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Abstract— For seamless physical human-robot interac-
tion (pHRI), a prediction about the human motion intention
is essential. Typically, most system identification approaches
to pHRI model the human as a black box without prior
assumptions about the underlying behavioral structure. How-
ever, integrating a priori knowledge about human behavior
provides better prediction performance and it generalization
capability. Thus, we present a novel method for human intention
estimation using Gaussian Processes (GP) on an empirically
supported human motor control model. In this article, the arm
dynamics of a human is modeled as mechanical impedance
which tracks a latent desired trajectory. We then adopt a
Bayesian perspective by assuming GP priors on impedance
parameters and the desired trajectory, which allows regression
about the human motion intention from observed interaction
forces. The proposed impedance-based GP model is validatedin
an experiment with human users to demonstrate its prediction
performance.

I. I NTRODUCTION

The advancements of technologies have let to global ex-
pectations for robotic systems to engage in physical human-
robot interaction (pHRI), and assist a user in industrial
and domestic applications. The physical coupling between
a human and a robot imposes unique constraints to efficient
and safe control of a robot as a mismatched motion plan
could directly perturb the human partner. Thus, estimating
underlying human motion intention with which the robot
coordinates its motion is a key to successful pHRI.

In applications, a behavioral model of a human is typ-
ically treated as a ’black box’ where inputs (e.g., human
body configuration) and outputs (e.g., interaction force) are
deterministically or stochastically mapped as a paramet-
ric model, for instance, in Programming by Demonstra-
tion (PbD) [1] [2]. In this type of modeling techniques,
interaction behavior is encoded into a probabilistic model,
capturing the joint statistics of observed trajectories and asso-
ciated interaction forces [1] [3] [4]. While stochastic methods
based on naı̈ve models are relatively easy to implement,
they suffer from limited expressiveness. For example, Gaus-
sian Processes (GP)s are powerful non-parametric model
for approximating dynamical systems [5] [6] [7] that only
requires the definition of the second-order statistics between
function values. However, if the statistics are not defined in
accordance with the real function, the rate of convergence
may increase exponentially, and no prediction is guaranteed
in previously unobserved regions of the input space [8]. This
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issue is particularly cumbersome in realistic pHRI when the
movements of a human and the robot are loosely defined so
their interaction is not guaranteed as repetitive. One way to
overcome such limitation is to perform GP regression on a
underlying behavioral model of a human to approximate the
lower dimensional manifold of human behavior. For instance,
research shows the quality of a latent desired trajectory by
the human central nervous system (CNS) is regulated by an
impedance control scheme [9]. The dynamics of the arm is
regulated by contractions of antagonistic pairs of muscles, the
stretch reflex and intrinsic viscoelastic properties of thelimb
in order to optimally follows a latent trajectory [10]. Exploit-
ing such knowledge about underlying human motor control
models on system identification remains an open issue with
great potential benefits for the prediction performance.

In this work, we present a novel method for human motion
prediction using GP on an empirically supported human
motor control model. The arm dynamics of a human is
modeled as mechanical impedance which tracks a latent
desired trajectory. We then adopt a Bayesian perspective by
assuming GP priors on impedance parameters and the desired
trajectory, which allows regression about the human motion
intention from observed interaction forces. The proposed
impedance-based GP model is validated in an experiment
with human users to demonstrate its prediction performance.

The remainder of this article is structured as follows. The
considered problem is formally defined in Section II. A
background on GPs is presented in Section III. The proposed
impedance-based GP model is presented in Section IV. The
model is then validated and evaluated in Section V.

Notation: by convention, bold characters are used for
vectors and capital letters denote matrices. The expres-
sion N (x|µ, σ) describes a Gaussian random variable
defined overx with mean µ and covarianceσ. E

[

x
]

and Var
[

x
]

denote expected value and variance ofx re-
spectively.N+ is a natural positive integer.

