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Orthogonal Image Features for Visual Servoing of a 6 DOF
Manipulator with Uncalibrated Stereo Cameras

Caixia Cai, Nikhil Somani, Alois Knoll

Abstract—We present an approach to control a 6 DOF
manipulator using an uncalibrated visual servoing (VS) approach
that addresses the challenges of choosing proper image features
for target objects and designing a VS controller to enhance the
tracking performance. The main contribution of this article is
the definition of a new virtual visual space (image space). A
novel stereo camera model employing virtual orthogonal cameras
is used to map 6D poses from Cartesian space to this virtual
visual space. Each component of the 6D pose vector defined
in this virtual visual space is linearly independent, leading to
a full-rank 6× 6 image Jacobian matrix which allows avoiding
classical problems, such as, image space singularities and local
minima. Furthermore, the control for rotational and translational
motion of robot are decoupled due to the diagonal image
Jacobian. Finally, simulation results with an eye-to-hand robotic
system confirm the improvement in controller stability and
motion performance with respect to conventional VS approaches.
Experimental results on a 6 DOF industrial robot are provided
to illustrate the effectiveness of the proposed method and the
feasibility of using this method in practical scenarios.

Index Terms—Orthogonal Image Features, Visual Servoing.

I. INTRODUCTION

Visual Servoing (VS) has been used in a wide spectrum
of applications, from fruit picking to robotized surgery, and
especially in industrial fields for tasks such as assembling,
packaging, drilling and painting [1], [2]. According to the
features used as feedback in minimizing the positioning error,
visual servoing is classified into three categories [1]: Position-
Based Visual Servoing (PBVS), Image-Based Visual Servoing
(IBVS) and Hybrid Visual Servoing (HYVS).

In general, a PBVS system has a good 3D trajectory but is
sensitive to calibration errors. Compared to PBVS, IBVS is
known to be robust to camera model errors [3] and the image
feature point trajectories are controlled to move approximately
along straight lines[4]. However, one of the main drawbacks
of IBVS is that there may exist image singularities and
image local minima leading to IBVS failure. The selection
of visual features is a key point to solve the problem of image
singularities. A great deal of effort has been dedicated to
determine decoupling visual features that deliver a triangular
or diagonal Jacobian matrix [5], [6].

In IBVS, geometric features in the image such as points,
segments or straight lines [1] are usually chosen as image
features and used as the inputs of controllers. Several novel
features such as laser points [7], the polar signatures of an
object contour [8], and image moments [6], [9], [10] have
been developed to track objects which do not have enough
detectable geometric features and to enhance the robustness of
visual servoing systems. The image interaction matrix (image
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Jacobian), can be computed using direct depth information
[11], [12], by approximation via on-line estimation of depth
of the features[13], [14], [15], [16], or using depth-independent
image Jacobian matrix [17], [18]. Additionally, many papers
directly estimate on-line the complete image Jacobian in dif-
ferent ways [19], [20], [21], [22]. However, all these methods
generally use redundant image point coordinates to define a
non-square image Jacobian leading to well-known problems
such as image singularities.

It is also possible to combine the advantages of 2D and
3D visual servoing while avoiding their respective drawbacks.
This approach is called 2-1/2D visual servoing because the
used input is expressed partly in the 3D Cartesian space and
partly in the 2D image space [23]. Contrary to PBVS, the 2-
1/2D approach does not need any geometric 3D model of the
object. In comparison to IBVS, the 2-1/2D approach ensures
the convergence of the control law in the whole task space.

In this paper, we propose a new 2-1/2D visual servoing
(coined 6DVS) which extracts new orthogonal image features
and decouples the translational and the rotational control of a
robot under visual feedback from fixed stereo cameras. More
precisely, instead of using the classical visual features, we
define a new virtual visual space (image space), where a
3D position vector is extracted as a feature. Each principal
component of the position vector is linearly independent and
orthogonal. We compute the orientation through a rotation
matrix with Euler angles representation. We thus obtain a
diagonal interaction matrix with very satisfactory decoupling
properties. It is interesting to note that this Jacobian matrix
has no singularity in the whole task space and the controls for
the position and orientation are independent. Simulations and
experimental results confirm that this new formulation (6DVS)
is more efficient than existing classic VS approaches and the
errors in both the virtual visual space and Cartesian space
converge without local minima 1. Moreover, it is less sensitive
to image noise than classical 2-1/2D visual servoing.

