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Abstract— For seamless physical human-robot interac- issue is particularly cumbersome in realistic pHRI when the
tion (pHRI), a prediction about the human motion intention  movements of a human and the robot are loosely defined so
is essential. Typically, most system identification appreghes heir interaction is not guaranteed as repetitive. One way t

to pHRI model the human as a black box without prior h limitation is t f GP .
assumptions about the underlying behavioral structure. Hav- overcome such limitation IS to perform regression on a

ever, integrating a priori knowledge about human behavior underlying behavioral model of a human to approximate the
provides better prediction performance and it generalizaion  lower dimensional manifold of human behavior. For instance
capability. Thus, we present a novel method for human interiobn  research shows the quality of a latent desired trajectory by
estimation using Gaussian Processes (GP) on an empirically tya human central nervous system (CNS) is regulated by an
supported human motor control model. In this article, the aim . - .
dynamics of a human is modeled as mechanical impedance IMPedance control scheme [9]. The dynamics of the arm is
which tracks a latent desired trajectory. We then adopt a regulated by contractions of antagonistic pairs of musties
Bayesian perspective by assuming GP priors on impedance stretch reflex and intrinsic viscoelastic properties of lthib
parameters and the desired trajectory, which allows regresion  in order to optimally follows a latent trajectory [10]. Exyit-
about the human motion intention from observed interaction i gych knowledge about underlying human motor control
forces. The proposed impedance-based GP model is validated - . - - .
an experiment with human users to demonstrate its predictia ~ MOdels on system identification remains an open issue with
performance. great potential benefits for the prediction performance.
In this work, we present a novel method for human motion
. INTRODUCTION prediction using GP on an empirically supported human
The advancements of technologies have let to global egaotor control model. The arm dynamics of a human is
pectations for robotic systems to engage in physical humamodeled as mechanical impedance which tracks a latent
robot interaction (pHRI), and assist a user in industriaflesired trajectory. We then adopt a Bayesian perspective by
and domestic applications. The physical coupling betweeassuming GP priors on impedance parameters and the desired
a human and a robot imposes unique constraints to efficieifi@gjectory, which allows regression about the human motion
and safe control of a robot as a mismatched motion plantention from observed interaction forces. The proposed
could directly perturb the human partner. Thus, estimatingnpedance-based GP model is validated in an experiment
underlying human motion intention with which the robotwith human users to demonstrate its prediction performance
coordinates its motion is a key to successful pHRI. The remainder of this article is structured as follows. The
In applications, a behavioral model of a human is typconsidered problem is formally defined in Section II. A
ically treated as a 'black box’ where inputs (e.g., humaiackground on GPs is presented in Section Ill. The proposed
body configuration) and outputs (e.g., interaction forae) aimpedance-based GP model is presented in Section IV. The
deterministically or stochastically mapped as a parametmodel is then validated and evaluated in Section V.
ric model, for instance, in Programming by Demonstra- Notation: by convention, bold characters are used for
tion (PbD) [1] [2]. In this type of modeling techniques,vectors and capital letters denote matrices. The expres-
interaction behavior is encoded into a probabilistic mpdebion N (x|, o) describes a Gaussian random variable
capturing the joint statistics of observed trajectorie$ asso- defined overz with mean p and covariances. E [z]
ciated interaction forces [1] [3] [4]. While stochastic tetls and Var [«] denote expected value and varianceaofre-
based on naive models are relatively easy to implemersipectively.N* is a natural positive integer.
they suffer from limited expressiveness. For example, Gaus
sian Processes (GP)s are powerful non-parametric model _ _ o _
for approximating dynamical systems [5] [6] [7] that only This work considers an acquisition of a human behavior
requires the definition of the second-order statistics betw Model when he/she physically interacts with a robot usisg it
function values. However, if the statistics are not defimed iforce and position sensors at the end-effector. By assuming
accordance with the real function, the rate of convergendgat the human arm comprises 7 degrees of freedom (DoF),
may increase exponentially, and no prediction is guaranted&e rigid body dynamics of the arm when tightly grasping
in previously unobserved regions of the input space [8]sThithe robot end-effector are given by