II. PROBLEM SETTING

This work considers an acquisition of a human behavior
model when he/she physically interacts with a robot using its
force and position sensors at the end-effector. By assuming
that the human arm comprises 7 degrees of freedom (DoF),
the rigid body dynamics of the arm when tightly grasping
the robot end-effector are given by

τh + τ int = Mq(q)q̈ + C(q, q̇)q̇ + g(q) , (1)

where q ∈ R
7 is the 7 DoF arm configuration in

joint space, Mq(q) ∈ R
7×7 is the arm inertia ma-



trix, C(q, q̇)q̇ ∈ R
7 represents the Coriolis and centrifugal

forces, g(q) ∈ R
7 is the gravity vector,τh ∈ R

7 is the
human joint torque applied andτ int ∈ R

7×7 is the interaction
torque resulting from the physical coupling to the robot.
The wrench measured at the robot’s end-effectoruint ∈ R

6

represents the interaction torque asτ int = −J(q)Tuint,
whereJ(q) is the Jacobian matrix.

The joint torque applied by the human is composed of
a feedforward termτ FF and a feedback termτ FB that are
subject to neural noiseετ ,q , i.e.

τ h = τ FF + τ FB + ετ ,q . (2)

The feedforward term represents the inverse dynamics of
the musculoskeletal system and interaction dynamics learned
by the CNS [11], and it specifies joint torques for attaining
a desired trajectory. We assume the desired trajectory is a
twice differentiable well-defined functionqd(θ) : R

n → R
7

whereθ ∈ R
n is a task-specific input parameter such as the

arm configuration in the present case. Thus, the joint torque
specified by the feedforward term is expressed as

τ FF =M̂q(qd(θ))q̈d(θ) + Ĉ(qd(θ), q̇d(θ))q̇d(θ)

+ ĝ(qd(θ)) + τ̂ int(q, q̇, q̈, θ) , (3)

where τ̂ int(q, q̇, q̈, θ) is the interaction torque estimated by
the human, which is a function of the arm configuration and
task-specific parameters.

The feedback term compensates small perturbations and
generates restoring force towards the desired trajectory.It
has been modeled with a Proportional-Derivative (PD) con-
trol [11]

τ FB = Dq(q, q̇, θ)(q̇d(θ)− q̇) +Kq(q, q̇, θ)(qd(θ)− q) ,
(4)

where Kq(q, q̇, θ), Dq(q, q̇, θ) ∈ R
7×7 are configuration,

velocity and task-dependent stiffness and damping matrices,
respectively.

Substituting (2), (3) and (4) into (1), the interaction torque
is given by

τ int(q, q̇, q̈, θ) = Mq(q)ëq(θ, q) +Dq(q, q̇, θ)ėq(θ, q)

+Kq(q, q̇, θ)eq(θ, q) + τ̂ int(q, q̇, q̈, θ)

+ εdyn,q(q, q̇, q̈, θ) + ετ ,q , (5)

where eq(θ, q) = qd(θ)− q andεdyn,q(ξ) represent feed-
forward specification errors about the dynamics of own body
and the environment. From (5), the interaction dynamics in
the task space are given by

− uint(ξ) = M(x)ë(θ,x) +D(ξ)ė(θ,x) +K(ξ)e(θ,x)

+ ûint,ε(ξ) + ετ , (6)

where x ∈ R
6 is the human hand configuration

which follows from the forward kinematics
mapping L(q) : R7 → R

6, e(θ,x) = xd(θ)− x,

where xd(θ) is the human desired trajectory in task
space,ξ =

[

xTẋTθT
]T

, ξ =
[

xTẋTẍTθT
]T

and

M(x) = J(q)−TMq(q)J(q)
−1

D(ξ) = J(q)−TDq(q, q̇, θ)J(q)
−1

K(ξ) = J(q)−TKq(q, q̇, θ)J(q)
−1

ετ = J(q)−Tετ ,q

ûint,ε(ξ) = J(q)−T (τ̂ int(q, q̇, q̈, θ) + εdyn,q(q, q̇, q̈, θ)) .

Given observations{ξ,uint} from physical interaction,
the present work estimatesuint(ξ), assuming the interaction
dynamics as defined in (6).