In Section II we formulate the classical 2-1/2D VS ap-
proach, highlight its shortcomings and state the core issues.
In Section III we introduce a new camera model to construct
a virtual visual space and define a visual pose vector whose
elements are chosen as image features. Using this 6D visual
pose, a square full-rank image Jacobian is obtained, which is
used in Section IV to simulate an adaptive 6D visual servoing
controller and evaluate its properties. Section V presents two
real-world experiments (Fig. 1) and shows the results obtained
in a dynamic environment. Finally, Section VI presents the

1Parts of this work have already been presented at IROS’14 [24]. In this
paper, quantitative validations of the approach and comparisons to classical
methods in terms of steady state errors, transient systems performance and
robustness to uncertainties have been added.
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Fig. 1. Description of robotic experimental setup with fixed stereo cameras.

conclusions of our work and directions for future work.

II. PROBLEM FORMULATION

A. The Problem of Classical Methods

Suppose that the robot end-effector is moving with an-
gular velocity ω = [ωx,ωy,ωz]

T and translational velocity
v = [vx,vy,vz]

T both w.r.t. the camera frame in a fixed camera
system (eye-to-hand configuration, see Fig. 1). Let Pc be a
point rigidly attached to the end-effector with X = [x,y,z]T .

In classical 2-1/2-D visual servoing, as described by Malis et
al.[23], the selected feature vector is h= [XT

h ,θUT ]T , where Xh
is the position vector, θ and U are the rotation angle and axis
of the rotation matrix R. The corresponding image Jacobian is
an upper block triangular matrix given by

J =

[ 1
z Jv Jvω

03 Jω

]
ḣ = J

[
v
ω

]
(1)

The position vector Xh = [u,v, ln(z)]T is defined in extended
image coordinates, where u,v are the image features, 2D
data (pixel) and z is the depth of the considered point, 3D
data (meter). Moreover, according to image Jacobian (1),
the translational velocity of the point Pc is affected by both
position and orientation errors.

u and v are two orthogonal principal axes in image coor-
dinates. If we can find a third, normalized zs component for
image coordinates which is orthogonal to u,v and measured
in pixels, then all the points in the image coordinates can be
decomposed into 3 principal components in such a way that
all the elements of the position vector can be controlled in a
linearly independent way.

B. Design of proposed VS Features

Motivated by the desire to find a zs component of the
position vector which is also in the image plane (pixel) and
decouples the control of the translational and the rotational
motion, we define a new virtual visual space (image space),
where a 3D pixel position Xs is extracted as a feature. All
elements of this 3D position vector are linearly independent
and orthogonal to each other. We solve the orientation using a
rotation matrix with ZY X Euler angles representation, denoted
by θ . Thus, the new feature vector is Ws = [xs,ys,zs,α,β ,γ]T

and the new mapping is given by

Ẇs =

[
Ẋs
θ̇

]
=

Jimg︷ ︸︸ ︷[
Jv 03
03 Jω

][
v
ω

]
(2)

where the new image Jacobian (Jimg ∈ R6×6) is a decoupling
diagonal matrix that decouples the translational and rotational
control.

III. 6D ADAPTIVE VISUAL SERVOING

Consider the motion of a plane π attached to the end effector
of a robot that rotates and translates through space in order to
obtain a desired position and orientation of the end-effector.
We define four target points on π denoted by Pi, ∀i = 1,2,3,4.
In this work, we investigate the translational and rotational
motion of the end-effector of a robot under visual feedback
from a fixed stereo camera system. By assuming knowledge of
the camera intrinsic parameters, we obtain the pixel translation
motion using triangulation on the center of the four points
while utilizing the rotational information of the end-effector
through the motion of four tracked points.

The image Jacobian Jimg has a decoupled structure, which
is divided into position image Jacobian (Jv ∈ R3×3) and
orientation image Jacobian (Jω ∈ R3×3).

A. Image Jacobian for 3D Position Jv

Since Xs ∈R3×1 represents the position in the image feature
space, the maximum number of independent elements for
position is 3. Hence, in this work we construct a virtual visual
space using the information generated from the stereo vision
system where 3 linearly independent elements can be extracted
to get a full-rank image Jacobian (Jv).

