb ist die subzelluläre Lokalisierung wichtig, um die Funktion 

einzelner Proteine umfassend zu verstehen. Während die Anzahl bekannter Proteine stetig 

wächst, gestaltet sich die Proteinlokalisierung trotz des Fortschritts in experimentellen 

Techniken hingegen problematischer.  Die Menge an Proteinen mit bekannter Lokalisierung 

steigt daher deutlich geringer. Viele computergestützte Methoden wurden entwickelt, um 

Proteinlokalisierung vorherzusagen, allerdings können die Methoden weiterhin verbessert werden. 

Die vorliegende Arbeit beschreibt eine Reihe von neuen Machine Learning basierten  

Methoden, welche die zelluläre Lokalisierung der Proteine anhand ihrer Aminosäuresequenz 

vorhersagen. Dies geschieht auf den drei Ebenen: (i) Zelle, (ii) Kompartiment und (iii) 

pathogener Organismus.  Die erste Methode verwendet Machine Learning (Profile Kernel 

Support Vector Maschinen), um eine Lokalisierung in verschiedenen subzellulären 

Kompartimenten vorherzusagen. Zusätzlich kann die Vorhersagegenauigkeit um weitere 

25% verbessert werden, indem Machine Learning mit einer Homologie basierten Inferenz 

kombiniert wird. Die Folgemethode wurde als Web Server zur Verfügung gestellt und auf 

mehr als 1.000 Proteomen von derzeit sequenzierten Organismen angewendet. 

Die Vorhersage von Proteinlokalisierung innerhalb eines einzigen Kompartiments 

stellt aufgrund des Fehlens von experimentellen Daten ein größeres Problem dar. Diese 

Arbeit stellt eine weitere Methode vor, die Machine Learning mit Homologie basierten 

Inferenz kombiniert, um Proteine in 13 sub-nukleare Kompartimente vorherzusagen. 

Darüber hinaus wird eine Datenbank vorgestellt, die alle experimentell bekannten 

Nukleuslokalisierungssignale ("Postleitzahlen") enthält. Diese steuern den Proteintransport 

in und aus dem Zellkern. Basierend auf experimentell bestimmten Signalen, enthält die 

Datenbank eine zweifach größere Anzahl von potenziellen, neu berechneten Signalen, die 

noch auf experimentelle Bestätigung warten. 

Die Kenntnis der Proteinlokalisierung kann auch bei der Identifizierung von 

pathogenen Bakterien helfen. Das "Typ III-Sekretionssystem" ist ein essenzielles System für 

die Sekretion von bakteriellen Effektorproteinen direkt in das Zytoplasma der Wirtszellen. 

Ähnlich zu den Methoden für andere Lokalisierungsprobleme, kombiniert die hier 
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beschriebene neue Methode Machine Learning mit Homologie basierten Inferenz, um 

Effektorproteine vorherzusagen. Die Methode verbessert die Vorhersageleistung von 

Effektorproteinen bis zu einem Dreifachen im Vergleich zu state-of-the-art Methoden. Die 

neue Methode wurde auch als Web Server zur Verfügung gestellt und auf Proteomen aller 

vollständig sequenzierten Prokaryoten angewendet. 

Schließlich wird ein Konzept vorgestellt, das verschiedene Annotationen aus 

biomedizinischen Texten miteinander verknüpft und so Annotationen in existierenden 

biologischen Datenbanken ergänzt. 
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1 Introduction 

1.1 Sub-cellular localization is an aspect of protein function 

 
Compartmentalization of the cell 

Prokaryotic cells are generally surrounded by a single plasma membrane (gram-negative 

bacteria have an additional outer membrane) that controls the flow of various substances in 

and out of the cell. Eukaryotic cells, in contrast, are typically much larger than that of 

prokaryotes and are divided into several intracellular membrane-bound compartments, 

called organelles, each responsible for a different cellular function. For example, the nucleus 

hosts the genetic material resembling a library, and the mitochondria provide the energy 

resembling a power plant. Therefore, proteins residing in the same sub-cellular compartment 

often contribute to the same cellular function. 

A recent study by Bell and colleagues [1] presents potential evidence for the first 

forms of life to have evolved as early as 4.1 billion years ago, during the period following 

Earth’s formation. For the next two billion years, unicellular prokaryotes (i.e. archaea and 

bacteria) presented the only form of life until 2.1 billion years ago, unicellular prokaryotes 

aggregated to become multicellular eukaryotes. Remarkably, the event of multicellularity 

occurred dozens of times independently [2] and opened completely new ways of life to 

become available, i.e. as fungi, animals and plants.  

It is widely accepted that one of the critical steps in the formation of eukaryotes was 

the event of endosymbiosis – invasion of a host prokaryotic cell by a smaller prokaryotic cell 

[3]. For example, both mitochondria and chloroplasts originated in this way. These 

organelles are similar to bacteria not only in size, but also in the reproduction by diving in 

two. Most importantly, both organelles contain their own DNA, which replicates 

independently of the host cell’s cycle [4]. Other eukaryotic organelles, such as the 

Endoplasmic reticulum (ER), Golgi apparatus, endosomes and lysosomes are believed to 

have evolved from the pitching off of special patches of the plasma membrane [5]. Finally, 

the origin of the nucleus remains unclear - whether it formed by an endosymbiont that 

corresponds to the nuclear compartment or by the internalization of the plasma membrane 

that became organized around the chromatin [6-8].  
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Günter Blobel wins 1999 the Nobel Prize for protein targeting system 

A true revolution in the modern cell biology traces back to 1945 when Keith R. Porter, Albert 

Claude and Ernest F. Fullam from the Rockefeller Institute for Medical Research published 

the first image of a eukaryotic cell as seen with an electron microscope [9]. While earlier light 

microscopes allowed seeing the shape of the cell and its major compartment, the nucleus, 

the high resolution electron microscope allowed for the first time to see clear structures of 

other organelles within a cell (Figure 1). The techniques of electron microscopy were 

steadily improved in the next years, which in 1955 led to the identification of ribosomes (first 

named “Palade granules”) [10], the molecular machines responsible for the synthesis of 

novel proteins. Moreover, it led to the realization that different sub-cellular structures carry 

out different cellular functions and in order for a protein to be secreted out of the cell, it must 

enter a so-called secretory pathway for its transport from the cytoplasm, where it is 

synthesized, to the cell’s exterior traversing the plasma membrane [11-18].  

  

 

Figure 1: First published high resolution image of a eukaryotic cell. The figure shows the first 

electron microscope image of an intact eukaryotic cell published in 1945 by Keith R. Porter, Albert 

Claude, and Ernest F. Fullam [9]. The cell is a cultured fibroblast, originated from a chick embryo. 

Magnified 1600 times, this image reveals cell’s major sub-cellular compartments, including the 

nucleus, mitochondria, cytoplasm, Golgi apparatus, the extra-cellular space and a "lace-like 

reticulum", which Porter later named the "Endoplasmic Reticulum" [19]. Other major compartments of 

a eukaryotic cell, not shown here, are the chloroplasts, plastids (both in plants), lysosomes, 

peroxisomes and the vacuole. The image montage was taken from [20].  
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Günther Blobel was the first scientist who described in 1975 the mechanism of how 

proteins traverse cellular membranes, including those of organelles, a scientific 

breakthrough that was awarded with a Nobel Prize in 1999. More specifically, the Prize was 

awarded for the discovery that “proteins have intrinsic signals that govern their transport and 

localization in the cell” [21]. In his work, Blobel introduced a zip code-like structure of the 

cell, where each protein possesses an organelle-specific “address tag” or a “zip code” in its 

amino acid sequence that is recognized by receptors in the membrane of the targeted 

organelle. Upon recognition, the protein is translocated to the organelles across a channel in 

their membrane where it can then perform its cellular function (Figure 2). Blobel called the 

zip codes signal sequences [22] and the theory of protein transfer to the membranes of 

organelles,  the signal hypothesis [23, 24]. It turned out that the protein targeting mechanism 

based on signal sequences, proposed by Blobel, is strongly conserved and is operating 

similarly across all three domains of life (i.e. in Archaea, Bacteria and Eukaryota) [25-29].  

 

 

Figure 2: Blobel’s signal hypothesis for the transfer of proteins across membranes. The figure 

illustrates the signal hypothesis introduced by Günter Blobel in 1975 [23]. A protein destined for the 

secretion from the cell (the mRNA encoding the protein is indicated by a long black line) is 

synthesized by ribosomes (white structures surrounding the mRNA) that associate with the ER. The 

codons in the region after the initiation AUG codon are signal codons (indicated by a zig-zag line) 

whose translation results in a signal sequence (indicated by a dashed line) on the N-terminus of the 

nascent protein. Emergence of this signal sequence triggers the attachment of the ribosome to a 

channel in the ER membrane, where the ever growing protein can pass through until the signal 

sequence is cleaved and the protein is released into the lumen of the ER. Subsequently, the protein 

can be transported out of the cell. The figure was taken from [23]. 
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The vast majority of sorting signals remain unknown 

On the basis of previous results, Blobel established in 1980 general principles of the cellular 

“protein targeting” machinery [30]. Blobel stated that amino acid sequences of the 

transported proteins contain topogenic organelle-specific targeting signals (or signal 

peptides), which are recognized by selective signal receptors that physically bind to them. 

The interaction between a signal and a receptor then initiates protein transport to cellular 

membranes and allows a protein to pass these membranes in its unfolded state. This 

protein translocation mechanism was shown to occur at the prokaryotic plasma membrane, 

and eukaryotic mitochondrial, chloroplast, thylakoid, ER and peroxisome membranes [30]. 

Later, Blobel also described the protein nuclear transport through nuclear pore complexes 

(NPCs; further described in Chapter 6), which allows proteins to pass the nuclear membrane 

in their folded state. This transport mechanism also requires the presence of specific 

targeting signals in the amino acid sequences of transported proteins [31, 32]. The 

importance of cellular targeting signals was shown by (i) removing them from the sequences 

of transported proteins, thus inhibiting their cellular transport and (ii) appending signal 

sequences to cytoplasmic proteins, thus mediating their transport to other sub-cellular 

compartments. Signal sequences are thus both necessary and sufficient for protein cellular 

sorting. Generally, signal sequences can be divided into two classes [5]:  

 Signal sequences: are short stretches of consecutive residues in the amino acid 

sequences of transported proteins that are exposed when proteins are folded. Signal 

sequences usually occur at one of the ends in proteins amino acid sequences, but 

can also occur anywhere else in the sequences. 

 Signal patches: are formed through amino acids that are physically separated in the 

sequences of transported proteins. However, once a protein folds into its three-

dimensional state, the patches come together and form a signal on the surface of a 

folded protein. 

Signal sequences can vary greatly between proteins destined for the same sub-cellular 

compartment (e.g. over 2,000 different nuclear localization signals are reported in Swiss-

Prot [33]; Materials and Methods in Chapter 6). However, their physical properties, such as 

hydrophobicity or polarity, often seem to be more important in the signal recognition process 

than the exact amino acid sequence (Figure 3). Due to the lack of a consensus sequence 

determining a protein translocation to a certain sub-cellular compartment, it is extremely 

difficult to determine signal sequences experimentally and for signal patches the situation is  
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Figure 3: Typical signal sequences involved in protein cellular sorting. The figure shows 

examples of signal sequences that target protein transport to different sub-cellular compartments. 

Typical physical properties of these sequences, which appear to be more important for protein sorting 

than the sequences themselves, are highlighted in color. Figure was taken from [5]. 

 

even worse, as they require knowledge about the three-dimensional structure of transported 

proteins. Thus, a vast majority of sorting signals remains unknown (e.g. Swiss-Prot nuclear 

localization signals can be mapped in sequences of less than 10% of all known nuclear 

proteins; Results and Discussion in Chapter 6). To remedy this situation, a number of 

computational methods have been developed that predict protein sub-cellular localization 

through a number of conceptually different approaches. These approaches require 

information other than the presence of signal sequences only. 

  

1.2 Applications of protein sub-cellular localization data 

 
The identification of signal peptides allowed a cell biologist for the first time to reconstruct 

protein transport in vitro and to analyze cellular functions outside of a living cell, which was 

nearly impossible before. This opened new possibilities of a significant impact also in clinical 

research, as the sub-cellular localization is essential for the protein’s functional role in a cell. 

 Knowledge of protein sub-cellular localization can, for example, be used in the 

identification of novel drug targets. Over two thirds of known drugs target proteins that are 

localized in the extra-cellular space and the plasma membrane [34, 35]. Proteins localized in 

these compartments are relatively easy to access, so that drugs targeting them do not 
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require substantial modification. This is different for drugs that target proteins in intracellular 

compartments. During development, these drugs are designed in a way that they exhibit 

cellular sorting signals (i.e. zip codes) that allow them to pass through the plasma 

membrane and to reach their appropriate sub-cellular location [36]. For example, anticancer 

drugs target various nuclear proteins that are involved in e.g. DNA replication. To reach 

these proteins, drugs are often attached to specific viral machineries that lack pathogenic 

components but allow drug delivery into the cell nucleus [36]. Mitochondria are also often 

targeted in the drug therapy both in host cells and in parasites. In host cells, mitochondrial 

proteins can serve as anticancer targets, while in parasitic cells for example inhibiting the 

electron transfer chain is a successful antimicrobial intervention [36]. To reach mitochondria, 

a drug must contain a mitochondrial targeting signal. 

 Knowledge of protein sub-cellular localization can further help in understanding the 

molecular mechanisms of several human genetic diseases. If a sorting signal gets modified 

or disrupted, the protein carrying this signal can no longer reach its correct sub-cellular 

destination and becomes mis-localized. Aberrant protein localizations have been observed 

in the pathogenesis of human diseases as diverse as metabolic, cardiovascular and 

neurodegenerative diseases, as well as cancer [37]. One example are mutations within the 

nuclear localization signal of the sex-determining region Y protein (SRY), which prevent the 

protein from entering the nucleus and promote its mis-localization in the cell cytoplasm. The 

loss of nuclear function of SRY has been linked to a disease where developmental defects 

include male-to-female sex reversal, also known as Swyer syndrome [38]. Proteins can also 

mis-localize due to alterations in the elements of the protein sorting machinery. For example, 

dysregulations of nuclear pore complexes have been linked to the development of 

cardiovascular and neurodegenerative diseases [37]. Thus, the identification of disease-

related protein mis-localizations offers an opportunity to normalize or interfere with the 

aberrant localization using therapeutic agents. 

 Finally, because sub-cellular localization limits interacting partners to those proteins 

that reside in spatially proximal or equal sub-cellular compartments, knowledge of protein 

localization can also be used in assessing protein-protein interaction data, such as those 

coming from noisy high-throughput experiments [39]. Interacting proteins are confined to 

particular biological processes and are likely to have similar functional annotations. 

Therefore, knowledge of the sub-cellular localization of a protein is also important in 

assigning function to its interacting partners that are yet un-annotated [40-44].  
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1.3 Experimental characterization of protein localization  

 
One of the most prominent experimental techniques to determine in vivo steady-state sub-

cellular localization of proteins is based on green fluorescent protein (GFP) tagging. GFP 

was originally isolated from the jellyfish Aequorea victoria. The protein is composed of 238 

amino acid residues (27kDa) and exhibits green fluorescence when excited with blue light, 

without the need for any co-factors [45-47]. Therefore, any cDNA can be fused with the GFP 

coding sequence and the localization of the expressed GFP can be monitored using a 

microscope in living cells (Figure 4). Subsequently, the respective cDNAs can be extracted 

from cells, cloned and sequenced. This strategy of using GFP has led to a number of sub-

cellular localization screening assays [48-52]. One example is the high-throughput study of 

the yeast proteome by Huh et al. [53], where over 4,000 S. cerevisiae proteins (representing 

about 60% of the whole proteome) were GFP tagged and analyzed. While the GFP-tagging 

method is undoubtedly powerful, it has also limitations. The GFP tag may interfere with the 

correct protein localization. While this interference may not apply to each and every protein, 

the visualization of each tagged protein is clearly a limiting factor.  

 

 

 

Figure 4: Fluorescent protein labelling in living cells. The figure shows fluorescence microscope 

images of protein markers exclusively localized to five different sub-cellular localizations (nucleolus, 

mitochondria, the Golgi apparatus, Endoplasmic Reticulum and nucleus) and of a protein vimentin 

that is known to be attached to the nucleus, Endoplasmic Reticulum and mitochondria. The 

fluorescent tagging was done using enhanced green fluorescent protein (EGFP) and its derivatives: 

blue fluorescent protein (EBFP), cyan fluorescent protein (ECFP), yellow fluorescent protein (YFP) 

and red fluorescent proteins (DsRed2FP and HcRed1FP). Figure was taken from [54].  
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In the post-genomic era, cheaper and faster solutions are needed to systematically 

analyze the localization of proteins in larger proteomes. The pioneering work towards the 

analysis of protein localization in human was done by Matthias Uhlen and colleagues [55, 

56], who have generated and tested antibodies directed at 700 proteins, representing all 

major protein families (e.g. kinases, protein receptors, transcription factors and nuclear 

receptors). The localization of antibody-protein interactions was analyzed in nuclear, 

cytoplasmic and plasma membrane compartments, which was detected using GFB-based 

immunofluorescence. An important bottleneck for this approach, however, is the specificity 

and selectivity of antibodies, which need to be rigorously evaluated. Uhlen and colleagues 

suggest [55] to use two antibodies, best generated in different laboratories, for targeting the 

same gene product.  

Significant advances in organelle proteomics allowed extracting entire organelles 

(e.g. the Golgi apparatus, mitochondria, lysosomes, peroxisomes, nucleus and the ER) and 

analyzing their proteomes [57]. Organelles purification is done through homogenization of 

cells and fractionation of its components (i.e. organelles) using a number of centrifugation 

techniques. Centrifugation separates the components from each other based on their size 

and density. Another fractionation technique that can be used with centrifugation is the 

isolation of cellular components using antibodies targeted at the cytoplasmic domain of an 

organelle transmembrane protein or a molecular tag. The proteins residing in isolated 

organelles can then be identified using Mass Spectrometry (MS) techniques. Though the 

MS-based proteomics has provided impressive results, enriching databases with proteins 

from various sub-cellular localizations, they have also limitations. Most importantly, they 

provide only a snapshot of proteins residing in an organelle at a particular time point. Also, 

proteins only transiently associated with an organelle are likely to be missed. 