III. G AUSSIAN PROCESSPRIORS

A GP f(ξ), with z ∈ R
n and f(z) : Rn → R, is a

statistical distribution over function values where any finite
collection of samples{f(z1) · · · f(zh)}, with h ∈ N

+ ,
forms a multivariate Gaussian random variable. Thus, a GP
is fully defined by its mean

m(z) = E
[

f(z)
]

and covariance function

k(z, z′) = Cov[∆f(z),∆f(z′)]

= E
[

(f(z)−m(z))(f(z′)−m(z′))T)
]

.

The definition of f(z) as a GP is compactly formulated
asf(z) ∼ GP

(

m(z), k(z, z′)
)

.
GPs benefit from the desirable properties of multivariate

normal distributions. The joint prior distribution of a given
training set of noisy observationsy = {yi}hi=1 at input
pointsZ = {zi}

h
i=1 and predictive outputy∗ at test inputz∗

is

P
(

y, y∗|Z, z∗

)

=

= N

([

y

y∗

] [

m(Z)
m(z∗)

]

,

[

K + σ2
nI k∗

k
T

∗
k∗∗ + σ2

n

])

,

where k∗ = k(z∗, Z), k∗∗ = k(z∗, z∗) and K = k(Z,Z)
and σ2

n is the observation noise variance. By means of
multivariate Gaussian conditioning, i.e. applying Bayes’rule,
the conditional (predictive) posterior is defined as

P
(

y∗|y, Z, z∗

)

=

N (y∗|m(ξ
∗
) + kT

∗
K−1y, σ2

n + k∗∗ − kT

∗
(K + σ2

nI)
−1k∗.

(7)

The computational load of this expression is governed by
matrix inversion(K + σ2

nI)
−1 with complexityO(h3). The

application of GPs in realistic scenarios requires sparse or
local approximations.

IV. BAYESIAN IMPEDANCE MODEL

In order to obtain an estimate of (6) from pHRI data,
we adopt a Bayesian framework by assuming prior dis-
tributions on unknown latent variables. For simplicity and
tractability we neglect biomechanical constraints by consid-
ering M(x), D(ξ) and K(ξ) diagonal matrices such that
interaction force exerted on thei-th dimension is



uint(ξ) = uimp(ξ) + ûint,ε(ξ) + ετ (8)

with

uimp(ξ) = më(θ, xi) + d(ξ)ė(θ, xi) + k(ξ)e(θ, xi) , (9)

where uint(ξ), ûint,ε(ξ), d(ξ), k(ξ), e(θ, xi) = xd(θ)− xi

andxd(θ) are now one-dimensional functions,m is a one-
dimensional variable andετ ∼ N

(

ε 0, σ2
τ

)

. For clarity, the
index i will be omitted from here on in the functionalse,
uint, d, k, xd and ûint.

A. Priors

For statistical analysis of (8), we assume that functionals
d(ξ), k(ξ), xd(θ) and ûint,ε(ξ) and variablem are statisti-
cally independent and have prior distributions

m ∼ N
(

m µm, σ2
m

)

d(ξ) ∼ GP
(

µd, kd(ξ, ξ
′)
)

k(ξ) ∼ GP
(

µk, kk(ξ, ξ
′)
)

xd(θ) ∼ GP
(

µxd
, kxd

(θ, θ′)
)

ûint,ε(ξ) ∼ GP
(

0, k ̂int(ξ, ξ
′

)
)

, (10)

whereµm, µd and µk are the expected mass, damping
and stiffness coefficients, respectively.µxd

is the expected
desired hand position andkxd

(θ, θ′) is a twice differentiable
covariance function. For simplicity we do not strictly en-
sure positivity ofm, d(ξ) and k(ξ)1, but probabilistically
assumed.

B. Impedance, PD and interaction force kernels

Given priors (10), a second-order statistical characteriza-
tion of uint(ξ) entails only complication in the impedance
term. Although not Gaussian due to the products involved2,
the computation of its expected value and the covariance
allows its approximation as a GP, i.e.,

uimp(ξ) ∼ GP
(

E
[

uimp(ξ)
]

, kimp(ξ, ξ
′

)
)

.

From (9) and (10) the expected value is

E
[

uimp(ξ)
]

= µm(µ̈xd
− ẍi) + µd(µ̇xd

− ẋi) + (µxd
− xi) .

