
Vol. 70 · No. 1 · 19–472016

DOI: 10.3112/erdkunde.2016.01.03 http://www.erdkunde.uni-bonn.deISSN 0014-0015

ASSESSING THE IMPORTANCE OF TOPOGRAPHIC VARIABLES FOR THE SPATIAL 
DISTRIBUTION OF TREE SPECIES IN A TROPICAL MOUNTAIN FOREST

Daniel Kübler, PatricK HilDebranDt, Sven Günter, bernD Stimm, micHael Weber, reinHarD 
moSanDl, JoHana muñoz, omar cabrera, niKolay aGuirre, JörG zeilinGer and brenner Silva

With 4 figures and 2 tables
Received 15 July 2015 · Accepted 17 December 2015

Summary: Availability and improved access to high-resolution digital terrain models (DTM) enables new approaches for 
the analysis of  spatially explicit biological data. In this study, the spatial distribution of  16 tree species in a tropical mountain 
rain forest in South Ecuador and its relationship with topographic variables was evaluated at a fine-scale ecological level us-
ing two presence-only species distribution modelling techniques: The maximum entropy model (Maxent) and the ecological 
niche factor analysis (ENFA). Spatially explicit tree data stem from long-term forest monitoring plots in three microcatch-
ments with a total area of  11.1 ha. Topographic variables were derived from a high-resolution DTM. Model performance 
was assessed by the true skill statistic (TSS) and area under curve (AUC) of  the receiver operator characteristic (ROC), using 
both a k-fold approach and null-models. Performance varied among species and techniques, but generally Maxent models 
showed better performance than ENFA models. Furthermore, the ecological plausibility of  the models was confirmed by 
comparing them with a previously established forest type classification. Among the explanatory topographic variables, eleva-
tion and a Topographic Position Index (TPI) appear as the main determinants for the distribution of  most of  the tree spe-
cies. This study demonstrates that even on a small scale, the use of  presence-only species distribution modelling techniques 
is a viable option for modelling suitable habitat for tree species in tropical mountain rain forests, indicating suitability for 
supporting stand-level planning and site-species matching techniques for natural forest management.

Zusammenfassung: Die zunehmende Verfügbarkeit von hochauflösenden digitalen Geländemodellen ermöglicht neue 
Ansätze zur Analyse von räumlich expliziten biologischen Daten. In dieser Studie haben wir die räumliche Verteilung von 16 
Baumarten und deren Zusammenhang mit topographischen Variablen auf  einer feinskaligen ökologischen Ebene in einem 
tropischen Bergregenwald in Südecuador evaluiert. Dafür haben wir zwei auf  Präsenzdaten basierende Techniken zur Ha-
bitatmodellierung angewandt: Die Maximum-Entropie Methode (Maxent) und „Ecological Niche Factor Analysis“ (ENFA). 
Räumlich explizite Baumdaten stammen aus Langzeitbeobachtungsflächen von drei kleinen Wassereinzugsgebieten mit ei-
ner Fläche von 11.1 ha. Topographische Variablen wurden aus einem hochauflösenden digitalen Geländemodel abgeleitet. 
Zur Bewertung der Modelle wurden die True Skill Statistic (TSS) und die Fläche unterhalb der Kurve der Receiver Operating 
Characteristic (ROC) für sowohl k-fache Kreuzvalidierungen als auch Null-Modelle berechnet. Die Güte der Modelle hat 
zwischen den beiden Techniken und verschiedenen Arten variiert, aber generell schnitten Maxent-Modelle besser als ENFA-
Modelle ab. Des Weiteren haben wir die ökologische Plausibilität der Modelle überprüft, indem wir sie mit einer bereits be-
stehenden Waldtypenklassifizierung verglichen haben. Unter den erklärenden topographischen Variablen scheinen die Höhe 
über dem Meeresspiegel und ein Topographischer Positions Index (TPI) die bestimmenden Faktoren für die Verteilung der 
meisten Baumarten zu sein. Diese Studie belegt, dass selbst auf  kleinen Skalen auf  Präsenzdaten basierende Techniken zur 
Habitatmodellierung angewandt werden können, um geeignete Habitate für Baumarten in tropischen Bergregenwäldern 
abzubilden. Dies deutet darauf  hin, dass diese Techniken zur Unterstützung von Planungen auf  Bestandesebene und zur 
Auswahl von geeigneten Standorten für Baumarten im Rahmen der Bewirtschaftung von Naturwäldern geeignet sind.
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1 Introduction

For land use and conservation planning and sus-
tainable forest management, accurate information 
about tree species distribution and its ecological driv-
ers on different spatial scales is essential. While there 
is a long research history for temperate forests about 
the relationship between the distribution of tree spe-

cies and environmental variables (ellenberG 2009; 
burnS and HonKala 1990a, 1990b), the knowledge 
about this subject is scarce for tropical forests. This 
holds especially true for the Andean tropical mon-
tane forest, which is an epicenter of global biodiver-
sity and endemism (myerS et al. 2000), yet still one 
of the least-studied tropical regions on the planet 
(Pitman et al. 2011). 
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Only few studies have previously analyzed 
the relationship between environmental vari-
ables and species distribution in steep tropi-
cal mountain forests at local scales (SvenninG 
et al. 2009; JoneS et al. 2011; aiba et al. 2004; 
Homeier et al. 2010; leDo et al. 2013; FaGua 
et al. 2013; balDecK et al. 2013). In these stud-
ies, topographic variables (e.g. elevation, aspect) 
were used as proxies for environmental fac-
tors such as light availability, micro-climate or 
edaphic conditions, which have a direct effect 
on plant growth. The studies generally used a 
spatial resolution of at least 10–20 m for both 
topographic and species data (but see leDo et 
al. 2013), and a discrete habitat type classifica-
tion to represent topography (but see balDecK 
et al. 2013), which means that gradual micro-
topographic habitat changes were not taken into 
account.

In this study, we use species distribution 
modelling (SDM) (GuiSan and tHuiller 2005) 
to assess the importance of topographic varia-
bles for the distribution of the 16 most abundant 
tree species in a 11.1–ha sample plot in a tropi-
cal mountain forest in southern Ecuador. SDM, 
a growing field in ecological biogeographical re-
search, biodiversity conservation, and ecosystem 
management (elitH et al. 2006), is rarely used 
at a very fine scale and in a small study area, 
which is probably linked to the scarcity of high-
resolution environmental variables and datasets 
as well as species information at those fine scales 
(KHatcHiKian et al. 2011). Although SDM is 
generally used for predictive modelling of spe-
cies environmental requirements, numerous ex-
amples exist where those methods were used to 
infer the importance of environmental factors 
for the distribution of species (e.g. Wollan et 
al. 2008; lauScH et al. 2011; HermoSilla et al. 
2011; veDel-SørenSen et al. 2013; cauWer et al. 
2014). SDM allows for the consideration of grad-
ual microtopographic habitat changes because 
species occurrences and continuous topographic 
variables can be used without any prior spatial 
aggregation or habitat type classification.

The main objectives of the study were to 
investigate the performance of two commonly 
used SDM algorithms (Ecological Niche Factor 
Analysis (ENFA) and Maxent) to model the dis-
tribution of tree species at a very fine scale, and 
subsequently, to assess the importance of differ-
ent topographic variables for the spatial distri-
bution of tree species.

2 Methods

2.1 Study area

Our study site is located within the pri-
vately owned Reserva Biológica San Francisco 
(RBSF, 3°58’S, 79°04’W), on the eastern slope 
of the Cordillera El Consuelo in the Andes of 
southern Ecuador. The RBSF has an altitude of 
1800–3150 m asl and lies along the road between 
the towns Loja and Zamora in the Zamora-
Chinchipe Province, bordering on the North of 
the Podocarpus National Park. The altitude of our 
study site is 1850–2150 m asl. Mean annual precipi-
tation at 1952 m amounts to 2100 mm and annual 
temperature averages 15 °C. The site is character-
ized by steep environmental gradients and a strong 
topographical heterogeneity, which in turn strongly 
defines the floristic composition and forest struc-
ture (Homeier et al. 2010). For a comprehensive 
description of the geology, climate, flora, and fauna 
of the RBSF, we refer to becK et al. (2008a).