To overcome the limitations of the organellar fractionation techniques listed above, 

Matthias Mann and colleagues applied the approach of protein correlation profiling to map 

1,404 mouse liver proteins to 10 sub-cellular localizations [58]. This approach was described 

in their earlier work that identified over 20 centrosomal proteins that were previously not 

known to be localized there [59]. First, cells were disrupted and the centrosomes were 

purified by centrifugation. The resulted fractions were digested with proteases and the 

peptides analyzed by MS. The abundance of each peptide in each fraction was determined 

and the abundancies were compared to the abundance of peptides from known centrosomal 

proteins (marker proteins). The correlation between the profiles indicated the likelihood of a 
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protein being centrosomal (Figure 5). Thus, the major advantages of this technique are in 

the possibility of studying proteins localized to organelles that are difficult to purify and in not 

requiring antibodies or other protein tagging. All fractionation methods, however, rely on the 

presence of proteins within an organelle during purification. Proteins transiently attached to 

membranes or peripheral membrane proteins are difficult to study with these methods. 

Despite the huge continuous effort in improving experimental identification 

techniques for protein localization, the proteomes of completely sequenced organisms 

remain largely un-annotated. For instance, the best studied organism yeast has less than 

2/3 of its proteins annotated; for other organisms including human this number is 

significantly lower (discussed in Chapters 2 and 3). Therefore, bioinformatics approaches 

are sought to extend protein localization maps and support experimental datasets.  

 

Figure 5: Workflow of the protein correlation profiling analysis. Organelles are purified from cells 

and divided into fractions using e.g. centrifugation techniques (top gray box; three types of organelles 

are indicated by circles, crosses and triangles). These are then subjected to proteases that break 

down in the organelles contained proteins into peptides, which are subsequently analyzed by a 

proteomics pipeline (e.g. a mass spectrometer). The abundance profiles of peptides across all 

fractions (bottom box; profiles of proteins from three organelles are given by three blue lines) are 

compared to the abundance profile of known marker proteins of an organelle of interest (red line). 

Proteins whose profiles correlate with those of marker proteins (red line - marker; line with crosses - 

candidate) are identified as candidates localized to an organelle, while other proteins are identified as 

contaminants. Figure was taken from [60]. 
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1.4 In silico methods predicting protein sorting 

 
Localization predictions are a common playground for function prediction methods 

Predicting the sub-cellular localization of proteins computationally is one of the central 

challenges in bioinformatics. Protein localization is one aspect of protein function and in 

comparison to other protein functional features much more easily identifiable. Experimental 

studies have shown that proteins may travel between different sub-cellular compartments, 

yet most of them are functional within a single compartment for the largest part of their 

lifetime [53, 58, 61]. Furthermore, the cellular sorting mechanism is relatively well 

understood and experimental localization data is available in public databases for a large 

number of proteins. For instance, the manually annotated database Swiss-Prot [33] contains 

experimental localization information for more than 24,500 proteins (release 2015_12). 

These however constitute less than 0.05% of all known proteins (percentage is based on the 

UniProt [62] release 2015_12). Best computational methods have already achieved 

impressive levels of prediction performance [63, 64] and have been incorporated in 

proteome annotation pipelines to complement experiments [44, 65]. However, most of these 

methods were developed with the aim of predicting localization either at a specific 

localization site or in specific organisms. 

 The first published computational method that predicted protein localization from the 

protein amino acid sequence was PSORT, developed by Nakai and Kanehisa in 1991 [66]. 

Most reliable annotations however remain those that are derived from sequence homology, 

i.e. localization information is transferred from experimentally annotated protein to its un-

annotated sequence homolog. For proteins with no detectable sequence homology to 

annotated proteins, de novo machine learning methods have proven to provide reliable 

results. Other automatic methods annotate proteins by mining biological literature and 

molecular biology databases. These methods however are limited to those proteins whose 

annotation has already been experimentally verified and published. Methods aiming at 

identifying features of sorting signals and using them for localization prediction have also 

reached remarkable levels of performance. Hybrid approaches are those methods that 

combine different sources of information (e.g. de novo predictions and sorting signal 

information). Finally, meta-predictors integrate various prediction methods into one; the 

method with the most accurate prediction is then used for the final annotation transfer. An 

overview of currently widely used prediction methods is provided in Table 1. 
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Name  Prediction feature; prediction method Localization sites 

Sequence homology–based method 

LOChom [67]  Annotated sequence homologs; PSI-BLAST [68].  
10 eukaryotic and 3 
bacterial sites  

N-terminal sequence–based methods 

TargetP 1.1 
[69] 

Amino acids composition (AAC) from 100 N-terminal residues for 
signal peptide prediction; Neural Network (NN). Cleavage site 
discovered using MEME [70]. 

chloroplast, mitochondria 
(both eukaryotic), extra-
cellular space (eukaryotic 
and bacterial) 

SignalP 4.1 [71] AAC from 70 N-terminal residues for signal peptide and 
cleavage site predictions. 

Extra-cellular space 
(eukaryotic and bacterial) 

EffectiveT3 [72] 
Frequencies of amino acids, short peptides, and residues with 
certain physico-chemical properties from 25 N-terminal residues; 
Naïve Bayes. 

Extra-cellular space 
(Gram-negative bacterial) 

BPBAac [73] AAC from 100 N-terminal residues; Support Vector Machine 
(SVM). 

Extra-cellular space 
(Gram-negative bacterial) 

Nuclear localization signals (NLS) and nuclear export signals (NES)–based methods 

PredictNLS [74] “In silico mutagenesis” of known NLS. 
Nuclear import 
(eukaryotic) 

NLSstradamus 
[75] AAC within NLS; Hidden Markov Models (HMMs). 

Nuclear import 
(eukaryotic) 

NESMapper 
[76] 

AAC within NES and in 25 N-terminal and 25 C-terminal flanking 
residues; activity-based profile. 

Nuclear export 
(eukaryotic) 

Text mining–based methods 

LocKey [77] “Rule library” based on Swiss-Prot keywords; M-ary classifiers. 10 eukaryotic  sites 

Hybrid approaches, including de novo–based methods 

LocTree [78] 
Evolutionary profile-based AAC in the entire sequence, 50 N-
terminal residues and three secondary structure states, as well 
as output of SignalP (for eukaryotes); SVMs. 

5 animal, 6 plant and 3 
prokaryotic sites 

LocTree2 [79] Evolutionary profile-based conservation of k-mers; SVMs. 
18 eukaryotic, 6 bacterial 
and 3 archaeal sites 

LocTree3 [80] Uses PSI-BLAST homologs if available and LocTree2 otherwise. 
18 eukaryotic, 6 bacterial 
and 3 archaeal sites 

CELLO v.2.5 
[81, 82] 

Whole sequence-based frequencies of amino acids, di-peptides, 
partitioned amino acids and physico-chemical properties of 
amino acids; SVMs. 

12 eukaryotic and 5 
bacterial sites 

MultiLoc2 [83] 
AAC in entire sequence and N-terminal region, presence of 
sorting signals, phylogenetic profiles and Gene Ontology terms; 
SVMs. 

9 animal/fungal sites and 
10 plant sites 

PSORTb 3.0 
[84] 

Sequence homologs; BLAST-P, frequent site-specific sub-
sequences; SVMs, motifs and profiles derived from PROSITE 
[85], outer membrane motifs and transmembrane helices; HMM, 
signal peptides and their cleavage sites; HMM. All predictions 
are combined in a Bayesian network. 

4 archaea/Gram-positive 
bacterial sites and 5 
Gram-negative bacterial 
sites 

WolFP SORT 
[86] 

Sequence length, whole sequence-based AAC, presence of 
sorting signals and functional motifs, physico-chemical 
properties of amino acids; k-nearest neighbor. 

12 eukaryotic sites 

Table 1: Selected methods for sub-cellular localization prediction. For each method the table 

lists: (i) its name, (ii) features used for the prediction and the algorithm for classification (iii) predicted 

sub-cellular localization sites or their number and the source organism for input sequences. 
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Sequence homology-based methods 

Homology-based inference for a protein of unknown localization U implies finding a protein 

with experimental localization annotation K that is sequence similar to U. This approach 

works, because similar sequences have similar function [87-92] and are native to the same 

sub-cellular localization [67]. Often, the reason for the connection between sequence 

similarity and the same localization is related to the same evolutionary constraints [93]. 

Several studies have observed a sharp conservation threshold of 50-60% sequence identity, 

above which pairs of proteins tend to have the same function and below which the function 

is different [94-96]. Other studies however indicate that these levels of sequence similarity 

might not be sufficient for accurate transfer of functional annotation [67, 97]. Therefore, 

common mistakes when searching databases for sequence homologs include: (i) using the 

best database hit omitting the knowledge about adequate conservation threshold for 

sequence similarity and (ii) ignoring the domain organization of proteins. Homology-based 

inferences are often used in combination with other prediction approaches [80, 98, 99]. 

Despite being most accurate for annotating protein sub-cellular localization, homology-

based methods cannot annotate entire proteomes, as they are only applicable to proteins for 

which annotated homologs are available. For human they annotate 77% of the proteome, for 

yeast 66% and for some prokaryotes this number is lower than 1% (Chapter 3). 

Sorting signal-based methods 

Many methods have been developed to predict protein localization based on the 

identification of local sequence motifs, such as, nuclear localization and export signals for 

protein localization in the nucleus [100, 101] and its subsequent export [76, 102], N-terminal 

signal peptides for protein secretion [103, 104], or targeting peptides for localization in 

mitochondria and chloroplasts [105, 106] .  

 The first widely used method for the prediction of N-terminal sorting signals 

originates from the early work on secretory signal peptides of von Hejne [74, 107-110] and 

dates back to 1986 [111]. This method uses weight matrices, calculated from the counts of 

amino acids in observed signal peptides, as a linear discriminant function for the prediction 

of secretory proteins. The prediction accuracy for this method was reported to be 75-80%. 

Modern prediction methods employ machine learning algorithms, such as Neural Networks 

and Hidden Markov Models that learn to automatically extract correlations from the 

sequence data, using a set of experimentally annotated proteins as input [106, 112]. These 
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methods boosted the prediction performance of secreted proteins to 90% accuracy. Now, it 

is possible to accurately predict N-terminal signals, such as secretory signals peptides [69, 

71, 113, 114], mitochondrial targeting peptides [69, 114-118] and chloroplast targeting 

peptides [69, 114, 115, 119, 120] using machine learning-based techniques.  

In contrast to N-terminal signal peptides, nuclear localization signals (NLSs) and 

nuclear export signals (NES) can occur anywhere in the amino acid sequence [5, 121]. 

Nuclear signals can be very diverse in the amino acids composition, but in general, NLS 

have an abundance of positively charged residues [21] and NES of hydrophobic residues 

[76]. One of the first attempts to predict NLS was done by Cokol and Rost [100], who 

successfully applied “in silico mutagenesis” approach to predict over 200 novel NLS. Later, 

several methods have been developed to predict NLS and NES using machine learning 

approaches that use information extracted from the signal sequence [75, 76, 122, 123].   

All sorting signals-based methods are limited to those signal sequences that have 

already been experimentally verified. The majority of sorting signals however remains yet 

unknown and for signal patches the situation is even worse. Moreover, the presence of 

secretory peptides does not always guarantee protein secretion, as many proteins with a 

signal peptide are retained in the Golgi apparatus, the ER or in vesicles [5]. Alternatively, 

many secreted proteins use alternative pathways to cross and exit the cell [124-126]. 

Text mining-based methods 

Before functional annotation can make an entry in a biological database, it needs to be 

manually extracted by an expert from the corresponding publication. These publications are 

stored in a public knowledgebase, such as PubMed [127]. Currently, PubMed stores over 25 

million entries of biomedical literature and 500.000 new entries are added to the database 

each year [128]. This enormous source of knowledge is used by automatic text mining 

methods that extract protein localization information from the abstracts and full texts of 

published articles. All identified gene/protein and organism names, as well as localization 

occurrences need to be mapped to a controlled vocabulary or ontology, such as for example 

Gene Ontology [129] terms for localizations and UniProt identifiers for proteins. Such 

mapping presents one of the largest bottlenecks hampering the prediction performance of 

text mining-based methods. The evaluation of text mining methods is done on manually 

annotated corpora, such as GENIA for protein names and localization terms [130]. 

Promising results have been obtained by methods that analyze the impact of GO term co-
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mentions in texts with a Support Vector Machine (SVM) [131] classifier [132-135]. Other 

methods combine information from both biomedical texts and protein sequences [130, 133, 

136, 137]. 

Other text mining-based approaches explore the functional annotation provided in 

UniProt [62], especially the keyword annotation. Currently, UniProt lists over 1,800 different 

keywords, which are organized in a controlled vocabulary of a hierarchical structure (UniProt 

release 2015_12). Several methods have been developed that extract rules from keywords 

by using machine learning methods like probabilistic Bayesian models [138], C4.5 decision 

trees [139, 140] and M-ary classifiers (e.g. k-nearest neighbor [141] and linear least-square 

fit [142]) [77].  

De novo prediction methods 

The most universal prediction methods are de novo methods, as they use no other 

information than that encoded in the protein amino acid sequence for their prediction. De 

novo methods can be applied to virtually any existing protein sequence. The fist de novo 

prediction method was developed by Nishikawa and Ooi who classified intra- and 

extracellular proteins based on the composition of their amino acids [143]. The success of 

this method is intuitively obvious – each sub-cellular compartment is characterized by its 

specific physico-chemical properties, so proteins localized to this compartment must evolve 

a different surface in order to adapt to this environment. Indeed, a correlation between 

protein amino acid composition and its localization has been shown by Andrade and 

colleagues [144]. This finding let to the development of a battery of prediction methods that 

exploit protein surface composition in combination with standard statistical methods [66] and 

machine learning techniques such as neural networks [145]. Because biological data are 

often small and noisy and SVMs are good at dealing with such data [146], SVMs have been 

shown to outperform neural networks-based methods [147]. Later developed methods 

incorporated information about composition of di-peptides [148] and n-peptides [149]. The 

LocTree method, developed by Nair and Rost in 2005 [78], incorporated a number of SVMs 

organized in a binary decision tree that resembled cellular protein sorting. It used amino acid 

composition in the entire sequence, the N-terminal region and in three secondary structure 

states; the composition was derived from evolutionary profiles. LocTree outperformed all 

other methods in the prediction performance.  
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1.5 Overview of this work 

 
Proteins are cellular workhorses involved in nearly all processes that make life. Living cells 

are divided into specific sub-cellular compartments, each responsible for a different cellular 

function. The identification of protein localization within a cell can help in elucidating its 

function, as certain functions can only be performed in certain environments. Immense 

resources have been spent on experimentally unraveling the sub-cellular localization of 

proteins. However, the localization remains experimentally uncharacterized for most 

proteins. This calls for in silico methods to fill in the gap.  

In Chapter 2, I describe LocTree2, a machine learning-based method for predicting 

protein sub-cellular localization that uses new data and lessons learned from other 

predictors published over the last two decades. LocTree2 classifies proteins from all three 

domains of life (i.e. Archaea, Bacteria and Eukaryota) in the so far largest number of sub-

cellular localization compartments. The method outperforms existing resources and 

performs well even when triggered with incomplete and erroneous data. 

In Chapter 3, I present LocTree3, an improvement of LocTree2 by remarkable 25 

percentage points in the prediction performance. The improvement is done through a simple 

trick that combines homology-based inference with machine learning. For a query protein, 

LocTree3 first identifies a sequence homolog in the database of experimentally annotated 

proteins. If a homolog is available, its annotation is transferred to the query protein. 

Otherwise, LocTree2 is triggered for a de novo prediction of sub-cellular localization. 

In Chapter 4, I describe LocNuclei, a predictor for protein localization at even more 

detailed, higher resolution level for nuclear proteins. The nucleus is a very dynamic 

compartment consisting of various areas, each responsible for a different function and thus 

hosting a different set of proteins. Experimental sub-nuclear annotations are challenging. 

LocNuclei is a method that inspired by LocTree3’s success combines homology-based 

inference with machine learning to accurately predict proteins in 13 different sub-nuclear 

compartments. I used LocNuclei to annotate the entire human proteome. 

In Chapter 5, I aim at the discovery of the so-called nuclear localization signals (NLS) 

and nuclear export signals (NES) that are short stretches in the amino acid sequences of 

nuclear proteins. They can be imagined to be “zip code” signals that help in shuttling 
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proteins from the cytoplasm into the nucleus (NLS) and from the nucleus back into the 

cytoplasm (NES). In this work, I again built upon resources and ideas from many other 

groups and increased the set of experimentally known signals by almost an order of 

magnitude by reliable potential signals that await experimental verification.  

In Chapter 6, I present pEffect, a method that challenges the objective of predicting 

pathogenic bacteria from protein sequences. The key to the success lies here again in the 

combination of zip code-like signals with homology-based inference and machine learning. 

The so-called “type III secretion system” is a pivotal mechanism for the transport of 

pathogenic bacterial proteins (so-called “effectors”) into the targeted host cells. Bacteria 

inject their effectors into targeted cells, which during infection convert host resources to work 

to bacterial advantage. pEffect is a method that improves up to 3-fold over the state-of-the-

art. Importantly, it also sheds new light on the mechanism of effector secretion. 

In Chapter 7, I discuss a “linked annotation resource”, which is an open forum for 

convenient collaborations between annotators of biomedical texts. Every important scientific 

discovery is published. Many groups put tremendous effort in mining biomedical literature to 

extract structured protein/gene annotations from largely unstructured texts. However, the 

way of sharing valuable resources still remains at a primitive level (e.g. through exchange of 

archived files). An open forum, in contrast, allows collecting annotations of various types 

(e.g. sub-cellular localization, binding sites, and effects of amino acid substitutions), linking 

them and making publicly available online. On the use case of protein localization I show 

that linked annotations can also significantly complement biological database annotations. 

Finally, I present the main findings and conclusions of this work. 
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2 LocTree2: prediction of protein cellular sorting in all domains 

of life 

2.1 Preface 

 
The knowledge of protein sorting within a cell can help in understanding protein function, as 

certain functions can only be performed in certain environments [1-3]. Though some 

proteins can localize in multiple compartments, most of them are functional within a single 

compartment [4-6]. Due to the sub-cellular localization being an easily definable functional 

feature, many in silico methods have been developed that predict localization [7-18]. 

In this publication, we present a novel method LocTree2 that predicts protein 

localization and addresses several shortcomings of the existing approaches. Namely, the 

method presents a common framework for all proteins in all domains of life that requires only 

the amino acid sequence as input. It accurately classifies proteins in the so far largest 

number of cellular localization classes: 18 classes for eukaryota, 6 for bacteria and 3 for 

archaea. It distinguishes between integral trans-membrane and water-soluble globular 

proteins as good as the best expert methods developed explicitly for this task [19, 20]. Even 

when tested on erroneous and incomplete sequence data, the method reaches high levels 

of performance. Similar to LocTree [13], our method implements a decision tree of 

localization classes imitating the protein sorting mechanism of the cell. Different from 

LocTree, we make binary decisions at all levels of the tree by searching through proteins of 

annotated localization classes with short stretches of k consecutive residues, i.e. potential 

localization motifs. As a proof of principle, we investigate some of the k-mers, which are 

crucial for protein classification, to be Endoplasmic Reticulum-associated. When compared 

to other methods, LocTree2 shows an improved prediction performance on almost all data 

sets tested. As suggested by one of our anonymous reviewers, we re-trained LocTree2 on 

old data (from year 2005) to show the improvement of our method originating from the 

underlying method. Indeed, the data set had only little effect on LocTree2’s performance. 

