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Abstract

Networked Control Systems (NCS) are referred to distributed systems composed of a mul-
titude of integrated elements such as sensors, actuators and controllers which often exploit
a resource-constrained communication medium for exchanging data. On the one hand, the
consideration of the shared constrained communication resources urges the design of ef-
ficient Medium Access Controllers (MAC) in order to arbitrate the channel access alloca-
tion procedure. On the other hand, rapid and day-by-day development of large-scale net-
worked systems along with everlasting increase of information volume exchanged between
distributed entities call for advent of new architectures to meet the real-time requirements of
the control tasks in an operating networked system. Therefore, the introduction of communi-
cation networks for transmitting the sheer amount of data between spatially distributed enti-
ties in networked systems spurs the researchers to re-consider the traditional time-triggered
control and scheduling schemes, and periodic sampling, and to look for more advanced tech-
niques in order to achieve enhanced quality of control with more efficient consumption of
limited resources (e.g., bandwidth and energy). However, control over shared communica-
tion resources often imposes several design challenges due to channel capacity limitations,
network congestion, collisions, delays and data loss. These network-induced phenomena
have often negative effects on the overall control performance and can even lead to instabil-
ity.
Over the last decade, event-based sampling has shown to be an excellent design technique
for networked systems under communication constraints outperforming the periodic rules in
terms of resource consumption and leading to enhanced control performance. In the event-
triggered paradigm, in contrast to the time-triggered sampling, the resources are used only
when it is necessary, as specified through the event triggers. However, the available results
in the literature often address certain aspects of the event-triggered control and schedul-
ing synthesis for networked systems with resource constraints, under unrealistically simpli-
fied assumptions. As a result, a fully developed systematic design methodology is not yet
presented, that guarantees the required quality of control, ensures efficient resource con-
sumption, assures a robust characteristics against external uncertainties and communication
unreliabilities, and fulfills the application expectations.
The aim of the present dissertation is to develop event-based control and scheduling strate-
gies which dynamically take into account the real-time conditions and requirements of the
distributed entities that are using the shared communication resources. Two major contribu-
tions of this dissertation are described as first, design of a scheduling protocol for a network
of multiple sub-systems that are physically isolated and are coupled only through the shared
communication network, and second the extension of control and scheduling architectures
for a network of physically interconnected systems that are additionally coupled via a shared
communication network. Within the first contribution, event-based prioritizing scheduling
architectures are introduced, wherein the event triggers are state dependent. Comprehensive
characteristic analyses and control/scheduling law synthesis are performed in both central-
ized and decentralized fashions. Then, the concept of state-dependent scheduling of scarce
resources is implemented on physically interconnected networked systems, for a less gen-
eral class of physical topologies. In both major parts, stability properties are thoroughly
studied as the necessary aspect of an event-triggered networked system, as well as perfor-



mance analyses. Robustness of the proposed architectures is examined with respect to both
systems’ uncertainties and communication channel non-idealities. Finally, decentralization
procedures are suggested to emphasize that the presented event-based techniques can be
technically implemented on real networked systems.
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Zusammenfassung

Als vernetzte Regelungssysteme (NCS) bezeichnet man verteilte Systeme, die sich aus einer
Vielzahl an integrierten Komponenten, wie Sensoren, Aktuatoren und Reglern zusammenset-
zen, welche Daten über ein digitales Kommunikationsnetz austauschen. Die rasche Entwick-
lung immer größerer vernetzter Systeme zusammen mit dem fortwährenden Anwachsen des
Informationsvolumens, das zwischen verteilten Einheiten ausgetauscht wird, verlangt nach
der Erforschung innovativer Kommunikationsarchitekturen, um den Echtzeitanforderungen
der Regelungsprozesse innerhalb des vernetzten Systems gerecht zu werden. Der Einsatz
digitaler Kommunikationsnetze für NCS hat Wissenschaftler dazu angeregt neue Datenverar-
beitungstechniken zu entwickeln, die über gewöhnliche zeitgesteuerte Mechanismen mit pe-
riodischer Abtastung hinausgehen und für eine effizientere Ausnutzung der Kommunikation-
sressourcen, wie der Datenbandbreite oder des Energievorrats, sorgen. Allerdings müssen
beim Entwurf von Regelungsmethoden über ein mehrfach genutztes Kommunikationsnetz
auf Grund der beschränkten Datenbandbreite, der Kommunikationsverzögerung, und des
möglichen Datenverlusts auch neue Herausforderungen bewältigt werden. Diese kommu-
nikations-bedingten Effekte haben oft einen negativen Einfluss auf die Regelgüte und können
sogar dazu beitragen das Regelungssystem zu destabilisieren.
In den letzten 10 Jahren hat sich die ereignisbasierte Regelung als eine ausgezeichnete En-
twurfsmethodik für vernetzte Systeme mit Kommunikationsbeschränkungen bewiesen. Ein
Hauptmerkmal der ereignisbasierten Abtastung im Kontrast zu zeitgesteuerten Mechanismen
besteht darin, dass Ressourcen nur dann beansprucht werden, wenn sie wirklich benötigt
werden. Allerdings gehen bestehende Resultate in der Literatur zumeist von einer Reihe
an vereinfachenden Annahmen an das vernetzte System aus. Aus diesem Grund bedarf es
weiterer Anstrengungen für eine systematische Entwurfsmethodik, welche Garantien an die
Regelgüte bei einer effizienten Nutzung von Ressourcen gibt und gleichzeitig robuste Merk-
male gegenüber Kommunikationsunsicherheiten aufweist.
Ziel der vorliegenden Dissertation ist es, ereignisbasierte Regelungs- und Ressourcenzugriffs-
verfahren für verteilte Systeme, deren Daten über ein gemeinsames Kommunikationsnetz
ausgetauscht werden, zu entwickeln, welche die Echtzeitbedingungen des vernetzten Sys-
tems dynamisch miteinbeziehen. Die beiden Hauptbeiträge dieser Dissertation sind wie
folgt beschrieben. Als erstes werden Schedulingverfahren für mehrfache isolierte Regelungs-
systeme, dessen Rückkopplungen über ein geteiltes Kommunikationsnetz laufen, entworfen.
Als zweites werden die Ergebnisse auf verkoppelte Regelungsarchitekturen erweitert, in de-
nen neben der Überlagerung durch das gemeinsame Kommunikationsnetz auch Interaktio-
nen auf Grund der physikalischen Kopplungen auftreten. In Bezug auf den ersten Beitrag
werden ereignisbasierte priorisierende Zugriffsverfahren eingeführt, wobei der Ereignisgen-
erator vom Netzzustand abhängt. Deren Entwurf wird sowohl auf einen zentralisierten wie
auch auf einen dezentralen Ansatz zurückgeführt. Danach wird das Konzept des zustandsab-
hängigen Ress-ourcenzugriffes auf gekoppelte dynamische Systeme für bestimmte Klassen
von Kopplungsto-pologien ausgedehnt. In beiden Hauptbeiträgen werden eine detaillierte
Stabilitätsanalyse sowie eine Untersuchung der Regelgüte des ereignisbasierten vernetzten
Systems durchgeführt. Zudem wird die Robustheit der vorliegenden Architektur sowohl auf
systembezogene wie auch auf kommunikationsbezogene Unsicherheiten untersucht. Ab-
schließend werden dezentrale Ansätze für die ereignisbasierten Techniken erarbeitet, die



hervorheben, dass sich die vorgeschlagenen Verfahren in bestehenden Kommunikationsar-
chitekturen implementieren lassen.
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Introduction

Emerging networked control systems (NCS) such as smart industrial production lines, smart
energy grids, and autonomous vehicular systems are all characterized by feedback control
loops that are closed over a communication channel. The communication infrastructure is
shared among those feedback control loops and potentially other applications. This poses
novel challenges for the communication and control system design to support such net-
worked control systems with stringent real-time requirements. Traditional design paradigms
address the control and communication designs separately. This leads to a design frame-
work within which no awareness of real-time control conditions are taken into account in
governing communication resource consumption, and control strategies are also synthesized
without accounting for the changing conditions and opportunities of the network infrastruc-
ture. A strictly separate design is known to lead to high conservatism and therewith to a
low quality of control as well as to low efficiency and high cost in the context of resource
usage. Therefore, in order to efficiently fulfill the tight control performance requirements,
resource-aware control and control-aware communication strategies are assumed as the fu-
ture of an NCS design. Recently, event-triggered control has been seen as a design frame-
work which has the required potential of becoming the effective mechanism for such an
inter-layer awareness, and therefore facilitates synthesizing efficient resource-aware control
and control-aware communication strategies for large scale and networked systems. In the
following, we first discuss the principles of event-triggered sampling in shared resource net-
worked control systems, and then a short discussion about event-based control and schedul-
ing problem in multiple-loop networked system is presented. This chapter is then followed
by the related literature review and outline of the present dissertation.
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1.1 Shared Resource NCS with Event-triggered Sampling

Since the early 2000s, there has been an increased interest to networked control approaches
which take into account resource limitations in the communication network resulting in novel
scheduling schemes for information transmission. Indeed, the efficient usage of available
communication resources is a substantial requirement for networked control systems which
must be addressed in parallel to the control design. Since the seminal work [2], many results
including e.g., [3–9] have shown that event-triggered control outperforms time-triggered
schemes by far; they achieve the same control performance despite the fact that they con-
sume significantly less resources. In contrast to the time-triggering schemes that sample the
systems by a fixed temporal schedule, event-based strategies call for a sample whenever a
pre-specified event is triggered. Typically, the events depend on the state of the control system
and can be even further adjusted depending on the scarcity of communication resources and
channel situation [10]. This is another significant advantage over time-triggered schemes
which are computationally very expensive to reconfigure and in general not scalable towards
many sub-systems.

A different approach to the determination of the event-triggered scheme formulates its
design as an optimal stochastic control problem [8,9,11–13]. These works show that event-
triggered sampling outperforms time-triggered schemes also in a multi-loop networked sys-
tem when using MAC schemes with idealized collision avoidance mechanisms. In fact, it is
shown in [9, 10, 12] that threshold policies are optimal and that the certainty equivalence
controller is optimal when the resource constraints are considered. Furthermore, there are
significant functional advantages of event-triggered control policies over time-triggered ones
such as scalability with respect to the number of control loops and adaptivity to structural
changes in the system. However, the communication models in those works are idealized,
assuming no collisions, data loss, and transmission delay as some of them foreseen in this
dissertation. Moreover, sub-systems are only coupled by the common resource constraint
and these works do not consider couplings in either the physical interaction or coupling in
the cost function.

In the context of medium access strategies for networked control, prioritization has been
introduced in [14] with the try-once-discard (TOD) protocol. Based on current measure-
ment data, the protocol dynamically prioritizes transmissions by choosing the measurement
with the largest discrepancy between its actual value and its estimate at the controller; the
other measurements are discarded. TOD is a centralized MAC scheme, i.e. not scalable,
and does not cope well with packet loss. In addition, stability criteria for such approaches
often rely on deriving bounds on maximum inter-transmission times which is not applicable
for intrinsically stochastic contention-based protocols such as carrier sense multiple access
(CSMA). Stochastic protocols [15, 16] are shown to cope well with communication unreli-
ability and can be implemented in decentralized fashion, i.e. they are scalable. However,
so far the available designs are rather heuristic and primarily focus on stability rather than
performance. Stochastic priority-based scheduling schemes for multiple control loops over a
shared communication network are receiving more attention recently as they lead to more
flexible resource allocation mechanisms capable of coping with typical challenges of realistic
communication networks such as packet loss, collisions, and delay.
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1.2 Multiple-loop Control and Scheduling Problem

A very relevant scenario for many application domains is multiple independent feedback
control loops sharing the resource-limited communication infrastructure for closing the loop
between the sensors and the controllers. Sharing the resource-limited communication here
means that only a limited number of control loops can be closed at a time, thus a medium
access control (MAC) mechanism decides which packets are forwarded over the communi-
cation network. It is well-known that current network scheduling solutions contribute to
high end-to-end latency which significantly deteriorates the control performance and may
even destabilize the overall networked control system. This calls for the advent of more in-
telligent design methodologies to fulfill the real-time control requirements. For the network
schedules, this means to move from the traditional throughput oriented optimization of the
network resources towards a real-time oriented communication to support networked con-
trol systems. For the control system, on the other hand, it means to become aware of the
varying conditions and opportunities of the network infrastructure. At the moment, there
exists no systematic approach for the joint design of the control and communication protocol
under realistic settings. Therefore, two important questions in this context are as follows:

1. How should medium access be organized in a multiple-loop scenario such that the
overall quality of control is maximized?

2. How should the controls be designed while taking current network conditions into
account?

In this dissertation, we will mostly address the first question by proposing event-based
channel access mechanisms which take the real-time control state into account. We take
the scenario of an NCS consisting of multiple heterogeneous linear time-invariant control
loops accessing one shared communication channel. We mainly study stability properties,
performance efficiency and robustness of event-triggered scheduling architecture for such a
networked system. Implementability of the proposed design is also comprehensively inves-
tigated in this dissertation.

The majority of the results have studied the event-triggered sampling for single loop net-
worked control systems. Multiple-loop systems in which multiple control loops are coupled
through shared communication resources have attained little attention so far. Exceptions
can be found in e.g., [10, 11, 17, 18]. The synthesis of event-triggered control in single
loop systems takes commonly an emulation-based approach, enabling us to choose a sta-
bilizing continuous-time controller a priori. The control inputs are chosen according to this
control law at triggering times and are either kept constant in between triggering times or
adjusted only based on local model parameters and information history. By using concepts
from Lyapunov theory and input-to-state stability, the event-trigger is chosen to be a thresh-
old function of the measurements such that stability of the event-triggered control system
is guaranteed [3, 4, 6, 7, 19, 20]. However, the mentioned approaches do not translate to
the multi-loop shared resource case as targeted in this dissertation. In the multiple-loop
scenario, the shared resource needs to be displayed as a sample-path constraint which com-
plicates the analysis and design of event-triggered mechanisms considerably more compared
to the single-loop NCSs.
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1.3 State of the Art

There exist numerous research achievements related to the presented topics in this disserta-
tion. On the one hand, many attempts have focused on developing the event-based sampling
of control systems for more than a decade. On the other hand, there exists a vast amount of
analytical and evaluative results on networked control systems tackling various design and
analysis aspects. Applying event-triggered sampling on networked control systems and de-
sign of event-based control and scheduling laws have also been an attractive field of research
for the researchers. However, most of the available results on event-triggered sampling of
NCSs are either applicable on narrow classes of networked systems, or are derived under
idealized assumptions which may not be feasible in real applications. In addition, a sys-
tematic quality-of-control-oriented design procedure for event-triggered networked control
systems is missing in the literature. In this dissertation, we build a design framework for
event-based control of networked control systems in a broader sense in terms of modeling,
robustness and implementability, to enhance control performance. We will compare our
obtained results with well-known developed approaches to evaluate performance enhance-
ment under our design methodology. In what follows, we review some of the most important
achievements in event-triggered control and control of networked systems and discuss the
advantages and shortcomings of those works.

More than a decade ago, event-triggered sampling was first introduced in [2] as an ef-
fective mechanism to reduce the rate of data stream in a control loop. Afterwards, many
attempts have been made to demonstrate the efficacy of event-triggered sampling compared
to the traditional way of sampling the control systems with fixed temporal duration. It
has been shown through several works that event-triggered sampling may generally lead
to substantial reduction of computational processing without degrading the control perfor-
mance [3,4,6,21–28]. With more in-depth analysis, it has also been demonstrated that event-
triggered sampling can be applied successfully on networked systems wherein the control sig-
nals are transmitted through a wired or wireless communication channel [5,17,25,29–35].

