Specification and
Analysis of Availability for

Software-Intensive Systems

Maximilian Junker

@ Technische Universitat Muinchen m

Institut fiir Informatik
der Technischen Universitiat Miinchen

Specification and Analysis of Availability for
Software-Intensive Systems

Maximilian Christian Junker

Vollstandiger Abdruck der von der Fakultit fiir Informatik der Technischen Universitit

Miinchen zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Arndt Bode

Priifer der Dissertation:
1. Univ.-Prof. Dr. Dr. h.c. Manfred Broy
2. Univ.-Prof. Dr. Ralf Reussner,

Karlsruher Institut fiir Technologie

Die Dissertation wurde am 10.05.2016 bei der Technischen Universitat Miinchen

eingereicht und durch die Fakultét fiir Informatik am 05.09.2016 angenommen.

Abstract

For many technical systems, their availability is an important characteristic. Examples for
systems, where availability is especially relevant, are railway control systems, telecommunica-
tion systems, and systems supporting business processes. Outages of such systems often have
immediate economic consequences for their users and operators. Due to the economic impact,
manufacturers and service providers need to guarantee a certain level of availability and these
guarantees become part of the system requirements.

To avoid high costs due to changes in late development phases, availability requirements
need to be specified and verified as early as possible. To enable early predictions of the system
availability, a range of modeling techniques have been proposed by academia and are in use
in practice. However, current modeling techniques have two drawbacks: First, they describe
the system on a high level of abstraction, usually in terms of their architecture. This makes
it hard to formulate meaningful, system-specific availability requirements that relate to the
functional requirements of the system. Second, the current techniques are not embedded into a
comprehensive engineering method, which defines relationships between different models and
provides an engineering process.

In this thesis, we provide evidence for the stated problems and propose a solution. First,
we report on a qualitative interview study we conducted with 15 industrial availability experts
from different domains. With this study, we assess the relevance of the topic availability in the
industry, determine availability related activities and methods, and identify several problems
connected to the specification and verification of availability requirements.

Second, as a solution to the stated problems, we extend an existing artifact model for
software-intensive systems by additional artifacts supporting the concise specification and anal-
ysis of system-specific availability properties. The first additional artifact is an availability
requirements specification. It uses concepts from the second artifact, the availability specifi-
cation, which captures system-specific definitions of failure and availability metrics. The third
artifact is an extended logical architecture that includes the system’s behavior in case of faults.
The last artifact is an environment specification, which contains the structure and behavior of the
system’s environment. For each additional artifact, we suggest suitable models and description
techniques to capture the necessary information.

Third, we provide a modeling method that supports the systematic application of our
artifact model. The modeling method consists of basic modeling building blocks, a process
for instantiating the artifact model, step-by-step guides for systematically creating individual
models, and modeling patterns providing a basic structure for some of the model types.

Finally, we evaluate our artifact method and our modeling method in an industrial case
study. In the case study, we assess the adequacy and the flexibility of our modeling approach.
We further report on prototypical tool support and evaluate the feasibility of an availability
analysis based on the created models. To perform the case study, we model a section of an
industrial train control system, departing from the original requirements. We then extend this
initial model by instantiating our availability artifact model. As a last step, we perform several
types of availability analyses.

Acknowledgements

This work would not have been possible without the support by various people. In particular
I would like to thank Prof. Manfred Broy for giving me the opportunity to work in his research
group. This group is exceptional in the way it combines basic and industrial research and this
thesis greatly profited from this combination. I also thank Manfred Broy for the various fruitful
discussions about system modeling and availability. For reviewing the thesis and providing
feedback, I also thank Prof. Ralf Reussner.

During the last five years I had the luck to work with many great colleagues. I would
like to thank all of them. In no particular order, I would like to especially thank Andreas
Vogelsang for the many discussions and feedback on this thesis, Veronika Bauer for helping
me with the interview study, Benedikt Hauptmann for being a great office roommate, for his
great suggestions on thesis writing and for feedback on various parts of this thesis, Sebastian
Eder for helping me with the automated analyses infrastructure, Wolfang Béhm for providing
feedback on my writings and for organizing the project with Siemens, Johannes Holzl for
providing feedback on the mathematical foundation, and Philipp Neubeck for explaining me his
probabilistic system modeling theory.

Working closely with the industry (especially Siemens) helped me to understand the prob-
lems associated with availability modeling and analysis and to evaluate my approach on a
real-life example. For this possibility and the support during our cooperation I would like to
thank Ralf Pinger, Ernesto de Stefano and Karsten Rahn, all of them from Siemens in Braun-
schweig. I also thank all industry partners that agreed to be interviewed for my study on the
state of the practice.

Finally, but most importantly, I would like to thank my parents and my sister Constanze for
the ongoing support for the last 32 years, my friends for being my friends and Fidi, for listening
and encouraging me many many times.

Contents

1 Introduction

1.1 Context: Availability of Software-Intensive Systems
1.2 Problem Statement
1.3 Approach e
1.4 Contributions
1.5 Outline e e

2 Availability: State of the Practice

2.1 Study Goals and Research Questions
22 StudyMethod
23 Results
2.4 Discussion e e e e
2.5 Threatsto Validity
2.6 Summary e

3 State of the Art

3.1 Modeling Availability Requirements

3.2 Model-based Design of Highly Available Systems

3.3 Availability Analysis Models o L.
4 Background and Formal Foundation

4.1 Formal System Model

4.2 Availability: Terms and Definitions

5 Availability Artifact Model

ST OVerview
5.2 Availability Specification L L o
5.3 Extended Logical Architecture
5.4 Environment Specification L L L Lo L L
5.5 Availability Requirements Specification
5.6 Availability Analysis
5.7 Application to Related Concepts
5.8 Summary e e

6 Availability Modeling Method
6.1 Overview
6.2 Running Example: Data Storage and Access System

11
20
21
22

23
23
29
31

39
39
60

69
69
71
77
78
79
81
83
87

Contents

6.3 BasicBuildingBlocks
6.4 Systematic Creation of Availability Models
6.5 Summary e

7 Case Study: Train Door Control

7.1 ContextoftheStudy
7.2 Study Goal and Research Questions
7.3 Data Collection Procedure
7.4 Study Setup e
7.5 Study Execution.
7.6 AnalysisResults
7.7 Discussion of the Research Questions
7.8 Threatsto Validity e
7.9 Conclusion

8 Conclusions and Outlook
8.1 Conclusions e
8.2 Outlook e

A Interview Guideline

123
123
124
125
125
133
142
145
148
148

151
151
154

157

Chapter 1

Introduction

In our daily life, we are surrounded by technical systems that rely to a great extent on software
to provide their service. We demand from these software-intensive systems to be operating
when we need them. For instance, we expect a phone call to be put through, when we call a
number, and a train to be in service according to the timetable. However, all technical systems
can fail and can therefore be out of service for some time. The share of time when a system
is operating, is called its availability. The topic of this thesis is the model-based specification
and analysis of availability for software-intensive system. In this chapter, we first motivate the
topic in Section 1.1. Afterwards, we state a number of currently open problems in this field
in Section 1.2. We present an overview over our suggested approach in Section 1.3 and the
contributions of this thesis in Section 1.4. Finally, we give an outline of this thesis in Section 1.5

1.1 Context: Availability of Software-Intensive Systems

A software-intensive system is “any system where software contributes essential influences to
the design, construction, deployment, and evolution of the system as a whole” (IEEE, 2007).
Other than for pure software systems, however, the hardware cannot be neglected during the
development. The reason for this is that the hardware still contributes significantly to the
behavior of the system, e.g. through hardware implemented functionality or because it can fail
due to wear out. Software-intensive systems are pervasive: Many services and applications
that we use regularly are controlled by software-intensive systems. Examples are the telephone
system, subway trains or the cashing system at supermarkets. These examples show that
software-intensive systems are often complex systems. More specifically, they are large, often
distributed and typically provide several functions.

For many of these software-intensive systems, their availability is an important property.
A highly available system is operating failure-free most of the time. On the contrary a system
with a poor availability is often out of service for long periods of time. Fields, where avail-
ability is especially important, are industrial systems for telecommunication, transportation or
production, as well as business information systems. Inadequate availability of such systems
can have an immediate economic impact for customers (such as a train operator) as well as for
manufacturers. For instance, in the case of a train operator, insufficient availability of a train
control system produces unplanned costs, including penalties, lost earnings, lost reputation,
lost worker hours and recovery costs. In other cases, warranty and liability costs may add to
this (IEC, 2004). For a manufacturer, it is important to deliver a product with the right level

Chapter 1. Introduction

of availability. Too high availability may result in the increase of costs and the decrease of
competitiveness, due to higher development efforts and more expensive equipment.

Specifying the required availability and verifying these requirements as early as possible
during the development of a software-intensive system, is highly desirable to avoid costs for
re-designing the system. In practice, extensive availability analyses are performed based on
the architecture of the systems to prove that the system fulfills the availability requirements.
However, these analyses often involve a large fraction of manual work for understanding the
impact of faults on the behavior of the system. Furthermore, the analyses are often rather
generic. For example, they often do not differentiate between the availability of different system
functions. Furthermore, the basis of the analyses is often a notion of availability that is not
specific for the given system. This results in over- or underestimating the system’s availability
and can lead to disputes with the customer or the need to redo parts of the analysis.

1.2 Problem Statement

To support the specification and analysis of availability properties in software-intensive systems,
model-based techniques have been proposed by research. These techniques usually capture the
system architecture and the way that faults propagate to the system interface. These models
can be analyzed automatically and thus relieve the engineers from parts of the manual work for
availability analysis. However, several problems are not solved by the model-based approaches
proposed today. In this thesis, we address the following two problems.

Problem 1: Formulating and Analyzing System Specific Availability
Requirements

In an interview study with participants from industry, presented in Chapter 2, we found that
formulating precise availability requirements is a problem today. Availability requirements
need to state explicitly, which types of failures should be considered, which should be excluded,
and how availability metrics should be calculated. Availability requirements, such as “the
weekly downtime should be no more than 1 hour”, do not precisely state which kinds of
failure are included and how uptime should be exactly calculated. They thus stay ambiguous.
Such requirements furthermore do not relate to the functional requirements of a system and
it remains unclear which functions or functional requirements need to be violated to which
degree to consider a system as unavailable. Such vague requirements are hard to interpret and
verify, and are a source for misunderstanding between manufactures and customers. Current
availability specification and analysis approaches allow to formulate availability requirements
only by giving availability metric values and do not support system specific definitions of failure
and availability metrics.

Problem 2: Lack of Integration into an Engineering Method

In order to employ an availability modeling and analysis approach in practice, it needs to be
integrated into a comprehensive engineering method. First, such an integration includes a de-
scription of how the availability specific models relate to other models (e.g., of the requirements
or the architecture). This allows to identify models that need to be created beforehand and to
maintain the availability models in case the functional requirements or the architecture changes.

Chapter 1. Introduction

Second, the creation of availability models needs to be integrated into a process, describing how
the different models are sequentially developed. The current availability modeling approaches
lack such a comprehensive integration, which hinders their adoption.

1.3 Approach

Our approach to the problem of specifying and analyzing availability properties is to extend an
existing artifact model for model-based engineering of software-intensive systems with specific
models for availability. The main purpose of the additional models is to define, what availability
means for the system under development. Most importantly, they specify which deviations of
the observed behavior from the specified behavior should be considered as which type of failure
and how availability metrics should be calculated based on these specific failure definitions.
Additional models describe the effect of faults on the behavior of system components and the
system environment.

Our modeling approach allows us to specify availability requirements that have a precise
interpretation in terms of the system behavior and a clear relation to the system’s functional
requirements. Even complex availability conditions can be modeled, as long as they can be
expressed in terms of the system behavior. Our approach further enables a completely automated
analysis of the system availability. This addresses the general problem of labor intensive and
error prone manual availability analysis. Moreover, our added models do not duplicate any
information already contained in existing models. Instead, they only add new information
regarding the system specific definition of availability, faults, and the environment.

1.4 Contributions

In this thesis, we provide the following four contributions to motivate, implement and validate
the above approach.

Interview Study on State of the Practice We present an interview study with participants
from the industry that examines the state of the practice regarding availability engineering.
Most importantly, it uncovers several problems present in the industrial practice.

Availability Artifact Model We suggest an artifact model that includes models for availability.
The artifact model extends an existing artifact model for model-based requirements
engineering. We further show, how an availability analysis can be performed using our
proposed set of models.

Availability Modeling Method We provide a method for systematically creating these avail-
ability models. The method consists of a modeling process, basic building blocks,
modeling patterns and step-by-step guides. The method provides guidance for creating
availability models and thus helps to employ our approach in practice.

Case Study: Train Door Control To evaluate our approach, we apply it to an industrial case
example. The case example consists of the train door control part of a commercial train
control system. In the case study, we follow our method for creating availability models
and perform a detailed availability analysis with a prototypical tool.

Chapter 1. Introduction

1.4.1 Study on the State of the Practice

We present a qualitative interview study with 15 availability experts from industry, representing
various domains such as railway, automation and business information systems. In this study,
we investigate the relevance of availability in these domains. Furthermore, the study describes
which availability related activities are carried out and which problems the experts from industry
perceive with respect to availability engineering. Main results of the study are:

* Availability is of different relevance for different types of companies and in different
domains, depending for example on industry standards and regulations, the type of
customers or economic considerations.

* Availability related activities are carried out in all phases of the development lifecycle
from requirements engineering until system operation and maintenance.

* The experts report on several difficulties regarding, for example, requirements formulation
and design-time availability analysis. Moreover, availability considerations pose inherent
challenges, such as obtaining needed spare parts over a long period of time.

1.4.2 Availability Artifact Model

We extend an existing artifact model for model-based requirement engineering with artifacts
and models for availability. The models are based on the formal modeling theory Focus (Broy
and Stglen, 2001; Neubeck, 2012). We introduce the following four additional artifacts.

Availability Requirements Specification The availability requirements specification captures
the demands of the different stakeholders that relate to availability. We capture avail-
ability requirements informally with textual availability descriptions and formalize these
descriptions in an availability constraints model. The latter model represents availability
requirements as mathematical structures that relate to well-defined, formal availability
metrics as specified in the availability specification artifact.

Availability Specification The availability specification defines what availability should mean
for the system under consideration. More specific, its failure definition model contains a
definition of what failure means. Its availability metric model specifies how to calculate
availability metrics. In combination, these models provide the basis, on which formal
availability requirements are formulated.

Extended Logical Architecture The purpose of the extended logical architecture is to include
the behavior of the system in case of faults. Only when faults and their effect on the
system behavior are modeled, we can perform meaningful availability analyses. The only
model in this artifact is the fault-injection model. This model is a description of how
components are affected by faults and how these faults lead to a change in behavior.

Environment Specification An environment specification describes the context of a system,
for example, its neighboring systems, its physical environment, or its users. Its purpose is
to allow for a realistic availability analyses, as a system may show a different availability
depending on its use.

Chapter 1. Introduction

Based on the suggested models we describe a formal availability analysis to verify availability
requirements.

1.4.3 Availability Modeling Method

Our third contribution is a method for systematically developing availability models according
to our artifact model. The method contains the following elements

Basic Building Blocks We provide 19 generic, parametrizable specifications for availability
models. They include specifications for availability metrics, fault injection and behavior
comparison.

Process The artifact model does not prescribe a fixed process. We suggest one specific process
for the sequential creation of availability models.

Step-by-step Guides For some of the individual models we provide step-by-step guides for
their development. As an example, we suggest a guide word based approach for the
elicitation and documentation of failure modes.

Modeling Patterns We introduce modeling patterns to provide a basic model structure and
thus ease the creation of availability models.

We illustrate the method using a running example of a storage and access system.

1.4.4 Case Study: Train Door Control

The last contribution is a case study to evaluate our modeling approach. The case example
is an industrial train control system developed by the company Siemens. To obtain input for
availability modeling, we performed interviews with Siemens engineers. With this information,
we were able to create availability models according to our artifact model and modeling method.
We found, that we could capture most of the availability requirements with our models. We used
the models to perform a series of availability analyses, verifying the requirements and comparing
architecture alternatives with respect to availability. To execute the analyses automatically, we
created prototypical tool support.

1.5 Outline

The main part of this thesis is structured in the following seven chapters. In Chapter 2, we
report on the interview study we performed with experts from different domains of the industry
in order to investigate the state of the practice regarding availability. This study on the state of
the practice is complemented with a review on the state of the art in Chapter 3. In Chapter 4,
we review basic mathematical concepts and the Focus modeling theory, on which all of our
suggested models are based. Moreover, this chapter discusses availability and related notions.
In Chapter 5, we present our artifact model and a formal treatment of availability analysis. In
Chapter 6, we introduce the availability modeling method. Chapter 7 presents an industrial case
study where we evaluate the applicability of the outlined approach. Finally, Chapter 8 discusses
opportunities for further research and summarizes the thesis.

Chapter 1. Introduction

Previously Published Material

Parts of the contributions presented in this thesis are based on previous publications:

(Junker and Neubeck, 2012) Maximilian Junker and Philipp Neubeck: A Rigorous Approach
to Availability Modeling, in: 2012 Workshop on Modeling in Software Engineering (MISE)

(Bohm et al., 2014) Wolfgang Béhm, Maximilian Junker, Andreas Vogelsang, Sabine Teufl, Ralf
Pinger and Karsten Rahn: A formal systems engineering approach in practice: An experience
report, in: Proceedings of the 1st International Workshop on Software Engineering Research
and Industrial Practices, 2014

(Junker, 2014) Maximilian Junker: Exploiting Behavior Models for Availability Analysis of In-
teractive Systems, in: Proceedings of the 2014 International Symposium on Software Reliability
Engineering

Chapter 2

Availability: State of the Practice

Availability is a topic relevant for many industries. However, there is no first-hand information on
how availability is actually understood and handled in practice and what problems practitioners
are facing. To acquire this information, we performed a qualitative interview study with
availability experts from several branches of the industry that are concerned with software-
intensive systems. In this chapter, we report on this study. We first formally state the study
goal and the research questions that guided the interview design in Section 2.1. Afterwards, we
give details on the interview design and the execution of the study in Section 2.2. Section 2.3
presents the results of the study. We discuss our findings in Section 2.4. The rest of the chapter
addresses threats to validity and gives a conclusion.

2.1 Study Goals and Research Questions

In order to obtain a systematic research process we formulate a study goal from which we derive
four research questions. We use the research questions in a next step to create a first interview
guideline.

2.1.1 Study Goal

We formally state our study goal using a slightly adapted version of a goal definition template
due to Wohlin et al. (2012).

We analyze the state of the practice regarding availability
for the purpose of understanding it and identifying existing problems
from the viewpoint of availability experts

in the context of industrial companies from different domains devel-
oping software intensive systems.

2.1.2 Research Questions

In order to reach our goal, we devised the following four research questions.

Chapter 2. Availability: State of the Practice

RQ 1: Relevance — How relevant is the topic availability in the industry?

With Research Question 1, we want to investigate how the industry assesses the relevance of
availability. A low relevance would be a hint that this line of research is not worthwhile or
that the expert selection was not adequate. Furthermore, we are interested in the reasons why
availability is seen as relevant by the experts. Last, we want to know, if there are differences in
relevance related to the domain or specific context.

RQ 2: Understanding — What understanding of availability is present in the indus-
try?

With Research Question 2, we want to gain an insight into what notions of availability are
present in the industry and how this notion varies among different companies. There are two
relevant subtopics which we consider separately. The first topic is the question, under which
condition a system is considered unavailable. This relates to the notion of failure in the context
of availability. The second topic then relates to the actual notion of availability as a system
property. In order to distinguish those topics we split RQ 2 into two subquestions:

RQ 2a: Understanding of Failure. =~ Here, we want to investigate the criteria when a system is
considered as failed. What aspects of the system are considered relevant in order to decide this
and how are failures described?

RQ 2b: Understanding of Availability. Based on the understanding of failure, how is the
concept availability understood? Which metrics are used, if any? What are other means to
capture availability?

RQ 3: Activities — What activities are performed during the whole product life-
cycle that are related to the availability of a system?

With Research Question 3, we aim to identify the levers that are used in practice to achieve the
availability goals. This question is not only geared towards system architecture development,
but encompasses the whole product life-cycle including, for example, project management,
requirements engineering, system operation and maintenance.

RQ 4: Problems — What problems are perceived regarding availability?

With Research Question 4, we want to identify shortcomings in the current practice regarding
the realization of highly available systems.

2.2 Study Method

In this section, we explain the design of the interview study. More specifically, we first describe
how we selected the study participant in Section 2.2.1. In Section 2.2.2, we present the interview
guideline we developed to structure the interviews. In Section 2.2.3, we outline how we actually
conducted the interviews. Finally, in Section 2.2.4, we give details on how we analyzed the
interview notes in order to answer our research questions.

Chapter 2. Availability: State of the Practice

Company System Types Expert Role

1 Train Protection Systems RAM Specialist

2 A Industrial Controller Product Manager

3 Process Automation Systems RAM Specialist

4 B Intra-Logistics Automation Systems Automation Engineer

5 Intra-Logistics Automation Systems System Architect

6 C Data Centers & Networks System Architect

7 D Database Systems System Operation Engineer
8 Process Automation Systems Automation Engineer

9 E Railway Telematics Systems System Architect

10 Train Protection Systems System Architect

11 F Business Information Systems System Operation Engineer
12 Business Information Systems System Operation Engineer
13 G Miscellaneous Software Architect

14 H Miscellaneous Software Architect

15 1 Business Information Systems Software Architect

Table 2.1: Overview over the study participants.

2.2.1 Study Participants

In order to get a detailed picture of availability in industry, we decided to perform interviews
with experts from a broad range of domains and company types. When selecting the companies
we restricted ourselves to domains, where we already knew, or at least supposed, that availabil-
ity could play a role. Such domains are telecommunication and transportation, but also, for
instance, insurance. The companies and experts were selected in a way to achieve a diversity
regarding the domain, business type (e.g. product or service) and size of the company, as well
as the role of the department and the expert. We also tried to vary the types of systems that the
experts are concerned with. For example, we included embedded systems, business informa-
tion systems and infrastructure systems such as data centers. Moreover, we considered both,
centralized and distributed systems. As sampling method we used a mixture of convenience
sampling and snowball sampling (Kitchenham and Pfleeger, 2008) in the following way. We
first addressed companies to which we had contact before and asked for experts that we can
interview. Second, we selectively contacted additional companies to achieve more variance.
Third, in each interview we asked the experts if they know of further persons that we should
interview. We aimed to include experts that fulfill different roles in their organization in order
to consider different views on availability. We therefore interviewed RAM specialists, whose
tasks include availability analysis, software and system architects, automation engineers, whose
task it is to plan automation systems, operation engineers, who are responsible for the operation
of (software) systems, as well as a product manager. Table 2.1 gives an overview over the
participants’ roles and the systems types that they attend to.

2.2.2 Interview Guideline

We developed a guideline to structure the interviews. We first derived an initial interview
guideline from the research questions. This guideline was adapted during the interviewing

Chapter 2. Availability: State of the Practice

Question Block Targeted RQs
General RQ 1 (Relevance)
Relevance of Availability RQ 1 (Relevance)
Understanding of Availability RQ 2 (Understanding)

Auvailability in the Product Lifecycle RQ 2 (Understanding),
RQ 3 (Activities)

Experiences RQ 3 (Activities),
RQ 4 (Problems)
Closing no explicit RQ targeted

Table 2.2: Targeted research questions for the question blocks.

phase to reflect the experience that we gained with the first interviews. The final interview
guideline consisted of the following five question blocks with 28 questions in total.

1.

General (3 questions): Questions, regarding the expert’s department, the role of the
expert, as well as the systems that are considered. Questions in this block do not relate
to a specific research question but instead are used as introduction and to understand the
context of the expert.

. Relevance of Availability (2 questions): Questions, regarding the relevance of availability

in the company. Here, we specifically asked for the importance of availability and inquired
situations, factors and systems for which availability is especially significant. We also
asked for availability related standards and norms.

. Understanding of Availability (3 questions): Questions, regarding the notions of failure

and availability that the experts employ. Additionally, one question is related to the role
of degradation and operating modes.

. Availability in the Product Lifecycle (15 questions): Questions, regarding the role of

availability with respect to the tasks project management, requirements engineering,
architecture, implementation, verification, maintenance and operation. Additionally, we
asked for availability related modeling activities that are performed.

. Experiences (2 questions): Questions, regarding concrete projects or examples where

availability played a major role. We asked for challenges and problems, their root causes,
solutions and open issues.

. Closing (3 questions): Questions, regarding further points that should be discussed

and further interview partners. Additionally, we asked directly what an ideal modeling
technique for availability should contain.

A complete list of all questions in the interview guideline can be found in Appendix A. Table
2.2 shows how the question blocks relate to our research questions.

10

Chapter 2. Availability: State of the Practice

2.2.3 Interview Execution

We conducted the interviews either per telephone or in person. Each interview took between
30 minutes and two hours. Usually, we only interviewed one person at a time. Only in two
cases we interviewed a group of persons. We performed each interview with two interviewers,
one responsible for performing the actual interview and one for creating a protocol. During the
interviews, the guideline was mainly used as a checklist in order to ensure that we cover the
important topics. In some cases, we also discovered a new topic during an interview. We added
such a topic to the guideline after the interview if we thought it could be relevant in other cases,
too.

2.2.4 Interview Analysis

The interview protocols were the source for the analysis. For each of our four research questions,
we identified the main topics that were mentioned by the experts and grouped the statements
of the experts according to these topics. We did not use the interview guideline to structure the
protocols, as not all aspects of the guideline were covered in each interview and furthermore
in some interviews specific topics came up, which were not part of the guideline. Apart from
sorting the statements into topics, we also assigned one or more keywords to each statement.
We used this structured representation of the protocols to answer our research questions. The
organization and analysis of the protocols were performed using a spreadsheet tool.

2.3 Results

In the following, we present the results of the interview study, according to our research
questions. We number the topics that emerged in the interviews by T{Number}, in order to
refer to the topics in the discussion.

2.3.1 RQ 1: Relevance

During our interviews we found four major themes regarding the relevance of availability.

Availability as Industry-specific Standard (T1). In some industries (automation, medical, tele-
communication), a certain availability level is either customary in this industry branch or it is
demanded by industry standards. For example, one expert from industry automation stated that
a minimum availability according to FEM (European Materials handling Federation) always
becomes part of the contractual basis. A different expert mentioned guidelines by certification
organizations for medical equipment such as the FDA (US Food and Drug Administration).
According to the expert, these kinds of guidelines are increasingly demanding high availability,
additionally to safety which has traditionally been emphasized. An expert from the telecommu-
nication domain referred to country-specific laws for suppliers of critical infrastructure, which
demand certain levels of availability.

Availability as a Customer Requirement (T2). In several interviews the experts stated that they
need to fulfill explicit customer requirements regarding availability. In the rail and industry
automation domains, the experts said they need to provide detailed argumentation that a certain
availability level is realized in the system. This is typically done in the form of a RAM case,

11

Chapter 2. Availability: State of the Practice

a document that contains such kind of argumentation in a structured way. In other cases,
certain guaranteed availability metrics are part of the contract for a system, e.g. as part of a
Service-level Agreement.

Availability as Quality Indicator (T3). Availability is not always a hard requirement but some-
times rather a quality indicator. That means, there is no binding specification of availability that
needs to be reached, or this specification is only for internal quality control. This is stated by an
expert involved in railway telematics systems, who reported that there exist internal availability
goals, which are, however, not quantitatively verified. This topic primarily emerged in cases,
where the systems are provided to internal customers. It does not imply that availability is not
important in these situations. The level of availability may even be systematically measured but
there is no compulsory proof of availability. In such a context, the systems are often designed
to be as available as possible within the given budget. For instance, two experts with such a
background told us that they always pursue a “best-effort” strategy regarding availability.

Economical Trade-off (T4). Across different domains, interviewees emphasized the fact that
availability is to a large extent driven by economic factors. The customers of a system need to
decide which level of availability with associated costs is economically sensible. As one expert
put it: “Availability is always a trade-off. The 100% solution is too expensive”.

2.3.2 RQ 2a: Understanding — Failure

With this research question, we wanted to explore the experts’ notion of a failure in the context
of availability. We extracted four dimensions that describe the bandwidth of the different
understandings of failure present in our interviews.

Intuitive Understanding vs. Precise Definition (T5). In several cases, the interviewees stated
that they do not employ a formal definition of failure. Instead, an intuitive definition is used. An
example for such an intuitive understanding is the statement: “Every deviation from the nominal
state is a failure”. One expert from the business information system domain acknowledged that,
especially for complex system, an intuitive notion of failure is employed, which, at the same
time, is limited in expressiveness. On the other hand, there were also cases where rather precise
definitions of failure existed, such as thresholds for correct values of a functionality together
with time-bounds. Such precise definitions existed for example in the medical domain. In this
domain, we observed a strong relationship between availability and safety, as the unavailability
of a certain function may be a safety hazard.

Scope (T6). Experts from different domains considered failures with respect to different
scopes. With scope, we relate to the subject-matter under consideration. In a hierarchical
system this could be the system itself or some sub-system or sub-functionality. For instance, in
the case of control systems for process automation, failures are primarily defined with respect
to the scope of a plant or a part of the plant, such as a pump. In this example, a failure of
the control system is defined in terms of the performance of the pump. A further example of
a super system as scope for failure is the rail domain. Here, one expert stated that “outside
visibility” of a failure is an important criteria. Outside visibility is given, for example, when
a train gathers more than 3 minutes delay due to this failure. However, in most interviews the
scope of a failure was the system itself or a specific functionality of the system.

12

Chapter 2. Availability: State of the Practice

Viewpoint (T7). Experts understood failure either from a black-box (interface behavior) view
or a glass-box (state space or internal structure) view. In the interviews, the experts took mainly
an black-box view when relating to failures. The black-box view was apparent when they named
incorrect outputs and delayed responses as examples for failures. Furthermore, metrics such
as throughput or bandwidth relate to a black box view on the system. For instance, one expert
from the data center domain stated that their main criterion is that the deployed services are be
executable without delay.

However, in some cases also a glass-box view was present. A prominent example for failures
defined with respect to a glass-box view, in this case regarding the system state, is data-loss.
Experts from the datacenters and automation domains stated that data-loss is an important class
of failure that they consider. The experts provided a number of examples that relate sub-systems
(or sub-functions). Two experts explained that a system failure with respect to availability is
determined by the system functions that are active at that moment. For instance, an expert
from the medical systems domain described an infusion controlling system where the main
functionality is protected by a safety function that is activated in case the main function cannot
be performed anymore. In this case, the system is considered unavailable as soon as the safety
function takes over. A similar example stems from the rail domain. Here, the availability of an
automated driving function is determined by the set of sub-functions that do currently operate.
In the automation domain, it is common to assign weights to sub-functions that describe the
importance of sub-function failures for super-function failures.

Failure Classifications (T8). This dimension relates to the way failures are categorized. On
a high level we can distinguish two cases: In the first case, only two categories “operational”
and “failed” are considered. In the other case, several levels of failure are distinguished, e.g.
regarding failure severity. Especially for complex, multi-functional systems, a binary notion
of failure is often seen as inadequate. In many cases, the number of failure classes was small.
Often, the experts reported about three to four classes. The experts reported on a number of
criteria to make the distinction. A first criterion is the degree of degradation that a system
exhibits. For example, an expert stated that in the context of web-based information systems,
they use the following categorization: 1) The system behaves as expected 2) The system answers
but the response is not as expected (e.g. a failure notice) 3) The system does not respond at all.
How to categorize a concrete behavior, and especially how to distinguish between 1) and 2) in
the case of small deviations from the specified behavior, is up to the engineer. The range of the
disturbance was named as further criterion. As an example for the latter, an interviewee from
the railway telematics domain stated that it makes a difference if only a few work-stations are
out of service or a large number of then. Similar, a different expert employs a categorization
based on the number of employees that are affected.

A third criteria is the time when the failure occurs. In two cases, experts reported that they
have different kind of systems which are guaranteed to operate during different time periods.
For example, the following classification was used: 1) Monday - Friday, 8am - 6pm, 2) Monday
- Saturday, 6am - 8pm, 3) 24/7 . Depending on the system, where the failure occurs, and the
day and time, failures are categorized in different classes.

2.3.3 RQ 2b: Understanding — Availability

Quantitative vs. Qualitative Properties (T9). = Most interviewees understood availability as a
measure for the amount of time when the system is not available (i.e. has failed). The two most

13

Chapter 2. Availability: State of the Practice

prominent metrics mentioned were uptime (including and excluding planned maintenance) and
repair-time. Two experts mentioned metrics that are not related to time. In one case this was
diagnostic coverage, the probability that a fault is diagnosed. In the second case the expert
referred to loss of money.

Although availability metrics were used broadly among the interviewees, many experts
also criticized them for being not expressive and hard to measure. In some cases availability
metrics were only used in marketing and to specify internal goals but not during the further
development.

According to the experts, availability also served as an umbrella for a range of qualitative
properties of a system regarding its failure behavior. An example for such a property is that
the system must never exhibit data-loss. Similarly, one expert stated that because availability
metrics are hard to handle they try to capture availability via “functional requirements”. An
example for such a functional requirement, given by one of our experts, is failure disclosure,
which relates to the ability of the system to issue a notification as soon as it has failed.

2.3.4 RQ 3: Activities

Project Management

Staffing (T10). With respect to project management, the interviewees named one main activity
important for reaching availability goals. This strategy is to include availability specialists into
the project team from an early phase on. Thus, early design decisions can be reviewed with
respect to availability. An example stems from one of the interviewees, who has the role of a
RAM specialist in the automation domain. He stated that in projects with explicit availability
requirements, he is usually involved early, starting with the architecture development. A
different expert from process automation stressed the importance of including external experts
into a project, for instance experts affiliated with certification companies.

Requirements Engineering

With respect to requirements engineering, two important activities emerged in the interviews:
Requirements elicitation (i.e. the extraction of the initial requirements from the stakeholder)
and requirements analysis.

Requirements Elicitation (T11). The experts named two main types of sources for elicitation of
availability requirements. They are in line with the types of relevance outlined in Section 2.3.1.
The first source mentioned are the users and customers of the systems. One expert from process
automation remarked that availability requirements elicitated from users tend to be unspecific:
“The person in the operations room wants that the system is always running when he needs it”.
In our interviews we encountered cases with external as well as internal customers. An expert
from the business information systems domain experienced that customers, contrary to users,
sometimes have rather specific availability requirements. This expert explained further that in
cases where customer requirements are very specific they try to find out the reasons for those
requirements (e.g. bad experiences in the past). A second source for availability requirements
are industry standards and regulations. As mentioned before, there exist industry standards
that impose certain availability requirements, for example FEM for automation or the FDA for
medical devices.

14

Chapter 2. Availability: State of the Practice

Requirements Analysis (T12). All experts stressed the importance of economic and marketing
considerations for availability. As, on the one hand, a high availability increases the value of a
system but, on the other hand, high-availability always comes with a price, availability require-
ments are often the result of a cost-benefit analysis. An expert from the process automation
domain acknowledged that view when stating that availability metrics often do not stem from
(technical) experts but instead are motivated and derived from economic factors. Availability
requirements may also emerge later in the process through derivation from other requirements
or due to certain architectural decisions. Two experts reported that risk analyses and FMEAs
(Failure Mode and Effect Analysis), which are carried out with respect to availability on the
basis of the architecture, can lead to new requirements which address the issues that came up
during the analysis. An expert from process automation explained that availability requirements
for the automation system are derived from architectural decisions concerning the whole plant.

Architecture Development

A broad range of activities were mentioned during the interviews relating to the architecture of
the system.

Creating Architecture Prototypes (T13). Architecture prototypes are used to evaluate the avail-
ability early in the design phase. An expert from the healthcare domain claimed that this strategy
can avoid major architecture changes otherwise induced by availability problems.

Introducing Redundancy (T14). Often, the interviewees related to physical redundancy of
some technical computing component (e.g. processor, memory, interface equipment, database).
In case of a failure, the redundant unit can take over. A specific instance of redundancy
is virtualization, where an application or a component can be moved between nodes of a
highly redundant infrastructure. The experts also mentioned redundancy of infrastructure, such
as energy supply, or networks. A further type of redundancy that was brought up, is data
redundancy (e.g. through backups).

Choosing Components (T15). Additionally to redundancy, it is also possible to influence
availability by choosing components for the architecture that are highly reliable themselves.
One expert stated for instance, that for certain availability-relevant sub-systems, they employ
only certified third-party software. Here, also long-term support and supply with spare-parts
plays a role.

Introducing Fault Detection and Handling (16). Often, redundancy or highly reliable compo-
nents are not enough to fulfill the availability requirements, or it is too expensive. Therefore,
other means have to be introduced into the architecture. Failure isolation is used to prevent
faults from propagating through a system. It is applied (on a system level) in the automation
domain. Here, plants are deliberately designed in a way such that different functions of the
plant fail independently. Thus a (degraded) operation of the plant is still possible. In case
of a component fault, the system availability can sometimes be maintained for a while by the
residual components compensating for the defective components. For example, a system may
compensate for the failure of a database component by buffering requests to the database or by
only providing old, cached data (which might be acceptable in certain situations). Moreover,
only the subset of the functionality that does not need the database could be activated. An

15

Chapter 2. Availability: State of the Practice

expert concerned with datacenters termed this kind of strategy “design for failure”. In all cases,
monitoring of the system and its components is seen as crucial in order to be able to detect
failures and be able to react.

Optimizing Deployment (T17). Deployment relates to the assignment of software to computing
units and may have significant impact on the system’s availability. Hence, optimizing the
deployment can increase the availability. Experts from the business information and from the
industrial controller domains emphasized the importance of hot-deploy, which refers to the
possibility to update the software on a system during operation.

Verifying Architecture w.r.t Availability (T18). One approach to verify that an architecture is
able to provide a certain availability, is to perform manual reviews. One expert said, it is
common in his company to perform workshops where architects and availability specialists
review the current architecture. Apart from reviews, structured methods such as Failure Mode
and Effects Analysis (FMEA) or an analysis based on failure scenarios were mentioned by the
experts to investigate possible availability problems. The interviewees also named techniques
based on architecture modeling. Prominent examples here are Failure Trees, Reliability Block
Diagrams and Markov Models. A further technique, mentioned by these experts, is simulation.
Often, simulation is performed on the basis of an architectural model. During the simulation,
component faults are injected and the effects on the system are evaluated.

Software Development

As our focus is software intensive systems we explicitly asked for specific activities related to
the software development. Compared to the activities regarding the architecture, the experts
mentioned fewer points here.

Software Implementation (T19). Strategies with respect to software implementation men-
tioned by the experts includes the usage of reduced language sets and avoidance of memory
access violations. One expert remarked that those techniques are, however, not specific to avail-
ability and can be considered good software engineering practice. A further aspect, mentioned
by an expert from the automation domain, is sensible exception handling. The expert stressed
the point that it is important to handle exceptional situations in a way that functionality that is
not directly affected by the exception can continue to operate. He reported a case where the
improper formatting of an input lead to a termination of the whole system. Instead, handling
the situation by discarding the input would have been better from an availability point-of-view.

Testing (T20). Most experts stressed the importance of testing for availability. Especially
integration tests and system tests are used for this purpose. An expert from the business infor-
mation system domain explained that special tests are run in order to improve the availability.
These tests verify, for example, that redundancy and fault-tolerance mechanisms are working or
that backups can be correctly imported. Experts from the process automation domain stated that
a major hurdle to availability testing is that realistic testing environments are often not available,
as these can get extremely expensive. Furthermore, tests can hardly simulate long-time effects
as they are typically only run over a short period of time.

16

Chapter 2. Availability: State of the Practice

Operation

In the interviews, the experts pointed out that availability is not alone influenced during the
development of the system but also during the operation of the system. The two main topics
that the experts deemed most relevant here are maintenance and monitoring.

Performing Maintenance (T21). Several experts said that in their respective company regular
maintenance activities are carried out. This does mainly relate to computing hardware. During
these maintenance activities certain parts that are subject to wear-out, are replaced (even if
they are not yet broken). Sometimes, these maintenance cycles are also regulated by law. An
example for such a law is the German law for the development and operation of tramways
(BOStrab).

Monitoring the System (T22). In many cases, systems are continuously monitored. From the
interviews we get two main goals that are connected to monitoring. The first goal is to assess
the actual availability of the system. The second goal is to detect failures quickly and thus be
able to react to them in a timely manner.

As an example of the first goal, one expert stated that they are regularly monitoring their
system (a business information system) and calculate its availability. The monitoring results
are included into monthly reports in the form of availability metrics. A different expert
from the automation domain told us that they are monitoring a system during one week of
operation recording all failures. From this they calculate a value for availability. Regarding the
second goal, an expert from the medical domain described a system that possesses a dedicated
monitoring processor.

When we asked for the concrete implementation of monitoring, we got rather diverse
answers. In many cases the monitoring is performed on a rather technical level without relation
to the actual functionality of a system. For instance, the processor workload, the activity of
certain processes or the network traffic is analyzed. One expert told us that they are currently
looking into pattern detection in these pieces of information. A common tool that was named by
several experts and which is used for this purpose is Nagios!. As the information gathered with
this kind of monitoring is rather coarse, several experts pointed out the problem that inferring,
whether the system is currently operating or not, is not always possible from this data.

In two cases, we encountered a monitoring strategy on a more fine-grained level. One
was the aforementioned case of a surveillance processor. In this case, the actual outputs of
the main processor are continuously monitored and compared to the target outputs. Although
this approach allows detailed monitoring, according to the corresponding expert, it comes with
considerable effort as the monitoring routines are usually not trivial in order to achieve a good
trade-off between strictness and tolerance. For instance, sometimes output values have to be
buffered for a short period in order to allow for small delays between the two processors.