The study design and methodology was conceived by me and Burkhard Rost. I 

carried out necessary background search. The programming was performed by me with the 

help of Tobias Hamp. All calculations, data analyses and interpretations were done by me 

and Burkhard Rost. The manuscript was drafted by me, Tobias Hamp and Burkhard Rost. 
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2.2 Journal article. Goldberg T., Hamp T., Rost B. Bioinformatics 2012; 

28(18):i458-i465 
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3 LocTree3: improved prediction of protein cellular sorting 

3.1 Preface 

LocTree2 [1], a method described in Chapter 2, accurately predicts proteins in the so far 

largest number of localization classes using machine learning. An independent benchmark 

study of Mooney et al. [2] proved LocTree2 to be a successor and/or compliment of other 

state-of-the-art methods. Another study, of Imai and Nakai [3], suggested a simple 

homology-based inference, i.e. annotation transfer from experimentally annotated sequence 

homologs, to perform on par with or better than advanced machine learning methods. 

In this publication, we compared the performance of LocTree2 (de novo-based 

predictions) with that of PSI-BLAST [4] (homology-based inference) on cross-validated 

sequence-unique development data of Loctree2. We found that PSI-BLAST could, indeed, 

significantly outperform LocTree2 for about half of the proteins in our set, for which 

homologous proteins of known localization were available. For other proteins, the homology-

based inference was not possible. Thus, we argued that whole proteome annotations using 

sequence homology only are rather limited, and suggested a new protocol that combines 

homology-based inference if available with de novo predictions, otherwise. The resulted 

method, LocTree3, outperformed its predecessor LocTree2 by remarkable 25%. We applied 

LocTree3 to the proteomes of all entirely sequenced organisms and showed that in human, 

for instance, localization for 23% of all proteins can only be inferred de novo (for yeast this 

number is 32%, A. thaliana 39%  and archaea A. pernix 92%). Furthermore, this publication 

initiates a discussion that, in our opinion, is of significant importance in the field, as it 

addresses questions such as the reliability of experimental data for localization in current 

databases and of interpretation of the computational prediction results.  

The study design was conceived by me, Henrik Nielsen and Burkhard Rost. I carried 

out necessary background search. The initial evaluation of the performances of homology-

based and de novo predictions was performed by students of the “Protein Prediction II” 

practical course (winter term 2013/14) under my and Maximilian Hecht’s guidance. The 

combination of two sources of prediction into LocTree3 and the method’s subsequent 

evaluation was done by me and Burkhard Rost. I programmed LocTree3, while the 

implementation of the faster version of the Profile Kernel [5, 6] (required for LocTree2) came 

from Tobias Hamp. LocTree3’s web server was implemented by me, Maximilian Hecht, 

Timothy Karl and Guy Yachdav. The manuscript was drafted by me and Burkhard Rost. 
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3.2 Journal article. Goldberg T., Hecht M., Rost B., et al. NAR 2014; 

42:W350-5 
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4 Prediction of nuclear import and nuclear protein sorting 

4.1 Introduction 

 
The nucleus is a membranes-enclosed organelle found in eukaryotic cells. It was the first 

organelle to be discovered as early as in the 17th century [1]. The nucleus contains most of 

the genetic material, organized into chromosomes, and is also the side for DNA replication 

and transcription. Nuclear proteins are synthesized in the cytoplasm and their transportation 

into the nucleus operates differently than to the other sub-cellular compartments, as it 

occurs through a large structure in the nucleus double membrane, the nuclear pore complex 

[3]. For this reason, proteins can be transported in their fully folded confirmation. Protein 

transport can occur between the cytoplasm and the nucleus bi-directionally; often this is 

done through binding to specific proteins, called karyopherins. Karyopherins bind via 

recognition of nuclear localization signals (NLS) for protein import or nuclear export signals 

(NES) for nuclear export in the amino acid sequence of their cargo proteins [4].  

Similar to the compartmentalization of a cell, the nucleus is divided into several 

morphologically distinct compartments, each associated with a different function. However, 

unlike cellular compartments, nuclear compartments are not membrane-enclosed and are 

highly dynamic. Studies have shown that nuclear components can be in continuous flux 

between the compartments and some compartments are formed only during certain cell 

stages through interaction with proteins, RNA and DNA [5, 6]. It has been suggested that 

protein translocation within the nucleus also operates through NLS- and NES-like signals [7, 

8]. However, this mechanism is not well understood [5]. 

In this Chapter, novel method, LocNuclei, is described that associates nuclear 

proteins with 13 sub-nuclear compartments at a high level of overall accuracy Q13 = 62%. 

Similar to LocTree3 (described in Chapter 3), this is done through the combination of 

homology information to proteins with known sub-nuclear association and machine learning 

predictions. In addition, the method is able to predict if a nuclear protein is functional in other 

sub-cellular compartments (e.g. the mitochondria) at the level of overall accuracy Q2 = 72%. 

Applied to 6,230 human proteins, predicted to localize to the nucleus, we identified 77% of 

them to be functional at the nucleoplasm (30% of all annotations), chromatin (17%), 

nucleolus (17%) or PML bodies (13). Plugging in protein-protein interaction data, we found 

most intra-nuclear interactions to occur between proteins of these four localizations.  
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4.2  Compartmentalization of the nucleus 

 
In this work, we distinguished between 13 sub-nuclear compartments, shown in Figure 1 

and briefly described below. 

Cajal bodies: Cajal bodies are small structures that contain coiled threads of the 

marker protein, coilin. The interaction of coilin with other proteins within the Cajal bodies 

appears to increase their functional efficiency, e.g. the modification and assembly of splicing 

machinery [9]. The number and size of the Cajal bodies varies between tissues and 

organisms, as well as during different differentiation and development stages [10]. 

Generally, Cajal bodies are found in cells of high transcriptional activity and splicing 

demands, such as in neuronal and cancer cells  [11].   

Chromatin: Chromatins are fibrous structures forming the chromosomes. The major 

proteins of the chromatin are histones, whose function has been shown to be mediated 

through post-translational modifications [12]. The chromatin is formed through binding of 

histones to the DNA. Its functions include the regulation of gene expression, DNA replication 

and segregation during cell division, as well as DNA damage recognition and repair [13]. 

Chromatin-associated proteins contain a high diversity of motifs, many of which are specific 

to protein-protein interactions. Thus, chromatin proteins appear to abundantly interact 

among each other and with other nuclear proteins, e.g. proteins involved in transcription and 

replication [14].  

Nuclear envelope: The nuclear envelope is a barrier that separates the contents of 

the nucleus from the cytoplasm, and regulates the trafficking of proteins and other 

molecules between these two compartments. In addition, nuclear envelope serves as an 

anchoring site for chromatin that correctly positions the chromosomes within the nucleus, 

and for the cytoskeleton that correctly positions the nucleus within the cell [15]. The nuclear 

envelope consists of two membranes, the outer and the inner nuclear membranes, which 

are like other cellular membranes are phospholipid bilayers [12]. The membranes are 

continuous with the Endoplasmic Reticulum (ER), though each of them is associated with 

proteins that are not enriched in the ER [15].  
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Figure 1: Sub-nuclear compartments. The figure shows sub-nuclear compartments predicted by 

LocNuclei (the spindle apparatus and the kinetochores are not shown). Figure adapted from [16]. 

 

Nuclear lamina: The nuclear lamina is an essential component of metazoan cells, but 

is not found in unicellular organisms and plants [17] . It is localized at the interface between 

chromatin and the inner nuclear membrane. The nuclear lamina is composed of lamins, type 

V intermediate filament proteins, and many lamins-interacting proteins. This layer was found 

to be also closely associated with the nuclear pore complexes [17]. The functions of the 

nuclear lamina include DNA replication, RNA transcription, chromatin organization, cell cycle 

regulation, cell development and differentiation, nuclear migration, and apoptosis [18, 19] 

Nuclear matrix: The nuclear matrix is a network of fibrous structure extending 

throughout the whole interior of the nucleus [20]. The exact function role if the nuclear matrix 

remains unclear [21] . Though, proteins that were found to be associated with the matrix are 

known to be involved in a number of nuclear activities, such as DNA replication and 

transcription, and RNA processing and transport [22].  

Nuclear pore complex: A nuclear pore complex is a highly structured assembly of 

proteins that form a tunnel across the nuclear envelope for the regulated transport of 

proteins and other molecules across it. A single nuclear pore complex comprises up to 500 
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copies of approximately 50 highly conserved distinct proteins [15, 23]. The nucleus of the 

human cell can contain up to 3,000 nuclear pore complexes [23]. In addition to the main 

function as the nuclear gatekeepers, the proteins of the nuclear pore complexes were found 

to be associated with other functions, such as the regulation of gene expression [23]. 

Nuclear speckles: Nuclear speckles are dynamic structures located in the 

interchromatin region of the nucleoplasm and enriched in pre-mRNA splicing factors. They 

serve as the side of storage, assembly and modification of splicing factors. The splicing 

event however does not occur at nuclear speckles. The size and the number of nuclear 

speckles vary between different cell types and within a cell type. Furthermore, the 

components of nuclear speckles can be exchanged with the nucleoplasm and other nuclear 

compartments [24]. Some of the speckle components exhibit a speckle targeting signal [14]. 

Nucleolus: The nucleolus is the largest, densest and the best studied sub-nuclear 

compartment. There are one or several nucleoli in mot eukaryotic cells [25]. Although 

nucleoli are most famous for the functional role in the biogenesis of ribosomes, they are also 

involved in numerous other processes, including RNA modification, cell-cycle control and 

stress response [26]. Furthermore, the nucleolus constraints the movement of chromatin, 

which implicates its role in higher-order chromatin arrangement [27]. Over 700 distinct 

proteins have been associated to localize in the nucleolus [28] and a nucleolar targeting 

signal has recently been described [29]. 

Nucleoplasm: The nucleoplasm is, similarly to the cytoplasm, a highly gelatinous 

liquid that is held within the nuclear envelope and that acts as a suspension substance for 

nuclear compartments. It is rich in protein enzymes and other material required for the 

synthesis of RNA and DNA [30, 31]. Another major constituent of the nucleoplasm are 

chromosomes. The nucleoplasm plays an important role in the maintenance of the nuclear 

shape and the transport of molecules between the nucleus and the cytoplasm.  

Perinucleolar compartment: The perinucleolar compartment is an irregularly shaped 

structure found at the periphery of the nucleolus. This compartment is largely found in 

transformed and cancer cells [32, 33]. It forms at late telophase and disassembles at the 

beginning of mitosis [32]. The perinucleolar compartment in enriched with by RNA 

polymerase III transcribed RNAs and RNA-binding proteins, many of which are exchanged 

with other sub-nuclear compartments [33]. 
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PML bodies: PML bodies are dynamic nuclear matrix-associated structures that 

require the ProMyelocytic Leukaemia (PML) protein for their formation and incorporate a 

number of other proteins that shuffle between the PML bodies and other sub-nuclear 

compartments [34]. PML bodies play a role in transcription, apoptosis promotion, post-

translational modifications, suppression of oncogenic transformation, DNA repair and 

antiviral defense [15, 34].  

Kinetochore: The kinetochores are multiprotein control modules that anchor 

segregating chromosomes to spindle microtubules and enforce their correct movement to 

two opposite poles of the spindle apparatus. The kinetochores are assembled during cell 

division (mitosis and meiosis), and many of their components are highly dynamic and cycle 

between the kinetochores and the spindle apparatus [34]. 

Spindle apparatus: The spindle apparatus segregates chromosomes during cell 

division in two daughter cells. The spindle apparatus is organized by centrosomes and 

constitutes spindle poles, kinetochores and hundreds of microtubule-associated proteins 

[35]. The apparatus is located at two opposite poles of the cell to ensure the separation of 

replicating chromosomes in two exactly equal sets. The failure of correct chromosomes 

segregation can lead to chromosomal instability, aneuploidy or tetraploidy (both leading to 

cancer) and cell death [35]. 
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4.3  Materials and Methods 

 
Data sets for development and evaluation 

We downloaded experimentally annotated nuclear proteins together with their annotations of 

the sub-nuclear localization, if available, from  the HPRD [36], NMPdb [37], NOPdb [38], 

NPD [39], NSort/DB [40] and Swiss-Prot [41] databases. Because databases use different 

terms for annotations of some sub-nuclear compartments, we normalized annotations from 

different databased to a set of fixed keywords, e.g. we normalized ‘PML-NBs’ and ‘Nuclear 

dots’ to ‘PML bodies’ (Supplementary Table S1 in the Appendix). This resulted in a set of 13 

distinct keywords describing our sub-nuclear data set.  

 Out of total 12,055 proteins annotated experimentally as nuclear, only 3,522 (29%) 

proteins were additionally annotated to be associated with one or more sub-nuclear 

compartment. We homology reduced this set at HVAL < 20 [42, 43] using UniqueProt [44]. 

For alignments longer than 250 residues, HVAL < 20 implies a maximal pairwise sequence 

identity of 40% [43].  At lower HVALs, the data set became too small for meaningful 

performance estimates (e.g. at HVAL < 0, we had in five of 13 classes less than 10 proteins 

annotated to be localized in the corresponding class). The final sequence unique sub-

nuclear set comprised 1,934 proteins (Table S2).  

 Furthermore, out of total 12,055 nuclear proteins, 4,722 were annotated to be 

localized in at least one additional sub-cellular compartment (e.g. the mitochondria). We 

homology reduced this set of 12,055 proteins at HVAL < 0 (maximal pairwise sequence 

identity of 20% over 250 residues aligned) and obtained 1,098 sequence-unique proteins, of 

which 559 were annotated to exclusively localize to the nucleus. 

The resulted prediction method was thus trained to differentiate between (i) proteins 

localized to the nucleus and proteins localized to the nucleus and other sub-cellular 

compartments, as well as between (ii) proteins of 13 sub-nuclear localization classes. 
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Prediction methods 

Similarly to LocTree3 [45], a high performance method for the prediction of protein sub-

cellular localization (Chapter 3), LocNuclei combines homology-based predictions if 

available with de novo predictions otherwise. We determined all parameters for our final 

predictor LocNuclei in a five-fold cross-validation setting, i.e. we split the entire Development 

set into five equally-sized subsets. We trained five models, each on a different combination 

of four of these subsets, and tested them on the remaining one. 

Homology-based predictions: We transferred annotations by homology using PSI-

BLAST [46] alignments. For all proteins of known localization, we generated PSI-BLAST 

profiles with two iterations and E-value ≤ 10-3 using an 80% non-redundant database 

combining UniProt [47] and PDB [48]. We then aligned these profiles at E-value ≤ 10-3 

against non-redundant proteins in our Development set (1,888 proteins for the prediction of 

13 sub-nuclear localizations and 1,037 proteins for the prediction of nuclear proteins 

shuffling to other sub-cellular compartments). For performance estimates, we excluded the 

PSI-BLAST self-hits. Similar to LocTree3, we transferred annotation to the query protein 

from the hit with the highest pairwise sequence identity of all retrieved alignments. 

De novo prediction: We used the Support Vector Machine (SVM) [49] implementation 

of LibSVM [50] and the Profile Kernel function [51, 52] (Chapter 2). We trained 13 different 

SVM classifiers to predict 13 sub-nuclear localizations, where each classifier was trained to 

discriminate between proteins of a particular sub-nuclear class and proteins of all other 

classes. To predict nuclear proteins that are travelers to other sub-cellular compartments, 

we separately trained another SVM. 

NSort: NSort [53] is a framework, developed in 2010, of eight Bayesian Network-

based classifiers that predict protein sub-nuclear localization in eight classes (nucleolus, 

perinucleolar region, PML bodies, nuclear speckle, Cajal bodies, chromatin and nuclear 

pore complexes). Each classifier operates from biological features including protein 

sequence, proteins interactions, domain and post-translational modification. Each prediction 

of NSort can be traced back to the feature contributing most to the result. 
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4.4  Results and Discussion 

 
High performance values: Q13 = 62% and Q2 = 72% 

LocNuclei is a predictor developed to discriminate between (i) proteins of 13 sub-nuclear 

localization classes and (ii) proteins localized to the nucleus only and proteins localized to 

the nucleus and other sub-cellular compartments. For each of these two prediction tasks, we 

developed our predictor in a five-fold cross-validation setting using the sequence-unique 

Development set (Chapter 4.2) and optimized the parameters of its components (PSI-

BLAST and SVM-based inferences) separately.  

For the prediction task of 13 sub-nuclear compartments, the homology-based 

inference for proteins for which experimentally annotated homologs were available achieved 

the highest level of overall performance (Chapter 2.2) Q13 = 68% at E-value ≤ 10-50 (Figure 

2, black arrow). However, when applied to the complete set, the performance at the same E-

value dropped significantly to Q13 = 18%. This results was still significantly above random 

(<8%), showing that the homology-based inference works, though the annotations of sub-

nuclear localizations are largely missing. On the same test set, our de novo-based inference 

employing a battery of 13 SVM classifiers achieved an almost 3-fold higher level of Q13 = 

59%. This result encouraged us to use a simple protocol, introduced in our previous work, 

LocTree3 [45], that unites PSI-BLAST whenever possible and the SVM if no PSI-BLAST 

results were available. We chose the PSI-BLAST E-value of 10-20 as the decision threshold 

between PSI-BLAST and de novo inferences. The combined method, LocNuclei, 

outperformed both its components, reaching an overall accuracy Q13 = 62 ± 3% (Figure 2).  

Similarly, for the second prediction task, we combined homology-based PSI-BLAST 

with the Profile Kernel SVM to predict nuclear proteins functional in other sub-cellular 

compartments. We found LocNuclei to perform best at the PSI-BLAST E-value ≤ 10-5, 

reaching an overall performance Q2 = 72 ± 2% (Figure S1 in the Appendix). 