2.2 Tree dataset

Our tree dataset stems from permanent study 
plots, which were installed for a silvicultural forest 
management experiment and first measured in 2003 
(Günter et al. 2008). The size of the experimental 
plots on the ground is 13 ha, which corresponds to 
11.1 ha in projected map view. The plots are subdi-
vided between three microcatchments, have areas 
of 5, 4 and 4 ha on the ground, and a maximal dis-
tance of 870 m between farthest points (east–west 
direction, projected map view). 

All trees on these sample plots with a diameter 
at breast height (DBH) ≥ 20 cm were measured for 
DBH, mapped, individually labeled, and identified 
to species level. Trees with DBH < 20 cm were 
not assessed on the whole sample plot area, but on 
smaller subplots, and are therefore not included in 
this study. We included the 16 most abundant spe-
cies, with total occurrences in the sampling plots 
ranging from 55–196 trees for each species, corre-
sponding to 4.95–17.66 trees/ha. The included tree 
species represent 49 % of abundance and 52 % of 
basal area of all trees in the sampling plots (Tab. 1). 
Figure A-1 shows the distribution of all trees with 
DBH ≥ 20 cm of those species.

For the elevation range of the permanent study 
plots, Homeier (2008) distinguished three main 
forest types in the RBSF based on the combination 
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of different vegetation classification approaches. 
Forest type I, the tallest and most speciose forest, 
grows in major ravines and gentle lower slopes on 
altitudes below 2200 m asl. The canopy in this forest 
type reaches 25–30 m, with some emergents reach-
ing up to 35 m. Common trees of this forest type in-
clude Piptocoma discolor (Asteraceae), Tabebuia chrysan-
tha (Bignoniaceae), Hyeronima asperifolia and Sapium 
glandulosum (Euphorbiaceae), Nectandra linneatifolia 
and N. membranacea (Lauraceae), Meriania sp., Miconia 
punctata and other Miconia spp (Melastomataceae), 
Inga spp (Mimosaceae), Morus insignis, Naucleopsis 
glabra, and Ficus spp (Moraceae), Prumnopitys montana 
(Podocarpaceae), Micropholis guyanensis (Sapotaceae) 
and Heliocarpus americanus (Tiliaceae). After the for-
mation of gaps, distinct succession phases can be 
observed in forest type I, with fast-growing pio-
neer species (e.g. Piptocoma discolor, Cecropia andina, 
Heliocarpus americanus) being subsequently replaced 
by late-successional species and long-lived pioneers 
such as Tabebuia chrysantha and Cedrela sp. (Homeier 
and brecKle 2008).

Forest type II can be found on upper slopes 
and ridges between 1900–2100 m asl, with a can-
opy height of 15 m. This forest type, characterized 
by a thick humus layer, is dominated by the fre-
quent tree species Alzatea verticillata (Alzateaceae), 
Dictyocaryum lamarckianum and Wettinia aequatorialis 
(Arecaceae), Weinmannia pinnata, W. sorbifolia and W. 
spruceana (Cunoniaceae), Abarema killipii (Fabaceae), 
Hyeronima moritzinana (Euphorbiaceae), Ocotea aci-
phylla (Lauraceae), Graffenrieda emarginata and Miconia 
calophylla (Melastomataceae), Podocarpus oleifolius 
(Podocarpaceae) and Matayba inelegans (Sapindaceae). 
In contrast to forest type I, early and late succession-
al phases show a very similar species composition in 
forest type II (Homeier and brecKle 2008).

In forest type III, found between 2100 and 
2250 m asl, the trees usually do not surpass 12 m. 
Characteristic tree species include Hedyosmum 
translucidum (Chloranthaceae), Clusia cf ducuoides, 
Clusia spp and Tovomita weddeliana (Clusiaceae), 
Weinmannia haenkeana and W. ovata (Cunoniaceae), 
Purdiaea nutans (Clethraceae), Alchornea grandiflora 

Species Species 
code

N Abundance 
[N / ha]

Basal area 
[m2 / ha]

Forest 
type

Altitudinal range in 
Ecuador [m asl]

Alchornea grandiflora Müll. Arg. Alchgran 123 11.13 3.22 II, III 900–2300

Alzatea verticillata Ruiz & Pav. Alzavert 93 8.42 3.43 II, III 1200–2250

Cecropia andina Cuatrec. Cecrandi 81 7.33 2.12 I 1540–2400

Cecropia angustifolia Trécul Cecrangu 194 17.55 5.32 I 0–2300

Cedrela montana Moritz ex Turcz. Cedrmont 55 4.98 1.39 1400–3200

Clusia ducuoides Engl. Clusducu 96 8.69 2.27 II, III 250–3030

Graffenrieda emarginata (Ruiz & 
Pav.) Triana

Grafemar 86 7.78 1.50 I, II, III 1120–2900

Guarea kunthiana A. Juss. Guarkunt 109 9.86 4.95 I 80–3100

Heliocarpus americanus L. Heliamer 73 6.61 2.26 I 50–2615

Hyeronima asperifolia Pax & K. 
Hoffm.

Hyeraspe 82 7.42 3.28 I 1.8–3000

Meriania franciscana C. Ulloa & 
Homeier 

Merifran 68 6.15 1.83 I 1890–2500

Nectandra lineatifolia (Ruiz & 
Pav.) Mez

Nectline 60 5.43 1.64 I, II 200–3000

Nectandra membranacea (Sw.) 
Griseb.

Nectmemb 75 6.79 1.67 I 80–2900

Sapium glandulosum (L.) Morong Sapiglan 63 5.70 1.80 I 30–2150

Tabebuia chrysantha G. Nicholson Tabechry 97 8.78 5.36 I 0–1800

Tapirira guianensis Aubl. Tapiguia 63 5.70 2.84 I 2–1800

Tab. 1: Characteristics of  the 16 species included in the analysis. The assignment of  each tree species to a forest types is 
based on Homeier (2008). The altitudinal ranges of  species are based on all available occurrence data in Ecuador in the 
Global Biodiversity Information Facility (GBIF)
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(Euphorbiaceae), Endlicheria oreocola, Licaria subsessilis, 
Ocotea benthamiana and Persea subcordata (Lauraceae), 
Eschweilera sessilis (Lecythidaceae), Graffenrieda emar-
ginata (Melatomataceae), Calyptranthes pulchella and 
Myrcia sp. (both Myrtaceae) and Podocarpus oleifolius 
(Podocarpaceae).

2.3 Topographic variables

The modelled area in this study corresponds to 
the area of the permanent sample plots. In order to 
define the habitat characteristics of those plots, we 
derived topographic variables based on a digital ter-
rain model (DTM) with a spatial resolution of 1 m 
(covering 132267 raster data cells), which was created 
with data from an airborne LIDAR sensor. Derived 
topographic variables were calculated using the open 
source software SAGA GIS (SAGA Development 
Team 2008) and the R-package “RSAGA” (brenninG 
2008). In order to avoid edge effects, variables were 
first calculated over a larger extent and subsequently, 
a mask of the permanent sample plots was applied.

Both SDM algorithms used in this study (see 
Section 2.4) are considered to be relatively robust 
against multicollinearity between predictors (Hirzel 
et al. 2002; elitH et al. 2011). However, while model 
performance might not be affected by collinearity, 
model interpretation can be hindered and Maxent 
tends to overfit models (elitH et al. 2011). In order 
to prevent this, we examined cross-correlations be-
tween potential topographic variables in a prelimi-
nary analysis. Only variables with pairwise Pearson 
correlations coefficients of r ≤ 0.45 were retained for 
the modelling process (Tab. A-1). Based on assumed 
ecological relevance for tree species distribution, we 
included the following variables in the final models: 
Elevation, slope, aspect, SAGA Wetness Index (WI) 
and Topographic Position Index (TPI) (Fig. A-2).

For the calculation of slope and aspect, we used 
a 2nd degree polynomial fit. Slope is an indicator of 
the intensity of gravitational and disturbance pro-
cesses acting upon vegetation, which play an impor-
tant role in our study area (muencHoW et al. 2012; 
vorPaHl et al. 2012). Mean slope on the permanent 
sample plots was 31.2°, with the first and third quar-
tiles being 25.8° and 36.6°, respectively.