Jv ∈ R3×3 describes the relationship between the velocities
of 3D Cartesian position Ẋb (meters) and 3D visual position
Ẋs (pixels). The key idea of this model is to combine the
stereo camera model with a virtual composite camera model
to get a full-rank image Jacobian, see Fig. 2.

This new 3D visual model can be computed in two steps:
• The standard stereo vision model [25] is used to analyt-

ically recover the 3D relative position (XCl ) of an object
with respect to the reference frame of the stereo system
OCl .

• The Cartesian position XCl is projected into two virtual
cameras Ov1 and Ov2 .

1) Stereo Vision Model: Defining the observed image
points in each camera as pl = [ul ,vl ]

T , pr = [ur,vr]
T , we

can use triangulation [25] to compute the relative position
XCl = [xc,yc,zc]

T with respect to the left camera OCl . Then the
position XCl can be mapped to the world frame Xb through

XCl = Rb
Cl

Xb + tb
Cl

(3)

where T b
c = [Rb

Cl
, tb

Cl
] is the transformation matrix between

coordinate frame OCl and Ob.
Before integrating the stereo cameras model with the virtual

composite model, a re-orientation of the coordinate frame OCl
to a new coordinate frame OV with the same origin is required.
The projection position XV = [xV ,yV ,zV ]

T with (3) is (Fig. 2)

XV = RCl
V XCl = RCl

V (Rb
Cl

Xb + tb
Cl
) (4)

where RCl
V is the orientation of the reference frame2 OV with

respect to OCl .

2This reference frame is fixed to the left camera coordinate frame and is
defined by the user, therefore RCl

V is assumed to be known.
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Fig. 2. Image projections: (a) The figure depicts the different coordinate frames used to obtain a general 3D virtual visual space. Xb ∈ R3×1 is the position
in meters [m] of an Object with respect to the world coordinate frame (wcf) denoted by Ob. Moreover, OCl and OCr are the coordinate frames for the left
and right cameras, respectively. Rb

Cl
∈ SO(3) represents the orientation of wcf with respect to the left camera. OV is a reference coordinate frame for the

virtual orthogonal cameras Ov1,2 where RCl
V ∈ SO(3) is its orientation with respect to OCl . λ is the distance from Ovi to OV along each optical axis i. The

vectors pl , pr ∈R2×1 are the projections of the point Xb in the left and right cameras. Finally, pvi ∈R2×1 represents the projection of the Object in the virtual
cameras Ovi . (b) Placement of the composite camera model with respect to left camera.

2) Virtual Composite Camera Model: In order to compute
the 3D virtual visual space, we define two virtual cameras
attached to the stereo camera system using the coordinate
frame OV (Fig. 2 (b)). We use the pinhole camera model [25]
to project the relative position XV to each of the virtual cameras
Ov1 and Ov2 .

The model for the virtual camera 1 is given by

pv1 =

[
uv1

vv1

]
=

1
−yV +λ

αR(φ)

[
xV −o11
zV −o12

]
+

[
cx
cy

]
. (5)

where φ is the rotation angle of the virtual camera along its
optical axis, O1 = [o11,o12]

T is the projected position of the
optical center with respect to the coordinate frame OV , C1 =
[cx,cy]

T is the position of the principal point in image plane, λ

is the distance from the virtual camera coordinate frame Ov1
to the reference frame OV along its optical axis. α and the
rotation matrix R(φ) are defined as:

α =

[
f β 0
0 f β

]
R(φ) =

[
cosφ −sinφ

sinφ cosφ

]
. (6)

where f is the focal length of the lens used and β is the
magnification factor of the camera.

Since this model represents a user-defined virtual camera,
all its parameters 3 are known in the defined configuration of
the virtual cameras φ = 04 (Fig. 2 (b)).

Similarly, the model for virtual camera 2 is defined as:

pv2 =

[
uv2
vv2

]
=

1
xV +λ

αR(φ)

[
yV −o21
zV −o22

]
+

[
cx
cy

]
. (7)

In order to construct the 3D virtual visual space Xs ∈R3×1,
we combine both virtual camera models.

3Since the virtual cameras are user-defined, we can set the same intrinsic
parameters and λ values for both cameras.

4The reason to introduce the auxiliary coordinate frame OV is to simplify
the composite camera model by rotating the coordinate frame OCl in a specific
orientation such as φ = 0.