The third monitoring strategy was reported by an expert from the business information
systems domain. In this case, the availability of the server part of a client-server application
is being monitored. Therefore several test sequences are executed against the server in cyclic
intervals. Usually, these tests do not cover the whole functionality, but instead only basic use
cases (for instance logging in). They might even only trigger a certain diagnostic function. The
application is considered available as long as the tests succeed. As soon as one test fails, it is
considered unavailable.

thttp://www.nagios.org

17

Chapter 2. Availability: State of the Practice

An additional aspect to monitoring was brought up by one expert. He emphasized that
monitoring should be done in a proactive fashion. This means, monitoring should be done in a
way that not only failures are detected but also conditions that will probably lead to an outage
shortly.

Generally, monitoring is considered an important issue by the experts. Several experts
said they are either currently planning to expand monitoring or that they would like to expand
monitoring if there would be budget. The experts also stated that a major hurdle to monitoring
is that their respective application does not provide suitable interfaces for the monitoring.
Therefore establishing monitoring is cumbersome.

Documentation

Creating a RAM Case (T23). We asked the experts how decisions and analysis results regarding
availability are being documented. In two cases (rail domain and automation domain) the
experts reported that for each system, a RAM case is usually created. This document contains
the availability goals and a detailed argumentation why and how these goals are met by the
developed system. It contains, for instance, relevant architectural decisions with their rationales,
models and results of FMEA, fault-tree or RBD analyses as well as the data on which the analysis
was based upon (e.g. MTBF values of hardware components together with their source).

Creating a Manual (T24). In some cases the experts explained that within their organization,
architectural decisions are usually documented in a manual. If availability is important for a
system, such a manual may include descriptions how the architecture is supposed to guarantee
a high availability. This form of documentation is less formal and less detailed than a RAM
case.

Documenting Best Practices (T25). Apart from these system specific types of documentation,
we also encountered the documentation of best-practices. These take, for example, the form
of architecture patterns and anti-patterns the company has already made experience with. The
information is either gathered in some central document or, as reported by one expert, is
distributed individually, e.g. via E-Mail.

2.3.5 RQA4: Problems

All experts claimed that major availability problems due to design flaws are rare at their
respective companies. Reasons for this are advanced infrastructure technologies, such as virtu-
alization, and the gathered experience in their organizations. However, during the interviews
the experts still reported on several availability related problems, they perceive. The problems
can be categorized into problems regarding specification and analysis of availability on the one
hand and specific threats to availability on the other hand.

Problems Regarding Specification and Analysis

Formulating Availability Requirements (T26). = We saw that high-level availability requirements
are often motivated by economic considerations. These high-level requirements often come in
the form of metrics. Two experts from the business information system domain stated that it is
hard to find an operationalized notion of these availability metrics for a concrete system. One of
these experts explained that the understandings of availability of the business departments and

18

Chapter 2. Availability: State of the Practice

the responsible technical departments do not always match and need to be discussed. In this
discussion, the business departments can get overwhelmed, according to the expert. Therefore,
instead of using availability metrics, qualitative requirements for the system’s failure behavior
are developed together with the business experts.

Understanding System Dependencies (T27). In order to evaluate an architecture with regard
to availability, it is crucial to understand the dependencies between elements of the system.
With dependencies the experts related to cases where some element’s behavior is influenced by
the outputs or the state of a different element. An expert from the automation domain explicitly
stated that the biggest problem, when performing availability analyses, is that an engineer
overlooks some of the dependencies that are present in the system. Undiscovered dependencies
can be the cause for availability problems during the operation of a system. An expert from
the train protection domain described an example where the switch-over time of a redundant
network component exceeded a certain predefined threshold of a safety monitoring routine.
This routine initiated the shutdown of a great part of the system as the switch-over happened.
In this case, the subtle interaction between a fail-over routine and a safety functionality resulted
in an availability problem. Finally, even if dependencies are uncovered, assessing their impact
quantitatively is regarded difficult by the experts.

Effort for Analysis and Verification (T28). A problem, reported by an expert from the au-
tomation domain, is the high effort needed to analyze a system’s availability. This problem
is especially prominent in a setting, where a rigorous analysis is performed by availability
specialists. These specialists possess knowledge on analysis methods but have to familiarize
themselves with the system at hand. The expert noted that usually not all relevant information,
especially regarding dependencies, can be drawn from design documents. Hence, the special-
ist needs to work closely together with the engineers of the system, for instance in the form
of common workshops. We saw that a different method for verifying availability is testing.
However, the main problem here is the effort needed to create realistic testing environments.
Furthermore, availability testing comes with further effort as short testing periods have to be
compensated by deliberately introducing faults into the system.

Granularity and Reuse of Availability Analyses (T29). An expert from the rail automation
domain formulated a problem that is related to the type of systems that they deal with. In
this domain, it is common that there exists a generic system, which is then adapted for the
specific context of a customer. However, it is hard to analyze the availability of the final system,
deployed at the customer, on the basis of the generic system. In the past, the availability analysis
hence needed to be re-done. According to the expert from the rail domain it would be helpful
if the availability analysis on the generic system was modular enough and on suitable level
of granularity such that partial results can be re-used for subsequent analyses of the deployed
system.

Monitoring (T30). An important point that was stressed by several experts was the importance
of monitoring during system operation, both for assessing the availability and for being able
to react quickly to disturbances. Often, the information gathered during monitoring is rather
coarse. Several experts pointed out the problem that inferring, if the system is currently
operating or not, is not always possible from the gathered data. However, depending on the

19

Chapter 2. Availability: State of the Practice

level of detail, building monitoring facilities can be expensive. Some experts hence stated that
more and more detailed monitoring would be helpful, but there is often no budget.

Specific Threats to Availability

Partial failures (T31). A problem, described by an expert from the business information system
domain, relates to the way components of system fail. According to the expert, components that
either fail completely or are fully functional are usually not a threat to system availability, as
failures can be efficiently detected and either compensated or repaired. However, components
that fail partially pose a problem, as the failures may affect availability but are harder to detect
and repair.

Spare Parts (T32). Especially for long living systems, it is important that spare parts can be
obtained in future. Two experts in our interviews pointed out that for some of their systems, the
acquisition of spare parts is difficult, as the system was built several decades ago and there have
been several changes in technology. Thus, the use of outdated technology can pose a threat
to availability, as repair times may get longer. However, the use of outdated technology may
sometimes be due to regulations. For example, one expert reported that for one of their systems,
they have to use monitors with the aspect ratio 4:3, which are increasingly rare today.

2.4 Discussion

The interview results show that the availability of software-intensive systems is a relevant topic
in the industry. For two of the experts we interviewed, analyzing a system’s availability and
consulting projects with respect to availability is even their main task. In several domains, for
example the automation, train protection and (with less emphasis) the medical and business
information systems domains, availability properties are explictly demanded by customers
and/or regulators and need to be proven (T1,T2). Even in cases where availability requirements
were not quantitatively specified and a rigorous proof is not required, we saw that nevertheless
considerable effort is spent to ensure availability and to monitor systems accordingly (T3).
However, the availability of a system is always subject to economic considerations (T4).

Although the experts we interviewed share the same intuitive meaning of availability as a
measure of the time the system is operating, there are also differences in understanding. More
precisely, we observed different notions of failure, regarding the rigor of failure definitions
(T5), the perspective on the system (T6,T7), and the classification of failures (T8). We further
found that availability is either grasped quantitatively via a range of metrics or qualitatively, for
instance by properties of the system’s behavior (T9).

There are many activities that contribute to reach availability goals. These activities relate
to different phases of the product’s lifecycle including project management (T10), requirements
engineering (T11,T12), architecture development (T14-T18), software development (T19,T20)
operation (T21,T22), and documentation (T23-T25). These strategies are not only related
to technical issues. Many experts stressed the fact that other aspects such as planning for
maintenance (T21) are also important. Still, the two topics that receive most attention are system
architecture and monitoring. The system architecture, is perceived as the most important lever
for building highly available systems. Most techniques that are employed within the architecture
are based on some form of redundancy (T14). However, other design paradigms, such as “design
for failure” (T16), also receive attention.

20

Chapter 2. Availability: State of the Practice

With the help of advanced technology such as virtualization (T14) as well as experience,
the companies generally succeed in building highly available system. Nevertheless the experts
named a number of problems. One kind of problem is related to the specification and analysis
of the system availability. The analysis is cumbersome, as availability is often hard to opera-
tionalize and therefore formulating requirements is difficult (T26). The effort to understand the
system and its dependencies (T27) as well as the efforts for applying analysis methods is high
(T28), and modularization of the analysis is difficult (T29). The experts also identified some
system characteristics that in their experience often pose a threat to availability (T31,T32).

2.5 Threats to Validity

In this section we address possible threats to the validity of our study. We structure the threats
into descriptive validity, interpretive validity and external validity as proposed for qualitative
research, e.g. by Johnson (1997). We leave out internal validity as in this study we do not
suggest any cause-effect relationships.

2.5.1 Descriptive Validity

Descriptive validity relates to the problem that we did not correctly protocol the interviews or
that our protocols are ambiguous and do not faithfully represent what the interviewee said. As
we did not record the interviews, our result are in principal affected by this threat. However,
we performed the interviews with two persons, one concentrating specifically on minute taking.
Furthermore, the minute-taking person was instructed to write the protocol as literally as
possible. Additionally, the protocols were reviewed by the interviewing person right after the
interview. Finally, a first draft of this study report was presented to the interviewees in request
for feedback. We only received feedback from three of the experts. However, those that did
respond acknowledged that the report is accurate. Therefore, we hope to minimize distorting
influences due to the lack of recordings.

2.5.2 Interpretive Validity

Interpretive validity concerns the validity of how we interpreted the statements of the intervie-
wees. In order to gain confidence that our interpretations are valid we presented the report to the
interviewees, as mentioned above. This feedback did not indicate any wrong interpretations.

2.5.3 External Validity

External validity relates to the generalizability of the results. We do not claim that our results
can be generalized, as with our study setting, a generalization is not possible. However, we
tried to select our experts in a way that we include different domains, different types of systems,
different companies and different expert roles. However, we still could only cover a small
section of the field. For example, all companies that we included in our research were based in
Germany, which could mean our results are biased in this respect.

21

Chapter 2. Availability: State of the Practice

2.6

Summary

In this chapter we reported on a qualitative interview study on the topic of availability of
software intensive systems in the industrial practice. The interviews were performed with 15
experts in eight different companies from different engineering domains. The goal of the study
was to describe the state-of-the-practice regarding availability. We described the results of
the interviews along four main research questions: relevance of availability, understanding of
availability, strategies to achieve availability and problems in the current practice. Finally we
summarized and discussed our findings, as well as possible threats to the validity of this study.
The key finding of our study are:

Availability is of different relevance for different types of companies and in different
domains, depending, for example, on industry standards and regulations, the type of
customers or economic considerations.

The experts used different notions of failure and availability depending on company and
context. Many experts used a quantitative notion of availability that refers to a black-box
view on the system.

Availability related activities are carried out in all phases of the development lifecycle
from requirements engineering until system operation and maintenance.

The experts report on several difficulties regarding requirements formulation and design-
time availability analysis. Moreover, availability considerations pose inherent challenges,
such as obtaining needed spare parts over a long period of time.

22

Chapter 3

State of the Art

In this section, we review the state of the art regarding the specification and analysis of availabil-
ity properties. More specifically, we discuss work on modeling availability requirements, on
model-based design of highly available systems and on models for availability analysis. In each
section, we present the current state of the art as well as open issues connected with different
streams of research and relate the presented work to our thesis.

Section 3.1 outlines research regarding the model-based elicitation, documentation and
analysis of availability requirements. We discuss generic frameworks for non-functional re-
quirements as well as approaches specific to availability or the broader field of dependability.

Section 3.2 summarizes work concerning the model-based design of highly available sys-
tems. This work includes comprehensive modeling languages and methods as well as pattern-
based approaches. Although our thesis does not propose a design method we argue that these
approaches could be integrated with our approach.

Section 3.3 reviews research that proposes models for the analysis of a system’s availability
properties. We first consider classical combinatorial models such as fault-trees and RBDs
as well as their extensions. Afterwards we investigate different types of approaches that
include the system architecture into the analysis models. Another stream of research considers
availability from a user perspective. Finally, we consider generative approaches for the creation
of availability analysis models.

3.1 Modeling Availability Requirements

Several authors address the structured and model-based elicitation and specification of avail-
ability requirements. Most authors, however, take a broader point of view and focus not only
on availability but on dependability, which also includes related aspects such as safety, security
and reliability. An even broader perspective is taken by authors that consider all types of quality
requirements. We first review models for these general quality requirements in Section 3.1.1.
Nevertheless, there are also specific models for availability and dependability requirements,
which we discuss afterwards in Section 3.1.2. Finally, we summarize a specific stream of
research that captures dependability requirements by analyzing behavior deviations in Sec-
tion 3.1.3. Our thesis contributes to this field by providing a set of modeling artifacts to capture
availability requirements in Chapter 5 and a method to create these artifacts in Chapter 6.

23

Chapter 3. State of the Art

3.1.1 General Models for Quality Requirements

Availability is often termed a quality requirement!. Quality models aim to structure and
operationalize quality properties and thus aid the elicitation and documentation of quality
requirements. The quality model outlined in the industrial standard ISO/IEC 25010 (ISO/IEC,
2011) structures product qualities hierarchically and lists availability as sub-characteristic of
reliability. However, the ISO model does not provide details on how availability should be
measured for a concrete system. There are other quality models that aim to be more specific
in how measures are attached to the quality characteristics (e.g., Deissenboeck et al., 2007;
Kitchenham et al., 1997; Lochmann, 2014). By instantiating such a quality model and defining
concrete measures, it is possible to formulate concrete and verifiable requirements on these
measures (or aggregates thereof). However, the quality models provide no guidance how to
specify measures and none of these quality models has so far been instantiated for availability.

A different type of model with a similar target, are goal oriented frameworks. The core
idea of such a framework is to provide a modeling language for formulating high-level goals,
specifying their relationships and refining goals to sub goals and to concrete requirements.
Often, goals are captured in And/Or graphs extended by special annotations. Examples for such
frameworks are the AGORA method due to Kaiya et al. (2002) or the NFR framework due to
Chung et al. (Chung et al., 2012; Cysneiros and do Prado Leite, 2004). The strength of these
frameworks are their ability to structure and relate high-level goals of different stakeholders.
However, similar as for the quality models discussed before, they provide no further help in
defining measures for the goals and requirements. Furthermore, they do not explicitly support
availability requirements.

Relation to our work. A goal of this thesis is to provide a means for formulating precise
availability requirements. The work described above pursues a similar goal for a wider range
of requirements. The general frameworks for non-functional requirements aim to provide a
language that can be used while eliciting and documenting such requirements and relate them
to other types of requirements or activities in the system’s lifecycle. However, the models
and methods mentioned above are rather generic and do not capture the specific aspects of
availability. They resort to natural language or externaly specified availability metrics to state
availability goals or requirements. They do not provide any modeling means and guidance to
define concrete availability measures. Although they often have a formal syntax to structure
quality factors or goals, there is no formal semantics in terms of the behavior of the system.
This, however, is what we contribute in this thesis. In Chapter 5, we suggest models for
capturing availability requirements using a formal modelling theory and in Chapter 6, we
provide guidance on how to develop such models for a concrete system. We see our work not
as a rivalling approach to quality models but as a supplement, carrying on the requirements
specification where the quality models stop.

3.1.2 Specific Models for Dependability Requirements

The literature often treats availability as part of the wider aspect dependability (AviZienis et al.,
2004). Hence, apart from generic quality models reviewed in the previous section, we review

! Another term in this context is non-functional requirement, in contrast to functional requirements. This naming,
as well as the distinction betweeen functional and nun-function has, however, often been critized (Broy, 2015; Glinz,
2007).

24

Chapter 3. State of the Art

specific models for dependability requirements. As availability is one aspect of dependability
in this context, these models are meant to capture availability, as well. Similar to the quality
models, these models structure the concepts relevant for dependability aspects.

Rossebeg et al. (2006) argue that availability requirements depend on the concrete function-
ality delivered by a system as well as its possible functional degradations. They should therefore
be expressed as properties of the system’s behavior. Rossebeg et al. decompose availability
properties into accessibility and exclusivity, which is due to their security point of view. An
example for an accessibility type of property would be: “The probability that an authorized user
is denied access to the service at a given time t should be less than x”. Their conceptual model
also includes threats and means for mitigation into account. See Figure 3.1 for an overview
over the Rossebeg et al. model. Although this model is created explicitly for availability and
includes a refinement of availability into accessibility and exclusivity it still does not provide
further help for the specification of concrete accessibility and exclusivity properties.

- may cause reduction of

Availability

‘ ensures
protects against =

JAN

|
Incident
detection

Incident
prevention

Recovery
from incident

Active
threat

Passive
threat

Accessibilily| Exclusivity |

Figure 3.1: Overview over the conceptual model of service availability due to Rossebeg et al..
Illustration taken from Rossebeg et al. (2006).

Basili, Donzelli and co-workers (Basili et al., 2004; Donzelli and Basili, 2006) propose
the “Unified Model of Dependability” (UMD) as means to elicit and specify dependability
requirements, among them availability. The model incorporates a number of description
concepts to capture different kinds of dependability properties. The three core concepts are
issue, scope and event. Anissue here relates to a certain failure or hazard which may be caused by
an event, which is a potentially harmful condition of the system or a harmful action performed on
the system. The scope relates to the part of the system that is considered, for example a specific
system function or component. A scope definition may also include the operational profile
connected with the given part of the system. In order to quantify dependability requirements,
the concept measure is introduced and finally the concept reaction allows to reason about
mitigation strategies. These core concepts can be refined for a specific dependability attribute
and for a specific system in order to capture the stakeholders’ requirements. See Figure 3.2 for
an overview of these concepts and a small example. UMD is intended to be used by the different
stakeholders by iteratively specifying actual issues that relate to a certain scope together with
possible events that could cause the issue. By repeating and refining this specification (e.g.
operationalizing the specification by giving quantitative measures), a dependability specification
is reached.

Bernardi and her co-workers (Bernardi et al., 2011a, 2010, 2011b) developed an approach
for dependability requirements that is closely coupled to the Unified Modeling Language (UML)
and the UML profile MARTE (OMG, 2009). Their approach consists of a domain model for
dependability (DAM) that structures, describes and interrelates dependability related concepts,
such as dependability metrics (e.g. steady-state availability), threats to a system (including

25

Chapter 3. State of the Art

' It —
- e / \ - Moasuramant Modal
/ _ < Whnok Sysiem - MTBF
- Servoe | - Probabiliey of Occurmnce
| Scope | Operational Profile |measure| -wcases
= Disiribution of transactian - MAX cames ininterval X
- Whor ke sl umas = Cidinal scake
/ -l {rarety'sometimes!... |
y
FAILURE HAZARD
concer « Type - Severity manifest
\ - Azeumcy - Pacpla alfaciad
- Response Time: = Property oty
elo. -l -
— , issu , - Availabliity impact
| —_— \ - Slopping
» Mo Stopping
cause | | / - Severity trigger
il
4=
v
/’ - Impact mitigation
- Wamings
\ - alemative services
[event | :ﬁ;;wfﬂ"dw [reac'llon | e i
-l - reacowary Hme § acions
\\ / - Becurrence reduction
- guard sendices
A L/
(a) Concepts in UMD
event > issue ?
- cause V - CONCE Scope
denial of response time search service
service attack =10 seconds

On-line bookstore dependability requirement example

(b) Example of UMD instantiation in case of an online bookstore

Figure 3.2: The main concepts used to capture dependability requirements in the UMD model
described by Donzelli and Basili. Illustrations taken from (Donzelli and Basili, 2006).

faults) or fault-tolerance mechanisms. Figure 3.3 shows three submodels of the DAM domain
model. The core submodel is shown at the top of Figure 3.3. It exhibits the basic concepts
Component and Service with attributes such as ssAvail denoting steady-state availability. The
Threat submodel is shown on the left. It contains at its core the concepts fault, error and failure
interconnected by cause and effect relations. Each of them can be described with attributes such
as occurenceRate. Failure descriptions can be assigned to services while faults can be assigned
to components. In the Maintenance submodel, maintenance actions such as repair, recovery
or replacement with spares can be specified and assigned to services or components. The
elements from the DAM domain model can be used to annotate elements in a UML diagram. In
a use case overview diagram, services are represented as use-cases and can be annotated with
dependability requirements for these services. On the other hand, threats are represented as
misuse-cases and are annotated with information on fault generation. For a detailed description
of use-cases and misuse-cases further UML diagrams (such as sequence diagrams) are used,
which can again be annotated using the DAM domain model. Also non-UML models such as
fault-trees are integrated into the use-case model, e.g. to describe the misuse-cases. Bernardi
et al. embed the modeling approach into the Rational Unified Process (RUP) (Bernardi et al.,
2010) and give a step-by-step guide how different modeling activities are integrated into the
requirements related phases of the RUP process in order to elicit and document reliability and
availability requirements. Apart from the works of Bernardi, there are several other authors that

26

Chapter 3. State of the Art

System::Core
1..*| components services | 1..*
cmm' nt Service
stateful ssuser= i 1.7| execProb
0.1 | origin = requests | (est el 0.1
isActive accessProb {ordered) Ll
. | failureCoverage serviceProb[1..{ordered] unrefiability |
fpercPermFault -
uBCOM| jos ayail 1 * | missionTime [basicSer
ponents{ unreliability T provides | availLevel vices
_d frelialibility !{{Component.provides->lowerBound({)+ reliabLevel
1 | missionTime 1. ! Component.requests->lowerBound))>=1} « | safetylevel
! | availLevel requests | Complexity
| refiabLevet
, safetyLevel 2
| complexity
1 . |steps
| interacts-via | 1.* {ordered}
Connector Step
coupling
DAMdomainModel: Threats
RedundantStructure 53‘5':"" :Cﬂ"' DAMdomainModel::Maintenance |
ervice
Maintenance System::Core::
paiment impairment Action Service
s = rate T
ErorPropagation impairment distribution - System::Core::
T otect —— Step
propagationExpr Irisk o]
g ~|cost) . recoveryl ‘l..
! ermoProp commomifone =
erroProp Py Repair Recovery recavery
from 2] e | MTTR duration
System::Core:: N pag: repair
Component probabiity map D Step
‘L \l/ Failure. Hazard igin=sw,
Fault cause egect 1 N 3 1|\l ordered) |1 - replace:
lcausa affact mor |=J ||occurrenceRate | |origin 1_{ordered}
A.ﬁ:::mms i cause| e severy System:Core: [T1.- Iy " 200=
occurrenceProb | arrer ‘a'e;?)’.‘. MTBF || ikelihood Component 1"g,
e probability occurrenceDist | {/evel
S - domain latancy i
1.* | duration eror dstectability acsidenthood 1.
Tault consistency guideword
1. accident R
Fault System: Core:: condition onto T
Generator Stap {origin=hw, | I y >size(l=
numberOiFaults sequence}| ReallocationStep.onto->size()}
Error Failwre Hazard
Step Step Step

Figure 3.3: The DAM domain model for dependability including the core submodel (top), a sub-
model for threats (left) and a submodel for maintenance and fault-tolerance (right). Illustrations

taken from (Bernardi et al., 2011b).

27

Chapter 3. State of the Art

attempt to leverage the UML as a basis for eliciting and specifying dependability requirements,
such as Allenby and Kelly (2001) and Johannessen et al. (2001), who both employ a guide word
technique to identify possible failures based on use-cases as a basis for requirements elicitation.
A systematic review on this literature can be found in the publication by Bernardi et al. (2012).

Relation to our work. Availability or dependability specific methods for eliciting and docu-
menting requirements refine the generic methods discussed in the previous section as they aim
to provide a suitable vocabulary specific for availability. By providing a structured concept
model of availability they support eliciting and documenting availability requirements. While
especially the model by Rossebeg et al. stays vague in how availability specifications should
look like, the model by Bernardi et al. gives more guidance. However, all models miss a
semantic ground on which they can be interpreted. The specifications are informal or at least
semi-formal. The actual interpretation of the effect of the annotations on the system’s behavior
is left unspecified. In Chapter 5 of this thesis, we propose models based on a mathematical
modelling theory. Therefore, we obtain a precise and rigorous interpretation of availability
requirements in terms of the system’s behavior.

Especially the model by Bernardi et al. aims at integrating the availability related concepts
into the actual system models. Using the DAM profile, it is possible to add annotations to use
case models as well as to architecture models. In our work, we similarly relate availability
requirements models to other (requirements) models of the system in order to ensure that the
requirements are meaningful and to enable an automated verification.

In one aspect the discussed work exceed the scope of this thesis. All models provide
explicit means to model mitigation techniques or fault-tolerance techniques on a high level of
abstraction. While in our approach, these aspects can be captured by the underlying modeling
framework, we miss the high-level abstractions for these aspects.

3.1.3 Requirements through Behavior Deviation Analysis

A different line of research proposes to systematically analyze possible deviations of a system’s
behavior to elicit dependability requirements. This research is in the tradition of safety analyses
employed in mechanical or process engineering. It adopts methods from traditional safety
analysis and adapts them to software intensive systems. An example is the SHARD method
(McDermid and Pumfrey, 1994; Pumfrey, 1999). The SHARD method involves a step-wise
analysis of the system departing from a data-flow model of the system. One of the core
steps is to study possible behavior deviations with the help of guide words. The guide words
proposed by Pumfrey are omission, commission, early, late and value. After possible deviations
are identified, the SHARD method stipulates to investigate possible effects of the deviation
and develop mitigation proposals. These proposals are the requirements that result from the
application of the method. Despotou and Kelly (2006) discuss, how such a method can be
adapted for dependability. In both of the above approaches, guide words denoting classes of
behavior deviations are used to identify possible failure modes of the services that a system is
supposed to deliver.

Relation to our work. The line of research that that we reviewed above captures dependability
requirements through deviating behavior. This has the advantage that the requirements possess
a clear link to the system’s behavior. We adopt this approach as part of our method. In Chapter
6, we suggest to define failures by specifying possible deviations from the nominal behavior. In

28

Chapter 3. State of the Art

the same chapter we also take up the core idea of the works by Pumfrey, McDermid, Despotou
and Kelly to analyze possible behavior deviations with the help of a set of guide words based on
the original guide words suggested by Pumfrey. A difference between the discussed approaches
and our work is that their primary goal is to elicit requirements in the form of mitigation
strategies (i.e. solutions) whereas we are interested in formulating availability requirements
that do not restrict the solution space. Furthermore, the approaches are not embedded into
a model-based engineering methodology. Neither are they grounded on a formal modeling
theory which hinders automated analyses. With our work, we aim to use the advantages of
these deviation oriented requirements, but base them on a formal modeling theory and integrate
them into a comprehensive engineering method.

3.2 Model-based Design of Highly Available Systems

A different stream of research is concerned with model-based methods to support the design
of high-availability systems. We will first outline work that proposes a comprehensive design
method for fault-tolerant systems in Section 3.2.1. Afterwards, we discuss approaches that
aim to optimize system architectures with respect to dependability attributes in Section 3.2.2.
Such approaches usually run under the label design space exploration. Finally, we summarize
work that employs architecture patterns to support the design of highly available systems in
Section 3.2.3.

3.2.1 Model-based Design Methods

In his Ph.D. thesis, Buckl (2008) introduces FTOS, a model-based approach to design fault-
tolerant systems. In its core, FTOS provides a modeling language to capture the input/output
behavior of a system and provides additional abstractions to specify assumptions on faults (such
as fault-rates and fault-effects) as well as fault-tolerance mechanisms (such as redundancy).
Based on these models Buckl describes verification techniques and develops code generation
facilities.

Relation to our work. Providing a design methodology for high-availability systems is not
the main focus of this thesis. However, by building on a formal modeling theory as well as a
method for seamless model-based development, we have to some degree a design methodology
built into our approach. Furthermore, we adopt techniques for modeling faults (cf. Section
6.4.3). In a case study of a train door control system (Chapter 7), we employed the underlying
modeling framework to model a fault-tolerance mechanism. Nevertheless, our main aim is to
provide means to formally model availability requirements such that they relate to the functional
requirements of the system and that they can be easily verified against a given design.

3.2.2 Design Space Exploration

While in the FTOS approach by Buckl, the design is created manually, there are approaches
that aim to automate this task. Under the term design space exploration (DSE), several authors
(e.g. Bolchini et al., 2001; Janakiraman et al., 2004; Jhumka et al., 2005; Streichert et al.,
2007; Xie et al., 2004) investigate ways to search for architecture configurations that provide
high availability. Grunske et al. (2007) provide an overview over research in this direction.
They propose an abstract method for design space exploration with respect to dependability and

29

Chapter 3. State of the Art

discuss open problems in this field. According to Grunske et al., the basic elements of a design
space exploration method with respect to dependability are the following:

Dependability Evaluation/Prediction Based on Architecture Specifications: These are meth-
ods that take an architecture model as input and deliver a quantitative evaluation of a
dependability attribute. Grunske differentiates between analytical and simulation based
methods.

Dependability Improving Measures: These measures are transformations that can be applied
to the architecture in order to improve the system’s dependability. A typical measure
is to introduce redundancies for certain elements in the system. Starting from an initial
architecture the application of the transformations spans the design space.

Optimization Strategy/Design Space Exploration: This relates to the combinatorial problem
to search the design space for the optimal architecture with respect to one or several
dependability attributes.

The design space exploration process proceeds from a given architecture by first evaluating
the architecture with respect to dependability. From this outcome a decision is made to look
for architecture optimizations. The current architecture candidate is then searched for possible
improvements. Some of the possible improvements are selected based on the global optimization
strategy and the process starts a new iteration.

Relation to ourwork. Our main objective is not to provide a design method for highly available
systems. However, referring to the elements of a DSE method as outlined by Grunske and Zhang,
we contribute to the field by providing a technique for the automated availability evaluation of
an architecture. In Chapter 7 we present a prototypical toolchain for availability modeling and
assessment. Such a tooling could be used as part of a generic DSE tooling for availability.

3.2.3 Architecture Patterns for Availability

There are attempts to ease the construction of highly available systems by providing architectural
patterns for availability. Examples for such an approach can be found in work on architecture
by Bass et al. (2013), extended by Scott and Kazman (2009). Another example is the work
by Saridakis (2002). In all these works, a range of architectural patterns (or more small-scale
tactics) are presented that can be employed in concrete architecture models to achieve a high
availability. Most of these patterns relate to fault-tolerance or fault-detection. An example is
the warchdog-pattern that prescribes a timer that needs to be regularly reset by the monitored
component. If this does not happen, an alarm is raised which can be used to switch to a
redundant component.

Relation to our Work. Providing patterns for highly available architectures is not our main
focus. An integration of a pattern-based approach for architecture improvement with our
approach is nevertheless promising as the effect of the patterns could be analyzed with respect
to the availability requirements. We do provide modeling patterns and basic modeling building
blocks in Chapter 6, however not for the system architecture but instead for the definition of
failures and for the definition of availability metrics.

30

Chapter 3. State of the Art

3.3 Availability Analysis Models

A large body of work deals with models of systems created for the purpose of analyzing their
availability properties. We start in Section 3.3.1 by reviewing classical combinatorial models,
such as reliability block diagrams (RBD) and fault trees (FT) as well as their extensions.
Afterwards we summarize work that aims to integrate these combinatorial model into high-level
architecture models in Section 3.3.2. Further work has been done in the field of architecture-
based availability prediction which we discuss in Section 3.3.3. We outline approaches that
consider availability from the perspective of the user instead as from the perspective of the
system in Section 3.3.4 and finally Section 3.3.5 picks up work that discards manually created
analysis models in favor of automatically generated models.

3.3.1 Combinatorial Models

There are established modelling techniques such as Reliability Block Diagrams (RBD) (Birolini,
2010) and Fault Trees (IEC, 1990) that are commonly used to analyze the reliability and
availability of technical systems. In both cases, the diagrams model which (combination of)
elementary faults lead to a failure of the whole system or a system function. Even though the
representation of RBDs is closer to a system’s architecture, an RBD is nevertheless a diagram of
system events rather than of system components (Birolini, 2010). A problem with these kinds
of models is that only rather simple scenarios can be captured (Birolini, 2010). For example,
sequence dependencies between element faults cannot adequately be modelled. To approach
this problem, several extensions of the two formalisms have been proposed, such as Dynamic
RBDs (Distefano and Puliafito, 2009) and Dynamic Fault Trees (Bechta Dugan et al., 1992).
These extensions introduce new primitives into the modeling languages that allow to model
more complex, possibly time-dependent dependencies between faults. A second problem is
that fault tree models and RBDs do generally not match the architecture of the system that is
modelled. As the basic elements in fault trees as well as RBDs are events (faults) and not
architectural entities such as components or ports, a modularization of these models is often
skewed compared to the system architecture (Domis and Trapp, 2009; Kaiser et al., 2003).

Relation to our work. Analyzing and predicting the availability of a system based on system
models is one of the core concerns of this thesis. The combinatorial models, such as RBDs and
fault trees, serve exactly this purpose. They are built in order to derive values for availability
metrics from them. The main problems associated with these models are their restricted
expressiveness. Complex availability requirements cannot be formulated with these models.
Furthermore, it takes much effort to reliably gather the information about the effect of faults
needed to create the models. Additionally, maintaining these models can cause a considerable
overhead in case of large systems as they have to be constantly adapted to changes in the system.
We avoid these weaknesses in the following way: In Chapter 5, we introduce an artifact model
for availability, containing specific models for availability requirements. We show in the same
chapter how to perform availability analyses based on the availability models, by leveraging the
original system models and thus avoiding any redundancy.

31

Chapter 3. State of the Art

3.3.2 Mixed combinatorial/Architecture Models

Research has been conducted to unify architecture models with combinatorial analysis models.
Examples for early approaches are the Failure Propagation and Transformation Notation (FPTN)
by Fenelon et al. (1994) as well as Component Fault Trees (CFT) due to Kaiser et al. (2003).
In FPTN, a system is described by a set of modules connected by inputs and output channels.
However, these channels represent failures that propagate from one module to another. A
module may either contain hierarchically another module network, or a logical description how
outgoing failure depend on incoming failures. An FPTN model can then be used as a basis for
a numerical analysis. See Figure 3.4 for an example of an FPTN model.

The core idea of CFTs is to describe the fault behavior of components with component
specific fault trees together with an interface describing by which faults of external components
the component is influenced and which faults it produces. The overall fault tree is then built
up from these encapsulated component-specific fault trees. See Figure 3.5 for an example of
a CFT. These basic approaches have been extended. For example, FPTN has been extended
with probabilities by Ge et al. (2009). Domis and Trapp (2009) add a further type of failure
propagation to CFTs. Finally, Grunske (2006) shows how such kinds of approaches can be
integrated with a general approach to component-based design.

(]

a

(a) FPTN Module with a failure propagation description. ~ (b) FPTN Module with a nested module network.

Figure 3.4: Examples of the FPTN notation. Illustrations taken from Fenelon et al. (1994).

Relation to our work. Our work and these techniques share the core idea to integrate system
architecture models with models for availability analysis. Our approach is to describe the
different models and their relationships as part of a comprehensive artifact model. Compared
to the purely combinatorial models, the mixed combinatorial/architecture models improve the
compositionality of the analysis models as they allow the composition of the analysis model from
sub-models that relate to subsystems. However, these approaches still lack the expressiveness
to capture complex availability requirements and still come with considerable manual effort to
understand and model the effect of faults in the system.

3.3.3 Architecture-based Availability Prediction

The research field of architecture based availability/reliability prediction takes the idea of an
integration between architecture models and availability analysis models even further. An
overview over this research field is given in the publications by Goseva-Popstojanova et al.
(2001), Goseva-Popstojanova and Trivedi (2001), Gokhale (2007) and Immonen and Niemeld

32

Chapter 3. State of the Art

Centroller System A System Down
&
Main A F Y Auxiliary
Controller Cantraller

Down ‘ ‘ Daown

Main Controller Aux Controller
>=1 >=1
ry ry i 'y

Main CPU Dowr Auxiliary CPU Down

Power Unit

Power Unit Down

Figure 3.5: Example for a Component Fault Tree due to Kaiser et al. (Kaiser et al., 2003). The
CFT for the Controller System contains the fault trees for the components Main Controller, Aux
Controller and Power Unit.

(2008), however with a focus on pure software systems. In general, these approaches consider
the architecture of a system in terms of components and connections between them and aim
to deduce the availability or reliability of the systems given either the behavior as well as
the failure behavior of the components or given information about the reliability/availability
of the single components. Especially early articles assume a sequential control flow between
the components, often modelled probabilistically. We illustrate this kind of models with the
approach due to Littlewood (Littlewood, 1979), other examples are the work by Kubat (Kubat,
1989) and Laprie (Laprie, 1984). In the Littlewood model, an architecture is given by a set of
components. The dynamic of the system is described by two structures. The first is a Markov
chain that captures the transition of the control flow from one component to another and is given
by the probabilities

pij = Pr[program control flow transits from module 7 to module j].

The second is a family of general probability distributions y;; where each describes the distri-
bution of sojourn times for a component ¢ when entered from component j. Additionally, the
failure behavior of a component 7 is modelled by a Poisson process with parameter v;. Based
on this mathematical model, Littlewood derives an approximation for the overall failure process
which can be used to obtain an approximation for the availability (Littlewood considers point-
and interval-availability). In a classification by GoSeva-Popstojanova and Trivedi (2001) these
types of models are referred to as state-based and are contrasted to path-based models where
the failure probabilities are not initially assigned to components but to whole execution paths
covering multiple components. An example for such an approach is the work by Yacoub et al.
(2004). In this work, the main input are scenario models that capture interaction sequences
between the involved components. These scenarios are extended with execution probabilities.

33

Chapter 3. State of the Art

From the scenarios Yacoub et al. construct a Component Dependency Graph (CDG), which
captures the system components and probabilities for the transfer of control from one compo-
nent to another. The CDG is then the base for the actual reliability or availability analysis.
The last category in the classification of Goseva-Popstojanova and Trivedi are additive models,
where the system availability is calculated from component availability values.

In the approaches discussed so far, an operational profile or environment model is only
implicitly given by the transition probabilities of components or probabilities of scenarios.
Furthermore, these approaches capture only either software or hardware faults but not a com-
bination of both. Reussner et al. (2003) and later Brosch et al. (Brosch, 2012; Brosch et al.,
2012) aim to overcome these weaknesses. As the work by Brosch is close to our work, we
discuss it in greater detail: Brosch builds his work upon the Palladio Component Model (PCM)
(Becker et al., 2009), a modeling language geared towards the analysis of reliability and other
quantitative system properties. PCM supports the creation of the following modeling artifacts:

Architecture Model The architecture model comprises the software components of the sys-
tem. Components expose connectors, termed required or provided roles in this context.
Components can be composed by connecting provided and required roles appropriately.

Component Service Behavior Model The component service behavior model comprises ab-
stract behavior descriptions for the roles present in the architecture model. The behavior
is specified in terms of processes with the process actions referring to resources and calls
to required services.

Deployment Model The deployment model represents hardware resources such as CPUs or
hard disks and resource containers such as servers. The deployment model further
describes the allocation of the components of the architecture model to the elements of
the deployment model.

Usage Model The usage model describes different scenarios how the system is used at its
interface by different types of users. A usage scenario is annotated with the probability
that this specific scenario is executed. The scenario itself is modelled as a process where
the actions are calls to the services provided by the system at its interface.

Brosch extends this basic models by annotations relevant for reliability prediction, such as fault
probabilities of the hardware (e.g. MTTF and MTTR values) and fault probabilities of the
software components. To illustrate his approach, Brosch uses the example of a simple library
system. See Figure 3.6 for the example given by Brosch et al. (2012). In this example, there are
two components, SearchGuide and SearchEngine, deployed on dedicated servers with CPU and
hard disk resources. For the hardware resources, MTTF and MTTR values are specified. The
service behavior model specifies that for a search, the SearchEngine uses either only the hard
disk or both, hard disk and CPU resources, depending on which type of search is requested.
The behavior of the SearchGuide is such that it either triggers the library search or the archive
search depending on the year of the book that is searched. The usage model specifies a library
visitor that searches a book of a certain year with a given probability.

The actual availability or reliability analyses are performed on this model by transforming the
model in several steps into a Markov model and solving it. Regarding the analysis performance,
Brosch reports that models with 20 resources can be solved within 1 hour.

34

Chapter 3. State of the Art

SEFF Behaviour Input: SEFF Behaviour [| Input] SEFF Behaviour|" | Input]
findBook Year, Depth librarySearch X archiveSearch X
e < winternals [
cPU [] []
fp: 0.001
Year > 2000/ " [Vear=2000 ! loopCount = X+2 1
= internal» -
v V HD winternaly e
) CPU, HD
= ca p: 0.0001 !
 acally acall» p: O i 0.0002
y h ar ch
X: 2"Depth+3 X: Depth+1
... Component Service Behaviour Models -
«implements» aimplementss imp
Usage scenario |
Library Visitor T J «components «compaonents =
P=10 -] SearchGuide SearchEngine
findBook librarySearch [, - librarySearch
«uses archiveSearch | e archiveSearch
Architectural Model
«allocatedn callocated»
«calln 5
findBook b . .
Year: 1990 (0.7} «resource containers» | aresource containers
2000 (0.2) / 2010 (0.1) i Serverl 0.00002 Serverz
Depth: 3 (0.6) 7 5 (0.4} 7] -
aresource» wresources| | [«resources
cPU1 CPU2 HD1
loopCount =5 > o 4 >
. MTTF: 100h MTTF: 150h MTTF: 200h
) MTTR: 6h MTTR: 8h MTTR: 8h
Usage Mode! Deployment Model

Figure 3.6: Example of a PCM model of a library service with reliability annotations. The
example and the illustration is taken from Brosch et al. (2012).

Relation to our work. There is a close relationship between the work described in the previous
section and our work. System models, extended with models of the failure behavior and/or
system usage are employed for availability analysis. While earlier examples, such as the method
due to Littlewood (1979) use rather simple system models, which do not fit to the kind of
distributed systems that is pervasive today, more recent work use a family of interconnected
models (such as logical architecture with behavior, deployment, usage, etc.). An example for
the latter is the work by Brosch et al. (2012). In our work, we also build on and extend a
comprehensive artifact model that reflects the system functionality, its logical and technical
architecture and its environment (Chapter 5). Other than previous work, we strictly build on a
view that availability relates to the behavior of the system. This enables us to further extend
the state of the art by suggesting additional models to capture system specific notions of failure
and availability that relate to the functional requirements of the system.