LocNuclei best on novel proteins 

Comparing prediction performance of our method to the published performance of NSort 

(the only available sub-nuclear predictor during the development of LocNuclei) has only little 

value due to differences in the training and test sets. Running NSort on our independent 

sets (i.e. proteins experimentally annotated after the development of NSort) was also 

problematic,  because  NSort’s  source  code  was  no  longer  available.  Thus,   the   only  
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Figure 2: E-value thresholds for the homology-based component of LocNuclei (prediction of 

13 sub-nuclear classes). The accuracy Q13 (Chapter 2.2) for classifying proteins in 13 sub-nuclear 

compartments using the homology-based inference with PSI-BLAST (based on 3,522 experimentally 

annotated proteins) varies at different E-value thresholds. For proteins for which a homolog is 

available, the highest accuracy Q13 = 68% is achieved at E-value ≤ 10
-50

 (black arrow). However, if 

considering proteins for which no homology is available, this value drops to 18%. The performance of 

SVMs on the same set is Q13 = 59% (black horizontal line, dotted lines mark the values considering 

the standard error). To determine, at which E-value threshold to use PSI-BLAST and at which the 

ensemble of 13 SVMs, we needed to consider the performance of the final method LocNuclei at the 

same threshold. We found LocNuclei to be most conservative at E-value ≤ 10
-20

. 

 

meaningful way to benchmark the performance of these two methods was to train and test 

LocNuclei on the exactly same set as NSort was trained and tested upon. Towards this end, 

we downloaded the data set of LocNuclei from http://nsort.org/db/ and split it into five 

subsets to train our model on four of them and to test on the remaining one. We rotated 

these sets five times, so that each protein in the NSort set was tested exactly once. We 

computed area under the ROC curve (AUC) from the average of five splits as the 

performance estimate. For training, we used the parameters that we found to perform best  

http://nsort.org/db/
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Sub-nuclear 

compartment 
Number of proteins AUC NSort AUC LocNuclei 

Perinucleolar 24 0.80 0.82 

Cajal body 49 0.60 0.72 

Nuclear pore complex 51 0.79 0.91 

Nuclear lamina 77 0.70 0.83 

PML bodies 91 0.77 0.81 

Chromatin 323 0.71 0.80 

Nuclear speckle 403 0.71 0.79 

Nucleolus 598 0.60 0.74 

Sum/ Mean 1,285 0.71 0.80 

Table 1: Performance comparison of LocNuclei to NSort. We used the development data of 

NSort, comprising 1,285 sequence-unique proteins annotated with eight sub-nuclear localization 

classes to train LocNuclei. For training, we used those parameters that we found to perform best on 

our development set. On proteins from all eight sub-nuclear localizations tested, LocNuclei 

outperformed NSort. The overall cross-validated prediction accuracy of LocNuclei was 0.80, while 

that of NSort was 0.71. The values for NSort were extracted from the corresponding publication [53].     

 

on LocNuclei’s development set. The data set of NSort contained proteins of eight sub-

nuclear localizations; for all of them LocNuclei outperformed NSort (Table 1). The mean 

AUC (over all eight compartments) was 0.71 for NSort and 0.80 for LocNuclei. Thus, we 

could show that the improvement of LocNuclei originated from the underlying method 

advancement and not from the difference in the composition of the data sets. 

Over 30% of nuclear proteins predicted to reside in the nucleolus 

After completing the development, we applied LocNuclei to the human nucleosome protein 

data. Towards this end, we downloaded the reference human proteome from the European 

Bioinformatics Institute (EBI: http://www.ebi.ac.uk/reference_proteomes) and identified 

nuclear and nuclear membrane proteins in it using LocTree3 [45]. The resulted data set of 

6,230 proteins was then provided to LocNuclei as input. We predicted over 1/3 of them to be 

travelers, i.e. localize to additional sub-cellular compartments other than nucleus.  For about 

11% of all nuclear proteins we could  not  predict  any  sub-nuclear  localization,  for  36%  

http://www.ebi.ac.uk/reference_proteomes
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Figure 3: Composition of sub-nuclear compartments in the human proteome and LocNuclei’s 

development set. The inner ring of the pie chart represents the composition of LocNuclei’s 

development set (assembled from nuclear proteins of various organisms), while the outer ring 

represents the composition of human 6,230 nuclear proteins (predicted by LocTree3 [45] from EBI’s 

human reference proteome). Both data sets differ significantly in their composition. Thus, the 

composition of the predicted human nucleosome is not just a reflection of the development set. 

proteins we predicted localization in one sub-nuclear compartment, and for remaining 53% 

localization in at least two compartments. Furthermore, we predicted 30% of all proteins to 

be associated with the nucleoplasm (Figure 3), which is a large aquatic compartment 

surrounding the nucleus interior. Many proteins including enzymes, specific receptors of 

hormones and of other effectors, proteins of yet unknown function, as well as proteins 

shuttling between the nucleus and the cytoplasm are found in the nucleoplasm [30, 31]. The 

second largest predicted sub-nuclear localization compartment was chromatin (17%), a 

structure that is built from the interaction with the DNA. The role of the chromatin is in the 

maintenance of DNA and the regulation of its transcription. It is known that many proteins 

that compose the chromatin are exchanged with other sub-nuclear compartments, such as 

the nucleolus [14, 54], which is the third largest class of human nuclear proteins (17%) 

predicted by LocNuclei. Overall, the composition of predicted sub-nuclear compartments in 

human did not resemble that of our development set, suggesting that there is no correlation 

between the predictions of both sets and the predicted compartmentalization of the human 

nucleosome is likely to reflect its true composition. 
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Most protein-protein interactions take place between four sub-nuclear compartments 

Protein-protein interactions (PPIs) are central to almost all biological processes. Thus, to 

better understand biological mechanisms, the knowledge of PPIs that underlie them is 

indispensable [55]. We used the set of human proteins with the predicted annotations of 

sub-nuclear localizations and mapped them to the experimentally determined protein-protein 

interaction data from the Human Protein Reference Database (HPRD) [36]. We found most 

protein-protein interactions to occur within and between four largest sub-nuclear 

compartments, i.e. nucleoplasm, chromatin, nucleolus and PML bodies (Figure 4). 

Furthermore, the proteins of nuclear speckles appeared to abundantly  interact   with  the  

 

Figure 4: Number of protein-protein interactions (PPIs) in the human nucleosome. The figure 

plots the number of PPIs within and between 13 sub-nuclear compartments. We extracted 

experimentally annotated PPIs from the HPRD database [36] and mapped those in human proteins of 

predicted 13 sub-nuclear compartments. PPIs are most frequent within four largest compartments 

(nucleoplasm, chromatin, nucleolus and PML bodies; light gray colored cells) and between them. 
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proteins localized at nucleoplasm and  nucleolus. Interestingly, we identified perinucleolar 

proteins, which compose the smallest class of by LocNuclei predicted sub-nuclear 

compartments (<0.4% of all annotations in the human nucleosome), to be another outlier in 

the high number of PPIs. Namely, we identified perinucleolar proteins to often bind proteins 

of the neighboring compartments: nucleolus, nucleoplasm and chromatin.  

Nuclear proteins tend to be disordered 

Recent studies have shown that in order to function, some proteins may not adopt unique 

three dimensional structures in isolation [56]. Instead, functional proteins may contain 

largely unstructured regions (30 amino acids and more) that sample a large portion of their 

available conformational space. These proteins are called disordered. Studies of different 

genomes have shown that disorder is very abundant in nature and can be more frequently 

observed in eukaryotes than in other domains of life [56-60]. Furthermore, it has been 

shown that many disordered proteins are nuclear [61], involved in e.g. DNA and RNA 

binding [62, 63], nuclear pore transport [64] and transcription [65]. In this experiment, we 

analyzed the prevalence of protein disorder within the nucleus and compared it to other sub-

cellular compartments. We predicted protein disorder with NorsNet [66], a machine learning-

based method that predicts unstructured regions of 70 or more consecutive residues.   

Using NorsNet on human proteins with by LocTree3 predicted sub-cellular 

localization annotations, we identified disordered proteins to be over five times more 

frequent in the nucleus than in mitochondria (mean: 55% vs. 10%;  Figure 5A) and almost 

twice as frequent in the nucleus than in the extra-cellular space (mean: 55% vs. 31%). The 

distribution of disordered proteins within the individual sub-nuclear compartments also 

varied substantially (Figure 5B). We identified strongest preferences for disordered proteins 

at the compartments of dynamic structures, such as nuclear matrix (mean: 98%) and 

nuclear speckles (mean: 86%). The lowest percentage of disordered proteins was identified 

at rather stable complexes, such as nuclear lamina, nuclear envelope, kinetochores and the 

nuclear pore complexes (all below 15%; Figure 5B).  
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Figure 5: Distribution of disordered proteins in the nucleus and other sub-cellular 

compartments. We predicted protein disorder (at least 70 unstructured consecutive residues) using 

NorsNet [66] and plotted the fraction of disordered proteins (Y-axis) in different sub-cellular and sub-

nuclear compartments (X-axis). Numbers in parenthesis are numbers of proteins annotated to 

localize in a particular compartment. (A) The highest fraction of disordered proteins appears to be in 

the nucleus (mean: 55%), compared to mitochondrial (10%) and secreted (31%) proteins. Note, 

nuclear proteins with additional localizations in other sub-cellular compartments are less disordered 

(travelers: 44%) than the sum of all nuclear proteins (55%). (B) Within the nucleus, the most 

disordered are nuclear matrix and nuclear speckle proteins, while the least disordered are proteins 

localized at nuclear pore complexes, kinetochores, nuclear envelope and nuclear lamina. 
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5 NLSDb2.0: a database of nuclear import and export signals 

5.1 Introduction 

 

Eukaryotic cells transport proteins in and out of the nucleus through nuclear pore 

complexes. This transport is often mediated by specific molecules, called karyopherins, that 

recognize nuclear localization signals (NLS) or nuclear export signals (NES) in their cargo 

proteins [1]. The best experimentally described NLS are monopartite and bipartite signals [2-

4]. Monopartite signals are characterized by a short stretch of amino acids, which are mostly 

basic, and bipartite signals are composed of two monopartite signals separated by a 

variable 10-12 amino acid linker region [5]. A more recently observed signal is the Proline-

Tyrosine NLS (PY-NLS) [6]. PY-NLS can be classified as hydrophobic or basic, dependent 

on its N-terminal region that is followed by the consensus sequence of an arginine (R), 

lysine (K) or histidine (H), then a proline and tyrosine (R/H/KX-(2-5)-PY). The classical NES 

are represented by leucine-reach NES, first identified in HIV-1 [7, 8]. Several solutions have 

been proposed to describe the consensus sequence of NES [9-11], but they did not suffice 

to identify new NES-containing proteins [12]. Note that not all nuclear proteins are 

transported via the signals described above [13, 14]. Furthermore, sequences of many non-

nuclear proteins match the sequences of nuclear import and export signals. 

 NLSdb is a comprehensive database that for the first time attempted to collect all 

experimentally verified NLS in a single resource [15]. It contains 114 NLS published before 

2000. In addition, the database provides amino acid sequences of 194 potential NLS, 

discovered through “in silico mutagenesis” from the set of experimental signals [16]. Several 

of these potential NLS have already been confirmed experimentally (e.g. [17-22] ). 

In this Chapter, an update of NLSdb to the current state of available data is 

described. We collected experimentally verified 2,391 NLS published in literature after 2000, 

and 817 experimentally verified and published NES. We applied the procedure of “in silico 

mutagenesis” [16] to these sets and discovered novel 4,310 potential NLS and 1,768 

potential NES. Our final set matched 43% and 28% of all known nuclear proteins with NLS 

and NES, respectively, and none currently known non-nuclear protein. By clustering the 

sequences of experimental signals, we identified a clear separation of NLS in 40 distinct 

clusters and of NES in 27 clusters. Thus, the consensus sequence describing each of these 

clusters can be used as a consensus for a different type of a nuclear signal. NLSdb 2.0 is 

available online at https://rostlab.org/services/nlsdb2/. 

https://rostlab.org/services/nlsdb2/
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5.2  Materials and Methods 

 

Collection of a trusted set of nuclear signals 

We extracted amino acid sequences of experimentally annotated NLS and NES from 

literature [5, 6, 11, 23-27] and the ValidNES [28], NESbase [10], NESdb [29] and Swiss-Prot 

(release 2015_01) [30] databases. For literature searches we used the criteria described by 

the authors of NLSdb [26]. Namely, to accept a signal as experimentally confirmed, the 

signal needs to be proven sufficient to mediate the nuclear transport of a non-nuclear 

protein to the nucleus and its deletion must result in the prevention of protein nuclear 

transport. For Swiss-Prot searches we used keywords ‘importin binding signal‘, ‘in vitro 

NLS‘, ‘nuclear localization signal‘, ‘bipartite NLS‘, ‘PY-NLS’, ‘nuclear import signal’ and  

‘signal for nuclear transport’ to identify NLS. Accordingly, we used keywords ‘nuclear export 

signal’ and ‘nuclear export sequence’ to identify NES. We included only those annotations 

that were supported with the following Evidence Codes Ontology (ECO) [31] codes: (i) 

ECO:0000269 (manually curated information for which there is published experimental 

evidence); (ii) ECO:0000250 (manually curated information which has been propagated from 

a related experimentally characterized protein); (iii) ECO:0000305 (manually curated 

information which has been inferred by a curator based on his/her scientific knowledge or on 

the scientific content of an article); and (iv) ECO:0000255 (manual assertions for information 

which has been generated by the UniProt automatic annotation system or by various 

sequence analysis programs). Signal sequences from other databases were included only if 

their annotations were supported by experimental findings. Table 1 provides an overview of 

the number of nuclear signal sequences extracted from each source.  

 

Source 
Lange et al.[23] Lee et al. [6] & 

Suel et al. [25] 

SeqNLS [24] NLSdb [16] Swiss-Prot [30] 

Number of 
unique NLS  

104 19 69 114 2,227 

Source 
García-

Santisteban [27] 
NESbase [10] VALidNES [28] NESdb [29] Swiss-Prot [30] 

Number of 
unique NES 

32 73 261 175 433 

Table 1: Composition of the initial set of NLSdb 2.0 signals. The numbers of unique sequences of 

nuclear localization signals (NLS) and nuclear export signals (NLS) extracted from each source are 

provided. Total numbers of unique signals extracted from all sources: 2,391 for NLS and 817 for NES. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Garc%C3%ADa-Santisteban%20I%5BAuthor%5D&cauthor=true&cauthor_uid=21888622
http://www.ncbi.nlm.nih.gov/pubmed/?term=Garc%C3%ADa-Santisteban%20I%5BAuthor%5D&cauthor=true&cauthor_uid=21888622
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Sets of nuclear and non-nuclear proteins 

We downloaded protein sequences with specific annotations of sub-cellular localization from 

Swiss-Prot (release 2015_01). Included were only experimental annotations: (i) tagged with 

the ECO code ECO:0000269 (manually curated information for which there is published 

experimental evidence) and (ii) annotations lacking any ECO code and also lacking 

keywords ‘potential, ‘probable’ or ‘by similarity’, denoting non-experimental evidence. Based 

on the localization annotation, we sorted proteins in two sets: (i) nuclear proteins (true 

positives; 6,538 proteins) and (ii) non-nuclear proteins (true negatives; 23,028 proteins). We 

applied UniqueProt [32] at HSSP-value ≤ 0 [33, 34] to each of these sets individually and 

identified 761 distinct structural families for nuclear proteins and  2,434 distinct structural 

families for non-nuclear proteins. We used sets of nuclear and non-nuclear proteins to test 

the validity of all potential signals, obtained through the “in silico mutagenesis” approach 

(described below). We required sequences of valid NLS and NES to match in nuclear 

proteins and to not match in non-nuclear proteins. 

 

In silico mutagenesis 

To increase the set of trusted (i.e. experimentally annotated or by experts verified) NLS and 

NES by potential, experimentally yet un-identified signals, we applied the “in silico 

mutagenesis” approach, similar to that described in [16]. We performed the following steps: 

(i) Starting from the trusted set of 2,391 NLS and 817 NES, we removed signals 

matching sequences of any 23,028 non-nuclear proteins extracted from Swiss-

Prot. The resulted trusted set of signals comprised 310 NLS and 166 NES. 

(ii) Then, we changed amino acids at each position of each signal in the reduced 

trusted set (19 substitutions for each amino acid) and mapped new signals in the 

sequences of nuclear and non-nuclear proteins. We kept only those potential 

NLS and NES that matched nuclear proteins and no non-nuclear protein.  

(iii) Finally, we shortened each signal from our potential set by one amino acid at 

each end of the sequence and repeated step (ii). For each potential signal we 

kept only its shortest sub-sequence matching exclusively in nuclear proteins. The 

final set of potential signals comprised 4,310 NLS and 1,768 NES. 
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Signal clustering 

To analyze sequence variability of nuclear signals in our sets, we performed the following 

steps to each of our trusted sets of NLS and NES separately: 

(i) Construct an evolutionary distance matrix for sequences of all signals. We 

aligned all-against-all sequences of nuclear signals in our set using the maximum 

likelihood method, described by Thorne et al. [35]. The JTT matrix from the work 

of Jones et al. [36] was used as a rate matrix. 

(ii) Derive a phylogenetic tree from the distance matrix. We used the “Neighbor” 

implementation from the PHYLIP package [37] to apply the UPGMA clustering 

method [38] on the distance matrix to calculate the evolutionary tree. 

(iii) Determine sub-groups within the tree. To identify distinct subgroups within the 

tree, or clusters of sequence-similar nuclear signals, we applied a graph-pruning 

method suggested by Krause et al. [39]. Briefly summarized, starting from each 

leaf until reaching the root, the method calculates at each node of the tree the 

ratio between the size of the tree of a parent node and the size of the tree at the 

current note. The node at which the ratio is largest is used as a cut-point and its 

subtree as a distinct cluster. Following this approach, each leaf (i.e. nuclear 

signal) is assigned to exactly one cluster. 

(iv) Calculate a consensus sequence for each cluster. For each cluster identified in 

the previous step, we represented its consensus sequence as a position weight 

matrix (PWM), generated by aligning all sequences of a cluster using MAFFT 

[40]. We visualized PWMs as sequence logos [41] using WebLogo [42]. 
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5.3 Results and Discussion 

 
Known signals vary in length and protein sequences they occur in 

Our trusted data set of unique nuclear signals contained 1,960 monopartite nuclear 

localization signals (NLS; 61.1% of the whole data set), 413 bipartite NLS (12.9%), 18 PY-

NLS (0.6%) and 817 nuclear export signals (NES; 25.4%). The length distribution of these 

signals is shown in Figure 1. About one third of signals in our set was formed through 

monopartite NLS of length ranging between 4 and 10 amino acids (60.2% of all monopartite 

NLS can be found in this range; Supplementary Figure S2 in the Appendix). Interestingly, 

the second largest group of monopartite signals (20.1%) falls into the range between 15 and 

19 amino acids, where the most of bipartite NLS (61%; Figure S2) can be found. This result 

suggests possible annotation mistakes of monopartite NLS in this range. Possibly, all 

monopartite NLS outside the range of the first peak (i.e. longer than 15 amino acids, 30% of 

all monopartite NLS) are in fact bipartite signals. All PY-NLS in our set were between 16 and 

36 amino acids long. Finally, typical NES seemed to have a sequence length varying 

between 9 and 13 amino acids. 