(11)

The expression for covariance

kimp(ξ, ξ
′

) =

Cov
[

më(θ, xi) + d(ξ)ė(θ, xi) + k(ξ)e(θ, xi) ,

më(θ′, x′

i) + d(ξ′)ė(θ′, x′

i) + k(ξ′)e(θ′, x′

i)
]

(12)

is more involved due to the correlation between
the desired trajectory and its time derivatives. As
differentiation is a linear operator,̇xd(θ) and ẍd(θ)
are also GPs with time derivative covariance

1Positivity is ensured by means of warped GPs [12]. In this
case the GP priors are set aslog(d(ξ)) ∼ GP(log µd, kd(ξ, ξ

′))
and log k(ξ) ∼ GP(log µk , kk(ξ, ξ

′)).
2From (10) and (9), due to the products between impedance parameters

and the desired trajectory,uimp(ξ) involves non-central chi-squared terms.

11 0

0

0

25

50

−25 −1−1 −0.5−0.5 0.50.5

(a) (b)kimp([0 0 t]T, [0 0 t′]T)

kPD([0 0 t]T, [0 0 t′]T)
kSE(t, t

′) = kxd
(t, t′)

Higher stiffness
and damping

Higher
stiffness

Higher
damping

µd = 10, µk = 1
µd = 1, µk = 100
µd = 30, µk = 1
µd = 1, µk = 1000

k
(ξ
,ξ

′
)

t− t′ [s]t− t′ [s]

Fig. 1. (a) Covariance functions for a PD controller for the one-dimensional
case withθ = t, x = x′ = 0, ẋ = ẋ′ = 0 and a SE kernel. The mean
values for the mass, damping, stiffness and desired trajectory are set
to µm = 1 kg,µd = 10 Ns/m,µk = 100 Nm andµxd

= 0 m. The hyper-
parameters for the damping, stiffness and desired trajectory SE covariance
functions (16) are{0.1, (0.1 0.1)}d, {0.1, (0.1 0.1)}k and{0.1, (0.2)}xd

while the variance of the mass isσ2
m = 0.1. (b) Covariance functions for an

impedance with identical parametrization as (a) but with different expected
values for damping and stiffness.

functions [5]. From the properties of the covariance
of sums Cov[

∑

r arXr,
∑

s bsYs] =
∑

r,s arbsCov[Xr, Ys],
whereXr and Ys are random variables andar and bs are
constants and considering the covariance of products [13],
expression (12) involves the sum of covariances of all
combination of product terms. For simple exposition, we
first derive the covariance considering only the stiffness
and damping terms, which, from a control perspective
corresponds to a PD controller. The PD kernel is given by

kPD(ξ, ξ
′) = Cov

[

d(ξ)ė(θ, xi) + k(ξ)e(θ, xi),

d(ξ′)ė(θ′, x′

i) + k(ξ′)e(θ′, x′

i)
]

= Cov[k(ξ)e(θ, xi), k(ξ
′)e(θ′, x′

i)]

+ Cov[k(ξ)e(θ, xi), d(ξ
′)ė(θ′, xi)]

+ Cov[d(ξ)ė(θ, xi), k(ξ
′)e(θ′, x′

i)]

+ Cov[d(ξ)ė(θ, xi), d(ξ
′)ė(θ′, x′

i)]

= (µ2
k + kk(ξ, ξ

′))kxd
(θ, θ′)

+ (µxd
− xi)(µxd

− x′

i)kk(ξ, ξ
′)

+ µkµd

(∂kxd
(θ, θ′)

∂t′

)

+ µdµk

(∂kxd
(θ, θ′)

∂t

)

+ (µ2
d + kd(ξ, ξ

′))
∂2kxd

(θ, θ′)

∂t∂t′

+ (µ̇xd
− ẋi)(µ̇xd

− ẋ′

i)kd(ξ, ξ
′) , (13)

wheret and t′ are the time stamps corresponding to obser-
vationsθ andθ′ respectively.

