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ABSTRACT

Flow-based microfluidic biochips are widely used in lab-

on-a-chip experiments. In these chips, devices such as

mixers and detectors connected by micro-channels execute

specific operations. Intermediate fluid samples are saved

in storage temporarily until target devices become avail-

able. However, if the storage unit does not have enough

capacity, fluid samples must wait in devices, reducing their

efficiency and thus increasing the overall execution time.

Consequently, storage and caching of fluid samples in such

microfluidic chips must be considered during synthesis to

balance execution efficiency and chip area.

1. INTRODUCTION

Microfluidic biochips have revolutionized traditional bio-

chemical diagnoses and chemical experiments significantly

by enabling lab-on-chips. On such a chip, samples and

reagents are propagated and mixed in volumes of nano-

liters instead of large drops. This miniaturization signif-

icantly saves reagents, which are very expensive in many

experiments. In addition, the experimental flow on such a

chip is controlled by a microcontroller, so that the sched-

ule of each operation in the assay is maintained accurately.

Consequently, both the execution time of the assay and

the quality of the experiment are improved.

Flow-based microfluidic biochips have dedicated devices

such as mixers and detectors for specific operations. These

devices are connected by micro-channels, through which

fluid samples and reagents are transported from one device

to another.

Micro-channels are made from dimethylsiloxane using

soft lithography. The transportation of fluid samples through

these channels is controlled by valves, whose basic struc-

ture is shown in Figure 1a. In such a structure, a flow

channel is constructed on a substrate to transport fluid

samples and reagents. Above the flow channel, a con-

trol channel is constructed and connected to an air pump.

Since both channels are built from elastic materials, an

air pressure applied in the control channel squeezes the

flow channel tightly, so that the movement of the fluid

sample can be blocked. Reversely, if the pressure in the

control channel is released, the fluid sample can resume

its movement to the target device.

Valves can be used to construct more complex devices.

In biochips, it is very common that transportation routes

of several fluid samples cross each other. At such a cross-

ing point, a switch can be constructed using valves, as

shown in Figure 1b. In this device, only a pair of valves

are open at the same time to direct the fluid sample. An-

other dedicated device is a mixer, as shown in Figure 1c.

In this device, the three valves at the top are actuated

alternately to create a circular flow around the device to

mix different fluid samples.

After an operation is finished, the intermediate result

can be transported to other devices or saved temporarily

in a dedicated storage unit. Figure 1d shows a detailed

schematic of a mixer connected to a storage unit with eight

cells [1]. These side-by-side storage cells are constructed

from normal flow channels but with multiplexer-like con-

trolling valves at each end. Consequently, only one fluid

sample can enter or leave the storage unit at a certain

moment.

A biochip executes operations in an assay by time multi-

plexing. Such an assay is usually specified by a sequencing

graph. In Figure 1e the sequencing graph of polymerase

chain reaction (PCR) is shown. This assay takes eight

input samples (i1∼ i8) and mixes them with seven opera-

tions (o1∼o7) to generate copies of DNA sequence. If for

each operation a mixer is assigned, seven mixers should be

built on the chip. However, to reduce cost it is not usual

to assign resource so freely. Instead, mixers are reused

to execute the operations while maintaining their depen-

dency specified by the sequencing graph. For example, a

mixer can be used repeatedly to execute the operations in

Figure 1e. Meanwhile, intermediate reaction samples such

as the output of o1 can be saved in a storage unit until the

result of o2 is available. With this time multiplexing, the

number of mixers on the chip can be reduced significantly.

To execute an application on a flow-based biochip effi-

ciently, the operations in the application should be care-

fully assigned to specific devices in the chip in proper time

slots, thus requiring a complete flow of design automation.
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Figure 1: (a) Valve structure. (b) Switch. (c)

Mixer. (d) A biochip with a mixer and an eight-

cell storage unit, adapted from [1]. (e) Sequencing

graph of the PCR assay.

Owing to advances of fabrication techniques, the integra-

tion of flow-based biochips is continuously increasing [2].

Consequently, research in this area has attracted much at-

tention. In [3] a top-down flow for architectural synthesis

is proposed. In [4] control layer synthesis is addressed. In

addition, fault modeling and test generation are covered

in [5], and dynamic mapping on a valve array is discussed

in [6].

In this article, we introduce a new concept to use trans-

portation channels connecting dedicated devices as tem-

porary caches of fluid samples. Sample assignment in ded-

icated and distributed storage is also discussed. The goal

of this synthesis process is to reduce both the overall ex-

ecution time of the assay and the chip area at the same

time. This is the first work considering channel caching in

flow-based biochips, and new constraints are introduced

to avoid channel conflicts.