Different areas for the design of event-triggered control for large-scale systems, such as
networked systems, multi-agent systems, and distributed systems, are considered. Among
those, we will focus in this dissertation on the design of event-based control mechanisms for
networked control systems under limited communication resources. Depending on how the
overall networked system is characterized, many results exist in the literature incorporating
the limited resources in the design of event-based control and scheduling laws. Hence, we
provide a short overview of the available results in this area from each characterization per-
spective. The available works on event-based control synthesis under scarce communication
resources, can broadly be categorized in one of the following groups:

1. single-loop vs. multiple-loop networked systems

2. linear control-loop vs. nonlinear control-loop networked systems

3. deterministic approaches vs. stochastic approaches

Most of the available works consider the event-trigger synthesis for single-loop net-
worked systems under limited communication resources [23, 36–46]. In the mentioned
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works, the main focus is on appropriate event generation to reduce the communication
cost and yet achieving the required control performance. Stability guarantees, as an es-
sential property, are also investigated widely in those works. Compared to the single-
loop scenario, multiple-loop networked control systems under communication constraints
have attained little attention in the literature where the notable exceptions can be found
in [10, 13, 17, 20, 29, 33, 34, 47–51]. The presented results in these works show that the
event-triggered sampling is not always the best performing strategy for multiple-station net-
worked systems, hence it should be employed with care. It is suggested by [17, 29] that
event-triggering is considerably beneficial compared to the time-triggered sampling in CSMA
based random channel arbitration. In contrast, it is shown in [47, 48] that within unslotted
and slotted ALOHA, event-triggered sampling leads to performance degradation. The same
authors later clarified in [13] that indeed event-triggering is not always beneficiary compared
to the time-triggered sampling, and it leads to performance enhancement only within certain
communication protocols. This indicates that the performance of event-triggered sampling is
firmly dependent on the type of communication protocol. The results presented in [10, 33]
suggest that the event-based approach can be effectively employed as a threshold policy
to govern the channel access in limited resource networked systems. The results are then
extended by deriving an optimal price-based scheduling mechanism for channel access arbi-
tration, but at the expense of having a centralized network manager to optimally determine
the communication prices. As a main shortcoming of the mentioned works, most of them
have considered multiple scalar sub-systems in an NCS while the results available for sub-
systems with higher dimensions are even less addressed. In this dissertation, we will focus
on event-based sampling of multiple-loop networked control systems under communication
resource limitations where the control loops may have higher dimensions.

Event-based sampling has been studied for networked systems comprising of either lin-
ear or nonlinear controlled sub-systems. The well-known results on event-based control and
scheduling law synthesis, considering nonlinear networked control systems, are presented
in [5,15,23,52–57]. Different aspects of such networked systems are studied in these works,
e.g., event generating for control and scheduling units, stability analysis, implementation
of the event-triggered laws, and robustness analysis. In [23], the event-triggers are deter-
mined, according to the network-induced relative error, employing the input-to-state stability
criterion for nonlinear networked systems. The authors of [54, 55] show Lp stability holds
for nonlinear NCSs with bounded model disturbances operating under an event-triggered
deterministic scheduling policy but for sufficiently small MATI. Lyapunov uniform global ex-
ponential (UGES) stability for nonlinear NCSs with exogenous disturbances and stochastic
model of dropouts is addressed in [15]. A general framework incorporating communication
constraints, varying transmission intervals and varying delays is presented in [53], where sta-
bility of nonlinear networked system, in terms of bounded maximum allowable transmission
intervals, is guaranteed through Lyapunov-based methods. In [57] event-triggering rules
for nonlinear networked control systems are synthesized for classes of NCSs governed by
uniformly globally asymptotically stable (UGAS) protocols. A decentralized event-triggered
approach for general distributed networked systems over broadcast channels in proposed
in [5] where a station broadcasts its state information to the neighbors only when its local
error exceeds a pre-specified threshold. Due to difficulty of performance analysis and opti-
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mization techniques in a nonlinear networked scenario, the mentioned works mostly studied
stability properties of the networked system under event-based control and communication
mechanisms. The available results in the area of networked systems with linear systems,
however, have additionally considered more design aspects of the event-based strategies
by precisely investigating overall network performance and implementability within stan-
dard communication protocols, see e.g., [12–14, 16, 20, 35, 46, 58–65]. Extensive stability
analysis for networked systems with linear time invariant sub-systems are provided by em-
ploying either deterministic or stochastic concepts of stability, depending on the modeling
paradigm [14, 16, 20, 62–67]. In addition, control performance under various scheduling
policies in linear networked systems is investigated [46, 68–70]. The notion of periodic
event-triggered control (PETC) is employed in [46] in order to obtain sub-optimal bounds on
a quadratic cost function. In [68,69], performance bounds are obtained for linear stochastic
systems with quadratic value functions. Geometric bounds are also derived for infinite, yet
countable, Markov chains in [71]. In the linear case, the event-triggers are often generated
to maximize some performance metrics. This is not a trivial problem since the communica-
tion limitations need to be carefully considered, and they often appear as the constraint of
the optimization problem, making the optimal synthesis of event-triggers generally infeasible
to be analytically solved. Some results have shown that under simplifying assumptions the
OP can be decomposed and therefore locally solved through Lagrange approach, e.g., [72],
although a generic design of event-triggers in optimal fashion is not yet fully developed.

Similar to the classic control theory wherein the control systems can be characterized in
either stochastic or deterministic fashions, networked systems over communication channels
can also be categorized as stochastic or deterministic. Stochasticity in a networked system
may appear specifically in several ways; via stochastic parameters in the sub-system’s mod-
els, via stochastic exogenous inputs, and via stochastic communication channels. Standard
deterministic control and scheduling mechanisms are often not very well compatible with
stochastic systems due to the statistical nature of the latter system’s behavior. Therefore,
stochastic control and scheduling laws are developed in order to fulfill the requirements of
non-deterministic systems. Stochastic stability notions usually consider the dynamic behav-
ior of the system under consideration in a probabilistic sense. This means that a specific
realization of the system behavior is not necessarily demonstrating the expected behavior.
Consequently, in a stochastic networked system, the event triggers may also be characterized
stochastically, e.g., they can be noise-driven. Hence, in terms of analysis and design, stochas-
tic NCSs should be studied carefully by employing relevant mathematical toolboxes. Both
stochastic and deterministic frameworks have been widely studied with the latter in more
attention in the event-based scenario. Focusing on the results on event-based scheduling
design for networked systems over shared communication resources, a well-known event-
based deterministic scheduling law is proposed in [14] where the limited channel bandwidth
is granted to the systems with the largest real-time estimation errors and the rest of transmis-
sion requests are discarded. This approach, which is capable of prioritized coordination of
channel access, is called Maximum Error First (MEF) or Try Once Discard (TOD). Although
TOD is a centralized scheduling approach which makes it not quite applicable for large-scale
NCSs and multihop wireless networks [56], it is a well-established performance-efficient
methodology to manage the channel access especially for small and medium size networks.
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Stability of NCSs under the deterministic TOD protocol is shown in terms of global expo-
nential stability assuming that the inter-transmission intervals, so called Maximal Allowable
Transmission Interval (MATI), is sufficiently small [14, 16, 54, 55]. In [14], global exponen-
tial stability of multiple-packet transmission NCSs consisting of linear time-invariant systems
employing TOD scheduling policy is addressed under three assumptions, i.e. the channel
is error-free, no observation noise exists and no model disturbance deteriorates the system
dynamics. The authors of [54, 55] show Lp stability holds for deterministic nonlinear NCSs
with bounded model disturbances operating under TOD but for sufficiently small MATI. On
the contrary, MATI does not apply to stochastic schemes with random access protocols as
the intervals between consecutive transmissions cannot usually be upper bounded uniformly
with probability one, which calls for new stability concepts for stochastic NCSs. Time-varying
transmission delays and packet dropouts are considered in [16] and mean square stability is
proved for LTI NCSs orchestrated by a proposed quadratic scheduling protocol of which TOD
is shown to be a special realization. Lyapunov uniform global exponential stability (UGES)
for nonlinear NCSs with exogenous disturbances and stochastic model of dropouts is ad-
dressed in [15]. The disadvantage of TOD and its deterministic variations is that they are
centralized approaches and therefore not scalable. Moreover, these approaches are prone to
stochastic noise and can cope with collisions only when predefined priority order is given,
and hence they are not convenient for practice, e.g. wireless multihop networks. Stochas-
tic scheduling methods on the other hand are developed and shown to be better matches
for stochastic networked systems and randomized channels, especially for large scale net-
works [11, 49, 64, 73–77]. Moreover, non-deterministic scheduling mechanisms are demon-
strated to be better options for contentious protocols, and they are easier to be implemented.

Robust analysis of control and scheduling designs for both stochastic and deterministic
models of NCSs over non-ideal communication channels are also performed [66,67,78–80].
In [80,81], probabilistic models of dropout are used. In [82] the packet dropouts are modeled
according to a Bernoulli process, where worst-case bounds for the number of consecutive
dropouts are derived. In [83] the authors seek performance guarantees under networked
induced delays and varying data packet rates in a probabilistic setting by modeling a packet
dropping network as an erasure channel. Stability of time-invariant systems is studied in
[66] for constant delays, while protocols with time-varying delays are discussed in [67]. A
scheduling design considering uncertain delays in the communication channel is presented
in [78].

In this dissertation, we are interested in developing design guidelines for event-triggered
scheduling for stochastic networked systems with linear time-invariant control loops over
limited communication resources. The main goal is to build an event-based scheduling de-
sign framework capable of managing scarce communication resources aiming at quality of
control improvement, while it guarantees the essential properties such as stability and ad-
dresses robustness. Applicability of the proposed approaches is also addressed in this dis-
sertation by introducing implementation procedures which take into account the limitations
and challenges of real networked systems.
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1.4 Outline and Contributions

In this dissertation, we address the event-based control and scheduling synthesis for multiple-
loops stochastic networked control systems over shared communication resources. We start
in Chapter 2 by having a precise look at structural properties of such networked systems and
provide the modeling framework which will be used throughout this dissertation. Then, in
Chapter 3, we introduce our first event-based scheduling architecture by proposing a pure
probabilistic medium access control mechanism in centralized fashion. The proposed ap-
proach is then extended to a bi-character design in Chapter 4 where a deterministic thresh-
old policy is embedded in the MAC architecture as a mechanism to determine the urgency
of transmissions. We will discuss that the combined protocol is indeed superior to the pure
probabilistic one in terms of control performance. Robustness of the proposed scheduling
architecture is then investigated in Chapter 5 by considering both system uncertainties and
channel imperfections. Chapter 6 presents the decentralization procedure to implement the
proposed event-based scheduling mechanism in distributed fashion. There we assume to
have access only to noisy sensor measurements, and further analyze the event-based schedul-
ing over multi-hop channels. The similar approach is then shown to be applicable for a special
class of interconnected networked control systems in Chapter 7, wherein the interconnection
topology is supposed to follow directed acyclic graphs. The dissertation is finalized by con-
cluding discussions and outlooks on some open research challenges. The major contributions
within each chapter are outlined in more details as follows:

Chapter 2

In this chapter, we present the structural analysis and modeling of networked control
systems (NCS) comprised of multitude of stochastic controlled sub-systems which share a
communication medium subject to resource limitations. We introduce essential preliminary
analyses and evaluations to pursue further discussions and derivations in the forthcoming
chapters, where we address different aspects of a proper design for NCSs. First, we intro-
duce the structural properties of NCSs with LTI stochastic control sub-systems in discrete
framework. Separation property, as an important result enabling us to decompose the con-
trol and scheduling design procedure is then discussed. Independent synthesis of control
strategies, in form of LQG controllers, as a well-known result employed in several research,
e.g., [35, 59, 87], is in addition addressed. Then a brief but necessary introduction about
the different scheduling scenarios is presented. This section is followed by derivation of the
overall NCS dynamics under a general event-based scheduling design. It is shown that the
network-induced error state is directly controlled by the scheduling variable, where these
variables are determined by the event-based scheduling law. It is discussed that the error
state can be modeled as a time-homogeneous, aperiodic, and ψ-irreducible Markov process.
The results discussed in this chapter are partly from the author’s own work in [84, 85], and
partly from the available literature, most notably [33,58,59,86].

Chapter 3

In this chapter, we address the efficient usage of scarce communication resources in net-
worked control systems by introducing a novel stochastic scheduling scheme with capability
of prioritizing the channel access based on current status of local control systems. More
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precisely, an error-dependent scheduler decides which transmission requests have the prior-
ity to be awarded the channel access. The priorities are assigned to each sub-system in a
probabilistic fashion according to an error-dependent measure, such that higher chances of
transmission is assigned to the sub-systems with greater error norms. The other transmission
requests are blocked when the resource limit is reached. Due to the presence of stochastic
noise and the coupling between sub-systems, the networked system under consideration re-
quires novel methods to analyze its asymptotic behavior. Dynamics of the overall NCS can
be described by the behavior of the so-called “network state”, which can be modeled by a
homogeneous Markov chain evolving in the uncountable state-space Rn. We prove that the
described NCS, arbitrated by the proposed stochastic scheduling protocol, is stochastically
stable, according to the notion of “ f -ergodicity”. Furthermore, we derive analytic perfor-
mance bounds for an average cost function comprised of an error-dependent quadratic term
plus an incurred cost of communication. The results in this chapter are mainly from the
author’s own works in [84,85,94].

Chapter 4

In this chapter we develop the previously introduced probabilistic scheduling design in 3 to
a bi-character policy comprised of both deterministic and probabilistic attributes. We discuss
that the modified scheduler arbitrates the scarce communication resources more efficiently
and observe how the deterministic feature of the scheduler may lead to enhance the overall
control performance in comparison with pure probabilistic approaches. Given local error
thresholds for each control loop, transmissions associated with sub-systems with lower error
values than the pre-specified thresholds are deterministically discarded in order to make the
channel less congested for those sub-systems with greater error values. In case the channel
capacity is still sparse, then the scheduler allocates the communication channel probabilis-
tically among all those eligible sub-systems based on a dynamic prioritized measure. Since
the local errors are driven by the stochastic Gaussian noise process, transmissions occur ran-
domly in an event-based fashion. This bi-character scheduling rule offers major advantages
in comparison with purely deterministic or purely probabilistic architectures. In comparison
with deterministic policies, the probabilistic nature of our protocol facilitates an approximate
decentralized implementation. This will be addressed later in Chapter 6. In addition, by low-
ering the probability of channel access for sub-systems with lower local errors, the channel
is made less congested for the sub-systems which are in more urgent status for transmission
and consequently performance enhancement is attained. We prove that stochastic stability
of the described NCS in Chapter 2 is preserved under the modified scheduler in terms of
f -ergodicity of the overall network-induced error. Additionally, we derive uniform analytical
performance bounds for an average cost function comprised of a quadratic error term and
transmission penalty. The performance margins for the bi-character scheduling design are
then analytically evaluated. Furthermore, it is concluded that the performance index is in-
deed a convex function of the error thresholds which consequently facilitates the search for
sub-optimal uniform performance bounds. The results presented in this chapter are from the
author’s own works in [99,100].