The full impedance kernel (12) yields

kimp(ξ, ξ
′

) = kPD(ξ, ξ
′)

+ µkµm

(∂2kxd
(θ, θ′)

∂2t′
+

∂2kxd
(θ, θ′)

∂2t

)

+ µdµm

(∂3kxd
(θ, θ′)

∂2t′∂t
+

∂3kxd
(θ, θ′)

∂2t∂t′

)

+ (µ2
m + σ2

m)
∂4kxd

(θ, θ′)

∂2t∂2t′

+ σ2
m(µ̈xd

− ẍi)(µ̈xd
− ẍ′

i) . (14)



If θ = t the computation of the time derivatives of covari-
ancekxd

(θ, θ′) is straightforward. For any other parametriza-
tion, time derivatives are computed in terms of partial and
time derivatives ofθ as

∂kxd
(θ, θ′)

∂t′
=

(∂kxd
(θ, θ′)

∂θ′

)T ∂θ′

∂t
∂2kxd

(θ, θ′)

∂t′2
=

(∂θ′

∂t

)T ∂2kxd
(θ, θ′)

∂θ′2

∂θ′

∂t

+
(∂kxd

(θ, θ′)

∂θ′

)T ∂2θ′

∂t2
.

Considering (10) and (8), the a priori statistical character-
ization of the interaction force is

uint(ξ) ∼ GP
(

E
[

uimp(ξ)
]

, kint(ξ, ξ
′

)
)

, (15)

where

kint(ξ, ξ
′

) = kimp(ξ, ξ
′

) + k ̂int(ξ, ξ
′

) + σ2
τ .

For illustrative purposes, let all covariances for GP priors
from (10) be Squared Exponential (SE) kernels

kSE(z, z
′) = σ2

f exp{−(z − z′)TΛ−1(z − z′) } , (16)

with hyperparameters{σ2
f , (l1 · · · ln)}SE, where σ2

f is the
signal variance andΛ = diag(l1 · · · ln) are the length
scales for each input dimension. The SE kernel is infinitely
differentiable and therefore valid forkxd

(θ, θ′). It is the most
widespread and applied kernel due to its smoothness and
convergence properties [8].

The most relevant characteristic of the PD and the
impedance kernels is the presence of terms comprising
time derivatives of a latent desired trajectory. To depict the
influence of this feature in correlations, Fig. 1 shows the
covariance functions corresponding to a naı̈ve SE kernel, a
PD and an impedance kernel for a time-dependent desired
trajectory. As depicted by the red dashed line the PD kernel
considers the SE kernel derivative as an additive term that
determines its profile. Similarly, the shape of the impedance
kernel illustrated by the blue solid line is governed by the
mass-related term that considers the second derivative of the
SE kernel. The relevance of the stiffness, damping and mass
terms are significantly influenced by their respective expected
values.

Fig. 2 shows the covariance function for a one-dimensional
configuration-dependent desired trajectory, i.e.θ = x. When
the velocity (̇θ is this case) of one of the input points is0,
the damping term is nullified as the tracking error derivative
is also0. Thus, the correlation is limited to the SE kernel
of the stiffness termk(ξ)e(θ, xi) as depicted in Fig. 2(c)
for ẋ = 0. When this is not the case correlations due to
dampingd(ξ)ė(θ, xi) arise. Fig. 2(d)(e) and Fig. 2(b), (a)
show positive and negative values ofẋ, which determine the
slope of the correlation aroundx− x′ = 0 as the derivative
of the error trajectory is proportional tȯθ.

C. Conditional distribution of latent functions

The probabilistic nature of the proposed model enables the
computation of the conditional distribution of latent variables
with priors (10). In the case of multivariate normality,
conditional distributions are also Gaussian and computed in
closed form. In our specific setting, the human desired trajec-
tory xd(θ) is an especially relevant variable in many pHRI
applications where an estimate of human intention is neces-
sary. From (10) and (15), the joint distribution of a set of
noisy observations of the interaction forceyint = {yint,i}hi=1

at input pointsΞ = {ξi}
h
i=1 andxd(θ∗) at test inputθ∗ is

N

([

yint
xd(θ∗)