Il. PROBLEM SETTING

Authors are with the Chair of Information-Oriented Contr@lepart- Th+ Tint = ]V[‘J(Q)q + C((L q)q + g(q) ) (1)
ment of Electrical Engineering and Information Technolodgchnische . . . .
Universitat Miinchen, D-80290 Munich, Germarymedi na, endo, Where geR" is the 7 D.OF arm Conf.'gura.-t'on n
hi rche}@um de joint space, M,(q) € R™" is the arm inertia ma-



trix, C(q,q)g € R” represents the Coriolis and centrifugalwhere z,(6) is the human desired trajectory in task
forces, g(q) € R” is the gravity vector,7, € R” is the spaceg = [meTOT]T, = [mT:bTi,TOTf and
human joint torque applied and,; € R is the interaction

torque resulting from the physical coupling to the robot. M(x) = J(q)"" My(q)J(q)”"

The wrench measured at the robot's end-effeatgr € R° D(¢)=J(q) "D,(q,q,0)J(q)"*

represents the interaction torque asy = —J(q)" uint, K(&) = J(q) TK,(q,4,0)(q)""
- q L 8]

where J(q) is the Jacobian matrix. - o
The joint torque applied by the human is composed of _ er =J(@) erg
a feedforward termrer and a feedback termreg that are @i (&) = J(q) " (Fint(a, 4, 4, 0) + €aynq(a,q, 4, 0)) .

subject to neural noise,, , i.e. Given observations{¢, uim}_from physical interaction,

@) the present work estimategn(£), assuming the interaction

Th=TF+Trs+&rg . dynamics as defined in (6).

The feedforward term represents the inverse dynamics of I11. GAUSSIAN PROCESSPRIORS
the musculoskeletal system and interaction dynamicséearn A GP f(¢), with z € R” and f(z):R" >R, is a

by the_ CNS [.11]’ and it specifies joint torques for atta'n'r_'%tatistical distribution over function values where anytén
a desired trajectory. We assume the desired trajectory iIS.8lection of samples f(z1) --- f(zn)}, with h € N*

i i i i i CR™ 7
twice d|fferent_|able well-deﬁ_n_ed_ functiog,(6) : R* — R forms a multivariate Gaussian random variable. Thus, a GP
wheref € R” is a task-specific input parameter such as th% fully defined by its mean

arm configuration in the present case. Thus, the joint torque

specified by the feedforward term is expressed as m(z) = E[f(2)]
7er =0,(4,(0))24(0) + C(a.(0).4,(0))a,(0) AN covariance function
+9(q4(0)) + Tint(q,4.4.0) , 3 k(z,2") = Cov[Af(2), Af(2)]

_ / N\T
whereTin(g, g, G, 0) is the interaction torque estimated by = [(f(z) m(z)(f (=) —m(z) )] '
the human, which is a function of the arm configuration andhe definition of f(z) as a GP is compactly formulated
task-specific parameters. as f(z) ~ GP (m(z),k(z,2")).
The feedback term compensates small perturbations and3Ps benefit from the desirable properties of multivariate
generates restoring force towards the desired trajectory. Normal distributions. The joint prior distribution of a giw
has been modeled with a Proportional-Derivative (PD) corf@ining set of noisy observationg = {;}/; at input

trol [11] pointsZ = {z;}"_, and predictive outpug. at test inputz.
is
™0 = Dl 0(@0) D)+ Ki(a20000) ~ ) piy 7 -
N Yy m(Z) K+ 021 k.
where K,(q, q,0),D,(q,4,0) € R™7 are configuration, B g | |m(z)| 7| k! kue +02]) 7

velocity and task-dependent stiffness and damping matricg, 1 ore g — k(24 Z), kuw = k(24,2.) and K = k(Z, Z)

respectively. . _ _ and 02 is the observation noise variance. By means of
~ Substituting (2), (3) and (4) into (1), the interaction 0eq 1 jtivariate Gaussian conditioning, i.e. applying Bayet,
is given by the conditional (predictive) posterior is defined as
Tint(‘]a (:Ia Z:L 0) = MQ(Q)éq(ea Q) + DQ((I7 (:Ia 0)611(0’ Q) P (y*|ya Z7 Z*) =
+K4(a,4,0)eq(0, ) + Tint(a. 4, 4. 6) Nylm(€,) + kI K "y, 00 + ko — kI (K + 00 1) ke
+ 5dyn,q(‘17 Qa Z:L 0) + €r,q > (5) (7)