Using properties of the rotation matrix R(φ) and the fact
that α is a diagonal matrix, from (5), uv1 can be written in the
form

uv1 = γ1
xV −o11

−yV +λ
− γ2vv1 + γ3 (8)

where the constant parameters γ1, γ2, γ3 ∈ R are explicitly
defined as

γ1 =
f β

cosφ
, γ2 = tan(φ), and γ3 = cx + cyγ2. (9)

Based on (7) and (8), we define a visual camera model (Os)
representation Xs = [xs,ys,zs]

T using the orthogonal elements
[uv1 ,uv2 ,vv2 ]

T as

Xs =

 uv1
uv2
vv2

=

Rα︷ ︸︸ ︷[
γ1 01×2

02×1 αR(φ)

]
xV−o11
−yV+λ
yV−o21
xV+λ

zV−o22
xV+λ

+ρ (10)

where ρ = [γ3− γ2vv1 ,cx,cy]
T . The pixel position Xs constructs

the 3D virtual visual space.
Given that φ = 0, then γ1 = f β , γ2 = 0, γ3 = cx, implies

that ρ = [cx,cx,cy]
T and Rα = diag( f β ) ∈ R3×3. Therefore,

the mapping in (10) can be simplified as

Xs = diag( f β )


xV−o11
−yV+λ
yV−o21
xV+λ

zV−o22
xV+λ

+
 cx

cx
cy

 . (11)

The velocity mapping can be obtained with the time derivative
of (11) as follows:

Ẋs = Rα JoẊV = Jα ẊV (12)

where the Jacobian matrix Jo ∈ R3×3 is defined as

Jo =


1

−yV+λ

xV−o11
(−yV+λ )2 0

− yV−o21
(xV+λ )2

1
xV+λ

0
− zV−o22

(xV+λ )2 0 1
xV+λ

 . (13)
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Taking the time derivative of (4), (12) can be rewritten as

Ẋs = Jα(R
Cl
V Rb

Cl
)Ẋb = JvẊb (14)

where we define Jv ∈ R3×3 as the position image Jacobian.
Remark 1: Virtual Cameras. The two virtual cameras are

selected in such a way that their optical axes intersect at 90
degrees. Since the cameras are virtual they have infinite field of
view and pixel positions Xs can be either negative or positive.

B. Image Jacobian for 3D Orientation Jω

Let θ = [α,β ,γ]T be a vector of ZY X Euler angles, which
denotes a minimal representation for the orientation of the
end-effector frame relative to the robot base frame. Then, the
definition of the angular velocity ω is given by [26]

ω = T (θ)θ̇ . (15)

If the rotation matrix Re f = Rz,γ Ry,β Rx,α is the Euler angle
transformation, then

T (θ) =

cos(γ)cos(β ) −sin(γ) 0
sin(γ)cos(β ) cos(γ) 0
−sin(β ) 0 1

 (16)

Singularities of the matrix T (θ) are called representational
singularities. It can easily be shown that T (θ) is invertible
provided cos(β ) 6= 0.

Therefore,
θ̇ = T−1(θ)ω = Jω ·ω. (17)

where Jω ∈R3×3 is defined as the orientation image Jacobian.
Combining (14) and (17) we have the full expression

Ẇs =

[
Ẋs
θ̇

]
=

[
Jv 0
0 Jω

][
v
ω

]
(18)

= Jimg ·V (19)

where the matrix Jimg ∈ R6×6 is defined as the new image
Jacobian, which is a block diagonal Jacobian matrix.

C. Control Scheme

Substituting the robot differential kinematics V = J(q)q̇,
equation (19) can be rewritten in the form

Ẇs = JimgJ(q) · q̇ = Js · q̇ (20)

where J(q) ∈ R6×6 is the Jacobian matrix of the robot
manipulator and the matrix Js ∈R6×6 is defined as the visual
Jacobian.

According to (20) the corresponding control law is

q̇r = Js
−1Ẇsr (21)

where q̇r is the joint velocity nominal reference and is used
in an adaptive second order sliding mode controller, which is
described in detail in the paper [27].

Remark 2: Singularity-free Jimg.
From (18), we can see that det(Jimg) = det(Jv)det(Jω). Hence,
the set of singular configurations of Jimg is the union of the
set of position configurations satisfying det(Jv) = 0 and the
set of orientation configurations satisfying det(Jω) = 0.