Aspect, an inherent circular variable, was con-
verted into two separate continuous variables de-
nominated northness and eastness by using the 
sine and cosine transformations, respectively. They 
quantify the degree to which the aspect is north 
and east. As our study plots are located on a north-

ern flank, values for northness are mostly positive 
towards one, with little variation between plots. 
Northness was therefore not included in the analysis. 
Eastness, on the other hand, was included, because 
it varies between plots and has an ecological impor-
tance as prevalent wind direction and climate influ-
ence is usually in an east-west gradient in the RBSF 
(rollenbecK 2006).

Soil moisture is an important factor structuring 
local pattern of species distributions (PéliSSier et al. 
2002). To account for this, we calculated the SAGA 
Wetness Index, which represents relative local soil 
moisture availability. It is calculated similarly to the 
more commonly used Topographic Wetness Index, 
but is based on a modified catchment area calcula-
tion (böHner et al. 2002).

Former studies showed a strong influence of to-
pography on both biotic and abiotic factors in our 
study area (WilcKe et al. 2011; Homeier et al. 2010; 
Werner et al. 2012; vorPaHl et al. 2012; SvenninG 
et al. 2009). Therefore, we calculated a TPI (GuiSan 
et al. 1999), ranging from positive values expressing 
ridges and upper slopes to negative values describing 
valleys and lower slopes. The TPI is scale-depend-
ent; for its calculation, a moving circular window 
is used, whose size can be varied. In a pre-analysis, 
we assessed a range of different sizes for plausibility 
and retained a TPI with a moving window of 100 m 
radius.

Available spatial explicit data about environmen-
tal conditions, such as precipitation (e.g. FrieS et al. 
2014), temperature, soil properties and landslide risk, 
proved to be too coarse to be included in the present 
study. In Section 4.3, we therefore discuss how indi-
vidual topographic variables relate to environmental 
conditions in our study area.

2.4 Species distribution modelling

SDM is based on the niche concept defined by 
HutcHinSon (1957), which assumes that species can 
persist in only a limited range of environmental con-
ditions. According to this concept, the distribution 
of species is linked to an n-dimensional structure 
that is made up of different environmental factors. 
Models estimate the niche space occupied by spe-
cies by linking species occurrences with environ-
mental layers in a given study extent (FranKlin and 
miller 2009). However, how exactly SDM relates to 
the niche concept is currently discussed in an on-
going debate (elitH and leatHWicK 2009; Jiménez-
valverDe et al. 2008; Soberón 2010; araúJo and 
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GuiSan 2006). In our study, we followed Jiménez-
valverDe et al. (2008) and considered that different 
modelling methods predict a gradient of potential–
realized distributions, where potential distribution 
refers to the places where a species could live and 
realized distribution to the places where a species ac-
tually lives.

Generally, SDM algorithms can be classified as 
either presence-absence or presence-only models 
(elitH et al. 2006). Having a complete tree census, 
absence data for a given species could be simulated for 
the modeled area based on the occurrence data, e.g. 
by randomly assigning an arbitrary number of pixels 
with a minimal distance to all occurrence points of 
that species as absence points. However, it would be 
difficult to distinguish between absences where spe-
cies are absent because environmental conditions at 
a site are not suitable (“true absences” sensu Hirzel 
and le lay (2008), “environmental absences” sen-
su lobo et al. (2010)) and absences where a species 
might not be present on an environmentally suitable 
site due to dispersal limitations, biotic interactions, 
historic events and demographic stochasticity (“fal-
lacious absences” sensu Hirzel and le lay (2008), 
“contingent absences” sensu lobo et al. (2010)). We 
assume that this is especially true at local scales and 
in species-rich ecosystems (WilliS and WHittaKer 
2002) and for large organisms such as trees (JoneS 
et al. 2008). We therefore used presence-only tech-
niques for our analyses (Hirzel and le lay 2008; 
Jiménez-valverDe et al. 2008).

In recent years, a number of factors relating to 
data quality has been identified that might reduce 
the performance of presence-only techniques. In 
this section we will mention how these factors relate 
to data from a complete tree census at a local scale, 
which has rarely been analyzed with SDM (but see 
HenGl et al. 2009). Such data has certain particu-
larities in comparison with other datasets commonly 
used for SDM.

Spatial autocorrelation, a pattern in which obser-
vations are related to one another by the geographic 
distance between the observation (leGenDre and 
Fortin 1989), is present in virtually all spatially ex-
plicit ecological datasets (lennon 2000). Although it 
can artificially inflate validation measures for mod-
els (veloz 2009; mercKx et al. 2011; SeGuraDo 
et al. 2006), most studies using SDM do not di-
rectly account for the effects of spatial dependence 
(Dormann et al. 2007; elitH and leatHWicK 2009). 
Contrary to SDM algorithms for presence/absence 
data (Dormann et al. 2007; craSe et al. 2012), lit-
tle work has focused on methods for taking into 

account the spatial autocorrelation of occurrences 
for presence-only algorithms (veloz 2009). We 
addressed this issue in our model evaluation tech-
nique (see Section 3.1.3) and in the discussion (see 
Section 4.2.3).

Geographical sampling bias can occur when 
some (usually easily accessible) areas are sampled 
more than others and can severely diminish model 
quality (PHilliPS et al. 2009; SyFert et al. 2013). We 
acknowledge that our data only represents a small 
part of the true range of environmental conditions 
in which the tree species occur. However, we believe 
that no geographical sampling bias exists within our 
modeled area, because sampling intensity is equal for 
each site during a full tree census. Therefore, we ap-
plied no method for dealing with geographical sam-
pling bias during the model building process.

2.4.1 Maxent

Maxent is a machine-learning technique that 
fits a probability distribution of species occurrence 
with environmental layers over the entire study 
area (PeterSon 2006). We selected Maxent for our 
analysis because it showed not only a good model 
performance in comparison to other presence-only 
SDM algorithms (elitH et al. 2006; HernanDez et 
al. 2008; WiSz et al. 2008; PearSon et al. 2007), but 
also allows to infer the importance of environmental 
variables for species distribution (elitH et al. 2011).

Maxent default configuration is to allow se-
lecting from a range of functional forms (“feature 
types”) to describe the relationship between the 
probability of occurrence and an environmental 
variable. Those functional forms are linear, product, 
quadratic, hinge, threshold and categorical (elitH et 
al. 2011). According to SyFert et al. (2013), we fit-
ted models with the default auto feature option and 
compared them with models fitted with simple func-
tional forms, excluding hinge, threshold and cat-
egorical features (results not published). The mod-
els fitted with simple functional forms performed 
similarly to those with auto features, but seemed 
ecologically more sensible and much less prone to 
overfitting, without unrealistically steep slopes and 
abrupt changes. Therefore, we report models fitted 
without hinge, threshold and categorical features in 
this paper.

Maxent uses random background samples for 
the model fitting process. The intention of those 
samples is not to pretend that a species is absent at 
the selected sites, but to provide a sample of the set 



24 Vol. 70 · No. 1

of conditions available in the modeled area (PHilliPS 
et al. 2009). We created 10,000 random samples 
within the modeled area with the R-package “dismo” 
(HiJmanS et al. 2013), which were also used during 
the evaluation of model performance (see Section 
2.5). As pointed out beforehand, we assumed that 
no geographical sample bias exists in the model area 
and therefore, an unweighted and completely ran-
dom creation of background samples was justified 
(elitH et al. 2011).

Other settings of Maxent were left on default; 
convergence threshold (0.00001), maximum itera-
tions (1,000), and regularization multiplier (r = 1). 
Maxent analysis was carried out using Maxent 
software (Version 3.3.3k, PHilliPS et al. 2006) and 
R-package “dismo” (HiJmanS et al. 2013).

The importance of each topographic variable 
was assessed for each species with a jackknife test 
that builds several models using the same occurrence 
data, but a different set of predictor variables. At first, 
models for each species were created excluding one 
variable each run and then, models were run with 
only one variable at a time. Finally, the regularized 
training gain of those different models and models 
created with all predictor variables were compared 
for each species.

