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ABSTRACT

On flow-based biochips, valves that are used to form peri-
staltic pumps wear out much earlier than valves for trans-
portation since the former are actuated more often, which
leads to a reduced lifetime of the chip. In this paper, we in-
troduce a valve-role-changing concept to avoid always using
the same valves for peristalsis. Based on this, we generate
dynamic devices from a valve-centered architecture to dis-
tribute the valve actuation activities evenly and reduce the
largest number of valve actuations with even fewer valves.
In addition, we propose in situ on-chip storages, which can
overlap with other devices, so that less area is needed com-
pared with dedicated storages on traditional chips. Moreover,
our method provides good support for assays requiring dif-
ferent volumes and ratios of samples. Experiments show
that compared with traditional designs, the largest num-
ber of valve actuations can be reduced by 72.97% averagely,
while the number of valves is reduced by 10.62%.

1 Introduction

Microfluidic biochips have drawn much attention in recent
years. Compared with transferring samples between equip-
ment in a big laboratory, using small biochips that consist
of all needed devices can save us much time and effort. For
example, it takes 2-4 days traditionally to identify target
pathogens even in the best laboratory in the world, but a
few minutes are already enough when using microfluidic bio-
chips [1]. Besides, reagents for biochemical experiments are
sometimes extremely expensive. For instance, RNase inhi-
bitor, a polyclonal antibody that is commonly used in re-
verse transcription polymerase chain reaction (RT-PCR) [2],
costs 600 euros per milliliter in December 2014 [3]. There-
fore, microfluidic biochips also have merits in cost saving,
since they require smaller amounts of samples and reagents.

Usually microfluidic biochips can be classified into two
types: digital biochip and flow-based biochip. The latter
uses micro mechanical valve as its control unit and consists
of a control layer and some flow layers. To describe the work-
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Figure 1: (a) Structure of a valve. (b) A dedicated mixer.
(c) Separation of sample flow.

ing principle of flow-based biochip, we show a general struc-
ture of valve in Figure 1(a). This valve structure consists of
a pressure source, a control channel lying in the control layer
and a flow channel lying in the flow layer. When a valve is
open, fluids can pass through the valve without obstruction
and travel along the paths formed by flow channels. To con-
trol the flow direction, we only need to close some valves by
pumping air or oil from their pressure sources into their con-
trol channels, which can be inflated and thus block the flow
channels underneath. Therefore, dedicated devices, such as
mixers, can be constructed as shown in Figure 1(b).

Design flow methodology for flow-based microfluidic bio-
chips has been developed considerably in the last decade.
The research works first target specified problems. For ex-
ample the system-level modelling for a specific flow-based
biochip [4]. Then the target problems become more general.
As in [5], the whole design flow is considered and the pos-
sibility of mapping biochemical assays to flow-based biochip
designs automatically is demonstrated. But there is a fact
that has usually been neglected in early research: valves can
only be actuated reliably for a few thousand times [4], and
the whole chip function can be affected even when only a
few valves wear out. Recently, some research works have
noticed this problem and proposed some methods to reduce
the number of valve actuations for guiding fluid transpor-
tation [6] [7]. However, during a mixing operation, valves
for peristalsis in mixers are actuated many more times com-
pared with valves for transportation. Since the service life
of a biochip might be affected by the first worn out valve, it
is more important to reduce the number of valve actuations
for peristalsis.

In this work, we solve this reliability problem by mapping
assay operations to dynamic devices. Our contributions in-
clude:

• We reduce the largest number of valve actuations by build-
ing dynamic devices in a valve-centered architecture. In
this architecture, we define the valves for guiding fluid
transportation as control valves, and the valves for peri-
stalsis as pump valves. Besides these two types of valves
that already exist on traditional flow-based biochips, we
define a third type of valves as wall valves, which work
as device boundaries and flow channel walls. During the
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Figure 2: (a) The first input enters the mixer. (b) The
second input enters the mixer. (c) Mixing starts. (d) Half
of the product leaves the mixer (e) The rest product leaves
the mixer. (f) The numbers of valve actuations after two
mixing operations.

assay, valves can change their roles on request, so that
their actuations are balanced among themselves.