3.3.4 User-Perceived Availability

With the exception of Brosch, the approaches discussed so far consider availability as system
availability. That means they derive the overall availability by solely considering the elementary
components, neglecting how the users interact with the system. To see, that a user-centric view
(or black-box view) may be different from a system-centric view (or glass-box view) think of
the situation where a system has technically failed in a period where it is not used. Under the
term user-perceived availability several authors aim to include this aspect in their models. In the
work by Wang and Trivedi (2005), the analysis model consists of a system model and an explicit
user model. The user model in this approach does not only serve as an operational profile
but does also provide the reference for the used availability metric: “The service availability

35

Chapter 3. State of the Art

is the probability that all requests are successfully satisfied during the user session” (Wang
and Trivedi, 2005). The user session in turn is defined by the user model. Wang and Trivedi
represent the user model as a deterministic time Markov chain (DTMC) and the system model
as a continuous time Markov chain and give an analytical expression for the service availability.

An approach to analyze the user-perceived availability of a workflow-oriented business
system is presented by Milanovic and Milic (2011). The authors capture the user perspective
on the system in a business process model (BPM). The activities in a BPM can recursively
contain further processes. Ultimately, the atomic activities are mapped to basic services of the
system. The services themselves are mapped to the infrastructure resources used to implement
the services. These resources are annotated with MTTF and MTTR values. From this multi-
level system model, Milanovic and Milic automatically generate analysis models such as RBDs
or Markov models and use them for availability analysis. A similar, multi-level approach is
pursued by Kaniche et al. (2003) for the example of a web-based travel agency.

Relation to our work. We share with this stream of research the core idea to consider avail-
ability from a user perspective instead of a system perspective. This means that only faults that
actually lead to a deviation of the system’s interface behavior that is outside of its specification
and that matters to its environment should be considered from an availability point of view. The
main difference between the work discussed above and our work is that previous approaches
perform a translation (or a sequence of translations) of user visible failures to system-internal
faults. The typical reasoning underlying these approaches is to deduce for a certain user oper-
ation a configuration of resources needed to support this operation. When this configuration
breaks, the user operation is considered failed. The user behavior is modelled in terms of
these operations and from the combination of user behavior and resource characteristics the
availability can be calculated. Our approach is more consequent by defining availability only
in terms of the visible system behavior and without explicitly translating the system-internal
faults to failures. This enables us to formulate fine-grained definitions of failure and, thus, of
availability requirements.

3.3.5 Automatic Generation of Analysis Models

The work by Milanovic and Milic (2011) we discussed in the last section is also an example
for a class of approaches where the actual analysis models are derived from other models
that are closer to the design models. A similar scheme is applied by Bernardi et al. (2010)
which we already discussed in Section 3.1.2. Bernardi et al. propose to generate analysis
models from the annotated UML diagrams (use cases and component diagrams). However,
there is earlier work on the automatic synthesis of fault-trees from system models for safety
analysis. See the publication by Lapp and Powers (1977) for an overview of early work and
an approach that uses digraphs as a system model. More relevant for this thesis is work
by Papadopoulos and Maruhn (2001) who use Matlab Simulink models as input and semi-
automatically generate fault-trees from these models. To enable the fault tree generation, all
components are subjected to a hazard analysis to determine their failure behavior. After this
manual local analysis, a global analysis determines the failure propagation through the system
and generates the fault trees. Majdara and Wakabayashi (2009) introduce a similar method to
generate fault trees from a general component oriented description of systems. The approach
is not only applicable to software-intensive systems but to general mechatronic systems, where
the interaction between components can be described as flows (energy, material, information or

36

Chapter 3. State of the Art

commands). A component itself can be specified with input/output tables and state diagrams.
The fault tree is generated by tracing back along the flow relationship and interpreting the
behavior descriptions of the components in reverse direction to determine the conditions for a
wrong output. A final example is the work by Joshi et al. (2007). In this case the Architecture
Analysis & Design Language (AADL) (Society of Automotive Engineers, 2012) and its error
model annex (Society of Automotive Engineers, 2006) are used to represent the system model.
Departing from the system model, where components are annotated with error behavior using
the modeling techniques from the error annex, a fault tree is generated that can be analyzed
using external tools.

Relation to our work. Generating detailed analysis models from more high-level analysis
models or system models has several advantages compared to the manual creation of analysis
models. First, if the generation procedure is sound and complete, the consistency of the analysis
model to the original model is guaranteed. Second, even though redundancies are introduced
by the generation, these redundancies are not problematic as the changes are only applied to the
original model and then the generation procedure is re-started. Third, no manual effort needs to
be invested to create the analysis models. In our work, we also aim to achieve these advantages.
However, we do not generate explicit analysis models but instead leverage directly the system
models together with additional modeling artifacts, describing availability requirements, for the
analysis. Therefore, we achieve the above advantages without generating new models.

37

Chapter 3. State of the Art

38

Chapter 4

Background and Formal Foundation

In this chapter, we introduce the basic terms and concepts that will be used throughout this
thesis. The chapter is structured into two main sections. In Section 4.1, we introduce a
comprehensive, formal modeling method. This method is based on a mathematical theory of
systems and encompasses an artifact model that allows the model-based description of various
aspects of the system. In Section 4.2, we discuss availability, which is the central topic of this
thesis.

4.1 Formal System Model

In this section, we introduce a formal theory to model software-intensive systems. We start by
briefly establishing the mathematical background. Afterwards, we introduce a specific notion of
system and present the system modeling theory Focus, which provides a formal underpinning
for the study of software intensive systems. Subsequently, we review an artifact model that
builds upon the system model and that provides a structure for a multi-view description of a
system.

4.1.1 Mathematical Foundation
Logic

As background logic we use first-order logic throughout this thesis. A value in this logic is
represented by a ferm t. A term is either a constant ¢, a variable v, or a function application
f(t"). A formal statement is given by a formula . A formula is either an atomic proposition,
for instance “a € A”, a conjunction p A i of formulas, a disjunction ¢ v 1 of formulas, a
negation —¢ of a formula, a universal quantification Vz : ¢ over a variable x or an existential
quantification 3z : ¢ over a variable x.

We write ¢[x1,...,2,] to stress that the formula ¢ has the free variables ;. We further
write p[x1 = t1,...,2, = t,] to denote the formula obtained from ¢ by substituting free
variables xj; with terms ¢,.

Numbers

We consider the natural numbers N = {1,2,3,...} and the natural numbers including zero
Np = Nu {0}. We further use the extended natural numbers Ny = Ny U {0}, the real numbers

39

Chapter 4. Background and Formal Foundation

R and the extended real numbers R = R U {+00, —00}. With dg(r,u) = | — u| we denote the
usual distance between two real numbers r and w.
Streams

Definition 1 (Finite Streams). A stream of length n over the (countable) alphabet X is a function
{0,....n-1} > X

We write X" for the set of streams of length n. With () we denote the unique stream of length
0, also called the empty stream. >* is the set of all finite streams, that means

> = e,

’I’LENU

Definition 2 (Infinite Streams). An infinite stream over alphabet 3. is a function
Ng—»>X.

>%° denotes the set of all infinite streams and X% = X* u X the set of both, finite and infinite
streams.

We employ the notation = = (xg,x1,2,...) to describe streams in terms of their con-
stituents, and x.n = x,, to select the n—th element of a stream. With |s|, we denote the length
of a stream, i.e. |s| =n <> s € X"

Definition 3 (Concatenation). A finite stream x can be concatenated with another stream v,
denoted by x - y, for which the following holds:

Vn e Ng,m e Ng :
xeX"AyeX =

(z-y) e AVi<n:(z-y)i=zirVi<m:(z-y).(n+i)=y.i.

Definition 4 (Prefix). A stream x is called a prefix of a stream y if there is a stream z such that
x -z =y. In this case we write x c y. If s is a stream of length at least n then s|,, denotes the
unique prefix of s of length n.

Given two streams x,y, we write gcl(x,y) for the length of longest common prefix of x
and y, given by

gel(z,y) =max{l e Ng : | <min{|z|, |y} Azl =yli} .
Note that, if x = y, then gcl(x,y) = oo.

Definition 5 (Distance between streams). In order to measure the distance of two streams we
use the cantor metric d¢. For two streams x, y the cantor metric is defined by

0 if z=y
do(w.y) = {2‘961(“’) otherwise

40

Chapter 4. Background and Formal Foundation

Definition 6 (Filtering). A further operation on streams is filtering. The filter operator
@ P(E)x XY -2

filters away messages from a stream. It is recursively defined by the following set of equations
(Broy and Stglen, 2001).

A®() = ()
meA = A®({m)-s) = (m)-(A®s)
m¢ A = A®(m)-s) = A®s

mg(s)NnA=g = A®s

1l
—
~

Probability Theory

We briefly introduce some basic concepts of probability theory. For details on these concepts,
see Neubeck (2012) as well as introductionary texts on probability theory (e.g. Dudley, 2002).

Definition 7 (o-field). Given a set 2, a set F ¢ () is called a o-field, if F is closed under
complements and countable unions and contains @. Due to its closure properties, a o-field also
always contains 2. The pair (2, F) is called a measurable space and the elements of F are
called measurable sets.

If G is a subset of £(£2), then with 0(G) we denote the o-field generated by G, that is,
the smallest o-field that subsumes G, which is guaranteed to exist. As detailed by Neubeck
(2012), one can construct o-fields S, over finite streams of length n as well as a o-field S over
infinite streams. More precisely, S is the o-field generated by the set of basic cylinders. A basic
cylinder is a set of the form C(x) = {y € ¥*° : x c y}, for x € ¥*. If a measurable space is
extended with a function that assigns probabilities to measurable sets, we obtain a probability
space.

Definition 8 (Probability Space). A probability space is a triple (£, F, 1), where
* (92, F) is a measurable space,
* 1 is a function F — R such that

- uw(A)>0forall AeF,
- (U2, A) = X2 1(Ay) for pairwise disjoint sets (A)y and
- p() =1.

A probability space for infinite streams (3, S, ;1) can be derived from consistent prob-
ability spaces (X", Sy, i) for finite streams. Then p is the probability measure on infinite
streams that is consistent with all probability measures i, for finite prefixes. For details of this
construction, see Neubeck (2012). The key point is that a probability space on infinite streams
is uniquely determined by fixing probability spaces for finite prefixes.

We will denote the set of possible probability measures for a set of streams X with
Pr(X*). We will furthermore use the convenient notation Pr[q(y)] as short for u({w} ¢(w))
for a predicate on streams q.

41

Chapter 4. Background and Formal Foundation

Definition 9 (Measurable Function). Given measurable spaces (€2, F) and (A, B). A function
X : Q > Ais called (F, B)-measurable if, for every B € B, the preimage of B under X is
contained in F:

VBeB: X ' (B)eF.

Definition 10 (Random variable). Given a probability space (€2, F, 1) and a measurable space
(A, B), a random variable is a function X : Q — A that is (F, B)-measurable. A random
variable induces a probability space (A, B, j1x) by

px(B) =pu(X(B)).

In this context p x is called the distribution of X. In case A is at most countable, X is said
to be discrete. The distribution of a discrete random variable may be specified by a probability
mass function. This is a function f : A — [0, 1], such that

Z fla)=1.

acA
With dist(A) we will denote the set of probability mass functions for the set A. We will later
typically be concerned with random variables of the form > — 3> as well as real valued
random variables ¥ — R.

Itis often interesting to determine the expected value E[X | of arandom variable. Intuitively
the expected value is the average outcome of a random variable if an experiment is performed
many times. In measure theoretic terms, the expected value is the Lebesgue integral of the
random variable with respect to the probability measure:

Bu[X])= [X(@)dn(w).

From standard measure theory (see e.g. Schilling, 2005) we cite the following theorem that
enables us to derive a random variable as the pointwise limit of a sequence of random variables.

Theorem 1. The point-wise limit (lower limit, upper limit) of a sequence of measurable functions
is measurable. Formally, if (X;)icN is a sequence of measurable functions, then

X(w) = I}im Xp(w)
is measurable. The same holds for lim sup and lim inf.

Metric Spaces

A metric space is a notion from topology. It is a set together with a distance function for the
members of the set. Besides defining probability spaces on top of the set of streams, it is also
possible to define metric spaces based on streams. By showing a particular relationship between
the probability space and the metric space we can obtain an intuitive way to identify functions
as measurable, which is the goal of this section.

Definition 11 (Metric space). Given a set 2, a metric space is a pair (£, d) where d: QxQ - R
is a distance function with the following properties. For all z,y, 2z € €2,

l. d(z,y)=0<xz =y,

2. d(z,y) =d(y,z),

42

Chapter 4. Background and Formal Foundation

3. d(z,z) <d(z,y) +d(y, z).

An example of a metric space is (R,dpr), the real numbers together with the absolute
difference as distance function. But we can also define a metric space based on the set of
streams using the Cantor metric.

Theorem 2. The pair (X°°,d¢) of the set of streams together with the cantor metric forms a
metric space.

Proof. We have to show that d fulfills the following conditions for any x, y, z € %°°
1. do(z,y) =0 < x =y,
2. do(z,y) =de(y,),
3. do(z,2) <dc(z,y) +dc(y, 2)

Conditions 1 is obviously fulfilled by the definition of dc. Condition 2 is fulfilled, as gcl
is symmetric in its arguments. We now show condition 3. If some of x,y, z are equal then
condition 3 is true, as then the left part of the inequality also appears in the sum on the right
side. As d¢ is always greater or equal to 0, the sum on the right cannot be smaller than the term
on the left. We now assume z, y, z are pairwise distinct. We consider two cases:

Case 1 (gcl(z,z) < gcl(x,y)). If the longest prefix that - shares with z is smaller or equal to
the longst prefix x shares with y, then z shares with y the same prefix it shares with z. Hence
gcl(y, z) = gcl(x, z) and thus

de(x,2) <dc(z,y) +dc(y, 2)
- 2—901(1’,2) < 2—gcl(x,y) 4 2—901(1’,2)
() < 27 9¢l(@y)

Case 2 (gcl(x,z) > gcl(z,y)). In this case, z shares with y the same prefix as x shares with y.
Therefore gcl(y, z) = gel(x,y). It follows

dC(wv Z) < dC(:Evy) + dC(y7’Z)
- 2—gcl(x,z) < 2—gcl(x,y) " 2—gcl(z,y)
- 27gcl(m,z) <92. 2fgcl(x,y)
o 9 0ellz2) ¢ 9mgel(zy)-1

- 2—gcl(ac,z) < 2—(gcl(ac,y)+1)

As gcl(zx,z) > gel(x,y) there is a k > 1, such that gcl(x, z) = gel(x,y) + k. Therefore, we can
write the above inequality as

9~ (gel(@y)+k) ¢ 9=(gel(wy)+1)

which is true as k > 1.

43

Chapter 4. Background and Formal Foundation

Definition 12 (Open balls and open sets). In a metric space (€2, d), an open ball around x €)
with radius r > 0 is the set B(z,r) = {y € Q : d(z,y) <r}. An open set is a set A with the
property that for every point x € A there exists an open ball around x that is a subset of A.

For example, in R the open balls are exactly the open intervals]a, b[, a < b. Furthermore,
the open balls of (X°°, d¢) are exactly the basic cylinders from above as we show now.

Theorem 3. The set of open balls in (¥°°,d¢) and the basic cylinders coincide.

Proof. To see this, pick some open ball b. There exists a unique stream s and some radius r
such that b = B(s,r). Let k = [logQ(%) +1|. The streams in b are the streams that have a
common prefix with s of size at least k. Hence,

B(s,r)={xeX® : slpcz} =C(sl)

and thus every open ball is equal to a basic cylinder. On the other hand, let a basic cylinder
C(z) be given with € X, Let y € ©° with c y be an arbitrary extension of z. Then the
open ball B(y, 2‘(’“‘1)) defines the streams that share a common prefix with y of length at least
k. As x is the prefix of y with length k, it follows that C(z) = B(y, 2~ *~1)). Thus every basic
cylinder is equal to an open ball. O

The following definition introduces a property of subsets in a metric space, which we will
use directly in the next definition of separable spaces, which are a special type of metric spaces.

Definition 13 (Dense subset). A set A is dense in a set X if, for all x € X and € > 0, there exists
a € A, such that d(z,a) < e.

Definition 14 (Separable space). A metric space is called separable if it contains a countable,
dense subset.

Every metric space also defines a o-field, the so called Borel o-field, which is generated
by the open sets of the metric space. It is well-known that for a separable metric space, its
associated Borel o-field is already generated by the open balls. For a metric space X we denote
its associated Borel o-field with B(X). A function f : X — Y is called Borel-measurable if
it is (B(X),B(Y"))-measurable. The analogy of measurable functions for metric spaces are
continuous functions:

Definition 15 (Continuous function). A function f between two metric spaces (X,d) and
(X',d") is said to be continuous in z if for every € > 0 there exists a § > 0 such that
d'(f(x), f(z")) < e for all " with d(x,z") < §. Tt is said to be continuous if it is contin-
uous in all z.

We are interested in Borel o-fields as they provide a nexus between continuity and measur-
ability. This relationship is expressed in the following well-known theorem.

Theorem 4. Every continuous function is Borel-measurable.

To apply the above theorem to our setting we have to show that the o-field § is in fact the
Borel-o-field associated with (3°°, d¢). We already showed that the basic cylinders generating
S coincide with the open balls of our metric space. Hence, the only thing left to do, is to prove
that (X°°, d¢) is separable.

Theorem 5. The metric space (X°°,d¢) is separable.

44

Chapter 4. Background and Formal Foundation

Proof. Choose an arbitrary element ¢ of ¥ and D = {z-y : x € ¥* Ay =(e,e,...)}. The set
D is at most countable. Now pick an element s of 2*° and some € > 0. We choose k > logs (%)
and construct d = s} (e, e,...). Asd and s have a common prefix of at least k by construction,

do(s,d) < 27F < 27lom(D) = ¢ |
As d € D the set D is dense in 2. O

Corollary 1. The o-field S generated by basic cylinders of streams, is the Borel o-field with
respect to (X°°,d¢).

And therefore we can conclude:

Corollary 2. Every continuous function ©°° — R is also (S, B(R))-measurable.

4.1.2 System Modeling Theory

In this section we introduce, Focus (Broy, 2010b; Broy and Stglen, 2001), a mathematical theory
for modeling software-intensive systems. Focus provides a precise notion of a system and a
formal underpinning of the notions of interface, behavior and composition. The presentation
in this section follows mostly Broy (Broy, 2010a; Broy and Stglen, 2001) and Neubeck (Junker
and Neubeck, 2012; Neubeck, 2012).

Syntactic Interface

Systems may communicate with their environment by exchanging messages on channels. The
input and output channels of system form its interface. We represent a channel by an identifier
from the global set of channel identifiers I. A channel can transmit messages of a certain type.
A type is a subset of the global universe of values U. A channel is assigned a type by the
function

type: I - R(U) .

As we deal with discrete systems, we assume that type(c) is at most countably infinite for each
channel.

Definition 16 (Syntactic Interface). The syntactic interface of a component is represented by a
pair I > O of (countable) channel sets denoting input and output channels respectively.

Example 1. We consider the example of a data transmission component (TMC) from Broy and
Stglen (2001) as a running example. The task of the TMC is to relay the messages it receives
on its input channel i via its output channel o. The syntactic interface of the TMC is hence
{i} > {o}. The type of the channels is some arbitrary type 7" c U. Figure 4.1 visualizes the
syntactic interface of the TMC.

Interface Behavior

The behavior of a system is expressed by relating the incoming messages and the outgoing
messages. The assignment of messages to channels is given by a channel valuation.

45

Chapter 4. Background and Formal Foundation

Figure 4.1: Syntactic interface of the TMC

Definition 17 (Channel Valuation). A channel valuation for a set of channels C' is a mapping
v:C—->Uu{o},

where O denotes “no message”. If a channel carries a message, the message is required to have
the correct type:
VeeC:v(c) =ovu(e) €type(c) .

The set of all channel valuations for channels C'is denoted by C'. For the empty channel set
& the corresponding set of valuations & contains only the empty valuation, denoted by 0. We
can restrict a channel valuation to smaller sets of channels. Given a channel set C’ € C, and a
valuation v € C, the restriction of v to channels in C” is the valuation v|er € C", defined by

Vee O :v|or(c) =v(c) .

By forming streams of channel valuations we model the flow of incoming and outgoing messages
over channels.

Definition 18 (Communication History). A communication history for a set of channels C is an

infinite stream (vg, v1, . . .) of channel valuations v; € C'. We denote the set of all communication
— 00

histories for channel set C with C' and use 0 also for the unique history over the empty channel

set.

The restriction operation can be lifted to a communication history h and to a measure over
communication histories p. We will write h|c and p|c to denote these restrictions. We can lift
the operation even further to sets of these structures and will apply the |-operation accordingly.

The behavior that is visible at the interface of a system (i.e. the output histories that are
produced as reactions to input histories) is called the system’s interface behavior. Generally,
we can distinguish different kinds of interface behavior along the dimensions determinacy and
probabilistic nature. In this thesis, we employ the rather general model of interface behavior
introduced by Neubeck (2012) that allows to capture non-deterministic as well as probabilistic
phenomena. We model such behavior as a behavior function.

Definition 19 (Behavior function). A behavior function is a function
B: T - pPr(07))

from input histories to sets of probability measures over output histories. We will sometimes
use the term component as a synonym to behavior function.

We demand from a behavior function to be causal. Causality enforces that a function
adheres to the flow of time. That means a certain output at a specific point in time may only

46

Chapter 4. Background and Formal Foundation

depend on inputs that have already been received up to this point in time. Let ul,, be the
probability distribution derived from a probability distribution . by the random variable (-),,.
The function B is called causal, if

Vh,W nihly =R, = {ul, : pe B(h)} ={ul, : pe B(W)} .

We denote the set of all causal behavior functions with [7>O]. We call a behavior function
F' non-probabilistic, if it only produces measures that assign either probability 1 or O to each
singleton set:
Viel ,0eO" :F(i)({o})€{1,0} .

We can represent such a behavior by an equivalent function F' : 7 - ?(500), according to
the equation
0e FN(i) < F(i)({o}) =1.

By [QO] we denote the set of non-probabilistic behavior functions. We furthermore call a
behavior function F' deterministic, if it only produces exactly one probability measure for each
input, in symbols:

Viel :|F(i)|=1.

We can represent a deterministic behavior function by a function f : 7 - Pr(5°°) according
to the equivalence

f@)=p<= F()={n} .

d
With [I>0] we denote the set of all deterministic behavior functions with syntactic interface
I>0. We can characterize a behavior function by its deterministic realizations. A deterministic
realization of a behavior function F' is a deterministic behavior function f that conforms to the
specification given by F'. For a given behavior function F' we obtain the set of all its realizations
by
d . 700 . .
[F] ={f€ [I[>0] : Viel :f(z)eF(z)} .

If a system has no input channels, there is only one possible input to its behavior function,
the unique history consisting of empty valuations, denoted by 0. As it is unique, the following
definition is often convenient.

Definition 20 (Execution). For a behavior function B without input channels, we define its
execution

(B) =B(0).

Composition

It is good engineering practice to break a large problem down into smaller problems, solve
the smaller problems, and integrate the solutions. Focus supports this paradigm, therefore,
systems can be composed of subsystems (or subfunctions), enabling a modular description of a
system. The structuring of a system in its constituents is called an architecture. Formally, the
composition of subsystems is represented in Focus by a binary operator ® on behavior functions,
called composition operator. Before we give a definition of the composition operator, we discuss
the concepts statistical independence and information hiding.

When composing two behavior functions, we have to deal with the issue of statistical
dependency. This issue arises when we build the common probability space from the associated
probability spaces of the individual behavior functions. If the outputs of the two functions are

47

Chapter 4. Background and Formal Foundation

statistically independent, the common probability space can be uniquely constructed. The
probability of two outputs occurring together is then the product of the single probabilities. In
the case where statistical independence cannot be assumed, a single joint probability measure
cannot be constructed. Instead, the result is the set of all possible joint measures that agree with
the individual measures.

Information hiding is a general principle supposed to increase the maintainability of system
designs by hiding internal information. Applying this to our situation, when composing two
subsystems, the channels used for communication only between the subsystems should be
hidden to the outside in the composed system. This is known as channel hiding.

For this thesis, we will assume statistical independence for the composition. It is possible
to formally define the composition without statistical independence. For details on this, see
Neubeck (2012). Our definition of the composition does not include channel hiding. Instead,
we provide an explicit operator §, to realize channel hiding. Given two behavior functions
Ae[Ia>Oy]and B e [Ip>Op]. We call A and B composable, if the sets of output channels
are disjunct: O4NOp = @. We first define the composition for deterministic behavior functions
and use this for the general composition.

Definition 21 (Independent,d Deterministic Corglposition). Given two composable deterministic
behavior functions a € [14>04] and b € [Ip>Op]. We define channel sets Od = (04U 0pB)
and I = (I4 U Ip) \ O. The statistically independent composition (a ® b) € [I>O] is given by

VzeIuOoo,teN:
Pr{(a®b)(2lr) = zlolt] = Prla(zlr,) 2 2o, 4] - Prla(zlr,) 2 2o,] -

Note, that we used the convience notation introduced in Section 4.1.1 for the above definition.
We can now define the general composition of non-deterministic behavior functions in terms
of their deterministic realizations.

Definition 22 (General Composition). Given two composable behavior functions A € [14>0 4]
and B € [Ig > Op]. We define channel sets O = (OquOpg) and I = (IquIg)~ O. The
composition (A ® B) € [I > O] is given by

(A®B)(i) = {(a@b)(i) : ac [A] nbe [B]} .

In order to realize information hiding (via channel hiding), we introduce the projection of
a behavior to a subset of its output channels.

Definition 23 (Projection). Given a behavior function F' € [I > O] and a channel set O’ ¢ O,
the projection of F to the output channels O’ is the behavior F'1O’ defined by

Viel :(FtO")(i)=F(i)|0'

We can apply the projection to hide internal communication channels. For two behavior
functions A € [I4>O4] and B € [Ip>Op] with internal channels C' = (I4nOp)u(IpnOy4)
we can therefore specify the composition with channel hiding as (A ® B)fC. We denote
a composition (possibly with projection) graphically by connecting common channels and
drawing a dashed border to distinguish hidden channels. See Figure 4.2 for an example of the
graphical representation of a composition of two behavior functions A and B. We call such a
graphical representation a component diagram or data-flow network.

48

Chapter 4. Background and Formal Foundation

Figure 4.2: Graphical denotation of composition and projection of behavior functions A and B
with hidden channel Op.

4.1.3 Description Techniques

Throughout the thesis we use three different techniques to describe concrete behavior functions:
logical interface assertions, state transition diagrams and I/O tables. We will always embed a
behavior description into a specification frame to denote the syntactic interface. A specification
frame includes a specification name, optionally parameters (such as constants or types) and the
input and output channels together with their types. On the upper right side of a specification
frame a label may be annotated sometimes to clarify the semantics of the specification. The
specification frame below specifies the interface I > O with I =iy,...,i, and O = 01, ...,0,.
The channels are of types T,i and T} respectively. The specification is parameterized with
constants and types.

— name (const c1,. .., type T7,...) Label —
in iy T it T
out o1:77,...,04:T2

Interface Assertions

An interface assertion is a logical formula with channel names as free variables, ranging over
streams of messages taken from the according type. We use interface assertions only to specify
non-probabilistic behavior. An interface assertion for an interface I > O with I = {iy,...,i,}
and O = {01, ...,0.,} is given by a formula ® with free variables i1, ...,%y,01,...,0p. This
formula induces a non-probabilistic behavior function F € [T gO] according to the equation
Viel 00 :0eF(i) < ®[i; iy ey in = i, 01 7 Oloys e vy Om > 0lo,,] -

in>s

Example 2 (Interface assertion for TMC). As an example we specify the behavior of the TMC
according to Broy and Stglen (2001). Below, ¢ ~ o means that o is a permutation of ¢, defined
by

VmeT:{m}®i={m}®o.

49

Chapter 4. Background and Formal Foundation

— TMC
in i:T
out o:7T
i~0

State Transition Diagrams

A system’s behavior can be understood in terms of its internal states and the transitions between
these states. More formally, we can describe a system behavior with a non-deterministic, prob-
abilistic I/O automaton. Such an automaton is represented by a tuple M = (S,1,0,0,A,w),
where

* S is the set of states,
* [is the set of input channels,

* O is the set of output channels,

d € £(dist(.9)) is a set of initial distribution,

A: S x T - RP(dist(S)) is a non-deterministic transition function, and
¢ w:8 - Oisan output function.

From an automaton M a behavior function Fjs € [I>O] can be derived (behavior abstraction).
See Neubeck (2012) for details on how this abstraction is obtained. This motivates using
state-transition diagrams as description technique for behavior functions. A specification of a
non-deterministic, probabilistic automaton includes

* the syntactic interface,
* a specification of local state variables,
* named control states with outputs statements, and

* transitions annotated with preconditions, input bindings, postconditions and probability
values.

A detailed treatment of state transition diagrams as specification technique can be found in
Broy and Stglen (2001) and, for the probabilistic case, in Neubeck (2012). See Figure 4.3 for
an example of a state-transition specification. In this example, we model a biased coin tossing.
The specification is parameterized by K, the number of consecutive coin tosses. From an initial
state, after receiving the start signal S, the coin goes either in state for head (H) or tail (7).
Accordingly, either H or T is written to the output channel. However, the coin is biased: the
probability distribution for each coin toss may vary non-deterministically by 0.01 around the
ideal uniform distribution with probability of % for both head and tail. This is represented in
the diagram through the probability range (0.49,0.51) at the transition into the head and tail
states. The local variable c serves as toss counter.

50

Chapter 4. Background and Formal Foundation

— Coin (const K : N)

in i:{S}
out o:{H,T}
local ¢:{1,...,K} initial K

{c =¢-1}(0.49,0.51)

H {c>0}
o'H

{c"=¢-1}(0.49,0.51) {c=0}
{ =¢c-1}(0.49,0.51)

start — —_—

{c =¢-1}(0.49,0.51)
{¢' =c—11(0.49,0.51) \fc=0}

T {c>0}
olT

{c' =¢-1}(0.49,0.51)

Figure 4.3: Probabilistic state-machine describing K -times throwing a biased coin.

51

Chapter 4. Background and Formal Foundation

I/0 Tables

We furthermore describe behavior using input/output tables (I/O tables). These tables can be
employed to describe both, probabilistic and non-probabilistic, behavior. A detailed discussion
of the usage of tables for the description of probabilistic behavior can be found in the publication
by Broy and Stglen (2001) and Neubeck (2012).

A specification based on I/O tables includes in the frame header the syntactic interface, a
declaration of local variables and a declaration of universal variables. The table as such consists
of several input columns (one for each input channel and each local variable) and several output
columns (one for each output channel and local variable). We use the convention that, for a
local variable v, the variable v’ refers to the value of v in the next step. In case of probabilistic
behavior, an additional column carries the probability of choosing a particular row.

We only describe its semantics informally. For a formal semantics, see Broy and Stglen
(2001) and Neubeck (2012). In each step, all rows are matched against the current values of
local variables and the input channels. A row matches, if, for some valuation of the universal
variables, the values of the local variables and inputs equal the expression in the respective
column of the row. From the matching rows, one row is chosen according to the probabilities
in the last column. The outputs and local variables for the next step are set according to the
expressions in the according columns. If the behavior is not probabilistic and more than one
row matches, a row is chosen non-deterministically. Below is the general scheme of an I/O table
specification. In the specification, by writing ¢[u1, ..., ux], we stress that term ¢ potentially
refers to variables uy,. .., ux.

— name (parameters)

in iy T, ...
out o1:17,...
local [;:TY,...

univ - wuq 17, ...

Input Output
il ll 01 li Prob
. I
thyfuy,.] oo thafua,] o 9w,] sty [ue,] o p

4.1.4 Artifact Model

Often, we describe a system with several different models. Each model focuses on specific
aspects of the system on a specific level of abstraction. To structure the different models and
to describe their roles and relationships we use an artifact model. An artifact model is a
meta-model, specifying the abstract content (i.e. the models) contained in a certain artifact and
describes relationships between these models.

52

Chapter 4. Background and Formal Foundation

As a foundation for this thesis, we employ an artifact model developed by Broy (2011) and
Vogelsang (2015). A similar artifact model has been used in the research project SPES (Pohl
et al., 2012). See the illustration in Figure 4.4, which is taken from Vogelsang (2015), for an
overview over this artifact model. For this thesis, we focus on the following three artifacts:

» The functional architecture describes the structure and the behavior of the system from
a black-box perspective (i.e. at the system interface). The system is structured into
system functions. A system function relates to the observable system behavior at a part
of the system interface. The structuring is guided primarily by functionality. No specific
technical or logical solution is prescribed. The functions of a functional architecture may
be structured flatly in a function list or hierarchically in a function hierarchy. A functional
architecture also describes how functions interact by exchanging data. Typically, there
are rather few channels between functions and most of them denote modes of operation
(Vogelsang, 2015). A function hierarchy can be expressed in the formal framework of
Section 4.1: A system function f is represented by a behavior function F'. This behavior
function is defined by the composition of the behaviors of all subfunctions sub(f) of f.
This is expressed formally by

F= & fs.

fsesub(f)

An extensive treatment of functions and function hierarchies based on Focus can be
found in the work by Broy (2010b).

* The logical component architecture is also a description of the behavior and the structure
of the system. However, the system is not decomposed into system functions, but is
structured into logical components in a component model. The decomposition is no longer
guided purely by functional criteria. Additionally, concerns such as maintainability,
safety, and availability are considered. Furthermore, the logical architecture is a first step
towards the technical platform on which the system will be deployed. Components on
the logical level may form complex data-flow networks. Not every component needs to
take part in the externally visible system interface. The component model of the logical
architecture can also be represented within our formal framework. A component c is
represented by a behavior function C' and the behavior of the whole architecture is given
by the composition of the behavior functions for all components.

* The technical architecture describes the physical devices such as ECUs (Electronic Con-
trol Unit) and busses on which the system will be executed. The platform model describes
these devices and how they interact, similar to the component model in the logical archi-
tecture. Additionally, the deployment model describes which of the components in the
logical architecture are supposed to be executed on which components in the platform
model. Like in the logical component architecture, the technical components have a
behavior. For this thesis, we assume that the behavior is given by the behavior of logical
components deployed on the devices.

The models of the different artifacts are not independent from each other but are related
in various ways. For example, the interface behavior of the system as described in the logical
component architecture is a refinement of the interface behavior described in the functional
architecture.

In Chapter 5, we will build on the artifact model outlined above and extend it by specific
models in order to include availability issues.

53

Chapter 4. Background and Formal Foundation

Mode Model

Mode List

Textual Property Scenario
Description Description

references

structures & _
formalizes

Mode Chart

Interface Message
Assertion Sequence Chart

Function List

sets context

structures specified by

Function State
Hierarchy Machine

Refinement
Specification

Use Case
Table

realizes/
implements

structures Functional
State Component)
. . White-Box
Machine Diagram ,
Diagram

Figure 4.4: Requirements engineering artifact model described in Vogelsang (2015).

54

Chapter 4. Background and Formal Foundation

4.1.5 Modeling Behavior Deviations

So far, we assumed that we only model the nominal behavior of a system. However, for
many purposes it is important to also consider the defective behavior of a system. For this,
we want to model deviations of the system’s nominal behavior. In the context of Focus,
approaches for modeling behavior deviations have been proposed by Breitling (2000, 2001)
and by Botaschanjan and Hummel (2009). Below, we discuss both and describe a synthesis of
them, used for this thesis.

Approach by Breitling (Breitling, 2000, 2001)

Breitling suggests an approach based on Focus to model failures based on modifications of a
nominal behavior (Breitling, 2000, 2001). He considers modifications of specifications with
respect to interface behavior, state transition and subsystem architecture. Breitling captures the
black-box behavior for the interface I >O by a relation over input and output histories S ¢ I x O.
The modification of a black-box interface behavior is therefore given by a pair M = (E, F)
consisting of the sets of histories ¥ and F'. For a behavior S the modified behavior is then
given by
SAM=(S\NE)uF.

If the black-box behavior of the system is specified using an interface assertion ®, the modifica-
tion can be expressed using the pair of interface assertions M = (®p, ®r). Similar as above,
the modified specification is given by

PAM = (PADPp) Vv Dp.

Breitling further defines modifications on state transition systems by adding and removing
transitions. Finally, Breitling introduces modification components. These are components that
are composed with a given system or component in order to achieve the modification. The
modification components act as filters modifying either the input to the system or the output
from the system. Breitling distinguishes four patterns how the resulting data-flow network
looks like, depending on the role of the modification components as pre-filter or post-filter and
depending on the information about the original inputs that the filter components receive (see
Figure 4.5). As Breitling notes, the configuration with just a post-filter that, however, receives
the original input, is enough to model any modification.

Approach by Botaschanjan and Hummel (Botaschanjan and Hummel, 2009)

Botaschanjan and Hummel take up the idea of modification components from Breitling. Com-
pared to Breitling they add the notion of error modes, which represent different types of
deviation. While in Breitling’s work, a modification is always applied to the whole behav-
ior, Botaschanjan and Hummel provide means to activate or deactivate error modes non-
deterministically, triggered by inputs, triggered by other external error coordination signals,
or triggered by time. Figure 4.6 shows the extended pattern of modification components by
Botaschanjan et al. Error modes are represented by pairs of input and output filter components
(if1,0f1),-..,(if,,, of ,). Anerror mode function decides at each point in time, which (if any)
error mode should be activated. The selector components are stereotypical components that
select the output of the activated error mode filters. Note that every faulty behavior that can be
described with the means of Botaschanjan and Hummel can also be described via Breitlings
modification components.

55

Chapter 4. Background and Formal Foundation

T S i

(c) (d)

Figure 4.5: Possible configuration of modification components according to Breitling (2000)
(Illustration taken from the original publication).

A

Output Mode Selector
s A
ks "

Component

L Error Mode
<] Function [

o

X

Input Mode Selector

ik ki
|-Filter 1 I-Filter n
i il

k
7 v

Figure 4.6: Schematic overview over the approach by Botaschanjan and Hummel (2009)
(Illustration taken from the original publication).

56

Chapter 4. Background and Formal Foundation

Synthesis

For our purpose, we adopt an approach similar to the approaches by Breitling and Botaschanjan
and Hummel. We call a model that describes deviating behavior with respect to a nominal
behavior, a deviation model. We use input and output filters to model the modification of a
given behavior. These filters are activated and deactivated by a dedicated activation function.

For the following, let the behavior function F’ be the behavior function obtained from
function F' by renaming all its channels to their primed version. Similar, let the channel sets
I and O’ be the channel sets that contain the primed versions of all channels in I and O
respectively.

Definition 24. A deviation model D for a behavior function F’ with syntactic interface I > O is
represented by a tuple (act, if , of), where

* act € [ITuCr>Cpu{a}] is the activation function that defines the activation and
deactivation behavior. Its interface subsumes [(the original input channels to F'), the
channel sets C7 and Cp (input and output channels for the coordination with other
deviation models) and a dedicated channel a to communicate the current activation status
to the filters.

e if e[ITu{a}>I']is an input filter.
* of € [O'u{a} > O] is an output filter.

We denote the set of deviation models for interface I >O with D[>O]. With FAD we denote
the application of the deviation model D to the behavior function F' defined by

FAD = (F'® act ® if ® of)T (OuCp)

The resulting syntactic interface is (/uC7)>(OuCp). Several deviation models can be applied
in a nested fashion, such as (FAD)AD’. The data-flow diagram in Figure 4.7a illustrates the
semantics of a deviation model.

Description Technique

In order to specify a deviation model, we nest the constituents of the deviation model in a
common specification frame. We label the activation function with “act”, the input filter with
“if” and the output filter with “of”. We label the specification frame with “deviation”. A
schematic specification is shown in Figure 4.8. To express the application of deviation models
Dy, ..., D;to acomponent C visually, we use the notation illustrated in Figure 4.7b. Here, cij
and coy, refer to the coordination channels introduced by the deviation models. Furthermore, @
and o are the original channels defined by C.

Example

As an example for a deviation model, we formulate a faulty TMC. To achieve the faulty behavior
we devise a deviation model that uses an output filter to drop messages. The input filter leaves
the input messages untouched. The activation component is described using a probabilistic
automaton. The deviation model for the faulty TMC is depicted in Figure 4.9.

57

Chapter 4. Background and Formal Foundation

G |
§ ; 0T L 0:T,
: if | —F
i 7 i i :
. lact (a F' i . AD, — 4
i E Cll:Cil COI:CO
. l / |
of — L AD o C!
: : ciy: C} co;: Cq
Co o)
(a) Iustration of the semantics of (b) Visual denotation of the application of
applying a deviation model to a be- deviation models Dy, to a behavior function
havior function F'. F.

Figure 4.7: Semantics and visual denotation of the application of a deviation model.

— dm deviation —

— act

. . . 1 . .

in cip Ty, ... cly T

.l .k

out coi:T;,,...,cop: T,
a:A

body

— if

: Ll o

in TR S M
a:A

out T} ... il T

body

— of

in o:T)...0:T.
a:A

.l .l
out o:7T,,...,0:T,
body

Figure 4.8: Schematic structure of a deviation model specification.

58

Chapter 4. Background and Formal Foundation

— DM_TMC deviation —

— act

out a:{active}

(0.99) (0.9)
Q (0.01) O
o} T F

_/a!active

(0.1)

start —>

— if
in i:T
a : {active}
out ¢:T
1=1
— of
in o:T
a : {active}
out o:T

vVt eNp: (a.t = active = 0.t =0) A (a.t # active = 0.t = 0'.t)

Figure 4.9: Deviation model for the perfect TMC in order to model the faulty TMC.