_ The computational load of this expression is governed by
where e, (6, q) = q4(6) — g andeayn,(£) represent feed- matrix inversion(K + o21)~! with complexity O(h3). The
forward specification errors about the dynamics of own bodyppjication of GPs in realistic scenarios requires sparse o
and the environment. From (5), the interaction dynamics igcal approximations.
the task space are given by
IV. BAYESIAN IMPEDANCE MODEL

—uin(§) = M(x)é(0,z) + D(§)e(0,x) + K(£)e(0, x) In order to obtain an estimate of (6) from pHRI data,
+ it (€) + 7 , (6) we adopt a Bayesian framework by assuming prior dis-
tributions on unknown latent variables. For simplicity and
where x € R® is the human hand configuration tractability we neglect biomechanical constraints by abns
which  follows from the forward kinematics ering M(x), D(¢) and K (¢) diagonal matrices such that

mapping L(q) : R" — RS, e(0,x) = x4(0) —x, interaction force exerted on theth dimension is



uint(€) = timp(&) + tint,< () + &7 ®)

with
uimp(§) = mé(8, x;) + d(§)é(0, x;) + k(€)e(8,2:) , (9)

where uint(€), Gint,c (&), d(€), k(E), e(O,z;) = xzq(0) — x;
andx4(0) are now one-dimensional functions, is a one-
dimensional variable and, ~ A (¢ | 0,02). For clarity, the
index ¢ will be omitted from here on in the functionats
Wints d, k, xTq andﬂmt.

A. Priors

For statistical analysis of (8), we assume that functional§

d(€),k(&),24(0) and dine . (€) and variablem are statisti-
cally independent and have prior distributions
mNN(m | um,crfn)
d(€) ~ GP (pa, ka(§.€"))
k(&) ~ GP (ur, ki (€,€))
(0) ~ GP (pay: kay(6,0"))

(&) ~ GP (0, kg (E.E)) (10)

where pu,,, g and u; are the expected mass, damplnge
is the expected
#') is a twice differentiable
covariance function. For simplicity we do not strictly en-

and stiffness coefficients, respectively,,
desired hand position arid,, (6,

sure positivity ofm, d(&) and k(€)?,
assumed.

but probabilistically

B. Impedance, PD and interaction force kernels

Given priors (10), a second-order statistical charadceriz
tion of uin(§) entails only complication in the impedance
term. Although not Gaussian due to the products invalyed
the computation of its expected value and the covariance

allows its approximation as a GP, i.e.,
tinp(€) ~ GP (E [uimp(€)] . himpl€.E)) -
From (9) and (10) the expected value is

E [uimp(g)} = :Ufm(/lmd - *Tz) + :de(/l;vd - *Tz) + (:u'acd - *Tz) .

(11)
The expression for covariance
kimp(za E/) =
Cov [ mé(0, ;) + d(€)é(0, z;) + k(€)e(0,x;)
mé(0', ;) + d(€)e(O, z7) + k(€ )e(0,27) | (12)

is more involved due to

the correlation between
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Fig. 1. (@) Covariance functions for a PD controller for the one-disienal
case with@ =t, x =2’ =0, 2 =32’ =0 and a SE kernel. The mean
values for the mass, damping, stiffness and desired tomjecire set
= 1Kg, rg = 10 Ns/m, pj, = 100 Nm andp, = 0 m. The hyper-

rameters for the damping, stiffness and desired traje&& covariance
functions (16) arg0.1, (0.1 0.1)}4, {0.1, (0.1 0.1)};, and{0.1, (0.2) },
while the variance of the massdg, = 0. 1 (b) Covariance functlons for an
impedance with identical parametrization a$ but with different expected
values for damping and stiffness.