• We reduce the total number of valves in most cases com-
pared with traditional flow-based biochips, where dedi-
cated devices are used. At first we assume a valve-centered
architecture formed by virtual valves, which are used to
build the dynamic devices and control channels. Then
we decide which of these virtual valves will actually be
actuated to execute a given assay, while the other vir-
tual valves keep open or closed all the time. Those non-
actuated virtual valves are removed, so that the final num-
ber of valves totally used in our method can be reduced.

• We introduce in situ on-chip storages to store the ope-
ration products temporarily. In traditional flow-based
biochips, operation products can be either stored in off-
chip storages, which leads to extra transport delay as well
as control efforts, or stored in dedicated on-chip storages,
which requires precious on-chip area. In our method, the
in situ on-chip storages can share valves with devices as
well as routing paths and thus much area can be saved.

• We adjust dynamic devices to different sizes according to
the need. In traditional flow-based biochips, to deal with
input samples of different volumes, dedicated devices of
every particular size must be built. In our method, we use
dynamic devices instead of dedicated devices, so that the
devices that have completed their tasks can release their
space for further use.

• We support assays with input samples in different pro-
portions. In traditional flow-based biochips, for example,
a 1:3 mixer has different port locations than a 1:1 mixer,
which means that we may have to build two different mix-
ers, even when the total volume of input samples is the
same. In our method, since device boundaries can be built
by valves, we are free to choose device ports from multiple
locations by using the available valves and thus saving the
effort to build another mixer.

2 Basic Idea and Problem Formulation

2.1 Working Principle of Valves inside Mixers

In a traditional flow-based biochip, valves can be classified
into two types: control valves controlling flow directions, and
pump valves forming peristaltic pumps in mixers. Figure 2
shows an example of a traditional mixer. It consists of a cir-
cular flow channel and 9 valves, 6 of which are control valves,
and the other 3 are pump valves. Generally, when execut-
ing a mixing operation, we can fill the mixer with two input
samples by changing the status of different control valves as
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Figure 3: (a) The numbers of valve actuations after the first
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Figure 4: Mixers in different sizes using the same area: (a)
A smaller mixer. (b) A larger mixer.

shown in Figure 2(a) and Figure 2(b). Then we close the
control valves connected to the outside flow channels and ac-
tuate the pump valves inside this mixer repeatedly in a par-
ticular order to generate a circulation flow as shown in Fig-
ure 2(c) like the flow in a washing machine [8]. After the re-
action, we use control valves to guide the mixing product out
as shown in Figure 2(d) and Figure 2(e). Assuming a pump
valve needs to be actuated 40 times [9] during each mixing
operation, Figure 2(f) shows the total number of valve actu-
ations of a mixer after two mixing operations. When more
mixing operations are bound to the same mixer, the imbal-
ance of total number of actuations between pump valves and
control valves becomes even larger.

2.2 Our Idea: Valve-role-changing Concept

Since pump valves are actuated much more often than
control valves, if we make a valve play different roles at dif-
ferent time, namely changing its role between control valve
and pump valve, the actuations among different valves can
be balanced significantly. Figure 3 shows an example imple-
menting this valve-role-changing concept. In this example,
two mixing operations are mapped to the same rectangular
mixer. The mixer contains 8 valves, 2 of which only work
as control valves, and the other 6 change their roles between
control valves and pump valves in different operations. As
shown in Figure 3(b), the largest number of valve actuations
is reduced from 80 to 48 compared with Figure 2(f), which
means that the service life of this mixer is nearly doubled. In
addition, we only use 8 valves to form the mixer in Figure 3,
instead of using 9 valves as shown in Figure 2.