From (14), we can see that J−1
v = Rb

Cl

−1RCl
V
−1

Jo
−1R−1

α . The
matrices Rb

Cl
,RCl

V ∈ SO(3) and Rα = diag( f β )∈R3×3 are non-
singular. Then, det(Jo) = 0→ det(Jv) = 0. This condition is
present only when: 1) O11 + λ = 0 and O21 − λ = 0 or 2)
xV =−λ and yV = O21 or 3) yV = λ and xV = O11. However,
O11, O21 and λ are all defined by the user. Hence, a non-
singular Jv can be obtained by enforcing the condition O11 =
O21,λ >max(xVmax ,yVmax), where xVmax and yVmax are delimited
by the robot workspace defined with respect to OV . Therefore,
det(Jv) 6= 0 and can not become infinite.

Provided det(T (θ)) 6= 0, J−1
ω always exists. Therefore, the

singularities of Js are defined only by the singularities of J(q).

IV. SIMULATION

We simulate a 6DOF industrial robot with real robot param-
eters in closed loop with the control approach. Real camera
parameters are used to simulate the camera projections. Our
simulation platform is identical to the real experiments, except
that we simulate the 6D desired pose. The robot motions are
visualized in a 3D visualization system (Section V-A3).

Simulation tests have been carried out with four feature
points, which give us a 16×6 interaction matrix in the classical
IBVS with stereo vision system and a 6× 6 Jacobian matrix
in our algorithm (6DVS). In proposed method 6DVS, the
image features s are mapped to the virtual visual space to
get Xs, which is used to design the error function for the
control scheme. For classical stereo IBVS, the image features
s are directly used to design the error function and the real
z obtained from the stereo vision system is used to compute
the interaction matrix. The 3D Cartesian position from the
stereo vision system is used to perform PBVS. Classical 2-
1/2D (2.5DVS) with Euler angle representation is also used in
the comparisons.

TABLE I
INITIAL(I) AND DESIRED(D) LOCATION OF FEATURE POINTS IN IMAGE

PLANE (PIXEL) OF LEFT CAMERA

Point 1 Point 2 Point 3 Point 4
(u v) (u v) (u v) (u v)

I (207 254) (194 212) (213 200) (225 238)Test 1 D (422 379) (406 307) (471 290) (486 360)
I (207 254) (194 212) (213 200) (225 238)Test 2 D (422 379) (406 307) (471 290) (486 360)
I (318 224) (304 191) (312 177) (325 208)Test 3 D (226 228) (200 184) (244 159) (269 203)
I (207 254) (194 212) (213 200) (225 238)Test 4 D (291 444) (304 382) (367 376) (354 434)

The initial (I) and desired (D) configurations of the image
features (s = [u1,v1,u2,v2,u3,v3,u4,v4]

T )5 in left camera for
each of the tests are shown in Table I.

1) Test 1: In this test, we examine the convergence of each
image feature point and pose errors when the desired location
is far away from the initial one. The Cartesian and image
trajectories of the proposed 6D visual servoing (6DVS) and
the conventional approaches (IBVS, PBVS and 2.5DVS) are
compared in Fig. 3.

5In simulation figures, only image features in the left camera are illustrated,
since the results in the right camera are similar.
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Fig. 3. Simulation Test 1: Large translational and rotational motion. (1) 3D robot end-effector trajectory in Cartesian (Xb); (2) image plane trajectories of
6DVS, 2.5DVS, IBVS and PBVS (s); (3) feature errors in the image plane, (4) robot end-effector pose errors in 3D Cartesian space.

As shown in Fig. 3 (1), PBVS results in a straight line end-
effector Cartesian trajectory. Since there is no control of the
image features, the image trajectory, (as shown in Fig. 3 (2)),
is unpredictable and may leave the camera field of view. In
IBVS, straight-line image trajectory is observed while the end-
effector Cartesian trajectory is not controlled. For 2.5DVS, the
trajectory of the reference point in the image is a straight line
and the Cartesian trajectory is also well behaved. However,
other points in image plane have curved trajectories.

Contrary to the previous approaches, the proposed 6DVS
has a straight-line Cartesian trajectory (similar to that of
PBVS) and all the image features are “indirectly” controlled to
move approximately along straight-line trajectories like IBVS,
see Fig. 3 (1), (2). Moreover, both the features errors and the
Cartesian pose errors converge to zero very smoothly without
any overshooting (Fig. 3 (3), (4)). Although 2.5DVS has a
similar trade-off between these properties, the proposed 6DVS
is more efficient and has better performance than 2.5DVS.
Hence, 6DVS combines the advantages of PBVS in terms
of controlling straight trajectories in Cartesian Space, and the
advantages of IBVS in terms of controlling image trajectories.