functions [5]. From the properties of the covariance
of sums Cov[}, a,X,, > bsYs] = Zm arbsCov[X,, Y],
where X, andY, are random variables and. and b, are
constants and considering the covariance of products [13],
xpression (12) involves the sum of covariances of all
combination of product terms. For simple exposition, we
first derive the covariance considering only the stiffness
and damping terms, which, from a control perspective
corresponds to a PD controller. The PD kernel is given by

kpp(€, &) = Cov[d(£)é(0, z;) + k(£)e(8, z;),
d(&")e(0',z7) + k(€)e(0',27)]
= Cov[k(§)e(8, ), k(€)e(0', 27)]
+ Cov[k(€)e(8, z;),d(£')é(6', ;)]
+ Cov[d(&)e(8,z;), k(& )e(6, z})]
+ Cov[d(€)é(0, ), d(€')é(6', x7)]
= (4 + kr(&,€))k,(0,6)

+ (g — i) (pay — 7)1 (€,€)
ks, (0,0 ks, (0,0
+ Hkﬂd(#) + Haftk (%)
0%k, (0,0
+ (ug + ka(€, € ))W,)
+ (I[J‘wd - xl)(:u'wd - x;)kd(E,E/) ) (13)

wheret andt’ are the time stamps corresponding to obser-
vations@ and @’ respectively.
The full impedance kernel (12) yields

kimp(€,€ ) = kpp(£, &)

the desired trajectory and its time derivatives. As 0%k,,(0,0")  0%k,,(0,0)
X T N . . . “l‘,ukﬂm( 21/ 2 )

differentiation is a linear operatori,(6) and i4(0) 92t 92t

are also GPs with time derivative covariance 33kmd(9,9/) 33kmd(9,0')

+ paton (=g 92t

lpositivity is ensured by means of warped GPs [12]. In this " ,

case the GP priors are set dsg(d(£)) ~ GP(log pia, ka(€,€")) 9 9, 0%%,,(0,0)

andlog k(&) ~ GP(log ., ki (€,€))). B+ 0) g

2From (10) and (9), due to the products between impedancengéess

and the desired trajectory;, (&) involves non-central chi-squared terms.

+ 02 (g — %) (fizy — 75) - (14)



If & =t the computation of the time derivatives of covari-C. Conditional distribution of latent functions

ancek, (6, 6') is straightforward. For any other parametriza- The probabilistic nature of the proposed model enables the
tion, time derivatives are computed in terms of partial angomputation of the conditional distribution of latent vies

time derivatives o as with priors (10). In the case of multivariate normality,
conditional distributions are also Gaussian and computed i

k., (6.6) Ok, (0,0')\T 06’ closed form. In our spe_cific setting, the r_]umar_1 desireddraje
o = ( 00 ) s tory z4(0) is an especially relevant variable in many pHRI

2 / I T A2 / / applications where an estimate of human intention is neces-
L(g,é’) = (%—0) BL%O)Z_O sary. From (10) and (15), the joint distribution of a set of
ot t 06 b . noisy observations of the interaction forgg, = {yinti }/_

n (akmd (6,0 ))Ta & atinput pointsE = {£;}", andx4(6.) at test inpud. is

06’ ot? —
. . o o N Yint E [Uint(:)}
Considering (10) and (8), the a priori statistical chanacte zq4(0.) Ly ’

ization of the interaction force is [ Kint COV[Uim(E),xd(@*)]D

uint(z) ~ g'P (E [uimp(z)] 7l€int(g, E/)) 7 (15) COV[Id(O*), Uint(i)] kmd (0*7 0*)

where Kint = kint(Z, El) and

— — — —— 9 COV[Uim(E), xd(e*)] = COV[Uim(E),xd(e*)]T
kint(€,€ ) = kimp(§, &) + ki (€, &) + 07 . ks, (0,8,) 8%k, (0,0,)
ke 0.0.) (L0 1 (Phd0.0))
For illustrative purposes, let all covariances for GP pwior