We further examined response curves for each 
species showing how logistic output (probability of 
presence) varies over the complete range of each top-
ographic variable when creating a model using only 
the corresponding variable (PHilliPS et al. 2006).

2.4.2 Ecological Niche Factor Analysis (ENFA)

The ENFA compares the ecological conditions 
of sites where a species occurs with conditions of the 
entire study area (Hirzel et al. 2002). We chose the 
ENFA for our analysis because it is well suited for 
determining the importance of environmental vari-
ables for the characterization of the ecological niche 
of a given species (baSille et al. 2008).

The ENFA, conceptually similar to a principal 
component analysis, reduces the environmental vari-
ables introduced as predictors to a small number of 
orthogonal factors. The first factor, termed “margin-
ality”, contains the most information and describes 
the preference of a given species for specific envi-
ronmental conditions among the whole set of possi-
ble conditions. Negative and positive coefficients for 
each environmental variable indicate that the species 
prefers lower and higher values than the mean of the 
study area respectively (baSille et al. 2008). The ab-

solute value of the marginality expresses the ecologi-
cal importance of the habitat factor for the species 
(Hirzel et al. 2002). The ENFA was carried out us-
ing the R-package “adehabitat” (calenGe 2006).

2.5 Evaluation of  model performance

We assessed the performance of the produced 
models using two evaluation criteria: the threshold-
independent area under the curve (AUC) of the re-
ceiver operating characteristic (ROC) (FielDinG and 
bell 1997) and the threshold-dependent true skill 
statistics (TSS) (alloucHe et al. 2006). These metrics 
were calculated for (i) final models (created with the 
complete available dataset), (ii) different permuta-
tions of null-models to test if the final models differ 
significantly from what would be expected by chance 
alone (raeS and SteeGe 2007), (iii) randomly split 
k-fold cross validation data partitions (FielDinG and 
bell 1997), and (iv) spatially separated data parti-
tions to examine the effect of spatial autocorrelation 
on model performance (veloz 2009). The methods 
applied for data partitioning and randomization (ii–
iv) are described in the Appendix. Additionally, our 
results were compared with those of previous work 
about tree species characteristics in our study area 
(Homeier et al. 2010; Homeier et al. 2008). 

The use of multiple metrics is important, because 
each metric evaluates a different aspect of predictive 
performance (elitH and GraHam 2009). Despite us-
ing a k-fold data partitioning technique for some of 
those metrics, the complete available data were used 
to create the final models (FielDinG and bell 1997).

2.5.1 AUC

The AUC is a common metric in presence-only 
SDM (mercKx et al. 2011). It was initially used for 
presence/absence techniques, but can be employed 
for presence-only techniques as well, because plot-
ting sensitivity against a random sample of back-
ground locations is sufficient to define an ROC curve 
(Wiley et al. 2003; PHilliPS et al. 2006). However, 
rather than expressing the ability of the model to 
discriminate between suitable and unsuitable habitat, 
as it is the case with presence/absence methods, the 
AUC is now the probability that a randomly chosen 
presence site is ranked above a random background 
site (PHilliPS et al. 2006).

Whereas values of the AUC range from 0.5 (ran-
dom prediction) to 1 (perfect accuracy) when used 
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with presence/absence data, the maximum achiev-
able AUC is less than 1 for presence-only data (Wiley 
et al. 2003). The threshold of the AUC for more in-
formative than random or good models varies ac-
cording to different sources and ranges from 0.6–
0.85 (mercKx et al. 2011). In this study, we inter-
preted values of the AUC of 0.6–0.7 as poor, 0.7–0.8 
as average, 0.8–0.9 as good, and 0.9–1 as excellent 
(mercKx et al. 2011).

The same 10,000 random background points 
previously created for the Maxent models were used 
as pseudo-absences for the calculation of the AUC.

2.5.2 TSS

Although widely (and often exclusively) used for 
the evaluation of presence-only models (mercKx et 
al. 2011), the reliability of the AUC as the only qual-
ity metric for model evaluation has been challenged 
in recent years (lobo et al. 2008; Jiménez-valverDe 
2012). Therefore, we additionally calculated the 
threshold-dependent true skill statistic (TSS), which 
is similar to the widespread Kappa statistic, but less 
dependent on the prevalence of the modelled species 
(alloucHe et al. 2006). It is defined as

TSS = sensitivity + specifity - 1

where sensitivity is the proportion of observed pres-
ences that are correctly predicted as presences, and 
specificity is the proportion of observed absences 
that are correctly predicted as absences (alloucHe 
et al. 2006). Values of TSS < 0.2 can be considered as 
poor, 0.2–0.6 as fair to moderate and >0.6 as good 
(lanDiS and KocH 1977).

In order to calculate the TSS, the continuous 
habitat predictions have to be transformed into a bi-
nary format. As the intensity of mapped predictions 
vary between different model algorithms, threshold 
selection should be objective and not rely on arbitrary 
values (elitH and GraHam 2009). For our analysis, 
we calculated a threshold score for each permutation 
according to the method based on maximizing the 
sum of sensitivity and specificity (Max SSS), which is 
equivalent to maximizing the TSS (liu et al. 2013).

2.5.3 Comparison with existing knowledge

While model evaluation in SDM mainly focuses 
on predictive performance, it is also important to 
evaluate the ecological realism of models (FranKlin 

and miller 2009). To accomplish this, we com-
pared our models with results previously obtained 
by Homeier and brecKle (2008) and Homeier et 
al. (2010). Those authors described three different 
forest types in the elevation range of our permanent 
sample plots (see Section 2.2 for a short description 
of these types) and assigned each species to one or 
multiple forest types (see Tab. S1 in the Supporting 
Information of Homeier et al. 2010). We performed 
a hierarchical cluster analysis based on the margin-
ality factor of the ENFA for each species and each 
topographic variable in order to define different 
groups of tree species. We then assessed if these 
cluster groups agreed with the previously defined 
forest types (Homeier et al. 2008). Subsequently, we 
explored for each species to what extent the group-
ing based on ENFA models concurred with the clas-
sification of Homeier et al. (2010).

3 Results

3.1 Evaluation of  model performances

Figure 1 summarizes the results of the different 
quantitative evaluation metrics for the 16 species and 
for the average across all species.

3.1.1 Significance of  final models

For null-models, the average AUC score of all 
one-sided 95 % confidence intervals across all quan-
tity ranges of randomly sampled locations was 0.62 
for Maxent and 0.58 for ENFA models (red squares 
in panel aa and ab, Fig. 1). AUC scores across all spe-
cies of the final models averaged to 0.76 for Maxent 
(ranging from 0.61 to 0.90) and 0.74 (0.65–0.80) for 
ENFA (blue triangles in panel aa and ab, Fig. 1). 
For 15 of the 16 species, AUC scores of the final 
models for Maxent were higher than the 95 % con-
fidence interval of the respective null-models. Only 
Nectandra lineatifolia performed significantly worse 
than the respective null-models (panel ay, Fig. 1). 
The final ENFA models of all 16 species showed 
significantly higher AUC values than the respective 
null-models.

The one-sided 95 % confidence intervals of the 
TSS scores of the null-models averaged to 0.20 for 
Maxent and 0.16 for ENFA across all quantity ranges. 
In comparison, final Maxent models scored an aver-
age TSS value of 0.46 (0.23–0.67), while the average 
value of ENFA models was 0.41 (0.29–0.51). Results 
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for individual species showed the same trend as re-
sults for the AUC: all final ENFA models and 15 out 
of 16 Maxent models performed significantly better 
than the respective null-models. The only species 
performing worse than the null-model was Nectandra 
lineatifolia (panel az, Fig. 1).

3.1.2 Random data partitioning

For cross validation with random data parti-
tioning, average scores across all species for Maxent 
models were higher than for ENFA models for both 
AUC (0.75 vs. 0.71, panel aa, Fig. 1) and TSS (0.47 vs. 
0.41, panel ab, Fig. 1).

The mean of AUC scores for models with ran-
dom data partitioning (CV, dark green/brown) 
ranged from 0.54 to 0.87 for Maxent and 0.59 to 
0.78 for ENFA. Mean scores for the TSS ranged 
from 0.18 to 0.68 for Maxent and 0.25 to 0.53 for 
ENFA.