 Further, we tested whether protein sequences containing similar nuclear signals also 

tend have a high overall sequence similarity. The monopartite NLS in our trusted set were 

annotated to localize in sequences of 4,243 unique proteins, the bipartite NLS in sequences 

of 808 unique proteins, the PY-NLS in sequences of 19 unique proteins and the NES in 

sequences of 1,715 unique proteins. In total, 3,208 unique signal sequences in our trusted 

set were annotated in 4,492 unique proteins, indicating that, on average, each signal 

occurred in more than one protein (the ratio between the number of proteins and the number 

of signals occurring in these proteins was 1.40; Table 2). We applied cd-hit [43] to the 

protein set to reduce it at 100%, 80%, 60% and 40% sequence identity and UniqueProt [32] 

to eliminate all proteins with a pairwise sequence identity over 20%. At 100% sequence 

identity, we had 4,120 unique proteins with annotations of 3,138 unique nuclear signals 

(ratio 1.31), implying that at this high sequence identity, the prediction of NLS and NES from 

sequences of annotated homologous proteins is in principle possible. This is, however, 

different at lower sequence identity levels. Namely, at sequence identity of 80%, proteins do 

not have annotations of exactly the same nuclear targeting signals anymore. Thus, the 

prediction of nuclear signals from sequence homology at levels below 80% sequence 

identity is likely to fail.  
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Figure 1: Sequence length distribution of nuclear signals in the trusted set. The trusted set 

comprised unique 1,960 monopartite NLS, 413 bipartite NLS, 18 PY-NLS and 817 NES, which 

together formed 100% of the data shown in the figure. Most monopartite signals peak at 4-10 and 15-

19 amino acids, with the latter being also the peak for bipartite signals. Probably, monopartite signals 

with sequence length exceeding 13 residues are erroneously annotated bipartite signals. Note, we do 

not show results for signals longer than 70 amino acids, as they constitute <1.2% of our trusted set. 

 

. Sequence identity 
Number of unique 

proteins 
Number of unique 

nuclear signals  
Ratio: number of proteins/ 

number of signals 

All proteins 4,492 3,208 1.40 

100% 4,120 3,138 1.31 

80% 1,968 2,375 0.82 

60% 1,552 1,948 0.79 

40% 1,280 1,667 0.77 

20% 216 291 0.74 

Table 2: Different proteins contain different nuclear signals. The data set of 4,492 distinct 

proteins containing 3,208 distinct nuclear signals from our trusted set was homology reduced at 

100%, 80%, 60% and 40% sequence identity using cd-hit [32] and at 20% sequence identity using 

UniqueProt [36]. For each redundancy reduced protein set, we monitored the number of annotated 

nuclear signals in the set. While proteins of high sequence similarity tend to share some of nuclear 

signals, this is not the case already at similarity levels ≤80%.  



 Chapter 5 

103 
 

Most annotated nuclear signals are human 

 

Nuclear targeting signals in our trusted set were annotated in a high number of 486 distinct 

species (Table 3). Of all signals, 70% were of virus origin and 29% were eukaryotic. Only 

monopartite NLS were annotated in bacteria. The high diversity within the virus domain 

clearly shows the focus of virus-oriented biological research, which is of significant 

importance for public health [44, 45]. During the infection process, a virus requires host 

cell’s resources to replicate. Most DNA and RNA viruses use nuclear proteins for this 

process [46-49]. Therefore, the viral genome must enter the nucleus of the host cell. This 

can only be done using the host nuclear protein transport machinery [47, 50, 51], which is 

often activated through the recognition of nuclear targeting signals (NLS and/or NES). 

Despite the high diversity of species annotations in our trusted set of nuclear signals, 

the vast majority of them were annotated in sequences of only few species. Figure 2 shows 

top twelve most frequent species annotations for over 69% of trusted monopartite NLS in 

our set. We mapped annotations of other signal types in these species and found them to 

cover over 62% of trusted bipartite NLS, 100% of trusted PY-NLS and over 70% of trusted 

NES (the distribution of most frequent species annotations for each signal type individually 

is shown in Figure S3 in the Appendix). Most frequent annotations for all signal types, 

except PY-NLS (comprising only 19 signals in our set), were made in Influenza A virus, 

which is of all infectious viruses one of the leading causes of death worldwide [52, 53]. The 

other viruses within the top twelve species were Hepatitis C virus, affecting primarily the liver 

of over 30 million patients alone in the United States [54], and Human immunodeficiency 

virus type 1 (HIV-1) of group M subtype B,   the   dominant   HIV  subtype  in  the  Americas, 

 

Domain of 
organism  

Monopartite  NLS              
(401 species) 

Bipartite NLS  
(153 species) 

PY-NLS              
(2 species) 

NES                
(151 species) 

All signals         
(486 species) 

Virus 290 (72.3%) 86 (56.2%) - 97 (64.2%) 341 (70.1%) 

Eukaryota 107 (26.7%) 67 (43.8%) 2 (100%) 54 (35.6%) 141 (29.1%) 

Bacteria 4 (1%) - - - 4 (0.8%) 

Table 3: Species annotations in our trusted set of nuclear signals. The numbers of unique 

sequences of nuclear localization signals (NLS) and nuclear export signals (NLS) extracted from each 

source are provided. The total number of unique sequences extracted from all sources was 2,391 for 

NLS and 817 for NES. For all signal types, most annotations were done in viruses. PY-NLS held 

annotations only in Eukaryota. Monopartite NLS were the only signals with annotations in Bacteria. 
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Figure 2: Top twelve most frequent organism annotations of trusted NLS and NES. Over 50% 

of monopartite NLS, bipartite NLS, and NES, as well as 100% of PY-NLAS are most frequently 

annotated in proteins of twelve model organisms shown in this figure.  

 

Western Europe and Australasia [55], causing a progressive failure of the immune system of 

infected patients and a subsequent increased life-threatening risk of opportunistic diseases 

and cancer [56-58].  

In eukaryotes, most annotations of monopartite NLS, PY-NLS and NES were done in 

human and other model organisms (Figure 2). Interestingly, bipartite NLS annotations 

mostly came from yeast S. cerevisiae (14% of all bipartite NLS annotations) and plants A. 

thaliana and O. sativa subsp. Japonica (15.6%; Figure S3B). It is possible that this 

observation was due to the fact that most research on bipartite signals has so far been done 

in yeast and plant organisms. However, it is also possible that bipartite signals are more 

frequent in yeast and plants than in other organisms. To test the second hypothesis we 

analyzed the distribution of bipartite and monopartite signals (of which one third are likely to 

be annotation mistakes of bipartite signals; Figure 1) in human, Arabidopsis and yeast 

(Figure S4). For all organisms, the length distributions formed two clear peaks, between 6 

and 9 amino acids (typical range for monopartite NLS; Figure 1), and between 16 and 19 

amino acids (typical range for bipartite NLS; Figure 1). Though, the frequencies of these 

peaks were different. Bipartite NLS appeared indeed to be most frequent in yeast and 

monopartite NLS most frequent in Arabidopsis. 
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Nuclear signals form many different clusters of similar sequences 

We grouped sequences in each set of monopartite NLS, bipartite NLS, PY-NLS and NES 

from our trusted set to identify clusters of similar sequences. To describe briefly, this was 

done by all-against-all aligning sequences from each set separately. Based on the alignment 

results we built four phylogenetic trees (one tree for each signal type). We identified clusters 

within these trees, aligned sequences within each cluster and visualized the results as 

sequence logos [41].  

The phylogenetic tree for 1,960 monopartite NLS divided signals in two clusters,  a 

major cluster (“Major”) forming 39 sub-clusters and one cluster (“Minor”) containing 

sequences of 13 NLS (Figure S5 in the Appendix). In contrast to the common definition of 

monopartite NLS being a stretch of basic amino acids, amino acids forming the “Minor” 

cluster appear to be largely acidic and hydrophobic, as shown by the sequence logo in 

Figure 3. This was different for signals of the “Major” cluster. Figure 4 displays examples of 

sequence logos of nine randomly chosen its sub-clusters. The logos largely display 

stretches of highly conserved basic amino acids, though there are also exceptions. For 

example, Cluster II shows a conserved pattern of basic amino acids that on the N-terminus 

is preceding by a strongly conserved hydrophobic proline and on the C-terminus is following 

by three variable residues and a conserved hydrophobic leucine. Similarly, in Cluster III, the 

core of basic amino acids is preceded by hydrophobic residues and is followed by highly 

conserved asparagine and valine.  

 

Figure 3: Sequence logo representation of the “Minor” monopartite NLS cluster. Amino acid 

sequences of 13 monopartite NLS deviate, in contrast to all other monopartite NLS sequences, from 

the standard description of a stretch of basic amino acids. Thus, these 13 sequences form a separate 

(“Minor”) cluster in the phylogenetic tree of 1,960 unique monopartite NLS. The sequence logo was 

generated using WebLogo [42]. Amino acids are colored according to their chemical properties: polar 

amino acids (G,S,T,Y,C,Q,N) are green, basic (K,R,H) blue, acidic (D,E) red and hydrophobic 

(A,V,L,I,P,W,F,M) amino acids are black. At each position, amino acids are represented from most 

frequent (placed on top of a letter stack) to least (placed at bottom). The letter conservation is given 

by bits (Y-axis) with 4.32 bits being the maximum possible conservation.  
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Figure 4: Sequence logo representation of nine randomly chosen monopartite NLS clusters. 

While sequences of most clusters follow the general “rule” of being a short stretch of basic amino 

acids for monopartite NLS, there are also exceptions. For example, Clusters II, III and VI contain in 

addition to highly conserved basic amino acids also highly conserved hydrophobic amino acids. 

Sequence logos were generated as described in Figure 3. 

 

Sequences of 413 bipartite NLS formed 39 distinct clusters. The phylogenetic tree of 

these clusters is displayed in Figure S6. Nine randomly chosen clusters of bipartite NLS are 

shown in Figure 5. Most bipartite signals followed the standard “rule” of two stretches of 

basic residues separated by a variable linker region. There were, however, also exceptions. 

For example, Cluster I rather resembles a cluster of monopartite signals: (i) the signal is too 

short to be bipartite, (ii) it is overall basic and (iii) has no variable linker region. Thus, the 

signal type annotation of sequences from Cluster I is likely to be wrong. The linker region of 

Cluster II is dominated by polar and acidic residues. Whereas, the linker region of Clusters 

III and V has hydrophobic residues conserved. Thus, different patterns of conservation of 

linker regions might indicate at their different function role, e.g. during binding to 

karyopherins for nuclear import. 

 



 Chapter 5 

107 
 

 

Figure 5: Sequence logo representation of nine randomly chosen bipartite NLS clusters. 

Similar to monopartite signals, sequences of most bipartite NLS follow the general “rule” of two short 

stretches of basic amino acids separated by a variable linker region, though there are also 

exceptions. For example, Cluster I resembles monopartite NLS, and Clusters III and V have 

conserved hydrophobic residues in their linker region. Sequence logos were generated as in Figure 4. 

 

We had 19 PY-NLS annotated in our data set. Unfortunately, this set was too small 

to detect reliable consensus sequences for PY-NLS. The phylogenetic tree divided PY-NLS 

in five clusters and from the sequence logo of its largest cluster (7 sequences), the strongly 

conserved proline and tyrosine at the C-terminal region could be seen, as well as basic 

histidine and arginine at the N-terminal region (Figure S7). 

Finally, the phylogenetic tree of 817 NES, divided signal sequences in 27 different 

clusters (Figure S8). The sequence logo of six randomly chosen clusters is presented in 

Figure 6. NES seemed overall to be less conserved than NES, but overall richer in leucine 

and other hydrophobic, acidic and polar residues. The, for NLS specific, basic residues were 

rare in our set of trusted NES. 
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Figure 6: Sequence logo representation of six randomly chosen NES clusters. In contrast to 

NLS, the sequences of NES are less conserved. In their chemical properties NES are also different 

from NLS in being mostly built of acidic, hydrophobic and polar residues. Sequence logos were 

generated as described in Figure 4. 

 

NLSdb 2.0: NES are new and the number of NLS has grown 21-fold 

The data set of experimentally determined nuclear localization signals, collected in 2000 for 

the first version of NLSdb, contained 114 signals. Fifteen years later, the new dataset of 

trusted, experimentally and by experts annotated, samples contained 2,391 NLS. This 

number is a 21-fold increase to the data set size from 2000. In addition, the new data set 

holds sequences of 817 NES, which have not part of the first version of NLSdb.  

We applied the “in silico mutagenesis” approach [16] to our set of trusted samples. 

During mutagenesis, we mutated or removed amino acids at different positions of nuclear 

signals from our trusted set and monitored their matches in nuclear proteins (true signals) 

and in non-nuclear proteins (false signals). We discarded any potential signal matching in 

non-nuclear proteins. By doing so, we increased our data set by 4,310 novel potential NLS 

and by 1,768 novel potential NES.  
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NLSdb 2.0 vs. NLSdb: increasing coverage from 19 to 50% 

We extracted 6,538 sequences of experimentally annotated nuclear proteins from the 

Swiss-Prot release 2015_01. Of these, 596 proteins (9%) were annotated with NLS. 

Querying 6,538 proteins with experimental and potential nuclear signals from the first 

version of NLSdb, we identified NLS in additional 10% of the data (total number of matched 

proteins was 1,261), thus increasing the coverage from 9% (Swiss-Prot) to 19% (NLSdb). 

Querying the same data set of nuclear proteins with NLS from NLSdb2.0, we identified 

signal matches in 3,259 proteins, which correspond to 50% of all proteins. Compared to 

NLSdb, NLSdb 2.0 increased the coverage in predicting nuclear proteins from 19 to 50%.  

 About 5% of nuclear proteins in our set had a Swiss-Prot annotation of NES. 

Querying nuclear proteins with trusted and potential NES of NLSdb 2.0, we could increase 

this number by 23%. Thus, the percentage of NES-containing nuclear proteins was 29%. 
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5.4 Database description 

 
Input formats 

The online database of NLSdb 2.0 can be accessed via https://rostlab.org/services/nlsdb2/. 

A user can query the database either by nuclear signals, to check if his/her signal of interest 

is contained in our trusted or potential sets, or by nuclear proteins to predict the occurrence 

of NLS and NES in them. Submissions of proteins can be done through providing: (i) their 

amino acid sequence in FASTA [59] format, (ii) their UniProt [60] accession numbers (ACs), 

or (iii) their gene and/or protein names (Figure 7).  

 

Figure 7: Screenshot of the NLSdb 2.0 submission page. NLSdb 2.0 accepts submissions of four 

types. Results are returned to the user after clicking one of the four submission buttons which expect: 

(i) Sequence (Fasta): one or more protein sequences in FASTA [59] format; (ii) AC (UniProt): one or 

more UniProt [60] accession numbers; (iii) NL Signal: one or more sequences of NLS and/or NES; 

and (iv) Gene/Protein Name: names of one or more genes and/or proteins. Hovering with the mouse 

over the submission buttons displays information about the expected format of a submission (as 

shown by the black box). Example queries are by default provided also in the text input field. 

https://rostlab.org/services/nlsdb2/
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Data Output  

Submissions of nuclear signals (NLS and NES) are simple lookups in our sets of trusted and 

potential signals. Submissions of protein sequences in FASTA format trigger the matching of 

all signals stored in our database in sequences of query proteins. Submissions of proteins 

as UniProt ACs fetch their corresponding FASTA sequences from UniProt to process them 

as if FASTA sequences were provided as input. Finally, submissions of protein/gene names 

map these to UniProt ACs, based on pairs of protein/gene names and ACs downloaded 

from UniProt (version 2012_10), and process them as if UniProt ACs were provided as 

input. For each query, the output is organized in eleven following fields: 

(i) NL Signal: amino acid sequence of the query signal. 

(ii) Signal type: the signal is a monopartite NLS, bipartite NLS, PY-NLS, NES, 

potential NLS or potential NES. 

(iii) ConfidenceNuc: the number of structural families of nuclear proteins the signal 

can be found in. 

(iv) ConfidenceNuc: the number of structural families of non-nuclear proteins the 

signal can be found in. 

(v) Annotation Type: whether the signal annotation is based on experimental 

findings or it is derived through “in silico mutagenesis”. For experimentally 

determined signals, the source of annotation is provided, if available. The source 

can be the PubMed identifier or the UniProt accession number of the 

experimental evidence. 

(vi) UniProtKB AC: UniProt accession number of the source protein(s) the signal is 

annotated to localize.  

(vii) Start: start position of the signal in the annotated protein. 

(viii) End: end position of the signal in the annotated protein. 

(ix) Organism: organism annotation of the source protein. 

(x) SubLocalization: sub-cellular localization annotation of the source protein, 

extracted from Swiss-Prot, if available. 

(xi) Reference: The source of the signal annotation, provided for experimentally 

determined signals only. The source is provided as an active link to either the 

PubMed article or the database source. 
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For protein submissions, the annotations of identified nuclear signals are also supported 

by a graphical visualization. Figure 8 shows NLSdb 2.0 result for the human nuclear protein 

1 (UniProt AC: O60356). The protein is identified to contain 0 NES and 4 NLS, of which 1 is 

a potential signal and 3 are experimentally derived monopartite NLS. These NLS are of 

human, Human herpesvirus 2 and yeast origins. Both yeast and virus NLS are 4 amino 

acids long and are frequent matches in sequences of other nuclear and non-nuclear 

proteins. The sequence of the input protein is shown below the results table and the 

schematic representation of identified NLS is shown below the sequence. Three of four 

signals (yellow rectangles) match the C-terminal region of the query protein. The longest of 

three signals is the virus signal, which overlaps with two other experimentally determined 

eukaryotic monopartite NLS. 

 

 

 

Figure 8: Screenshot of the NLSdb 2.0 results page. Shown is the NLSdb 2.0 result for the query 

human nuclear protein 1 (UniProt AC: O60356). The header of the result page provides the name of 

the query protein and the number of nuclear signals identified. Below, the results table provides an 

overview of signal annotations (e.g. signal annotation type, position in the query sequence, source 

protein and organism). Finally, the positions of identified NLS and NES in the sequence of the query 

protein are visualized at the bottom of the page. For visualization we used the feature-viewer 

implementation [61] from the BioJS library [62]. 
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6 pEffect: prediction of bacterial type III effector proteins 

6.1 Introduction 

 
The type III secretion system is a key mechanism for the transport of effector proteins of 

pathogenic and endosymbiotic Gram-negative bacteria into the cytoplasm of host cells [1-5]. 