from (10) be Squared Exponential (SE) kernels where® = {6;}_, are the desired trajectory inputs &f
The conditional distribution follows applying Bayes’ rule

kse(z,2') = ojexp{—(2 —2")TA" ' (z—2/) } , (16) yielding

where

with hyperparameter§o?, (I1 -+ l,)}se, Whereo? is the P (za(0)|uin(€)) = N (xa(0.) | E [x4(8+)] , Var [24(0.)]) ,
signal variance and\ = diag(l, ---1,) are the length 17)
scales for each input dimension. The SE kernel is infinitelyhere

differentiable and therefore valid fér, , (0, 8'). It is the most

widespread and applied kernel due to its smoothness ané [xd(o*)] = Hag

convergence properties [8]. + Cov[uint(E), a(0:)] King' (ing — E [uine(E)])

The most relevant characteristic of the PD and the
impedance kernels is the presence of terms comprisi
time derivatives of a latent desired trajectory. To dephe t /5, [24(0.)] = Ky, (0., 6.)
influence of this feature in correlations, Fig. 1 shows the = —1 =
covariance functions corresponding to a naive SE kernel, a + Covluin(Z), 2a(8.)] K Covlwa(6.), uim(=)]) -
PD and an impedance kernel for a time-dependent desirgtie computation of conditional distributions over othaets
trajectory. As depicted by the red dashed line the PD kernfiinctionals such as the stiffne¢g£) or dampingd(¢) is
considers the SE kernel derivative as an additive term thaimilar.
determines its profile. Similarly, the shape of the impe&anc Choosing a suitable prior for,;(0) is also essential as
kernel illustrated by the blue solid line is governed by thall impedance parameters depend on it. Depending on the
mass-related term that considers the second derivativeeof ttask and the application we may parametrize it as a function
SE kernel. The relevance of the stiffness, damping and masktime or as a function other task variables and their time
terms are significantly influenced by their respective etgmbc derivatives. An interesting alternative considers a prior
values. ,

Fig. 2 shows the covariance function for a one-dimensional za(zi,0) ~ GP (xi’ ke, (0,0 )) ’ (18)
configuration-dependent desired trajectory,f.e= x. When je., the human is in equilibrium and therefore, from (11)
the velocity @ is this case) of one of the input pointsls and (15)E [uim(@} = 0. This is suitable for modeling tasks
the damping term is nullified as the tracking error derivativwhere no information about the task is available a priori.
is also0. Thus, the correlation is limited to the SE kernel
of the stiffness termk(€)e(0,z;) as depicted in Fig. 2(c) V. EVALUATION
for £ = 0. When this is not the case correlations due to In order to validate the impedance-based GP model, we
dampingd(£)é(0, x;) arise. Fig. 2(d)(e) and Fig. 2(b), (a) analyzed its prediction performance in in an experiment wit
show positive and negative valuesafwhich determine the real human users. In our evaluations, all GP priors (10) have
slope of the correlation around— =’ = 0 as the derivative SE covariance functions (16). The prediction performance
of the error trajectory is proportional . evaluated using the standardized mean squared error (SMSE)
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Fig. 2. Covariance function for one-dimensional case of adebtroller (13) with a configuration-dependent error tajey 8 = x and Squared
Exponential (SE) kernels with hyperparametés1, (0.1 0.1)}4, {0.1, (0.1 0.1)}, and {1, (0.2)}», for damping, stiffness and an error trajectory
respectively. The expected damping and stiffness are sej te 1.5 Ns/m andp,, = 1 Nm with i, =0 m.

and the mean standardized log loss (MSLL). In SMSE, theesired trajectoryd = x with a priori equilibrium assump-
squared residuals are normalized with the variance of then (18). We assume all impedance parameters constant
test outputs. On the other hand, in MSLL, the mean negatiand deterministic. We compare this model with a naive GP
log probability minus the log probability of a naive Gaassi prior uim(@ ~ GP (07 kSE(E, E/)>- The training set is given
with the mean and variance given by the training points [14hy the simulated trajectories downsampled2Hz, and the