Chapter 5

In this chapter, we evaluate robustness properties of our introduced architecture. Control
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over shared communication resources often imposes various imperfections, such as capacity
limitation, congestion, collisions, time delays and data loss, that impair the control perfor-
mance and can even lead to instability. In practice, these challenges need to be carefully
considered when designing control and scheduling strategies. In this chapter, we mainly
take into account non-idealities in the communication channel to evaluate the robustness of
the proposed design approach. More precisely, we address the control and scheduling designs
for a multiple-loop stochastic NCS wherein the local sub-systems exchange their sensory data
over a shared capacity-limited communication channel subject to data loss. Additionally, in
a centralized design, it is often assumed that the controlling units have constantly access to
global information from all distributed entities. This however is an ideal assumption because
the sheer amount of information exchange cannot always be processed in timely manner,
which in turn gives rise to delays. Therefore, scheduling approaches requiring complete in-
formation in every sampling times might not be feasible in practice due to the additional
traffic imposed by the scheduler to coordinate among different control loops. A desired ar-
chitecture should be capable of allocating resources efficiently even provided with partial
information from local entities. We discuss that our proposed scheduling architecture is ca-
pable of effectively assigning the priorities in the absence of up-to-date error information
from the networked entities. The presented theoretical and numerical results in this chapter
are mainly from the author’s own research in [99,107].

Chapter 6

In this chapter, we discuss the implementation of the bi-character error-dependent
scheduling approach in decentralized fashion for shared-resource multiple loop stochastic
networked control systems. The results in this chapter correspond to three main contribu-
tions; first we assume that the local schedulers have access to the true error state of their
corresponding local sub-systems. Then the results are extended to the case where the local
event-triggers are defined assuming that only noisy sensor measurements are accessible and
not the true error values. Finally, we address the problem of event-based medium access
control for multi-link networks. In all mentioned contributions, the decentralized schedul-
ing designs are assumed to combine deterministic and probabilistic attributes to efficiently
allocate the limited communication resource among the control loops in an event-based fash-
ion. Given local error thresholds, each control loop determines whether to compete for the
channel access in a deterministic manner. Note that this process is performed locally within
each control loop because the triggering condition is checked locally. Therefore, implemen-
tation of the probabilistic scheduling process in decentralized fashion is indeed discussed in
this chapter. In the third section of this chapter, we assume that the channel access is deter-
mined based on probabilistic slotted ALOHA protocol, i.e. no state-dependent prioritization
is considered to select the sub-systems for channel access. So, the approach is known to be
decentralized. We demonstrate stochastic stability of the described NCSs under decentral-
ized MAC architectures in terms of Lyapunov Stability in Probability (LSP). The presented
discussions and results in this chapter are mainly from the author’s work in [114, 115] and
a collaborative work in [101].

Chapter 7

In this chapter, we extend our control and scheduling architectures to be applicable for
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a wider range of NCS models by considering the physical interconnections among the indi-
vidual controlled sub-systems. Considering that the dynamics of a controlled sub-system is
affected by the dynamic behavior of other sub-systems through physical links adds an ex-
tra coupling dimension to networked control systems, compared to the scenario wherein
the coupling only appears in the communication channel. Due to complexity of analysis for
very general interconnection models including bi-directional and cyclic interconnections, we
identify a class of interconnected networked systems within which the state-dependent prior-
itizing scheduling policy can be implemented. We consider an interconnected NCS consisting
of multiple heterogeneous stochastic LTI sub-systems where the physical interconnection is
modeled by a directed acyclic graph (DAG). The sub-systems are controlled by a networked
controller through a shared communication channel, which depending on the type of com-
munication channel and information structure can be designed ranging from decentralized
to distributed and to fully centralized control laws. In order to cope well with the expected
transmission traffic, we employ a bi-character deterministic-probabilistic scheduling mech-
anism which dynamically assigns access priorities to each sub-system at each time-step ac-
cording to an error-dependent priority measure. The sub-systems which are granted channel
access then transmit their state information through the communication network. We prove
stability of such interconnected networked systems under the proposed scheduling law in
terms of f -ergodicity of overall network-induced error. Most of the presented analyses, re-
sults and discussions in this chapter are from the author’s work in [119].
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2

Structural Analysis of Multiple-Loop NCSs

In this chapter, we present the structural analysis and modeling of networked control systems
(NCS) comprised of multitude of stochastic controlled sub-systems which share a communi-
cation medium subject to resource limitations. In an NCS where the individual sub-systems
are assumed to be physically isolated, the coupling between them occurs solely within the
shared communication channel. Design of networked control systems is often considered as
the joint synthesis of control strategies and a network manager such that the quality of con-
trol, in overall sense, is maximized under resource limitations. However, a global solution
which satisfies the desired operational requirements for a general model of networked con-
trol systems does not exist, to the best of our knowledge. Here, we look at NCSs consisting
of multiple stochastic linear time-invariant sub-systems modeled in discrete time. Consid-
ering certain type of control units for individual sub-systems, we conclude an easier way
of designing the network manager independent of control strategies. In the face of scarce
communication resources, we need to design a network manager which requires the com-
munication channel to transmit their data to designated stations, in order to arbitrate the
channel access among all dynamic entities. We discuss how event-based strategies are ben-
eficial for efficient arbitration of channel access.

This chapter is structured as follows. In Section 2.1 the NCS model which is largely em-
ployed in this dissertation is introduced and the structural properties are studied. We es-
sentially look at the communication medium as the point of coupling between the local sub-
systems, and discuss the effects of channel limitations on the design of NCSs. We consider an
ideal type of channel in this chapter, where the only constraint is in terms of limited capacity.
Then, it is shown in Section 2.2 that, linearity of feedback control laws facilitates to design
control and scheduling strategies independently. This property makes the control-scheduling
co-design less complicated and furthermore enables one to employ vast varieties of control
and scheduling architectures based on the real-time requirements of the NCS. Having the
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2 Structural Analysis of Multiple-Loop NCSs

control and scheduling designs separated, we focus on the optimal control rules for each lo-
cal sub-system in Section 2.3 in form of the linear-quadratic Gaussian (LQG) optimal control.
Afterwards, we address various scheduling architectures for multiple-loop NCSs focusing on
event-based strategies in Section 2.4.

2.1 Modeling and Structural Analysis of Stochastic

Networked Control Systems

Throughout this dissertation, if not otherwise stated, we consider a networked control system
composed of N heterogeneous controlled sub-systems which are exchanging sensory data
over a shared communication network, as depicted in Figure 7.1. Each individual control
loop consists of a linear time-invariant (LTI) stochastic plantPi, a linear stabilizing feedback
controller Ci, as well as sensors Si which measure some system state. The communication
channel is assumed to be subject to the capacity constraint such that not all N sub-systems
can use the communication channel simultaneously. This leads to having several sub-systems
which inevitably operate in open-loop at every time instance. To manage the channel access
among the networked entities, an event-based scheduler decides when a pre-defined event
is triggered for a certain sub-system to schedule that sub-subsystem for channel usage.

As all analysis in this dissertation is performed in discrete time frame, the LTI stochastic
plant P i is modeled in the state-space by the following linear stochastic difference equation:

x i
k+1 = Ai x

i
k
+ Biu

i
k
+wi

k
, (2.1)

where x i
k
∈ Rni describes the state vector of sub-system i with the vector size ni, and the

stochastic system noise wi
k
∈ Rni is i.i.d. with wi

k
∼ N (0, Wi) at every time-step k, where

Wi > 0 and is finite. For every subsystem i ∈ {1, . . . , N}, the matrices Ai ∈ Rni×ni denote
the system matrices associated with sub-system i and Bi ∈ Rni×mi describe the corresponding
input matrices. The initial states x i

0 for all i ∈ {1, . . . , N} are allowed to be independent ran-
dom variables chosen from arbitrary probability distributions with finite means and bounded
variances. In addition, the random variables x i

0 and wi
k

for all operational time-steps k are
assumed to be statistically independent. The initial state vector x0 = [x

1T

0 , . . . , x NT

0 ]
T, together

with the process noise sequence wk, generate the probability space (Ω,A ,P), where Ω is the
set of all possible outcomes,A is aσ-algebra of events where the corresponding probabilities
are determined by the function P. It should be noted that the process noise wi is randomly
chosen based on the unsupported Gaussian distribution N (0, Wi), which instead results in
an uncountable probability space wherein the set Ω contains uncountable outcomes. In addi-
tion, having unsupported distribution for the process noise wi at every operational time-step
eventuates that the state of a system i may take very large values at some time-steps even in
the presence of a stabilizing feedback controller. Although the distribution of process noise
is zero-mean, its realizations cover the range (−∞,∞).

Every sub-system i ∈ {1, . . . , N} requires to transmit its sensory data to the correspond-
ing controller Ci at each sample time k through the shared communication channel. In this
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Pi

Ci
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x i
k
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k

z i
k
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k
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k dropout/collision indicator

Shared Communication Network

Scheduler

Figure 2.1: Schematic of a multiple loop NCS with shared communication channel.

dissertation, we focus on the type of NCSs within which only the links between the plants
and their corresponding controllers are passing through shared communication networks.
In other words, we assume that the control signals ui

k
are directly connected to their corre-

sponding plants Pi and no shared channel exists between them. This is schematically shown
in Figure 7.1. Furthermore, if not otherwise stated, it is assumed that if a transmission asso-
ciated with sub-system i occurs at a time-step k, the true state vector x i

k
is accessible for the

controller Ci.
Since the capacity of the communication channel is constrained, only a limited number of

sub-systems are allowed to transmit data through the channel at each time-step and the rest
of the sub-systems have to wait and re-transmit at future times. To model this process, we
introduce the binary variable δi

k
∈{0, 1} which represents whether a sub-system i is allowed

to have access to the channel and consequently transmit state information to the controller
Ci at a time-step k, as follows

δi
k
=

¨

1, x i
k

sent through the channel,

0, x i
k

blocked.

Having the scheduling variable introduced, the capacity constraint can be expressed in
terms of the number of maximally allowed open channel slots as follows:

N∑

i=1

δi
k
= c < N . (2.2)

The capacity constraint (2.2) needs to be fulfilled at an every single time-step k. The selected
data packets are sent through the communication channel for transmission. A successful
transmission, i.e. the pertaining data packet is not lost or collided, is acknowledged via the
binary variable γi

k
∈ {0, 1}
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2 Structural Analysis of Multiple-Loop NCSs

γi
k
=

¨

1, x i
k

successfully received

0, x i
k

dropped.

In case δi
k
= 0, then γi

k
= 0. Depending on the introduced variables δi

k
and γi

k
, the received

signal at the controller Ci at a time-step k is denoted by z i
k

and is defined as follows:

z i
k
=

¨

x i
k
, δi

k
= 1∧ γi

k
= 1

∅, otherwise.

It is assumed that the controller of the ith sub-system merely have access to the local
knowledge. Therefore, the available information at the control station is Ai, Bi, Wi and
the distribution of x i

0. In case a transmission attempt from a sub-system is not successful
at a given time-step k, i.e., either δi

k
= 0 or γi

k
= 0, an a priori estimate of the system

state x i
k

can be calculated based on local information available at control station Ci, via a
model-based estimator. To guarantee a well-behaved estimation, assume that the control
law ui

k
is described by the following state feedback law

ui
k
= −LiE
�

x i
k
|Z i

k

�

, (2.3)

where Z i
k
= {z i

0, . . . , z i
k
} represents the ith controller observation history. Therefore, if

a stabilizing gain Li can be found such that the closed-loop matrix Ai − Bi Li becomes
asymptotically stable, then the well-behaved model-based estimation of system state x i

k
can

be computed as follows:

E
�

x i
k
|Z i

k

�

= (Ai − Bi Li)E
�

x i
k−1|Z i

k−1

�

, (2.4)

with the initial condition E
�

x i
0|Z i

0

�

= 0.

2.2 Control and Scheduling Architecture – Separation

Property

In this section, we study the control and scheduling architectures for the described network
setup in Section 2.1. First, remind that in this chapter we assume to have physically de-
coupled sub-systems, i.e. there exists no physical interconnection between the individual
sub-systems and the coupling takes place only through the shared communication medium.
Taken this, we assume each local sub-system is controlled by a state feedback controller which
is itself updated at every time-step k by either the true state vector x i

k
(in case updated state

information is successfully received, i.e. δi
k
= 1 and γi

k
= 1) or by state estimates E[x i

k
] (in

case δi
k
= 0 or γi

k
= 0).
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We need to investigate the influence of the constrained communication channel, as the
coupling point between individual sub-systems of the NCS. It is apparent that in the ab-
sence of capacity constraint, all sub-systems are allowed to transmit their state information
for their corresponding controllers in a timely manner. Consequently, the individual sub-
systems would become decoupled and overall stability of the NCS would follow straight-
forwardly only if the local stabilizing feedback gains Li exist for all decoupled sub-systems
i ∈ {1, . . . , N}.

In the presence of the capacity constraint (2.2) however, stability of the individual
sub-systems does not necessarily guarantee the overall NCS stability. We will discuss it in
more details after describing the overall NCS state. In order to account for the capacity
constraint and analytically investigate its influence on NCS dynamics, we introduce the
one-step ahead network-induced error state ei

k
for sub-system i as the difference between the

true state vector x i
k

and its estimate E
�

x i
k
|Z i

k

�

, which is computed at the controller side Ci

at time-step k. Therefore, we define

ei
k

:= x i
k
− E
�

x i
k

�
�Z i

k−1

�

, (2.5)

where, Z i
k
= {z i

0, z i
1, . . . , z i

k
,δi

0,δi
1, . . . ,δi

k
,γi

0,γi
1, . . . ,γi

k
}. In what follows, the dynamics of

each individual sub-system i is derived by considering that ei
k

is also an associating state
of ith-system along with x i

k
. Therefore, let us define [x iT

k
, eiT

k
]T as the aggregate state of

sub-system i. Assume δi
k
= 1 and γi

k
= 1, then the controller Ci will be updated with the

true state vector x i
k

which incurs ui
k
= −Li x

i
k
. Therefore, for system state x i we have from

the plant dynamics (2.1)

x i
k+1 = Ai x

i
k
− Bi Li x

i
k
+wi

k

= (Ai − Bi Li)x
i
k
+wi

k
.

For the error state ei, the dynamics can be derived as follows:

ei
k+1 = x i

k+1−E
�

x i
k+1|Z i

k

�

= Ai x
i
k
− Bi Li x

i
k
+wi

k
−E
�

Ai x
i
k
− Bi Li x

i
k
+wi

k
|x i

k

�

= (Ai − Bi Li)x
i
k
+wi

k
− (Ai − Bi Li)x

i
k

= wi
k
.

If sub-system i does not successfully transmit at time-step k, i.e. whether δi
k
= 0 or γi

k
= 0,

then z i
k
= ∅ and consequently ui

k
= −Li E
�

x i
k

�
�Z i

k

�

. According to the definition of the
estimation error, the equality E

�

x i
k

�
�Z i

k

�

= x i
k
− ei

k
follows. Substituting this in the control

law given in (2.3) results in the following dynamics for system state x i:
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x i
k+1 = Ai x

i
k
− Bi Li E
�

x i
k

�
�Z i

k

�

+wi
k

= Ai x
i
k
− Bi Li(x

i
k
− ei

k
) +wi

k

= (Ai − Bi Li)x
i
k
+ Bi Lie

i
k
+wi

k
.