During infection, effectors convert host resources to work to bacterial advantage. Previous 

computational methods for the prediction of type III effectors have mainly employed 

information encoded in the N-terminal sequence [6-9], as it contains most important signals 

that govern the translocation of effectors through the type III secretion machinery [1]. An 

independent, recent benchmark study showed that current state-of-art-methods predict type 

III effectors at comparable levels of at best 80% accuracy and 80% coverage [10]; thus, 

there still seems to be room for substantial improvement.  

In this Chapter, a new method, pEffect, is introduced that predicts type III effector 

proteins from the information encoded in the entire protein amino acid sequence. It 

combines sequence similarity-based inferences (PSI-BLAST [11]) with de novo predictions 

using machine learning (Profile Kernel Support Vector Machines [12-14]). To allow users to 

focus on most relevant results, pEffect provides a score reflecting the strength of each 

prediction. The method was developed using a positive data set comprising type III effectors 

extracted from literature and UniProt [15] and a negative data set combining bacterial non-

effector proteins and effector sequence-similar eukaryotic proteins. Tested on a non-

redundant test set, pEffect reaches high levels of 87±7% accuracy and 95±5% coverage. 

The method importantly improves over its competitors, boosting performance by at least 7% 

for bacterial effectors and as much as 3-fold on data sets containing eukaryotic proteins. 

This result suggests that the information required for distinguishing effectors is not confined 

to any particular part of the amino acid sequence, but is rather distributed over the entire 

protein sequence. This biological feature helps pEffect to maintain a high level of accuracy 

even when tested on sequence fragments. pEffect can thus be effectively applied directly to 

metagenomic read data, facilitating studies of microbial community interactions. Applied to 

proteomes of all fully sequences prokaryotic organisms, pEffect identifies a wide variety of 

recently evolved effectors. These highlight the possibility of a type III secretion ancestor 

dating to times prior to the archaea/bacteria split. pEffect is available as a public web server 

and as a standalone version for download at http://www.bromberglab.org/services/pEffect. 

http://www.bromberglab.org/services/pEffect
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6.2 Materials and Methods 

 
Data sets for development and evaluation 

Our positive data set of known type III effector proteins was extracted from literature [6, 16-

23] and the Pseudomonas-Plant Interaction web site [24]. The corresponding amino acid 

sequences were taken from the UniProt database [15], 2012_01 release. We additionally 

queried UniProt with keywords ‘type III effector’, ‘type three effector’ and ‘T3SS effector’ and 

manually curated the results for experimentally identified effectors. Our positive data set 

comprised 1,388 proteins. 

To compile our negative data set of non-type III effectors we used experimentally 

annotated Swiss-Prot proteins [25], 2012_01 release. We extracted all bacterial proteins that 

were NOT annotated as type III effectors and had no significant sequence similarity (BLAST 

[26] E-value > 10) to any type III effector in our positive set. We also added all eukaryotic 

proteins applying no sequence similarity filters. Our negative set contained roughly 470,000 

proteins.  

We removed from our sets all proteins annotated as ‘uncharacterized’, ‘putative’, or 

‘fragment’. We reduced sequence redundancy independently in each set using UniqueProt 

[27], ascertaining that no pair of proteins in one set had alignment length of less than 35 

residues or a positive HSSP-value (HVAL ≥ 0) [28, 29]. After redundancy reduction our 

sequence-unique sets contained 115 type III effector proteins from 43 different bacterial 

species and 3,460 non-effector proteins (of which 37% were bacterial). Here, we term this 

set of sequences (positive and negative sets together) as the Development set. All pEffect 

performance results reported here across the Development set and its subsets are based on 

five-fold cross-validation experiments, i.e. we split the entire set into five similarly-sized 

subsets and trained five models, each on a different combination of four of these subsets, 

and tested each model on every subset exactly once. 

Data sets for additional testing 

We benchmarked pEffect against other methods using the following data sets:  

(1) We collected all type III effectors added to UniProt between releases 2012_01 and 

2014_08 and non-type III bacterial and eukaryotic proteins added between same releases to 
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Swiss-Prot. These were redundancy reduced at HVAL< 0 to produce the UniProt’14HVAL0 test 

set (107 effectors and 1,159 non-effectors).  

(2) To answer the question “how well will pEffect perform on protein sequences added to 

databases within the next six months?” we collected the proteins added to UniProt (type III 

effectors) and Swiss-Prot (non-effector bacterial and eukaryotic sequences) after the 

2014_08 release, producing the set UniProt’15Full (498 effectors and 1,509 non-effectors).  

(3) We also extracted all bacterial type III effectors from the T3DB database [30] – T3DBFull 

set (218 effectors and 831 non-effectors). We deliberately kept the redundancy in this set 

(up to HVAL = 66, i.e. over 85% pairwise sequence identity over 450 residues aligned).  

(4) Finally, we redundancy reduced T3DB set at HVAL<0. This gave the T3DBHVAL0 set (66 

effectors and 128 non-effectors). 

Prediction method pEffect 

Inspired by the high prediction performance of LocTree3 [31] (Chapter 3), pEffect similarly 

combined homology-based predictions if available and de novo predictions otherwise:  

Sequence similarity-based predictions: We transferred type III effector annotations by 

homology using PSI-BLAST [11] alignments. For every query sequence we generated a 

PSI-BLAST profile (two iterations, inclusion threshold E-value ≤ 10-3) using an 80% non-

redundant database combining UniProt [15] and PDB [32]. We then aligned this profile 

(inclusion E-value ≤ 10-3) against all type III effectors in our Development set (1,388 

proteins). For known effectors, we excluded PSI-BLAST self-hits. We transferred annotation 

to the query protein from the hit with the highest pairwise sequence identity of all retrieved 

alignments. 

De novo predictions: We used the Support Vector Machine (SVM) [12] implementation of 

WEKA [33] and the Profile Kernel function [13, 14] (Chapter 2) to discriminate between type 

III effector and non-effector proteins. We found the Profile Kernel parameters k=4 and σ=7 

to provide best results. Note we determined the parameters for the SVM and the Profile 

Kernel separately for each fold in our 5-fold cross-validation and, thus, never optimized them 

on the test sets. 
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State-of-the-art predictors for type III effector proteins 

We used the following state-of-the-art methods with their default parameters that predict 

bacterial type III effector proteins and that are publicly accessible: 

1. BPBAac [7] uses an SVM to predict type III effectors. Predictions are based on the 

position-specific amino acid composition (Aac) profiles within 100 N-terminal 

residues of a protein sequence. BPBAac was trained on non-redundant sets of 154 

type III effectors curated manually from literature and 308 non-effectors randomly 

selected from various bacteria, followed by removal of the known effectors and their 

homologs. BPBAac is available at 

http://biocomputer.bio.cuhk.edu.hk/softwares/BPBAac. 

2. Effective T3 [6] applies the Naïve Bayes classification to predict type III effectors on 

the basis of various features of the 25 N-terminal residues, including frequencies of 

amino acids, short peptides, and residues with certain physico-chemical properties. 

Effective T3 was trained on a positive set of 100 manually curated type III effectors 

from literature. The negative set of 200 non-effector proteins was collected by 

randomly choosing proteins from animal and plant pathogens, omitting known 

effectors. Effective T3 is available at http://www.effectors.org/. 

3. T3_MM [9] is based on BPBAac and uses Aac profiles of adjacent residues to predict 

type III effectors. It employs a Markov model to calculate the Aac probability 

difference between type III effector and non-effector proteins. T3_MM was trained on 

BPBAac training data. Predictions are made using 100 N-terminal residues. T3_MM 

is available at http://biocomputer.bio.cuhk.edu.hk/T3DB/T3_MM.php. 

T3DB ortholog clusters of the type III secretion system (T3SS) machinery 

T3DB is a database of experimentally annotated T3SS-related proteins in 36 bacterial taxa. 

Proteins of the same function and the same evolutionary origin are clustered in T3DB into 

T3 Ortholog clusters [34]. The proteins of these clusters form ten components of the T3SS. 

Proteins of five of these components (export apparatus, inner membrane ring, outer 

membrane ring, cytoplasmic ring, and ATPase) are present in all 36 taxa in T3DB. We thus 

defined the minimum number of five components necessary for the formation of the T3SS 

machinery. Four of these, with the exception of the outer membrane ring, have also been 

defined as core in [35]. 

http://biocomputer.bio.cuhk.edu.hk/softwares/BPBAac
http://www.effectors.org/
http://biocomputer.bio.cuhk.edu.hk/T3DB/T3_MM.php
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Evolutionary distances 

We extracted evolutionary distances from the phylogenetic tree in the Newick format of 

2,966 bacterial and archaeal taxa, which has been inferred from 38 concatenated genes 

[36]. 

 

6.3 Results 

 
pEffect: high cross-validated performance of F1 = 0.91 

The accuracy of the PSI-BLAST sequence similarity-based inference, i.e. a look up for a 

sequence-similar experimentally annotated type III effector protein, was comparable to that 

of our de novo prediction method on the cross-validated Development set (Table 1: 91% vs. 

92%). However, its coverage was significantly higher (84% vs. 60%). This result encouraged 

us to use a simple protocol, introduced in our recent work, LocTree3 [31], that unites PSI-

BLAST whenever possible (Table 1: F1 = 0.87 on the complete Development set) and the 

SVM if no PSI-BLAST results were available (Table 1: F1 = 0.67 on proteins with no PSI-

BLAST hit). The combined method, pEffect, outperformed both its components, reaching an 

F1 measure of 0.91 (Table 1). 

Method 
True 

Positives 
False 

Negatives 
False 

Positives 
True 

Negatives 
Acc

5
 Cov

5
 F1

5
 

PSI-BLAST
1
 97 18 10 3450 91±7 84±8 0.87±0.09 

De novo
2
 69 46 6 3454 92±8 60±11 0.73±0.11 

De novoNo_PSI-BLAST_hit
3
 12 6 6 3444 67±25 67±28 0.67±0.23 

pEffect
4
 109 6 16 3444 87±7 95±5 0.91±0.08 

Table 1: Performance of pEffect and its components on the Development set 
1
PSI-BLAST: sequence similarity-based inference component of pEffect on all 3,755 proteins of the 

full Development set. 
2
De novo: SVM-based prediction component on the full Development set. 

3
De novoNo_PSI-BLAST_hit: SVM-based prediction component tested on the set of 3,468 proteins that did 

not align to any effector using PSI-BLAST. 
4
pEffect: PSI-BLAST predictions, if available, and de novo otherwise on the full Development set. 

5
Performance measures: Acc, accuracy; Cov, coverage; ‘±’ standard errors (Chapter 2.1); 

F1=2·Acc·Cov/(100·[Acc+Cov]). Highest value in each column is in bold. 
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pEffect outperforms other methods 

We compared pEffect’s performance to the publicly available methods: BPBAac [7], 

Effective T3 [6] and T3_MM [9]. In contrast to pEffect, all these methods focus exclusively 

on the protein’s N-terminal sequence features. BPBAac and T3_MM rely solely on amino 

acid composition, while Effective T3 combines amino acid composition and secondary 

structure information. We compared the prediction performance of these methods to pEffect 

on UniProt protein sequences, which were NOT used for the development of any method, 

and on T3DB proteins, some of which were used for the development of all methods, 

including pEffect. Our method outperformed its competitors on all data sets (Figure 1A). 

Interestingly, the F1 performance of pEffect was at least 0.58 higher than of other methods 

when tested on any data set containing eukaryotic proteins (0.58 difference T3_MM vs. 

pEffect on both UniProt sets). Thus, pEffect is the most accurate method in distinguishing 

type III effectors from other bacterial sequences (F1 > 0.64) and from eukaryotic sequences 

(F1 > 0.85). The latter ability will be important when considering, for example, sequences 

from unfiltered metagenomic samples [37]. 

 

Figure 1: pEffect benchmarking against other methods.  We measured the performance of 

BPBAac [7], EffectiveT3 [6], T3_MM [9] and our own method, pEffect, using the F1 measure (Table 

1). We also measured F1 for de novo (SVM-based) and PSI-BLAST predictions alone.                

Panel (A) shows performance on additional data sets for testing, which include: 
1
UniProt’14HVAL0: 107 effectors and 1,159 non-effector bacterial and eukaryotic proteins, added to 

UniProt between releases 2012_01 and 2014_08, sequence homology reduced at HVAL< 0 
2
UniProt’15Full: 498 effectors and 1,509 non-effector bacterial and eukaryotic proteins added to 

UniProt after 2012_08 release, NOT homology reduced 
3
T3DBHVAL0: 66 effectors and 128 non-effector bacterial proteins from the T3DB database, sequence 

homology reduced at HVAL < 0 
4
T3DBFull: 218 effectors and 831 non-effector bacterial proteins from T3DB, NOT homology reduced 

Panel (B) shows performance on protein fragments produced from the T3DBFull
4
 set, which include: 

5
30N Cleaved: 30 N-terminal amino acids cleaved off 

6
30C Cleaved: 30 C-terminal amino acids cleaved off 

7
1/3 Randomly Cleaved: randomly selected one third of amino acids cleaved off 

8
Random Fragments: randomly selected fragments of a typical translated read length (Figure 2) 
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pEffect maintains high performance even for sequence fragments 

To evaluate pEffect’s ability to annotate effectors from incomplete sequences, we 

fragmented the proteins from the T3DBFull set – the set for which methods developed by 

others performed best (Figure 1A). We used four different approaches to generate protein 

fragments: (i) retaining the entire protein sequence, but removing 30 N-terminal residues, (ii) 

retaining the entire protein sequence, but removing 30 C-terminal residues, (iii) randomly 

removing one third of residues for each protein sequence and (iv) randomly picking from 

each sequence a single fragment of a typical translated read length (Figure 2). 

pEffect outperformed all external methods for all types of protein fragments (Figure 

1B). All methods, as expected from their training, performed best on the C-term cleaved 

fragments (approach ii). The worst performance was for random sequence fragments 

(approach iv). Interestingly, the performance for pEffect changed insignificantly from          

F1 = 0.69 to F1 = 0.67 on the random fragments set. In general, for all fragment sets the 

pEffect and PSI-BLAST performances were within the standard error of what was obtained 

using full-length sequences (T3DBFull set; Figure 1A). These results suggest that the 

features distinguishing type III effectors are spread over the entire protein sequence and are 

picked up PSI-BLAST or the more advanced k-mer comparisons of the SVM Profile Kernel. 

 

 

Figure 2: Distribution of a typical translated read length. ”Pyrosequencing reads”: amino acid 

lengths of open reading frames translated (between start and stop codons) from eight different snow 

and soil-collected metagenomic data sets (collaborator data) using the getorf  [38] program. “T3DB”: 

amino acid lengths of randomly picked fragments (one fragment per sequence) from the T3DBFull set. 

The distribution of translated read lengths in the T3DB set follows the distribution of read lengths in 

“real” metagenomic samples and averages at 110 amino acids. 
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Reliability index provides more confidence in predictions 

pEffect provides a reliability index (RI) to measure the confidence of a prediction. RI is a 

value between 0 and 100, with 100 denoting most confident predictions. For PSI-BLAST 

searches, RIs are normalized values of percentage pairwise sequence identities read of the 

alignments. For de novo predictions, RIs are values corresponding to SVM scores. Sampling 

at lower RIs results in a higher number of predicted samples, though at reduced accuracy. 

Higher accuracy predictions are obtained by sampling at higher RIs, thus reducing the total 

number of predicted samples. For example, at the default threshold of RI > 50, over 87% of 

all predictions of type III effectors are correct and of all effectors in our set 95% are identified 

(Figure 3: black arrow). At a higher reliability index, RI > 80, effector predictions are correct 

96% of the time, but only 78% of all effectors in the set are identified (Figure 3: gray arrow).  

Thus, a user can make a choice for the reliability of a prediction that is most fitting to his or 

her purposes: identifying more effectors at lower accuracy or fewer high confidence 

effectors. Moreover, he or she can focus only on de novo predictions (i.e. of new, previously 

unseen, effectors) or on PSI-BLAST predictions (i.e. validated homologs of known 

effectors), as the source of a prediction is provided for each result. 

 

Figure 3: Reliable predictions are more accurate.  The figure shows the cumulative percentage of 

Accuracy/Coverage (Chapter 2) of pEffect’s predictions at or above a given reliability index (RI). The 

graphs were obtained using the Development set of 115 type III effector and 3,460 non-effector 

proteins in a five-fold cross-validation. At the default reliability score of RI = 50 (black vertical line), 

95% of type III effectors are identified at 87% accuracy (black arrow). At a higher RI = 80 (gray 

vertical line), prediction accuracy increases to 97% at the cost of lower coverage of 78% (gray arrow). 
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Type III effectors prediction in full proteomes 

We used pEffect to annotate type III effectors in the proteomes of fully sequenced 862 

bacterial (274 gram-positive and 588 gram-negative bacteria) and 90 archaeal organisms 

downloaded from the European Bioinformatics Institute (EBI, [39]).  

pEffect predicted each bacterium to contain at least one type III effector (Figure 4; a 

minimum of 0.8% of a proteome is predicted as effectors). For some gram-negative bacteria 

over 750 type III effectors were predicted (e.g. 1,207 effectors in Sorangium cellulosum So 

ce56, 870 effectors in Stigmatella aurantiaca DW4/3-1, 826 effectors in Corallococcus 

coralloides DSM 2259 and 792 effectors in Haliangium ochraceum DSM 14365). Stigmatella 

aurantiaca DW4/3-1 is hypothesized to have the type III secretion system and its effectors 

[40]. For the other three species we could not find any literature record.  

Overall, the number of predicted type III effectors ranged between 1% and 15% of 

the whole proteome in gram-negative bacteria, and between 1% and 10% in gram-positive 

bacteria (Figure 4).  To further understand our predictions, we retrieved UniProt keywords of 

predicted effectors. Their annotations varied widely (Table 2), with the most common for 

both types of bacteria being transferase, depicting a large class of enzymes that are 

responsible for the transfer of specific functional groups from one molecule to another, 

nucleotide-binding, a common functionality of effector proteins, ATP-binding that is also an 

essential component of the type III secretion system (T3SS), and kinase, which is necessary 

for the expression of the T3SS genes. About one fourth (26-29% per proteomes) of 

predicted type III effectors were functionally “unknown” (Table 2).  

Interestingly, we also predicted type III effectors in all archaeal proteomes, with over 

100 effectors identified in the proteomes of Haloterrigena turkmenica DSM 5511 and 

Methanosarcina acetivorans C2A (126 and 105 effectors, respectively). On average, there 

were fewer effectors predicted in archaea than in bacteria: 1.9% is the overall per-organism 

number for archaea vs. 3.4% for gram-positive and 4.6% gram-negative bacteria (Figure 4). 