Applying the classification of mercKx et al. 
(2011) to the AUC scores, 5 Maxent models can be 
considered as good, 5 as average, 5 as poor, and 
one as random. For ENFA, 11 models were average, 
4 poor, and one random. Conversely, the classifica-
tion of TSS scores according to lanDiS and KocH 
(1977) indicated that all models performed fairly to 
moderately for ENFA, and for Maxent, 3 models 
performed good and 13 fairly to moderately (Fig. 2).
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3.1.3 Spatially separated data partitioning

For models with spatially separated data partitions 
(CV (50 x 50 m), light green/brown, Fig. 1), mean AUC 
scores of Maxent and ENFA ranged from 0.48 to 0.82 
and 0.53 to 0.72 respectively. Mean TSS scores ranged 
from 0.13 to 0.58 for Maxent and from 0.19 to 0.47 for 
ENFA. These AUC scores indicated that one Maxent 
model was good, 7 average, 4 poor, and 4 random, 
whereas 4 ENFA models were average, 10 poor, and 
2 random. Mean TSS scores, on the other hand, indi-
cated 16 fair to moderate models for ENFA, and 3 good 
and 13 fair to moderate models for Maxent (Fig. 2).

Compared to cross validation with random data 
partitioning, evaluation metrics for nearly all species 
were lower for cross validation with spatially separat-
ed data partitioning (exception: TSS for Cedrela montana 
and AUC and TSS for Nectandra lineatifolia, panel al, ay, 
and az, Fig. 1). For AUC/ENFA, AUC/Maxent, TSS/
ENFA and TSS/Maxent, scores for randomly sepa-
rated data partitioning were 0.04, 0.05, 0.03, and 0.03 
higher than for spatially separated data partitioning, 
respectively. Furthermore, variation between the 
50 model runs for each species, evaluation metric, and 
data partitioning technique was higher for spatially 
separated data partitioning compared to random data 
partitioning (average 0.95 confidence intervals across 
all species and evaluation metrics was 0.015 and 0.027, 
respectively).

3.2 Most important variables for characteriza-
tion of  suitable habitat for tree species

The contribution of ecological variables for the 
distribution of each species according to Maxent 
and ENFA is compared in figure A-3. These results 

are based on final models created with the com-
plete dataset. Considering that Nectandra lineatifolia 
performed worse than the null-model in 4 of the 8 
presented evaluation metrics, we acknowledged that 
this species cannot be satisfactorily modeled with 
our data and excluded it for the final models.

The importance of variables was calculated with 
two conceptually different methods (see Section 2.4). 
Therefore, we assumed that figure A-3 should only 
be assessed visually in order to examine to what ex-
tent results of the two SDM algorithms have a similar 
trend. For most species, the relative importance ac-
cording to Maxent and ENFA showed a similar pat-
tern (e.g. Cecropia andina), whereas few other species, 
such as Cedrela montana or Meriania franciscana showed 
more pronounced differences.

When considering the average across all 16 spe-
cies, ENFA and Maxent models generally agreed on 
the importance of each topographic variable for spe-
cies distribution (Tab. 2). The absolute coefficient of 
the marginality factor of the ENFA models indicated 
that the most important variables were elevation 
(0.70) and TPI (0.41), whereas Wetness Index (0.31), 
eastness (0.26) and slope (0.17) only had minor im-
portance. Likewise, according to the Maxent jack-
knife analysis, the most influential variables when 
used individually (“Gain with only variable”) were 
elevation (0.34) and TPI (0.17), while eastness (0.09), 
Wetness Index (0.08) and slope (0.03) were less 
influential.

The jackknife test for Maxent, where each vari-
able was withdrawn in turn (“Gain without vari-
able”), identified elevation (0.34) as the variable 
that mostly decreased training gain when excluded. 
Consequently, this variable contained the most in-
formation not present in the four remaining vari-
ables, which were of lesser importance (0.45–0.48). 

Tab. 2: The mean importance of  topographic variables across all species according to ENFA and Maxent. The absolute 
value of  marginality of  the ENFA describes how far species depart from the mean available conditions in the study area. For 
Maxent, “Gain with only variable” shows the regularized training gain of  models created individually with only one ecologi-
cal variable compared with models created with all variables, whereas “Gain without variable” compared the regularized 
training gain of  models with one variable excluded compared with models created with all variables. Values in parenthesis 
indicate the 0.95 confidence interval

Variable ENFA: Absolute 
marginality

Maxent: Gain with only 
variable

Maxent: Gain 
without variable

Eastness 0.26 (0.15–0.37) 0.09 (0.05–0.13) 0.45 (0.31–0.59)

Elevation 0.70 (0.59–0.81) 0.34 (0.22–0.46) 0.34 (0.22–0.46)

Slope 0.17 (0.11–0.23) 0.03 (0.02–0.04) 0.48 (0.34–0.62)

TPI 100m 0.41 (0.33–0.50) 0.17 (0.10–0.25) 0.46 (0.32–0.59)

Wetness Index 0.31 (0.26–0.37) 0.08 (0.03–0.13) 0.48 (0.34–0.62)
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For the two most important topographic vari-
ables, elevation and TPI, Maxent response curves 
were compared to the representations of the niche-
environment system in our study area (Fig. 3). 
Response curves for elevation show a continuous 
descending or ascending trend for most species, 
whereas response curves for TPI are characterized 
by a local maximum for the majority of species.

3.3 Comparison with previous classifications

Three clusters (clustering height of 1.49) were 
identified with a hierarchical cluster analysis based 
on the marginality factors of each species and topo-
graphic variable (Tab. A-2, Fig. A-4). Nectandra lineat-
ifolia, not being significantly different from the null-
models, was not included in this cluster analysis. 

Group A, consisting only of the species Tapirira 
guianensis, showed a distinct preference for lower val-
ues of eastness and higher values of slope. Group B 
consisted of 10 species, showing a clear preference 
for lower elevations, valleys (lower coefficients of 
TPI and higher coefficients of Wetness Index), and 
(less clearly) for higher coefficients of eastness and 
slope over the mean of the available conditions in 
the study area. Group C, composed of 4 species, on 
the other hand, preferred higher elevation and ridg-
es (higher coefficients for TPI and lower coefficients 
of Wetness Index), whereas preferences for eastness 
and slope varied between species of this group. 
Hence, group B seemed to be equivalent to the defi-
nition of forest type I, while group C reflected forest 
types II and III as defined by Homeier et al. (2008).

The previous assignment of individual species 
to forest types by Homeier et al. (2010) is well re-
flected in the groups resulting from the cluster anal-
ysis (Tab. A-2). Only three species are not congruent 
with this assignment; for Cedrela montana, no infor-
mation was provided, Graffenrieda emarginata was as-
signed to all 3 forest types and Tapirira guianensis was 
assigned to an individual cluster group, although 
Homeier et al. (2010) classified this species as be-
longing to forest type I.

3.4 Prediction maps of  habitat suitability
Maps of habitat suitability for each species were 

created based on the results for ENFA and Maxent 
models. For the prediction, the models created with 
the complete data set for each species were used. 
The maps (Fig. 4) visually emphasize the cluster 
groups identified in the previous section. Within the 

three experimental plots, species of group B gener-
ally had higher scores for habitat suitability on lower 
elevations and in valleys, whereas species of group C 
preferred higher elevations and ridges.

Further, it can be observed that the predicted 
habitat suitability score is generally higher for ENFA 
models than for Maxent models. This is a result of 
the fact that different model algorithms generate 
mapped predictions with differing intensities (elitH 
and GraHam 2009). It can be compensated for by 
using objective methods for threshold selection in-
stead of arbitrary values during the transformation 
of continuous predictions into discrete classes. 

4 Discussion

4.1 Limitations

4.1.1 Subset of  the full range of  environmental 
conditions

The tree presence data used for model calibra-
tion only represent a very small subset of the full 
range of environmental conditions of the species, 
corresponding to “an artificially constrained geo-
graphic space” (raeS 2012). Several implications 
of this restriction have been identified by previous 
studies about SDM, which may also apply to our 
results.