59

Chapter 4. Background and Formal Foundation

4.2 Availability: Terms and Definitions

In this section we discuss availability, the central topic of this thesis. Availability is being
addressed by researchers and practitioners from a broad range of fields and several definitions
are in use. However, most of them agree that availability intuitively describes the ability of a
system to operate failure-free most of the time. Therefore, availability is closely coupled to
the concept of failure. A failure occurs if the visible behavior deviates from the specification.
There are a number of other terms used in the research community and in practice, which
describe similar concepts as availability. Examples are reliability or maintainability. As this
thesis deals exclusively with availability, it is important to distinguish these terms from each
other. Availability is not only a property that we analyze after a system is built, but instead we
usually demand a certain degree of availability from the system before it is built. This demand
is formulated in availability requirements during the development of the system.

In this chapter, we start in Section 4.2.1 by explaining the concept of failure and outline
how failures emerge from faults and errors. Afterwards, we consider a number of availability
definitions from the literature in Section 4.2.2. We limit ourselves to definitions that fit to
software-intensive systems. In Section 4.2.3, we distinguish availability from related terms,
such as reliability. Finally, in Section 4.2.4, we focus on availability requirements, their role in
the system development and which type of content they encompass.

4.2.1 Fault, Error and Failure

Availability is the ability of a system to operate without failure most of the time. Failure
is therefore an important concept in order to understand availability. Failure, together with
the related terms fault and error, form a chain of causes and effects. A fault refers to an
unwanted condition of a piece of hardware or the software source code (or any other software
representation). An example for a fault is a wrongly written part of a software (i.e. a software
bug) or a piece of hardware that is broken due to wear-out. If the part of the system that is
affected by the fault is activated during the course of executing a software intensive system,
this may cause an error. An error refers to a state of the system that deviates from a correct
state. An example for an error is a wrongly calculated value for an internal variable. Also the
runtime program code may be considered part of the state of the system. Finally, a failure is
a deviation of the externally visible system behavior from the correct behavior. An error may
cause a failure, if the erroneous state (e.g. the wrongly calculated variable) leads to a deviation
of the externally visible behavior (e.g. a wrong output value). (AviZienis et al., 2004)

Figure 4.10 summarizes the relationship between the three terms.

AviZienis et al. (2004) further characterize failures by failure modes. A failure mode is a
specific way a failure manifests itself. For example, consider the transmission example from
Section 4.1.2. One failure mode of such a transmission system is the delayed transmission of a
message. A second, different failure mode is the modification of the message value. Failures
may, furthermore, be classified according to their severity. For the delay failure mode in the
transmission example, different severity levels could be defined considering the duration of the
delay.

60

Chapter 4. Background and Formal Foundation

may lead to may lead to

e Unwanted HW ® Deviation from correct * Deviation of externally
condition or SW system state visible behavior
source code * Example: Erroneously e Example: Erroneously

e Example: Broken computed internal controlled actuator
hardware value

Figure 4.10: Characterization and relationship between fault, error and failure.

4.2.2 Availability Definitions from Literature

The term availability has been defined from several different viewpoints in the past. In this
section we discuss four types of availability definitions and relate them to the concept of failure
introduced in the previous section. First we present the much cited definitions of Laprie and
AviZienis from the domain of dependable computing. Second, we consider a definition from
ITU-T E.800 recommendation, which is also pervasive in the availability literature. After that
we review definitions of service availability, a term only recently established. Finally, we
discuss availability definitions from the security research community.

The classic definitions of availability in the field of computing are due to Jean-Claude Laprie
(Laprie, 1995) and Algirdas AviZienis (AviZienis et al., 2004). Laprie builds his definition on
the notion of a service and its specification. With the term service, Laprie refers to an abstraction
of a system’s behavior as it is perceived by its users. A service specification is the description
of the service agreed upon by the supplier of the service and its users. A user interacting with or
observing the system perceives the system as “an alternation between two states of the delivered
service with respect to the specified service, service accomplishment, where the service is
delivered as specified, [and] service interruption where the delivered service is different from
the specified service” (Laprie, 1995). Note, that with service interruption, Laprie refers to the
same phenomenon that we termed failure in the preceding Section 4.2.1: the deviation of the
externally visible system behavior from the specified behavior. Based on these notions, Laprie
defines availability as

“a measure of the service accomplishment with respect to the alternation of ac-
complishment and interruption”. (Laprie, 1995)

Laprie leaves open what kinds of measures he refers to in the above definition. However, he
stresses that in many cases a probability measure (which is a measure in the mathematical
sense) will be employed. Although not explicitly mentioned by Laprie, his definition relates
availability to the requirements of the system, as the service specification is derived from the
requirements. The definition by Laprie may be considered a definition template, which can
be specialized with a concrete measure, a service specification, and a method to distinguish
service accomplishment from service interruption.

AviZienis et al. (2004) use a different terminology than Laprie: A function in their ter-
minology “is what a system is intended to do". It is described by a functional specification.
The system behavior is “what the system does to implement its function” and a service is the
behavior as perceived by the system users. Finally, a system delivers a correct service when the

61

Chapter 4. Background and Formal Foundation

service implements its function. Note, that correct service can be identified with the absence of
failures in the sense described in Section 4.2.1. With this terminology, AviZienis et al. define
availability as

“readiness for correct service”. (AviZienis et al., 2004)

Unfortunately the term readiness is not further explained in the publication. This definition also
obscures if availability refers to a measure, a property or rather to the state of the system.

A further definition of availability originates from the telecommunication related ITU-T
E.800 recommendation (ITU, 2008). It defines availability as the

“ability of an item to be in a state to perform a required function at a given instant
of time or at any instant of time within a given time interval, assuming that the
external resources, if required, are provided”. (ITU, 2008)

As the previous two definitions, it relates availability to the consistency of the behavior with
the functional specification by demanding the item to be able to “perform a required function”.
Hence, also this definition defines availability with the absence of failures. It adds as additional
details the reference to a certain time-frame and the precondition of provided external resources.
Although the classic definitions by Laprie and AviZienis et al. already refer to the service
delivered by a system from a user perspective, the notion of service availability has only recently
been established. When authors refer to service availability, they usually intend to stress the
fact that they take a user’s perspective on the availability of a system (cf. Anderson et al., 2001;
Rossebeg et al., 2006; Tokuno and Yamada, 2008; Wang and Trivedi, 2005). The according
availability definitions are often more specific than the rather generic definitions above. They
might be considered as “filling in” the definition template given by Laprie. An example for a
definition of service availability in the telecommunication context is given by Wang:

“During a user interaction (session) with the system, the user issues multiple
requests at different time points for different system resources. [...] The service
availability is the probability that all requests are successfully satisfied during the
user session.” (Wang and Trivedi, 2005)

Finally, the computer security research community takes a different viewpoint on availabil-
ity. Here, availability is one main security attribute additional to integrity and confidentiality.
According to Newman (2009),

“Availability means computer and network resources are accessible to only autho-
rized parties.” (Newman, 2009)

From this viewpoint we can distinguish two aspects of availability: accessibility and exclusivity
(Rossebeg et al., 2006). Accessibility refers to the ability of the system to grant access to
authorized parties while exclusivity guarantees that the system denies access to non-authorized
parties.

For the work presented in this thesis we adopt the definition of Laprie: availability as
measure of service accomplishment with respect to the alternation of accomplishment and
interruption (Laprie, 1995). In our view, its understanding of availability as a measure captures
the understanding of availability in practice. It furthermore relates clearly to the functional
requirements of the system.

62

Chapter 4. Background and Formal Foundation

service accomplished ----+——————p--------; -

service fallure ----

JE T
R I IO S

Y —
©) @ ® @ ®

Figure 4.11: Periods of service accomplishment and service failure. Reliability is a measure
for period (1). Maintainability relates at least partly to the periods (2) and (4). Availability is a
measure for the relation between periods (1), (3), (5) and periods (2), (4).

4.2.3 Related Terms

In the literature, there are several terms with a similar meaning as availability. All of these terms
describe the extend to which a system may exhibit certain types of failures. The research area
dependable computing considers the terms reliability, maintainability and (functional) safety.
Additionally, as mentioned in the previous section on availability definitions, computer security
is often related to availability. Finally, especially for network or general communication systems,
the term quality-of-service is used. Below, we briefly describe these terms and distinguish them
from availability.

Reliability

113

Reliability is the term most closely related to availability. Laprie defines reliability as “a
measure of the continuous service accomplishment (or, equivalently, of the time to failure)
from a reference initial instant” (Laprie, 1995). Hence, reliability is a measure of the time
to the first failure from a given time point, ignoring the behavior of the system after this
first failure. Awvailability, in contrast, is a measure for all the periods where the service is
accomplished compared to the periods where the service is interrupted, even after the first
failure. Availability, therefore, also considers repair or self-healing, which is ignored by
reliability. Figure 4.11 illustrates the difference between reliability and availability. Reliability
considers only period (1) while availability considers also the later periods.

Maintainability

Maintenance activities of a software system are often broken down into the following four
categories (e.g. Bourque and Fairley, 2014):

* Corrective maintenance: Repair of a software product, possibly after delivery.
* Adaptive maintenance: Modification of a software product to keep it usable.

e Perfective maintenance: Modification of a software product to provide enhancements for
users or improvements of other attributes of the software.

* Preventive maintenance: Modification of a software product to detect and correct latent
faults before they become operational.

63

Chapter 4. Background and Formal Foundation

With these maintenance activities in mind, maintainability means a system’s “ability to undergo
modifications and repairs.” (AviZienis et al., 2004) Especially the ability to perform repairs
relates to availability, as fast repairs shorten the periods of service failure (periods (2) and (4)
in Figure 4.11). However, depending on the definition of service failure, also the ability to
perform the other types of maintenance activities may influence availability.

(Functional) Safety

The ISO 26262 norm on the functional safety of road vehicles defines safety as “absence of
unreasonable risk” (ISO, 2011) and functional safety as “absence of unreasonable risk due
to hazards caused by malfunctioning behavior of E/E systems” (ISO, 2011). According to
AviZienis, safety refers to the “absence of catastrophic consequences on the user(s) and the
environment” (AviZienis et al., 2004).

Especially functional safety is related to availability: Similar to availability, functional
safety refers to malfunctioning behavior (i.e. behavior that is not in line with the functional
specification). However, safety focuses on the risk of harming users or the environment that is
associated with the malfunctioning. Avoiding situations in which a malfunctioning can cause
harm is the goal of functional safety. This focus on avoiding any harm is not connected with
availability.

Security

In the computer security research community, security is seen as a compound concept consisting
of confidentiality, integrity, and availability (AviZienis et al., 2004; Bishop, 2012; Pfleeger and
Pfleeger, 2006). In this context, confidentiality means the absence of unauthorized disclosure
of information and integrity means the absence of unauthorized system alterations (AviZienis
et al., 2004). A high availability is therefore considered one aspect of security. On the other
hand, from an attacker’s perspective, reaching the absence of availability is the goal of a specific
type of attack on computer systems, causing a so-called denial of service.

Quality of Service

Quality of Service (QoS) is a term that is mostly used in conjunction with computer networks
or, more generally, communication services. It is often used as an umbrella term for a large
set of characteristics of communication services. A central document regarding QoS is the
ITU-T E.800 recommendation (Balzer, 2015; ITU, 2008). It defines QoS rather broadly as the
“totality of characteristics of a telecommunications service that bear on its ability to satisfy
stated and implied needs of the user of the service” (ITU, 2008). However, the recommendation
names the following six central quality characteristics for QoS: speed, accuracy, dependability,
availability, reliability, simplicity. Hence, similar as for security, availability can be seen as a
part of QoS, besides other characteristics.

4.2.4 Availability Requirements

In the following section we consider availability requirements. We first clarify the general role
of availability requirements and their sources. Afterwards, we discuss their scope in relation to
the artifacts outlined in Section 4.1.4. Next, we outline the contents of availability requirements
according to industry standards. Often, availability requirements are stated quantitatively using

64

Chapter 4. Background and Formal Foundation

availability metrics. Therefore, in the last part of this section we explain what availability
metrics are and give examples.

Role of Availability Requirements

If a system has to achieve a certain availability, this needs to be reflected in the requirements of
the system. Availability requirements describe the characteristics that a system should possess
with regard to availability. As other types of requirements, availability requirements need
to be elicited and documented as part of requirements engineering. Typically, according to
our interview study and industrial standards, such as IEC 62347 (IEC, 2006), sources for the
elicitation of availability requirements are:

* Analysis of the market situation and competitor products
 Customer requirements

* Economic considerations regarding the operation of a system
» Experiences with operation data of legacy systems

* Demands of regulation bodies

As for other types of requirements, the producer of a system needs to provide arguments that
the availability requirements are indeed fulfilled in the final product. This argument is usually
documented as part of a RAM case. Availability requirements are considered in several industry
standards relevant for software intensive systems. Among them are IEC 60300 on reliability
management (especially part 3-4, IEC, 1996), IEC 62471 on the demonstration of dependability
requirements (IEC, 2012) and IEC 62347 (IEC, 2006) on system dependability specifications.

Scope of Availability Requirements

The scope of availability requirements are usually the functions of a system. This means,
availability requirements relate to the functions of a system and can be described as soon as
the functions have been determined. IEC 62347 outlines a generic process for the system
specification and integrates activities regarding the specification of availability requirements
into this process. An extract of the process is depicted in Figure 4.12. There are two main
activities relevant for availability requirements in this process. First, during the step Analyze
Requirements, the important dependability characteristics are determined. In the language of
IEC 62347, availability is one such dependability characteristic. In other words, during this step,
rough availability requirements are determined. The second activity, relevant for availability
requirements, is performed during the step Design and Evaluate Functions. In this step detailed
availability requirements are developed for each system function based on its specification.

Content of Availability Requirements

In Section 4.2.2 we saw that availability is closely related to the system’s specification and the
definition of what is a failure. Hence, the reference to a system specification and a definition
of failure are part of a specification of availability requirements. However, beyond that, an
availability requirements specification contains information about the system’s environment
and how it is maintained. The main reason for this is that the performance of systems can vary,
depending on the context in which it is installed and used. Therefore, availability requirements

65

Chapter 4. Background and Formal Foundation

Main Activities Process Step Availability Requirements Activities

* Define system boundary
¢ Elicit requirements

* Structure system in

functions
v
* Determine function Design and Evaluate * Determine availability requirements
realization Functions for functions

* Determine system

realization Specify System

Figure 4.12: Extract of the process of system specification according to IEC 62347 with
activities relevant for availability requirements.

contain a so-called operational profile (or usage profile) that describe the usage of the system.
The IEC 60300-3-4 standard (IEC, 1996), which provides a guideline for the specification of
dependability requirements, lists further items that should be contained in a specification:

* system descriptions including system functions,

* environmental conditions and operating conditions,

* failure definition, i.e. a description of the situation when a system (function) is considered
failed to which degree,

* information on how the system is installed and used and

* maintenance rules.

The demanded availability of a system can be described qualitatively or quantitatively,
using availability metrics. When availability requirements are expressed quantitatively, IEC
60300-3-3 stresses that the specification needs to state precisely, how the used metrics should
be interpreted. That means, for example, which time periods should be counted as service
interruption. As availability metrics play an important role for the specification of availability
requirements, we discuss them in more detail in the next section.

Availability Metrics

The availability of a system is often described quantitatively. An example for such a quantitative
statement on availability is: “The system should have a mean downtime per week of at most 30
minutes”. The mean downtime, in this example, is an instance of an availability metric. Note,
that the term metric has a precise meanings in mathematics (see Section 4.1.1). However, in this
thesis, we use the term “availability metric” informally, to relate to any type of quantity that is
used to describe availability. Below, we illustrate availability metrics by giving some informal

66

Chapter 4. Background and Formal Foundation

examples. Afterwards, we show, how availability metrics can be understood formally using
probability theory. Later on, in Section 5.2.4, we give a more comprehensive formalization of
availability metrics in terms of our formal system model.

Examples of Availability Metrics. = Kan (2002) and Eusgeld et al. (2008) give examples for
different availability metrics. Among them are uptime, downtime, frequency of failures and
duration of failures together with the related metrics mean-time-between-failures (MTTF) and
mean-time-to-repair (MTTR). Further examples are number-of-nines, point availability and
steady-state availability. A domain-specific example of an availability metric for the telecom-
munication domain is the dropped call rate.

Uptime is the time that a system (or system function) is operational during a reference time
frame. It can be given as absolute time (e.g. 167 hours per week) or as a fraction of the reference
time frame (e.g. 99.5%). Downtime is the complement of uptime. It is the time that a system is
not operational during a reference time frame. As uptime, it can be given in absolute time (e.g.
50 minutes per week) or as a fraction of the reference time frame (e.g. 0.05%). The frequency
and duration of failures denote how often a failure occurs during a certain time frame (e.g. two
failure periods per week) and how long the these failure periods last (e.g. 30 minutes). Related
metrics are the mean-time-between-failures (MTBF) which is the expected time between two
consecutive failure periods and the mean-time-to-repair (MTTR), the expected duration of a
failure period. Derived from the percentage representation of uptime, is the metric number-of-
nines. It refers to the number of nines until the first other digit in these percentage numbers.
The fraction of uptime of 99.999% would thus be expressed as “S-nines”. Different terms
that are occasionally used for availability levels are “high-availability" (5 nines), “very-high-
availability” (6 nines) and “ultra-high-availability” (7 nines) (Gray and Siewiorek, 1991). The
point availability is a probabilistic metric. It is the probability that the system is operating
failure-free at a certain point in time (e.g. 0.999 probability for failure free operation after one
week since system installation). Steady-state availability is also a probabilistic metric. It is the
limiting value of point availability if the time point approaches infinity. As a final example,
domain-specific performance metrics are sometimes used to describe a system’s availability.
A prominent example comes from the telecommunication domain. The dropped call rate, or
similar the defects per minute (DPM) is an availability metric that counts the number of dropped
telephones calls per million calls (Trivedi et al., 2010).

Formal Availability Metrics. A mathematically rigorous definition of availability metrics orig-
inates from the field of reliability theory. Reliability theory is a field that has been developing in
since the first half of the 20th century and which uses statistical methods for the investigation of
reliability and related concepts such as availability (Rausand and Hgyland, 2004). Availability
metrics here are typically expressed in terms of probabilistic descriptions of failures. Reliability
theory distinguishes between discrete time models and continuous time models. As we focus
on discrete time systems we will employ the concepts from reliability theory in their discrete
versions. In the preceding section we already mentioned point-availability. It is given by the
probability that an item (such as the system or a system service) is functioning at a certain
instant of time (Grottke et al., 2008). In symbols, for a time point ¢ € N

A,(t) = Pr[item is functioning at time ¢].

We can state the proposition “item is functioning at time t” more formally using a random
variable Y (t) taking value 1 if the item is operating correctly at time ¢, and 0 otherwise. Hence,

67

Chapter 4. Background and Formal Foundation

we obtain
Ay(t) =Pr[Y(t)=1].

From this basic definition, more availability metrics can be derived, such as the uptime in the
discrete time interval [0;¢]

U= 7 S 4.

or the steady-state availability, denoting the point availability in the long run
A= 1tlim Ap(t) .

The steady-state availability can be thought of as the availability after the system has stabilized.
After setting the system in operation, there might be short time effects, such as production flaws
or unclear maintenance policies, which result in a temporarily higher point-availability. After
some time, these effects disappear and the point availability settles at a certain value. This value
is the steady-state availability. Consider Figure 4.13 for an illustration of the point-availability
approaching the steady-state availability from below.

point availability Ap(t)

steady-state
" availability

>

time t

Figure 4.13: Illustration of point-availability approaching steady-state availability.

68

Chapter 5

Availability Artifact Model

Our approach in this thesis is to capture the information, necessary for the specification and
analysis of availability, using specialized models. To guarantee a well-defined semantics of the
models, we base them on the common modeling theory Focus (see Section 4.1). To describe
and organize the models, and to define the relationships among them, we integrate them into an
artifact model. More specifically, we extend the artifact model outlined in Section 4.1.4. This
chapter is structured in the following way: First, we give a short overview over the extended
availability artifact model in Section 5.1. In the subsequent sections 5.2 to 5.5, we detail our
proposed artifacts and the involved models. Finally, in Section 5.6, we describe availability
analyses based on the introduced models.

5.1 Overview

Figure 5.1 gives an overview over the availability artifact model. The blue artifacts are parts
of the original artifact model, whereas the green artifacts are our extensions and will be in the
focus of this chapter. For details on the blue artifacts see Chapter 4. White boxes denote models
used as part of an artifact. The arrows denote relationships between artifacts and models. As
Figure 5.1 shows, we add four artifacts to the artifact model: The availability requirements
specification contains the requirements on the system regarding availability. It makes use of
the second artifact, the availability specification, which contains the necessary definitions of
failure and of availability metrics. The extended logical architecture is an extension of the
original logical architecture to include the behavior in case of faults. Finally, the environment
specification describes the behavior and structure of external systems and users. Below, we
give a short description of all artifacts and models. We will provide the details in the following
sections.

Availability Requirements Specification The availability requirements specification captures
the demands of the different stakeholders of the system that relate to availability. As
outlined in Section 4.2.4, there are various sources for availability requirements, such
as the customer, regulation bodies or economic considerations. We capture availability
requirements informally with textual availability descriptions. These are statements
about availability formulated in natural language. They may refer to the functional
requirements and to elements of the functional architecture (e.g. availability requirements

69

Chapter 5. Availability Artifact Model

provides
. deployment .
Logical targets Technical

Architecture Architecture

. structures and .
Functional Sulfills Functional

Requirements Architecture

refines

extends with faults
and fault handling

is structured
according to

aptures faults
from

references

Availability
Requirements
Specification

Textual Availability
Descriptions

Availability
Constraints
Model

Availability
Specification

Failure Mode List

Failure Definition
Model

Failure Aggregation
Model

Availability
Metrics Model

Extended Logical Environment
Architecture ' Specification

Fault-Injection
Model

Environment
Component
Model

Fulfill

reference

relates to interface of

Figure 5.1: Overview over the Availability Artifact Model. Green boxes relate to artifacts that
we focus on in this chapter. Blue boxes related to artefacts introduced before (see Chapter 4).
White boxes denote the model types used in these artifacts. Arrows describe the relationship
between models and artifacts.

can be formulated for each system function). We formalize these descriptions in an
availability constraints model. This model represents constraints on availability (such
as “>99.999% uptime”) as mathematical structures that relate to well-defined formal
availability metrics as specified in the availability specification artifact (see relationship
reference in Figure 5.1). We discuss the availability requirements specification in detail
in Section 5.5.

Availability Specification The availability specification provides definitions of what availabil-
ity should mean for the given system. Especially, it contains a definition of what failure
means (i.e. which deviations from the specification are failures) and rules how to calculate
availability metrics. It thus provides the basis, on which formal availability requirements
are formulated. We use four models to capture and to stepwise formalize the necessary
information. The failure mode list is a first step towards the definition of what failure
should mean. It outlines and describes informally the failure modes, considered relevant
to describe the availability of the system at hand. It is structured according to the system
functions. The failure definition model formalizes and extends the failure mode list.
Most importantly, it relates deviations from the system’s specified behavior to the failure
modes. The failure aggregation model is an optional model that aggregates and simplifies
failure modes to facilitate the definition of availability metrics. Finally, the availability
metrics model defines availability metrics by fixing rules how to calculate the metrics.
We present details on the availability specification in Section 5.2.

Extended Logical Architecture The extended logical architecture extends the original logical

70

Chapter 5. Availability Artifact Model

architecture. The purpose of this extension is to include the behavior of the system in
case of faults. Only when faults and their effect on the system behavior are modeled,
we can perform meaningful availability analyses. The only model in this artifact is the
fault-injection model. This model includes, potentially for every component in the logical
architecture, a description of how this component is affected by faults and how these faults
lead to a change in behavior. The fault-injection model captures hardware faults (relating
to items of the technical architecture) as well as software faults. To express faults in a
modular way, we represent the fault-injection model with deviation models as introduced
in Section 4.1.5. We describe the extended logical architecture in Section 5.3.

Environment Specification An environment specification describes the context of a system,
for example, its neighboring systems, its physical environment, or its users. Its purpose
is again, to allow for a realistic availability analyses, as a system may show a different
availability depending on its use. In our case, this artifact only consists of an environment
component model describing the structure and behavior of the environment. An important
constraint is that the interface of the environment needs to match the system interface.
We discuss the environment specification in Section 5.4.

A central use case for our models are availability analyses, most importantly to verify the
availability requirements. As shown by the fulfills relationship in Figure 5.1, the models of the
artifacts availability specification, extended logical architecture and environment specification
are used in combination to verify that the availability requirements are fulfilled. In Section 5.6
we describe this analysis in detail.

5.2 Availability Specification

The availability specification defines what availability should mean for the system under con-
sideration. Especially, it provides a failure definition and specifies system-specific calculation
rules for availability metrics. The availability specification has additional models to allow for a
stepwise formalization, starting from informal models (the failure mode list) and going towards
formal models (the failure definition model). This artifact consists of four models:

* Failure Mode List, which captures the relevant failure modes informally.
* Failure Definition Model, which formalizes the information from the failure mode list

and furthermore describes which behavior of the system should be considered as a failure
of which of the failure modes.

* Failure Aggregation Model, an optional model, which aggregates and simplifies the
failure modes captured in the failure definition model. It thus facilitates the definition of
availability metrics.

* Availability Metric Model, which provides formal calculation rules for availability metrics
based on the models above.

5.2.1 Failure Mode List

Recall from Section 4.2.1 that when a failure occurs we can categorize it according to its failure
mode and severity level. A failure mode is a certain type of failure (e.g. a signal is stuck at

71

Chapter 5. Availability Artifact Model

Failure Modes Severity Levels
Function Name Description Name Description
F1 FM 1 Informal description of FM 1 SL1_1 Informal description of SL 1_1

SL1_2 Description of SL 1_2
FM2 Informal descriptionof FM2 SL2 1 Informal description of SL 2_1
SL2 2 Description of SL2_2

Table 5.1: Schematic structure of a failure mode list showing two failure modes of a function,
each having two levels of severity.

a certain value). The severity level specifies how serious the failure is (e.g. how important
the stuck signal is). The failure mode list is a structured but informal description of failure
modes relevant for the system. The failure modes in the list are grouped according to the
system functions and the names of the system functions are annotated. For each failure mode,
the failure mode list includes a description and a list of severity levels of this particular failure
mode, again each with a description. Table 5.1 shows the schematic structure of a failure mode
list. A formalized definition of the meaning of the failure modes is provided by the failure
definition model, introduced below.

5.2.2 Failure Definition Model

The failure definition model describes which observed behavior at the system’s interface is
considered a failure of which failure mode. It consists of several failure definitions. A failure
definition is a function that specifies, for a given history representing a part of the system’s
observable behavior, and for every point in time, if a failure of a specific failure mode is present
and with which level of severity. A failure definition always references a subset of failure modes
from the failure mode list (usually all failure modes for a given function).

We represent a failure definition by a behavior function. Let F' be a set of channels,
each channel representing one failure mode that should be considered by the failure definition.
The type type(fm) of each channel fm e F' specifies the severity levels of the failure mode
represented by fm. If I > O is the interface of the system or a particular system function, then
a failure definition is modeled by a behavior function D € [Tu O > F'].

Figure 5.2 shows the example of a failure definition model and its relation to the syntactic
interface of the considered system or function. It also illustrates the relationship to the failure
modes and severity levels outlined in the failure mode list. In order to describe the behavior we
can use any of the description techniques outlined in Section 4.1.3 (e.g. state-machines). We
can also describe the behavior as a composition of several behavior functions.

Note, that we model a failure definition in the same way as we model, for example, a
component and therefore use the same terminology (channels, histories). However, in order to
avoid ambiguities and to stress the modeling intent, we will use the terms failure mode channel
and failure history when we refer to channels and histories in the context of a failure definition.

72

Chapter 5. Availability Artifact Model

Syntactic Interface Failure Mode List

Input channel output channel Failure Modes Severity Levels

Function Name Description Name Description
i FM 1 Informal description of FM 1 Informal description of SL 1_1

SL1_2| Description of SL 1_2
FM2 Informal description of FM SL2_1| Informal description of SL 2_1

Description of SL2_2

severity levels

failure mode channels

Failure Definition Model

Figure 5.2: Relationship between a failure definition the syntactic interface of the considered
system or system function, and the failure mode list.

5.2.3 Failure Aggregation Model

The failure mode list and the failure definition model provide a fine-grained description of failure
modes and severity levels. In order to calculate concrete availability metrics, the information
obtained from these models often needs to be aggregated. For example, the availability metric
uptime can be easily calculated when the number of failure modes and number of severity levels
are reduced to one (to denote “system is down). We describe such an aggregation in a separate
model, the failure aggregation model. Intuitively it serves as a mediator between the failure
definition model and the availability metrics model.

Note, that a detailed, fine-grained description of failure modes in the failure mode list
and failure definition model is still useful as a first step. The reason for this is that different
aggregations may be necessary for different metrics and for different types of analyses. The
original, fine-grained failure representation provides the common basis for those.

The failure aggregation model consists of several aggregators. An aggregator takes failures
as inputs and calculates aggregated failures based on them. We represent an aggregator as a
behavior function. As input channels an aggregator has a number of (fine grained) failure mode
channels, as defined in the failure definition model. As output channels it has new failure mode
channels, denoting the aggregated failure modes. The behavior of an aggregator can again be
described using description techniques as introduced in Section 4.1.3 and as a composition
of several behavior functions. Figure 5.3 illustrates the relationship between the aggregation
model and the failure definition model.

73

Chapter 5. Availability Artifact Model

Failure Definition Model

i fm1 T, T, = {slllsllQ},T2 = {sl215|22}
0 D ; 27' detailed failure S
o: me: . '2 """"" .
mode channels detailed severity
7 7 levels
fml] Ty T ={sl} T aggregated
— ¥ fm: T severity level
fm2: T, A = .
— - aggregated failure

mode channel

Failure Aggregation Model

Figure 5.3: Relationship between the failure definition model and the failure aggregation model.
The failure mode channels serving as output of a failure definition are the input of an aggregator.
The aggregator typically reduces the number of failure mode channels and severity levels.

5.2.4 Availability Metric Model

In the literature, there are numerous definitions of different types of availability metrics ranging
from simple metrics, such as uptime, to more complex metrics with non-trivial calculation rules.
Furthermore, availability metrics are system and project specific, depending on the failure modes
and severity levels that are present in the failure definition. To capture these different availability
metrics we use an explicit availability metric model. It captures calculation rules for concrete
availability metrics.

To model availability metrics, we use functions M : F° >R mapping failure histories
to a number, representing the value of the availability metric. Note that such a function has a
different signature compared to a behavior function. In analogy to the term behavior function
and as they are used to describe metrics, we use the term metric function for such functions. As
they are not part of the formal theory presented in Chapter 4, we briefly develop the theory in
the following sections.

Metric Functions

We start with the formal definition of metric functions, independent of its use for availability
metrics.

Definition 25 (Metric Function). A metric function with respect to a set of channels C is a
measurable function M : C° — R that maps histories to a value from the extended reals. The
set of metric functions for channel set C'is denoted by M[C'].

As we demand measurability, not every function mapping histories to a value qualifies
as a metric function. Hence, when we define a metric function we have to verify that the
underlying function is indeed measurable. To show measurability of a function, we have to
show that the preimage of every measurable set is measurable. Although most functions that
we intuitively come up with will be measurable, measurability is often not immediately obvious
and may be tedious to prove. Therefore, we look for a more intuitive property of a quantitative
specification that entails measurability. In Chapter 4.1.1 we showed that continuity qualifies as
such a property in our setting.

74

Chapter 5. Availability Artifact Model

Continuity. From Corollary 2 in Section 4.1.1 we know that continuity of a metric function
entails measurability. Additionally, continuity of a metric function is easier to show than
measurability. By Definition 15, a metric function M is continuous, if, for every = and for
every € > 0, there exists a § > 0 such that dg(Q(x),Q(z")) < € for all " with do(z, ") < 4.

In our context, when a metric function is continuous the result for some infinite stream
can be approximated by a different infinite stream with a sufficiently large (but finite) common
prefix. In other words, continuity ensures that the result of metric functions when applied to
an infinite stream can be approximated with any precision by looking at a finite prefix of this
stream, if it is just long enough.

Continuity can often be shown more easily, compared to measurability. A typical hint to the
continuity of a function is when the impact of later messages on the result diminish compared
to earlier messages.

Time-Boundedness. Often, we are only interested in the first & time units for the definition of
a metric function and the behavior afterwards is not relevant for the calculation. We call such
metric functions time-bounded.

Definition 26 (Time-bounded). A metric function M is called time-bounded if there exists
t € No such that for all histories z, 2" with z|; = 2’|, it holds that M (z) = M (2").

Theorem 6. A time-bounded metric function is continuous.

Proof. Let M be a time-bounded metric function. Given any history » and some € > 0, there
exists t € Ny such that M (h) = M (k') for all b’ with hl; = h'];. We choose § = 27*. For
any h' with do(h,h') < 6, it holds that hl; = h'|;, due to the definition of dc. Therefore,
M (h) = M(R") due to the time-boundedness of M and hence dr(M (h), M(h")) =0 < e.
Therefore, M is continuous. O

Weighted Automata

A way to represent a metric function is via a state transition model. Similar to the probabilistic
automata introduced in Section 4.1.3, we also attach quantities to the transitions. The general
idea is then to aggregate the values along an execution path according to some aggregation
function in order to obtain a single value. If the number of states is finite, such a state machine
is called a weighted finite automaton (WFA). A formal definition of WFA, taken from Chatterjee
et al. (2009), is presented below.

Definition 27 (Weighted Finite Automaton). A weighted finite automaton (WFA) for channel
set C' is represented by a tuple(.S, Sy, §, w) where

S is the state space,

e Sp € S is a set of initial states,

0 €5 x C x S is the transition relation labeled with channel valuations,

w:d — Qis a weight function that assigns a weight, given as a rational number, to each
transition of the automata.

75

Chapter 5. Availability Artifact Model

An infinite run of a WFA A is a sequence r = ((sg,v0,51), ($1,v1,82),-..), such that
so € So and (s;,v;, Si+1) € 0, for all . We write runs(.A) for all runs of A. With hist(r) we
denote the history embedded inside the run 7.

hist((so,v0,51), (s1,v1,82),...) = (vo,v1,...),
With runs_4(h), we denote the set of runs that produce h.
runso(h) = {r € runs(A) : hist(r) =h} .
For a run r, weights 4(r) is the sequence of weights associated with 7.
weights 4(r).1 = w(r.3)

Given a value function V' : Q*° — R mapping infinite sequences of rational numbers to a real
number, a WFA A induces the metric function () 4 given by

Qa(h) =sup{ V(weights 4(r)) : r € runsa(h)} .

Note that a history can be produced by multiple runs, for instance due to non-determinism in
the automaton. From the possibly many weighting results we choose a distinct one by selecting
the supremum. Examples for value functions V' for weighted automata are (Chatterjee et al.,
2009):

o LimInf(v) =liminfv.n

n—oo
o 1 n—-1
e LimAvg(v) =liminf = ¥ v.i
n—oo i
These functions are well-defined as long as there is a lower bound on the values in v.

Description Techniques

Metric functions can be described in various ways. Here, we consider two description tech-
niques: using logical terms and using weighted state transition diagrams. In any case, we
embed descriptions of metric functions into a frame with frame label MF and state the involved
channel names and types.

— M MF —

in ¢ :Th,...,c: Ty

body

Specification with Logical Terms. Similar to specifying behavior with logical formulas we
can define a metric function by giving a logical term that evaluates to a real number and that

has the channel names as free variables. A specification for channels C' = {cy, ..., cx} is given
by a term ¢ with variables c1, ..., ck. This term induces a metric function M € M[C] defined
as

VCEGOOIM(C) =tler = Cleys -l e]

76

Chapter 5. Availability Artifact Model

Specification with State Transition Diagrams. State transition diagrams for weighted automata
resemble transition diagrams for I/O automata introduced before. A transition is annotated with
a pre-condition, an input-binding and a post-condition. Additionally, a weight in braces is
added to a transition. Figure 5.4 illustrates a transition diagram for a weighted automaton. In
the illustration, the top transition carries weight w; and the bottom transition carries weight
we. Additionally, we add a valuation function to the specification frame, labeling it with the
keyword val. The denotation of such a specification is the metric function induced by the WFA
described in the diagram.

— WFA MF =
in c1 Ty, ..., e Ty
local I1:Tp,....0, T,
val V
{34
(U}l)
L
start —| S Sa
_/
[CEE IR
(w2)

Figure 5.4: Schematic structure of a quantitative specification described using a weighted state
transition diagram. The transitions of the diagram are additionally annotated with weights (e.g.
w1, ws in the diagram). Furthermore the specification is extended by a valuation function V.

Relationships to other Models

As indicated by Figure 5.1, the availability metrics model has a relationship to the failure aggre-
gation model and to the failure definition model. This relationship is illustrated in Figure 5.5.
The figure shows that the availability metrics model references the failure mode channels of
both, the failure aggregation model and the failure definition model. These failure mode
channels form the inputs to the metric functions specified in the availability metrics model.

5.3 Extended Logical Architecture

The extended logical architecture extends the original logical architecture such that it includes
the behavior in the case of faults. As faults can lead to a situation where the system behavior
deviates from the specification (i.e. failures), faults and their effect on the system behavior need
to be considered in an availability analysis. Capturing faults and their effects is the purpose of
the fault-injection model, which is the only model in this artifact.

With the fault-injection model we capture the effects of hardware and software faults, by
describing behavior deviations of the components in the logical architecture. We consequently
represent the fault-injection model with deviation models, introduced in Section 4.1.5. That

7

Chapter 5. Availability Artifact Model

Failure Definition Model

S — L T T, = [sl11, sl12}, T, = {sI21, sI22}
0.0 D fm2: T,
et
Aggregation Model

T ={sl}

R
— M, —o

Availability Metrics Model

Figure 5.5: Relationship between the availability metrics model, the failure aggregation model
and the failure definition model. The availability metrics model may refer either to the failure
mode channels of an aggregator (M>) or directly to the failure mode channels of a failure
definition (My).

means, for a component in the logical architecture with interface I > O the fault-injection model
may contain one or more deviation models D € D[> O] applied to this component.

Figure 5.6 illustrates the relationship between the logical architecture and the extended
logical architecture with the applied fault-injection model.

5.4 Environment Specification

Statements about the availability of a system are only valid for a certain environment. Depending
on the behavior of external systems or users, the system under development is likely to show
different availability characteristics. For instance, if a certain device has a higher failure rate
under high workload than under low workload, the availability of every function that involves
this device depends on the workload on this device. Therefore, any availability analysis has to
consider the behavior of the environment. For this reason we incorporate the environment into
our artifact model by introducing an explicit environment specification.

In our artifact model, the environment specification only consists of one model: We employ
the environment component model to specify the interface, the internal structure and the behavior
of the environment. This is a valid approach because, from the point of view of the system
under development, the environment is again a system (or many systems). Therefore, we can
model the environment in the same way as we model a system. The syntactic interface of
an environment needs to match the system’s interface. This means, it needs to provide the
inputs to the systems and may process the system’s outputs. Semantically, the environment
model is captured by (a composition of) probabilistic behavior functions. Therefore, we can

78

Chapter 5. Availability Artifact Model

Logical Architecture

0¢: O¢

LN - C

ig:lg
S

fault-injection with
deviation models

Extended Logical Architecture

Figure 5.6: Relationship between the logical architecture and the extended logical architecture.

use the same description techniques, such as logical formulas and tables to describe black-box
behavior, state transition diagrams to describe state behavior and data flow networks to describe
the decomposition of an environment into multiple environment components. Below, we state
the formal definition of an environment.

Definition 28 (Environment). An environment of a system S € [I > O] is a behavior function
Eg € [O>I]. By Env(S) we denote the set of all environments of S.

Note that the environment is not only providing inputs to the system but is also reacting
on the system’s outputs. As shown by Broy (Broy, 1998) this is necessary, as in the case of
non-deterministic systems otherwise not all environment assumptions can be represented. Note
further that for every system S € [I>O] and environment Eg € Env(S), the composition S® E
is a function without inputs and with 7 U O as outputs, hence S ® E € [@ > I U O]. The result
of the execution (S ® E)) is a set of probability measures on I/O histories of the system, i.e.
(S®@E)ePr(Iu0™).

Figure 5.7 illustrates the relationship between the environment specification and the ex-
tended logical architecture with an example. The inputs to the system match the outputs of the
environment. On the other hand, the outputs of the system match the inputs to the environment.

5.5 Availability Requirements Specification

Availability requirements describe the demands of the stakeholders with respect to the system’s
availability properties. We consider two types of models of this artifact: textual availability
descriptions, which capture availability requirements informally by using natural language text,

79

Chapter 5. Availability Artifact Model

Extended Logical Architecture

ig: L . .
laiia c:C oc: Oc

ig:lp
ik -BR

Environment Component Model

Figure 5.7: Relationship between the environment model and the logical architecture. The
inputs to the system match the outputs of the environment and vice versa.

and availability constraints, which are formal statements referring to availability metrics defined
in the availability specification.

5.5.1 Textual Availability Descriptions

Textual availability descriptions capture availability requirements informally by natural lan-
guage text. These informal, textual descriptions refer to the availability of the system, single
functions or function groups. They may refer to availability metrics or contain qualitative
statements about the desired availability. Especially in early development phases, demands on
availability are often still vague and hard to formalize. In this situation, textual descriptions
provide a means to document these initial requirements. In a second step they can be formalized
by writing formal availability constraints.

5.5.2 Availability Constraints Model

Availability constraints formalize, refine and extend the textual availability descriptions. Avail-
ability constraints specify precisely which ranges should be allowed for which availability
metric. The metrics to which an availability constraint refers to are defined in the availability
metrics model (Section 5.2.4), which is part of the availability specification. We represent
availability constraints by a pair, consisting of a metric function and a value range. The formal
definition is given below.

Definition 29 (Availability Constraint). An availability constraint is a pair (M, R), where
M e M[F] is a metric function for some set of failure modes F', and R < R is a subset of the
reals that describes the range of values that should be allowed for the given metric.