Besides control valves and pump valves, we can also make
some valves work as wall valves as shown in Figure 4. These
valves are used as the boundary walls of a certain device
and thus providing the possibility to change the size and
function of devices. Therefore, a valve is no longer dedicated
to a single device. After a device finishes its work, it can
be treated as a free space composed by valves for further
device construction. This flexibility offers us more options
for placement of devices, so that we can take advantage of
valves which used to be rarely actuated and therefore spread
valve actuation activities more evenly.

2.3 Problem Formulation

Input:

1. A bioassay sequencing graph, which specifies operation
relations, durations, volumes and input proportions.

2. A bioassay scheduling result, which specifies the start
time of each operation.



Objective:

Reduce the largest number of valve actuations.

Output:

The bioassay synthesis result, which specifies the device
locations, shapes and orientations.

3 Reliability-aware Synthesis

3.1 Valve-centered Architecture

In the following section, we explain how to generate a
design for a certain scheduled biochemical assay from a valve-
centered architecture. The idea of the valve-centered archi-
tecture is from a valve matrix proposed and manufactured
by [9], in which valves are arranged regularly and every com-
ponent including flow channels on the chip is completely
constructed by valves. Therefore, this valve matrix is pro-
grammable just like the electrode matrix in digital biochips.
However, the number of valves implemented on the chip can
be very large, which leads to much control effort. In this
paper, we transform that valve matrix into a valve-centered
architecture with virtual valves.

In the valve-centered architecture, virtual valves are ar-
ranged regularly. A 4×4 example in a coordinate system
is shown in Figure 5(a). These valves are virtual because
some of them may not be manufactured as real valves, but
removed after synthesis. The virtual valves can be used as
wall valves to construct the boundary walls of devices, so
that the devices can be formed and split up on request dy-
namically during the biochemical assay. We call such devices
dynamic devices.

In the valve-centered architecture, different dynamic devices
can share the same area without making any valve play the
role as pump valve twice. For example, two 2×4 mixers
with different orientations as shown in Figure 5(b)(c) can
be generated in the same region at different time as shown
in Figure 5(d): though the two mixers overlap with each
other, their pump valves are completely different.

3.2 Dynamic-device Mapping

In our method, instead of modeling all actuation activi-
ties, we only model the actuation activities for peristaltic
use, since pump valves dominate the valve actuation prob-
lem. To model the location, shape, and orientation of each
dynamic device, we introduce a binary variable sx,y,k,i as
selection variable. (x,y) is the left-bottom corner coordin-
ate of a device to represent its location, for example, (0,0),
(2,0), (0,2), (2,2) as shown in Figure 6(b)(c)(d)(e); k repres-
ents the index of a device type, which includes device shape
and orientation, such as 1 for 3×3, 2 for 2×4, and 3 for 4×2;
i is the index for the ith operation. When a selection vari-
able sx,y,k,i is set to 1, it means that the ith operation is
mapped to a device of type k at the location (x,y). Since
each operation can be only mapped to a single device, we
introduce the following constraint

∑

x,y,k

sx,y,k,i=1, ∀i≤|O| (1)

where O is the set of all operations in the assay.
Each time an operation is mapped to a dynamic mixer,

some virtual valves related to this mixer work as pump
valves. With location, shape, and orientation information
of a device, the coordinates of these temporary pump valves
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Figure 5: (a) A 4×4 valve-centered architecture (b) A 2×4
dynamic mixer. (c) A 4×2 dynamic mixer. (d) Dynamic
mixers of different orientations sharing the same area.
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Figure 6: (a) A 3×3 dynamic mixer with 8-units volume.
(b)(c)(d)(e) Four possible locations to place a 3×3 mixer.

are determined. We represent the number of valve actu-
ations for peristaltic use of each virtual valve by an integer
variable vx,y and calculate it as

vx,y=
∑

xp,yp,k,i

pisxp,yp,k,i, ∀(x,y)∈C, ∀sxp,yp,t,i∈S (2)

where pi is a constant representing the number of actuations
of a pump valve belonging to the mixer that is mapped by
the ith operation, C is the set of all coordinates, and S is a
set containing all selection variables sxp,yp,k,i that satisfy the
following condition: when sxp,yp,k,i is set to 1, the virtual
valve at (x,y) will work as pump valve.