2. STORAGE AND CACHING

In a traditional biochip, there is usually one dedicated

storage unit and it should be considered directly for an

optimized design. Consider Figure 1e which depicts the

mixing stage of the PCR assay and will be executed by

the biochip in Figure 1d. Assume that all the operations

in this assay have the same execution time. During the

execution, the resulting fluid sample from an operation

needs to be saved in a storage unit if its child operation

is not the next one to be executed. For example, after

the execution of o1 and o2, both output samples should

be saved in the storage unit if the next operation to be

executed is o4. But if the next operation is o3, the output

of o2 can stay in the mixer directly, while the result of o1
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Figure 2: Channel caching. (a) Sequencing graph.

(b) Mixer and channel structure. (c) Schedule

with caching.

is fetched from the storage unit. Consequently, not only

transportation time but also storage usage are reduced.

In the example above, there are only one mixer and one

storage unit. For large biochemical assays, more mixers

are integrated into the chip to reduce the execution time.

This increased parallelism produces more concurrent in-

termediate samples that should be saved in the storage

unit. In traditional design methods, this is achieved by

increasing the capacity of the storage unit, namely the

number of storage cells. Consequently, a large monolithic

storage unit containing many cells is formed. Since a stor-

age unit has only one input port and one output port, and

allows only one fluid sample to enter or leave, the compe-

tition for these ports by multiple samples may hurt the

performance of the chip in the end, largely negating the

benefit of increasing the number of dedicated devices.

In addition to the dedicated storage unit, transportation

channels themselves can also be considered as temporary

caching cells to reduce the execution time. An example of

this caching usage is illustrated in Figure 2. In this exam-

ple, operations o1 and o2 are executed at the same time

in mixers d1 and d2, respectively. As o2 finishes earlier

than o1, device d2 can dump the resulting fluid sample of

o2 into channel c1 and then start the operation o4. In ex-

isting methods, channels are only used to transport fluid

samples and not considered as temporary caching cells.

Therefore, the result of o2 can be transported to d1 only

after o1 is finished and o4 can start only then.

3. SYNTHESIS WITH CHANNEL CACHING

AND STORAGE ASSIGNMENT

In this section, constraints for scheduling and binding

of a biochemical assay are reviewed briefly. Thereafter,

additional constraints to avoid fluid conflicts when apply-

ing channel caching are introduced. These constraints to-

gether with the basic scheduling and binding constraints

are solved as a whole using an ILP solver. In the last

step, intermediate fluid samples that cannot be handled

by channels are assigned to an external storage unit by

time-multiplexing. The last step is a post-processing step,

dealing with the result produced by the ILP solver. This

step offloads some constraints from the ILP formulation
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Figure 3: Model comparison. (a) Stage-based

model [7,8]. (b) Stage-based model with variable-

length time slots [9]. (c) Stageless model.

above to reduce the problem complexity.

3.1 Common constraints

Since the number of devices in a biochip is usually smaller

than the number of operations in an assay, more than

one operation is assigned to a device while maintaining

the dependency specified by the sequencing graph, i.e., a

child operation should be executed later than its parents.

Therefore, the synthesized result must meet the following

constraints [3, 7, 8].

Uniqueness : An operation should be scheduled to a

device only once.

Duration : The difference between the starting time and

the ending time of an operation should be no smaller

than its duration.

Dependence : A child operation should not start before

the results from its parents arrive.

Non-overlapping operations : Any two operations that

are overlapping along the timeline should not be as-

signed to the same device.

The non-overlapping constraints are created by compar-

ing the starting and ending times of each pair of oper-

ations. This is different from the stage-based schedul-

ing models in [7–9] as demonstrated in Figure 3, where

four operations are assigned to two devices. The classical

stage-based model in Figure 3a schedules operations to

pre-determined time slots [7,8]. This model is revised in [9]

to allow variable-length time slots for pin-count reduction,

as illustrated in Figure 3b. In the proposed method, the

direct comparison of starting and ending times of oper-

ations is actually a stageless model shown in Figure 3c,

which allows an operation to start at any time so that op-

erations are packed tightly to reduce the overall execution

time of the assay.

3.2 Channel caching

In existing scheduling and binding methods for flow-

based biochips, the transportation time between devices is

not modeled directly. After a device finishes an operation,

the result is supposed to be saved in storage and fetched

back when its child operation is ready. This simplification

may lead to a significant performance drop because fluid

samples might have many conflicts at the ports of the

storage unit.

Using channels to cache intermediate samples can al-

leviate the port competition problem above significantly.

This usage requires to include channel conflict constraints

into scheduling and binding. Since a channel can only be

used by one fluid sample, such a constraint requires that

a new fluid sample should not be dumped into a channel

which is still occupied by a previous sample. Otherwise,

contamination between fluid samples occurs. For example,

in Figure 2c operation o4 executed by device d2 finishes

earlier than operation o1. But device d2 cannot dump its

result into channel c1 because this channel is still occupied

by the output of operation o2.