Finally, for the error state ei, we have

ei
k+1 = Ai x

i
k
− Bi LiE
�

x i
k
|Z i

k

�

+wi
k

− E
�

Ai x
i
k
− Bi LiE
�

x i
k
|Z i

k

�

+wi
k
|Z i

k

�

= Ai x
i
k
−Bi LiE
�

x i
k
|Z i

k

�

+wi
k
−AiE
�

x i
k
|Z i

k

�

+Bi LiE
�

x i
k
|Z i

k

�

= Ai(x
i
k
− E
�

x i
k
|Z i

k

�

) +wi
k

= Aie
i
k
+wi

k
.

Considering both cases together, dynamics of sub-system i with state vector [x iT

k
, eiT

k
]T can

be expressed depending on the binary variables δi
k

and γi
k

as follows
�

x i
k+1

ei
k+1

�

=

�

Ai − Bi Li

�

1− δi
k+1γ

i
k+1

�

Bi Li

0
�

1− δi
k+1γ

i
k+1

�

Ai

��

x i
k

ei
k

�

+

�

1
1

�

wi
k
. (2.6)

From (2.6), it can be seen that the aggregate state [x iT
k

, eiT
k
]T has an upper-triangular

dynamics within each sub-system i ∈ {1, . . . , N}. This confirms that the evolution of the
error state ei is independent of the system state x i, though the evolution of x i depends
on how the error state ei evolves. This clarifies the role of the communication constraint
in stability guarantees of our NCS setup. Expression (2.6) demonstrates that the local
stability of individual sub-systems is necessary but not sufficient to guarantee the overall
NCS stability. In the other words, finding stabilizing feedback gain Li for each individual
sub-system i ∈ {1, . . . , N} ensures that the closed loop matrix Ai − Bi Li is Hurwitz and
hence the system state x i is converging. However, convergence of the error state ei

is additionally required to be proven in order to guarantee stability, in terms of overall
state convergence, of the individual sub-system i. From (2.6), we have for the system state x i

x i
k+1 = (Ai − Bi Li) x i

k
+
�

1− δi
k+1γ

i
k+1

�

Bi Lie
i
k
+wi

k
, (2.7)

and for the error state ei

ei
k+1 =
�

1− δi
k+1γ

i
k+1

�

Aie
i
k
+wi

k
, (2.8)

where the ordering of decisions within one time period, i.e. k → k + 1, is assigned by the
following sequence:

· · · → ek→ δk+1→ γk+1→ zk+1→ uk+1→ ek+1→ ·· ·
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It is noteworthy that the error evolution at a certain time-step, e.g., k + 1, depends on δi
k+1

determined by the scheduler at the same time-step. This specifies that the scheduler first
determines δk+1 using the information at time-step k. Subsequently, the error at time-step k+

1 attains a value provided by (2.8). Altogether, both δk+1 and ek+1 depend on the information
available at time-step k.

According to (2.7) if the closed loop matrix (Ai − Bi Li) is Hurwitz, i.e. by designing ap-
propriate stabilizing feedback control law ui, then it is sufficient to show that the error state
ei is also converging to achieve stability of sub-system i with the aggregate state [x iT

k
, eiT

k
]T.

This is the direct consequence of the triangular dynamics shown in (2.6) which implies that
evolution of error state ei is independent from the system state behavior.

Another equivalent conclusion which can be drawn from the expressions (2.7) and (2.8)
clarifies that the control law ui does not affect the evolution of the error state ei. Therefore,
it can be synthesized independently such that the closed loop matrix (Ai − Bi Li) is stabilized.
On the other hand, the scheduling variable δi only affects the error state dynamics, and does
not have any role to play in designing the feedback gains Li. This property, shown to hold
for LTI systems, paves the way for separately designing the control and scheduling laws. A
more remarkable result of the separation property between the control and scheduling laws
is that an optimal co-design can be approached considering that a given global optimization
problem can be decomposed into two independent optimization sub-problems, of which one
is optimized by the control law, and the other by the scheduling law. Feasibility of such
optimal design however depends firmly on solvability of the decomposed optimization sub-
problems. In the next section, we first address the control law design.

2.3 Control Synthesis and Local Stability

In this section, we address the problem of control synthesis for the NCS model in Section
2.1. It should be reminded that in this chapter, we consider that if a transmission associated
with sub-system i occurs, then the controller Ci receives the full state information x i of
corresponding plant Pi. Mathematically speaking, we assume the following model for the
plant dynamics and sensor measurements of local sub-system i:

x i
k+1 = Ai x

i
k
+ Biu

i
k
+wi

k
(2.9)

y i
k
= x i

k

As discussed in the previous section, separation property exists between the control law and
scheduling law synthesis for the NCS, which allows us to independently design each law
and more importantly introduce independent index functions. It should be however noted
that the separation property facilitates to compute the control law considering that the com-
munication constraint is relaxed, i.e. we compute ui

k
assuming that the state information is

provided for the controller in timely-manner. The effect of the communication constraint is
reflected by the error-dependent term Bi Lie

i
k

in the expression (2.6). This leads us to con-
sider an emulation-based control design for the operational period of the described NCS in
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presence of the capacity limitation (2.2), in which the control inputs are chosen a priori and
will be kept constant between the transmission times. This is an important assumption also
valid for event-triggered control which often takes emulative approach presuming a stabiliz-
ing continuous time controller. The control inputs are chosen at triggering times and only
update at the subsequent transmission times. We will extensively employ this property in
the forthcoming chapters of this dissertation as we introduce event-based scheduling archi-
tectures.

Taking the bandwidth limitation (2.2) into account, we introduce the control strategy
considering the fact that a local controller does not necessarily have access to the state
information from its corresponding sub-system at every single sampling time. Thus, an
emulation-based control law with the minimum requirements is supposed to be designed in
order to steer the system state x i to an asymptotic equilibrium. The minimum requirements
for such a control law would be satisfied if the control law is linear and stabilizing. As
already discussed, furthermore it is assumed that sensor and controller of the ith sub-system
are provided only by local knowledge, i.e. of Ai, Bi, Wi and the distribution of the initial
state x i

0. Therefore, we assume that the linear control law ϑi is described by the following
measurable and causal mappings of the past observations:

ui
k
= ϑi

k
(Z i

k
) = −L i

k
E
�

x i
k
|Z i

k

�

, (2.10)

where Z i
k
= {z i

0, . . . , z i
k
} is the ith controller observation history, and L i

k
is any arbitrary stabi-

lizing feedback gain which is computed at every time-step when updated state information
arrive at the control station. In case a transmission request is blocked, i.e. δi

k
= 0, or the

pertaining data packet is lost, i.e. γi
k
= 0, an estimate of the system state x i

k
, i.e. E[x i

k
|Z i

k
]

is computed via the model-based estimator introduced in (2.4). It is worth mentioning that
upon arrival of a data packet, the corresponding controller will be updated by the true state
vector x i according to the noiseless measurement assumed in (2.9). We will further consider
the noisy measurements which instead necessitates employment of a filter, such as Kalman
filter at the control station, to estimate the state vector from noisy sensor measurements.

For the control law synthesis, it is already shown is Section 2.2, that the feedback gains
Li are to be found in order to make the closed loop matrix (Ai − Bi Li) Hurwitz, i.e., all its
eigenvalues lie inside the unit circle. As the gains Li do not influence the error state ei, and
additionally, the system dynamics involves Gaussian process noise wi, the most practical
choice of a cost function is linear quadratic Gaussian (LQG) for the control law synthesis.
To this end, we consider the following LQG cost function over the finite time horizon T

including the control input ui and system state x i in order to obtain the optimal stabilizing
control gain Li for the local sub-system i:

Jx ,u = E

�

x iT

T
Si xT +

T−1∑

k=0

x iT

k
Fi x

i
k
+ uiT

k
Riu

i
k

�

, (2.11)

where, Si and Fi are constant positive semi-definite matrices and Ri is a constant positive
definite matrix. Therefore, the optimal stabilizing control gain L i

k
for every sub-system

i ∈ {1, . . . , N} will be obtained as follows:
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L i
k
=
�

BT
i

P i
k+1Bi + Ri

�−1
BT

i
P i

k+1Ai, (2.12)

where pi
k

is determined according to the following in-time-backward Riccati equation:

P i
k
= AT

i

�

P i
k+1− P i

k+1Bi

�

BT
i

P i
k+1Bi + Ri

�−1
BT

i
P i

k+1

�

Ai + Si, (2.13)

and P i
T
= Si.

We described the stabilizing linear controllers ui ’s in (2.10) where control gains L i
k
’s are

derived in (2.12), according to the LQG cost function (2.11). This only guarantees asymptotic
stability of the NCS if and only if every control unit Ci, for i ∈ {1, . . . , N}, is updated with
state information at every sampling time. This is an immediate observation as relaxing the
capacity constraint (2.2) leads to elimination of the error-dependent term Bi L

i
k
ei

k
since we

have δi
k
γi

k
= 1 for all i and all time-steps k. In the presence of the capacity limitation (2.2)

however, stabilizing control law ui is necessary but not sufficient to guarantee stability of the
local sub-system i with the aggregate state [x iT

k
, eiT

k
]T. Convergence of the error state ei is

additionally essential to show stability of the sub-system i, subject to the constraining fact
that the updates are arriving not necessarily in a time-regular fashion. To study evolution
of the error state ei, we should first notice that the scheduling variable δi plays an identical
role for the error dynamics (2.8) as the control input ui plays for the system state x i in
(2.7). In other words, δi is the control input which steers the error state in its state space.
Therefore, dynamical behavior of the error state ei is hinged on the scheduling law which
decides the scheduling variables δi

k
at each time-step k. Similar to the control law synthesis,

we need first to determine the architecture of the scheduling law in order to investigate
behavioral properties of the error state ei, since the dynamics of the error state ei depends on
the sequence of variables δi

k
, and γi

k
. We address the scheduling design in the next section

of this chapter, and subsequently introduce the concept of stability in the next chapter of this
dissertation.

2.4 Event-triggered Scheduling Design

In this section, we comprehensively study different scheduling architectures for the described
multi-loop NCS with a shared communication channel. As already stated, it is assumed that
the shared communication channel is subject to the hard capacity constraint (2.2) which
implies that not all N sub-systems can simultaneously have access to the channel at every
time-step in order to transmit their state information to their corresponding controllers. As
this constraint has to be satisfied at every time-step k, some of the transmission requests are
inevitably blocked and the corresponding sub-systems remain open-loop between their own
two consecutive transmission times.

A scheduling law for general shared resource NCSs can be designed in various forms. An
appropriate architecture needs to be identified firstly according to the type of NCS under con-
sideration, i.e. size of the NCS, communication medium infrastructure, type of local entities
which are connected to the communication network and the application of such a networked
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Figure 2.2: Categorization of the scheduling architectures.

system, and secondly based on the specific real time requirements. Different frameworks for
scheduling architectures are available; the most important ones are centralized or decentral-
ized, time-triggered or event-triggered, online or offline and deterministic or random access
(probabilistic) methodologies. In Figure 2.2, different scheduling architectures are schemat-
ically categorized.

Time division multiple access (TDMA), frequency division multiple access (FDMA) and
code division multiple access (CDMA) are well-known centralized scheduling architectures
which are mostly preferred in small and medium-size networked control systems. As the main
advantages of centralized scheduling approaches, they offer collision-free and precise chan-
nel access management often leading to higher throughput in comparison to decentralized
strategies. Moreover, quality-of-service support and bandwidth arbitration is highly facili-
tated as those methods are capable of prioritizing channel access given either pre-determined
priority order or dynamic prioritization based on the network and control systems’ online
conditions. However, centralized strategies lack flexibility and scalability due to their syn-
chronous nature, which consequently make those approaches unfeasible-to-implement for
large-scale networked systems. In addition, centralized protocols are characterized by a sin-
gle point of failure, which can compromise the overall NCS performance.

Decentralized approaches, on the other hand, represent easy-to-install, low-cost and scal-
able scheduling architectures within which the transmission times of every node are deter-
mined locally or without the requirement of having global knowledge of all nodes between
which the communication medium is shared. They are suitable for NCSs with a large num-
ber of connected entities. However, collisions take place inevitably within those protocols
and need to be handled with care in the NCS design. They might be however insecure
scheduling strategies as no global administration unit exits. In addition, collision avoidance
mechanisms, e.g. the listen-before-talk scheme in CSMA-CA, call for all nodes to sense the
channel permanently, which instead requires high energy consumption due to idle listening,
overhearings, and message overhead.

The difference between event-triggered and time-triggered scheduling approaches is in the
fact that the former takes into account the current situation of the communication channel or
dynamics of the sub-systems in order to control the channel access while the latter approach
schedules the communication resource according to some periodic offline rules. For exam-
ple, TDMA is a time-triggered scheduling approach where the sequence of transmissions for
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a sub-system is determined a priori. The notable advantage of event-triggered approaches
is the capability of real-time monitoring of the NCS and adjust the scheduling decisions ac-
cordingly for instance to prioritize the transmission requests from those nodes in urgent
transmission state. Event-triggered scheduling policies consider a well-defined event as the
trigger for a transmission rather than elapsing a fixed period of time. As many results over
the recent years show [2,21,23,24,27], it is often more beneficial to sample a signal upon the
occurrence of specific events, rather than fixed period of time, especially when dealing with
scarce resources. In networked control systems, event-based control and scheduling schemes
outperform the periodic (time-triggered) rules in terms of resource consumption while pre-
serving the same level of control performance [11,25,30]. This motivates us to consider the
event-triggered scheduling approach in this dissertation in order to appropriately manage
the resource constraints imposed on the channel capacity. We will extensively discuss the
event-based design and the specific design of our scheduling law in the next chapter.

The scheduling decisions may in addition be taken according to either deterministic
or probabilistic rules. From well-known deterministic architectures, TDMA and Try-Once-
Discard (TOD) can be mentioned, while CSMA or CSMA-CA are famous probabilistic channel
access managers. Deterministic rules usually render better performance than their probabilis-
tic counterparts, but the latter is more flexible in dealing with channel phenomena such as
latency, congestion, data loss and collisions.

Throughout this dissertation, if not otherwise stated, we assume to employ an either event-
based probabilistic or event-based bi-character (deterministic-probabilistic) scheduler, and
we then study the implementation procedure of the mentioned schedulers in both centralized
and decentralized fashions. We start by the centralized pure probabilistic and bi-character
designs in Chapter 3, while the decentralized implementation of mentioned scheduling ap-
proaches is presented in Chapter 6.

As discussed in the previous section, the scheduling law plays the essential role in
behavioral analysis of the error state ei for each local sub-system i. Therefore, we define the
binary scheduling variable δi

k+1 at time-step k+1 as a measurable function ̺ i
k

: RN → {0, 1}
where ̺ i

k
(·) itself is a function of the exactly one time-step prior error state values e

j

k
for

all j ∈ {1, . . . , N} in the centralized framework, while ̺ i
k
(·) is function of only ei

k
in the

decentralized design. Thus, in the centralized case we have1

δi
k+1 = ̺

i
k
(e1

k
, . . . , eN

k
). (2.14)

The scheduling rule (2.14) represents an error-dependent channel access mechanism which
monitors, at the latest time-step, the conditions of each sub-system in order to decide the
channel access scenario. Expression (2.14) resembles to the control law (2.10), though the
scheduling law ̺ is not necessarily linear and depending on the information structure, i.e.
centralized or decentralized, it depends on full NCS state information or local information,
respectively.