]∣

∣

∣

∣

[

E
[

uint(Ξ)
]

µxd

]

,

[

Kint Cov[uint(Ξ), xd(θ∗)]
Cov[xd(θ∗), uint(Ξ)] kxd

(θ∗, θ∗)

])

,

whereKint = kint(Ξ,Ξ
′

) and

Cov[uint(Ξ), xd(θ∗)] = Cov[uint(Ξ), xd(θ∗)]
T

= µkkxd
(Θ, θ∗) + µd

(∂kxd
(Θ, θ∗)

∂t
+ µm

(∂2kxd
(Θ, θ∗)

∂t2

)

,

whereΘ = {θi}hi=1 are the desired trajectory inputs ofΞ.
The conditional distribution follows applying Bayes’ rule,
yielding

P
(

xd(θ)|uint(ξ)
)

= N
(

xd(θ∗) E
[

xd(θ∗)
]

,Var
[

xd(θ∗)
])

,
(17)

where

E
[

xd(θ∗)
]

= µxd

+ Cov[uint(Ξ), xd(θ∗)]K
−1
int (yint − E

[

uint(Ξ)
]

)

and

Var
[

xd(θ∗)
]

= kxd
(θ∗, θ∗)

+ Cov[uint(Ξ), xd(θ∗)]K
−1
int Cov[xd(θ∗), uint(Ξ)]) .

The computation of conditional distributions over other latent
functionals such as the stiffnessk(ξ) or dampingd(ξ) is
similar.

Choosing a suitable prior forxd(θ) is also essential as
all impedance parameters depend on it. Depending on the
task and the application we may parametrize it as a function
of time or as a function other task variables and their time
derivatives. An interesting alternative considers a priori

xd(xi, θ) ∼ GP
(

xi, kxd
(θ, θ′)

)

, (18)

i.e., the human is in equilibrium and therefore, from (11)
and (15)E

[

uint(ξ)
]

= 0. This is suitable for modeling tasks
where no information about the task is available a priori.

V. EVALUATION

In order to validate the impedance-based GP model, we
analyzed its prediction performance in in an experiment with
real human users. In our evaluations, all GP priors (10) have
SE covariance functions (16). The prediction performance
evaluated using the standardized mean squared error (SMSE)
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Fig. 2. Covariance function for one-dimensional case of a PDcontroller (13) with a configuration-dependent error trajectory θ = x and Squared
Exponential (SE) kernels with hyperparameters{0.1, (0.1 0.1)}d, {0.1, (0.1 0.1)}k and {1, (0.2)}xd

for damping, stiffness and an error trajectory
respectively. The expected damping and stiffness are set toµd = 1.5 Ns/m andµk = 1 Nm with µxd

= 0 m.

and the mean standardized log loss (MSLL). In SMSE, the
squared residuals are normalized with the variance of the
test outputs. On the other hand, in MSLL, the mean negative
log probability minus the log probability of a naı̈ve Gaussian
with the mean and variance given by the training points [14].

In order to validate the impedance-based GP model, we
analyzed its prediction performance in a simulated model of
a human arm and in an experiment with real human users.

A. Simulated human arm

We simulated a two-link arm trajectory based on the
neuromechanical arm model reported in [15] usingMatlab.
This model was selected as it is structurally more complex
than our GP model, and it derives a 2D trajectory from
simulated muscle activities, providing a physiologicallyplau-
sible impedance definition. The model simulated the muscle
tensionum for attaining a desired trajectory as

um = Kλ(eλ) +Dλ(ėλ)

Kλ = K0 +K1uCNS Dλ = 1/12 Kλ ,

whereKλ, Dλ, eλ indicate the stiffness, damping and error
at the muscular level,uCNS is the neural control signal
andK0 andK1 are constant and activation-dependent stiff-
ness terms, respectively. A reference trajectory was designed
as a 0.04 m radius circle joint with 4 arcs subtending
270 degrees attached laterally and vertically to a central
circle (Fig. 5). The same trajectory was prescribed 3 times
without interruption at a rate of2.618 rad/s to form a
single trial. We simulated two different stiffness profilesat
500 Hz. For low-stiffness simulation,K0 was set to 3360
as of [15]. For high-stiffness simulation,K0 was set to
16800. For both simulationsK1 = 0.035K0. The average
simulated hand stiffness and damping are shown in Table I.
We consider the model (15) for a configuration-dependent