First, response curves are possibly influenced by 
the restricted environmental ranges, with strongest 
effects towards the upper and lower ends (tHuiller 
et al. 2004). As mentioned in the methods sec-
tion, we first fitted Maxent models with hinge and 
threshold features types, which resulted in unreal-
istic habitat suitability maps and response curves. 
Overfitting in the tails of the response curves could 
be one possible explanation for this. However, by 
limiting feature types to linear, product and quad-
ratic features, overfitting seemed to have been 
reduced considerably (Fig. 3). In the case of the 
ENFA, only linear dependencies within the species 
niche are fitted (Hirzel et al. 2002). Therefore, we 
assumed that restricted data only produced a minor 
effect on the upper and lower environmental ranges 
for ENFA results.

Second, prediction of habitat suitability should 
not be realized to areas beyond the range of envi-
ronmental conditions the models were calibrated 
with (SáncHez-FernánDez et al. 2011; tHuiller et 
al. 2004). This is especially the case for the region of 
our study area, which is characterized by consider-
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able climatic variability (rollenbecK 2006) – over a 
distance of 30 km in east-west direction, becK et al. 
(2008b) reported a gradient of mean annual precipi-
tation ranging from 3103 to 1068 mm on equal eleva-
tions (1950 m asl). If habitat suitability were to be 
predicted to a wider area in future studies, it would 
therefore be highly advisable to include precipitation 
and other relevant climatic factors as predictor varia-
bles (see e.g. enGelbrecHt et al. 2007). Furthermore, 
the resulting habitat suitability maps should be veri-
fied with additionally sampled independent test data.

Third, like habitat suitability, the importance of 
topographic variables cannot be extrapolated beyond 
the range of environmental conditions either. This 
is especially true for species with a wide distribution 
range, such as Tabebuia chrysantha, occurring from 
Northern Mexico to Bolivia and in both dry and 
humid forests (vollanD-voiGt et al. 2011). In our 
study area, this species shows a clear preference for 
negative values of TPI (Tab. A-2), which correspond 
to valleys. However, this does not allow inferring 
preferences for topographic positions of this species 
in other regions of its distribution range. 

The above-mentioned points are important to 
acknowledge, but they do not conflict with the main 
objectives of this study, which are focused on the 
local scale.

4.1.2 Niche or neutral processes

The focus on the local scale however might re-
sult in a different potential problem, which is linked 
to the ongoing debate in recent decades whether 
niche or neutral processes are more important for 
species distribution in multi-species communities. 
Niche differentiation with respect to resources re-
mains one of the most prominent theories for trop-
ical tree species (HutcHinSon 1957). It postulates 
that different trees species specialize on different 
habitats, where they are competitively dominant 
and relatively more abundant. The neutralist theo-
ries, on the other hand, propose that dispersal limi-
tations and stochastic processes drive species com-
position, and that niche differentiation only plays a 
limited role for species coexistence (Hubbell 2001). 
In the context of SDM, spatial patterns in species 
distributions caused by neutral processes might be 
erroneously interpreted as being caused by niche 
processes, if those patterns happen to be spatially 
correlated with environmental variables.

Previous studies about the influence of both 
processes at local scales in tropical forests reached 

diverging results. HarmS et al. (2001) concluded 
that niche processes only played a limited role in the 
maintenance of species diversity, which was partial-
ly supported by some studies (QueenborouGH et 
al. 2007; valencia et al. 2004; Getzin et al. 2014). 
Conversely, numerous other studies only found lit-
tle evidence for this hypothesis and concluded that 
niche processes played a predominant role for the 
distribution of tree species at local scales in tropical 
forests (GunatilleKe et al. 2006; cHuyonG et al. 
2011; yamaDa et al. 2010; itoH et al. 2003; JoHn et 
al. 2007; JoneS et al. 2008). balDecK et al. (2013) 
and cHanG et al. (2013) recently pointed out that 
most of the studies cited in this paragraph only 
used environmental variables related to topography, 
and that by including spatially explicit soil resource 
variables in addition to topographic variables alone, 
the variation in the tree community composition 
in tropical forests explained by the environment 
greatly increased. They concluded that the role of 
niche processes may have been underestimated in 
previous studies.

This indicates that especially in regions charac-
terized by very heterogeneous topographic condi-
tions, such as our study area, niche processes are 
most important for the distribution of species. This 
is congruent with previous studies in our study area 
(buSSmann 2003; Homeier et al. 2008; Homeier 
et al. 2010), which showed a strong influence of 
topography on the occurrence of different forest 
types. Therefore, it seems acceptable to assume that 
species distribution patterns in our study area are 
mainly caused by niche processes, and that the use 
of SDM is justified for our study area.

4.2 Aspects of  SDM

4.2.1 Model evaluation

AUC values of our models were low for many 
species. For example, for cross validation with 
random data partitioning, AUC values indicated 
that 6 Maxent models and 5 ENFA models could 
be considered as poor or random. In contrast, ac-
cording to TSS values, all models performed at least 
fairly to moderately. Likewise, all final ENFA and 
15 out of 16 final Maxent models performed sig-
nificantly better than the null-models. Additionally, 
the ecological interpretation of our models was 
very similar to pre-existent knowledge about forest 
types and the membership of different tree species 
to these forest types (Homeier et al. 2008; Homeier 
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et al. 2010). Those previous results were obtained in 
the same study area (RBSF), but using independent 
sample plots and different methods.

The relatively low values of the AUC compared 
to the other quality metrics might be caused by two 
implications of its use with presence-only models. 
First, the maximum achievable AUC is no longer 1, 
but 1 – a/2, where a is the fraction of the area covered 
by the species true distribution, which is normally 
unknown (Wiley et al. 2003; PHilliPS et al. 2006). 
Considering that we only used the 16 most common 
species, values of a may be high, and consequently, 
the maximum achievable AUC might be low. Second, 
the AUC depends partly on the total extent of the 

study area. It increases with larger extents, where en-
vironmental conditions differ much from those of 
the area where the species occurs (lobo et al. 2008). 
Our relatively small study area therefore might have 
contributed to the low values of AUC.

The fact that our models performed well for 
the majority of species according to the TSS and the 
comparison with null-models, combined with the 
fact that the ecological interpretation agreed with 
previous studies, suggest that AUC underestimated 
the performance of the models. Our results there-
fore underline the importance of using more than 
one performance criterion for the evaluation of SDM 
(lobo et al. 2008).
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4.2.2 Comparison between results of  ENFA and 
Maxent

For most species, Maxent models were more 
robust than ENFA models (exceptions are, e.g., 
Meriania franciscana and Tapirira guianensis, Fig. 1). 
This is congruent with findings from previous 
studies, where Maxent showed better performanc-
es than other SDM algorithms (HermoSilla et al. 
2011; elitH et al. 2006). The fact that Maxent fits 
models with different feature classes (linear, prod-

uct, quadratic, hinge, threshold and categorical, 
PHilliPS and DuDíK 2008), whereas ENFA only 
fits linear relationships (Hirzel et al. 2002), might 
be an explanation for this. Even though we only 
allowed linear, product and quadratic features for 
Maxent (see Section 2.4.1), this algorithm likely fits 
complex species-environment relationships still 
better than the ENFA.

In terms of variable importance across all spe-
cies, the results of both SDM algorithms were very 
similar. This confirms findings from previous stud-

Fig. 4: Habitat suitability maps of  6 trees species from final ENFA and Maxent models. Blue colors indicate unsuitable con-
ditions and red colors suitable conditions. Yellow points show the registered occurrence of  each species, which were used 
for model creation. Species of  cluster group B (Cecropia angustifolia, Cedrela montana, Hyeronima asperifolia and Tabebuia 
chrysantha) tend to have areas predicted as suitable in valleys and lower altitudes, whereas areas with high predicted suitabil-
ity for species of  cluster group C (Clusia ducuoides and Graffenrieda emarginata) are located on ridges and higher altitudes
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ies that used Maxent and ENFA to analyze the im-
portance of environmental variables (mcKinney et 
al. 2012; HermoSilla et al. 2011).