In order to study stability of the overall NCS we need to define state variables of the
networked system. We already discussed that the inclusion of the error ei in ith sub-system

1We investigate the decentralized scheduling design comprehensively in Chapter 6, and only discuss the cen-
tralized scenario in the present chapter.
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2 Structural Analysis of Multiple-Loop NCSs

state space is essential, along with the system state x i, in order to take into account the
coupling between the sub-systems which are caused by the capacity constraint (2.2). We
define the overall NCS state by stacking the individual state vectors of all N sub-systems
together in a vector, as follows:

[x⊤
k

, e⊤
k
]⊤ := [x1T

k
, . . . , x NT

k
, e1T

k
, . . . , eNT

k
]T. (2.15)

Having introduced (2.15), we can express the overall NCS dynamics as follows:
�

xk+1

ek+1

�

2n

=

�

A− BL (In −∆k+1Γk+1)BL

0 (In −∆k+1Γk+1)A

�

2n×2n

�

xk

ek

�

2n

+ [wk]2n, (2.16)

where, A ∈ Rn×n is a block diagonal matrix consisting of the blocks AiR
ni×ni on the diag-

onal and zeros on the off-diagonal, B ∈ Rn×m is block diagonal with entries Bi ∈ Rni×mi ,
and gain matrix L ∈ Rm×n has the blocks Li ∈ Rmi×ni on the diagonal entries. Moreover,
∆k+1Γk+1 ∈ RN×N consists of the diagonal elements δi

k+1γ
i
k+1 ∈ {0, 1} and zero off-diagonals.

It should be noted that, for the dimensions of the matrices to be appropriate, the multiplica-
tions (1−∆k+1Γk+1)BL or (1−∆k+1Γk+1)A in (2.16) are computed such that each of the N

diagonal real binary variable δi
k+1γ

i
k+1 are multiplied with the ith block in the matrices BL

and A. Since,
∑N

i=1 ni = n and
∑N

i=1 mi = m, the above matrices are all well-defined and of
appropriate dimensions. The aggregate noise variable in the compact form (2.16) is similarly
defined as [wk]2n := [w1T

k
, . . . , wiT

k
, . . . , wNT

k
, w1T

k
, . . . , wiT

k
, . . . , wNT

k
]T.

Let us remind that we take emulation-based LQG control laws for individual sub-systems
which stabilize their corresponding control loops in the absence of the channel capacity
constraint (2.2). Therefore, to show stability of the overall NCS state (2.15), we need to
investigate evolution properties of the overall network-induced error state ek ∈ Rn which is
defined as the stacked error vectors from all N control loops as follows:

ek = [e
1T

k
, . . . , eNT

k
]T, (2.17)

where n =
∑N

i=1 ni and ni is the dimension of the ith sub-system state or error vectors. The
following Lemma characterizes the behavioral model of the network-induced error ek, which
is the cornerstone of the future stability analysis in this dissertation.

Lemma 2.1. The network-induced error ek expressed in (2.17) is a time-homogeneous, ape-
riodic ψ-irreducible Markov chain2.

Proof. The centralized scheduling policy introduced in (2.14), which can be regarded as
the input for the error evolution (2.8), is a policy depending only on the most recent error
values ek when deciding on the scheduling variable δk+1 at time-step k+ 1. Since the policy
(2.14) is forgetful about the error values em, m < k, (2.17) is actually a Markov chain (see
the formal definition of a Markov chain in Definition A.25 in Appendix A.7). Moreover, the
Gaussian noise process wi in (2.8) has a positive density function at any state ek implying

2A comprehensive introductory about the definitions, concepts and terminologies of stochastic processes and
Markov chains is presented in the Appendix A.6
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2.4 Event-triggered Scheduling Design

s1 s2 s3

s4s5

Figure 2.3: A reducible Markov chain with countable state space {s1, s2, s3, s4, s5}.

that there is a transition probability for appropriate events E ∈ A , i.e.,

P (ek+n ∈ E|em, m≤ k, ek) = Pn(ek,E ),

where Pn(ek,E ) denotes the probability that the overall error state ek enters the set E af-
ter exactly n transitions. The Markov chain ek is time-homogeneous because the difference
equation (2.4) is time-invariant and the noise process wi is independent and identically dis-
tributed (i.i.d.) for i = {1, . . . , N} at every time-step k. This implies that the Markov chain
evolves according to a stationary transition probability. Since the Gaussian noise distribution
is absolutely continuous having a positive density function, it is furthermore concluded that
the Markov chain ek is aperiodic (see the formal definition of aperiodic Markov chains in Def-

inition A.31 in Appendix A.7) and ψ-irreducible, where ψ represents a non-trivial measure
on the general state space Rn. Theψ-irreducibility ensures that every state of the state space
is accessible for the Markov chain through finite number of transitions.

Intuitively, the behavior of a stochastic process in an uncountable state space is char-
acterized by several measures. First, a transition function denotes, at each transitional in-
stance, the probability that the process evolves to a specific state. The transition probabilities
are more comprehensible within countable state spaces, as there exist countable number of
state destinations towards which the process can evolve with one transition. In uncountable
spaces, if a stochastic process has access to every state, i.e. if the transition probability from
every state to every other state is non-zero within finite transitions, then we call the process
“irreducible”. Figures 2.3 and 2.4 show graphical interpretations of a reducible and an irre-
ducible Markov chain over a countable state space. A stochastic process is called “periodic”
if the process can return to its initial state only at multiples of some integers larger than
one, and it is called “aperiodic” otherwise. In Figure 2.5 two simple periodic and aperiodic
Markov chains are schematically illustrated. The time homogeneity of a stochastic process
emphasizes that the evolution of the process state is time-independent, i.e. the transition
probability between every two states is independent of the time instance.

To measure the performance of the various designs of scheduler, we define the following
per-time-step cost function for all sub-systems i ∈ {1, . . . , N}:

Jek
=

N∑

i=1

eiT

k
Qi

k
ei

k
+ηkδ

i
k

:=
N∑

i=1

‖ei
k
‖2

Qi
k

+ηkδ
i
k
, (2.18)
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s1 s2 s3

s4s5

Figure 2.4: An irreducible Markov chain with countable state space {s1, s2, s3, s4, s5}.

where the non-negative parameter ηk denotes the cost of channel utilization at time k which
is assume to be equal for every sub-system, and Qi

k
is a symmetric positive semi-definite

weight matrix associated with ith loop at time-step k.
The cost function in (2.18) expresses that, at a time-step k, the total penalty corresponds

to the shared communication medium among the sub-systems is the weighted quadratic size
of the estimation error of all sub-systems plus ηk which is the cost incurred due to occupying
a channel slot at a time-step k.

s1 s1s2 s2

Figure 2.5: Periodic (left) and aperiodic (right) Markov chains with state space {s1, s2}.

2.5 Summary

In this chapter, we investigated the structural characteristics of multiple-loop stochastic net-
worked control systems subject to scarcity of the shared communication resources. The gen-
eral control and scheduling architectures are comprehensively discussed in this chapter, and
the separation property is confirmed to hold within the considered NCS framework. After-
wards, the essential system states and variables to be observed and governed are identified,
and consequently the overall model for the described NCS is derived. More precisely, the ag-
gregation of the local system states and error states are considered as the overall NCS state,
and then the overall networked dynamics is represented in state space, taking into account
the communication constraints. Stability of the overall NCS is shown to be dependent on
both control and scheduling scenarios which can be independently synthesized due to the
existence of the separation principle. Finally, we analyzed the properties of the state dynam-
ics and demonstrated that the error state, which is dynamically steered by the scheduling
variables, is a homogeneous, aperiodic, and ψ-irreducible Markov process evolving in the
uncountable state space Rn, where n is the dimension of the networked state. The results of
this chapter are essential in stability analysis and performance evaluation in the rest of this
dissertation, and therefore will be recalled frequently in the forthcoming chapters.
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2.6 Contributions

2.6 Contributions

The presented results in this chapter are essential preliminary analyses and evaluations to
pursue further discussions and derivations in the forthcoming chapters, where we address
different aspects of a proper design for NCSs such as stability and performance analysis,
robustness, and implementation procedure. The results discussed in this chapter are partly
from the author’s own work in [84,85], and partly from the available literature, most notably
[33,58,59,86].

The structural properties of NCSs with LTI stochastic control sub-systems in discrete frame-
work, presented in Section 2.1, are basically from [33,84,85].

Separation property, as an important result enabling us to decompose the control and
scheduling design procedure, is the direct consequence of the discussed structural properties.
Independent synthesis of control strategies, in form of the LQG controllers as discussed in
Section 2.2, is a well-known result which is employed in several research, e.g., [35,59,87].

In Section 2.4, a brief but necessary introduction about the different scheduling scenar-
ios is presented. More comprehensive discussions can be found in, e.g., [29, 88–90]. This
section is followed by derivation of the overall NCS dynamics under a general event-based
scheduling design. It is shown that the network-induced error state is directly controlled by
the scheduling variable, where these variables are determined by the event-based scheduling
law. It is discussed that the error state can be modeled as a time-homogeneous, aperiodic,
and ψ-irreducible Markov process. Extensive discussions about the properties of a Markov
process are presented in [86]. Throughout this dissertation, we mainly exploit the termi-
nologies, definitions, concepts and theorems about stochastic processes discussed in [86].
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3

Centralized State-dependent Scheduling

Design

The design of efficient event-based scheduling policies to use the expensive and limited re-
sources is a momentous and still widely open theme in the area of networked control sys-
tems. The importance of event selection and scheduling process is more affirmed when the
resources such as communication, energy, and computation are sparse. In this chapter, we
address the efficient usage of scarce communication resources in networked control systems,
composed of multiple LTI heterogeneous stochastic control-loops over a shared constrained
communication channel, by introducing a novel stochastic scheduling scheme with capabil-
ity of prioritizing the channel access based on current status of local control systems. More
precisely, an error-dependent scheduler decides which transmission requests have the prior-
ity to be awarded the channel access. The priorities are assigned to each sub-system in a
probabilistic fashion according to an error-dependent measure, such that higher chances of
transmission is assigned to the sub-systems with greater error norms. The other transmission
requests are blocked when the resource limit is reached.

Due to the presence of stochastic noise and the coupling between sub-systems, the net-
worked system under consideration requires novel methods to analyze its asymptotic behav-
ior. Dynamics of the overall NCS can be described by the behavior of the so-called “network
state”, which can be modeled by a homogeneous Markov chain evolving in the uncount-
able state-space Rn. We prove that the described NCS, arbitrated by the proposed stochastic
scheduling protocol, is stochastically stable, according to the notion of “ f -ergodicity”.

Furthermore, we derive analytic performance bounds for an average cost function com-
prised of an error-dependent quadratic term plus an incurred cost of communication.

This chapter is organized as follows. We introduce the scheduling architecture and its
structural properties in Section 3.1. The overall networked model is then studied under the
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3 Centralized State-dependent Scheduling Design

employment of the probabilistic scheduling rule in Section 3.2, and the NCS dynamics is
shown to be Markovian. Section 3.3 presents a comprehensive analysis of stability for the
described NCSs. Afterwards, we validate our stability and performance claims in Section 3.4
with simulation results which illustrate an improved performance in terms of the average
mean-square error compared to the conventional protocols, such as TDMA and CSMA.

3.1 Pure Probabilistic Event-based Prioritized Scheduling

Law

It is comprehensively discussed in Chapter 2 that the separation property exists between
the control and scheduling strategies for the considered NCS described in (2.1)-(2.4). In
addition, the form of the scheduling law in centralized fashion is shown to be given as (2.14),
which represents an event-based scheduling scenario wherein the transmission times are
chosen dynamically based on the real-time conditions of sub-systems.

A well-known deterministic version of such an event-based centralized error-dependent
scheduling approach is proposed in [14]. The introduced scheduling scenario is called max-

imum error first-try once discard (MEF-TOD). According to the MEF-TOD scheduling rule, the
sub-system with the highest discrepancy between its true and estimated state value, at the
current transmission instant, wins the channel slot competition among all those sub-systems
which are attempting to transmit through that transmission slot, and all the other trans-
mission requests are discarded. In the mentioned initiating work and also further research
inline with the proposed concept, e.g. [15, 16, 54, 55], the MEF-TOD scheduling approach is
implemented on various NCS models such as NCSs consisting of linear and non-linear sys-
tem dynamics with deterministic model uncertainties over either deterministic or stochastic
channels. (see Chapter 1 for a comprehensive literature review.). However, MEF-TOD is a
centralized approach which makes it rather inapplicable for large-scale NCSs and multihop
wireless networks. Moreover, the applicability of this approach has not been investigated
for NCSs with stochastic sub-systems, to the best of the author’s knowledge. Furthermore,
MEF-TOD as a pure deterministic scheduling law, is shown to be inflexible when dealing with
channel imperfections such as packet loss and delay. In what follows, we introduce a proba-
bilistic scheduling mechanism which resembles the MEF-TOD approach, but in a randomized
fashion with a bias. Rather than determining which sub-systems should transmit in a deter-
ministic manner, the proposed scheduler prioritizes the transmission requests based on the
size of the error states, and then assigns channel access probabilities accordingly. Then, the
sub-systems, which will be awarded the channel access, are determined by a randomized
mechanism. The main advantage of such a probabilistic design is that it can be implemented
in a distributed fashion depending only on the local information of each station. We will
discuss this extensively in Chapter 6. Moreover, within this framework, we show that the
channel phenomena such as packet dropouts and delay can be effectively addressed, as will
be later discussed in Chapter 5.

As the first step towards designing state-dependent scheduling policies, we propose in
this section a state-dependent pure probabilistic scheduling protocol for NCSs comprised of
multiple heterogeneous LTI control loops sharing a capacity-limited communication network
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3.1 Pure Probabilistic Event-based Prioritized Scheduling Law

to transmit their sensory data to their corresponding controllers. The scheduler first assigns a
probability to each sub-system according to a centralized error-dependent priority measure.
Then, the medium access is granted to those sub-systems in a way that sub-systems with
higher priorities have higher chances of channel access. However, it is not guaranteed that
a sub-system with a lower priority is not allowed to transmit in the presence of another
sub-system with a higher priority. The importance of studying probabilistic approaches lies
within the fact that these approaches are theoretically more general than their deterministic
counterparts. In fact, with the design parameters we introduce in this chapter, deterministic
version of prioritizing scheduler can be almost-surely realized from the proposed probabilistic
design.

Recalling from the centralized scheduling law (2.14), we introduce the following
prioritized error-dependent probabilistic scheduling rule by defining the probability of
transmission for a sub-system i at a time-step k+ 1, given that the scheduler is provided the
information about the error states e

j

k
, i.e., the events, from all j ∈ {1, . . . , N}:

P
�

δi
k+1 = 1
�
�e

j

k
, j ∈ {1, . . . , N}
�

=
‖ei

k
‖p2
∑N

j=1 ‖e
j

k
‖p2

, (3.1)

where, p ≥ 1 is an integer. Scheduling policy (3.1) is a probability measure at every
time-step, as the probabilities of transmissions for all sub-systems sum up to one, i.e.,

N∑

i=1

P
�

δi
k+1 = 1
�
�e

j

k
, j ∈ {1, . . . , N}
�

= 1.

It is apparent that the above probability measure is supported on the semi-infinite interval
[0,∞) at each time-step k. While the scheduling policy (3.1) determines only the channel
access probabilities, it does not determine which sub-systems eventually transmit. Since
the scheduling law (3.1) depends only on the latest error state values, the proposed rule
follows the general form given in (2.14), which in turn ensures that the Markov property of
the network-induced error state (2.17) remains valid. It it noteworthy that, in this chapter,
we assume channel perfection, i.e., each data packet which is granted the channel access is
assumed to be successfully received with zero latency by its corresponding controller.