TABLE I

Average (standard deviation) stiffness and damping at the end-effector

from the simulation.

simulation type
damping ([Ns/m]) stiffness [N/m]
x y x y

high-stiffness 48.07 (6.20) 60.29 (7.55) 576.8 (74.4) 723.5 (90.6)
low-stiffness 9.89(1.47) 12.4 (.73) 118.7 (17.6) 148.4 (20.7)

desired trajectoryθ = x with a priori equilibrium assump-
tion (18). We assume all impedance parameters constant
and deterministic. We compare this model with a naı̈ve GP
prior uint(ξ) ∼ GP

(

0, kSE(ξ, ξ
′

)
)

. The training set is given
by the simulated trajectories downsampled to0.2Hz, and the
test inputs are the full trajectories.

We train the naı̈ve model hyperparameters and set identical
hyperparameters for̂uint(ξ) in (15). In addition, the expected
mass is set toµm = 3 kg and the desired trajectory kernel
has hyperparameters{10−6, (0.2 0.2)}xd

andσ2
τ = 10−4.

The prediction performance for different values ofµk

andµd to the naı̈ve model are shown in Fig. 3. The SMSE for
the low stiffness simulation shows increased performance to
the naı̈ve model for low stiffness and damping, correspond-
ing to the simulated values shown in Table I. High stiffness
and damping values significantly decreases performance.
However, in terms of the MSLL, which considers uncertainty,
the prediction performance increases throughout the whole
stiffness and damping range. The results for the high stiff-
ness simulation show marginally improved performance. The
minimum error is achieved for stiffness in the mid range and
with a damping parameter, in accordance with the simulated
values. A similar dependency is found in terms of the MSLL.

Fig. 4 shows how the proposed model infers the latent
desired trajectory, computed in (17), in terms of the dif-
ference with the state for different stiffness and damping
values considering the full high stiffness simulation. The
high stiffness model depicted by the red arrows expects low
deviations and higher tracking accuracy, thus the state being
close to the desired trajectory. In contrast, the low stiffness
model illustrated by the green arrows infers higher deviations
as it assumes lower tracking accuracy.

B. Experiment with humans

To assess prediction performance with human data and
envisaging real applications for robot control, we designed
an experiment with human users with emphasis on sparse
approximations.

1) Experimental setup: The haptic interface (Fig. 5)
consists of a two degrees-of-freedom (anteroposterior and
mediolateral plane of the user standing in front) linear-
actuated device (ThrustTube) with a free-spinning handle (su-
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peroinferior direction of the user) at the grasp point. Each
actuator is equipped with a position encoder with precision
of 1 µm. Attached to the handle is a 6 DoF force/torque
sensor (JR3), which measures the human force input. The
workspace of the experimental device is(−0.15, 0.15) m for
each dimension. A virtual scene is visually represented on a
display on top of the device to task description serving as a
guide for performing the task. To enable haptic interaction
with the user, the robot follows an admittance control scheme

Mrẍ+Drẋ = uint

with Mr = diag{2, 2} kg and Dr = diag{6, 6} Nm/s,
implemented inMatlab’s Simulink Coder and executed on

15

4

3

2

two dof
linear

actuator

force-torque
sensor

virtual
environment

Fig. 5. Experimental setup and a tracking path. A participant grasped a
handle on a two DoF linear actuator with force/torque sensorand reproduced
a path with a flower shape as displayed on the monitor in front.Starting at
the black dot, the arrows and numbers respectively describethe direction
and order of the motion.

Linux Preempt/RT at a sampling rate of1 kHz running on an
external PC.

To robot implements an admittance control scheme

Mrẍ+Drẋ = uint

with Mr = diag{2, 2} kg andDr = diag{6, 6} Nm/s. We
let 3 different subjects (all male, average age 26) perform
the task repeated cyclically 10 times with no pauses. The
subjects had the opportunity to familiarize with the haptic
device for a few minutes before the experiment and were told
to follow the pre-defined trajectory for the given repetitions.