To avoid generating different devices in the same area at
the same time which may lead to pollution, we introduce
four more integer variables as bi,le, bi,ri, bi,up, and bi,do. As
shown in Figure 6(a), bi,le, bi,ri, bi,up, bi,do represent the
coordinates of all wall valves, which build the boundaries
of the dynamic device that the ith operation is mapped to.
By using these variables, the non-overlapping constraints for
two devices mapped by operations i1 and i2 can be modeled
as

(bi1,ri≤bi2,le)∨(bi1,le≥bi2,ri)∨(bi1,up≤bi2,do)∨(bi1,do≥bi2,up)
(3)

which can be transformed into linear form as

bi1,ri≤bi2,le+c1M, (4)

bi1,le≥bi2,ri−c2M, (5)

bi1,up≤bi2,lo+c3M, (6)

bi1,lo≥bi2,up−c4M, (7)

c1+c2+c3+c4=3 (8)

in which c1, c2, c3, c4 are auxiliary binary variables, andM is
a very large constant. From constraint (4) to (7), when one
of ck, k∈{1,2,3,4} is set to 1, the corresponding inequation
becomes trivial. However, with constraint (8), one of the
elements in the set {c1,c2,c3,c4} must be set to 0, so that
at least one of the four non-overlapping conditions can be
successfully fulfilled.

With the constraints mentioned above, we build an ILP
model to minimize the highest vx,y, which is the largest num-
ber of actuations of those valves for peristaltic use. We
bound this number by an integer variable w with the follow-



ing constraint

vx,y≤w, ∀(x,y)∈C (9)

and the whole model can be described as

Minimize: w (10)

Subject to: constraints (1)−(2),(4)−(9) (11)

3.3 In Situ On-chip Storages

t

sc

scheduling result chip snapshots at different time

dc

t3

oa

t1

ob

ts

oc

t3t2 dc/sc
ts

da db

da

t1

db

t2

da

Figure 7: An example of an in situ on-chip storage sc.

In a biochemical assay, the product of a preceding op-
eration is usually the input of a later operation. Because
an operation can only start after all its inputs are ready,
the early coming products of preceding operations should
be stored. A traditional practice is to build some dedic-
ated storages, which needs extra chip area and can cause
transport delay. In our method, with the valve-centered ar-
chitecture, we generate dynamic devices ahead of schedule
as in situ on-chip storages to store coming products, so that
chip area and transportation time can be saved.

An example is shown in Figure 7, in which the scheduling
result is drawn as a Gantt Chart, and the dynamic mixers
are simplified and drawn as the circulation flows that they
contain. oa, ob and oc are mixing-operations, in which oc
takes the products of oa and ob as its inputs. da, db and dc
are dynamic devices for oa, ob and oc. sc is an in situ on-
chip storage that will be transformed into dc directly after
collecting all needed inputs, and thus saving the transpor-
tation effort. We call oa and ob the parent operations of oc.
Correspondingly, da and db are called the parent devices of
dc and sc.

At time ts, oa is completed and thus the valves which have
constructed da can be treated as free valves, so that we can
build sc by using some of these valves to store the product
of oa immediately. Since sc only contains the product of oa
at time ts, there is still some free space inside it. In our
method, we take advantage of those free space by allowing
them to overlap with their parent devices. In this example,
ob is in process at time ts. Therefore, sc only occupies part
of the later dc until ob is completed at time t3. Then sc is
turned to dc by using the free valves of the former db, and
the product of ob can be also conveniently led to dc for the
coming operation.

To implement this special overlapping permission to our
ILP model, we only need to add an auxiliary binary variable
c5 to constraint (8)

c1+c2+c3+c4=3+c5. (12)

If c5 is set to 1, c1, c2, c3 and c4 must all be 1, which permits
the overlapping between two devices. But if we do not want
this overlapping to happen, we can set c5 to 0, so that the
meaning of this constraint will be the same as constraint (8).