In order to determine the sub-systems which finally transmit at each time-step, a ran-
domized process is employed wherein the selection mechanism is not uniform, but biased
according to the assigned probabilities given in (3.1). Each sub-system associated with its as-
signed probability takes part in a biased randomization, and the random outcome determines
which sub-systems will have access to the channel. As a simple illustrative example, consider
an NCS with only two sub-systems, i.e., N = 2, competing for the sole communication slot,
i.e., c = 1. As a realization, assume that the priorities are assigned by the scheduler to be
0.8 and 0.2. Therefore, the biased randomization process is tossing an unfair coin where
the probabilities of having head and tail are 80% and 20%, respectively. One sub-system
will finally transmit based on the outcome of tossing the coin. Hence, it is not guaranteed
that the sub-system with higher priority transmits, though it is more likely. It is worth men-
tioning that the scheduling rule (2.14) follows a collision-free policy due to the fact that the
scheduling unit determines the sub-systems which eventually transmit.
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Recalling the local error dynamics (2.8), one can conclude that even after a successful
transmission of a local sub-system i at a time-step k, i.e., δi

k
γi

k
= 1, the estimation error does

not reset to zero, but to the noise value, i.e., ei
k
= wi

k−1. Therefore, in case δi
k
γi

k
= 1, we can

compute the probability that the same sub-system i re-transmits again at the next time-step
k+ 1, as follows:

P
�

δi
k+1 = 1
�
�e

j

k
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�

=
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k−1‖
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2
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2 +
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j=1, j 6=i
‖e j

k
‖p2

This indicates that the sub-system i would have a non-zero chance of successive transmission
at the next time-step k+1 if wi

k−1 6= 0, and this chance might not be negligible if the random
noise realization wi

k−1 is large. This is possible as the noise values are assumed to be randomly
drawn from a zero-mean Gaussian distribution with unsupported range (−∞,∞). Due to
the existence of such a noise sequence, it is essential that the scheduling law (2.14) forgets
about the history of a sub-system’s dynamics and the previous transmission occasions, and
decides the transmission order only based on the current conditions of the overall networked
system. Mathematically speaking, this feature of the scheduling rule (2.14) enables us to
model the evolution of the network-induced error (2.17) with Markov chains.

Remark 3.1. The power p ≥ 1 in the probabilistic scheduling law (2.14) is indeed a design
parameter which adjusts the relation between the size of the error of a sub-system i, i.e.
‖ei

k
‖2 and its chance of having access to the channel at the subsequent time-step k + 1, i.e.

P
�

δi
k+1 = 1
�

. Having p → ∞ incurs the sub-system with the highest error almost surely

transmits, which indicates a similar behavior as MEF-TOD approach.

3.2 Overall NCS Model with Markovian Error State

Having introduced the probabilistic error-dependent prioritizing scheduling scheme (3.1) in
this section, we derive the overall NCS model for this specific choice of channel scheduler.
First of all, remind that the communication channel in this chapter is assumed to be
ideal, i.e., if a data packet is scheduled for transmission, it will be received by its corre-
sponding control station without any transmission delay. Thus, γi

k
= 1 for all sub-systems

i ∈ {1, . . . , N} for whom δi
k
= 1, at every time-step k. We consider to have an NCS composed

of N heterogeneous control loops each with the dynamics and measurements described by
(2.9). The local control laws are taken to be emulation-based and the feedback gains are
designed such that the LQG cost function (2.11) is minimized. As already discussed, within
the emulation-based framework, the feedback gains (2.12) are kept constant between the
transmission times. Therefore, the overall NCS dynamics with the state vector [x⊤

k
, e⊤

k
]⊤

defined in (2.15) can be expressed as follows:
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with
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The scheduling variables δi
k+1 are determined according to the described biased random

process, where the assigned bias terms (priorities) are computed at each time-step according
to the rule (3.1). The rest of the discussions in the Section 2.4 of Chapter 2 remain valid.
We will recall state representation (3.2) in the next section, wherein comprehensive stability
discussions for the described NCS model are provided.

3.3 Stability Analysis

In this section, first the concept of f -ergodicity, as a stochastic stability criteria which might
be employed to analyze the asymptotic behavior of stochastic networked control systems, is
introduced, and the selection of this notion of stability is justified. The necessary preliminar-
ies of stochastic stability are then provided, and some essential modifications are presented.
In the second part of this section, stochastic stability of the described NCS under the capacity
constraint (2.2), and the proposed control and scheduling policies (2.10) (3.1), is shown in
terms of f -ergodicity.

3.3.1 Stochastic Stability Concepts and Preliminaries

Generally speaking, fundamental properties of stochastic systems are often not analogous to
their deterministic counterparts due to the random nature of their behavior. Usually, proper-
ties of stochastic systems are investigated by looking at the average behavior of sufficiently
large sample sets, as one single sample might have quite different output behavior from an-
other realization, under exactly the same input signals and initial values. Therefore, it is
conventional to use stability notions which observe the dynamic behavior of the stochastic
systems under consideration in their corresponding probability spaces. Stability of stochastic
systems are mainly investigated within three different frameworks; namely stability in prob-

ability (the weakest), mean stability, and almost-sure stability (the strongest) [91]. Various
Lyapunov methods are of primary stability tests for deterministic systems, and they have
been largely developed over the last decades. Analogous stochastic certificates have also
been presented for stochastic processes. Within these Lyapunov-based stochastic notions of
stability, one should typically search for an appropriate Lyapunov function, such that the drift
of the Lyapunov function, in average, converges to either some compact sets, or in a stronger
sense, to zero. In [86], comprehensive discussions about stability of stochastic processes, in
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Figure 3.1: Illustration of an ergodic process in an uncountable state space.

different types of state spaces, are provided1.
Since the control loops in the networked system of our interest are disturbed by stochastic
process noise [wk], the network state [x⊤

k
, e⊤

k
]⊤ behaves stochastically, as described in (3.2).

This urges us to employ an appropriate, i.e., the strongest, stochastic stability concept ac-
cordingly. Stability concept employed in this chapter is the notion of f -ergodicity. Using this
concept, one can study the long-term average behavior of a stochastic process.

As already discussed, the network-induced error state ek defined in (2.17) is a homoge-
neous Markov chain evolving in the uncountable state-space Rn. This practically incurs that
there exists a non-zero transition probability between each two states of the state-space Rn.
In the other words, the error Markov chain may evolve freely over the entire state-space from
every state to every other, with a finite number of transitions. Stability notions in uncount-
able state spaces often generalize their counterparts in countable spaces, where the latter,
stability concepts are rather more straightforward due to countability of the events in the σ-
algebra [86]. One of those stochastic stability concepts which can be extended to be applied
for uncountable state-spaces, is ergodicity, and is introduced in the following:

Definition 3.1. A random process is called ergodic if the time-average of its events over one
sample sequence of transitions represents the behavior of the process over the entire state-
space over which the process may evolve.

It concludes from the definition 3.1 that, if a process is ergodic, its state evolves over its
corresponding state-space according to an invariant finite-moment probability measure.

Having discussed the different frameworks for stability analysis of stochastic processes,
ergodicity can be considered as a concept of mean stability. One of the most common varia-
tions of such stability concept is Lyapunov mean square stability (LMSS) which automatically
holds, if ergodicity is certified. The concept of ergodicity is graphically depicted in Figure 3.1.

In order to discuss the necessary conditions incurring ergodicity for a stochastic process
with a Markov state, we first introduce the following concepts of stochastic processes, and
properties of Markov chains.

Definition 3.2. [92] Let the Markov chain Φ = (Φ0,Φ1, . . .) evolve in some general state
space X , with the individual random variables measurable with respect to some known σ-
algebraB(X ). Then Φ is said to be positive Harris recurrent (PHR) if

1In this dissertation, more comprehensive discussions about probability theory, stochastic processes and con-
cept of stochastic stability for Markov chains are presented in Appendices A.6 and A.7
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1. There exists a σ-algebra measure ν(B) > 0 for a set B ∈ B such that for all initial
states Φ0 ∈ X

P(Φk ∈ B, k <∞) = 1,

2. Φ admits a unique invariant probability measure.

Intuitively, definition 3.2 expresses that if a state of a PHR Markov chain leaves a set
B ∈ B with non-zero probability, then the state returns to B after finite transitions with
probability one. It is clear that set B is a compact set, as otherwise leaving the set would be
mathematically meaningless.

Proposition 3.1. [86] Let f ≥ 1 be a real-valued function in Rn. A Markov chain Φ is said to

be f -ergodic, if one of the followings hold:

1. Φ is positive Harris recurrent with the unique invariant probability measure π,

2. the expectation π( f ) :=
∫

f (Φk)π(dΦk) is finite,

3. limk→∞ ‖Pk(Φ0, .)−π‖ f = 0, for every initial value Φ0 ∈ X , where ‖ν‖ f = sup|g|≤ f |ν(g)|.

The following definition introduces the notion of Markov chain gradient (drift) in discrete
time, with respect to a real-valued function of states.

Definition 3.3 (Drift for Markov chains). Let V : Rn → [0,+∞) be a real-valued function
and Φ be a Markov chain. The drift operator ∆ is defined for any non-negative measurable
function V as follows

∆V (Φk) = E[V (Φk+1)|Φk]− V (Φk), Φk ∈ Rn. (3.3)

Definition 3.4. A subset C ∈ B(X ) is called ν-petite if a non-trivial measure ν on B(X )
exists such that for all x ∈ C , and B ∈B(X ), the sampled chain Φa satisfies

K(x , B) ≥ ν(B),

where K(x , B) :=
∑∞

0 Pn(x , B)a(n) is the probability transition kernel of the sampled chain
with sampling distribution a.

Definition 3.5. A subset C ∈ B(X ) of the measurable space (X ,B) is called ν-small if a
non-trivial measure ν onB(X ) and k > 0 exists such that for all x ∈ C , and B ∈B(X )

Pk(x , B) ≥ ν(B).

Proposition 3.2. [86, 5.5.2] If a subset C ∈B(X ) is ν-small, then C is petite.

Proposition 3.3. [86, 6.3.3] Assume X is a linear state-space model, then every compact subset

of X is small.

One may conclude from definitions 3.4 and 3.5, and propositions 3.2 and 3.3, that every
compact subset of linear state spaces is petite. Having the overview of the necessary con-
cepts and terminologies, the following theorem summarizes f -ergodicity of Markov chains
in general state spaces [86, Ch. 14].
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Theorem 3.1 ( f -Norm Ergodic Theorem). Suppose that the Markov chain Φ is ψ-irreducible

and aperiodic and let f (Φ) ≥ 1 be a real-valued function in Rn. If a petite set D and a non-

negative real-valued function V exists such that ∆V (Φ) ≤ f (Φ) for every Φ ∈ Rn\D and ∆V <

∞ for Φ ∈ D, then the Markov chain Φ is said to be f -ergodic.

In summary, f -ergodicity confirms that the Markov state evolves according to an invariant
finite-variance measure over entire state-space. This ensures that the Markov chain is a
stationary process, and guarantees if the Markov state leaves some compact subsets of σ-
algebraB(X ), it returns to these subsets in finite time with probability one.

3.3.2 Stability Results

In this section, we address stochastic stability of the shared resource multiple-loop NCS de-
scribed in (2.1)-(2.4), under the pure probabilistic scheduling policy (3.1). As discussed
in the previous chapter, assuming that the emulation-based control laws are pre-designed
according to (2.3), the overall NCS stability will be achieved if the network-induced error
Markov chain ek (2.17) is shown to be stable. Convergence of the error state ek, which is
shown to be a homogeneous, aperiodic and ψ-irreducible Markov chain, is ensured in this
section in terms of f -ergodicity. In what follows, we first introduce a necessary modification
to the drift operator ∆ in definition 3.3, as a direct consequence of having the capacity con-
straint (2.2). Afterwards, we invoke Theorem 3.1 in order to infer f -ergodicity of the error
state ek which eventually guarantees overall stability of the described NCS.

First of all, we select the following non-negative real-valued state-dependent Lyapunov
function V : Rn→ R+ at time-step k:

V (ek) =

N∑

i=1

�

eiT

k
ei

k

� p
2
=

N∑

i=1

‖ei
k
‖p2, (3.4)

where N is the number of local control loops. The expected value of the above Lyapunov
function is indeed the summation of p-moments of probability distributions corresponding to
each local error state of the individual sub-systems {1, . . . , N}. This is an often-standard Lya-
punov candidate for systems evolving on probability spaces. However, due to the character-
istics of the selected Lyapunov function (3.4), and the capacity constraint (2.2), f -ergodicity
of the error Markov chain (2.17) cannot always be guaranteed by employing the one-step
transition drift ∆V in (3.3), i.e., for k → k + 1. We illustrate this observation for N = 2 by
constructing the following example. Furthermore, through this illustrative example, we see
how the drift should be modified to become suitable for invoking Theorem 3.1 within our
problem setup.

Illustrative example: Consider an NCS composed of two identical scalar sub-systems,
parameterized by A1 = A2 = A, with the plants described as (2.1). Assume that the
communication channel has capacity c = 1, meaning that only one sub-system is allowed to
transmit at every time-step. For the purpose of illustration, assume the initial error values
at time-step k are also identical, i.e., e1

k
= e2

k
= ēk, and p = 2. The noise distributions are

assumed to be i.i.d. for each sub-system and the random noise values are chosen from
N (0, W ). Based on the scheduling rule (3.1), the transmission chance for each sub-system
is 1

2 at the next time-step k+ 1, because the initial error values e1
k

and e2
k

are equal. In order
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to check if the error transition from k → k + 1 admits an f -ergodic process, we invoke
Theorem 3.1 and employ the Lyapunov function (3.4). Having ek = [e

1
k

e2
k
]⊤, it follows from

the drift operator in Definition 3.3 that:

∆V (ek) = E[V (ek+1)|ek]− V (ek)

= E
�

‖e1
k+1‖

2
2 + ‖e

2
k+1‖

2
2|ēk

�

− 2‖ēk‖22
= E
�

‖(1− δ1
k+1)Aēk +w1

k
‖22
�

+ E
�

‖(1−δ2
k+1)Aēk +w2

k
‖22|ēk

�

− 2‖ēk‖22.

Each sub-system has 50% chance of transmission, therefore the drift will be reduced to

∆V (ek) =
1
2

�

E
�

‖w1
k
‖22
�

+ E
�

‖Aēk +w2
k
‖22|ek

��

︸ ︷︷ ︸

sub-system 1 transmits at time-step k+ 1 with probability 1
2

+
1
2

�

E
�

‖Aēk +w1
k
‖22|ēk

�

+ E
�

‖w2
k
‖22
��

︸ ︷︷ ︸

sub-system 2 transmits at time-step k+ 1 with probability 1
2

−2‖ēk‖22

=
1
2

�

W +E
�

‖Aēk‖22|ēk

�

+W
�

+
1
2

�

E
�

‖Aēk‖22|ēk

�

+W +W
�

− 2‖ēk‖22
= 2W + ‖Aēk‖22 − 2‖ēk‖22,

where W > 0 is the variance of the Gaussian distribution N . It is clear that for A>
p

2,
the above drift is positive, which violates the necessary condition in Theorem 3.1 on a
non-compact set. Hence, this example illustrates that f -ergodicity of the error Markov chain
ek is not always guaranteed under the scheduling policy (3.1) if the capacity is constrained.
Now, we apply Theorem 3.1, however this time by computing the drift over two time-steps,
i.e., k → k + 2. Assume that the scheduler has decided to grant the channel access to
sub-system 1 at time-step k + 1, given the initial values e1

k
= e2

k
= ēk. This concludes that

e1
k+1 = w1

k
, and e2

k+1 = Aēk +w2
k
. Computing the drift over two time-steps concludes:

∆V (ek, 2) = E[V (ek+2)|ek]− V (ek)

= E
�

‖e1
k+2‖

2
2 + ‖e

2
k+2‖

2
2|ēk

�

− 2‖ēk‖22
= E
�

‖(1− δ1
k+2)Ae1

k+1+w1
k+1‖22|ēk

�

+ E
�

‖(1−δ2
k+2)Ae2

k+1+w2
k+1‖22|ēk

�

− 2‖ēk‖22
= E
�

‖(1− δ1
k+2)Aw1

k
‖22
�

+W + E
�

‖(1− δ2
k+2)Ae2

k+1‖
2
2|ēk

�

+W − 2‖ēk‖22
≤ ‖A‖22W +W +E

�

‖(1− δ2
k+2)Ae2

k+1‖
2
2|ēk

�

+W − 2‖ēk‖22
=
�

‖A‖22 + 2
�

W + E
�

(1− δ2
k+2)‖Ae2

k+1‖
2
2|ēk

�

− 2‖ēk‖22.