4.2.3 Effect of  spatial autocorrelation on model 
performance

Model quality metrics were lower for cross vali-
dation with spatially separated data partitions com-
pared to randomly separated data partitions (see 
Section 3.1.3). This could be interpreted as a correc-
tion for quality metrics, which may have been falsely 
inflated due to the presence of spatial autocorrelation 
in the tree occurrence data (veloz 2009; mercKx 
et al. 2011). However, this approach might be overly 
simplistic in our case for a number of reasons.

First, spatial autocorrelation can be divided into 
“spurious” autocorrelation, an artefact of experimen-
tal design caused for example by biased sampling, 
and “real” spatial autocorrelation, which corresponds 
to the actual spatial structure of species distribu-
tion. “Spurious” spatial autocorrelation should be 
removed from the data, whereas no data should be 
discarded for “real” autocorrelation (Kamino et al. 
2012). Having a complete tree census with a sampling 
intensity of 100 %, we assumed that no spatial sam-
pling bias occurred for the modelled area, and that 
existing spatial autocorrelation in our occurrence 
data is therefore “real”. 

Second, “real” spatial autocorrelation can fur-
ther be separated into two types of distinct processes: 
endogenous and exogenous. Endogenous processes 
are associated directly with the biological occurrence 
data, while exogenous processes are independent 
from the occurrence data. For example, tree clus-
tering could be caused by limited ability to disperse 
away from a parent tree (endogenous process), or by 
fine-scale variation in soil conditions (exogenous pro-
cess) (FranKlin and miller 2009). In the context 
of SDM, spatial autocorrelation in occurrence data 
could therefore be considered either as noise hinder-
ing the analysis of species-habitat association, or as a 
direct result of species-habitat association.

Third, subsampling presence points in order to 
ensure that clusters of training data are not excessive-
ly clustered around test data reduces spatial autocor-
relation (veloz 2009), but also jettisons information 
and therefore reduces the predictive performance of 
models (lennon 2000; SeGuraDo et al. 2006).

These reasons show that, at least in our study, 
a reduction of model performance when using 
spatially separated data partitions for cross vali-

dation must not necessarily mean that models 
without a correction of spatial autocorrelation are 
falsely inf lated.

4.3 Interpretation of  the importance of  individ-
ual topographic variables

4.3.1 Elevation

Elevation, whose predominant influence on spe-
cies distribution at intermediate and large scales is 
well established in phytogeography (HumbolDt and 
bonPlanD 1805; Gentry 1988), was identified by our 
study as the most important topographic variable for 
the distribution of tree species at a local scale. Similar 
results on small scales in tropical forests were reported 
previously (lieberman et al. 1985; WanG et al. 2009; 
lan et al. 2009; leDo et al. 2013). The altitudinal 
gradient is an indirect factor (no direct effect on spe-
cies distribution, also known as proxy factors), which 
correlates with direct factors (physiological effect on 
plant growth). In terms of climatic direct factors, FrieS 
et al. (2009) reported an annual average lapse rate of 
-0.52 K/100 m in the study area for the altitudinal range 
of the permanent sample plots (1850–2150 m asl), 
which translates to a difference of annual average tem-
peratures of 1.56 K between the lowest and highest 
sites in the sample plots. Similarly, average annual pre-
cipitation increases by 250 mm/100 m (corresponding 
to a difference of 750 mm between lowest and highest 
sites) and fog input augments by 40 mm/100 m (cor-
responding to a difference of 120 mm between low-
est and highest sites) (rollenbecK 2006). While these 
climatic elevation gradients play an important role for 
the distribution of tree species, additional ecological 
gradients related to elevation have to be taken into 
account. With regards to soil properties, the general 
trend in tropical mountains that increasing elevation 
results in decreasing soil fertility and decreased N 
availability (tanner et al. 1998) was confirmed for the 
RBSF (WilcKe et al. 2008; WolF et al. 2011). Further, 
in our study area the mineral soil depth decreases, the 
thickness of the organic layer and pH increase and soil 
texture becomes coarser in the A horizon with increas-
ing elevation (WilcKe et al. 2008; lieSS et al. 2011; 
WolF et al. 2011).

These strong gradients of direct factors help to un-
derstand why elevation is the most important variable 
for species distribution, even at small scales. However, 
disentangling the relative contribution of each of the di-
rect factors linked to elevation is beyond the scope of 
our study.
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4.3.2 TPI

Maxent and ENFA models identified TPI as the 
second most important variable for the distribution 
of tree species. This result was expected, because a 
different forest type can be found on ridges com-
pared to valleys (Homeier et al. 2008), and the con-
tinuous values of the TPI express the position of 
each site on a topographical gradient ranging from 
valleys to mid-slopes to ridges (GuiSan et al. 1999). 
This is congruent with findings from previous 
studies examining the influence of topography on 
forest composition in tropical forests (taKyu et al. 
2002; Webb et al. 1999; QueenborouGH et al. 2007; 
valencia et al. 2004; lan et al. 2009; WanG et al. 
2009; cHuyonG et al. 2011). Like elevation, the top-
ographic position is an indirect factor having strong 
effects on direct factors by creating a variety of mi-
crohabitats along a topographic gradient. Webb et 
al. (1999) concluded that differences in forest struc-
ture and composition between topographic posi-
tions were mainly caused by frequent disturbances 
on ridges, which were more exposed to chronic and 
catastrophic wind events than valleys. In our study 
area, this hypothesis is supported by the fact that 
trees have lower canopy heights as well as lower 
height to DBH ratios on ridges compared to valleys 
(Homeier et al. 2010), which might be an adapta-
tion to exposure to wind. However, tree turnover 
rates are actually higher in valleys than on ridges 
in our study area (Homeier et al. 2010), which sug-
gests that factors related to topography other than 
wind exposure play a more important role for the 
distribution of tree species. Periodic waterlogging 
processes in valleys during high rain events may ex-
plain higher turnover rates in valleys, because they 
force trees to have shallow rooting systems, which 
may result in higher mortality through tree falls 
(aSHton et al. 2011). Furthermore, ridge-top soils 
generally have higher humus concentrations and 
are more acid and poorer in nutrients (especially N) 
than valley-bottom soils (WilcKe et al. 2011; WolF 
et al. 2011). This can be partly explained by lateral 
transport of water and matter and the removal of 
mineral soil on ridges caused by landslides, which 
are mainly controlled by topography in the RBSF 
(vorPaHl et al. 2012). Additionally, throughfall in 
valleys is more abundant and nutrient-richer than 
on ridges (oeSKer et al. 2008) and herbivory and 
leaf litter decomposition is considerably lower 
on ridges than on valleys (Werner and Homeier 
2015). Moreover, ridges are more prone to drought 
(buSSmann 2003) due to higher solar radiation com-

pared to valleys, although this might be mitigated 
by the fact that ridges receive more scavenged cloud 
water than valleys (Homeier et al. 2010).

Werner and Homeier (2015) argue that habitat 
heterogeneity along the topographical gradient from 
valleys to ridges is caused by a combination of the 
above-mentioned factors and maintained through a 
plant-mediated, nutrient-driven feedback cycle. While 
fast-growing tree species adapted to aboveground com-
petition (i.e. light) are more competitive in valleys, slow-
growing tree species adapted to belowground compe-
tition in nutrient-poor soils are more competitive on 
ridges. These slow-growing species are generally char-
acterized by large investments in long-living foliage 
with antiherbivore defenses (coley et al. 1985), which, 
in combination with mechanically resistant leaves due 
to increased wind and drought exposure, result in poor 
litter decomposability. This causes an accumulation of 
litter and mor humus, which in turn immobilizes ba-
sic cations, contributes to soil acidification and further 
enhances soil nutrient limitations on upper slopes and 
ridges.

4.3.3 Other topographic variables

Compared to elevation and TPI, the remaining 
variables played a less important role across all tree spe-
cies. With regards to slope, results of previous studies 
(WanG et al. 2009; balDecK et al. 2013), where this 
variable showed a higher influence, are not supported 
by our findings. We explain this by the fact that slope 
showed a relatively small variation in our sample plots 
(first and third quartiles 25.8° and 36.6° respectively), 
and therefore contributed only little to the total vari-
ation in environmental conditions. Similarly, aspect 
(eastness) varied little in our sample plots (first and third 
quartiles of eastness -0.72 and -0.23 respectively), which 
may explain its low influence compared to other studies 
(WanG et al. 2009). The preference of Tapirira guianensis 
for negative values of eastness and positive values of 
slope might be explained by its ability to sprout from 
uprooted trees (neGrelle 1995) and the resulting com-
petitive advantage on sites with frequent disturbances.