2) Test 2: For this test we compare the robustness of the
proposed 6DVS, the classical IBVS and PBVS to camera
errors. These errors are formulated as:

• Camera intrinsic parameter errors f̂ = 1.1 f .
• Camera extrinsic parameter errors T̂ b

c = 1.1T b
c .

The results from this test show that despite the camera
errors, the controllers for each of the evaluated approaches
don’t become unstable. The resulting Cartesian and image
trajectories have some notable differences (see Fig. 4), but
are still well behaved.

Due to camera errors, the end-effector Cartesian trajectory
of PBVS deviates from the original straight-line trajectory to
a circular motion, and slight effects on the image trajectories
can also be observed (see Fig. 4 (c)). Slight differences in
the end-effector Cartesian trajectory of IBVS are shown in
Fig. 4 (b). As expected, the image trajectories for IBVS are
robust to camera errors. Fig. 4 (a) illustrates that the effects on
both Cartesian and image trajectories in the proposed 6DVS
are minor. Hence, 6DVS is as robust to camera calibration
errors as IBVS.

3) Test 3: In this test we evaluate a common problem in
classical IBVS: local minima. By definition, local minima are
cases where V = 0 and s 6= sd . So, a local minimum is reached
when the point velocity on the robot end-effector is zero while
its final position is far away from the desired position. At that
position, the errors s− sd in image plane do not completely
vanish (residual error is approximately two pixels on each u
and v coordinate). Introducing noise in the image measurement
leads to the same results.

Reaching such a local minimum is illustrated in Fig. 5 (b)
for IBVS. Each component of the feature errors e has a
exponential convergence but is not exactly zero (s 6= sd) while
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Fig. 4. Simulation Test 2: Comparison of the robustness of the controllers
with effects of camera errors. Comparison of 6DVS, IBVS and PBVS in terms
of (1) image feature trajectories and (2) 3D Cartesian trajectories.

the robot velocity is close to zero in Fig. 5 (b).(3). It is clear
from Fig. 5 (b).(4) that the system has been attracted to a local
minimum far away from the desired configuration.

In the proposed scheme (6DVS), the image Jacobian Jimg
has full rank of 6, which implies there are no local minima.
The global minimum is correctly reached from the same initial
position if the proposed Jimg is used in the control scheme

(Fig. 5 (a)). In this case, the trajectories in image plane are
straight and each component of the errors e has a exponential
convergence to zero without local minima. Moreover, when the
velocity reaches zero, the errors in image plane and Cartesian
space are both close to zero (V → 0,∆s→ 0,∆Xb→ 0).

4) Test 4: Motion decoupling is compared between the
proposed 6DVS and conventional 2.5DVS in this test. Both
approaches receive the same desired Cartesian position and
orientation. First the desired position is given and both meth-
ods perform equally well. As shown in Fig. 6, the trajectories
in both Cartesian space and the image plane are smooth for
6DVS and 2.5DVS in the position task.

At around t = 30s, the desired orientation is modified. In
the standard 2-1/2D method, a triangular interaction matrix is
used for motion control, as defined in (1). Hence, the rotational
error can affect the translation, as shown in Fig. 6 (b). The
visual signals are coupled and both position and orientation in
the Cartesian space change when only the desired orientation
is updated. For the proposed 6DVS, we introduce the virtual
visual space to decouple the control features and get a diagonal
image Jacobian. This decoupling of rotational and translational
motions allows a better control design. Fig. 6 (a) demonstrates
the decoupled performance in the proposed method.

Simulation results of four different tests demonstrate the
novel properties and better performance of the proposed
6DVS algorithm over conventional VS approaches. 6DVS has
a reliable straight 3D Cartesian trajectory like PBVS, and
straight feature trajectories like IBVS. Moreover, 6DVS allows
to avoid local minima (unlike IBVS) and is robust to camera
calibration errors. Contrary to classical 2-1/2D visual servoing,
6DVS decouples the control of the translational and rotational
motion.