The inequality above is ensured knowing E
�

1− δ1
k+2

�

≤ 1. Now we compute E
�

1− δ2
k+2

�

,
which represents the expectation that sub-system 2 transmits, if δ2

k+2 = 1, or does not
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transmit if δ2
k+2= 0, at time-step k+2, after not being awarded the channel access at time

k+1. According to the law of iterated expectations2, we have for the drift operator∆V (ek, 2),

∆V (ek, 2) ≤
�

‖A‖22 + 2
�

W + E
�

E
��

1− δ2
k+2

�

‖Ae2
k+1‖

2
2|ek+1

� �
�ēk

�

− 2‖ēk‖22
≤
�

‖A‖22 + 2
�

W + ‖A‖22 E
�

E
��

1− δ2
k+2

�

|ek+1

�

‖e2
k+1‖22
�
�ēk

�

− 2‖ēk‖22

≤
�

‖A‖22 + 2
�

W + ‖A‖22 E

� ‖e1
k+1‖22

‖e1
k+1‖22 + ‖e2

k+1‖22
‖e2

k+1‖
2
2

�
�ēk

�

− 2‖ēk‖22

=
�

‖A‖22 + 2
�

W + ‖A‖22 E

� ‖w1
k
‖22

‖w1
k
‖22 + ‖e2

k+1‖22
‖e2

k+1‖
2
2

�
�ēk

�

− 2‖ēk‖22

≤
�

‖A‖22 + 2
�

W + ‖A‖22 E

� ‖w1
k
‖22

‖e2
k+1‖22

‖e2
k+1‖

2
2

�
�ek

�

− 2‖ēk‖22

=
�

‖A‖22 + 2
�

W + ‖A‖22W − 2‖ēk‖22
= 2
�

‖A‖22 + 1
�

W − 2‖ēk‖22.

In line with Theorem 3.1, we define f (ek) = 2
�

ε‖ēk‖22 −W
�

‖A‖22 + 1
��

where ε ∈ (0, 1].
Therefore, we can find a small set (identically compact set since we have LTI NCS model) D
such that for ēk ∈ Rn/D, the condition f ≥ 1 is satisfied, and ∆V (ek, 2) ≤ f . In addition, it
is obvious that ∆V (ek, 2) <∞ for ēk ∈ D, and therefore Theorem 3.1 holds and the error
Markov chain ek is f -ergodic.

Intuitively, only after all sub-systems have non-zero chances to transmit, a negative drift
∆V over some interval of interest can be guaranteed, if the channel access is supposed to be
scheduled according to the law (3.1). Having non-zero transmission probabilities strongly
depends on the number of sub-systems N and the channel capacity c. As we observed in the
illustrative example, where N = 2 and c = 1, the minimum length of the interval over which
a negative drift of the error Markov chain could be surely achieved is N

c
= 2. This observa-

tion suggests that f -ergodicity can be shown by employing the original one-step transition
drift operator (3.3), under the scheduling policy (3.1) only if the communication channel has
enough capacity for all sub-systems at least to have chances of transmission. It is very im-
portant to note that, having non-zero chance of transmission does not guarantee an eventual
transmission. As we will discuss in the following, overall network-induced error ek defined
in (2.17) can be shown to be converging only if all its components, which are indeed the
local error states from all sub-systems, are in expectation recurrent.

Proposition 3.4. Consider the multiple-loop NCS described in (2.1)-(2.4), where the channel

access is scheduled according to the error-dependent probabilistic law (3.1). Over all initial

2The law of iterated expectations, also known as towering property and law of total expectation is an important
toolbox to compute the expectation of a random variable which is conditioned on iterative random variables.
One form of the law states that if X is a random variable with E [X ] <∞, and the value of a conditioning
variable y2 is determined by that of another conditioning variable y1, then

E [X |y1] = E [E [X |y2] |y1] .
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conditions x0, and for all Ai ∈Rni×ni and Wi ’s, f -ergodicity of the error Markov chain (2.17)

can sufficiently be guaranteed by computing the drift of the Lyapunov function (3.4) over time

intervals with lengths equal or greater than ⌈N
c
⌉.

Proof. Consider N
c
> 1, which implies the integer ⌈N

c
⌉ ≥ 2, and assume that the dynamics of

the network-induced error Markov chain ek is monitored while transiting over an interval of
length l ≤ ⌈N

c
⌉−1. Over such an interval, there exists exactly cl transmission possibilities. It

is straightforward to calculate that

cl ≤ c

�

⌈N
c
⌉ − 1
�

< N , (3.5)

where, the last inequality follows as ⌈N
c
⌉ − 1 < N

c
. From (3.5), it deterministically concludes

that at least one sub-system remains without a transmission and consequently open-loop over
the entire interval of length l (at most N − c sub-systems may remain open-loop if the same
c sub-systems transmit subsequently at every time-step). This means that, at least one sub-
system does not have any chance of transmission due to scarcity of possibilities. As the policy
(3.1) randomizes the channel access, one can imagine a certain sub-system i with unstable
plantPi, with its initial state outside a compact set in the state-space, is the sub-system which
has not transmitted over the interval with length l. Therefore, the error of this sub-system,
i.e. ei

k
does not reset over the mentioned interval and furthermore it is amplified by the

system matrix Ai, as described in (2.8). The term ei
k

then becomes an increasing component
of the aggregate network-induced error ek in (2.17) when computing the drift operator over
the interval of length l which results in violation of the conditions in Theorem 3.1.

Remark 3.2. It should be noted that calculation of the drift of the Lyapunov function (3.4)
over time intervals with minimum length ⌈N

c
⌉ provides only a sufficient condition, not nec-

essary, to guarantee a negative drift. In the other words, having a positive drift over any
interval of length shorter than ⌈N

c
⌉, nothing can be said about f -ergodicity of the error state.

Intuitively, the drift value depends not only the time interval over which it is computed, but
also on the system parameters x i

0’s, Ai ’s and Wi ’s. In fact, over the mentioned interval, a
negative drift is ensured for all values of x i

0’s, Ai ’s and Wi ’s, however, negative drifts over
shorter intervals can also be achieved for certain values of those system-related parameters.

Remark 3.3. The immediate conclusion from Proposition 3.4 is that even if a single state of
a Markov process is not recurrent, i.e. it is evanescent, the overall process is not guaranteed
to be f -ergodic. In our described NCS setting, even if a single error state which is steered
by scheduling law and additionally is driven by the stochastic noise, has zero probability of
recurrency, then existence of a stationary distribution for the overall network-induced error
cannot be guaranteed.

The above proposition stimulates us to investigate the f -ergodicity of the error Markov
chain (2.17) by computing the drift over the interval with minimum length l = ⌈N

c
⌉. It is

worth noting that ergodicity is an asymptotic property of Markov chains, hence showing
ergodic according to a negative drift over an interval implies that ergodicity will be achieved
by defining the drift over longer intervals [93]. In other words, the ergodicity certificate
remains valid by employing the drift operator over a longer horizon than ⌈N

c
⌉.

It should be stressed that having the minimum length of the interval equals ⌈N
c
⌉ does not
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assure that all N sub-systems eventually transmit over the period. In fact, this might not even
be required form the application point of view to have enough transmission possibilities for
all sub-systems to transmit exactly once during every ⌈N

c
⌉ time intervals. Imagine that, one

or some of the sub-systems in an NCS may require to have more frequent transmissions than
the other sub-systems due to, for example, their respective plant instability. Considering the
overall NCS performance as the primary metric to be maximized, those sub-systems are better
to transmit more regularly. This results in a situation that not all N sub-systems transmit
at exactly N transmission possibilities, as some sub-systems are required to transmit more
occasionally than the others.

For the sake of simplicity, especially in stability proof, and avoid unnecessary complica-
tions, we assume the following capacity constraint at every time-step k:

N∑

i=1

δi
k
= 1. (3.6)

This concludes that at each time-step, exactly one sub-system is allowed to transmit. The fol-
lowing results are readily extendable for

∑N

i=1δ
i
k
= c > 1, for the single-hop scenario, where

the c dedicated communication links are assigned exclusively to c users at a time without
collision. Having this said, and according to the proposition 3.4, we consider an interval
of length N to compute the drift, in order to study f -ergodicity of the network-induced
error ek. Considering the initial time-step as k, we then infer f -ergodicity by computing the
drift over the interval [k, k + N], and accordingly modify the drift definition in (3.3). The
modified drift operator, so-called multi-step drift, is defined over the interval [k, k +N] with
length N as follows:

Definition 3.6 (Multi-step drift for Markov chains). Let V : Rn→ [0,+∞) be a real-valued
function and Φ a Markov chain evolving on the state space Rn. The multi-step drift operator
∆V (Φk, l) is defined over an interval with length l for any measurable function V as

∆V (Φk, l) = E[V (Φk+l)|Φk]− V (Φk). (3.7)

According to the Definition 3.6, and the communication constraint (3.6), the multi-step
drift of the introduced Lyapunov function (3.4) can be expressed as

∆V (ek, N) = E

�
N∑

i=1

‖ei
k+N
‖p2
�
�ek

�

−
N∑

i=1

‖ei
k
‖p2. (3.8)

Now we are ready to state the main theorem of this chapter, which guarantees stabil-
ity of the overall NCS of our interest. Before proceeding to the theorem, we express
the following result, which will be recalled frequently through the proof of the theo-
rem. It is straightforward to show that the error state ei

k+N
of sub-system i, at the final
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time-step of the interval [k, k+ N], can be expressed as function of an earlier error state
ei

k+r′
i

, where r ′
i
∈ [0, N−1], by stepping backward from time-step k+N to the time-step k+r ′

i
:

ei
k+N
=

N∏

d=r′
i
+1

�

1− δi
k+d

�

A
N−r′

i

i
ei

k+r′
i

(3.9)

+

N−1∑

r=r′
i

�
N∏

d=r+2

�

1− δi
k+d

�

AN−r−1
i

wi
k+r

�

,

where, d is the scheduling counter, and we define
∏N

d=N+1

�

1−δi
k+d

�

:= 1.

Theorem 3.2. Consider an NCS consisting of N heterogeneous LTI stochastic sub-systems mod-

eled as (2.1), and a transmission channel subject to the constraint (3.6), and the control, esti-

mation, and scheduling laws given by (2.3), (2.4), and (3.1), respectively. Then, the network-

induced error Markov chain (2.17) is f -ergodic.

Proof. To study f -ergodicity of the error state ek, we assume that our networked system has
operated from the initial time-step k until time k + N − 1 under the policy (3.1). Then, the
last time-step of the interval, i.e. k+N , is scheduled taking into account all possible scenarios
that might have happened over the previous time-steps [k, k +N − 1]. Therefore, we define
two disjoint and complementary sets of sub-systems, namely G and Ḡ , as follows:

G : contains sub-systems having transmitted at least once over the interval [k, k+N −1],
i.e., δi∈G

k+d
= 1 for at least one d ∈ {0, 1, . . . , N − 1},

Ḡ : contain sub-systems having no transmission over the interval [k, k + N − 1], i.e.,
δi∈G

k+d
= 0 for all d ∈ {0, 1, . . . , N − 1},

where, G ∪Ḡ = N . Depending on, firstly, when a sub-system i is granted the channel access,
and secondly, the noise realizations wi over the time interval [k, k + N − 1], the local error
state ei

k+N−1 might have been entered an arbitrary but compact set with boundaries Mi or
might be outside, i.e., being unbounded with respect to that arbitrary set. Therefore, we
may, from another perspective, classify all sub-systems {1, . . . , N} to two complementary and
mutually exclusive sets of sub-systems, as follows:

1 : After N − 1 time-steps, ith error state is entered an arbitrary compact set Mi with
boundary Mi, with ‖ei

k+N−1‖
p

2 ≤ Mi,

2 : After N − 1 time-steps, ith error state is outside an arbitrary compact set Mi with
boundary Mi, with ‖ei

k+N−1‖
p

2 > Mi.

In other words, the first case denotes that the local error state of a sub-system i has been
evolved, such that, after N −1 time-steps it ended up inside a compact set with the boundary
Mi, while in the latter, the error state stays outside of a compact set with the known bound-
ary Mi. This is schematically illustrated in Figure 3.2. It is noteworthy that an unbounded
variable is not necessarily infinite. The latter classification, compared to dividing the sub-
systems into the introduced sets G and Ḡ , is indeed clarifies the statistical independence

41



3 Centralized State-dependent Scheduling Design

ei
k

ei
k+1

ei
k+1

ei
k+2

ei
k+2

. . .

. . . ei
k+N−1

ei
k+N−1

Diverging path
Converging path

Compact set Mi

State Space

Figure 3.2: Sample evolution of error state from time k till time k + N − 1. (if ei
k+N−1 ∈ Mi,

then ‖ei
k+N−1‖

p

2 ≤ Mi, otherwise ‖ei
k+N−1‖

p

2 > Mi.)

between the transmission sequence and the sequence of noise realizations, over the interval
[k, k + N − 1]. Intuitively, there is no guarantee for a sub-system which has transmitted just
recently not to have a noticeable error value in the subsequent time-step, due to possibly hav-
ing a large noise value. On the other hand, even if a sub-system does not transmit for a quite
long period, its error does not necessarily becomes very large, because the noise realization
may take mathematically opposite values.

Considering the sets G and Ḡ , along with the latter classification with respect to being
either inside or outside of an arbitrary compact set, we can divide the entire state-space
of our Markov chain into the following three complementary and mutually exclusive sub-
state-spaces. We show the f -ergodicity of the Markov chain within each of those cases to
conclude the f -ergodicity over the entire state space Rn. The error state, corresponding to a
sub-system i, is characterized by exactly one of the following three cases:

c1 A sub-system i satisfies the condition ‖ei
k+N−1‖

p

2 ≤ Mi and sub-system i has either trans-
mitted over the time interval [k, k+ N − 1] or not, i.e. either i ∈ G or i ∈ Ḡ ,

c2 A sub-system i satisfies the condition ‖ei
k+N−1‖

p

2 > Mi and sub-system i has transmitted
at least once over the time interval [k, k + N − 1], i.e. i ∈ G ,

c3 A sub-system i satisfies the condition ‖ei
k+N−1‖

p

2 > Mi and sub-system i has never trans-
mitted over the time interval [k, k+ N − 1], i.e. i ∈ Ḡ .