To avoid contamination in channels, we model the con-

flict scenarios as illustrated in Figure 4, where oi1 and oi2
are executed by device dk1

, and oj1 and oj2 are executed by

dk2
. In the case on the left, the result of oi2 may contam-

inate the result of oi1 because the latter has not entered

the device dk2
and still occupies the channel. Similarly,

the case on the right shows the mirrored case where oi2 is

executed earlier than oi1 . Consequently, transportation

requests of the two edges (oi1 ,oj1) and (oi2 ,oj2) compete

for the channel between dk1
and dk2

, and one of these re-

quests should be directed to the dedicated storage unit.

A 0-1 variable λi1,k1,j1,k2
is defined to represent the use of

the dedicated storage unit when oi1 and oj1 are mapped

to devices dk1
and dk2

, respectively, as

λi1,k1,j1,k2
=











1 if the output of oi1 should be directed to

the dedicated storage unit.

0 otherwise.

(1)

To avoid channel conflicts, either the operation oi2 fin-

ishes later than oj1 starts or similarly oi1 finishes later

than oj2 starts. Therefore, the non-conflict condition of

channel usage can be expressed as

∀ edge (oi1 ,oj1), edge (oi2 ,oj2), device dk1
, and device dk2

if ei2 <tj1 and ei1 <tj2

λi1,k1,j1,k2
+λi2,k1,j2,k2

≥1 (2)

where tj1 and tj2 are the scheduled starting times of oper-

ations oj1 and oj2 , respectively; ei1 and ei2 are the sched-

uled ending times of operations oi1 and oi2 , respectively.

The condition ei2 <tj1 and ei1 <tj2 describes the two con-

flict cases in Figure 4. The sum in (2) describes that at

least one output should be directed to the dedicated stor-

age unit. This conditional constraint can be transformed

into a linear form [10] and handled by an integer linear

programming (ILP) solver.

In the proposed model, caching using channels does
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Figure 4: Channel conflict scenarios.

not incur any cost. Therefore, the more caching is con-

ducted by channels, the smaller the dedicated storage unit

becomes. According to this observation, the proposed

method minimizes the number of conflicted sample trans-

portations to be handled by the dedicated storage unit.

This number is given by

λds=
∑

i1,k1,j1,k2

λi1,k1,j1,k2
. (3)

By minimizing λds, fluid samples are forced to be cached

in transportation channels as much as possible. Accord-

ingly, the number of cells in the dedicated storage unit is

decreased to reduce chip area.

3.3 Optimize channels and execution time

The concept of channel caching can be applied to a

biochip with a given number of channels and their con-

nections. In this case, the constraints (1)–(3) are created

only for the available channels. If the number of channels

between devices is not given, a full channel connection be-

tween any pair of devices are assumed. In both cases, the

proposed method reduces the execution time of the ap-

plication using as few channels as possible. The channels

that are not used after synthesis are simply removed to

save resources.

Assume that operations oi and oj have an edge in the

sequencing graph, meaning that the result of oi should be

transported to oj . If these two operations are assigned to

devices dk1
and dk2

, there should be a channel between dk1

and dk2
. We maintain a 0-1 variable ck1,k2

to represent the

presence of this channel. Consequently, the total number

of channels in the chip can be constrained as
∑

dk1
,dk2

ck1,k2
≤nc (4)

where nc is the upper bound of the number of channels.

Another major objective of the synthesis process is to

minimize the execution time T of the assay, which is de-

termined by the latest finishing time of all the operations.

Therefore, it is constrained as

∀ operation oi, ei≤T (5)

In synthesizing a given assay to achieve a short exe-

cution time with as few channels as possible, the upper

bound of the execution time T in (5) and the upper bound

of the number of channels nc in (4) should be minimized.

The overall optimization problem is summarized as fol-

lows:

Minimize: wtT+wcnc+wsλds (6)

Subject to:

constraints described in Section 3.1 and (7)

channel constraints (1)–(5) (8)

where the weight wt is set 1 and wc is set to 0.01, so that

the execution time has a high priority to be reduced as

much as possible. In practice, different pairs of weights

may be used for a tradeoff.

3.4 Storage assignment

After the synthesis model above is solved, flow trans-

portation requirements may still exceed the capacity of

channel caching and some of them should be directed to

the dedicated storage unit.