V. EXPERIMENTS

Two experiments were performed to validate and evaluate
this work on a standard industrial manipulator in a realistic
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human-robot interaction scenario. In the first experiment, we
control the robot without environment constraints to better
illustrate the stability of the control scheme and the conver-
gence of 6D visual trajectory error. The second experiment
uses the 6DVS scheme for tracking a moving target in real-
time. It is also an example of how the proposed algorithm is
used in a practical human-robot interaction scenario. To this
effect, several other features such as singularity avoidance,
self-collision avoidance and obstacle detection and avoidance
are implemented to ensure safety of the robot and human.

A. System Overview

The experimental setup consists of 3 sub-systems:
1) Visual Stereo Tracker: The stereo system is composed of

2 USB cameras fixed on a tripod, in a eye-to-hand configura-
tion (Fig. 1). The stereo rig is uncalibrated with respect to the
robot base frame and can be manually moved. The parameters
of the virtual cameras (see Section III) are selected such that
Jα is always non-singular. In order to compute torque (τ) and
avoid a multiple-sampling system, an extended Kalman filter
(EKF) is used to estimate the visual position (sampling period
4ms), whereas the reference is updated each 30ms with the
real visual data of both cameras.

2) Robot Control System: The robot system comprises a
StaübliTX90 industrial robot arm (6DOF), a CS8C control unit
and a workstation running on GNU/Linux OS with real-time
kernel (Fig. 1). The robot is controlled in torque mode using
a Low Level Interface (LLI) library.

3) 3D Visualization System: This module performs
OpenGL based real-time rendering of the workspace in 3D,
using the Robotics Library6. The system updates the configu-
ration of the robot arm and the position of the target in real
time, which is achieved by means of TCP/IP communication.

B. Experiment 1: 6D Visual Tracking

2D image features are extracted from AR markers using
a stereo vision system. We use the ArUco library based on

6www.roboticslibrary.org

OpenCV to detect markers. Every marker provides 2D image
features for 4 corner points. 3D position and rotation with
respect to the camera frame are obtained from the image
features using the camera intrinsic parameters.

le
ft

ri
g
h
t

(a) Teaching Interface (b) Automatic Execution

Fig. 7. Snapshot of the 6D visual tracking: (a) The human uses the AR
marker to show the desired trajectories, (b) The robot executes a 6D visual
tracking and shows identical linear and angular motions as taught.

This experiment consists of two phases: teaching and exe-
cution.

1) Teaching Interface: We provide a teaching interface
(Fig. 7 (a)), where the user is holding an AR marker, detected
by the stereo camera system to provide 2D image features. A
red square and a marker ID (cyan) in the image shows the
detection. In this task, the user moves the marker, creating
some visual trajectories, e.g., two orthogonal straight lines
on the table and two smooth curves on the surface of the
Globe. These trajectories include both translation and rotation
motions. During the movement, the 2D features for four corner
points of the marker are recorded and saved. At some points,
when the marker is lost or can not be detected, the last
available detection is stored thereby, guaranteeing that the
desired pose can be reached and is safe for the robot execution.

2) Automatic Execution: After the teaching phase, the
robot can automatically execute the recorded visual trajec-



8

300
320

340
360

380 −200

−100

0

100
80

100

120

140

160

180

 

y (pixel)

(1) 3D Position in Virtual Visual Space

x (pixel)
 

z
 (

p
ix

e
l)

Target:   X
sd

 End−effector: X
s

−0.6
−0.4

−0.2
0

0.2 −1

−0.5

0

0.4

0.5

0.6

0.7

0.8

 

y (m)

(2) 3D Position in Cartesian Space

x (m)

 

z
 (

m
)

Target:   Xd

 End−effector: X

0 20 40 60 80 100 120 140
−250

−200

−150

−100

−50

0

50

Time (sec)

E
u

le
r 

A
n

g
le

s
 (

d
e

g
re

e
)

(3) 3D Orientation

 

 

α
d

α
β

d

β
γ
d

γ

Fig. 8. Experiment results for 6D visual tracking: (1) 3D visual position (pixel) for robot end-effector and the desired one in virtual visual space, (2) 3D
position (meter) in Cartesian Space,(3) Euler angles (degree) for robot end-effector and the desired target.

tories. Another AR marker with the same size is attached
to the robot end-effector. The current robot position (Ws) is
obtained from the visual features tracked from this marker.
Target inputs to visual servoing are the 2D image features
which were recorded in the teaching phase. From the recorded
features we extract our desired visual feature vector Wsd =
[xsd ,ysd ,zsd ,αd ,βd ,γd ]

T , which is used to create the error
function (see Section III).