In order to validate the impedance-based GP model, Wgst inputs are the full trajectories.
analyzed its prediction performance in a simulated model of \we train the naive model hyperparameters and set identical
a human arm and in an experiment with real human userfyyperparameters fati(€) in (15). In addition, the expected

i mass is set tq.,, = 3 kg and the desired trajectory kernel

A. Smulated human arm has hyperparametefd0-%, (0.2 0.2)},, ando? = 10~

We simulated a two-link arm trajectory based on the The prediction performance for different values of
neuromechanical arm model reported in [15] usMatlab. and;, to the naive model are shown in Fig. 3. The SMSE for
This model was selected as it is structurally more complethe low stiffness simulation shows increased performaace t
than our GP model, and it derives a 2D trajectory fromhe naive model for low stiffness and damping, correspond-
simulated muscle activities, providing a physiologicallsiu- ing to the simulated values shown in Table I. High stiffness
sible impedance definition. The model simulated the musclend damping values significantly decreases performance.

tensionu,,, for attaining a desired trajectory as However, in terms of the MSLL, which considers uncertainty,
. the prediction performance increases throughout the whole

um = Kx(ex) + Da(ex) stiffness and damping range. The results for the high stiff-

Kx= Ko+ Kiucns Dy =1/12 Ky, ness simulation show marginally improved performance. The

here K. D indicate the stiff d . d minimum error is achieved for stiffness in the mid range and
where ki, Ly, ex indicate the stiness, damping and €rron uy, 5 yamping parameter, in accordance with the simulated

at dtf}\(e mu;z.llar Ievelu(;Nst|s :jhe ?eutr_al EontrOIdS'gtne,:_lﬁvalues.Asimilar dependency is found in terms of the MSLL.
andfip andix, are constant and activation-dependent sttt 0 * 4 shows how the proposed model infers the latent

ness terms, respe_ctivel_y. A r_ef_erenc_e trajectory was ded_ig desired trajectory, computed in (17), in terms of the dif-
as a0.04 m radius circle joint with 4 arcs subtendlngf rence with the state for different stiffness and damping
2.70 degrees attached Iater:_;xlly and vertically _to a Ce_””%} lues considering the full high stiffness simulation. The
C|rtc|f]le (tFl'g't 5)- Tthe sa;ne trajtectof;y(i\l/\éas pdr/esc;nb?d 3 tim igh stiffness model depicted by the red arrows expects low
without Interruption at a rate ok. radis to 1orm a - 4eyjations and higher tracking accuracy, thus the stategbei

single trial. We simulated two different stiffness profilas close to the desired trajectory. In contrast, the low s

500 Tz.lgorlzlow-rs]_tlf:]ne?; 5|mula_t|on|K§ was set to ?;3?0 model illustrated by the green arrows infers higher deoresi
as of [15]. For high-stiffness simulatiorfs, was set to as it assumes lower tracking accuracy.

16800. For both simulation&; = 0.035K,. The average
simulated hand stiffness and damping are shown in TableB. Experiment with humans
We consider the model (15) for a configuration-dependent To assess prediction performance with human data and

envisaging real applications for robot control, we desthne
an experiment with human users with emphasis on sparse
approximations.

1) Experimental setup: The haptic interface (Fig. 5)
simulation type dimping (v S/“;J) XS““”QSS W/mll consists of a two degrees-of-freedom (anteroposterior and
high-stifness | 48.07 (6.20) 60.29 (7.55) 576.8 (74.4) 7235@06 mediolateral plane of the user standing in front) linear-
low-stiffness ‘ 9.89(1.47) 12.4 (-73))‘ 1187 (17.6) 1484 (20.7)  actuated deviceTprustTube) with a free-spinning handle (su-

TABLE |
Average (standard deviation) stiffness and damping at tickedfector
from the simulation.




Low stiffness High stiffness virtual -
environment /
force-torque ]
\

sensor

SMSE
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(b)

Fig. 5. Experimental setup and a tracking path. A partidipgnasped a
handle on a two DoF linear actuator with force/torque seasdrreproduced

- ! a path with a flower shape as displayed on the monitor in fiStattting at
N the black dot, the arrows and numbers respectively desthidedirection
A -5 and order of the motion.
=

-2 . . .