3.4 Routing-convenient Mapping

To save the transportation time, we force two sequential
operations to be mapped to two close devices, so that trans-
portation time can be saved. A constant d, which is the

minimum dimension of all devices, is set to the maximum
distance between the dynamic devices for two sequential op-
erations, so that no other device can be inserted between
them, and the routing path can be directly constructed.

To introduce the distance limit d to our model so that the
dynamic-device mapping can be routing-convenient, we add
four more constraints by using the device boundary coordi-
nates as shown in Figure 6(a) to the ILP model as

bi1,ri>bi2,le−d, (13)

bi1,le<bi2,ri+d, (14)

bi1,up>bi2,lo−d, (15)

bi1,lo<bi2,up+d (16)

where i1 is the parent operation of i2.

3.5 Routing between Devices and Chip Ports

da
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(b)
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sample waste sample waste
port port port port

(a)

Figure 8: (a) The storage sk is an obstacle for routing paths.
(b) The storage sk can be passed through by routing paths.

Besides our routing-convenient dynamic-device mapping
process,we also propose a method to determine the routing
paths between devices and chip ports that are connected to
off-chip sample pumps or waste sinks.

Our valve-role-changing concept brings us more options
for routing. When an in situ on-chip storage still has enough
free space, we allow routing paths to pass through this sto-
rage as shown in Figure 8(b), thus saving the efforts for a
long detour as shown in Figure 8(a). We apply Dijkstra’s
shortest path algorithm to decide the routing paths. And
we restrict the crossings of routing paths by assigning higher
costs to the area occupied by previously-routed paths, so
that we can transport samples in parallel.

3.6 Overall Algorithm

Algorithm 1 gives an overall view of our methods. After
reading the program input in L1 and building the data struc-
ture in L2, we perform our dynamic-device mapping by using
an ILP model in L3-L9 and then decide the routing paths
in L10-L19. In the proposed method, we allow overlapping
in two particular situations: overlapping between storages
and parent devices, and overlapping between storages and
routing paths. After overlapping, the remaining area inside
the storages may not be big enough to store the required
products. In our model, the constraints that can be used
to prevent this possibility are not included to save program
runtime. Instead, when the overlapping area between a sto-
rage s and a device d exceeds the remaining free space in
s, we set c5 in constraint (12) to 0 to prevent s and d from
overlapping again, and re-run the dynamic-device mapping.
Analogously, when the overlapping area between a storage s
and a path p exceeds the remaining free space in s, we treat
s as an obstacle, rip p, and re-route a new path.

After dynamic devices are generated and the routing paths
are decided, in L20, we transform the virtual valve-centered
architecture into a real design by removing the virtual valves
that are never actuated and implementing the remaining



Algorithm 1: Reliability-aware Synthesis

L1 Read sequencing graph and scheduling result.
L2 Build virtual valves in valve-centered architecture.
L3 # Dynamic−device Mapping
L4 repeat
L5 Build and solve ILP model for dynamic-device

mapping.
L6 if overlapping area of (storage s, device d) > free

space of s then
L7 Forbid (s,d) from overlapping with each other.
L8 end

L9 until feasible dynamic-device mapping;
L10 # Routing
L11 for time t=1 to maxT do
L12 forall the connections do
L13 Route a path using Dijkstra’s algorithm.
L14 if overlapping area of (storage s, path p) >

free space of s then
L15 Forbid (s,p) from overlapping with each

other.
L16 Rip p and re-route.
L17 end

L18 end

L19 end
L20 Remove non-actuated valves.

valves, so that the valve actuation activities are balanced
even with fewer valves.