Note, that the metric function that is part of an availability constraint stems from the
availability metric model (Section 5.2.4). By C, we denote the set of availability constraints.
The availability constraints model has two relationships to other models. On the one hand,

80

Chapter 5. Availability Artifact Model

it formalizes textual availability descriptions and on the other hand it references availability
metrics from the availability metrics model. These relationships are illustrated in Figure 5.8

Textual Availability Descriptions

»Core functionality should be available
99.999% of the time.”

~Convenience functionality should be
available 99.9% of the time.”

¢, = ([M,],[0.99999, [)

C, = (,[0.999,00[)

Availability Constraints

fml: T,

_me 1 R
fm2: T, / —

:
1
1
1
1
:
1
i Availability Metrics Model
|
1
1
1
1
1
1

\
5
e

Figure 5.8: Relationship between the textual availability description, availability constraints
and the availability metrics model. The availability constraints formalize the textual availability
requirements. For that, it references the formally defined availability metrics.

5.6 Availability Analysis

In this section, we will not introduce further modeling artifacts. Instead, we show how to use
the artifacts presented in the preceding sections to verify availability requirements.

5.6.1 Prerequisites

The starting point for the analysis are the following artifacts and models.

Extended Logical Architecture The extended logical architecture captures the interface, the
structure and the behavior of the system. The extended logical architecture includes the
components model from the original logical architecture extended by the fault-injection
model. For the analysis we are only interested in the overall behavior at the system
interface. Therefore we represent the whole extended logical architecture with a single

behavior function S € [I > O].

Environment Specification According to our artifact model we capture the system environ-
ment by the environment component model. Similar to the extended logical architecture
we are also only interested in the overall behavior of the environment. Hence, we also
represent the environment specification by a single behavior function E € Env(S).

Availability Specification From the availability specification we use failure definition model

and the failure aggregation model.

81

Chapter 5. Availability Artifact Model

* Failure Definition Model The failure definition model consists of several failure
definitions, all represented by behavior functions. As we can compose these behav-
ior functions, we assume a single behavior function D € [C'> Fp] where C € TuO
is the subset of the syntactic interface of the system that the failure definitions
consider and F'p is the set of detailed failure mode channels.

* Failure Aggregation Model The failure aggregation model consists of a number
of aggregators that we again represent together as behavior function A € [F,>F4],
where F7, € Fp is the subset of failure mode channels subject to aggregation and
F4 is a set of aggregated failure mode channels.

Composing the above behavior function and restricting the result to the failure mode channels
F = (FpuFy),yields
M=(S®E®D®A)F.

This composition is schematically illustrated in Figure 5.9. Note that the syntactic interface of
the obtained composition is (@ > F'). The execution of it yields a set of probability measures
over the failure mode channels. This means, formally

(M) cPr(F™).

A 4

Figure 5.9: Schematic illustration of the composition of the prerequisite models.

5.6.2 Availability Verification and Measurement

Our semantic model of availability metrics are metric functions, as outlined in Section 5.2.4. By
definition, a metric function is a measurable function and can therefore act as random variable.
Hence, if we have a suitable probability measure, we can obtain the expected value of a metric
function.

At this point, we include the last artifact of our artifact model, the availability requirements
specification. More specifically we consider the availability constraints model. We represented
this model by a set of availability constraints of the form (M, R). Based on this, we formalize
the fulfillment of availability requirements by demanding that the expected value of a metric
function M is in the allowed range given by R. We assume for the following definition a
set of failure mode channels F' and an indexed set of availability constraints C c C, such that
V(Mi, Rz) eC:M;e M[Fz] with F; € F.

82

Chapter 5. Availability Artifact Model

Definition 30 (Fulfillment of Constraints).

* Given a probability distribution p € Pr(Foo). We say that y fulfills C and write u = C,
if V(Mz, Rl) eC: E,U,TFL‘[M’L'] € Rz

« Given a set of probability distributions © c Pr(F). We say that © fulfills C and write
OkEC,ifYVueO:pueC.

With the above definitions, we formalize the fulfillment of availability requirements: Let
M be the composition of the relevant availability models as defined in Section 5.6.1 with
(M) c Pr(F”). The fulfillment of the availability requirements, formalized as a set of
availability constraints C € C can then be formulated as

(M)ecC.

Often we do not only want to know whether the requirements are fulfilled, but are interested
in the actual values of the availability metrics (possibly with certain frame conditions). Such
an information is, for instance, necessary to perform a sensitivity analysis for identifying the
impact of system parameters on the availability. In the case of non-deterministic systems, the
result for such a query is not a single value but is a range of availability metrics. To single out a
value we choose the supremum or infimum of this range. Which one, depends on the situation
and the meaning behind a metric.

Definition 31 (Expected Value under Constraints). Given an availability metric M € M[Fy/],
a set of probability measures © c Pr(Foo) with F; € F', and a set of constraints C c C. The
maximal (minimal) expected value of M obtained from probability measure O, while fulfilling
constraints C, is the supremum (infimum) of the expected values of M for all measures that
fulfill the constraints. Formally,

Ezp*(M,C,0©) :Sup{E,uTFM[M] tpeOAuECEH,
Exp,(M,C,0) =inf{E ;5 [M]: pe®@apeC}.

Applying this definition to our artifact model, we can query the maximal attainable value
for an availability metric M while simultaneously satisfying constraints C on other metrics, by

Exp™ (M, C,{(M)) .

5.7 Application to Related Concepts

In Section 4.2.3, we distinguished availability from several related concepts, among them re-
liability and safety. In the following section, we provide a more formal discussion of the
relationship between these terms. We base this discussion on a quantitative notion of cor-
rectness. We show that the artifact model, outlined in this chapter, can be understood as a
means to describe quantitative correctness. Based on this, we sketch how the artifact model for
availability can also be applied to reliability and safety.

83

Chapter 5. Availability Artifact Model

correct system incorrect system degree of correctnes

(@) (b)

Figure 5.10: Illustrations of (a) the boolean notion of correctness and (b) the quantitative notion
of correctness. In the quantitative notion, the crisp specification, visualized by the circle, is
replaced by a quantitative degree of correctness, visualized by a color gradient.

Degree of correctness of I/0 Degree of correctness Degree of correctness of
histories over time of whole I/O histories whole system
more incorrect more incorrect
< I
<
time to first
failure

low high
T
~r a
| >

wtime

Figure 5.11: Illustration of the degree of correctness on different levels of aggregation. The
figure on the left illustrates the degree of correctness of individual histories over time. The
illustration in the middle visualizes the aggregated degree of correctness of whole histories.
Finally, the right figure visualizes the degree of correctness of the whole system as an aggregation
of the degrees of correctness of its histories.

84

Chapter 5. Availability Artifact Model

5.7.1 Correctness

We call a system correct if it behaves according to its specification. The traditional notion of
correctness is binary: a system is either correct or incorrect, but nothing in between. The binary
notion of correctness is illustrated in Figure 5.10a. In reality, a more differentiated view on the
fitness of a system is often desirable. Not all systems that are incorrect in the boolean sense are
equally undesired. On the other hand, of all correct systems some may be preferred over others
(Henzinger, 2010).

To accommodate nuances in the evaluation of a system, quantitative notions of correctness
can be established. From such a point of view, a system is not incorrect, but correct to a certain
(possibly low) degree. This degree can be thought of as distance between the system and its
specification. See Figure 5.10b for an illustration of this idea. Availability metrics are an
example of such a quantitative notion of correctness. The value of an availability metric can be
interpreted as a degree of correctness.

We can apply the transition from a boolean notion of correctness to a quantitative notion
of correctness not only to whole systems, but also to single input/output histories. Thereby we
can derive the degree of correctness of the whole system from the degrees of correctness of
its input/output histories. This situation is illustrated in Figure 5.11. The illustration consists
of three connected parts. Each part illustrates the degree of correctness on a different level
of aggregation. The left part shows the degree of correctness of two histories over time. The
y-axis denotes the time and the x-axis the degree of correctness of the history at this point in
time. The histories are illustrated by the curves leading from the top to the bottom. The larger
the displacement of a curve at some point, the lower is the degree of correctness at this point. In
a probabilistic setting, input/output histories are associated with a probability!, describing how
likely it is to observe this history. In the illustration, we map this probability to the thickness of
a curve. For example, the left curve has a higher probability than the right one. That means, it
is more likely to observe the history represented by the left curve, than the one represented by
the right curve. The middle part of Figure 5.11 shows the aggregated degree of correctness of
whole histories. Each history is assigned a degree of correctness, visualized by the horizontal
position in the diagram, where a position to the left denotes a low degree of correctness and a
position on the right denotes a high degree of correctness. Finally, the right part of the figure
denotes the further aggregated degree of correctness for the whole system, which is derived
from the degrees of correctness of the individual histories.

We can interpret availability as a form of quantitative correctness. This point of view opens
a new perspective on our artifact model: it can be explained in terms of quantitative correctness
in the following way: The failure definition model provides means to define measurements for
the degree of correctness of a history over time (the displacements of the behavior curves in
the left part of Figure 5.11). That means, without a failure definition model, it would not be
possible to draw a curve, as the displacement could not be determined. The fault injection
model provides realistic histories in the presence of faults. In the example, this is illustrated by
the curves moving to the left or right. Without the fault injection model, we would only obtain
straight lines. The availability metric model aggregates the degrees of correctness for all points
of an input/output history to a single value, denoting the degree of correctness (the availability)
associated with a history. This relates to the transition from the left part of Figure 5.11 to the
middle part. Typically, an availability metric will relate to the overall displacement of a curve,
visualized by the area between the curve and the middle line in Figure 5.11. The transition to

I'This is a simplification, as probilities, in general, cannot be attached to individual trajectories.

85

Chapter 5. Availability Artifact Model

a system-wide degree of correcteness (i.e. the transition to the right part of Figure 5.11) is, in
our case, done by obtaining the expected value of the availability over all input/output histories.

5.7.2 Relation to Other Dependability Properties

We saw in Section 4.2.3 that there are concepts closely related to availability. Most of these
concepts have in common that they also constitute a form of quantitative correctness. In the
following, we discuss two of them, reliability and safety, in the terms of quantitative correctness
and relate them to our artifact model. By this, we demonstrate that our artifact model is
potentially applicable to more concepts than availability alone. Furthermore, we can carve out
the differences and commonalities between the concepts in more detail.

Reliability

The first property we study in this context, is reliability. Similar to availability, we can define
reliability in terms of our model of quantitative correctness. Reliability relates to the time of
the first failure. From the viewpoint of reliability, histories that represent a failure-free behavior
have a higher degree of correctness than those that exhibit a failure early. In the left part of
Figure 5.11, we highlighted the point where a curve leaves the middle line (and thus, exhibits a
failure) for the first time with a circle. Note, that the right of the two curves in the illustration
leaves the middle line later than the left curve. Hence, also from the viewpoint of reliability,
the according history has a higher degree of correctness. Finally, we can transition to a system
wide value for the degree of correctness by deriving the expected value over all histories.

Since we can charactarize reliability in terms of the same model of quantitative correctness
as availability, we can also apply our artifact model to describe reliability: The failure definition
model plays the same role as it does for availability: It measures the degree of correctness of
a history at each point in time. This is visualized in Figure 5.11 by the displacement of the
curves. The fault injection model again produces realistic histories. Formally, a metric model
for reliability is equivalent to an availability metric model. The difference is that an availability
metric model typically relates the degree of correctness of a history to the frequency, duration
and severity of failure periods (visualized by the area between the curve and the middle line
in the left part of Figure 5.11), while a reliability metric model typically relates the degree of
correctness to the time until the first failure (visualized by the y-position of the circle in the left
part of Figure 5.11). To obtain the system reliability, we again calculate the expected value of
the reliability metric from the probability distribution over the I/O histories.

Safety

Safety can also be understood as a form of quantitative correctness: Often, a system is not either
completely safe or unsafe, but safe to a certain degree. We describe the safety of the system by
quantifying the risk that the system causes harm to its environment to certain extent. There are
several metrics for the quantitative assessment of safety. Janicak (2009) discusses a number of
such metrics. Often, safety is captured by the financial risk (e.g. payment of compensation,
higher insurance costs, etc.) due to safety incidents.

In the context of Figure 5.11, the degree of correctness of an I/O history for any given point
in time, from the viewpoint of safety, relates to the amount of harm that the system is causing to
its environment at this point in time. The degree of correctness of a whole history then relates
to the overall amount of harm that the system causes with this behavior. Finally, the degree

86

Chapter 5. Availability Artifact Model

of correctness of the overall system then relates to the expected value of the harm caused by
a system during its operation. This fits to the model of quantitative correctness we introduced
above.

As we can capture safety as a form of quantitative correctness, we can formally also apply
our artifact model. However, there is a practical challenge in the case of safety: An important
difference between the consideration of safety and availability is, that the dynamic of the
environment plays a more important role for safety. The harm that a system causes is much
harder to assess only by observing the system’s behavior. Instead, we have to evaluate the effect
of the system behavior in the environment. For instance, the failure of a train control system to
apply the safety break when requested may cause harm to passengers if the train is currently in
a train station, passengers are entering and exiting the train, and the train starts moving. Hence,
it depends on the current state of the environment if harm is actually caused. Therefore, to
apply our artifact model to safety, we have to accommodate the environment for the assessment
of harmful incidents. This could be done by merging the failure definition model and the
environment model to form an integrated environment and failure model. An alternative would
be to expose information of the state of the environment at the environment interface and to use
this information in the failure definition model.

Discussion

We saw that reliability and safety can be studied in the context of quantitative correctness
and described using an artifact model similar to the one we employed for availability. This
highlights the connection of safety and reliability models to other parts of a system description.
In particular, it reveals their relationship to the functional requirements and the functional
specifications of the system. This furthermore challenges the view that these properties are
non-functional. Integrating these additional properties into one model enables obtaining a
comprehensive description of the system with only few redundancies and makes it possible to
analyze different quality attributes of the system in a consistent way.

5.8 Summary

In this chapter, we introduced modeling artifacts for availability modeling and analysis based
on a formal modeling theory. These artifacts are:

* Availability Specification, to capture and define the relevant failure modes and availability
metrics,

» Extended Logical Architecture, to extend the nominal logical architecture with behavior
in case of faults,

» Environment Specification, to capture the behavior of external systems and users of a
system,

* Availability Requirements Specification, to capture and formalize the availability related
demands on the system.

We further showed how these models can be combined together to perform availability analyses.
The analyses that we considered are the verification of availability requirements, given in the
form of constraints on the metric values, and the derivation of concrete availability metric values.

87

Chapter 5. Availability Artifact Model

Finally, we embedded our artifact model into a general model of quantitative correctness and
discussed the properties reliability and safety from this point of view.

88

Chapter 6

Availability Modeling Method

6.1 Overview

In this chapter we complement the artifact model from Chapter 5 with a modeling method. The
method provides a systematic way to develop concrete model instances. The first part of the
method is a set of basic building blocks, which are reusable specifications from which modelers
can assemble custom availability models. The second part of the method is a modeling process,
describing a sequential path through the artifact model. Additionally, for some of the models
presented in Chapter 5, we provide step-by-step guides, supporting the systematic creation of
models, and modeling patterns, which provide a basic model structure that only needs to be
filled in by a modeler.

The chapter is structured as follows: In Section 6.2 we first introduce a running example
used to illustrate our approach throughout the chapter. We use the example of a data storage
and access system, introduced by Broy (2010b). Afterwards, in Section 6.3, we present the
basic building blocks for availability modeling. Finally, in Section 6.4, we present the modeling
process and show how we support the creation of the individual models using basic building
blocks, step-by-step guides and patterns, and demonstrate the method with our running example.

6.2 Running Example: Data Storage and Access Sys-
tem

To illustrate the approach outlined in this chapter, we use an example introduced by Broy (Broy,
2010b). The storage and access system (SAS) can store a number and reproduce the stored
number on demand. Furthermore, the whole system can be switched off and on again. When it
is switched off, it ignores requests for storing a new number or reproducing the stored number.
However, it does not lose its stored number. In the following, we give the models for functional,
logical and technical architecture that describe the SAS system.

6.2.1 Functional Architecture

The system is characterized by the syntactic interface depicted in Figure 6.1. The input channel
switch is used for switching the system on and off. The input channel data is used to provide
data or commands for outputting the stored number. The output channel onoff signals whether

&9

Chapter 6. Availability Modeling Method

the system is currently on or off and the output channel ack acknowledges the receipt of a piece
of data or a read command.

We follow Broy (2010b) and decompose the system into two system functions: Switch,
for switching the system on and off and Access, providing the storage and accessing function.
(Figure 6.2). Each system function relates to a sub-interface of the SAS System. The two
functions interact via the common mode channel mode_onoff.

Type Message Set
switch: SWITCH | _onoff: ONOFF SWITCH {sw}
SAS DATA {read} u {set(n) : n € N}
data: DATA___, acki ACK ONOFF {on,off}
ACK {done} UN
(a) (b)

Figure 6.1: Syntactic interface (a) and corresponding datatypes (b) of the SAS example system.

switch: SWITCH Switch onoff: ONOFF

mode_onoff: ONOFF

data: DATA ’ Access ack: ACK

Figure 6.2: Functional architecture of the SAS example system. It consists of two system
functions Switch and Access that interact via a common mode channel.

The Switch function toggles between on and off on reception of an sw signal. It propagates
the current on/off state via the mode channel mode_onoff. When a switch happens, the new
state is also output via the channel onoff. The second function, Access, distinguishes two
situations based on mode_onoff. If the mode is off, it does not react on any stimulation via the
data channel. If the mode is on and it receives set(k), it replaces the internally saved number
with k£ and acknowledges the replacement by outputting the message done. It reproduces the
internally stored number if it receives the message read. This behavior of the functions is
formally described by the specifications given in Figure 6.3.

6.2.2 Logical Architecture

The logical architecture used to realize the SAS system is quite differently structured compared
to the functional architecture. Nevertheless the interface behavior described by the logical
architecture matches the interface behavior described by the functional architecture. We assume
a fault-tolerant logical architecture consisting of two redundant stores, which are responsible
for storing and reproducing the numbers, as well as a controller coordinating the stores and
implementing the switching. Figure 6.4 shows the logical architecture of the SAS system on
the highest hierarchy level. The interface between the controller and the two stores includes

90

Chapter 6. Availability Modeling Method

— Switch — Access
in switch : SWITCH in mode_onoff : ONOFF
out onoff : ONOFF data: DATA
mode_onoff : ONOFF out ack: ACK
local m: ONOFF initial on local v:N initial 0
univ s: ONOFF univ j:N
k:N
Input Output
m switch m’ mode_onoff onoff Input Output
S O s S - v mode_onoff data v’ ack
off sw on on on j off ? j O
on sw off off off j on read j g
j on set(k) k done
j on O j O

Figure 6.3: Specification of the Switch and Access system functions of the SAS example system.

the types DATA_ID and ACK_ID. These are extensions of the types DATA and ACK used in the
functional architecture. Messages of these extended types are pairs (d, id) where the first part is
a message of type DATA or ACK respectively. The second part is a message sequence number.
The sequence number is used in the controller to identify responses of the stores to the same
request. The store’s behavior is similar to the Access function, however, it does not consider
any on/off switching, as this is centrally handled in the controller. The controller consists of
three components (see Figure 6.5). One of these components (SwitchC) is defined exactly as the
Switch function. The other two components are responsible for distributing the received signals
to the redundant stores (Store Forward) and merging the stores’ responses (Store Merge). The
specifications of all components of the logical architecture are given in Figures 6.5 and 6.6.

switch: SWITCH | data: DATA ID
Store 1
data: DATA . ackl: ACK_ID
plCLUIR 2o 7 s SN e
Controller
QM data2: DATA_ID
Store 2
«ackiACK | . ack2: ACK_ID

Figure 6.4: Logical architecture of the SAS example system. It consists of a controller and two
redundant store components.

91

Chapter 6. Availability Modeling Method

— Controller
in onoff : ONOFF
ackl: ACK_ID
ack2: ACK_ID
out onoff : ONOFF

datal: DATA _ID
data2: DATA _ID

— StoreX
in dataX : DATA_ID
out ackX : ACK_ID
local v:N initial 0
univ 4,75,k:N
Input Output
v dataX v’ ackX
J (read,q) i (9
i (set(k),i) Kk (done,i)
J O Jj O

— Store Forward

ack: ACK

:
data: DATA |
;

'
'
'
[N
datal: DATAID\ |

SwitchC

|
| onoff: ONOF. F
|

mode_onoff: ONOFF

Store Forward

I
I
Store Merge M»

data2: DATA_ID ack2: ACK_ID
ack1l: ACK_ID

Figure 6.5: Specification of the stores and the controller.

in mode_onoff : ONOFF
data: DATA
out datal: DATA ID
data2: DATA _ID
local id:N initial 0
univ j:N
d: DATA
Input Output
id mode onoff data id’ datal data2
i off ? J o O
j on J m] m|
J on d j+1 (dj) (d,j)

— Store Merge

in ackl: ACK_ID
ack2: ACK_ID
out ack: ACK
local id:N initial 0
univ j,k:N
a: ACK
Input Output
id acki ack2 id’ ack
i (a, k) 7 k+1 a
i ? (a,k)* k+1
i ? ? j O
*k>j

Figure 6.6: Specification of the StoreMerge and StoreForward components.

92

Chapter 6. Availability Modeling Method

6.2.3 Technical Architecture

The technical architecture for the SAS example follows mainly its logical architecture. There
are three ECUs for each of the main components. Hence, there is one ECU for the controller,
and one dedicated ECU for each of the two redundant stores. All ECUs are connected via a
network. Figure 6.7 illustrates the technical architecture. For the sake of brevity we omit the
detailed specification of the ECUs and the network.

ECU_Controller ECU_Store_1 ECU_Store_2

< Network >

Figure 6.7: Technical architecture of the SAS example system. It consists of three ECUs. One
ECU for the controller and one for each redundant store. The ECUs communicate via a common
network.

6.3 Basic Building Blocks

In this section, we present a number of generic specifications that we consider useful building
blocks or templates for concrete models. Specifically, we provide five models for the basic
availability metrics point availability, uptime, downtime, interval availability and steady state
availability. We then extend these simple metrics by a family of more complex specifications
that are based on time-slices. Additionally, we present four useful filter specifications to be
used in deviation models (omission, delay, insertion, modification), three activation functions
for deviation models (non-deterministic, probabilistic, deterministic) and a simple comparison
component. Table 6.1 gives an overview over the types of basic building blocks we are presenting
in the following sections.

6.3.1 Basic Availability Metrics

Point Availability

Point availability A(t) is the probability of a system to be operational at a specific point in
time £. This is usually formalized using a random variable X; where X; = 1 if the system is
operational and X; = 0 otherwise. Then, A(t) can be defined as the expected value of X. In
our framework, we specify a metric function pa. It takes a failure mode channel fm as input. It
is parameterized with the time point ¢, a type F'M capturing the severity levels of the failure
mode, and a distinguished severity level v € F'M representing the severity level indicating that
the system is unavailable. The result of pa is either O (“unavailable") or 1 (‘“available”).

93

Chapter 6. Availability Modeling Method

Availability Metrics Filter Activation Comparison
point availability omission non-determinisitc | comparator
uptime delay probabilistic

downtime insertion deterministic

interval availability modification

time-slice availability
time-slice uptime

time-slice downtime

time-slice interval availability

Table 6.1: Overview over the basic building blocks for availability modeling introduced in this
section.

— pa (const t € N, type FM, const v e FM) MF —
in fm:FM
0 if fmit=v
1 otherwise

Uptime

Expected uptime in a discrete time setting is defined as the expected number of discrete time-
units in an interval [0; ¢[, in which the system operates failure-free. Using the specification pa
from above, we capture the number of time units the system is operating during [0;¢[in the
metric function ut, by summing the results of pa for all points in the interval [0;¢[. The upper
bound ¢ is a parameter to the specification of ut.

— ut (const ¢t € N, type FM, const ve FM) MF —
in fm:FM

S pa(k, M, v)(fm)
k=0

Downtime

The expected downtime is the complement of uptime. This means, it is defined as the expected
number of time-slots in an interval [0; ¢[where the system exhibits a failure. We employ the
specification ut for specifying dt, which counts the “down” time-slots.

94

Chapter 6. Availability Modeling Method

— dt (const t e N, type FM, const ve FM) MF —
in fm:FM

t —ut(t, FM,v)(fm)

Interval Availability

Interval availability is the expected ratio of uptime in some observation period. Intuitively, this
is the percentage of uptime in a given interval [¢(, t1[. Therefore, we can again use ut to define
a suitable metric function ia. This specification is additionally parameterized by ¢(and ¢; that
define the observation period.

— ia (Const t() € N, const tl € N, tl > t()7 type FYM'7 const v € FM) —— MF —
in fm:FM

ut(ty, FM,v)(fm) — ut(to, FM,v)(fm)
t —to

Steady State Availability

The limiting value of interval availability for infinitely growing observation intervals is called
the steady state availability. We obtain a suitable metric function ssa through the pointwise
limit of ia.

— ssa (type FM, const v e FM) MF —
in fm:FM

75lim ia(0,t, FM,v)(fm)

Continuity and Measurability

All metric functions, except the one used for steady state availability (ssa) are continuous func-
tions. They are continuous because they are obviously time-bounded. As they are continuous
functions, they are also measurable, which is our minimal criterion. The last function, ssa,
is not continous. However, as it is the pointwise limit of a sequence of measurable functions,
according to Theorem 1 in Section 4.1.1, it is also measurable.

6.3.2 Time-Slice Availability Metrics

In the availability metrics defined so far, we evaluate, for every logical time unit, whether a
failure is present and calculate the metrics based on the single time points. However, in many
cases, evaluating availability based on single time points is too fine-grained. In practice, it is
common to evaluate, whether a failure (or a certain number of failures) occurred in a certain

95

Chapter 6. Availability Modeling Method

time interval. If yes, the whole interval should be considered failed. Such an approach is
employed, for example, in the ITU G.826 guideline (ITU, 2002) describing the availability of
certain digital network connections. The guideline defines three basic notions:

Block: A block is a set of consecutive bits.
Errored block (EB): A block in which one or more bits are in error.
Errored second (ES): A one-second period with one or more errored blocks.

Severely errored second (SES): A one-second period that contains >30% errored blocks.

In this definition, time is sliced into periods of one second. If a certain number of failures occur
in a second, this second is labeled errored or severely errored. The availability definition then
builds upon these notions to define available and unavailable time periods. A similar idea is
expressed in the availability definition part of the Service Level Agreement of the Amazon S3
file storage webservice (Amazon, 2015), where failures are accumulated over 5 minute intervals
and then a failure rate for each interval is calculated. These two examples motivate the adaption
of the simple availability metrics definitions. Instead of single logical time units, we change the
definitions in a way that they relate to time-slices. A time-slice is essentially a time interval. We
prefer the term “slice” here in order to differentiate it from intervals as in “interval availability”.
We count time-slices starting from 0. This means, the n-th time slice refers to the logical time
interval [n- S, (n + 1) -S[, where S is the slice size.

Time-Slice Availability

Time-slice availability is the analogon to point availability, however, based on time slices. It is
parameterized by .S, denoting the slice size (i.e. the number of logical time units that a slice
spans) and n, the number of the considered slice. It returns O if there is a failure in the n-th time
slice. For the specification tsa for time-slice availability we use the specification ia of interval
availability: If the interval availability in a slice is smaller than one, that means a failure has
occurred and we count the whole slice as failed.

— tsa (const S €N, const neN, type FM, const ve FM) MF —
in fm:FM

0 if ia(n-S,(n+1)-S,FM,v)(fm) <1
1 otherwise

Based on the notion of time-slice availability we can easily define the notions of time-slice
uptime, time-slice downtime and time-slice interval availability.
Time-Slice Uptime

Time-slice uptime denotes the number of non-failed time-slices up to the n-th time slice, where
n is a parameter. A second parameter is again S denoting the size of the time-slice. Time-slice

96

Chapter 6. Availability Modeling Method

uptime is calculated by summing over the time-slice availabilities (which are either O or 1) of
all time-slices up to (but not including) the n-th slice.

— tsu (const S €N, const n €N, type FM, const v e FM) MF —

in fm:FM

n-1
> tsa(S,k, FM,v)(fm)
k=0

Time-Slice Downtime

The counterpart of time-slice uptime is time-slice downtime. This metric denotes the number of
failed time-slices up to a certain slice number. Equally to time-slice uptime, it is parametrized
with the slice-length S and the number n of time-slices to consider. We define time-slice
downtime by subtracting time-slice uptime from the number of considered slices.

— tsd (const S € N, const n € N, type FM, const ve FM) MF —
in fm:FM

n —tsu(S,n, FM,v)

Time-Slice Interval Availability

Time-slice interval availability extends regular interval availability with time-slices. Itis defined
as the percentage of failed time-slices with respect to all time slices in a certain interval of slices
[n0,n1[. We use time-slice uptime for the definition of time-slice interval availability.

— tsia (const S € N, const ng € N, n; €N, ng <ny, type FM, const ve FM) - MF —
in fm:FM

tsu(S,ny, FM,v)(fm) — tsu(S, ng, FM,v)(fm)
n1 —no

6.3.3 Deviation Filters

Recall from Section 4.1.5 that deviation models consist of filters and activation functions. In
the following, we present a set of filters that form a basic library to create deviation models. The
filters are domain agnostic, that means they do not relate to a specific (type of) functionality
and can be employed in any setting. However, more specific or adapted filters may be necessary
in specific situations. All the filters that we define here can be used as input and output filters.
Each filter defines an activation input channel a, which triggers filter activation. All filters are
parameterized by a number of channels n and channel types Tp,...,T,. Hence, they can be
employed in a great number of contexts.

97

Chapter 6. Availability Modeling Method

Omission

When activated, the omission filter removes the current message from all streams. More
specifically, it replaces a non-empty message with the empty message 0. When not activated,
the omission filter forwards the incoming messages unchanged. In the specification, we use a
fixed set of activation modes ACTIVE = {active}.

— omm (const n € N, type Ty, ..., T,)
in a: ACTIVE
le Iﬂ),...,iniTn

out oq:Ty,...,0,:T,

V1<k<n,teNg:(at=activerog.t=0)V (a.t #active A 0.t = ig.t)

Insertion

The insertion filter inserts a message into a stream. More specficially, it replaces the empty
message O by a non-empty message but does not modify or delay messages. Other than for the
filter omm we do not use a fixed set of activation modes. Instead the filter is parameterized by
a set of activation modes A. An additional parameter is a family of decision functions d; that
describe which messages can be inserted for each activation mode. Note that an active insertion
filter does not need to have any effect. This is the case, if either a non-empty message arrives
at the filter when it is active or the decision function does not provide any insertion alternative
for a given activation mode (i.e d;(-) = @).

— ins (type A, const n €N, type Ty, ..., T, const d; : A > P(T;))

in a: A
ille,...,iann
out o1:T11,...,0,:T,

Vi<k<n,teNg:[
ipt=0A(op.tedi(at)v(dp(at) =@ Aogt=0))
vV ((igt+0vat=0)A0gt=1ipt)]

Modification

The modification filter replaces a message with a different message. It does not insert any new
messages into the stream. Hence, it only takes effect if there already is a message present.
Similar to the insertion case, the filter is parameterized by a set of activation modes A as well
as a family of decision functions d; that describe how a message can be substituted for a given
activation mode. An active modification filter does not need to have any effect. This is the
case, if there is no substitutable message arriving, or if the decision function does not provide
an alternative for substitution (i.e. d;(+,-) = @) for a given input message and activation mode.

98

Chapter 6. Availability Modeling Method

— mod (type A, const n €N, typeTy,...,T,, const d; : AxT; - P(T;))

in a: A
1T, . i, Ty
out 01:T17~--;0n:Tn

VlSkSn,tENo:[
i t#0 A (Ok.t € dk(a.t, ik.t) \Y, (dk(a.t,ik.t) = Aog.t= Zkt))
vV ((ig-t=0Vva.t=0)Aog.t=1igt)]

Delay

The delay filter introduces delays into the stream as soon as it is activated. The delay only takes
effect, if there is currently a message being received. The filter guarantees that no message is
dropped (¢;, ~ o) and it guarantees further that, when the filter is active, no message passes
the filter (a.t = active = oy.t = O). In order for this specification to be consistent we need to
guarantee that there is enough time where the filter is not active to output all delayed messages.
Therefore, we demand that the filter must be deactivated for an infinite number of time units.
Note that a weaker assumption is possible by considering also the number of messages on the
inputs, but we accept the stronger assumption here.

— del (const n e N, type Ty, ..., Ty)
in a: ACTIVE
iliTl,...,iniTn

out o1:T1T1,...,0,:T,

o} ®a| =00 =
V1<k<n: (i ~og A (a.t = active = og.t =0))

Identity

Finally, the identity filter does not change the input at all. Instead, it just copies the messages it
receives. This filter serves as a placeholder in deviation models that possess only an input filter
or only an output filter, but not both.

— id (const n € N, type Ty, ..., T,)

in iliTh...,iann

out o1:71,...,0,:T,

99

Chapter 6. Availability Modeling Method

6.3.4 Deviation Activation

The second constituent of deviation models are activation functions. We provide three basic
specifications for activation functions. All describe a simple activate & deactivate pattern. The
first activation function represents non-deterministic activation. The second is a deterministic,
non-probabilistic activation that is triggered via a coordination channel. The third provides
probabilistic activation and is parameterized with fixed activation and deactivation probabilities.

Non-deterministic Activation

The non-deterministic activation function is parameterized by a type A representing the different
possible activation modes. It can switch almost arbitrarily between these modes. However, we
demand that deactivation is signaled infinitely often. Thus, we can use this activation function
also in conjunction with the delay filter. Another constraint is the equality between the activation
channel and the outgoing coordination channel.

— ndad (type A)
out a:A

Cout * A

a=cou A{0}®al=00

Externally Triggered Activation

The externally triggered activation function is completely triggered from the outside. It therefore
includes an incoming coordination channel c;,. All it does, is forwarding the activation
messages it receives via activation channel a.

— tad (type A)

in Cin * A
out a:A
a =Cin

Probabilistic Activation

The probabilistic activation defines a probability distribution for the activation. This probability
distribution is determined by the parameters ap and dp. Parameter ap(x) denotes the probability
that an activation with activation mode x takes place from an inactive state, while parameter
dp(x) denotes the probability for deactivation from a state with activation mode x. The current
activation state is saved in the local variable s. Note that we excluded O as probability from dp.
This is again to ensure that the filter will be deactivated infinitely often. As the non-deterministic
variant, the probabilistic activation includes an outgoing coordination channel cy;.

100

Chapter 6. Availability Modeling Method

— pad (type A, const ap: (Au{O}) - [0,1], const dp: A —]0,1])

out a:A

Cout * A
local s:Au{O} initO
univ v:Au{o}

w:A

Input Output

S a Cout S Prob

i v v ap(v)

w woow w 1-dp(w)
w O O o dp(w)

6.3.5 Comparator

Later in this chapter, we need a component that detects differences between input streams.
The specification comp describes a comparison between pairs of input streams and signals
whether the pairs differ by sending the message residual on the channel r. The specification is
parameterized by the number and types of input channels. In the specification, we use the type
RESIDUAL defined as

RESIDUAL = {residual} .

The specification of the comparator comp is as follows

— comp (const n e N, type 71, ...,T,)

in G111, yin 2Ty
c1:Th, .. 0Ty
out r:RESIDUAL

Vi<k<nVteNy : ig.t £cp.t < r.t=residual

The presented building blocks are only a small set that, however, proved to be useful for the
examples in this thesis as well as for the case study that we will present later. However, this set
can be extended by an organization to form a comprehensive library that supports the definition
of availability models.

101

Chapter 6. Availability Modeling Method

6.4 Systematic Creation of Availability Models

In Chapter 5, we introduced a set of model artifacts, which can be used in combination to model
important aspects relevant to availability and to drive the availability analysis. We introduced
the formal foundation of these models and discussed description techniques. In this section, we
describe how these models can be created systematically. To this end, in Section 6.4.1, we first
suggest a modeling process. This process describes how the contents of the different artifacts
are created one after another. Afterwards, in sections 6.4.2 to 6.4.4, we propose methods for
the creation of each type of model. These methods take the form of step-by-step guides or
modeling patterns.

6.4.1 Modeling Process

The artifact model, outlined in Chapter 5 does not prescribe a specific process to create the
different artifacts. It only fixes a set of models used to describe the contents of the artifacts.
However, due to the relationships between the models, not all processes are equally suitable.
For example, as the failure definition model references the failure modes documented in the
failure mode list, there is a dependency between these models. It is preferable to create the
failure mode list first, in order to profit from the collected information and to avoid unnecessary
revisions. However, even though such dependencies exist, there are still various degrees of
freedom regarding the sequence in which to create the models and hence different processes
are possible. For example, the extended logical architecture is largely independent from the
availability specification. Therefore, it is in principle possible to create this artifact before, after
or in parallel to the creation of the availability specification. Additionally, it is possible to create
the models in an incremental way. An example would be to create all of the necessary models,
but only for one function. In a second increment, the models are then extended for a second
function, and so forth. Similar, an iterative process with several revisions is possible.

In this section, we outline one specific instance of an availability modeling process based on
the availability artifact model. It is a rather simple instance, without increments or iterations.
Nevertheless, it proved feasible in our experience. Figure 6.8 gives an overview over the
process. The process starts with eliciting the initial, informal availability requirements in
the form of textual availability descriptions. The next steps are the creation of the extended
logical architecture and the environment specification. During this step, the engineer already
gathers an understanding about possible failure modes of the system. This information is
helpful for creating the availability specification, which is defined subsequently. Note, that for
the availability specification, we first create the failure definition model and the availability
metrics model and only afterwards create the aggregation model. The reason for this is that the
aggregation model serves as a mediator between the failure definition model and the availability
metrics model. Therefore, only after defining these two models we have enough information
to specify the aggregation model. In a final step, the formalized availability requirements are
specified in the form of the availability constraints model.

6.4.2 Textual Availability Descriptions

We introduced ftextual availability descriptions in Section 5.5.1. They capture availability re-
quirements informally with natural language. They are suited especially for initial development
phases. Availability requirements, as any other requirements, are the result of requirements

102

Chapter 6. Availability Modeling Method

Environment

Specification

i ‘\.‘ . Environment
. | Component
fulfill : ‘.“ Model

| " P—
reference ! ‘ Failure Definition

Textual Availability
Descriptions

Availability ‘
Constraints
Model

relates to interface of

: ‘ Fail ure Aggregation
Model

Availability
Metrics Model

Figure 6.8: Process for creating the artifacts of the availability artifact model.

elicitation, analysis and documentation. Providing a full-fledged method for requirements en-
gineering is out of scope of this thesis. Detailed guides for requirements engineering can be
found in the literature, for instance in the publications by Sommerville and Sawyer (1997) or
Van Lamsweerde (2001). Below, we discuss some specifities for availability.

For requirements elicitation the relevant stakeholders need to be identified and their demands
and interests regarding availability need to be collected. An important stakeholder in the case
of availability are the customers and the users of the system. Their needs are often driven by
economic considerations, as an unavailable system causes costs. A second group of stakeholders
that should be considered are regulation bodies. Further sources for availability requirements
are the market situation and competitor products. In some markets a certain level of availability
is customary. (IEC, 2006)

The goal of requirements analysis is to obtain a complete, consolidated and consistent set
of requirements that all stakeholders agree upon (Sommerville and Sawyer, 1997). During the
analysis we identify, for instance, conflicting, unnecessary or ambiguous requirements. In case
of textual availability descriptions, the analysis is largely done manually by requirements engi-
neers. A helpful instrument for the manual inspection are checklists. A generic requirements
analysis checklist is given by Sommerville and Sawyer (1997). In Table 6.2 we extend and
specialize Sommerville’s checklist for availability requirements.

The textual availability description is produced during requirements documentation. It is
informal and written in natural language. Although this allows for a large freedom in how
to write textual availability descriptions, adhering to requirement patterns is considered a
good practice. Withall (2007) presents a requirements pattern catalog, including patterns for
availability. The basic availability pattern due to Withall, with a slight modification, is

Availability Requirements Pattern

The «item» shall normally be available to users «Availability extent descrip-
tion» [, except in «exceptional circumstances»of a frequency and duration
not to exceed «Tolerated downtime qualifier»]. “Normally available” shall be
taken to mean «Availability meaning».

An example for the instantiation of this template, adapted from Withall (2007) is:

103

Chapter 6. Availability Modeling Method

Checklist Item Description

Premature design (S) Does the requirement include premature design or imple-
mentation information, for instance fault tolerance mecha-
nisms or redundancies?

Requirements realism (S) Is the requirement realistic given the technology which will
be used to implement the system?

Requirements scope Does the availability requirement relate to the appropriate
scope? For instance, does the availability requirement re-
late to the whole system while it should relate only to a
system function?

Failure definition Does the requirement specify what should be considered a
failure?
Metric type If the requirement is quantitative, does it specify a concrete

metric type (e.g. uptime)?

Table 6.2: Checklist for availability requirements, items marked with (S) stem from the original
list by Sommerville and Sawyer (1997)

Availability of Web site

The dynamic functions of the company’s Web site shall be normally available
to visitors 24 hours per day, every day of the year, except for unscheduled
downtime of a frequency and duration not to exceed 1 hour per week (aver-
aged over each calendar quarter) plus scheduled downtime not to exceed one
outage per calendar month. “Normally available” shall be taken to mean that
the dynamic web pages are loaded and the user functions are operating
without showing error messages.

Application to the Running Example

For this example, we assume that the SAS system is employed in a domain where an availability
level of 99.5% is customary. Additionally, we demand a higher availability level of 99.9% for
the access function. Concrete metrics corresponding to 99.5% and 99.9% are accumulated
downtimes per week of less than 50 minutes and 10 minutes respectively. Therefore, we
formulate the following textual availability descriptions for our system functions.

* R1: The switch function shall be normally available 24 hours per day, every day, except
for an accumulated unscheduled downtime of 50 minutes per week. “Normally available”
shall be taken to mean that the switch function behaves as specified within a 1 minute
period.