Visual servoing is accomplished by driving the error func-
tion to zero. In our case, the error function is e=Ws−Wsd . The
position components of e are from the new position vector Xs
as (11) and the rotational components are obtained through 3D
data. According to the properties of our image Jacobian and
the control scheme, when the errors in the virtual visual space
converge to zero, the errors in Cartesian space also converge
to zero without local minima. Therefore during execution, the
AR marker on the robot end-effector shows identical linear and
angular motions as instructed in the teaching phase (Fig. 7).
This experiment illustrates how the visual servoing system can
track a given desired trajectory.

Experimental results are depicted in Fig. 8. The plot (1)
shows the 3D linear visual tracking in the virtual visual space
while the second plot (2) depicts the target trajectory tracking
in Cartesian space. Plot (3) illustrates the rotational motion
tracking. The red lines in plots (1) and (2) are the target
trajectories, which exhibit some noise and chattering due to the
unsteady movement of the user. However, the blue lines which
show the trajectories of the robot end-effector, are smooth and
chatter free.

C. Experiment 2: 6D Uncalibrated VS in HRI Scenario

In this experiment, we integrate the proposed visual ser-
voing system in a Human-Robot Interaction scenario (HRI).
The robot manipulator follows, in real time, an AR marker
manipulated by a user while avoiding environment constraints
such as robot singularities and collision with itself or obstacles.
The artificial potential field approach [28] is used to model
these environment constraints. A coarse on-line estimation of
camera parameters is computed using the real-time informa-
tion generated by the robot (more details are shown in paper
[24]).

Interaction results: This experiment demonstrates real time
tracking of a moving target held by the user by the robot end-
effector. Both translation and rotation motions are tracked in

this system (Fig. 9 (a)). The system proves to be stable and
safe for HRI scenarios, even in situations where the target is
lost (due to occlusions by the robot or the human), Fig. 9 (b).

To demonstrate stability, we test our system under several
environmental constraints. Fig. 9 (c) illustrates the results of
singularity avoidance, where the robot does not reach the
singular condition (q3 = 0), even when the user tries to force
it. Fig. 9 (d) depicts the table avoidance where the motion of
the robot is constrained in the zb− axis by the height of the
table (the end-effector is not allowed to go under the table)
but it can still move in the xb and yb axes, and Fig. 9 (e)
shows how the robot handles self-collisions. Fig. 9 (f) shows
obstacle avoidance while continuing to track the target.

A video illustrating more details for all these experimental
results can be seen at: http://youtu.be/zqmapL51g9I

VI. CONCLUSIONS

In this paper, we have investigated the control of transla-
tional and rotational motion for the end-effector of a robotic
manipulator under visual feedback from fixed stereo cameras.
We have proposed a new virtual visual space (measured in
pixels) for visual servoing using an uncalibrated stereo vision
system in combination with virtual orthogonal cameras. Using
a 6D visual pose vector defined in this virtual space, we
obtain a new full-rank image Jacobian that can avoid the well-
known problems such as image space singularities and local
minima. Moreover, the rotational and translational motions of
robot end-effector are decoupled due to the diagonal image
Jacobian. According to simulation results, these new features
perform better than classical ones since the system combines
the advantages of 2D and 3D visual servoing. Furthermore,
the proposed algorithm was integrated in a practical human-
robot-interaction scenario with environmental and kinematic
constraints to generate a robot dynamic system with a trajec-
tory free of collisions and singularities.

Future work includes further analysis of the limitations of
the proposed scheme and more applications utilizing this new
virtual visual space. The choice of the controller was not a
major contribution of this work and further research could
be done to evaluate the effects of using different controllers
with the proposed VS approach. Also, we plan to implement
this approach in more real world applications, by fusing this
technique with different sensors, e.g. depth-cameras and force
sensors.

http://youtu.be/zqmapL51g9I
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(a) (b) (c) (d) (e) (f)

Fig. 9. System behaviors: (a) Position and orientation tracking, (b) case when the target is lost, (c) case with singularity avoidance, (d) case with table
collision avoidance, (e) case with self-collision avoidance and (f) obstacle avoidance.
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