As the computational complexity of (7) hinders the ap-
plication of GPs to large datasets, we implement a local GP
approximation [16], which partition the input space into sev-
eral local models. We follow [17], where predictionsy∗(z)
are computed as an average weighted sum ofL local GPs

y∗(z) =

L
∑

l=1

k(z, zl)y∗l(z)

L
∑

l=1

k(z, zl)

,

wherezl andy∗l are the center and the prediction of thel-th
local GP. respectively. In order to ensure a constant computa-
tion time, we consider that the input-space is bounded by the
operational constraints of the human arm and a partitioningis
possible a priori3. This enables the definition of each cluster
as a sparse GP [18], ensuring fast predictions. For each
incoming observation every local model is updated efficiently
by means of the methods described in [19]. Assuming that
each local sparse GP hasB inducing inputs, the complexity
of online updates and predictions is reduced toO(LB2).

We evaluate model (15) withθ =
[

xT ẋT
]T

and a priori
equilibrium assumption (18). For computational tractabil-
ity, we restrict the model to position and velocity in-
puts, setting acceleration and jerk arising in the covariance
of (15) to 0. We compare this model with a naı̈ve GP
prior uint(ξ) ∼ GP

(

0, kSE(ξ, ξ
′)
)

. We train the naı̈ve model
hyperparameters [16] with the first repetition of each user

3If this is not the case, several methods address this issue byincrementally
building data clusters, e.g., [17].



and we set identical hyperparameters forûint,ε(ξ). The ex-
pected impedance parameters toµm = 3 kg, µd = 15 Ns/m
and µk = 300 N/m. Damping and stiffness covari-
ance functions are set to{502, (0.1 0.1 0.3 0.3)}k
and {52, (0.1 0.1 0.3 0.3)}d, the desired trajectory kernel
has hyperparameters{10−4, (0.05 0.05 0.3 0.3)}xd

andσ2
τ =

10−4.
In our local sparse implementation, we set a total of5× 5

local models distributed as a grid covering the robot
workspace. Each local model is composed of(3 × 3) ×
(3 × 3) basis vectors distributed as a grid in position and
velocity space, respectively. Velocities are assumed to be
in the range(−0.12, 0.12) m/s due to task constraints. To
assess prediction performance, we evaluate the SMSE of the
captured dataset for two conditions. In condition (A) we
update the model posterior online for every observed data
point. In condition (B), we update the model only during the
first of the 10 task repetitions.

2) Experimental Results: The experimental results are
shown in Table II. The improvement of the model was more
prominent in condition (A) with though the superior perfor-
mance of the impedance-based model was also observed in
condition (B). Despite the fact that the improvement seems
small in value, under sparsity, the inclusion of the impedance
structure increases accuracy.

TABLE II

SMSE for both experimental conditions.

(A) (B)
Impedance-based model (15) 0.08 0.10

naı̈ve SE kernel (16) 0.11 0.13

In summary, the proposed impedance-based GP model
predicts human behavior with more fidelity than a naı̈ve GP
model. In addition, it provides an estimate of the assumed
human-desired trajectory with confidence levels. However,
results also depict a dependency between the model’s perfor-
mance and the assumed priors for the impedance parameters
and the latent desired trajectory, which requires a care in
selection.

VI. CONCLUSION

We presented an impedance-based GP model for predict-
ing human arm behavior during physical interaction with
a haptic device which incorporated empirically supported
human sensory-motor control to exploit the flexibility of
GPs. By assuming a GP prior on the latent desired trajectory
and the human arm impedance parameters, we derive the
correlation functions of an impedance-like control structure
that efficiently represents human behavior. The results show
the benefit performance of the human-based GP model,
demonstrating superior performance with regard to a naı̈ve
GP model. However, the prediction performance depends

on an appropriate selection of the priors of the impedance
parameters. These insights suggest the potential benefits for a
system identification concerning underlying human sensory-
motor processes and control for pHRI are concurrently
executed through a integrated approach as a future work.
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