4 Experimental Results

We implemented the reliability-aware synthesis in C++
on a computer with a 2.67GHz CPU. The ILP model for
dynamic-device mapping was solved by the ILP solver Gu-
robi [10]. The four test cases are from widely used laboratory
protocols [11] [12]. For each test case we set up three dif-
ferent policies. As the policy index increases, we increase
the number of mixers used in a traditional design, in which
dedicated mixers, storages, and detectors are used. Corres-
pondingly, we can obtain different scheduling results as the
inputs for experiments. We compare the experimental re-
sults of our method in two different settings with the results
of the optimal binding for the traditional designs in Table 1,
in which the meaning of each column is:

#op : the number of operations and mixing operations thereof.

Po. : the policy index.

#d: the number of devices, including mixers and detectors.

#m4−6−8−10: the numbers of operations bound to the same mix-
ers, while the hyphens separate mixers of different sizes.

vs tmax: the largest number of valve actuations applying the op-
timal binding for the traditional designs.

vs 1max, vs 2max: the largest number of valve actuations and
actuations for peristalsis thereof applying our methods in
different settings.

#v: the number of used valves.

imp 1vs, imp 2vs: the improvements in the largest number of
valve actuations in different settings.

impv: the improvement in the number of valves.

T : the program runtime.

In the traditional designs, we assume there are 4 diffe-
rent sizes of mixers: 4, 6, 8, and 10. Each design contains
a storage to store products temporarily, and the number
of cells in the storage is determined by the largest number
of simultaneous accesses to the storage. Each assay opera-
tion, according to the volume of its inputs, is assigned to a
mixer with the required size. If there are multiple mixers
with the same size, we apply an optimal binding regarding
valve actution by distributing operations to mixers as evenly
as possible. Because the loadings on mixers with different
sizes may vary considerably, we add one more mixer for each

tu
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Figure 9: The scheduling result of case PCR in p1.

mixer type that is under the heaviest loading as the policy
index increases to alleviate the heavy burden.

When we introduce more and more mixers as the policy
index increases, the valve actuation activities for peristalsis
are distributed much more evenly among different dedicated
mixers. However, because the roles of valves cannot be
changed in the traditional method, introducing more mixers
leads to more rarely used valves, thus enlarging the total
number of valves.

In our method, we first built a square matrix contain-
ing virtual valves based on the valve-centered architecture.
Then we built and solved the model for dynamic-device
mapping and routed the sample paths. We calculated the
largest number of valve actuations in vs 1max and vs 2max

in Table 1, which are close to the numbers of actuations
for peristalsis thereof. This fact validates our method in
Section 3.2, where we only model actuation activities for
peristalsis.

In our model, as mentioned in Section 3.1, all valves passed
by the circulation flow inside a dynamic mixer are regarded
as pump valves. For example, the 2×4 dynamic mixer as
shown in Figure 5(b) uses 8 pump valves, while the dedi-
cated mixer as shown in Figure 2(f) only uses 3 pump valves.
Though in our method we use more pump valves, so that
theoretically the loading on each valve should be alleviated
under the same efficiency, it is difficult to tell how many
actuation times are sufficient for a single mixing operation.

Therefore, in our first setting we still assume each pump
valve is actuated 40 times for a single mixing operation,
which is exactly the same as the pump valve works in a
dedicated mixer in the traditional method as a conservative
comparison. imp 1max shows that even with this conser-
vative setting, we still reduce the largest number of actu-
ations by more than half of that in the traditional method.
In our second setting, we directly use the synthesis result
obtained in the first setting, but change the number of ac-
tuations of each valve for a single mixing operation, so that
the total number of actuations is the same as that in the
traditional method. For example, the total number of valve
actuations of a dedicated mixer for a single mixing opera-
tion is 3×40=120, so we change the number of actuations
of each valve in the mixer using 8 pump valves to 15. As
shown in imp 2max, the results are much better, even with
a small number of valves shown in #v.