The most frequent annotations of predicted archaeal effectors were similar to those for 

predicted bacterial effectors, namely “unknown”, nucleotide-binding, ATP-binding and 

transferase (Table 2). 
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 UniProt keywords 

(PSI-BLAST predictions) 
Frequency 

UniProt keywords 

(SVM de novo predictions) 
Frequency 

A 
R 
C 
H 
A 
E 
A 

Uncharacterized protein 29.9% Uncharacterized protein 40.1% 

Hydrolase 5.6% Oxidoreducatase 5.1% 

Cytoplasm 5.2% Plasmid 4.8% 

Nucleotide-binding 5.2% Transferase 4.1% 

ATP-binding 4.9% Metal-binding 3.7% 

Metal-binding 4.5% Flavoprotein 3.6% 

Zinc 4.0% FAD 3.3% 

Chaperone 4.0% Lyase 2.4% 

B 
A 
C 
T 
E 
R 
I 
A 
(+) 

Uncharacterized protein 25.6% Uncharacterized protein 25.6% 

Transferase 6.4% Transferase 6.7% 

Hydrolase 6.0% Nucleotide-binding 6.6% 

Nucleotide-binding 5.3% ATP-binding 6.5% 

ATP-binding 4.7% Kinase 3.7% 

Kinase 4.7% Oxidoreductase 3.7% 

Cytoplasm 4.1% Phosphoprotein 3.0% 

Serine/threonine-protein kinase 2.7% Metal-binding 2.3% 

B 
A 
C 
T 
E 
R 
I 
A 
(-) 

Uncharacterized protein 27.8% Uncharacterized protein 29.1% 

Hydrolase 4.9% Transferase 7.6% 

Cytoplasm 4.5% Nucleotide-binding 5.4% 

Transferase 4.4% Kinase 5.3% 

Metal-binding 3.9% ATP-binding 5.3% 

Nucleotide-binding 3.9% Phosphoprotein 4.7% 

ATP-binding 3.3% Oxidoreductase 2.4% 

Kinase 3.2% Membrane 2.1% 

Table 2: Top eight most frequent UniProt keywords associated with pEffect’s predicted 

effectors. The table lists top eight most frequent keywords retrieved from UniProt for the proteins 

predicted as type III effectors in the proteomes of 90 archaeal, 274 gram-positive bacterial and 588 

gram-negative bacterial species. 
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Figure 4: Percentage of predicted effectors in full proteomes. The figure shows the box-plot-and-

instance representation of percentages of pEffect’s predicted type III effectors (Y-axis) in 90 archaeal, 

274 gram-positive and 588 gram-negative bacterial organisms (X-axis), which are shown as dots. At 

least 50% of effector predictions in all, except 11 organisms in our set were predicted de novo. In the 

figure, the colors represent the percentage of de novo predictions for each organism: from green 

(50% de novo, 50% PSI-BLAST) to blue (100% de novo, 0% PSI-BLAST). While effectors predicted 

in archaea and gram-positive bacteria are often picked up by PSI-BLAST, effectors in gram-negative 

bacteria are mostly de novo predictions. 

 

T3SS likely defined by 5 type III machinery components and ≥5% predicted effectors  

We aimed to identify those proteomes that are likely to have the type III secretion system 

(T3SS) machinery. For this, we BLASTed (E-value ≤ 10-3) proteins of five T3DB Ortholog 

clusters against the full proteomes of our 862 bacteria and 90 archaea set. We found that, 

as expected, archaea never contain a full T3SS (maximum three out of five components; 

Figure 5A). In gram-negative bacteria, the number of predicted effectors correlated much 

better with the number of type III machinery components than in gram-positive bacteria 

(Figures 5B-C; Pearson’s correlation r=0.37 and r=0.13, respectively). Based on our 

observations in archaea and gram-positive bacteria, we suggest, as a rule of  
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Figure 5: Conservation of T3SS machinery components in full proteomes. (A) 90 archaeal, (B) 

274 gram-positive and (C) 588 gram-negative bacterial proteomes, shown as dots in the figure, were 

scanned for the presence of T3SS. The percentage of type III effectors per proteome predicted by 

pEffect (Y-axis) is compared to the number of T3SS machinery components identified in these 

proteomes (X-axis). While type III effectors compose up to 3.7% of an archaeal proteome (mean 

1.9%, blue horizontal line), this number is much larger for bacteria, reaching up to 10% of an entire 

proteome for gram-positive (mean 3.4%), and 15% for gram-negative bacteria (mean 4.6%). Six 

gram-negative bacterial species did not contain detectable homologs of any of five machinery 

components, indicating that their genomes are further diverged than those of other species.  

thumb, that the conservation of five type III machinery components and ≥5% of the genome 

dedicated to effectors provide a strong evidence for the presence of a T3SS in an organism. 

With these cutoffs, we identified 20% (120 species) of the gram-negative bacteria in our set 

as type III secreting. No archaeal species and only five gram-positive bacteria fit these 

cutoffs. We searched the literature for annotation of ten randomly chosen gram-negative 

bacteria likely to have the T3SS. We found evidence of type III machinery in seven of the 

ten organisms [41-47]. For three bacteria the secretion machinery has not been studied.  
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6.4 Discussion 

 
pEffect successfully combines PSI-BLAST and de novo predictions 

PSI-BLAST is a commonly used tool for protein function annotation through sequence 

similarity. PSI-BLAST was first published nearly two decades ago and is continuously 

improving through growing databases and better alignment techniques [48]. Applied to our 

sequence-unique Development set, PSI-BLAST correctly annotated type III effector proteins 

at 91±7% accuracy and 84±8% coverage (F1 = 0.87 ± 0.09) through sequence comparisons 

against a set of known type III effectors (Table 1). The Profile Kernel SVM is a de novo 

prediction approach that finds short motifs of consecutive residues in a database of proteins 

with known type III effector function annotation, i.e. it uses sequence similarity information 

that is not available directly from sequence comparisons. Applied to all protein sequences, 

the Profile Kernel SVM annotated 60 ± 11% type III effectors at 92 ± 8% accuracy             

(F1 = 0.73 ± 0.11). Our new method, pEffect, successfully combines the complementary 

homology-based and de novo predictions, reaching high levels of 87 ± 7% accuracy and    

95 ± 5% coverage (F1 = 0.91 ± 0.08) and outperforming each of its individual components. 

In fact, pEffect is so good that about 80% of effector proteins in our Development set are 

predicted at 97% accuracy (RI > 80, Figure 1). 

pEffect predicts from the entire sequence – a useful feature for metagenomic 

analyses 

pEffect distinguishes type III effectors from other bacterial and eukaryotic proteins using the 

full length sequence of proteins. The detection of N-terminal signals, often used as the only 

source of evidence for predicting type III effectors computationally, presents a special 

problem for metagenomic data because of the erroneous gene predictions and potentially 

absent reads in contig assemblies [49]. To bypass the assembly errors in evaluating the 

presence of type III secretion activity in a particular metagenomic sample, it would be helpful 

to annotate as coming from effector sequences protein fragments translated directly from 

the DNA reads. pEffect’s ability to distinguish effectors from these fragments can provide, for 

further experimental follow-up, a broad overview of interactions taking place in the 

sequenced microbiomes. Notably, for all fragment sets tested, pEffect performance was 

within the standard error of that achieved using full-length sequences (Figure 1). This result 
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suggests that the features distinguishing type III effectors are present throughout the protein 

sequence and are not solely confined to the N-terminal region. Moreover, pEffect results can  

help establish the presence or absence of pathogenic organisms in a particular 

environment. 

Gram-negative bacteria with full T3SS have the highest number of predicted effectors 

The loss of type III secretion components in gram-negative bacteria is accompanied by the 

loss of effectors, indicating the lack of necessity to further diversify in the absence of the 

complete machinery (Figure 5C). This type of correlation between the completeness of 

T3SS and the number of effectors in gram-negative bacteria is not present for non-type III 

secreting gram-positive bacteria (Figure 5B) or archaea (Figure 5A). 

Most of pEffect predictions are SVM-based 

Type III effectors were predicted in all types of prokaryotes that we tested. As expected, the 

number of effectors in gram-positive bacteria and archaea that are not known to utilize T3SS 

was lower than in gram-negative bacteria that do use the system (Figures 4-5). Interestingly, 

homology searches, i.e. PSI-BLAST results, have identified roughly equal numbers of 

effectors (1%; Figure 6) in both types of bacterial genomes. As some effectors often co-

localize with the T3SS machinery in “pathogenicity islands” [50-52], these findings are in line 

with the inheritance of the early complete secretory system, including the machinery and the 

secreted proteins.  

Overall, the percentage of by similarity predicted effectors ranged for bacteria 

between 3% and 71% (maximum in Onion yellows phytoplasma OY-M, an intracellular 

gram-negative plant pathogen [8]), and averaged at 1%. Conversely, a significantly larger 

fraction, on average ~76% of all effector predictions in whole proteomes, was made de 

novo. The percentage of de novo predictions in gram-negative bacteria was significantly 

larger than in gram-positive ones (79 ± 0.4% vs. 70 ± 0.5%, respectively; Figure 4). Note, 

however, that 70% is still a drastically large fraction to appear in bacteria that seemingly 

have no use for them. Furthermore, the number of “new” (i.e. de novo) effectors has grown 

over evolutionary time (Figure 7), suggesting functional innovation due to environmental 

pressures. The set of de novo identified effectors found across bacteria is thus a good 

starting point for further investigation into effector origins. 
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Figure 6: pEffect’s whole proteome predictions identified by source. pEffect predicted type III 

effector proteins in the proteomes of 294 gram-negative and 29 gram-positive bacteria having full 

T3SS. The proteomes are shown as dots. Green dots indicate the percentage of proteins predicted 

as effectors (Y-axis) by homology searches and blue dots are de novo predictions. For each 

proteome, the evolutionary distance from the last common ancestor (X-axis) was extracted from [36]. 

While PSI-BLAST appears to consistently pick up ~1% of each proteome of all organisms (green 

horizontal trend-line), the de novo predicted effectors diversify further over evolutionary distance, as 

indicated by the increase in the number of de novo predictions. 

 

Further insight into evolution of bacterial T3SS 

pEffect’s high prediction accuracy raises an interesting question about its predictions of 

effectors in gram-positive bacteria, which are not known to utilize T3SS. Roughly one fourth 

of their predicted effectors are of yet unknown function (Table 2). Bacterial proteins of 

annotated function are mostly transferases, hydrolases, ATP-binding proteins or kinases, all 

of which are necessary for flagellar motility. This finding is in line with evidence of shared 

ancestry between bacterial flagellar and type III secretion systems [35]. It is not known 

whether T3SS evolved from the flagellar apparatus or if the two systems evolved in parallel. 

However, gene genealogies [53] and protein network analysis approaches [54] both suggest 

independent evolution from a common ancestor, which comprised a subset of proteins 

forming a membrane-bound complex. The fact that the flagellar system can also secrete 

proteins [55] suggests that this ancestor may have played a secretory role [35]. The 

pervasiveness of the flagellar apparatus across the bacterial space suggests that the 
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ancestral complex existed prior to the split of the cell-walled and double-membrane 

organisms, indicated by the differences in gram staining. The common ancestor protein 

complex of T3SS and flagellar system would have then been encoded in an even earlier 

ancestral genome. Thus, it is not surprising that we find T3SS component homology in 

gram-positive bacteria even in the absence of type III secretion functionality. Interestingly, 

our results show that the loss of the complete T3SS and, inherently, the associated loss in 

type III functionality has proceeded at a roughly similar rate in gram-positive and gram-

negative bacteria (Figure 7A); i.e. once the T3SS is incomplete (4 components), and 

arguably non-functional, further loss of components consistently follows. A complete T3SS, 

however, is only visible in early gram-positive bacteria, but preserved across time in gram-

negative bacteria (Figure 7B), further confirming the presence of the ancestral secretory 

complex in the last common bacterial ancestor.  

 

Figure 7: Loss of T3SS functionality differentiates gram-positive and gram-negative bacteria. 

274 gram-positive bacteria (blue dots) and 588 gram-negative bacteria (red dots) were screened for 

the number of conserved components of T3SS (max. 5 T3DB Ortholog clusters) in their genomes (Y-

axis) and plotted against the evolutionary distance from the most recent common ancestor (X-axis). 

(A) Once the T3SS is lost, i.e. less than five components are present, further rate of loss of 

components is the same for all bacteria. (B) The number of gram-negative bacteria with the complete 

system, i.e. all five components are present, however, remains constant across evolutionary time, 

while the number of gram-positive bacteria declines. 
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Did T3SS exist before the split of archaea and bacteria? 

pEffect predicts a significant number of effectors in archaea. However, the presence of the 

beginnings of T3SS in the common ancestor of bacteria and archaea is neither directly 

supported nor negated by our results. Archaeal flagella have little or no structural similarities 

to bacterial flagella, but share homology with the bacterial type IV secretion system [56]. 

Some of the type IV secretion system and T3SS components are homologous, e.g. VirB11-

like ATPases [57]. However, despite this observed homology none of the archaea that we 

tested had the complete set of T3SS components (Figure 5). If the common ancestor of 

archaea and bacteria did encode the core ancestral complex, these observations would 

indicate a loss of functionality in archaea. Another possibility is that the T3SS in bacteria, 

like the flagellar apparatus [58], may have been built over time from duplicated and 

diversified paralogous genes of the core complex after the archaea/bacteria split. In both of 

these scenarios, the prediction of type III effectors in archaea would then indicate re-

purposing of the proteins secreted by the ancestral complex. In fact, 0.5% of an average 

archaeal genome is identified by homology (PSI-BLAST) to known effectors and another 

0.9% de novo identified proteins are homologous (PSI-BLAST E-value ≤ 10-3) to predicted 

effectors of gram-negative bacteria. These proteins must have been re-purposed in modern 

archaea; they are usually annotated as hydrolases, transferases, and metal-binding proteins 

(Table 2). The use of an additional 0.5% of the archaeal proteome that is picked up by 

pEffect’s de novo and has no homologs in bacteria remains an enigma. While a certain level 

of similarity exists between archaeal proteins and bacterial type III effectors machinery, the 

observed signal is insufficient to draw definitive conclusions regarding common ancestry. It 

is, however, significant for further exploration – if roughly one tenth of the identified effectors 

of gram-negative bacteria and half of the machinery have homologs in archaea, could there 

have been a common ancestral secretion complex that has developed early on in 

evolutionary time and has given root to many systems observed today? 
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7 LocText: a manually annotated text corpus for protein 

localization data 

7.1 Preface 

 
Scientific literature is the central repository for scientific knowledge. Having access to this 

accumulated knowledge enables researched to efficiently generate novel knowledge. For 

example, PubMed [1] is a widely used database [2] that stores over 25 million records for 

biomedical literature; 500,000 new records are added to the database each year [3]. At this 

high rate of knowledge extension, it is impossible to manually extract structured data (e.g. 

aspects of protein structure and function) from unstructured texts (i.e. literature records). 

Many databases have been developed to store structured data from scientific 

publications and to make it instantly available for researchers online. In the area of life 

sciences, the most prominent examples are UniProt [4], GenBank [5], Ensembl [6] and 

others. Another resource that stores structured data from scientific publications is presented 

by text corpora that are developed to train machine learning methods for automated text 

recognition [7-9]. While database curators aim to annotate a single entity (usually a gene or 

protein) with a wide range of information extracted from literature, the curators of text 

corpora focus on a detailed markup of only a few entities and relationships in a limited 

number of literature records. Because of the different focus and the annotation strategies of 

the two communities, collaborations between them remained stunningly limited. 

In this publication, we envision a linked annotation resource unifying many corpora 

and database entries to be a game changer. By connecting the annotations of different 

types of entities, a linked resource could have a much greater coverage and diversity than 

any single resource. As proof-of-concept, we annotated protein sub-cellular localization in 

100 abstracts cited by UniProt. By comparing our new corpus with the original UniProt 

annotations, we found novel annotations for 42% of the protein entries. Thus, we showed 

that a linked resource could complement database annotations with those from text corpora. 

The study design was conceived by me, Juan Miguel Cejuela and Lars Juhl Jensen. 

Abstract annotations were done by me, Juan Miguel Cejuela and Shrikant Vinchurkar. All 

calculations were done by me with the help of Lars Juhl Jensen. The manuscript was 

drafted by me, Lars Juhl Jensen and Burkhard Rost. 
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7.2 Journal article. Goldberg T., Vinchurkar S., Cejuela J.M., Jensen 

L.J. , Rost B. BMC Proceedings 2015, 9(Suppl 5):A4 
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8 Conclusions 

8.1 Our work in the context of developments in the field 

 
In silico prediction of protein cellular sorting is one of the main testing grounds for the 

development of prediction methods for protein function. Over the last two decades, more 

experimental data for protein localization became available, and many methods have been 

developed to predict protein localization. The methods apply various algorithms for their 

predictions. The widely used methods are those that apply machine learning (ML) 

techniques to extract information encoded in the amino acid sequences of proteins. 

In our work, we built upon the experience of previously published methods and 

developed a novel method  for sub-cellular localization prediction [1]. We employed Support 

Vector Machines (SVM) [1], an ML technique that was previously shown to perform best for 

localization predictions [2]. We implemented SVMs in a hierarchical tree to mimic the protein 

sorting mechanism, an idea originally introduced by Nair and Rost [3]. However, we ignored 

many of the relevant features used for the success of other methods (e.g. we ignored 

aspects of protein structure and function [3, 4], signal peptides [3] and other functional 

motifs [5-7], and physicochemical properties of amino acids [7-9]). Instead, we used 

advanced SVM Profile Kernels [10, 11] that at all levels of the tree search through proteins 

of annotated localization with short stretches of k-consecutive residues (k=6 for eukaryota, 5 

for bacteria and 3 for archaea) and match those in a query protein. The most informative k-

mer hit then decides on the “left or right” at each decision point in the tree until reaching a 

leaf, i.e. the predicted localization class. Thus, SVMs reach their predictions through levels 

of sequence similarity that are not available directly through sequence comparisons.  

The novel method LocTree2 predicted protein localization in all domains of life in the 

so far largest number of protein localization compartments (18 classes for eukaryota, 6 for 

bacteria and 3 for archaea). It outperformed other methods, including experts specialized in 

distinguishing between proteins of two classes [12, 13], implicating an improved ability of our 

method to capture localization signals in the protein sequence. Another important 

improvement was the robustness of the method against sequencing errors and its success 

when applied to protein fragments. This is particularly important in light of high-throughput 

sequencing, of analyzing ancient DNA with short reads and of the fact that almost 80% of all 

proteins have multiple domains [14].   