One possible explanation for the low importance 
of the Wetness Index for species distribution might be 
related to its higher spatial variability within our sample 
plots compared to the other 4 topographic variables, 
which are smoother and more continuous (Fig. A-2). 
This seems to be a consequence of the high-resolution 
DTM, and therefore a Wetness Index calculated based 
on a coarser DTM might result in a higher importance 
for species distribution.
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5 Conclusion

In this study, we showed that SDM is an ade-
quate tool to analyze the ecological relationships be-
tween species and the environment at local scales in 
tropical forests, as our results about the importance 
of topographic variables were congruent with previ-
ous studies. All topographic predictors used in this 
study were derived from a high-resolution DTM, 
which will be increasingly available in the future. 
This will allow applying SDM-based methods in a 
wider range of situations and regions. Apart from 
inference, predictive modelling of species habi-
tat suitability can be used for several applications. 
Examples include the identification of priority areas 
for biodiversity conservation, a more efficient plan-
ning of field inventories, identification of suitable 
species and sites for reforestation projects (e.g., res-
toration with natural species), and pre-selection of 
possible sites for seed collection. Additionally, when 
combined with forest inventory data, topographic 
variables could be used to create high-resolution 
spatial predictions of forest stand parameters or car-
bon stocks. Those predictions could then serve as a 
planning instrument for sustainable forest manage-
ment and conservation by facilitating the creation of 
adequate small-scale management units.
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Appendix

Supplementary material

A 1 Data partitioning and randomization

AUC and TSS were calculated for final models 
(created with the complete dataset) and different 
models obtained from either null-distributions or k-
fold data partitioning. 

Null-models were used to test if the final mod-
els differ significantly from what would be expected 
by chance alone (raeS and SteeGe 2007). For this, 
presence points were randomly sampled from all lo-
cations within the modeled area. Maxent and ENFA 
models were then fitted to these presence points and 
the AUC and TSS were calculated for each model. 
In order to account for differences in the number of 
occurrences per species, we created null-models for 
different quantity ranges of randomly sampled loca-
tions, which were defined by intervals of 10 (30–39, 
40–49, … 190–199). For each quantity range, this 
process was repeated 100 times. The AUC and TSS 
values of the final models generated with actual pres-
ence data were then compared with those of the null-
models of the respective quantity range. If the met-
rics for the actual presence data was higher than the 
one-sided 95 % confidence interval of the frequency 
distribution obtained from the null-models, the ac-
tual species model was interpreted as performing 
significantly better than expected by chance (raeS 
and SteeGe 2007).

For each species, we additionally used a fivefold 
cross-validation, where available presence points 
were randomly split into five equally sized data parti-
tions. In turn, five different ENFA and Maxent mod-
els were then trained with 4/5 of the data, while the 
withheld 1/5 of the data was used to calculate AUC 
and TSS values for each model. In order to obtain a 
more robust estimation of test statistics, we repeated 
this process 10 times for each species.

At local scales, the distribution of tree species in 
tropical forests depends not only on environmental 
factors, but also on dispersal limitations, biotic in-
teractions, historical events and stochastic processes 
(SvenninG et al. 2009; JoneS et al. 2011; HarmS et al. 
2001; balDecK et al. 2013). All these factors might 
result in spatial autocorrelation in tree occurrences, 
which in turn might falsely inflate measures of mod-
el performance (veloz 2009). In order to examine 
the effect of spatial autocorrelation on model per-
formance, we separated training and test data into 
spatially separated partitions (veloz 2009). This was 

achieved by using a pre-existent system of subplots 
installed in 2003, subdividing the permanent sample 
plots into 52 quadrats with dimensions of approxi-
mately 50 x 50 m (Günter et al. 2008). Considering 
that spatial autocorrelation in many tropical forests 
is strongest at scales < 20 m (conDit et al. 2000), 
we assumed that the size of the pre-existent subplots 
of 50 x 50 m was sufficiently large to account for 
spatial autocorrelation. For each species, subplots 
were randomly sampled from the study area until the 
cumulative number of presence points within these 
subplots exceeded 20 % of the total presence points 
of the respective species. All presence points within 
those randomly sampled subplots were assigned to 
a test group, and the remaining presence points to 
a training group. ENFA and Maxent models were 
generated with the training group and test statistics 
were calculated for the test group. This process was 
repeated 50 times for each species.
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A 2 Supplementary tables and figures

Eastness Elevation Slope TPI 100 m Wetness Index

Eastness 1.00

Elevation -0.03 1.00

Slope 0.07 -0.17 1.00

TPI 100m -0.03 0.45 -0.21 1.00

Wetness Index -0.05 -0.33 -0.26 -0.39 1.00

Tab. A-1: Correlation matrix of  the topographic variables used for the modelling process. Only variables with absolute values 
of  the Pearson’s correlation coefficient r ≤ 0.45 were retained. All correlations are significant

Tab. A-2: Coefficients of  the marginality factor of  the ENFA for 15 tree species and 5 topographic variables. Positive coeffi-
cients of  marginality indicate that the species prefers higher-than-mean values with respect to the study area, while negative 
values indicate the preference of  lower-than-mean values. The column “Cluster group” shows the result from a hierarchical 
cluster analysis (Fig. A-4). Column “Forest type” lists the forest type(s) each species was assigned to by Homeier et al. (2010)

Species Eastness Elevation Slope TPI 100 m Wetness Index Cluster group Forest type

Tapiguia -0.84 0.03 0.46 0.03 -0.27 A I

Cecrandi 0.29 -0.59 0.16 -0.45 0.58 B I

Cecrangu 0.15 -0.82 -0.03 -0.42 0.35 B I

Cedrmont 0.31 -0.92 0.13 -0.08 0.18 B

Guarkunt 0.34 -0.48 0.21 -0.72 0.30 B I

Heliamer 0.05 -0.79 -0.17 -0.41 0.43 B I

Hyeraspe 0.10 -0.83 -0.16 -0.43 0.31 B I

Merifran 0.11 -0.73 0.43 -0.48 0.22 B I

Nectmemb -0.03 -0.92 0.21 -0.29 -0.14 B I

Sapiglan 0.31 -0.73 0.11 -0.44 0.41 B I

Tabechry 0.27 -0.79 0.04 -0.47 0.28 B I

Alchgran 0.12 0.73 -0.29 0.53 -0.30 C II, III

Alzavert -0.42 0.66 -0.03 0.56 -0.27 C II, III

Clusducu -0.10 0.74 -0.22 0.51 -0.37 C II, III

Grafemar -0.49 0.72 0.12 0.38 -0.28 C I, II, III
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Fig. A-1: Stem distributions of  all trees with DBH ≥ 20 cm on the 11.1 ha permanent sample plot in the RBSF for the 16 most 
abundant tree species. Each red circle represents one tree; the size of  the circle shows the DBH of  trees. The grey lines are 
elevation contour lines at 20-m intervals. The black lines are limits of  the permanent sample plots
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Fig. A-2: Maps of  the five topographic variables used for the modelling process. Yellow lines show the position of  the per-
manent sample plots
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Ecological variable

Eastness Elevation Slope TPI 100m Wetness Index
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Fig. A-3: Contribution of  ecological variables for the distribution of  each of  the 15 retained species after model evaluation. 
The upper bar on each panel shows results from the jackknifing test in Maxent, where models were created with only one 
variable in turn and regularized training gain of  these models was subsequently compared with models created with all 
predictor variables. The lower bar shows absolute values of  the marginality factor of  the ENFA models. In order to allow a 
better comparison between Maxent and ENFA models, absolute values for importance were transformed to relative values
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Fig. A-4: Dendrogram of  15 tree species based on the values 
of  the marginality factor of  the ENFA for each topographic 
variable (Tab. A-2). A dissimilarity matrix was calculated 
using Euclidean distance and subsequently, three groups 
(Group A, B and C) were identified with the complete link-
age method