* R2: The access function shall be normally available 24 hours per day, every day, except
for an accumulated unscheduled downtime of 10 minutes per week. “Normally available”

104

Chapter 6. Availability Modeling Method

shall be taken to mean that the access function behaves as specified within a 1 minute
period.

6.4.3 Fault Injection Models

We introduced fault injection models in Section 5.3. Their purpose is to extend the logical
architecture with the system’s behavior in the presence of faults. Only if faults and their effects
are incorporated into our models, we can obtain meaningful availability analysis results. Faults
may be located in the software (e.g. software bugs) or in the hardware (e.g. erroneous hardware
design, or faults due to wear-out). Faults may be introduced during the design and or during the
runtime of the system. We model faults not directly but instead model their effects. Note that
the effect of a fault is not the same as a failure, as the effect may be local and does not necessarily
propagate to the system interface. In the following we present a pattern for modeling hardware
as well as software faults. In both cases, we use the deviation modeling technique presented in
Section 4.1.5.

Modeling Hardware Faults

To model hardware faults, we consider the logical architecture, the technical architecture and
the deployment, which maps components of the logical architecture to entities of the technical
architecture. For simplicity, we assume that the behavior of a component in the technical
architecture is characterized by the deployed logical components. In the following we provide
patterns for modeling faults of ECUs and busses. Faults of other technical equipment can be
modeled similarly.

Modeling ECU faults. Recall the deviation model, introduced in Section 4.1.5, as means to
model behavior deviation. To model the effects of a fault of an ECU, we create deviation models
for all components deployed on this ECU. We represent the effect of ECU faults by output filters
or input filters or both. For example, we model a complete crash of the ECU by an output filter
that suppresses every output. Similarly, we model the fault of an ECU’s network interface by
an input filter, suppressing, delaying or modifying input messages. When an ECU exhibits a
fault, this has an immediate effect on all deployed components. To model this synchrony of the
fault effects, we coordinate the deviation models of different components deployed on the same
ECU using the coordination channels.

Modeling bus faults. Similar, in order to model a fault of a bus, we model the effects of
that fault by creating deviation models for the components that are deployed on ECUs that use
that bus. As faults of a bus may either affect the transmission of messages or the reception of
messages or both, we again use input filters, output filters or both to model suitable behavior
deviations. Again, several components may be affected by a bus fault at the same time and thus
we synchronize the behavior deviations by their coordination channels.

Modeling Software Faults

Compared to hardware faults, software faults are exclusively design faults. Any fault in a
software has been introduced during the software creation. Therefore, if the software itself is
deterministic, then the effects of faults occur also deterministically. Hence, modeling software
faults by a probabilistic or non-deterministic behavior modification seems inadequate at first

105

Chapter 6. Availability Modeling Method

sight. However, it has been argued that, although the introduction of faults is deterministic,
the activation of faults in software, in many cases, follows a pattern that can be adequately
described by probabilistic or non-deterministic models (Eusgeld et al., 2008). The reason for
this is that faults are often only effective in a situation that is characterized through a complex
condition. For example, some fault may only be effective for a certain valuation of variables or
a certain external state (inputs, files, or other external devices). These variables may not even
be part of the system model. Therefore, the occurrence of such an activating condition may be
only described non-deterministically or probabilistically. This motivates the use of deviation
models to capture software faults as well.

The modeling of software faults itself is straight forward. Again, we model not the software
faults themselves, but instead concentrate on the effects of these faults (i.e. deviating behavior).
We assume, a software component is represented by a component in the logical architecture.
By modeling behavior deviations for such a component, we can, similar to the case of hardware
faults, model the effect of software faults.

Application to the Running Example

We consider the SAS system and model hardware faults for the two hardware devices ECU
Controller and Network. We choose a fault injection model that only includes message omissions
as effect. An overview over the final fault injection model is given in Figure 6.9. Below, we
describe its constituents in detail.

|
switch: SWITCH | | datal: DATAID

|
H | data2: DATA_ID
data: D,ﬂ:_’ || dets:
ack1: ACK_ID Controller wf; ONOFF
| (7
ack2: ACKID | | MACK : |
|

|
| |
| datal: DATA_IDI : ackl: ACK_ID
| —:—b storel [——>

|
Afaults_ecu_controller : |
1

Afaults_network_controller |——— EE— Afaults_network_store
c_network: ACTIVE c_network: ACTIVE

Figure 6.9: Fault injection model for the SAS system showing the deviation models applied to
the controller and one of the store components.

Faults of ECU Controller. The only logical component deployed on the ECU Controller is the
Controller. Therefore, we only need one deviation model. The deviation model, capturing the
fault effects of the controller ECU is given by the tuple

faults_ecu_controller = (actecy, idecy, OMMeey,) -

The activation function act., is derived from the basic building block pad for probabilistic
activation. As parameters to the pad specification, we provide the singleton set of activation
modes ACTIVE = {active} (see Section 6.3), an activation probability function a., and a
deactivation probability function d.,,.

acteey = pad(ACTIVE, Geeny decr,) -

106

Chapter 6. Availability Modeling Method

We choose ey, = {active ~10%. 0~ 1- 10‘9} and deey = {active — 10‘6}. When we
assume that a logical tick corresponds to 10ms, these parameters correspond to a mean-time-
to-failure of about 230 days and a mean-time-to-repair of about 5 hours.

The input filter id,,, is derived from the identity building block (i.e. it does not modify the
input) with appropriate parameters and by renaming channels.

idey = id(4,DATA_ID, DATA_ID, ONOFF, ACK)[
11 — datal, iy — data?2, i3 — onoff, iy — ack,
o1 + datal’, 0o = data2’, 03 + onoff’, 04 + ack’

]

Finally, the output filter omm,,,, is derived from the basic building block omm again by
providing parameters and by appropriately renaming the channels.

OMMyeey, =omm(4,DATA_ID, DATA_ID, ONOFF,ACK)[
i1+ datal’, iy — data2’, i3 — onoff’ iy — ack’,
01 — datal, 0o — data2, o3 ~ onoff, 04 — ack

]

Faults of the Network. = More effort is needed for modeling the network faults. In this case,
we add a deviation model to every component that accesses the network. In our case, these are
the controller and the two stores. If the network breaks down, this affects all communicating
components at the same time. To capture this, we have to coordinate the deviation models of the
affected components. We realize this coordination with one deviation model for the controller,
acting as “master” and deviation models for the stores, acting as “slaves”. Slave in this case
means, that the activation is triggered externally by the master.

In a first step, we adapt the controller by adding a second deviation model to it. It resembles
the first deviation model but instead of the identity input filter it has an omission input filter.
With this filter we model the fact that the incoming as well as the outgoing communication is
impaired. The deviation model for the controller is given by the tuple:

faults_network_controller = (actyet ctr1, OMM_iNyer ctr1, OMM_OUtper ctrl) -

The activation component acty¢; . is also derived from the basic building block pad for
probabilistic activation and deactivation. However, we assume, the network is more fragile
and more complex to diagnose and repair than the ECU. Therefore we use different probability
parameters. We further fix a meaningful name for the coordination channel as this channel will
be referenced later by the “slaves”.

aCtnet_ctrl = Pad(ACTIVE, Anet s dnet)[cout = Cnetwork])

with ane = {active > 5-1071%, 0 1-5-107'°} and dper = {active > 5-107"}.

The input and output filters are defined in the same way as in the case of faults_ecu_controller
and should be sufficiently clear.

In the second step, we add a deviation model faults_network_store to the first of the stores.

faults_network_store = (aCtpet_store, OMM_iNpet stores OMM_OUtper store) -

107

Chapter 6. Availability Modeling Method

This deviation model resembles faults _network controller. However, as this deviation model
should act in the role of the “slave”, we employ externally triggered activation instead of
probabilistic activation and therefore use the basic building block tad as activation function.
We further rename the incoming coordination channel such that it fits the outgoing coordination
channel of the “master” (i.e. fault_network_controller).

actpet_store = tad(A OTIVE) [Cin = Cnetwork]

The input and output filters are again analog to the two deviation models already described.
Finally, the deviation model for the second store is equivalent to the model for the first store.

6.4.4 Environment Model

The next artifact we consider is the environment specification with its environment component
model. Having an adequate environment model is important for the precision of the analysis. In
several domains, such as automotive control systems, creating environment models is part of the
regular development activities, as they are used, e.g. for simulation and verification of the system
models. Hence, in these cases, environment models are already given and can be at least partly
reused. Possibly, some details need to be added to these models, for example, if they are only
specified non-deterministically and not probabilistically. If there are no environment models
present, they have to be created. However, a comprehensive method for creating environment
models goes beyond the scope of this thesis. In the literature there are several approaches that
describe, how to systematically come up with environment models. For example Musa (Musa,
1993, 1996) introduces a step-by-step scheme how to create an environment model (called
operational profile in this context) for a system. Typically, requirement documents, such as use
cases or scenarios can be consulted for this purpose (Runeson and Regnell, 1998).

In general, it is advisable to create environment models in a modular way. That means, for
every external system and every user type (such as train conductor or system administrator), we
create a separate component. Every such component mimics the behavior of the corresponding
system or user. The environment model is then formed by the composition of the models for
the single environment entities. In case of an external system, the corresponding environment
model needs to mimic the behavior of the system as well as further systems that are again
external to the considered system. In case of a user, the environment model typically captures
the workflows that this user performs.

As creating deterministic (non-probabilistic) environment models is often either to expen-
sive (in the case of external systems) or not possible (in the case of user models or models of
physical systems), we will, in practice, often use probabilistic models. Shukla (Shukla et al.,
2004) suggests to approach the problem of creating probabilistic environment models by first
modeling the behavior qualitatively and quantify the behavior afterwards by attaching proba-
bilities. The probability values may stem either from execution traces of the system itself or
similar systems (e.g. a legacy system) or they need to be estimated.

6.4.5 Failure Mode List

The failure mode list is part of the artifact availability specification. We introduced this model
in Section 5.2.1. Its purpose is to systematically document and structure the failure modes and
the corresponding severity levels that should be considered. Creating such a failure mode list
can be challenging, as there usually is a great number of potential failure modes that one can

108

Chapter 6. Availability Modeling Method

immediately think of. However, the set of failure modes that emerges from such a brainstorming
is often unstructured and incomplete. To ease this problem, we suggest a three step approach
in which failure modes are collected in a structured way according to the system functions and
their interfaces. Using a set of guide words, we first create a list of failure mode candidates,
which are reduced in a second step. The third step consists of complementing the list with
severity levels.

Step 1: Identification of Failure Mode Candidates with Guide Words

In the literature on the assessment of safety-critical systems, there are a number of suggestions
regarding the identification of failure modes. A common approach is to use guide words
to list possible failure modes. Such an approach is, for instance, used as part of the safety
assessment method HAZOP (Kletz, 1999). A guide word represents a type of deviation of
an observed behavior with respect to the expected behavior. In the original HAZOP method,
which was developed in the domain of chemical engineering, the list of possible guide words
related mainly to material flows and included words such as MORE, LESs, EARLY, LATE. With
respect to software-intensive systems, sets of guide words have been proposed, for instance
by Bondavalli and Simoncini (1990), as well as by McDermid and Pumfrey (McDermid and
Pumfrey, 1994; Pumfrey, 1999) as part of the SHARD method. Both identify roughly the
dimensions value, timing and omission/insertion of signals and suggest the set of guide words
OMISSION, COMMISSION, EARLY, LATE, SUBTLE, COARSE, where SUBTLE and COARSE relate to
the range of the value deviation. A similar classification of failure mode types can be found
in works on failure modeling. For instance, Powell (1995) distinguishes on the highest level
between failures in the value domain and failures in the time domain.

We adopt the general approach of using guide words to identify relevant failure modes.
However, other than for example McDermid and Pumfrey we avoid integrating statements
about the failure severity into the guide words (such as coarse). We use the following guide
words to identify failure mode candidates:

OMISSION, INSERTION, EARLY-TIMING, LATE-TIMING, MODIFICATION.

We apply the guide words on the output channels of the system functions, one function at a time.
For each combination of output channel and guide word we assess, whether the combination
indicates a possible failure mode. Note that the guide words are only an aid to identify possible
failure modes, but do not fully describe the failure modes. For example, the guide word LATE
TIMING does not specify whether the delay relates to calendar time, end-to-end latency, time
synchrony with signals of a different channel etc. There may be even more than one failure
mode related to the combination of a guide word to an output channel. Therefore, every failure
mode identified by the help of the guide words needs to be described to document its intention.
As aresult of this step, we obtain a partially filled failure mode list with failure mode candidates
and descriptions, structured according to functions and output channels.

Step 2: Selection of Relevant Failure Modes

In the previous step we elicited a list of failure mode candidates. However, not all of these
failure modes are relevant, for instance because it is known that they cannot occur, or because
they do not relate to availability. As an example, consider the case of a control system where the
omission of a signal is considered relevant (as some control action is not performed), however
the repeated sending of a signal is not relevant (as the control action is idempotent). Therefore,

109

Chapter 6. Availability Modeling Method

in this step, we inspect the list of failure modes candidates to identify the failure modes that are
relevant from an availability perspective. The decision which failure modes are relevant and
which are not is system or, at least, domain specific and considers the system’s stakeholders and
its environment (e.g. the surrounding system). As a result of this step, the initial failure mode
list is reduced to only relevant failure modes. Although we described the identification and the
relevance assessment as two sequential steps they need not necesarily be performed sequentially,
but the two steps can be performed interleaved, which avoids describing an irrelevant failure
mode in detail.

Step 3: Specification of Severity Levels

The last step to complete the failure mode list is the specification of the severity levels for the
failure modes. Similar to the assessment of the relevance of failure modes, the severity levels
are system specific or domain specific and relate to the system’s stakeholders and environment.
In the simplest case, a failure mode only has one severity level. In other cases a more fine-
grained distinction is necessary. Often, a two-fold distinction, such as non-critical and critical,
is sufficient. Consider, for example, a failure mode describing the delay of a signal for a control
system. A common distinction is between a short delay (not impairing the control quality) and
a critically long delay (impairing the control quality). By extending the partial failure mode
list for each failure mode with a list of severity levels, each with an expressive description, we
finally obtain the complete failure mode list.

Application to the Running Example

We apply the approach explained above to our example of the SAS system. To this end, we
analyze the output and mode channels of the SAS system with respect to our set of guide words.
In Figure 6.10, we summarize which failure modes we consider for each channel of the functions
Switch and Access.

For the output channel onoff and the output channel ack, we consider failure modes for
all guide words except EARLY-TIMING. According to the specifications, the signals sent over
these channels are immediate reactions to input signals. To arrive early, the output signals
would have to be sent before the stimulus, which would violate our assumption of causality.
For the mode channel mode_onoff we do not consider the failure modes for the guide words
InserTION and both timing guide words. The reason is, that this channel transmits a state.
According to the specification a signal should be transmitted in every time slot. Therefore,
insertions as well as timing failure are impossible to distinguish from modifications. Hence, we
only consider failure modes relating to OmissioN and MobiricaTION in this case. Figure 6.10
provides informal descriptions of the failure modes that we consider.

The last step consists of the specification of the severity levels. For most failure modes, we
only consider one severity level. In three cases, however, we consider more than one level. In
case of a delay, we distinguish between a delay with less or more than 0.5 seconds. In case of a
modification of the mode_onoff channel, we distinguish between off sent instead of on, or vice
versa. In case of a modification of the ack channel, we distinguish between the three cases: the
value is only off by one, the value is off by more than one, or a number has been replaced with
done or vice versa. The informal descriptions of the severity levels for all failure modes are
given in Figure 6.11. Together, the Figure 6.10 and the Figure 6.11 form the failure mode list
for our example.

110

Chapter 6. Availability Modeling Method

Function Channel Failure Mode Description
Switch onoff omission An on or off signal is completely omitted, although a
switch signal has been received.
insertion An on or off signal is sent without reception of a preced-
ing switch signal.
delay The correct on or off signal is sent, however, not imme-
diately but after a delay.
modification Instead of on the signal off is sent or vice versa.
mode_onoff omission The current on/off mode is not sent.

modification A wrong on/off mode is sent.

Access ack omission Upon reception of a read signal, no number is sent or
upon reception of a set(+) signal, no done signal is sent.

insertion A number or the done signal is sent although no preced-
ing read or set(-) has been received.

delay The response on read or set(-) is not sent immediately
but with a delay.

modification Upon reception of read, a wrong number is sent.

Figure 6.10: Informal description of the failure modes for the SAS example system.

6.4.6 Failure Definition Model

As described in Section 5.2.2, the failure definition model extends and formalizes the failure
mode list. It represents the informal failure modes and severity levels by failure mode channels
and formal channel types. The failure definition model also extends the failure mode list, by
describing which observed behavior corresponds to which kind of failure in terms of failure
modes and severity levels.

Creating a failure definition is challenging for two reasons. First, creating a failure definition
model for the whole system at once is hard. To tame the complexity, a failure definition model
needs to be decomposed adequately. Second, a failure definition model needs to be consistent
with the functional requirements. For a behavior that conforms to the functional requirements,
a failure definition should not detect a failure.

In this section, we suggest a three step approach for creating a failure definition model. The
core idea is to decompose the failure definition model according to system functions. In our
experience, system functions provide an adequate granularity for describing failure definitions.
Therefore, the first step is the decomposition of the failure definition model into function-specific
failure definitions. For the second step, the specification of the individual failure definitions,
we propose a modelling pattern which reuses the original function specification. In the third
step, we integrate the single failure definitions and handle function interaction.

Step 1: Decomposition of the Failure Definition Model

As providing a single failure definition for the whole system is usually too complex, we
decompose the failure definition model in a number of smaller failure definitions. We suggest

111

Chapter 6. Availability Modeling Method

Channel Failure Mode Severity Level Description
onoff omission omission Message omitted
insertion insertion Message wrongly inserted
delay delay Delay below 0.5 seconds
critical delay Delay equal to or above 0.5 seconds
modification modification Wrong status transmitted
mode_onoff omission omission Message omitted
modification on—off The signal off is sent instead of the signal on
off »on The signal on is sent instead of the signal off
ack omission omission Message omitted
insertion insertion Message wrongly inserted
delay delay Delay below 0.5 seconds
critical delay Delay equal to or above 0.5 seconds
modification small A transmitted number is modified by +1
large A transmitted number is modified by more than 1
type The done signal is sent instead of a number or vice

versa

Figure 6.11: Informal description of the failure mode severity levels for the SAS example

system.

112

Chapter 6. Availability Modeling Method

to structure the failure definitions according the system functions. That means, we create one
failure definition per system function. The interface of such a failure definitions consists, on
the one hand, of the input, output and mode channels of the system function. These serve
as inputs to the failure definition. The outputs of the failure definition are the failure mode
channels, which we derive from the failure mode list. We already structured the failure mode
list according to system functions, therefore the according failure modes can be easily obtained.
The remaining step is to specify formal channel identifiers for the failure mode channels as well
as to specify formal types for the severity levels and assign them to the failure mode channels.

Step 2: Specification of Failure Definitions

In this step we actually specify the failure definitions’ behavior. It should be consistent with
the requirements of the system, as well as with the specification of the system functions.
Furthermore, a failure definition should account for the fact that different failure modes could
be present at the same time. In order to cater for these needs, we suggest a modeling pattern.
The core idea of the pattern is to include the function specification into the failure definition and
to identify failures based on the deviation of the observed behavior from the specified behavior.

Figure 6.12 gives a schematic overview over the modeling pattern. A failure definition
created according to the pattern consists of three parts:

Function Deviations This part of the pattern includes the specification of the original system
function and a deviation model. The deviation model modifies the specified behavior
and signals what has been modified by its coordination channels. The goal of this part
of the model is to produce any possible deviation that fits to some of the failure modes.
Therefore, when designing the deviation model, care must be taken that the deviations
match the failure modes that should be considered. For instance, if one failure mode
relates to the omission of a signal, a deviation model should be included that performs
signal omission. The deviation model usually uses a non-deterministic activation.

Comparator The original function, together with the deviation model, produce outputs that
deviate from the specification. The comparator compares the resulting outputs with the
actually observed outputs. When the observed behavior does not match the behavior
produced from the specification with the deviations at a given instance of time, this
indicates that either the wrong types of deviations have been chosen non-deterministically
or the modelled deviations are not enough. In any case, we interpret this situation as
if a failure of a residual, not yet modelled, failure mode has appeared. Therefore, the
comparator signals this situation with a dedicated failure mode channel fmcg;guai-

Failure Mode Mapping The task of this part of the modeling pattern is to use the coordination
channels of the deviation model in order to populate the failure mode channels. This part
of the model is optional. If the coordination channels can be already mapped one-to-one
to failure mode channels, it may be omitted. Sometimes, however, it takes the information
of several coordination channels to decide if a failure of a certain failure mode is present.

113

Chapter 6. Availability Modeling Method

l l I l l 0
E S E o I | i@residual
AD, o
M —
C FM
AD, >

Figure 6.12: Schematic overview over the modeling pattern for a failure definition.

Step 3: Integration of Failure Definitions

At this stage, we obtained a function specific failure definition for every system function. The
next task is to integrate these. This integration step is necessary because in multifunctional
systems, system functions are often not isolated but instead interact with each other. These
interactions are modeled by communication over a mode channel from one system function to
the other. These mode channels are also present in the interfaces of the function specific failure
definitions. However, most of the time, mode channels are internal and not a part of the system
interface.

We resolve this situation by introducing further components into the failure definition model
that non-deterministically choose values for internal mode channels. Hence, we include both
options (failure due to A and failure due to B) as possible interpretations in our model.

Application to the Running Example

We apply the above steps to our running example. In the first step we decompose the failure
definition model into two failure definitions FD_Switch and FD_Access, one for each of the
system functions. The syntactic interface consists of the input and output channels of the system
functions, and the failure mode channels according to the failure mode list (see Figures 6.10
and 6.11). The result of the decomposition is shown in Figure 6.13.

In the next step we specify the behavior of the failure definitions. We illustrate this step
by the failure definition for the Switch function, FD_Switch. We use the modeling pattern for
failure definitions we introduced above. An overview over the specification of FD_Switch is
given in Figure 6.14.

The first part of the modeling pattern is the function deviation part. In case of FD_Switch
it contains the original specification of the system function (Switch), To disambiguate the
channel names, we rename the output channels of Switch by adding the suffix “_spec”. Next,
we apply several deviation models to the specification. The names of the deviation models
already suggest that every deviation model relates to a failure mode (e.g. the deviation model
Ommit_mode_onoff relates to the failure mode fm_m_onoff_om). All deviation models can be

114

Chapter 6.

Availability Modeling Method

switch: SWITCH

onoff: ONOFF

mode_onoff: ONOFF

FD_Switch

data: DATA

modeonoff: ONOFF
———* FD_Access
ack: ACK

fm_onoff_om: OMISSION
fm_onnoff_ins: INSERTION
fm_onoff_del: DELAY
fm_onoff_mod: ONOFF_MOD
fm_m_onoff_om: OMISSION

fm_m_onoff_mod: M_ONOFF_MOD
| M_M_Onot_mod: 7.5

fm_ack_om: OMISSION
—————

fm_ack_ins: INSERTION
fm_ack_del: DELAY

fm_ack_mod: ACK_MOD

Failure Mode Type Severity Levels
OMISSION {omission}
INSERTION {insertion}
DELAY {delay, critical }
ONOFF_MOD {modification}
M_ONOFF_MOD {on_off,off_on}
ACK_MOD {small, large, type}

Figure 6.13: Decomposition of the failure definition model of the SAS in two separate failure
definitions, one for each of the system functions Switch and Access. The interfaces mirror the
syntactical interfaces of the functions and the failure modes from the failure mode list. The
channel types in the right table represent the severity levels from the failure mode list.

FD

— FD_Switch

switch: SWITCH

onoff: ONOFF

mode_onoff: ONOFF

onoff': ONOFF
Switch mode_onoff: ONOFF
A Ommit_mode_onoff

FD_Switch_Comp

A Modify_mode_onoff

A Ommit_onoff

lay_onoff

Alns

ert_onoff

A Modify_onoff

|
|
|
|
I
: A De
|
|
|
|
|

FD_Switch_Map

fm_switch_res: RESIDUAL

fm_m_onoff_mode: M_ONOFF_MOD
fm_onoff_om: OMISSION
fm_onoff_del: DELAY

fm_onoff_ins: INSERTION

i
i
i
i
i
i
i
]
]
i
i
i
i
i
t fm_m_onoff_om: OMISSION
1, fm_m_onoff_om:©
1
i
i
1
i
i
|
i
1
:
i fm_onoff_mod: ONOFF_MOD
T

Figure 6.14: Specification of the failure definition for the Switch function.

115

Chapter 6. Availability Modeling Method

built using the basic building blocks introduced in Section 6.3. As an example, we present
details for the deviation model Modify_mode_onoff in Figure 6.15. It uses the non-deterministic
activation function ndad as well as the modification filter mod to model modifications of the
mode_onoff channel.

— Modify_mode_onoff deviation —

— act

out co_modify_mode_onoff : M_ONOFF_MOD
a:M_ONOFF_MOD

(co_modify_mode_onoff,a) = ndad(M_ONOFF_MOD)(0)

— of

in onoff_spec’ : ONOFF
mode_onoff_spec’ : ONOFF
a: M_ONOFF_MOD

out onoff_spec: ONOFF
mode_onoff_spec: ONOFF

{on} if =z =off_onAy=off
let d(z,y) ={{off} if z=on_off Ay=on
%) otherwise
in
mode_onoff_spec =
mod(M_ONOFF_MOD, 0, ONOFF, ONOFF , d)(mode_onoff_spec’)
A onoff_spec = onoff_spec’

Figure 6.15: Specification of the deviation model Modify_mode_On_Off. Its activation compo-
nent uses the building block ndad (non-deterministic activation and deactivation). The output
filter uses the parameterized mod building block to describe the modification.

The second part of the pattern is the failure mode mapping. In case of FD_Switch, there is
a one-to-one correspondence between the coordination channels of the deviation models and
the failure mode channels. Therefore, the mapping performed in FD_Switch_Map is extremely
simple and we omit the details.

Finally, the third part of the pattern comprises the comparison between the modified outputs
and the observed outputs. This is realized in the component FD_Switch_Comp. This component
is merely an instantiation of the basic building block comp, as its specification in Figure 6.16
shows.

The last step is the integration of the two individual failure definitions. Inthe SAS system, we
have a function interaction between the two system functions via the mode channel mode_onoff.
This channel is internal to the system and not part of the system interface. To reflect this in our

116

Chapter 6. Availability Modeling Method

— FD_Switch_Comp

in onoff_spec: ONOFF
onoff : ONOFF
mode_onoff_spec: ONOFF
mode_onoff : ONOFF

out fm_switch_res: RESIDUAL

fm_switch_res = comp(2, ONOFF, ONOFF)(onoff_spec, mode_onoff_spec, onoff, mode_onoff)

Figure 6.16: Specification of the comparator for the failure definition FD_Switch_Comp.

failure definition model we add a further component nd_mode_onoff. Its only output channel
is mode_onoff and its specification is true, modeling the non-deterministic choice for the mode
channel (see Figure 6.17). The final failure definition model for the SAS system, including the
failure definitions obtained from the functions and the non-deterministic choice for the mode
channel is depicted in Figure 6.18.

— nd_mode_onoff

out mode_onoff : ONOFF

true

Figure 6.17: Specification of non-deterministic choice of values for the internal mode channel.

6.4.7 Availability Metric Model

The next model that we consider is the availability metric model. We introduced this model
type in Section 5.2.4. With this model we describe calculation rules for availability metrics. In
general, all modeling techniques presented in Chapter 5 can be employed for this purpose but
in many cases, a standard metric can be used (such as the basic building blocks in Section 6.3).

To find an appropriate metric type, we suggest to first consult the informal availability
requirements, if any availability metrics are mentioned there. If this is not the case, other means
have to be taken to select the metric type, for example performing interviews with the relevant
stakeholders or identify metric types that are customary in the domain.

Application to the Running Example

We are going to specify availability metrics for the two functions of the SAS system. In
the informal requirements of the SAS system we stated a maximum weekly downtime of 50
minutes for the Switch function and a maximum weekly downtime of 10 minutes for the Access
function. The informal requirements further stated that 1-minute-periods should be used for the
assessment. The appropriate basic building block to capture the informal requirements is the

117

Chapter 6. Availability Modeling Method

— FD_SAS

__ s
1
| fm_onoff_om: OMISSION
- -
fm_onnoff_ins: INSERTION

switch: SWITCH fm_onoff_del: DELAY
I R bty

onoff: ONOFF fm_onoff_mod: ONOFF_MOD

v

FD_Switch
fm_m_onoff_om: OMISSION

fm_m_onoff_mod: M_ONOFF_MOD
fm_switich_res: RESIDUAL

nd_mode_onoff mode_onoff: ONOFF

fm_ack_om: OMISSION
fm_ack_ins: INSERTION

FD_Access fm_ack_del: DELAY

data: DATA

fm_ack_mod: ACK_MOD
ack: ACK

i ! fm_access_res:RgSIDUAL

Figure 6.18: The complete specification of the failure definition for the SAS system.

time-slice downtime with 1-minute slice length. For this we introduced the specification tsd in
Section 6.3. To apply the specification, we define the following singleton set of severity levels:
FAIL = {fail}. We assume, a logical time unit corresponds to 200ms and fix the following

constants:
* sl = % - 60 is the slice length of one minute in logical time units (each assumed to
correspond to 200ms).

o week = % - 3600 - 24 - 7 is the number of slices (i.e. seconds) in one week.

We now define the availability metric Downtime_Access for the Access function as follows.
The availability metric Downtime_Switch for the Switch function is defined accordingly.

— Downtime_Access MF —

in fail_access: FAIL

tsd(sl, week, FAIL, fail)(fail_access)

6.4.8 Failure Aggregation Model

The last model type in the artifact availability specification is the aggregation model. We
introduced it in Section 5.2.3. Its purpose is to adapt the failure modes documented in the

118

Chapter 6. Availability Modeling Method

failure mode list and the failure definition model, to the chosen availability metric model.
These models are usually rather simple and do not require an involved method. Therefore, we
immediately illustrate this model type with our running example.

Application to the Running Example

In our case, the availability metrics require only one failure mode (fail_access and fail_switch,
respectively) and a reduced set of severity levels FAIL = {fail}. Hence, we need to merge
all failure modes, we defined in the failure definition model, into one failure mode with only
one level of severity. To achieve this, we devise two aggregators. For the Access function the
according specification is depicted in Figure 6.19. Although the specification description is
lengthy, the idea behind it is simple: As soon as one failure mode indicates a failure, then the
combined failure mode fail_access signals failure. There are two exceptions to this rule. We
choose to ignore non-critical delays (fm_ack_del = delay) as well as small modifications of the
stored number (fm_acc_mod = small). As the aggregation of failure modes for the Switch case
is similar, we omit the details here.

— Agg_Access

in fm_ack_om : OMISSION
fm_ack_del: DELAY
fm_ack_ins: INSERTION
fm_ack_mod : ACK_MOD
fm_access_res: RESIDUAL
out fail_access : FAIL

fail_access = fail < fm_ack_om = omission v fm_ack_del = critical v fm_ack_ins = insertion

v fm_ack_mod € {large, type} v fm_access_res = residual

Figure 6.19: Aggregation of failure modes and severity levels for the Access function.

6.4.9 Availability Constraints Model

Finally, we create the availability constraint model. With this model, we express the informal
availability requirements in a precise and formal way be referring to the availability metrics
model. As outlined in Section 5.5.2, availability constraints are pairs of an availability metric
and a value range. To create the availability constraints model, we need to translate the informal
requirements to these pairs. As the availability metrics models are developed with the original
requirements in mind, this translation is often straightforward.

Application to the Running Example

In our example, we initially stated two informal requirements (see Section 6.4.2). Requirement
R1 limits the downtime of the Switch function to 50 minutes and R2 limits the downtime of
the Access function to 10 minutes. We precisely defined the calculation rule for the downtime
with respect to the SAS system in Section 6.4.7, where we specified the two availability metrics

119

Chapter 6. Availability Modeling Method

Downtime_Access and Downtime_Switch. We now use these two availability metrics for the
following two availability constraints C and Cs, formalizing R1 and R2:

C4 = (Downtime_Access, [0,50])
Cy = (Downtime_Switch, [0, 10])

6.5 Summary

In this chapter, we complement the artifact model presented in Chapter 5 with a modeling
method. The method comprises

* aconcrete process for instantiating the artifact model,

* basic building blocks to be used for assembling failure definition models and availability
metric models,

* step-by-step guides for developing the failure mode list and the failure definition model,
and

* modeling patterns for failure definitions and fault-injection models.

We demonstrate the method using the running example of the Storage and Access System (SAS),
introduced by Broy (Broy, 2010b).

6.5.1 Basic Building Blocks

Basic building blocks are small, generic specifications that can employed in the specification
of concrete availability models. In Section 6.3, we present a set of such basic building blocks.
The basic building blocks include specifications for availability metrics, deviation model filters
and deviation model activators. The building blocks are parametrized, such that the number of
channels and channel types can be easily adapted in concrete specifications. The basic building
blocks for availability metrics include simple availability metrics evaluating the availability for
every logical time unit, but also more complex ones, evaluating the availability for time-slices of
configurable length. The second type of basic building blocks are filters for deviation models.
They cover signal omission, insertion, modification and delay. Additionally we describe an
identity filter that performs no modification and can be used as placeholder in deviation models.
The third type of building blocks are activation functions for deviation models. We introduce
specifications for non-deterministic activation, for deterministic activation and for externally
triggered activation.

6.5.2 Modeling Process

The artifact model described in Chapter 5 does not prescribe a fixed sequence for creating
the models. Nevertheless, because of relationships between models not each such sequence
is suitable. In Section 6.4.1, we suggest a process for sequentially creating the different
models that proved feasible in our experience. It is a simple process without increments
and iterations. It starts with the informal availability requirements and continues with the
extension of the logical architecture with faults and the environment model. Afterwards we
create the availability specification and finally formalize the informal availability requirements

120

Chapter 6. Availability Modeling Method

with availability constraints. Throughout the chapter we follow this process and apply it to the
running example.

6.5.3 Step-by-Step-Guides

The modeling process provides a path through the artifact model during the development.
However, it does not provide guidance for creating the individual models. We give such guidance
with step-by-step-guides for the failure mode list and the failure definition model. They allow
for the systematic creation of these models. For the failure mode list we furthermore suggest
a guide word based technique for the elicitation of failure modes. Such a technique has been
already employed for eliciting failure modes in the safety domain. For the failure definition
model we suggest a decomposition scheme that follows the functional decomposition in the
functional architecture and an integration scheme that is able to handle function interaction.

6.5.4 Modeling Patterns

Patterns provide a basic structure for models and capture best practices. In this chapter we
introduce two such patterns. In Section 6.4.6 we describe a modeling pattern for failure
definitions. The pattern promotes the re-use of the original function specification and hence
fosters consistency beteen the failure definition and the functional requirements. In Section 6.4.3
we provide a second pattern for the creation of fault-injection models. The pattern captures the
effect of different types of hardware faults (ECUs, busses) in terms of changed behavior of the
deployed components.

121

Chapter 6. Availability Modeling Method

122

Chapter 7

Case Study: Train Door Control

In this chapter, we present a case study that we performed in cooperation with an industry
partner. The goal of this case study is to validate the artifact model and the modeling method
presented in chapters 5 and 6. With the case study we investigate whether the modeling approach
is applicable in an industrial setting, that means if the industrial availability requirements can
be captured and if we can perform an automated availability analysis. In this chapter we
furthermore report on initial tool support for our approach and measure the performance of
automated analyses. Parts of this chapter have been previously published in (B6hm et al.,
2014). Note, that some or all products and product names referred to within this chapter, such
as Trainguard MT, are protected brands of Siemens or associated companies.

7.1 Context of the Study

The case study has been performed as part of a bilateral research project between Technische
Universitdt Miinchen and Siemens AG. The aim of this research project was to demonstrate and
evaluate a seamless model-based development approach based on an industrial case example.
The branch of Siemens involved in this project is concerned with the development of automatic
train control systems. These types of systems are deployed for regional and metropolitan
railway systems. They are responsible for the safe and efficient controlling of the railway traffic.
They potentially control all automated components of a railway system including trains, tracks,
signals, and platform components such as platform doors. In this project, we considered a
specific Siemens product called Trainguard MT, a train control system for metro lines, which
supports fully automated train operation. As a train control system is a very large system, we
considered only a part of the system that is concerned with controlling the train doors as well
as the platform doors.

An important selling point of the Trainguard MT is its availability and thus the ability to
deliver continuous automated rail operation. The availability analysis in this context comes
with an additional challenge. The train control systems are no mass products but instead
are configured and customized for every customer. Hence, the availability analysis is currently
done for the generic (non customer-specific) system and additionally for every customer-specific
system. According to the Siemens engineers, as of today, only few results from the analysis of
the generic system can be reused for analysis of a customer-specific system.

123

Chapter 7. Case Study: Train Door Control

7.2 Study Goal and Research Questions

In this section we formally state the study goal from which we derive three research questions
to guide the study.

7.2.1 Study Goal

The goal of this case study is to evaluate whether our artifact model and modeling method is
applicable for modeling and verifying availability requirements in a realistic, industrial context.

We do not evaluate, whether our approach yields results that match the availability obser-
vations in the reality. The reason for this is that we lacked access to a running instance of the
system. Furthermore, as we modeled the system according to the specification and after it was
already built, we do not know if the implementation matches our models. However, in order
to plausibilize our numerical results, we compare them to the results of a commercial analysis
tool.

7.2.2 Research Questions

We structure this study using the following three research questions.

RQ1: Modeling Adequacy — Can the industrial availability requirements be mod-
eled with our approach?

By answering this question, we aim to validate whether our artifact model and modeling method
fit the purpose to capture industrial availability requirements. Specifically, we want to know
if the failure definition model and the availability metric models can be usefully employed.
Furthermore, we want to evaluate the guide word method to elicit failure modes, the failure
definition template and our various basic building blocks.

RQ2: Analysis Feasibility — Can the created models be automatically analyzed?

With this question, we aim to investigate whether an automated availability analysis according
to Section 5.6 can be performed based on our models. Specifically, we are interested in
determining if the analysis does indeed provide plausible results and to what degree such an
analysis can be performed in terms of analysis time and computing resource consumption.

RQ3: Flexibility — How fragile are our models in the presence of changes in the
system?

A specific problem in the context of Siemens is to reuse analysis results obtained from a generic
version of the Trainguard MT system for the analysis of a customer-specific system. With this
research question, we want to determine if our approach can be beneficially employed in such
a setting. More specifically, we aim to investigate the impact of changes in the functionality or
architecture of the system to the availability models.

124

Chapter 7. Case Study: Train Door Control

7.3 Data Collection Procedure

In this section we describe which data we use in order to answer the above research questions
and how we obtain this data. We perform two high-level steps in this case study. The first step
is modeling the TGMT OBCU system including its availability requirements. The second step
is performing an availability analysis.

7.3.1 Data Collection for RQ1

To assess whether our artifact model and modeling method are adequate for the case example,
we qualitatively evaluate the resulting models and the modeling work we did. We evaluate the
models with respect to their completeness (Could the availability requirements be captured?)
and the method with respect to its effectivity (Could we create the models using the process,
basic building blocks, guides and patterns outlined in the method?). We further presented
intermediate models to the Siemens engineers and asked for their feedback.

7.3.2 Data Collection for RQ2

To answer RQ2, we create a prototypical tool chain for automated availability analysis and use
it to analyze the models that we created. We record the run time of the analyses and the memory
usage. To evaluate whether the results are plausible we compare them with results obtained
from an RBD-based analysis using a commercial tool.

7.3.3 Data Collection for RQ3

To evaluate the robustness of our availability models in the case of architecture changes we
perform changes on the functional and logical architecture and evaluate which changes of the
analysis models are necessary to reflect the architecture changes.

7.4 Study Setup

In this section, we describe the setup of our study. More precisely, we first outline the tool chain
that we used for modelling in Section 7.4.1. Afterwards, we introduce the case example and
the initial system model that we created for the case example in Section 7.4.2.

7.4.1 Modeling and Analysis Tool Support

The AutoFocus 3 Modeling Tool

We modeled the case example using the tool AutoFocus 3 (AF3)!. AF3 is an open-source
modeling tool that supports seamless modeling of time-discrete reactive systems, starting with
model-based requirements analysis, and including functional, logical and technical architec-
tures.

thttp://af3.fortiss.org

125

Chapter 7. Case Study: Train Door Control

To create models, several description techniques can be used in AF3. Functional and logical
architectures with several levels of hierarchy can be modeled in AF3 using nested data-flow net-
works. The main structural modeling concept in AF3 is a component. A component is equipped
with typed input and output ports, which can be connected via channels. A component can again
contain a data-flow network or a behavior description. To model the input/output behavior of a
component, AF3 supports a range of behavior description techniques including I/O automata,
I/0 tables, or textual specifications (called code specifications) using a simple language with a
syntax similar to programming languages such as Java. To specify probabilistic behavior, we
extended the built-in I/O automata with probabilities and thus obtained probabilistic automata.

Apart from this basic modeling techniques, AF3 features a library concept. Modeling
elements, such as (sub-)components or (sub-)functions can be copied into the library. From
there they can be instantiated in a model. When changes are applied to a library element, the
changes are automatically propagated to all instances of this library element. Hence, the library
offers a simple reuse mechanism.