 Chapter 8 

143 
 

We could further improve LocTree2 by remarkable 25% by including information 

about homologs if available. These were obtained through PSI-BLAST [15] searches. PSI-

BLAST has certainly changed the way we do sequence analysis more than any tool and it 

has been continuously improving since its publication in 1997 adding important value 

beyond that from growing databases [16]. We found that in development set of LocTree2, 

about half of all proteins have experimentally annotated homologs. For these proteins, a 

simple PSI-BLAST protocol significantly outperformed LocTree2, which is in line with the 

findings of Imai and Nakai [17]. For the other half of proteins, the homology-based inference 

became random, dropping the performance significantly below that of LocTree2. Our new 

method, LocTree3, successfully combined homology-based and de novo predictions of 

localization, reaching an 18-state accuracy Q18 = 80 ± 3% for eukaryotes and a six-state 

accuracy Q6 = 89 ± 4% for bacteria. We made the method publicly available as a web 

server, allowing submissions to range from single protein sequences to entire proteomes. 

Due to its high prediction performance, short prediction time and cached results, LocTree3 

optimized well for the handling of large-scale data and aiding the prediction of protein 

function through localization predictions. 

The prediction results of LocTree2 and LocTree3 have already been found useful for 

complementing experimental annotations and for improving protein function prediction 

methods. For example, both methods were cited for identifying proteins of the human 

multicellular signaling network [18], improving predictions of protein-protein interactions [19, 

20], determining cell surface proteins of the human immune system [21], localizing proteins 

of human cancer cells [22], identifying plant pathogens [23] and characterizing proteins that 

improve resistance in plants [24-26]. We believe that the framework for our methods will 

prove extendable and that future methods will become better simply by using more 

experimental data and more sequences. 

The success of LocTree3’s approach – use homology information if available and a 

de novo prediction otherwise – has proven to hold true also for other classification problems, 

such as the prediction of sub-nuclear localization compartments and of bacterial pathogens. 

In the following, I will summarize some of the main findings of our research. 
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8.2 Summary of our main findings 

 
LocTree2: Highest performance due to improved underlying method 

We rigorously benchmarked the prediction performance of LocTree2 to a number of state-

of-the-art methods using several independent data sets. LocTree was one of the 

benchmarked methods; it originally introduced the hierarchical system of SVMs that 

resembles cellular sorting. LocTree2 outperformed LocTree on all data sets tested. Even 

when trained and tested on LocTree’s development data (3 localization classes for bacteria 

and 6 classes for eukaryota), we observed LocTree2’s overall prediction accuracy to (i) stay 

within the standard error of what was achieved on LocTree2’s development set (6 years 

older set) and (ii) increase by 18% for bacteria and by 7% for eukaryota. Thus, the 

improvement of LocTree2 originated mainly from the underlying method advancement and 

not the increased training data set. 

In silico predictions reveal problems of high-throughput experiments  

LocDB is a database collecting localization annotations mostly from high-throughput 

experiments [27]. We compared the prediction performance of LocTree2 and of other 

methods using sequence-unique sets (sequence-unique with respect to all proteins in the 

set and to the training set of all methods tested) on LocDB proteins. We found all methods 

to perform substantially worse on LocDB data than on sequence-unique proteins from 

Swiss-Prot [28], whose localization annotations are mostly derived from low-throughput 

experiments. For example, on the A. thaliana set, LocTree2’s performance decreased by 

28% and WoLF PSORT’s performance by 43%. How to interpret the data from LocDB?  

As most annotations in LocDB originate from high-throughput experiments, it is very 

likely that LocDB contains proportionally more errors than Swiss-Prot, which might explain 

why all methods perform worse for the LocDB than for the Swiss-Prot data. On the other 

hand, we might also suspect that high-throughput experiments discover a reality invisible to 

traditional experimental methods and some of those invisible facts might reveal new sorting 

mechanisms. Such hidden mechanisms might or might not be ‘discovered’ by prediction 

methods. If not, those would explain many incorrect predictions.  

Each prediction of LocTree2 is accompanied by a reliability index (RI) denoting the 

strength of a prediction (from unreliable RI=0 to highly trustable RI=100). Zooming into 

annotations of by LocTree2 misclassified proteins with a high reliability (RI>50), we found 
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examples of proteins for which low-throughput annotations in literature contradicted high-

throughput annotations in LocDB. Thus, the predictions judged as incorrect by LocDB but 

having very high LocTree2’s RI scores indicated that the low performance inverts the real 

picture: rather LocDB annotations are wrong or ambiguous than the strong LocTree2 

predictions. For a set of weakest LocTree2 predictions (RI<15), we observed the opposite.  

Eukaryotic secreted and bacterial plasma membrane proteins predicted best 

LocTree3 combined homology-based inferences of PSI-BLAST with de novo predictions of 

LocTree2. Assessed on a non-redundant data set, LocTree3 performed very well for 

archaeal proteins (three classes) with the overall level of accuracy suggested to reach 

100%. This number is most likely an over-estimate due to the limited data. For bacteria (six 

classes), the overall accuracy was Q6 = 89 ± 4% and for eukaryota (18 classes) it was    

Q18 = 65 ± 3%. For bacteria, LocTree3 predicted best plasma membrane (accuracy: 96%, 

coverage: 95%) and cytoplasmic proteins (accuracy: 91%, coverage: 90%). For eukaryota, 

the best predicted class was secreted (accuracy: 88%, coverage: 96%), followed by nucleus 

(accuracy: 81%, coverage: 86%). While LocTree2 predicted classes with most experimental 

annotations best, we could not confirm the same trend for the PSI-BLAST protocol. Overall, 

our new method, LocTree3, still maintained a small correlation between performance and 

experimental annotations with respect to the compartments.  

Multi-localized proteins difficult to assess 

Studies have shown that up to one third of all proteins in a proteome are localized to more 

than one sub-cellular compartment [29-31]. Annotations of multi-localized proteins are also 

contained in Swiss-Prot. However, applying sequence redundancy reduction (through 

UniqueProt [32] at HSSP-value ≤ 0 [33, 34] to these proteins, their number dropped to 72 

eukaryotic proteins. We applied LocTree3 to these proteins and considered the prediction 

correct if one of the experimentally observed classes had been predicted. Prediction result 

of Q18 = 65 ± 12% compared less favorably to Q18 = 80 ± 3% when assessed on single-

localized proteins. This contradicted the intuition - picking one right from 18 is tougher than 

picking 2 and choosing the best-of-two. Why did performance drop on those proteins?  

Our suspicion is that today’s double annotations as a whole set are not good 

enough. We looked at LocTree3 predictions for five misclassified proteins with the highest 

RIs. One protein was uncharacterized, while for the remaining four we found experimental 
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evidence for the predicted localization classes in other sources than Swiss-Prot. From these 

findings we concluded that the number of sequence-unique multi-localized proteins as we 

have them today in Swiss-Prot is rather small and the annotations of multi-localizations may 

be incomplete. Therefore, assessing prediction methods on these proteins may lead to 

underestimated results and incorrect implications. 

Homology-based inferences not sufficient for whole proteome annotations 

We annotated proteomes of more than 1,000 fully sequences organisms from all three 

domains of life with LocTree3. We observed that none of the proteomes could be fully 

annotated with homology searches (i.e. by PSI-BLAST). For example, for human, LocTree3 

annotated remarkable 77% of the proteome through homology-based inference, of which 

30% came from direct experimental annotations. For other organisms these numbers were 

lower. For yeast, LocTree3 annotated 68% of the proteome by PSI-BLAST, of which 51% 

were experimental annotations; for A. thaliana these numbers were 61% and 11%, 

respectively. For a prokaryote A. pernix, LocTree3 annotated only 8% of the proteome by 

PSI-BLAST; the remaining annotations came from its de novo component LocTreee2. 

Q13 = 62% for predicting sub-nuclear compartments 

Though sub-organellar compartments are difficult to predict due to sparse experimental 

data, LocNuclei adapted the prediction strategy of LocTree3 (combine homology information 

with de novo predictions) and classified sub-nuclear proteins in 13 classes at the high level 

of overall accuracy Q13 = 62 ± 3%. LocNuclei outperformed, the only during LocNuclei’s 

development available other method for sub-nuclear localization prediction, NSort [35] (we 

re-trained LocNuclei on NSort’s development data). We used LocNuclei to annotate the 

entire human nucleosome (6,230 proteins predicted as nuclear by LocTree3) and found 

77% of all proteins to localize to the following four sub-nuclear compartments: nucleoplasm 

(30% of all annotations), chromatin (17%), nucleolus (17%) and PML bodies (13%). Adding 

in experimental protein-protein interaction data [36], we found most protein interaction pairs 

to occur within and between these four compartments. Interestingly, we found a high 

number of protein interactions also between perinucleolar proteins, composing <0.4% of all 

annotations in the human nucleosome, and proteins residing in the nucleoplasm, chromatin 

and nucleolus. Compared to proteins from other sub-cellular compartments, nuclear proteins 

tend to be most disordered. This feature allows nuclear proteins to diversify their functional 

roles, which is in line with experimental findings [37-39]. 
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NLS can be mapped in 50% of nuclear proteins and NES in 29% 

NLSdb [40] was the first database that attempted to collect known nuclear localization 

signals in a single resource. It also introduced the concept of “in silico mutagenesis” [41] that 

extended experimental signals by potential ones. Fifteen years later, we updated NLSdb 

with novel data, which now contains both nuclear localization signals (NLS) and nuclear 

export signals (NES). By doing so, we increased the number of by experts manually verified 

signals 28-fold and of potential signals 20-fold. Looking at the length distributions of verified 

NLS, we observed possible annotation mistakes for at least 20% of monopartite signals. 

While most of the signals in our verified set were of virus and human origin, we observed an 

enrichment of bipartite signals in plants and yeast. When clustered verified signals by 

sequence similarity, we identified consensus sequences for 40 clusters of monopartite NLS, 

38 clusters of bipartite NLS, 5 clusters of PY-NLS and 27 clusters of NES. Currently, Swiss-

Prot annotates 9% of nuclear proteins with NLS and 5% of nuclear proteins with NES. The 

original version of NLSdb increases the coverage for NLS to 19%, while the updated version 

increases the coverage to 50% for NLS and 29% for NES.  

Bacterial type III secretion signal distributed over the entire protein sequence 

The bacterial type III secretion system injects the so-called effector proteins directly into the 

cytoplasm of a host cell to promote infection. pEffect is a method that showed that a 

combination of homology searches and de novo predictions can successfully be applied to 

the prediction of effector proteins at 87% accuracy and 95% coverage. While other methods 

mainly employ information encoded in the N-terminal region of protein sequences for their 

predictions [42-44], pEffect uses information from the entire protein sequence. When 

compared to other methods on full length protein sequences, pEffect performed best on all 

data sets tested. Especially on data sets containing eukaryotic proteins, pEffect’s exceeded 

by more than 0.58 in the F1 performance measure. When tested on sequence fragments 

similar in length to shotgun sequencing reads, pEffect’s performance was not significantly 

different. These improvements are particularly important to e.g. annotate results from 

metagenomic studies. Moreover, they suggest that the features distinguishing type III 

effectors are spread over the entire protein sequence and are picked up by pEffect. 
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9 Appendix 

9.1 Supplementary Figures 

 
Figure S1: E-value thresholds for the homology-based component of LocNuclei 

(prediction of nuclear travelers in two classes) 

 

The figure shows the accuracy Q2 (Chapter 2.2) in classifying proteins in two classes 

(nuclear proteins exclusively localized to the nucleus and nuclear proteins localized also to 

other sub-cellular compartments) by LocNuclei and its components. The homology-based 

inference using PSI-BLAST from the set of experimentally annotated 12,055 nuclear 

proteins performs best (Q2 = 78%) at the stringent E-value ≤ 10-50. However, when 

evaluated on the entire test set (i.e. also on proteins for which PSI-BLAST homology is not 

available), the performance drops significantly to Q2 = 9%. The performance of the SVM on 

the same set, however, reaches Q2 = 66% (the performance is marked by black lines).  To 

determine, at which E-value threshold to use PSI-BLAST and at which the SVM, we needed 

to consider the performance of the final method LocNuclei at the same threshold. We found 

LocNuclei to reach highest Q2 = 72 ± 2% at E-value ≤ 10-5. 
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Figure S2: Length distribution of all known nuclear signals 

 

The figure shows the amino acid sequence length distribution of 1,960 monopartite NLS, 413 bipartite 

NLS, 18 PY-NLS and 817 NES in our trusted set (Chapter 5.2). The frequencies for each signal type 

sum up to 100%. Typical lengths for each signal type are represented by peaks: 4-10 and 15-19 

amino acids for monopartite NLS (the latter is probably due to bipartite signals erroneously annotated 

as monopartite); 16-19 amino acids for bipartite NLS; 15-20 and 22-26 for PY-NLS; and 9-13 amino 

acids for NES. 

 

 

 

 

 

 

 

 

 

 

 



 Chapter 9 

153 
 

Figure S3: Top 20 most frequent species annotations for nuclear signals 

 

The figure shows top twenty of the most frequent organism species annotations for (A) monopartite 

NLS, (B) bipartite NLS and (C) NES. PY-NLS were annotated in human and Baker’s yeast only and 

are not shown here. For each signal type, most frequent annotations were made in human and other 

eukaryotic model organisms, as well as in Influenza A virus. Virus species are colored red. 
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Figure S4: Length distribution of nuclear signals in human, yeast and plant 

 

The curves show the distribution of unique nuclear signals (NLS and NES) annotated in human 

(Homo sapiens, 505 signals, blue line), yeast (Saccharomyces cerevisiae, 229 signals, red line) and 

plant (Arabidopsis thaliana, 156 signals, green line). The frequencies for each signal type sum up to 

100%. Note we do not show results for sequences longer than 30 amino acids, as they constituted 

less than 1% of the data. For all organisms, the length of monopartite signals peaks in the range 

between 6 and 9 amino acids and of bipartite signals in the range between 16 and 19 amino acids. 

Monopartite signals appear to be most frequent in plant, while bipartite signals in yeast.  

 

 

 

 

 

 

 

 

 

 

 



 Chapter 9 

155 
 

Figure S5: Phylogenetic tree representation of 1,960 monopartite NLS 

 

The sequences of 1,960 monopartite NLS from our trusted set (Chapter 5.2) were aligned 

against each other to construct an evolutionary distance matrix. This matrix was then used 

as input to the UPGMA clustering method [1] of the PHYLIP [2] package. The resulted 

phylogenetic tree separated all signals in two clusters: (i) “Minor” cluster of 13 sequences 

and (ii) Major cluster of all other sequences. The Major cluster was further sub-divided into 

39 distinct clusters. Signal sequences in the tree are colored by the average charge of their 

amino acids. Only sequences of the “Minor” cluster appear to be negatively charged. 
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Figure S6: Phylogenetic tree representation of 413 bipartite NLS 

 

The phylogenetic tree for 413 sequences of bipartite NLS was constructed as in Figure S4. 

The bipartite signals formed 38 distinct sub-clusters. These are depicted by different colors.  
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Figure S7: Phylogenetic tree representation of 19 PY-NLS and the sequence logo of 

its largest sub-cluster 

 

The data set of annotated PY-NLS comprised only 19 sequences, which were used to 

calculate the phylogenetic tree (A). The tree split the data in five clusters. The sequence 

logo representation (B) of the largest cluster (Cluster I) shows high conservation of amino 

acid residues at the flanking regions of the signal: basic residues in the N-terminal region 

and proline-tyrosine in the C-terminal region. 
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Figure S8: Phylogenetic tree representation of 817 NES  

 

The phylogenetic tree for 817 sequences of NES was constructed as in Figure S4. The 

signals formed 27 distinct sub-clusters.  
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9.2 Supplementary Tables 

 
Table S1: Normalization of sub-nuclear localization terms 

Databases term Normalized term 

Cajal body, cajal bodies, gem Cajal bodies 

Chromatin, centromere, chromosome,  

heterochromatin, telomere, unsynapsed 
chromosome axes 

Chromatin 

Nuclear envelope, nuclear membrane, 

nucleus membrane 
Nuclear envelope 

Nuclear lamina, nuclear periphery, 
nucleus lamina 

Nuclear lamina 

Nuclear matrix, nucleus matrix Nuclear matrix 

Nuclear pore  Nuclear pore complex 

Nuclear speckle Nuclear speckles 

Nucleolus, nucleolar Nucleolus 

Nucleoplasm Nucleoplasm 

Perinucleolar Perinucleolar compartment 

PML body, nuclear dots, PML-NBs, 
PML/ND10 bodies 

PML bodies 

Kinteochore Kinetochore 

Spindle apparatus, spindle microtubules, 
spindle midzone, spindle poles 

Spindle apparatus 

Databases HPRD [3], NMPdb [4], NOPdb [5], NPD [6], NSort/DB [7] and Swiss-Prot [8], 

annotate sub-nuclear proteins using synonyms for some terms. We extracted these terms 

and normalized them to 13 sub-nuclear localization classes. The normalization was done 

case-insensitive; terms of the same class are separated by comma. 
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Table S2: Composition of the sub-nuclear development set for LocNuclei 

Sub-nuclear 
compartment 
(number of 
proteins per 
compartment) 
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Chromatin (697) 584             

Nucleolus (653) 68 483            

Nuclear speckle 
(292) 

22 79 176           

PML body (95) 23 18 9 49          

Nuclear lamina 
(80) 

5 8 2 3 51         

Nuclear matrix 
(74) 

4 3 3 2 1 63        

Nuclear 
envelope (72) 

2 0 0 1 3 1 63       

Cajal body (42) 3 15 14 4 2 0 0 15      

Nuclear pore 
complex (35) 

5 6 3 2 17 0 0 2 12     

Nucleoplasm 
(29) 

3 8 3 1 0 2 2 0 0 13    

Kinetochore 
(25) 

3 4 0 0 1 0 0 0 2 1 15   

Spindle 
apparatus (14) 

2 1 0 1 4 1 1 0 1 0 3 6  

Perinucleolar 
(13) 

3 4 6 2 1 0 0 1 0 0 3 0 2 

The table displays numbers of sequence-unique proteins (HVAL [9, 10] ≤ 20) across 13 sub-

nuclear localization classes in the development set of LocNuclei (Chapter 4).  We only used 

proteins with experimental annotations extracted  from HPRD [3], NMPdb [4], NOPdb [5], 

NPD [6], NSort/DB [7] and Swiss-Prot [8]. The numbers of unique sequences per 

localization are given in parentheses. The numbers on the diagonal describe sequences 

with the annotation of one localization class (e.g. 584 sequences in our set were annotated 
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to localize at the chromatin only). Other numbers are annotations of two sub-nuclear 

compartments. Note that some sequences had annotations of more than two compartments.  
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