To show the working principles of our method intuitively,
we take the synthesis result of case PCR with 7 mixing ope-
rations in p1 as an example. The input of our method is
the scheduling result of this case with 3 time-units (tu) as
the transport delay. As shown in Figure 9, o1 and o2 are
the parent operations of o5, while o3 and o4 are the parent
operations of o6, and o5 and o6 are the parent operations
of o7. At t = 3tu, the storage s6 appears immediately after
o3 and o4 are completed, and begins to store the products
of o3 and o4. Likewise, s5 appears immediately after o2 is
completed at t = 12tu, since o2 is completed earlier than o1.
Finally, o7 takes the products of o5 and o6, while s7 has been



Table 1: Comparison of the highest valve actuation times and the number of valves.

Optimal Binding for Traditional Designs Our Method

#op Po. #d #m4−6−8−10 vs tmax #v vs 1max imp 1vs vs 2max imp 2vs #v impv T

PCR 15(7) p1 3 1-0-4-2 160 83 45(40) 71.88% 35(30) 78.13% 71 14.46% 0.8

p2 4 1-0-(2,2)-2 80 99 45(40) 43.75% 34(30) 57.50% 76 23.23% 0.8

p3 6 1-0-(2,1,1)-(1,1) 80 131 43(40) 46.25% 31(30) 61.25% 82 37.40% 0.9

Mixing Tree 37(18) p1 4 2-4-5-7 280 108 93(80) 66.79% 46(42) 83.57% 105 2.78% 2.9

p2 5 2-4-5-(4,3) 200 124 93(80) 53.50% 46(42) 77.00% 105 15.32% 2.9

p3 6 2-4-(3,2)-(4,3) 160 140 90(80) 43.75% 60(50) 62.50% 124 11.43% 3.3

Interpolating 71(35) p1 7 5-9-9-(6,6) 360 178 145(120) 59.72% 72(65) 80.00% 176 1.12% 357.1

Dilution p2 9 5-(5,4)-(5,4)-(6,6) 240 207 94(80) 60.83% 56(42) 76.67% 207 0.00% 87.8

p3 10 5-(5,4)-(5,4)-(4,4,4) 200 225 92(80) 54.00% 56(50) 72.00% 208 7.56% 101.2

Exponential 103(47) p1 10 6-(8,8)-(7,6)-(6,6) 320 241 135(120) 57.81% 75(75) 76.56% 214 11.20% 485.3

Dilution p2 11 6-(6,5,5)-(7,6)-(6,6) 280 254 134(120) 52.14% 71(65) 74.64% 255 -0.39% 488.9

p3 12 6-(6,5,5)-(5,4,4)-(6,6) 240 268 99(80) 58.75% 58(40) 75.83% 259 3.36% 314.3

average 55.76% 72.97% 10.62%
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(g) t = 25tu.

: functionless wall

: closed valve

: open valve

Figure 10: Snapshots of the synthesis result of case PCR in p1 in the first setting.

formed since t = 9tu, immediately after o5 is completed.
Figure 10 shows some snapshots of the synthesis result.

We assume that there are two input ports for samples and re-
agents, and one output port for waste and final product. The
in situ on-chip storages s7 and s5 are generated respectively
at 9tu and 12tu in Figure 10(c)(d), and become mixers for
o7 and o5 directly later at 25tu and 18tu in Figure 10(g)(f).
Allowing overlap between storage s7 and its parent device
s5 is demonstrated at 12tu in Figure 10(d). Thanks to
our routing-convenient model, we only need trivial routings
between devices, and the longest one in this example is from
the dynamic mixer for o1 to s5 at 15tu as shown in Fig-
ure 10(e). The routings between devices and chip ports is
shown by the flow directions denoted by arrows.

5 Conclusion

In this paper we have addressed a reliability problem of
flow-based biochips due to unbalanced valve actuation. The
problem is solved by the proposed reliability-aware synthesis
based on a virtual valve-centered architecture with valve-
role-changing concept. Indeed, the architecture may also
bring benefits to some aspects other than reliability, such as
to speed up the bioassay execution, which will be considered
in the future. Besides, in this work, we assume that we can
freely manipulate sample flows, which needs to be restricted
and will be considered in the future as well.
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