Prism Modelchecker

To perform the availability analysis we use the probabilistic modelchecker Prism (Kwiatkowska
et al., 2011). Prism takes as inputs several variants of probabilistic state machines, such as
Deterministic Time Markov Models (DTMC) or Markov Decision Processes (MDP). An MDP
is a form of probabilistic state-machine that includes local non-determinism. Local non-
determinism in this context refers to the situation where for a given state and a given input,
there is not one but several probability distributions describing which transition is taken next.
The choice, which probability distribution is applied, is taken non-deterministically. A Prism
specification is structured into modules. Each module defines a set of variables and a set
of commands consisting of guards and probabilistic actions. From the set of commands at
most one command is executed in each step and from this command one action is selected
according to the associated probability distribution. Modules in Prism can be composed in
parallel. The standard composition semantics in Prism is composition by interleaving, however,
synchronous composition can be achieved by attaching labels to commands that should always
synchronize. Transitions and states in a Prism model can be labeled with a number, called
reward in this context. See Listing 7.1 for an exemplary Prism specification. The example
specifies a component that can fail and be repaired. There is a local non-determinism between
the two repair commands with different probability distributions. The non-deterministic choice
between the two repair commands models uncertainty about the complexity of the fault. Faulty
states are annotated with reward 1, good states are annotated with reward 0. The rewards in this
case model the costs that are caused by a fault.

For property specification and quantitative queries, PrRism supports a range of specification
languages. Most relevant here is the language fragment for specifying properties on rewards.
Most importantly, Prism allows querying the expected maximal and minimal cumulative reward.
This refers to the expected sum of all rewards encountered along an execution path. For example,
to obtain the minimal expected cumulative reward in the first 100 steps, the corresponding query
would be: Rmin=7[C<=100].

AF3 to Prism Translation

To analyze the AF3 models using Prism, we created an AF3-to-Prism export function integrated
into AF3. The export translates the whole AF3 model to an MDP and every AF3 component to

126

Chapter 7. Case Study: Train Door Control

mdp

module faultyComponent
fault:bool init false;
[fail]l !'fault -> ©0.01: (fault’=true) + 0.99: (fault’=false);
[repair] fault -> ©0.1: (fault’=false) + 0.9: (fault’=true);
[repair] fault -> 0.05: (fault’'=false) + 0.95: (fault’=true);
endmodule

rewards
fault:1;
I fault:0;

endrewards

Listing 7.1: Example of a Prism model specifying a component that can fail and be repaired.

a Prism module. All modules are synchronized via a common action label, thus enforcing the
time-synchrony of Focus and AF3.

We represent metric functions in AF3 by dedicated AF3 components. The output ports
of these special components are translated to reward structures in the Prism model and can
therefore be subject to queries regarding for instance their expected value. Hence, availability
metric models in our approach are represented in our tool chain by a combination of AF3
modeling elements and statements in the Prism property language on rewards.

Using the above combination of AF3 and Prism we were able to create all models contained
in the artifact model described in Chapter 5.

7.4.2 Case Example
Trainguard MT System

The case example in this study is the Siemens product Trainguard MT (TGMT)2. It is an
automatic train control system for metros, rapid transit, commuter and light rail systems. It
is a communication based train control (CBTC) system with bidirectional continuous data
communication between the train and the wayside systems. TGMT provides a large number of
protection and automation functions for railway operation and uses components on the wayside
and on-board the trains.

One purpose of TGMT is to control and protect passenger transfer at platforms. Therefore,
TGMT provides a function to control train doors and platform screen doors (PSD), which are
installed at the platform and which serve the protection of passengers in metro systems. Figure
7.1 shows a typical platform screen door installation.

For the realization of the door control, TGMT has an interface to the wayside doors and
to the train doors on-board the train. In the highest automation mode, all door actions, such
as door release, door opening and door closing are performed fully automatic. However,
manual operation is still possible. The opening and closing of train doors and PSDs has to
be synchronized. Apart from the core functionality regarding the door opening and closing,
a number of protective mechanisms are implemented into the system to guarantee passenger
safety. The TGMT system must guarantee a high availability of the railway network. Hence,
there are strict availability requirements imposed on the system to maintain a continuous railway

2http://sie.ag/1aHfP1J

127

Chapter 7. Case Study: Train Door Control

Figure 7.1: An installation of platform screen doors at a railway station.

operation. As an input for our case study Siemens provided some of the original development
documents: among them a high-level system requirements specification (59 pages) and a more
detailed system architecture specification (299 pages).

Study Scope

In this study, we did not consider the whole TGMT system, instead we focused on the door
controlling functionality of this system. This scope has initially been proposed by Siemens to
keep the study at a manageable size. As mentioned before, the TGMT system consists of a
subsystem that is deployed directly on the train, called Onboard Control Unit (OBCU) and a
wayside subsystem, called Wayside Control Unit (WCU). For this study, we only consider the
OBCU part of the case example.

Existing System Model

In a first phase we created a comprehensive system model of the door control functionality of
the TGMT system in AF3. We reported on this work in (Béhm et al., 2014). That model forms
the basis of this study. Below, we give a brief overview over the TGMT system model.

Functional Requirements Model. For each of the functional requirements from the original
documents, the requirements model in AF3 contains an informal description of this require-
ment in natural language together with meta-data such as an ID, the author, a rationale, etc
(Figure 7.2a). For most functional requirements the model furthermore contains a formaliza-
tion. The formalization consists of a syntactic interface with formal input and output channels
for the inputs and outputs that the requirements refers to (Figure 7.2b). We also formalized the
system behavior that the requirement describes. In many cases, we specified the behavior using
temporal logic patterns (Figure 7.2c). In few cases, description techniques such as automata or
message sequence charts (MSCs) are used for the formalization.

Functional Architecture Model. The functional architecture model consists of four high-level
functions, listed in Table 7.1. Some of these high-level functions contain sub-functions, which

128

Chapter 7.

Case Study: Train Door Control

Requirement

~ General
General information

o]
Type
Title

Description

#REQ-5YS_AS-propulsion_cut_off_during_passenger_sxchange-01#
Requirement

Propulsion Release

The on-board st
If the train doors are opened, the on-board s
(deactwateTCL_O_Prupulziun_Relea:eJ‘|

If the train door state is "all train doors vitally closed and locked' and no other reason to cut off the
train propulsion power persists, the on-beard subsystem shall activate the train propulsion power
(activate TCL_O_Propulsion_Release).

ystem shall cut off the train propulsion power

Rationale |-

Author
Is Safety Requirement

Source

Document Reference

Andreas

O

System Architecture Specification TGMT

CihUsersjunkerm\SYN\siemensRail\AF 3Models\AF3-Project-Directory\Document\SYS AS.pdf£153 o | | Page
Status Analyzed
Prierity Normal - Satisfier
(a) Informal TGMT requirements as captured in AF3.
doorStatus

(3 #REQ- SYS_AS-propulsion_cut_off_during_passenger_exchange-01# .
propulsion

trainCeontrolLevel

(b) Syntactic interface derived from the informal requirement.

If 'P* then 'Q" immediately.
P: | itrainControlLevel == DT_TrainControlLevel_CTC() || trainControlLevel == DT_TrainControlLevel ITC()) && doorStatus == DT_DoorStatus_DoorsOpen()

Q: | prepulsion == DT_|

Verification contesxt:

Propulsion_PropulsionCutOff()

#REQ-5YS_AS-propulsion_cut_off_during_passenger_exchange-01#

(c) Formal behavior specification with temporal logic patterns.

& [

tem shall cut off the train propulsion power (deactivate TCL_O_Propulsion_Release) related to the status of the train doors,

X

Figure 7.2: Requirement models in AF3: Informal requirements, formal syntactic interface,
and formal behavior specification.

129

Chapter 7. Case Study: Train Door Control

Function Description

Train Door Control Function Controlling of releasing, opening, closing, and lock-
ing the train doors.

PSD Control Function Authorizing PSD opening and signaling PSD open-
ing and closing.

Propulsion Function Deactivating the train propulsion during passenger
exchange.

HMI Status Function Showing door-related information on the driver
screen.

Table 7.1: The high-level OBCU functions in the case example.

may again contain sub-sub-functions and so forth. For each leaf function in this function
hierarchy, the AF3 model contains a behavior specification. Several of the functions are
connected via mode channels. Figure 7.3 shows the functional architecture model on the
highest level.

Logical Architecture Model. = The primary concern driving the logical architecture of the
OBCU subsystem is safety. Accordingly, on the highest level of the logical architecture, there
are two main components: ATP, which contains the part of the system that is considered safety
relevant, and ATO, which contains the parts not considered safety relevant. Additionally, a third
component, ITF is responsible for the communication with the wayside system and provides an
interface to the Human-Machine-Interface (HMI). The complete high-level logical architecture
of the OBCU is depicted in Figure 7.4. Note that most functions from the functional architecture
are realized by more than one component. For example, the train door function is implemented
by all three components.

Technical Architecture Model and Deployment. As the technical architecture of the OBCU was
not the main focus of the original collaboration, the corresponding model is rather simple. It is
quite similar to the logical architecture. It contains one ECU with special hard- and software to
perform safety-relevant computations and two further ECUs with standard hard- and software.
The ECUs are interconnected by a network. The ATP component from the logical architecture
is deployed on the safe ECU, the other two components are deployed on the regular ECUs. As
there is a one-to-one correspondence between high-level components and ECUs, we name the
ECUs according to the deployed component (ATP_ECU-1, ATO_ECU-1, ITF_ECU-1). Figure
7.5 shows the technical architecture of the OBCU.

Fault Tolerance. = The OBCU has the ability to detect a crash of one of its ECUs automatically.
For safety reasons, the OBCU shuts down completely in such a case. To continue the train
operation, a second OBCU is running as a hot spare. In case of a shutdown of the first OBCU
the train transfers the control automatically to this redundant OBCU. In case of a crash of
the second OBCU, the emergency shutdown applies as well and the train is brought into a
safe state. We adapted the logical architecture as well as the technical architecture to reflect
this fault tolerance mechanism. In the technical architecture we added a second set of ECUs

130

Chapter 7. Case Study: Train Door Control

T

trainOperationiode

platformSide
cabDoorOperatinghode

cabPermissiveDoorButton

stoppingWindowPlus

T

trainBerthed
(2 Train Door Function

T

stoppingWindowMinus

doorStatus

trainPosition

movingStatus

trainConitroljsgvel

dweliTimetlapsed

stoppingPoint
platformPSD5tatus $ &

929 %9999
1

doorftatus
doorReleaseStatus

!] F
T e e b e W

dooridade

= O

doorReleaseCommand

® Propulsion Function

trainifontrollejrel

¥
O

doorCpenCommand

propuision

trainConjtrolLevel authorizePSDOpening

® —»

caboprammand {3 PSD Door Function

trainConjtrol Leme: .

-
L

4

4

(3 HMI Status Function

rauz

T

> O

psdDoorCommand

.
L

atrthonzePSDOpening

k J

doorReleaseStatusHivi
currentDooriModeH Ml 2

psdStatusHH

Figure 7.3: The functional architecture model on the highest level showing the four high-level
system functions, their interfaces and interconnections via mode channels.

131

Chapter 7. Case Study: Train Door Control

O
OBCU_WCHU_PositionReport o
OBCY WCEU_PlatformDoor:
L HIMI_O_DoorS Q
_ {_O_Door_Strategy
WCU_OBCU_Movementhutharity G mF o}
HM1O Train_Door_Release o
HMI-O-Train-Door Status o
HMI_O_Door_mode o
HMI_O_PSD
HEEEEEE AT
ade oacu wcy #latfmmocor
*
L] - trainMovement|
TCL [Docl Cidsed indication | OsiTimretiopsed
@ treinConprotievet -
movingStatus
®
CAB | Door Command
5 TCL_O_Door_Opening_Closing
€AB_I-Doon Operating_ Mode
® HEHTOBE Y Moyer i
TCL_)_Door.Cloged_Indication G at0
b4 s
CAB_|_Permissive_Door| Butto:
Y OBCU_WCU Report
trainControllavel
° movingStatus:
train0p
g 5
platformPSDstatys | 11 1| Dbor Clgsed Indication
CRBL] issiye, Door_Button
trpinConjtrolLevel _door
trainOperationiid
L
platformBSDStafus
TEL_O_Door, Release
® aTP 1
® TCLO Propulsion_Release
P stoppingWindowPlus
berthed
® : :
Py stoppingWindowhinus
stoppingPoint
s -
PY platformSide
trainPosition

Figure 7.4: The high-level logical architecture of the OBCU.

‘W OBCU_Network

Figure 7.5: Technical architecture model of the OBCU.

132

Chapter 7. Case Study: Train Door Control

(ATP_ECU-2, ATO_ECU-2, ITF_ECU-2). In the logical architecture we duplicated the OBCU
component and introduced a switch component that forwards the signals of the second OBCU
in case the first one fails. To model the fault detection, we added an additional channel obcu_fail
to the interface of the OBCU component that signal the crash of the OBCU. Figure 7.6 shows
an high-level overview over the adapted logical architecture.

TCLO_Door_ Opening_Closing

TCL.O Propuision_Reiease
TCLO_Door_Release

TCL | DoorLioged Ingicats
HMI_O_Train_Door_Status _
cABLY . ooy Buthon BEERECE R RN RN T€L_0_Door_ Opening_Closing
HII_O_Door_mode —_—
CAB. Bpgréting/loe _ TCL_O_Propulsion_Release
HMI_O_PSD —_—

® i Do, Commpend _— TCLO_Door_Release
L) HMI_O_Door Strategy
YA oerenyn @ GET MG oo RaL AL Train.Door Sots T
{ \erdingéntailey - » HMIC_Door_mods
(] “ R v dp. OBCU-WCU Platform Door W.o
) g" i QBCU_WCU_PasitionReport R e N A Y
“‘-, CatinfMode e o o i o e L HMI_O_Door._Stratagy
® ‘** trainMovement —_—
& “g HMI-O-Frain-Door Relense &
‘:‘ﬁ:“ S 9BCU-WCU, PlatformDoor 5
e ——, - .
X o L WEU.S
® ‘ ‘ % doorhode OBCU_WCU_PositionReport
LAt SRR AN Fleptlvebaepirle
Ottesin, doarfeleaseStatus trainhovement
: ‘:&?@:’9‘ ;
beu_fail
* ““""K‘%‘ @ Switch
%@.‘@n v I P
o SRk [oo
: “ TCL_O_Door_Opening_Closing i
& TCL.O_Propulsion_Release

TCL_O_Door._Release

HMLO_PSD

HMLO_Door_Strategy
© 0BCU-standby HMI_O_Train_Door Release
OBCU_WCU_PlatformDoor
OBCU_WCU_PositionReport

trainMovement

dooriMode

doorReleaseStatus

obeu_fail2

Figure 7.6: Modeling of the two redundant OBCUs with hot standby. The component Switch
switches between the main OBCU and the hot-standby OBCU in case of a fault signaled by the
channel obcu_fail

Environment Model. The environment model includes the behavior of external systems, such
as the interlocking system or the platform automation system (which encompasses the PSD
doors), but also the parts of the TGMT system that were not in the scope of the project, such
as the functionality to locate the train. It also includes the behavior of a train conductor.
The behavior of the environment model is cyclic, modeling the trip between two stations and
subsequent passenger exchange.

7.5 Study Execution

In this section we describe the steps we performed as part of the study. Figure 7.7 shows an
overview over the study execution. Departing from the existing models described in the previous
section, we performed six steps: We first elicited informal availability requirements for the
TGMT OBCU. Afterwards we added fault-injection models to the logical architecture model.

133

Chapter 7. Case Study: Train Door Control

Next we created failure definition models and availability metric models. As intermediate
steps we created the failure mode list and the aggregation models. We performed an availability
analysis for these models aferwards and finally elicited, modelled and analyzed change scenarios.
In the following, we describe for each step what we did, what inputs we used and what outputs
we created. We distinguish between two types of outputs: The first type are models, such as
a failure definition model, the second are availability results and performance measurements
from the automated analyses. Most steps in the process used information from the Siemens
engineers as inputs. We gathered this information in informal interviews with the Siemens
engineers.

OBCU Environment Model

Analysis
Results

Step 5
Formalize Availability
Requirements and Perform
Availability Analysis

Create Failure
Mode List and
Failure Definition

Step4
Model Availability
Metrics

Perfor-
mance
a Measures

Availability
Metric Model 7

| Step 6 } 7
} Elicit/Model/Analyse | Analysis

| Change Scenarios | | Results

— P

Elicit Availability
Requirements

TGMT Requirements

Textual Availability

i! Requirements

artefact created Output of auto- .
Legend step existing artefact - N Interview
during study mated analysis

Figure 7.7: Overview over the study execution process. Step 6 is displayed with a dashed line
as it is in fact a repetition of steps 3 to 5 with a changed system model.

Step 1: Eliciting Availability Requirements
In this step we first extracted initial informal availability requirements from the requirements

documents and afterwards refined them together with the Siemens engineers.

Initial Availability Requirements

In both documents provided by Siemens there is a section “Availability” containing availabil-
ity requirements. We found that the availability requirements in these documents are partly
redundant. The requirements found in the documents can be categorized in three types:

* quantitative availability requirements,
* redundancy requirements, and
* fault tolerance requirements.

The quantitative requirements demand an availability > 99.999% for the whole TGMT system
and several sub-systems. However, the documents did neither specify which types of failures
should be included into this number nor how this metric should be interpreted. The redundancy

134

Chapter 7. Case Study: Train Door Control

requirements describe the hot-standby redundancy architecture of the OBCU and finally the
fault-tolerance requirements demand that the system should tolerate certain faults (e.g. of the
radio) for a certain amount of time. The latter type of availability requirements is refined by
a set of functional requirements according to the tracing information in the documents. For
this case study we only considered the first type of availability requirements as it matches with
our understanding of quantitative availability requirements. We consider the other types of
requirements to be architecture requirements or functional requirements.

Refining the Requirements

To refine the availability requirement we discussed with the Siemens engineers which notion
of failure and which availability metric they already use or find appropriate for the system or
different system functions. Two general principles that the availability engineers follow are:

* For the evaluation of availability, all functions necessary for the highest automation mode
of the TGMT system are considered. The functions we consider in this case study are all
part of the highest automation mode and thus subject to the availability requirements.

* The availability engineers evaluate the availability of the OBCU with respect to the
operation of the overall TGMT system. This means, from an availability perspective only
the failures of the OBCU should be considered that disturb the train operation. In most
cases this means train delays.

For the generic (non customer-specific) system the Siemens engineers usually do not describe
the function-specific failure modes in more detail but use the above principles to deduce which
faults ultimately lead to a system failure. With the availability metric of 99.999% they refer to
the steady-state availability.

To summarize, from the initial requirements documents and interviews with the Siemens
engineers, we obtained the following informal availability requirements for our case study:

AR1: All functions need to operate with steady-state availability > 99.999%.

AR2: A function is considered failed if it is not operating according to its specification and this
results in a disturbance of the regular train operation.

Step 2: Modeling Faults

First, we modeled the faults of the main OBCU hardware components ATO_ECU, ATP_ECU,
ITF_ECU (for the main and the standby OBCU) using the method described in Section 6.4.3.
For each of the hardware components we modeled a complete crash, where inputs are no
longer processed and outputs are no longer produced. We obtained fail and repair times from
the Siemens engineers: For their analyses, they assume a mean-time-between-failure of 10%
hours and a mean-time-to-repair of 8 hours, which we adopted. To obtain a per-time-unit fault
probability from these values, we made the following assumptions.

* The time-between-failure follows a discrete geometric distribution.

* In the system implementation, the logical time units in AF3 translate to computation
cycles with a fixed cycle time of 200ms.

135

Chapter 7. Case Study: Train Door Control

The geometric distribution can be considered the discrete counterpart of an exponential distri-
bution, which is often used for availability analyses in practice (Bracquemond and Gaudoin,
2003). With the assumption of a geometric distribution and the duration of a computation cycle
of 200ms, we obtain a fault probability per cycle of about 1.4 - 108 and a repair probability
of about 6.9 - 107%. We modeled the faulty behavior according to the method proposed in
Section 6.4.3. More specific, an ECU fault is modeled in the logical architecture by a post-filter
that suppresses any outgoing signal. Figure 7.8 shows an example how such a filter is applied
to the ATP component.

o]

WCU_OBCU_MuIememAu(hmity

o
—e—

O

stoppingPoint

A B R B B B B B B L ————* 0
leaseForcedByPermissiveDoorButtor| releakeFarcedByPermissiveDoorButton|
olatform Side

*
movingStatus
L]
PY TCL_|-Door_Closed_indication
CAB_| Permissive_Door Button S T L S

® QOBCUWCY PositionReport TCL_O Door_Release

trainControltevel
[] oy T B e B e o o e e 1
P trainOperationMode: TCL_O_Door_Release OBCU-WCU_PositionReport

platformPSDStatus @ atp 5 B S P B B | @ crash-filter o O S P
{] TCL O Propulsion Release TCL O Propulsion Release
° stoppingWindowPlus

berthed

{] g T Pt Bt o T e o I e
° stoppingWindowMinus doorReleaseStatus doorReleaseStatus
L]
L]

trainPosition

Figure 7.8: Component ATP extended by a post-filter that models the crash failure.

Step 3: Creating Failure Mode List and Failure Definitions Model

In this step we first identified relevant failure modes for the four system functions. Afterwards
we created formal failure definition models.

Failure Mode List

In Section 6.4.5, we proposed to use guide words to identify failure mode candidates. We
applied this technique to the case study to identify the relevant failure modes for all four
system functions. We illustrate the results of the failure mode identification with the PSD
function. This function has two output channels. The channel psdDoorCommand carries the
signals for opening or closing the doors. The channel authorizePSDOpening is part of the safety
functionality that should prevent the PSD doors from being opened accidentally. Hence, prior to
opening the doors, an authorization is sent via this channel. For both of the two output channels
of the PSD function we obtained failure modes for the guide words OmissioN, MODIFICATION
and LaTte TiMING in the discussion with Siemens. The rationales for choosing these failure
modes with respect to the psdDoorCommand are:

* The omission of the signal for opening or closing the PSD door delays the train operation
as the train cannot depart from the station until the passenger exchange has taken place.

 Similar, if the signals for opening/closing the doors are mixed up, the departure of the
train is delayed.

136

Chapter 7. Case Study: Train Door Control

Output Channel Failure Mode Description
psdDoorCommand fm_psdDoorCommand_ommit The open/close PSD door command is not sent
fm_psdDoorCommand_mod Open is sent instead of close or vice versa
fm_psdDoorCommand_del The open/close PSD door command is sent with
delay
authorizePSDOpening fm_authorizePsdOpening_ommit The authorize PSD door command is not sent
fm_authorizePsdOpening_mod Not authorize is sent instead of authorize
fm_authorizePsdOpening_del The authorize PSD door command is sent with
delay

Table 7.2: Failure modes for the PSD system function.

* Finally, a delay in opening or closing the PSD doors leads to delay in train operation.
Regarding the channel authorizePSDOpening the rationales are:

* Only the omission of an authorization message is considered. When the authorization
for opening the PSD doors is not sent prior to opening the doors, the opening will not
happen and the train operation is delayed. The case of an omitted not-authorize message
is not considered as this is a safety issue but does not prevent the train from departing the
platform.

» Similar, only the accidental sending of a not-authorize message instead of an authorize
message is considered a failure as only this case leads to a train delay.

* Finally, a delay of the authorize message leads to delay in train operation and is therefore
considered a failure whereas the delay of a not-authorize message is neglected.

Table 7.2 shows an overview over the identified failure modes for the PSD function. For all
of the failure modes of the PSD function we only employed one level of severity.

Failure Definition Models

Based on the identified failure modes we created failure definition models. For this step
we followed the proceeding and pattern as outlined in Section 6.4.6. We used the failure
definition model template and created the failure definition models based on the original function
specification and filters from our building blocks. We instantiated the failure definition model
pattern for each system function. Although this could be automated by extending AF3, in our
case study we did this manually. Recall from Section 6.4.6 that the necessary ingredients of this
pattern are the function specification, a number of deviation models and a comparator. Figure
7.9 shows the failure definition model for the PSD door function. Although the graphical syntax
for specifying deviation models from the previous chapters is not available in AF3, the pattern
structure with the filter chain is clearly visible in the center of the diagram. Each of the filters is
an instantiation of a basic building block. The comparator is on the right side of the diagram.

Step 4: Modeling Availability Metrics

In this step, we first decided on suitable availability metric models from the basic building.
As described in Section 6.4.8 creating a failure aggregation model is often necessary to fit the

137

Chapter 7. Case Study: Train Door Control

++
O O O O
#m_psd_doar function_unknown
fm_psdDoorCofnmand_ommit m_psdDoorlommand del
fm_psdDaorC gmmand_mod
O T %
cabDoorCommand T P P T T O
®*— 0 psdDoorCommand © Ommit © Mod © Delay
doorReleaseStatus ®c at
@® ————————* O (PSD Door Function omparator
& spenDocrCommand [
N e ey B B P L = — — —
trainControlLevel athonzAPSDOpening | & Ommit © Mod © Delay
fm_authorizePSPOpening mod
fm authorizePSOOpening_ommit O fm_lauthonzeP$0Opening del
psdDoorfommand
5 5 authorizeP$DOpening
L] L]

Figure 7.9: Failure definition model of the PSD door function. It is structured according to the
template for failure definitions and uses the basic building blocks for the deviation filters. It
comprises the function specification (leftmost box), the deviation filters (six middle boxes) and
a comparator (right box).

failure definition and the metric model together. We created the aggregation model as part of
this step.

Availability Metric Model

Steady-state availability should be used as an availability metric according to our informal
requirements. However, we found that there is no translation of steady-state availability in our
tooling, as in Prism the steady-state rewards operator is currently not supported. Hence, we
were not able to use the basic building block for steady-state availability. Therefore, for this case
study, we replaced the steady-state availability with the interval availability during 24 hours
for which we have a representation in Prism and can use the basic building block for interval
availability.

Aggregation Model

Choosing to employ the basic building block for interval availability made it necessary to define
an aggregation model to aggregate the failure modes of the failure definition models to a single
failure mode. Figure 7.10 shows the failure definition for the PSD door system function (at the
left) and the according aggregator (at the right).

Step 5: Performing Availability Analysis

In this step we performed availability analyses based on the created models to verify the
availability requirements and to determine the impact of the MTTF and MTTR parameters of
the single ECUs on the availability. We evaluated the efficiency of the tooling by measuring
analysis time and use of memory. We plausibilized the results of the analyses by comparing it
with the output of a commercial analysis tool.

138

Chapter 7. Case Study: Train Door Control

—
— fm_authorizePSDOpening_delay
—_— fm_authorizePSDOpening_ommit

finspsdBoorammend iy ® PSD Availability Threshold

S B Y
— fm_psdDoorCommand_ommit psd_door_function_failed

(FD PSD Door Function
; J » O

— fm_authorizePSDOpening_mod
fm ‘psdfdoorkfunctinnJTn

~)

Code Specification

e fm_psdDoorCommand.mod

if (fm_authorizePSDOpening_mod == FM Modification Modification()

|| fm_psdDoorCommand_mod == FM Modification Modification()
fm_authorizePSDOpening_ommit == FM_Omission Omission()
fm_psdDoorCommand_ommit == FM Omission_Omission()

[

[

|| fm_authorizePSDOpening_delay == FM Delay Critical()
|| fm_psdDoorCommand_delay == FM Delay Critical()) {

psd_door_function_failed = FM FAIL_FAILED();

_ /

Figure 7.10: The failure definition for the PSD door function (left box) is complemented by an
aggregator (right box). The aggregation is defined using an AF3 code specification (lower box).
The aggregator specifies that the function is considered failed (psd_door_function_failed
= FM_FAIL_FAILED()) if any of the single failure modes is present (i f-clause).

Availability Analysis
We performed two types of analyses:

* Requirements Verification: We determined availability estimates using our tooling and
thus verified whether the system, as we modeled it, does fulfill the availability require-
ments and

* Sensitivity Analysis: We performed a sensitivity analysis indicating how varying the
parameters MTTF and MTTR of the different ECUs influences the availability of the
system functions. This analysis further unveils whether there are components that are
especially critical for the availability. We chose MTTF values of 3000h, 4000h, and
5000h and MTTR values 7h, 8h, and 9h. We only varied one parameter for one ECU at a
time. All other parameters were left at the defaults 4000h for MTTF and 8h for MTTR.

We performed all our experiments on a computing node with an AMD Opteron processor
at 2.6 GHz and 2 GB of RAM. Note that the Prism modelchecker works mostly sequential.
However, we used several computing nodes to run several single analyses (e.g. for different
functions or with different parameters) in parallel. To evaluate the feasibility of the analysis in
terms of computing resources, we measured the run-time and memory consumption.

Plausibilization of the Results

We took two measures to assess the plausibility of the analysis results. First, we manually created
an analysis model in form of a reliability block diagram (RBD) reflecting the fault tolerance
mechanism of the OBCU. This was possible for the original model as the complete shutdown
of the OBCU does not give rise to a complex failure behavior and hence the situation could

139

Chapter 7. Case Study: Train Door Control

be modeled with an RBD. In this RBD we annotated the same MTTF and MTTR parameters
as in our model and specified an exponential failure distribution for both, time-to-failure and
time-to-repair. However, the resulting RBD does not differentiate between different failure
modes. Hence, small differences between the results of the RBD analysis and our analysis were
expected. We used the commercial reliability modeling and analysis tool ReliaSoft BlockSim3
to perform a second availability analysis independent of our models. We compared the results
to assess if the values we determined by our method are plausible.

Step 6: Analysis of Change Scenarios

A specific challenge for Siemens is to adapt the availability analysis to changing systems and
changing requirements. This is especially important in case the system is adapted for a specific
customer. We posed RQ3 to assess the ability of our approach to cope with such a situation.
To answer this question, we first collected possible change scenarios. This includes changes
in the functionality and changes in the (logical and technical) architecture. In a second step
we changed the system models according to the collected change scenarios. We then adapted
the availability analysis models and performed an availability analysis or a sensitivity analysis
based on the changed models.

Elicitation of Change Scenarios

In interviews with the Siemens engineers, we elicited a number of possible variation points in
the system. We obtained three types of variation points:

Variation in the system configuration: Certain aspects of the system behavior are described
via parameters. Examples are the rail network profile or characteristic values for accelera-
tion and deceleration. These configuration parameters vary between different customers.

Variation in the system functionality: Not all customer-specific instances of the TGMT sys-
tem use all of the system functions. For example, the PSD functionality is left out by
some customers.

Variation in the system architecture: Due to legacy systems already deployed at the customer
and the need to integrate into a given architecture or due to the evolution of the system,
the (logical or technical) architecture of a concrete system instance may deviate from the
architecture of the generic system.

From these variation points, we only considered the second and third in our study. Config-
uration parameters are barely considered in the AF3 model of the TGMT, as they hardly relate
to the door functionality. Hence, we obtained two types of change scenarios for the case study.
For the first of these change types, we analyze one concrete change scenario (labeled S1), for
the second, we present two concrete change scenarios (labeled S2a and S2b).

S1: Removal of the PSD door function: The PSD door function is only employed in rail sys-
tems with installed platform screen doors. If this is not the case and thus the PSD door

http://www.reliasoft.com/

140

Chapter 7. Case Study: Train Door Control

function is deactivated for the customer specific installation, this should be reflected in
the availability analysis. Hence, in this scenario, we consider a system without the PSD
functionality.

S2a: Removal of the ITF component: In the original logical architecture, there are three top-
level components, relating to three ECUs in the technical architecture: ITF, ATO and
ATP. The ITF is responsible for the communication between the OBCU and the wayside
subsystem as well as for the communication with the train’s HMI. In this scenario,
we consider a situation where the ITF component as well as the ITF_ECU hardware
is removed and all of its responsibilities are delegated to the ATO component and the
ATO_ECU hardware instead.

S2b: Change of Fault Tolerance Mechanism: We inspect a second scenario where the archi-
tecture changes. In this case, we investigate a change in the fault tolerance mechanism.
In the original model, the complete OBCU is shut down in case of a failure in one of
its components. We modify this behavior as follows: Only the first OBCU performs
the emergency shutdown in case of a component defect. The second OBCU does not
perform the shutdown but instead works with the remaining components to provide the
functionality as long as possible.

Modeling of Change Scenarios

Change scenario S1. To realize change scenario S1, we removed all components from the
system model that exclusively relate to the PSD functionality and hence do not contribute
to a different function. We further removed all PSD related behavior from the remaining
components. Finally we removed all channels from the interface of the system model that
relate to the PSD functionality. To adapt our availability analysis model to the new situation we
removed the failure definition and metric models for the PSD function.

Change scenario S2a. We realized changed scenario S2a in the system model by removing
the ECU_ITF in the technical architecture as well as the top-level component ITF in the logical
architecture and integrating all of its sub-components into the component ATO. See Figure 7.11
for the modified architecture and compare this with the original architecture shown in Figure
7.4. As the black-box interface of the system was not affected by these changes, we did not
need to modify the analysis model at all.

Change scenario S2b. The emergency shutdown behavior is modeled in the dedicated Switch
component (see Figure 7.6). To realize the change scenario S2b in the system model we
therefore modified the switching behavior to prevent the shutdown of the second OBCU. Again,
the black-box interface of the system does not change. Therefore, we did not need to adapt the
failure definitions and availability metric models.

Analysis of Change Scenarios

Finally, we performed automated requirements verification and sensitivity analyses with the
modified models. The setting of the analyses is the same as for the unmodified models.

141

Chapter 7. Case Study: Train Door Control

O L]

WCU_OBCU_MovefnentAutharity.
doorilode

[] 3 >
CAB_I Door_Operating/ Mode
@ OBCU_WCU_PositionReport C
dwellTimeElapsed O
HMI_O_Door Strategy
L] - = O
movingStatus HMI_O _Train_Doer_Release
O
@ > HMI_O_Train_Door_Status
CAB_|_Door. Command »
HMI_O_Door_mode
HMILO_PSD. o
O
] - » OBCU.WCU_PlatformDeoor
CL_I.Door_Closed_Indication O
trainMovement
® - - - O
A8 |_Permissive_Door Buttan TCL_O_Doar_Opening_Closing
® - B fault
mquing}tatus trainControllevel
™Y L -
trainOperationMade
® TCL_Poor [Closed_In ‘Ca“%']atformDSDStatus o
CAB_|_Permigsive|Doof_Butfon O O O
WCU_OBCU_MovementAutherity
trainContfolLefel dlebs) For:ed& P OD;R usasestatus
§Eﬂ_ _PopILONREPg)
trainOperationiod,
- L =0
platformp3DStatus TCL_O_Door_Release
L : O
- TCL O Propulsian_Release
@ faukt
b stoppingWindowPlus © ate
Ld berthed
Y -
stoppingWindowMinus,
L -
stoppingPoint
L4 platformside "
b trainPaosition

Figure 7.11: Modified logical architecture for change scenario S2a. The ITF component has
been removed and all its responsibilities have been moved to the ATO component.

7.6 Analysis Results

In this section, we present the results of performing the availability analyses on the original
model as well as on the models obtained from applying the change scenarios.

7.6.1 Analysis of the Original Model

Verification of Availability Requirements

In a first step we verified the availability requirements associated with all system functions. For
all functions we determined similar availability results of ~ 99.99805%. In fact, the results
for the different functions varied only in the 8th decimal (in the percentage representation).
Hence, our analyses show that all functions fall slightly below their availability requirements
(99.99805% instead of 99.999%). We therefore could not verify that the availability require-
ments are met with the given architecture and parameters (MTTF=4000h, MTTR=8h).

To plausibilize this result, we compared it with the availability estimation from the com-

142

Chapter 7. Case Study: Train Door Control

mercial tool Reliasoft Blocksim. With this method we also obtained an availability estimate of
99.998%, which suggests that we obtained plausible results through our method.

Sensitivity Analysis

We varied the MTTF and MTTR parameters for each of the ECUs and evaluated the impact of
this on the availability of all functions. We found that the impacts of varying the parameters
are almost identical for each of the functions. This means that when we vary, for example, the
MTTF of ATO_ECU-1, this has the same effect on the availability of the propulsion function
as on the HMI status function. Furthermore, for all functions the impact of varying the same
parameter on different ECUs are the same. This means that when we vary the MTTF of
ATO_ECU-1 this has the same effect on the availability of all functions as when we vary the
MTTF of ATP_ECU-1 in the same way. We can hence conclude that all ECUs are equally
important for the availability of all functions. The reason for this is the shutdown behavior
implemented in the OBCU. As a fault in any ECU leads to an immediate complete shutdown
of the whole ECU (which affects all functions) all components are equally important.

Due to the two observations above, we only present the detailed results for the sensitivity
analysis of the propulsion function with respect to the ECU ATO_ECU-1. One can observe that
when increasing the MTTF by 1000h, the availability also increases in the order of magnitude
of 107*. When increasing the MTTR by 1h the availability decreases in the order of magnitude
of 1075. However, our results also show that the availability does not increase (respectively
decrease) linear with an increase of the MTTF and MTTR. The numeric results and a visu-
alization of the sensitivity analysis for the propulsion function and ATO_ECU-1 are shown in
Figure 7.12. The row labeled with A in the enclosed table shows the change of availability
when varying the parameters.

7.6.2 Analysis of the Change Scenarios

Change scenario S1: Removal of the PSD Function

We determined that the availability of the remaining functions is not influenced by the removal
of the PSD door function: For all remaining functions the availability values for the system
with the reduced functionality is the same as for the original system.

Change scenario S2a

In case of the second change scenario, the availability results for the modified architecture
deviate from the ones of the original architecture. The availability increased compared with the
values for the original architecture. Instead of an availability of 99,99805% that was achieved
by the original architecture, we determined a value of 99,99913% for the changed architecture
(for all functions). This is especially interesting as it is above the desired availability 99.999%
demanded by the availability requirements. The increase results from the removal of the
ITF_ECU as a source of faults. As we assume that the mean-time-to-failure of the ATO_ECU
with its now increased workload does not change, the probability of shutting down an OBCU
is decreased. Therefore, the overall availability increases.

143

Chapter 7. Case Study: Train Door Control

ATO-1 MTTF ATO-1 MTTR

3000h 4000h 5000h 7h 8h %h

99.99786% 99.99804% 99.99818% 99.99810% 99.99804% 99.99800%
A - 1.8-100* 14-10* - -6,0-10° -4.0-107°

(a) Availability (in %) of the propulsion function with varying parameters of ECU_ATO-1 MTTF and ECU_ATO-1
MTTR. The row prefixed with A shows the differences between the above availability data-point and the data-point
one column to the left.

99,9983% 99,9983%

g 99,9982% Z 99,9982%

2 =

©
55 99.9981% < 2 99,9981% —
B ‘B S — e
S S 99,9980% 2 2 99,9980% ———e
S¢ . g
£ 999979% & 5 99,9979%

= o £

T 99,9978% S 99,9978%

S 3000h 4000h 5000h N 7h 8h oh

MTTF ECU_ATO-1 MTTR ECU_ATO-1

(b) Availability of the propulsion function with varying (c) Availability of the propulsion function with varying
MTTF of the ECU_ATO-1 MTTR of the ECU_ATO-1

Figure 7.12: Results of the sensitivity analysis for the propulsion function and varying parame-
ters for the MTTF and MTTR of ECU_ATO-1. The table in (a) shows the plain numbers, while
the graphs in (b) and (c) visualize the sensitivity with respect to MTTF and MTTR.

Change scenario S2b

For this scenario the availability results also differ from the original ones. As before, the
availability with respect to the changed architecture is higher compared with the original
architecture. For example, the availability of the propulsion function in case of the modified
architecture with the default parameter values is 99.99934%, compared with 99.99805% in
the original architecture and hence above the threshold given by the availability requirements.
See Figure 7.13 for a comparison of the availability of the propulsion function in the different
architecture alternatives.

The results of the sensitivity analysis show that varying the MTTF and MTTR parameters of
an ECU of the second OBCU now has a different impact on the availability of different functions.
Consider Figure 7.14 that shows the results of a sensitivity analysis for the propulsion function
with respect to the MTTF and MTTR parameters of the ECUs ATO_ECU-1, ATO_ECU-2 and
ATP_ECU-2 . Increasing the MTTF of ATP_ECU-2 from 3000h to 5000h (dark blue line in
Figure 7.14a) strongly affects the propulsion function. Increasing the MTTF of ATO_ECU-1
(light blue line) also has a small effect. Finally, increasing the MTTF of ITF_ECU-2 (grey line)
has no effect at all. Varying the repair time creates a similar picture (see Figure 7.14b). Hence,
the ATP_ECU-2 has the highest importance for the availability of the propulsion function.

The reason for this behavior is the following: As a fault of a single component of the second
OBCU does no longer cause a complete shutdown and therefore some functions continue to
work at least partially, the overall availability increases. As the components involved in the
propulsion function are deployed on the ATP_ECU while the components implementing the
HMI function are mostly deployed on the ATO_ECU and ITF_ECU, the different impact of

144

Chapter 7. Case Study: Train Door Control

99,9995%

99,9990% m === ————— . — — — — — --
99,9985%

99,9980%

99,9975% I

99,9970%

Propulsion
24h Interval Availability

Original No ITF No Shutdown
(S2a) (S2b)

Figure 7.13: Comparison of the availability of the propulsion function with the default pa-
rameters in the three different architecture alternatives. The dashed grey line visualizes the
availability threshold of 99.999% given by the requirements.

the ECU parameters on the functions can be explained. Note that this architecture may lead to
behavior that is unwanted from a safety perspective, which we however do not consider here.

—e—ECU_ATP-2 —e—ECU_ATO-1 ECU_ITF-2 —e—ECU_ATP-2 —e—ECU_ATO-1 ECU_ITF-2

99,9995%
99,9994% é

99,9995%

99,9994% b e—

Z z
3 3
= =
5 ¢ s
2 < 99,9993% 2 < 99,9993% —
&g 5
2§ 99,9992% 2§ 99,9992%
2 e
=
< 99,9991% < 99,9991%
S 3000h 4000h 5000h S 7h 8h 9h
MTTF MTTR

(a) Sensitivity of the propulsion function availability (b) Sensitivity of the propulsion function availability
when varying the MTTF of ECU_ATO-1, ECU_ITF-2 when varying the MTTR of ECU_ATO-1, ECU_ITF-2
and ECU_ATP2. and ECU_ATP2.

Figure 7.14: Sensitivity analysis results for change scenario S2b (no emergency shutdown of
the second OBCU) for the propulsion function.