1000 w0 Linux Preempt/RT at a sampling rate of kHz running on an
500 500 2% external PC.
peNIMl 070 pyINsim] ae[NIMT 0Ty [Ns/m] To robot implements an admittance control scheme
(c) (d)
Fig. 3. Prediction performance quanttidied by standactizesan square M:& + D& = tint

error (SMSE) and mean standardized log loss(MSLL) for th&figaration- . . .
dependent moded = ¢. The grey grid represents the performance of thewith M, = diag{2,2} kg and D,. = diag{6,6} Nm/s. We

naive GP model. let 3 different subjects (all male, average age 26) perform
za(z) — = [m] the task repeated cyclically 10 times with no pauses. The
T I subjects had the opportunity to familiarize with the haptic
0.4+ 53 ::Z: - §38 s g*“ 1 device for a few minutes before the experiment and were told
to follow the pre-defined trajectory for the given repetito
As the computational complexity of (7) hinders the ap-
035 1 plication of GPs to large datasets, we implement a local GP
Al approximation [16], which partition the input space into-se
E 30 5 | eral local models. We follow [17], where predictiops(z)
8 | e are computed as an average weighted sum tdcal GPs
L
0.25 | ] > k(z, z1)y.a(2)
=1
Yu(2) = L )
0.2 0.25 0.3 0.35 04 wherez; andy.,,; are the center and the prediction of thih
z1[m] local GP. respectively. In order to ensure a constant coaput

Fo 4. Desred traiect ruction in t ¢ thiieds " tion time, we consider that the input-space is bounded by the
19. 4. esired trajectory reconstruction in terms o nce wi . . P
the statexq(x) — « for the state-dependent modél = « for the high operatlonal cpnstralnts of the human a_rr_n_and a partitiorsing
stiffness simulation. possible a priof. This enables the definition of each cluster
as a sparse GP [18], ensuring fast predictions. For each
o o _ incoming observation every local model is updated effitjent
peroinferior direction of the user) at the grasp point. EacRy means of the methods described in [19]. Assuming that
actuator is equipped with a position encoder with precisiogzch |ocal sparse GP hasinducing inputs, the complexity
of 1 um. Attached to the handle is a 6 DoF force/torqueys gnline updates and predictions is reducedt. B?).
sensor JR3), which measures the human force input. The We evaluate model (15) with = [:cT :'cT]T and a priori
Worksp_ace Of. the experlmental de_V|c_e(+sO.15,O.15) m for equilibrium assumption (18). For computational tractabil
each dimension. A virtual scene is visually represented ong ; o o
) . - : iy, we restrict the model to position and velocity in-
display on top of the device to task description serving as uts, setting acceleration and jerk arising in the covagan
guide for performing the task. To enable haptic interactioR ' ; . -
with the user, the robot follows an admittance control sodaemmc (15) to 0. We compare this model with a naive GP
' prior uint(€) ~ GP (0, kse(€,£')). We train the naive model
M, &+ D, = Uint hyperparameters [16] with the first repetition of each user

With M, = d.iag{2,2} kg an_d D, = diag{6,6} Nm/s, 3|f this is not the case, several methods address this issiretgmentally
implemented inMatlab’s Smulink Coder and executed on building data clusters, e.g., [17].



and we set identical hyperparameters €qf . (£). The ex- on an appropriate selection of the priors of the impedance
pected impedance parametersutg = 3 kg, g = 15 Ns/m  parameters. These insights suggest the potential berafis f
and pur =300 N/m. Damping and stiffness covari- system identification concerning underlying human sensory
ance functions are set tg502% (0.1 0.1 0.3 0.3)}; motor processes and control for pHRI are concurrently
and {52, (0.1 0.1 0.3 0.3)}4, the desired trajectory kernel executed through a integrated approach as a future work.
has hyperparamete{$0*4, (005 0.050.3 03)}14 andcrf = ACKNOWLEDGMENTS
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