The period a fluid sample stays in the storage unit can

be partitioned into three phases. In phase one, it enters

the storage unit. Because a storage unit only allows one

fluid sample to enter or leave due to the flow path, as

illustrated in Figure 1d, only one fluid sample is allowed

to be in phase one at a time. Otherwise, a port conflict

occurs. In phase two, the fluid sample occupies a cell

in the storage unit. In phase three, it leaves the storage

unit, and again only one fluid sample is allowed to use

the port of the storage unit. Figure 5a illustrates these

three phases, and Figure 5b shows an example of four

fluid samples directed to the dedicated storage unit but

with port conflicts.

Since two fluid samples cannot enter the same storage

unit if there is a conflict at phase one or phase three, the

largest set of fluid samples that do not conflict with each

other are identified and packed into the dedicated stor-

age unit. The conflict relation can be represented using

a graph as illustrated in Figure 5c, where nodes represent

fluid samples. If there is a port conflict between any two

fluid samples, an edge is created between the correspond-

ing nodes. The problem is thus transformed to find the

maximum independent set of nodes between which there is

no edge. This problem is then solved using the algorithm

in [11]. In this algorithm, the node with the smallest de-

gree is selected and removed together with all the nodes

connected to it. This process is repeated until all nodes

are removed from the graph, and the selected nodes to-

gether form an independent set. For example, if node 2

together with node 1 in Figure 5c is removed, the indepen-

dent fluid samples {s2, s3, s4} are identified as candidates

to be saved in the dedicated storage unit.

Among the fluid samples directed to the storage unit,

any pair of them that do not occupy storage cells at the
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Table 1: Results with storage and channel caching
Assay List alg. with storage Storage and caching

#chL #stoL TL #chp #stop Tp rp(s)

PCR7 1 2 49.73 1 1 49.73 0.16

MT18 4 1 62.4 4 0 60.84 3.22

PI39 6 7 129.94 5 5 98.57 17.14

PE55 6 10 161.53 6 9 121.38 72.79

gen15 4 4 41.64 3 1 39.73 15.73

gen31 4 6 79.83 4 6 77.59 72.57

gen63 16 19 83.39 14 11 81.62 440.35

gen127 25 32 139.58 23 23 139.18 894.31

average reduction 7.8% 41.7% 7.7%

same time can actually reuse the same cell in the style of

time multiplexing. Similar to handling port conflicts, the

maximum independent set of samples sharing the same

storage cell can be found by the algorithm in [11]. In

Figure 5d, the only edge represents that s2 and s3 have

a conflict during phase two of storage. The result shows

that s2 and s4 can share the same storage cell.

After determining the independent sets, there might be

a few fluid samples that cannot be assigned into the ded-

icated storage unit due to port conflicts. These samples

are saved directly in additional distributed storage cells

built along channels to generate the final chip structure.

4. RESULTS

The proposed method was implemented using C++,

and tested on a computer with a 2.67GHz CPU. Four

real biochemical cases from [12] and four synthetic cases,

gen15–gen127, were used for experiments. The List al-

gorithm in [8], which does not consider constraints from

channels and storage, was implemented for comparison.

This algorithm produced schedules for the assays, to which

the same maximum independent set algorithm in [11] was

applied to generate distributed and dedicated storage units.

The experimental results are shown in Table 1. The

columns TL and Tp are the assay execution times cal-

culated by the List algorithm and the proposed method.

From this comparison, we can see that the proposed method

resulted in improvements in almost all assays, by 7.7% on

average. Specially for PI39 and PE55, the improvement

on execution time can reach nearly 25%.

The results of transportation channels and storage cells

are shown in columns #chL and #stoL, respectively. The

results from the proposed method are shown in the columns

#chp and #stop, respectively. Obviously the proposed

method does not require more channels or storage cells to

achieve the shortened execution time. Actually in cases

such as gen63, channels and storage cells are reduced sig-

nificantly. On average, these reductions reach 7.8% and

41.7%, as shown in the last row of Table 1.

To demonstrate the effect of channel caching, a baseline

method was implemented. In this method, a device cannot

start a new operation before its previous output sample

is taken by another device to avoid channel conflicts and

thus sample contamination. The execution times calcu-

lated by the baseline method and the proposed method

are illustrated in Figure 6. Clearly, the proposed method

effectively reduces the execution time of an assay by sim-

ply caching fluid samples in transportation channels.

The runtimes of solving the proposed ILP model and

the storage assignment for the test cases are shown in

the column rp(s) in Table 1. For the largest application

with 127 operations, the runtime is 894.31 seconds, largely

taken by the ILP solver. These computational runtimes

are already acceptable for an offline synthesis flow.

5. CONCLUSION

In this paper, a concept to cache fluid samples in trans-

portation channels and synthesize storage cells considering

fluid conflicts is explained. By minimizing channel con-

flicts and recognizing maximum independent sets, storage

requirements are handled jointly by channels as well as

both distributed and dedicated storage cells. Results show

that the execution time of the assay and resource usage

are lowered effectively at the same time.
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