7.6.3 Analysis Performance

The performance parameters are noted in Table 7.3. The size of resulting analysis models
varied between 10° and 10° states depending on the function that we analyzed. The analysis
turned out to be costly in terms of analysis time (between 5h and 50h), but only showed
a moderate consumption of memory (below 1GB). The latter made it possible to run many
analysis instances in parallel, which greatly sped up the sensitivity analysis. We noticed in
side experiments that the analysis time is greatly influenced by the interval length considered
in the interval availability metric model. In fact, interval length and analysis time are almost
proportional. This effect is due to the iterative solution method the model-checker employs for
the problem.

7.7 Discussion of the Research Questions

In this section we answer our initial research questions by reflecting on the models and analysis
results we obtained during the study execution. We further incorporate feedback by Siemens

145

Chapter 7. Case Study: Train Door Control

Analyzed Function States Analysis Time Memory

Propulsion Function 122,096 5.1h 383 MB
HMI Function 122,096 48h 362MB
PSD Function 976,712 554h 691 MB
Train Door Function 488,360 235h 471 MB

Table 7.3: Performance of the availability analysis in terms of time and memory consumption.

into the discussion.

7.7.1 RQ1: Modeling Adequacy

The results show that it was possible to capture the availability requirements of the TGMT
system by instantiating our artifact model and by following the steps outlined in Chapter 6.
However, the availability requirements were not very complex. The according availability
metric could be captured with a rather simple building block.

According to the feedback by Siemens the failure modes elicited through the guide words
are considered the relevant failure modes of the system. However, the found failure modes
related only to the guide words omisSSION, LATE TIMING and MODIFICATION. We did not identify
failure modes based on the guide words EARLY TIMING and INSERTION. The reasons for this are:

* Early timing is not a problem, at least in the part of the system that we considered. Usually
all reactions need to be performed as soon as possible when a certain input configuration
is present.

 All the signals have been modeled as state signals, which are supposed to be present all
the time. Hence, an insertion of a message cannot be distinguished from a modification
and, therefore, insertion is not considered.

Applying the failure definition pattern we could create all failure definitions. In the failure
definitions we reused the function specifications. To fill the failure definition pattern, we could
further apply the filters defined in the basic building blocks.

We also experienced a few limitations when creating the models. Most importantly, we
could not capture the original availability requirements that relate to availability in the long run
(steady-state availability). This limitation, however, was due to the tooling and not a conceptual
issue. As mentioned above, we could not represent the long-run availability in the Prism
modelchecker and, therefore, we used interval availability instead.

In the final discussion with Siemens, one issue emerged concerning function interaction. In
case a failure propagates via a mode channel from one function to another, we attribute such a
failure to the function where the failure originated. However, the Siemens engineers remarked
that we could instead attribute this to the functions where the failure surfaces at the system
interface.

In general, we found that the TGMT system fits very well to our approach. However,
the used data-types are mostly simple (such as enumerations and primitive data types) and
the behavior of the system is to a large extent stateless. Both allows for rather simple failure

146

Chapter 7. Case Study: Train Door Control

modes. Nevertheless, we conclude that the case study suggests that our approach provides
suitable modeling techniques and a supportive method to capture the availability requirements
of a system such as the TGMT system.

7.7.2 RQ2: Analysis Feasibility

The study demonstrates an automated analysis of the system’s availability properties based on
our artifact model. Both, the verification of the availability requirements and sensitivity analyses
are possible. The availability results are useful: The analysis results showed that the availability
requirements are slightly missed in the original model. The requirements are, however, fulfilled
by the architectures in the change scenarios S2a and S2b. The sensitivity analysis revealed that
all ECUs have equal impact on the availability of all functions in the original model but different
impact in scenario S2b. The analysis results are furthermore plausible: We plausibilized the
results for the original model with a commercial analysis tool based on an RBD.

Our results with respect to the computational feasibility of the analyses are ambivalent.
Only a moderate amount of memory was necessary to perform the analyses. However, with
the present tooling, the analyses consume a lot of time (between 5 hours and 2 days). The
long analysis time is partly due to the size of the models (up to 1 million states). Nevertheless,
when taking into account that no further manual analysis tasks need to be performed, such as
performing an FMEA or creating dedicated architecture models, the time consumption by the
analysis might be acceptable, even without further tool improvements. A different question is
how far our method scales with further growing model sizes and more complex failures. As a
part of our approach is to analyze the availability per system function we at least partly avoid
the state explosion problem, as we only need to include that part of the system that relates to
the system function under analysis. However, the more the functions are distributed over the
system, the smaller this advantage is. Nevertheless, as we worked with a case example from
an industrial context and of a considerable size we argue that there are situations where the
automated analysis can be feasibly applied.

7.7.3 RQ3: Flexibility

We investigated three change scenarios in the context of the TGMT OBCU. In all cases the
adaptions that we needed to make in the availability analysis model were only trivial and we
could reuse almost the whole analysis model. Only in the case of a removed function, we also
had to remove the corresponding failure definitions and availability metric models. With the
changed analysis models, we could again evaluate the availability and quantify the impact that
the changes had on the availability.

An especially interesting result is the availability analysis of change scenario S2b (the
prevention of an emergency shutdown in the second OBCU). Here, we could show that a subtle
change in the behavior of a system component (in this case, the switching component) can have
an impact on the availability of the system. Using a classical approach with an explicit analysis
model, such as an RBD based method, this change would have to be analyzed and its effect
modeled in the RBD. In our case the changes were immediately reflected in the analysis results
without further (error-prone) changes in the analysis models.

Based on the above we conclude that our artifact model and the method allows to create
robust analysis models. Even major changes to the system architecture and functionality are
reflected by only small changes in the analysis models.

147

Chapter 7. Case Study: Train Door Control

7.8 Threats to Validity

In this section we discuss issues that threaten the validity of the case study results. We
distinguish between threats to the construct validity and threats to the external validity. As we
did not investigate any cause-effect relationship we do not discuss threats to the internal validity
(which is the type of validity concerned with the correctness of cause-effect relationships).

7.8.1 Construct Validity

Construct validity relates to the question if we correctly operationalized the phenomena we
are interested in. To answer RQ1, we captured modeling adequacy qualitatively by evaluating
whether we could model the availability requirements we obtained from the documents and
interviews. The main threat here is that we did not acquire a representative set of availability
requirements and failure modes. The selection of requirements could be flawed because the
documented requirements are not complete. It might be furthermore possible that the require-
ments and failure modes that we obtained are influenced by the specific way that Siemens
currently performs its RAM analyses or even that we had our approach in mind when selecting
the availability requirements. Due to these influences we might have modeled wrong require-
ments and thus our results are flawed. We tried to mitigate this threat by not only relying on
the documents but also doing several interviews with the Siemens engineers and discussing the
requirements and the failure modes. However, we worked mostly with engineers responsible for
the generic system and not for the customer specific systems. A second threat is that the models
do not actually capture the requirements, e.g. because we misinterpreted the requirements or
due to misunderstandings in the interviews with the engineers. We tried to mitigate this threat
by discussing intermediate models with the engineers. Generally, all modeling was done by us
and not by engineers. Therefore we can only assess the ease of modeling from our perspective.

7.8.2 External Validity

External validity relates to the generalizability of our results. The main threat here is caused
by the minimal sample size of only one system in one specific domain. Hence, we cannot
generalize from the results of this case study to a wider population. This threat can only be dealt
with by repeating the case study on more systems from different domains. Similar, it might
be possible that we picked a part of the TGMT system that is not representative for the whole
TGMT system and thus the results do not even generalize to the whole TGMT system. We
dealt with this threat by letting the Siemens engineers choose the part of the system that should
be subject to the study based on their knowledge of the system. Furthermore, the requirements
documents that we received from Siemens covered the whole system. When scanning through
them, we got the impression that the rest of the system is not fundamentally different from the
part we covered.

7.9 Conclusion

In the last section we summarize this chapter. Specifically we highlight the benefits as well as
the limitations that the presented case study reveals.

148

Chapter 7. Case Study: Train Door Control

7.9.1 Summary

We presented a case study to evaluate the modeling and analysis approach for availability
developed in the preceding chapters. The case example was the industrial train control system
TGMT developed by Siemens. To evaluate our approach, we posed three research questions:
With RQ 1, we assessed the adequacy of the modeling artifacts and the modeling method, with
RQ 2, we investigated the feasibility of automated analyses techniques based on our approach,
and finally, with RQ 3, we evaluated if our approach realized the claimed benefits regarding
reuse of analysis models and robustness to changes in functionality and architecture.

We based the case study on an initial model of the TGMT system developed in a collaboration
project with Siemens. We extended this model to incorporate availability relevant aspects such
as fault and fault tolerance. In order to perform the modeling and analysis tasks we extended the
modeling tool AutoFocus 3 in various ways, especially we integrated the probabilistic model-
checker Prism. Based on requirements documents and a series of interviews with engineers,
we developed failure definition models and availability metric models. We also performed
availability analyses to verify the initial requirements and assess the impact of model and
parameter changes on the system availability.

7.9.2 Benefits

We found that our approach could be applied in the given context. We were able to create
all necessary models. Only in one case we were unable to faithfully model the requirements.
This case, however, was mostly due to tool issues and not a conceptual problem. Using the
modelchecker we could obtain useful availability results. We further demonstrated that model
changes can be handled without large changes in the analysis models by investigating three
concrete change scenarios. In one of this change scenarios we showed how subtle changes in
the system behavior can influence the system’s availability and how our approach can handle
such a situation.

7.9.3 Limitations

A major limitation of the automated analysis is the long time span needed to perform the
analysis. However, there are several opportunities for improving the current tool chain, for
example:

* Much of the consumed time the modelchecker spends on iterations to refine its solution.
The number of iterations directly relates to the length of the interval of the interval
availability metric. Starting with a smaller interval and gradually increasing this interval
until a saturation point is reached could speed up the analysis greatly.

* We used exact modelchecking in this case study. A different approach would be to use
statistical simulation. The main challenge in statistical simulation is dealing with the
non-determinism. Often, non-determinism in such a case is handled by replacing it with
a uniform probability distribution. However, this is not an option in our case, as we are
interested in the extreme values for all possible resolutions of the non-determinism. How-
ever, approaches for dealing with non-determinism in a sound way have been proposed
recently (Brazdil et al., 2014; Hartmanns and Timmer, 2015; Henriques et al., 2012).
Applying these techniques for our case could speed up the analysis considerably.

149

Chapter 7. Case Study: Train Door Control

A further limitation we experienced is the restricted set of availability metrics that we could
model. However, this is a tooling issue due to the used model checker and not a conceptual
issue.

150

Chapter 8

Conclusions and Outlook

In this chapter, we summarize the contributions presented in this thesis and outline possible
future research directions.

8.1 Conclusions

In this thesis, we considered the model-based specification and analysis of the availability of
software intensive systems. In an analysis of the state of the practice and the state of the art
we found that there are open problems which are not targeted by current research. The two
problems that we consider in this thesis are:

* Problem I: Formulating and analyzing system specific availability requirements

* Problem 2: Lack of integration of the availability specification and analysis into an
engineering method

To approach these problems, we introduce an artifact model for availability that allows us to
capture system specific availability requirements. We further complement the artifact model
with a method to ease the model creation. We validate our approach with a case study in an
industrial context.

8.1.1 Availability: State of the Practice

In an interview study with 15 participants from the industry we investigated the current state of
the practice regarding availability engineering. To this end we posed four research questions,
covering the relevance of availability in the industry, the understanding of availability, the
activities related to availability and problems concerning availability. We found the following
answers to our research questions:

RQ 1: Relevance — How relevant is the topic availability in the industry? We found that avail-
ability of software-intensive systems is a relevant topic in the industry. In several domains
(e.g. automation and transportation), availability requirements are specified by customers.
Even when not explicitly required, considerable effort is spent to ensure availability. How-
ever, the demanded availability always needs to be justified economically.

151

Chapter 8. Conclusions and Outlook

RQ 2: Understanding — What understandings of availability are present in the industry?
We encountered different conceptions of availability, mostly because of different under-
standings of failure. These differences related to the rigor of failure definitions, the
perspective on the system and the classification of failures. We further found that avail-
ability is grasped both quantitatively, using availability metrics, or qualitatively, using
properties of the system’s behavior.

RQ 3: Activities — What availability related activities are performed? The industry performs
a large range of availability related activities in different phases of the product’s lifecycle.
The two areas that receive most attention are system architecture and monitoring. Espe-
cially the architecture development is ascribed a great importance for availability. Most
of the used strategies to obtain a highly available architecture are based on some form of
redundancy. However, other design paradigms, such as “design for failure”, also receive
attention.

RQ 4: Problems — What problems are perceived regarding availability? The study revealed
several problems in the current practice. First, availability is often hard to operationalize
and therefore formulating meaningful requirements is difficult. Second, the effort to
understand the system and its dependencies, as well as the efforts for applying analysis
methods is high. Finally, the modularization of the analysis is difficult and therefore
analysis results can hardly be reused.

8.1.2 Availability Artifact Model

To address the problems given in our problem statement, we extend an existing artifact model
by models for availability specification and analysis. The extension includes the following four
artifacts:

* Availability Requirements Specification, containing models for the specification and step-
wise formalization of availability requirements

* Availability Specification, providing models to specify system specific definitions of
failure and calculation rules for availability metrics

» Extended Logical Architecture, adapting the original logical architecture to include the
system behavior in case of faults

* Environment Specification, modeling the structure and behavior of the system environ-
ment (e.g. external systems and users)

The included models allow to formulate precise and formal availability requirements, based on
system specific notions of failure and availability metrics. They further enable an automated
analysis of a system’s availability properties.

8.1.3 Availability Modeling Method

To facilitate the practical usage of the artifact method, we complement it with a modeling
method. The method includes the following elements.

152

Chapter 8. Conclusions and Outlook

* Basic building blocks, which are parametrizable specifications for availability models.
They include specifications for availability metrics, fault injection and behavior compar-
ison.

* A process, which describes the sequential creation of availability models, respecting the
dependencies between models.

* Step-by-step guides, providing guidance for the development of individual models. For
example, we suggest a guide word based approach for the elicitation and documentation
of failure modes.

* Modeling patterns, which provide a basic model structure and thus ease the creation of
availability models.

We use an existing example introduced by Broy (2011), a storage and access system, as a
running example to illustrate the artifact model and the modeling method.

8.1.4 Case Study: Train Door Control

To evaluate our approach (the artifact model and the modeling method), we apply it to an
industrial train control system from Siemens. For the evaluation, we pose three research
questions and answer them by performing a case study.

RQ1: Modeling Adequacy — Can the industrial availability requirements be modeled?
The study indicates that both, the artifact model and the modeling method, are applicable
and can capture the availability requirements for the train control system. However, it
also revealed minor limitations: We could not represent a requirement on the availability
in the long run, however, this was a tooling problem and no conceptual issue.

RQ2: Analysis Feasibility — Can the created models be automatically analyzed?
We demonstrate an automated verification of availability requirements, an automated
sensitivity analysis to assess the impact of different model parameters, and an automated
comparison of architecture alternatives. While the analyses were efficient in terms of
memory usage, they took a long time to complete (several hours to days). It is a topic for
future research to investigate better analysis techniques for the specific problem.

RQ3: Flexibility — How fragile are our models in the presence of changes in the system?
We found that changes in the functional and logical architecture only resulted in few and
small changes in the availability models, indicating that the availability models do not
introduce additional redundancy, but add new information instead. At the same time, the
analysis results for the changed system differed from the original results, showing that
our models reflect the changed availability properties.

8.1.5 Applicability of the Approach

In this thesis, we claim that our approach is applicable to any software-intensive system. Our
artifact model for availability builds on and extends a generic artifact model for this kind
of systems. We do not presuppose any specific domain, system architecture or description
technique. However, we evaluated our approach only for an embedded control system in the

153

Chapter 8. Conclusions and Outlook

rail domain. The specific part of the system that we modelled in the case study focuses more
on control and less on data and complex calculations. The failure modes considered by the
Siemens engineers could all be expressed using our basic building blocks. For a system that
focuses more on data and calculations, for example a complex business information system,
creating meaningful failure definitions could be more complex. For such a scenario we might
need further, specialized basic building blocks, for example to capture differences in complex
data. Nevertheless, the general principles we outlined in this thesis are equally applicable for
such a scenario.

A limitation of our approach is that we presuppose a model-based development approach
using a specific artifact model as basis. Although model-based development is more and more
adopted, in many cases no formal system models are available. While availability requirements
can still be formulated using our approach, several parts of step-by-step guides as well as
automated analyses cannot be applied in such a setting.

8.2 Outlook

In this section we outline possibilities for future research, improving and extending the contri-
butions of this thesis.

8.2.1 Application to Other Types of Properties

In Section 4.2.3, we described several properties related to availability. Among them are
reliability and safety. Although we concentrated on availability in this thesis, the basic idea
behind our approach, large parts of the artifact model and parts of the modeling method, can
probably be also applied to these properties. Especially for reliability this seems promising, as
reliability and availability coincide in case of systems without repair. Probably more work is
needed to adapt the approach to safety. Here, the additional concept of a hazard (i.e. a threat to
humans or the environment) needs to be integrated. Steps in this direction have been made by
Gilidemann and Ortmeier (Guedemann and Ortmeier, 2010). However, an integration of these
additional properties into a comprehensive engineering method is missing. We provide a first
discussion of how to apply our artifact model to reliability and safety in Section 5.7.

8.2.2 Specialized Description Techniques

As description techniques for our models we used the generic techniques also employed to
describe systems and system behavior. Examples are data-flow networks, state-transition dia-
grams or I/O tables. While this works technically, more specific description techniques could be
better suited. For example, in order to specify failure definitions, such a description technique
might provide abstractions for deviations or failure modes. An example for such a descrip-
tion technique is the Error Annex of the Architecture Analysis and Design Language (AADL)
(Society of Automotive Engineers, 2006). This annex provides a language for describing the
faults and their effects. It has a similar purpose as the fault-injection models that are part of our
artifact model. Developing similar languages for our different availability models would ease
the task of creating them and make them more understandable.

154

Chapter 8. Conclusions and Outlook

8.2.3 Evaluation for Other Domains

In our case study, we evaluate our approach for the railway domain. Although the results indicate
that the approach is applicable for this specific domain, further evaluation in other domains is
necessary. Especially the domain of business information system would be interesting. For this
domain, we expect that other failure modes are relevant and other types of availability metrics
are used. Extensions of our method regarding the basic building blocks or the used guide words
might be necessary to apply the method in such a setting.

8.2.4 Automated Analysis Techniques

In Chapter 7, we presented a tool prototype for performing availability analyses. The prototype
is based on the probabilistic modelchecker Prism. We saw that analyzing the train control system
took rather long time. However, there is potential for optimization. One possible direction is
to apply advanced probabilistic model checking techniques such as statistical model checking
(Brazdil et al., 2014; Hartmanns and Timmer, 2015; Henriques et al., 2012). A different
direction is to investigate, whether availability metrics can be iteratively approximated, for
example by sequentially considering longer time-intervals until the metric value converges.
Performing research in these directions would contribute to the practical applicability of the
approach.

155

Chapter 8. Conclusions and Outlook

156

Appendix A

Interview Guideline

Question Block

Question

1 General

1.1

What is the task of your department/your project

1.2 What is your role?
1.3 Whatkind of systems are you concerned with or what
parts thereof?
2 Relevance of Avail. 2.1 For which kinds of systems and under which circum-
stances does availability play a role for you?
2.2 Are there any norms or standards that play a role for
availability in your context?
3 Understanding of Avail. 3.1 Inyour context, what is an outage? When is a system
considered as not available?
3.2 What does “availability” mean in your context? Is
there a definition?
3.3 Do aspects such as degradation or operating modes
play a role with respect to availability?
4 Avail. in the PLC 4.1 How is availability taken up in the project manage-
ment?
4.2 Do you typically have availability requirements?
Which information do availability requirements need
to contain?
4.3 Where do availability requirements origin and how
are they documented?
4.4 How are availability requirements processed during

the requirements engineering?

157

Appendix A. Interview Guideline

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

How is availability taken up during architecture de-
velopment? How are availability requirements in-
corporated?

Which possibilities are there to assess the availability
through the architecture?

How can availability requirements be verified using
the architecture?

How is availability taken up during implementation?
How are availability requirements considered?

How can availability requirements be verified?

Which role does availability play during mainte-
nance? How are availability requirements consid-
ered?

Which role does availability play during operation?
How are availability requirements considered?

Do you perform availability measurements during
system operation? If yes, how is availability mea-
sured?

Across all activities: What means can be employed
to describe, ensure and increase availability?

Which artifacts are especially important for the de-
scription and analysis of availability?

Do you use models to describe, realize or analyze
availability?

5 Experiences

5.1

52

Is there a concrete project where availability has
played a major role? What were the challenges and
problems? What were the root causes for the prob-
lems? Which solutions have been found? Have any
issues been left open?

Which further challenges and problems have
emerged in the past? What were the root causes?
Which solutions have been found? Have any issues
been left open?

6 Closing

6.1

6.2
6.3

What should a model-based method for the descrip-
tion of availability contain in any case?

Which aspects would you add to this interview?

Who should we interview additionally?

158

Bibliography

Allenby, K. and Kelly, T. (2001). Deriving safety requirements using scenarios. In Proceedings
of the Fifth IEEE International Symposium on Requirements Engineering (RE "01).

Amazon (2015). Amazon S3 SLA. https://aws.amazon.com/de/s3/sla/. Last Accessed:
2015-02-18.

Anderson, T., Grabbe, T., Hammersley, J., et al. (2001). Providing open architecture high
availability solutions. Technical report.

AviZzienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. (2004). Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and Secure
Computing, 1(1).

Balzer, W. (2015). Quality of Experience und Quality of Service im Mobilkommunikations-
bereich. Springer.

Basili, V., Donzelli, P., and Asgari, S. (2004). A unified model of dependability: Capturing
dependability in context. IEEE Software, 21(6).

Bass, L., Clements, P., and Kazman, R. (2013). Software architecture in practice. Addison-
Wesley.

Bechta Dugan, J., Bavuso, S. J., and Boyd, M. (1992). Dynamic fault-tree models for fault-
tolerant computer systems. IEEE Transactions on Reliability, 41(3).

Becker, S., Koziolek, H., and Reussner, R. (2009). The Palladio component model for model-
driven performance prediction. Journal of Systems and Software, 82(1).

Bernardi, S., Flammini, F., Marrone, S., Merseguer, J., Papa, C., and Vittorini, V. (2011a).
Model-driven availability evaluation of railway control systems. In Flammini, F., Bologna,
S., and Vittorini, V., editors, Computer Safety, Reliability, and Security, volume 6894 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg.

Bernardi, S., Merseguer, J., and Lutz, R. (2010). Reliability and availability requirements
engineering within the Unified Process using a dependability analysis and modeling profile.
In Proceedings of the 2010 European Dependable Computing Conference (EDCC ’10).

Bernardi, S., Merseguer, J., and Petriu, D. (2011b). A dependability profile within MARTE.
Software & Systems Modeling, 10(3).

Bernardi, S., Merseguer, J., and Petriu, D. C. (2012). Dependability modeling and analysis of
software systems specified with UML. ACM Computing Surveys, 45(1).

159

Bibliography

Birolini, A. (2010). Reliability Engineering: Theory and Practice. Springer Berlin Heidelberg.
Bishop, M. (2012). Computer security: art and science. Addison-Wesley.

Bohm, W., Junker, M., Vogelsang, A., Teufl, S., Pinger, R., and Rahn, K. (2014). A formal
systems engineering approach in practice: An experience report. In Proceedings of the

Ist International Workshop on Software Engineering Research and Industrial Practices
(SER&IPs ’14).

Bolchini, C., Pomante, L., Salice, F., and Sciuto, D. (2001). Reliability properties assessment
at system level: a co-design framework. In Proceedings of the 7th International On-Line
Testing Workshop (IOLTW’01).

Bondavalli, A. and Simoncini, L. (1990). Failure classification with respect to detection. In
Proceedings of the 2nd IEEE Workshop on Future Trends of Distributed Computing Systems
(FTDCS’90).

Botaschanjan, J. and Hummel, B. (2009). Specifying the worst case: orthogonal modeling
of hardware errors. In Proceedings of the eighteenth international symposium on Software
testing and analysis (ISSTA °09).

Bourque, P. and Fairley, R. E. (2014). Guide to the Software Engineering Body of Knowledge
(SWEBOK): Version 3.0. IEEE Computer Society Press, Los Alamitos, CA, USA.

Bracquemond, C. and Gaudoin, O. (2003). A survey on discrete lifetime distributions. Inter-
national Journal of Reliability, Quality and Safety Engineering, 10(01).

Breitling, M. (2000). Modeling faults of distributed, reactive systems. In Joseph, M., editor,
Formal Techniques in Real-Time and Fault-Tolerant Systems, volume 1926 of Lecture Notes
in Computer Science. Springer.

Breitling, M. (2001). Formale Fehlermodellierung fiir verteilte reaktive Systeme. PhD thesis,
Technische Universitdt Miinchen.

Brosch, F. (2012). Integrated Software Architecture-Based Reliability Prediction for IT Systems.
PhD thesis.

Brosch, F., Koziolek, H., Buhnova, B., and Reussner, R. (2012). Architecture-based reliability
prediction with the Palladio component model. IEEE Transactions on Software Engineering,
38(6).

Broy, M. (1998). A functional rephrasing of the assumption/commitment specification style.
Formal Methods in System Design, 13(1).

Broy, M. (2010a). A logical basis for component-oriented software and systems engineering.
The Computer Journal, 53(10).

Broy, M. (2010b). Multifunctional software systems: Structured modeling and specification of
functional requirements. Science of Computer Programming, 75(12).

Broy, M. (2011). Seamless method- and model-based software and systems engineering. In
Nangz, S., editor, The Future of Software Engineering. Springer Berlin Heidelberg.

160

Bibliography

Broy, M. (2015). Rethinking nonfunctional software requirements. Computer, 48(5).

Broy, M. and Stglen, K. (2001). Specification and development of interactive systems: FOCUS
on streams, interfaces, and refinement. Springer New York.

Brézdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Ktetinsky, J., Kwiatkowska, M., Parker, D.,
and Ujma, M. (2014). Verification of markov decision processes using learning algorithms.
In Cassez, F. and Raskin, J.-F., editors, Automated Technology for Verification and Analysis,
volume 8837 of Lecture Notes in Computer Science. Springer International Publishing.

Buckl, C. (2008). Model-Based Development of Fault-Tolerant Real-Time Systems. Dissertation,
Technische Universitit Miinchen, Miinchen.

Chatterjee, K., Doyen, L., and Henzinger, T. (2009). Expressiveness and closure properties for
quantitative languages. In 24th IEEE Symposium on Logic In Computer Science (LICS "09).

Chung, L., Nixon, B. A., Yu, E., and Mylopoulos, J. (2012). Non-functional requirements in
software engineering, volume 5. Springer Science & Business Media.

Cysneiros, L. and do Prado Leite, J. (2004). Nonfunctional requirements: from elicitation to
conceptual models. IEEE Transactions on Software Engineering,, 30(5).

Deissenboeck, F., Wagner, S., Pizka, M., Teuchert, S., and Girard, J. (2007). An activity-based
quality model for maintainability. In Proceedings of the 2007 IEEE International Conference
on Software Maintenance (ICSM °07).

Despotou, G. and Kelly, T. (2006). Extending safety deviation analysis techniques to elicit
flexible dependability requirements. In Proceedings of the Ist IET International Conference
on System Safety.

Distefano, S. and Puliafito, A. (2009). Reliability and availability analysis of depen-
dent—dynamic systems with DRBDs. Reliability Engineering & System Safety, 94(9).

Domis, D. and Trapp, M. (2009). Component-based abstraction in fault tree analysis. In Buth,
B., Rabe, G., and Seyfarth, T., editors, Computer Safety, Reliability, and Security, volume
5775 of Lecture Notes in Computer Science. Springer Berlin Heidelberg.

Dongzelli, P. and Basili, V. (2006). A practical framework for eliciting and modeling system
dependability requirements: Experience from the NASA high dependability computing
project. Journal of Systems and Software, 79(1).

Dudley, R. (2002). Real Analysis and Probability. Cambridge Studies in Advanced Mathemat-
ics. Cambridge University Press.

Eusgeld, 1., Fraikin, F., Rohr, M., Salfner, F., and Wappler, U. (2008). Software reliability. In
Eusgeld, L., Freiling, F., and Reussner, R., editors, Dependability Metrics, volume 4909 of
Lecture Notes in Computer Science, pages 104—125. Springer Berlin Heidelberg.

Fenelon, P., McDermid, J. A., Nicolson, M., and Pumfrey, D. J. (1994). Towards integrated
safety analysis and design. ACM SIGAPP Applied Computing Review, 2(1).

Ge, X., Paige, R., and McDermid, J. (2009). Probabilistic failure propagation and transformation
analysis. In Buth, B., Rabe, G., and Seyfarth, T., editors, Computer Safety, Reliability, and
Security, volume 5775 of Lecture Notes in Computer Science. Springer Berlin Heidelberg.

161

Bibliography

Glinz, M. (2007). On non-functional requirements. In Proceddings of the 15th IEEE Interna-
tional Requirements Engineering Conference (RE "07).

GoSeva-Popstojanova, K. and Trivedi, K. S. (2001). Architecture-based approach to reliability
assessment of software systems. Performance Evaluation, 45(2-3).

Gokhale, S. S. (2007). Architecture-based software reliability analysis: Overview and limita-
tions. IEEE Transactions on Dependable and Secure Computing, 4(1).

Goseva-Popstojanova, K., Mathur, A., and Trivedi, K. (2001). Comparison of architecture-
based software reliability models. In Proceedings of the 12th International Symposium on
Software Reliability Engineering (ISSRE ’01).

Gray, J. and Siewiorek, D. (1991). High-availability computer systems. Computer, 24(9).

Grottke, M., Sun, H., Fricks, R., and Trivedi, K. (2008). Ten fallacies of availability and
reliability analysis. In Nanya, T., Maruyama, F., Pataricza, A., and Malek, M., editors,
Service Availability, volume 5017 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg.

Grunske, L. (2006). Towards an integration of standard component-based safety evaluation
techniques with saveccm. In Hofmeister, C., Crnkovic, 1., and Reussner, R., editors, Quality
of Software Architectures, volume 4214 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg.

Grunske, L., Lindsay, P., Bondarev, E., Papadopoulos, Y., and Parker, D. (2007). An outline of
an architecture-based method for optimizing dependability attributes of software-intensive
systems. In de Lemos, R., Gacek, C., and Romanovsky, A., editors, Architecting Dependable
Systems 1V, volume 4615 of Lecture Notes in Computer Science. Springer Berlin Heidelberg.

Grunske, L. and Zhang, P. (2009). Monitoring probabilistic properties. In Proceedings of the
7th joint meeting of the European software engineering conference and the ACM SIGSOFT
symposium on the foundations of software engineering (ESEC/FSE ’09). ACM.

Guedemann, M. and Ortmeier, F. (2010). Probabilistic model-based safety analysis. In Pro-
ceedings of the 8thWorkshop on Quantitative Aspects of Programming Language (QAPL
'10).

Hartmanns, A. and Timmer, M. (2015). Sound statistical model checking for MDP using partial
order and confluence reduction. International Journal on Software Tools for Technology
Transfer, 17(4).

Henriques, D., Martins, J., Zuliani, P., Platzer, A., and Clarke, E. (2012). Statistical model
checking for markov decision processes. In Proceedings of the 9th International Conference
on Quantitative Evaluation of Systems (QEST ’12).

Henzinger, T. A. (2010). From boolean to quantitative notions of correctness. In Proceedings
of the 37th Symposium on Principles of Programming Languages (POPL ’10). ACM.

IEC (1990). IEC 61025 Fault Tree Analysis.

IEC (1996). IEC 60300-3-4 Dependability management: Part 3-4: Application guide—Guide
to the specification of dependability requirements.

162

Bibliography

IEC (2004). IEC 60300-3-3 Dependability management - Part 3-3: Application guide - Life
cycle costing.

IEC (2006). IEC 62347:2006 Guidance on system dependability specifications.

IEC (2012). IEC 62741 Reliability of systems, equipment and components. Guide to the
demonstration of dependability requirements. The dependability case.

IEEE (2007). IEEE Std 1471-2000 Systems and software engineering - recommended practice
for architectural description of Software-Intensive Systems.

Immonen, A. and Niemeld, E. (2008). Survey of reliability and availability prediction methods
from the viewpoint of software architecture. Software and Systems Modeling, 7(1):49—-65.

ISO (2011). ISO 26262 Road vehicles — Functional safety — Part 1: Vocabulary.

ISO/IEC (2011). ISO/IEC 25010:2011 Systems and software engineering - Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) - System and software qualityISO/IEC.

ITU (2002). G.826 (12/02): End-to-end error performance parameters and objectives for
international, constant bit-rate digital paths and connections.

ITU (2008). ITU-T E.800 E.800 : Definitions of terms related to quality of service.

Janakiraman, G. J., Santos, J. R., and Turner, Y. (2004). Automated system design for avail-
ability. In Proceedings of the 2004 International Conference on Dependable Systems and
Networks (DSN °04). IEEE Computer Society.

Janicak, C. (2009). Safety Metrics: Tools and Techniques for Measuring Safety Performance.
Government Institutes.

Jhumka, A., Klaus, S., and Huss, S. (2005). A dependability-driven system-level design
approach for embedded systems. In Proceedings of 2005 Design, Automation and Test in
Europe (DATE °05).

Johannessen, P., Grante, C., Alminger, A., Eklund, U., and Torin, J. (2001). Hazard analysis
in object oriented design of dependable systems. In Proceedings of the 2001 International
Conference on Dependable Systems and Networks (DSN 01).

Johnson, R. B. (1997). Examining the validity structure of qualitative research. Education,
118(2).

Joshi, A., Vestal, S., and Binns, P. (2007). Automatic generation of static fault trees from AADL
models. In Proceedings of the 2007 Workshop on Architecting Dependable Systems (WADL
’07).

Junker, M. (2014). Exploiting behavior models for availability analysis of interactive systems. In
Proceedings of the 2014 IEEFE International Symposium on Software Reliability Engineering
(ISSRE ’14).

Junker, M. and Neubeck, P. (2012). A rigorous approach to availability modeling. In Proceed-
ings of the 2012 ICSE Workshop on Modeling in Software Engineering (MiSE ’12).

163

Bibliography

Kaiser, B., Liggesmeyer, P., and Mickel, O. (2003). A new component concept for fault trees.
In Proceedings of the 8th Australian Workshop on Safety Critical Systems and Software (SCS
'03).

Kaiya, H., Horai, H., and Saeki, M. (2002). AGORA: attributed goal-oriented requirements
analysis method. In Proceedings of the 10th International Conference on Requirements
Engineering (RE *02).

Kan, S. H. (2002). Metrics and models in software quality engineering. Addison-Wesley
Longman Publishing.

Kaniche, M., Kanoun, K., and Martinello, M. (2003). A user-perceived availability evaluation
of a web based travel agency. In Proceedings of the 2003 International Conference on
Dependable Systems and Networks (DSN "03).

Kitchenham, B., Linkman, S., Pasquini, A., and Nanni, V. (1997). The SQUID approach to
defining a quality model. Software Quality Journal, 6(3).

Kitchenham, B. A. and Pfleeger, S. L. (2008). Personal opinion surveys. In Shull, F., Singer,
J., and Sjgberg, D. 1., editors, Guide to Advanced Empirical Software Engineering. Springer
London.

Kletz, T. (1999). HAZOP and HAZAN: ldentifying and assessing process industry hazards.
Institution of Chemical Engineers.

Kubat, P. (1989). Assessing reliability of modular software. Operations Research Letters, 8(1).

Kwiatkowska, M., Norman, G., and Parker, D. (2011). PRISM 4.0: Verification of probabilistic
real-time systems. In Gopalakrishnan, G. and Qadeer, S., editors, Proceedings of the 23rd
International Conference on Computer Aided Verification (CAV ’11). Springer.

Lapp, S. A. and Powers, G. J. (1977). Computer-aided synthesis of fault-trees. /IEEE Transac-
tions on Reliability, R-26(1).

Laprie, J.-C. (1984). Dependability evaluation of software systems in operation. /EEE Trans-
actions on Software Engineering, SE-10(6).

Laprie, J.-C. (1995). Dependable computing and fault tolerance : Concepts and terminology.
In Proceedings of the 25th International Symposium on Fault-Tolerant Computing (FTCS
"95).

Littlewood, B. (1979). Software reliability model for modular program structure. /EEE Trans-
actions on Reliability, R-28(3).

Lochmann, K. (2014). Defining and Assessing Software Quality by Quality Models. Disserta-
tion, Technische Universitidt Miinchen.

Majdara, A. and Wakabayashi, T. (2009). Component-based modeling of systems for automated
fault tree generation. Reliability Engineering & System Safety, 94(6).

McDermid, J. and Pumfrey, D. (1994). A development of hazard analysis to aid software design.
In Proceedings of the 9th Annual Conference on Computer Assurance (COMPASS "94).

164

Bibliography

Milanovic, N. and Milic, B. (2011). Automatic generation of service availability models. IEEE
Transactions on Services Computing, 4(1).

Musa, J. (1993). Operational profiles in software-reliability engineering. Software, 10(2).

Musa, J. D. (1996). The operational profile. In Ozekici, S., editor, Reliability and Maintenance
of Complex Systems, volume 154 of NATO ASI Series. Springer Berlin Heidelberg.

Neubeck, P. (2012). A Probabilitistic Theory of Interactive Systems. Dissertation, Technische
Universitdt Miinchen.

Newman, R. C. (2009). Computer security: Protecting digital resources. Jones & Bartlett
Publishers.

OMG (2009). UML profile for MARTE: Modeling and analysis of real-time embedded systems.

Papadopoulos, Y. and Maruhn, M. (2001). Model-based synthesis of fault trees from matlab-
simulink models. In Proceedings of the 2001 International Conference on Dependable
Systems and Networks (DSN "01).

Pfleeger, C. P. and Pfleeger, S. L. (2006). Security in Computing (4th Edition). Prentice Hall
PTR, Upper Saddle River, NJ, USA.

Pohl, K., Honninger, H., Achatz, R., and Broy, M. (2012). Model-based Engineering of
Embedded Systems: The SPES 2020 Methodology. Springer.

Powell, D. (1995). Failure mode assumptions and assumption coverage. In Randell, B., Laprie,
J.-C., Kopetz, H., and Littlewood, B., editors, Predictably Dependable Computing Systems.
Springer Berlin Heidelberg.

Pumfrey, D. J. (1999). The principled design of computer system safety analyses. PhD thesis,
University of York.

Rausand, M. and Hgyland, A. (2004). System Reliability Theory: Models, Statistical Methods
and Applications. Wiley-Interscience, Hoboken, NJ.

Reussner, R. H., Schmidt, H. W., and Poernomo, I. H. (2003). Reliability prediction for
component-based software architectures. Journal of Systems and Software, 66(3).

Rossebeg, J. E., Lund, M. S., Husa, K. E., and Refsdal, A. (2006). A conceptual model for
service availability. In Gollmann, D., Massacci, F., and Yautsiukhin, A., editors, Quality of
Protection, volume 23 of Advances in Information Security. Springer US.

Runeson, P. and Regnell, B. (1998). Derivation of an integrated operational profile and use
case model. In Proceedings of the Ninth International Symposium on Software Reliability
Engineering (ISSRE "98).

Saridakis, T. (2002). A system of patterns for fault tolerance. In Proceedings of 7th European
Conference on Pattern Languages of Programs (EuroPloP "02).

Schilling, R. (2005). Measures, Integrals and Martingales. Cambridge University Press.

Scott, J. and Kazman, R. (2009). Realizing and refining architectural tactics: Availability.
Technical Report CMU/SEI-2009-TR-006.

165

Bibliography

Shukla, R., Carrington, D., and Strooper, P. (2004). Systematic operational profile development
for software components. In Proceedings of the 11th Asia-Pacific Software Engineering
Conference (APSEC "04).

Society of Automotive Engineers (2006). SAE AS 5506/1 — SAE architecture analysis and
design language (AADL) annex volume 1.

Society of Automotive Engineers (2012). SAE AS 5506B — architecture analysis & design
language (AADL).

Sommerville, I. and Sawyer, P. (1997). Requirements engineering: a good practice guide. John
Wiley & Sons, Inc.

Streichert, T., GlaB3, M., Haubelt, C., and Teich, J. (2007). Design space exploration of reliable
networked embedded systems. Journal of Systems Architecture, 53(10).

Tokuno, K. and Yamada, S. (2008). User-perceived software service availability modeling with
reliability growth. In Nanya, T., Maruyama, F., Pataricza, A., and Malek, M., editors, Service
Availability, volume 5017 of Lecture Notes in Computer Science. Springer Berlin Heidelberg.

Trivedi, K., Wang, D., and Hunt, J. (2010). Computing the number of calls dropped due
to failures. In Proceedings of the 21st International Symposium on Software Reliability
Engineering (ISSRE ’10).

Van Lamsweerde, A. (2001). Goal-oriented requirements engineering: A guided tour. In
Proceedings of the fifth IEEE International Symposium on Requirements Engineering (RE
01).

Vogelsang, A. (2015). Model-based Requirements Engineering for Multifunctional Systems.
Dissertation, Technische Universitat Miinchen.

Wang, D. and Trivedi, K. (2005). Modeling user-perceived service availability. In Malek,
M., Nett, E., and Suri, N., editors, Service Availability, volume 3694 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg.

Withall, S. (2007). Software Requirement Patterns. Pearson Education.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell, B., and Wesslén, A. (2012).
Experimentation in software engineering. Springer.

Xie, Y., Li, L., Kandemir, M., Vijaykrishnan, N., and Irwin, M. (2004). Reliability-aware co-
synthesis for embedded systems. In Proceedings of the 15th IEEE International Conference
on Application-Specific Systems, Architectures and Processors (ASAP "04).

Yacoub, S., Cukic, B., and Ammar, H. (2004). A scenario-based reliability analysis approach
for component-based software. IEEE Transactions on Reliability, 53(4).

166