It is required by the multi-step drift (3.8) to compute the expectation of p-powered
2-norm of the error vector ei

k+N
, for general integer p. Recalling the expression (3.9), and

exploiting the binomial Theorem for a sub-system i, we can break down (3.8) to partial
expectations in order to simplify the computations as follows:
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Statistical independence of ei

k+r′
i

and wi
k+r

for r ∈ [r ′
i
, N − 1] implies that the last line in the

above expression can be reduced to
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where, all the terms in the latest expression above are bounded for arbitrary finite values

of p, k1, k2, and Ai, except E
h
∏N

d=r′
i
+1

�

1−δi
k+d

�

‖ei
k+r′

i

‖k1
2

i

. However, if the first p-powered

term in the expression (3.10) is shown to be bounded, then the boundedness of the
aforementioned k1-powered term is automatically followed as k1 < p. Extending the same
derivations as (3.10), but for all sub-systems i ∈ {1, . . . , N}, we have
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(wi)+g+

i
(ei, wi), (3.12)

where, the noise-dependent g b+
i
(wi) stands for the positive and bounded term
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p

2

�

in (3.10), while noise and error-dependent term

g+
i
(ei, wi) stands for the positive but conditionally-bounded term (3.11).
Starting from the first case c1, it is straightforward to show the conditions in Theorem 3.1

hold when employing the multi-step drift introduced in (3.8). From (3.12), with r ′
i
= N −1,
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it yields for all sub-systems i ∈ c1
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where in this case, g+
i
(ei, wi) can be rewritten according to (3.11) as
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In case c1, the condition ‖ei
k+N−1‖

p

2 ≤ Mi holds for all sub-systems i ∈ c1. Therefore, from
(3.13), we can derive the following upper bound for ∆V (e
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k
, N) as follows:
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For a sub-system i characterized by case c2, it is assumed that at least a transmission
is occurred. Assume that the latest transmission was at a time-step k + r ′

i
+ 1, with

r ′
i
∈ [0, N − 2]. This means δi

k+r′
i
+1
= 1. Thus, employing (3.12) for the case c2, the drift

operator ∆V (e
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, N) reduces to
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Within the third case c3, the condition δi
k′ = 0 hold for all sub-systems i ∈ c3 and at all

time-steps k′ ∈ [k, k + N − 1]. Therefore, setting r ′
i
= 0 and knowing that the initial values

ei
k
’s are given, expression (3.12) can be rewritten as follows:
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where, the last line holds given that ‖ei
k
‖2 ≥ 1 to ensure V (ek) ≥ ‖ei

k
‖k1

2 (if ‖ei
k
‖2 < 1,

then f -ergodicity is already guaranteed.). Since the three introduced cases c1 − c3 are
complementary and disjoint, we can assign probabilities Pc1

−Pc3
to each of those cases,

with Pc1
−Pc3

denoting the probabilities that a sub-system i ends up in the corresponding
case over the interval [k, k + N]. Hence, the multi-step drift operator (3.8) needs to be
rewritten as the summation of the partial drift operators for each case c1 − c3, associated
with their corresponding probabilities Pc1

−Pc3
, as follows:
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We will see later in the proof that, except Pc3
, incorporation of the probabilities Pc1

and
Pc2

is not necessary to show f -ergodicity of the overall error state ek, though computing
them results in having less conservative stability margins. To compute Pc3

, we follow the
described scenario. If an arbitrary sub-system j is supposed to stay in the set c3, then j does
not transmit over the entire interval [k, k + N]. Then, there exists another sub-system, let
us say i, which transmits at the final time-step k + N , where i has transmitted before, at
least for one time-step over the interval [k, k + N − 1]. Assume k+ r ′

i
is the latest time-step

before time-step k+ N that sub-system i has transmitted, i.e. r ′
i
∈ [0, N − 1], and δi
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i

= 1.

Then, the probability that sub-system i re-transmits at time-step k + N , in the presence of
the sub-system j which has never transmitted over the time interval [k, k + N − 1], and in
addition satisfies the condition ‖e j
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2 > M j, can be computed as follows:
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Since sub-system i has had an earlier transmission at k+ r ′
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, we know from (3.9) that
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Since the expression in the numerator, i.e.,
∑N−2

r=r′
i
E
�

‖AN−r−1
i

wi
k+r
‖p2
�

is finite, one can infer
from (3.19) that the probability of a subsequent transmission of a certain sub-system i, in
the presence of other sub-systems j ∈ c3, can be made arbitrarily close to zero by considering
appropriate compact set boundaries Ml2

’s.

Recalling the expressions (3.14), (3.15), (3.16), and (3.19), we can rewrite the multi-step
drift operator (3.17) as follows:
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− 1
�

V (ek) +ξ
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where, ξb+

c1,c2
stands for the first four positive and bounded expressions immediately after

the inequality sign above, correspond to the cases c1 and c2. The positive and bounded ξb+

c3

corresponds to the case c3, and is shown in the above expression.
We define the real-valued function f (ek) = ǫ f V (ek) − ξb+

c1,c2
, where ǫ f ∈ (0, 1]. Since the

noise-dependent expression in the numerator of Pc3
is positive and constant, therefore, we

can find appropriate compact sets with boundaries Ml2
’s and ǫ f such that

�

Pc3
ξb+

c3
− 1
�

≤ −ǫ f

which in turn implies that ∆V (ek, N) ≤ − f (ek). On the other hand, since ξb+

c1,c2
is constant,

positive, and independent of the error state ei, we can find appropriate ǫ f and compact set
D such that f (ek) ≥ 1, for ek /∈ D. Moreover, the condition ∆V (ek, N) <∞, when ek is
staying inside the compact set D, holds since ξb+

c1,c2
and N are both positive and finite. Thus,

according to the Theorem 3.1, f -ergodicity of the error state ek is readily followed, which
ensures that the error state ek is expected to converge towards the compact set D after N

time-steps, starting from any initial values.

After the presented lengthy proof, Theorem 3.2 ensures that the network-induced error
state ek is f -ergodic if the scheduling policy (3.1) is employed for channel access arbitration.
This conveys that ek is evolving according to an invariant finite-moment probability measure
over the entire state-space Rn. Taking this, together with the stabilizing feedback control
laws (2.10), stochastic stability of the overall NCS with the aggregate state vector [x⊤

k
, e⊤

k
]⊤,

under the capacity constraint (3.6), is readily guaranteed in terms of f -ergodicity.

Remark 3.4. The probability of observing the first and second cases c1 and c2 can also be
computed considering the scheduling policy (3.1). This results in having less conservative
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stability margin in terms of smaller compact set D, which itself is indicating the region of
attraction for the error state. However, as the derived upper bounds for E

�

V (e
c1
k+N
)
�

and
E
�

V (e
c2
k+N
)
�

, in (3.14) and (3.15), respectively, are independent of the initial values, it is not
theoretically required to compute Pc1

and Pc2
. Thus, we considered them as unity leading to

more conservative upper-bounds.

3.4 Numerical Evaluations

Here in this section, we present numerical results to validate our stability claims and show
that our proposed scheduling approach defined in (3.1) leads to performance enhancement
compared to the conventional approaches. To make the numerical evaluations, we consider
networked control systems with different number of scalar sub-systems. To take into account
the heterogeneity of sub-systems, we assume within each NCS setup, to have two hetero-
geneous classes of sub-systems each containing finite and equal number of homogeneous
sub-systems. The first class of sub-systems includes control loops with unstable plants, i.e.
A1 > 1, and the second class contains control loops with stable process, i.e. A2 < 1. The sys-
tem parameters are assumed to be A1 = 1.25, B1 = 1 for the first class3 and A2 = 0.75, B2 = 1,
for the second class. In both classes, the system states initiate from zero, i.e. x1

0 = x2
0 = 0

and the noise process is randomly realized by N (0, 1). The channel capacity is set to be
one, i.e. c = 1, meaning that only one sub-system is allowed to transmit at each time-step.
This yields for the NCSs with N > 2 that, at every time-step, we have open-loop sub-systems
with unstable processes. Recall that the separation property exists between the control law
and the scheduling law synthesis. Thus, in order to evaluate solely on the performance of
our proposed scheduling architecture, we assume to have local stabilizing dead-beat control
laws with Li =

Ai

Bi
for each class i ∈ {1, 2}. In addition, a model-based estimator, as given by

(2.4), is assumed to be employed by the control side in order to estimate the system state x i

in case the expected transmission is blocked.
Figure 3.3 illustrates the performance comparisons between the proposed probabilistic

prioritized event-based (denoted as “PEB” in Figure 3.3) scheduler (3.1) for different p pow-
ers and some of the practical and well-established scheduling methods. The simulations
are performed for different NCS setups with the number of sub-systems N ∈ {2, 4, 6, 8, 10}.
Since the error Markov chain (2.17) is noise driven, we look at the mean variance of the
network-induced error per sub-system, which indicates the variance of the average distribu-
tion upon which the local error of a sub-system evolves. The averages are calculated by their
empirical means through Monte Carlo simulations over a horizon of 100000 samples. The
lower bound is determined by relaxing the initial problem to have no resource constraint,
but instead restrains the total average transmission rate per time-step to be 1. This can be
calculated through a bi-level approach, discussed comprehensively in [33].

In order to compare our results with the conventional scheduling scenarios, we have cho-
sen two channel scheduling schemes, the deterministic time-triggered TDMA protocol and
the probabilistic random CSMA protocol. The time division multiple access (TDMA) (also

3We simply denote the system matrices of all homogeneous sub-systems included in the first class as A1 and
in the second class as A2.
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Figure 3.3: Comparison of the mean steady-state variance of ei
k

for various protocols and
number of subsystems.

called “Round Robin” or “RR”) is a periodic channel access scheme, where sub-systems use
the communication channel based on a pre-given token ring, within which each sub-system
transmits exactly once over every N time-steps interval. Therefore, in for example the NCS
setup with N = 4, every sub-system transmits once every 4 time-steps. The idealized carrier
sense multi access (CSMA) protocol operates in probabilistic fashion, and in its original def-
inition, the probability that the communication channel is awarded to a sub-system, is fixed
at each time and is not dependent on real-time situation of the NCS. In fact the transmission
probability for each sub-system equals 1

N
at each time-step. The described TDMA and CSMA

approaches are schematically shown in Figure 3.4 and Figure 3.5.
Figure 3.3 illustrates that with increasing number of sub-systems competing for the com-

munication channel, i.e. N , the performance gap between the PEB scheduler and the ide-
alized CSMA and TDMA protocols becomes more evident. Unlike the TDMA and idealized
CSMA approaches, the error variance under the PEB scheduler (3.1) grows slowly as the
number of sub-systems N increases, and deviates moderately from the lower bound4. This
suggests that the event-based protocol (3.1) is better fit for NCSs with a large number of
connected sub-systems, especially when the shared communication resources are limited.
According to the simulation results in Figure 3.3, the idealized CSMA protocol admits an

4Although, we have no optimality claim, the comparisons between the proposed event-based policy and more
efficient token rings (near-optimal) for TDMA approach and non-uniform probabilities for CSMA scheme
are presented in the next chapter.
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Figure 3.4: Carrier sense multiple access protocol. In this idealized case, each sub-system
has equal probability of having access to the channel.
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Figure 3.5: Time division multiple access protocol. The pre-given token ring in this example
is {. . . , 1, 2, 3, 4, 1, 2, 3, 4, . . .}.

acceptable performance only for the NCS with N = 2. For N ≥ 6, the average error vari-
ance takes values of magnitude 1015 which suggests an unbounded variance and therefore
non-convergent evolution. This is in accordance with Theorem 2 in [33], where the stability
condition is shown to be violated for N ≥ 6 for CSMA channel scheduling scheme.

Figure 3.3 also shows performance efficiency of the scheduler (3.1) improves by increasing
the power p. This is an expected observation as with increasing p, sub-systems with greater
local error norms will have higher chances to be granted the channel access. In case p→∞,
the sub-system with the highest error norm will almost surely transmit at every time-step.
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3.5 Summary

In this chapter, we introduced a novel probabilistic event-based scheduling architecture
which takes into account the real-time dynamic requirement of each local sub-system in
order to assign channel access priorities. The scheduler has a centralized form, but we later
show a decentralized counterpart can be realized which possesses similar characteristics. We
briefly introduced the MEF-TOD approach which is a well-established deterministic event-
based scheduler, and we summarized its advantages and disadvantages. Then, we proposed
a probabilistic event-based scheduling approach which is similarly capable of prioritizing the
channel access via monitoring the network-induced error dynamics. The overall model of
an NCS with the proposed event-based scheduling mechanism and the LQG control law, is
then represented. Afterwards, extensive stability analysis for multi-loop NCSs consisting of
multiple heterogeneous LTI stochastic sub-systems sharing limited communication resources
is presented. The considered concept of stochastic stability, i.e. f -ergodicity, is justified and
the interpretation of stability certificates is clarified. Finally, the theoretical derivations are
validated through Monte Carlo simulations for different NCS setups. To demonstrate the
performance efficiency of our proposed scheduling design, we made comparisons with con-
ventional protocols such as TDMA and CSMA and the performance discrepancy is shown to
be considerable, especially as the size of the NCS grows.

3.6 Contributions

The presented results and analyses in this chapter are mainly focused on studying stochastic
stability of NCSs consisting of stochastic LTI control loops. Similar analyses will be presented
in the forthcoming chapters when we discuss the bi-character (deterministic/probabilistic)
scheduling architecture and even the decentralized version of the proposed event-based pri-
oritizing scheme. Therefore, we opted to have a detailed stability analysis so that we can
recall some of them in those chapters. Stability proof in this chapter is partially presented in
some of the author’s own works, i.e., [84, 85, 94]. Stochastic stability of networked control
systems by means of Markov state ergodicity are in addition employed in some other works,
e.g. [33,95]. However, the presented stability results in this chapter are original and unique
due to the formulation of overall networked system, event-based error-dependent scheduling
architecture, and the hard capacity constraint.

The preliminaries presented in sub-section 3.3.1 contain essential definitions, propositions
and theorems to investigate stability of the described NCS. The mentioned concepts are well-
established results for Markov chains and stochastic processes and could be found in standard
literature, e.g. in [86,96,97], where we mostly used [86].

The numerical evaluations presented in Section 3.4, involves an illustration, i.e. Figure
3.3, which is already presented in two of the author’s own publications in [84,94].
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Scheduling Design

Extending the results in Chapter 3, in this chapter we develop the previously introduced
probabilistic scheduling design to a bi-character policy comprised of both deterministic and
probabilistic attributes. We discuss that the modified scheduler arbitrates the scarce commu-
nication resources more efficiently and observe how the deterministic feature of the scheduler
may lead to enhance the overall control performance in comparison with pure probabilis-
tic approaches. The bi-character scheduling policy operates as follows. Given local error
thresholds for each control loop, transmissions associated with sub-systems with lower error
values than the pre-specified thresholds are deterministically discarded in order to make the
channel less congested for those sub-systems with greater error values. The thresholds are
indeed a powerful design parameter which can be tuned appropriately in order to use the
resources efficiently. In case the channel capacity is still sparse for all those sub-systems with
the corresponding errors exceeding their local error thresholds, then the scheduler allocates
the communication channel probabilistically among all those eligible sub-systems based on
a prioritized measure. Since the local errors are driven by the stochastic Gaussian noise pro-
cess, transmissions occur randomly in an event-based fashion. The introduced bi-character
scheduling rule offers major advantages in comparison with purely deterministic or purely
probabilistic architectures. In comparison with deterministic policies, the probabilistic na-
ture of our protocol facilitates an approximate decentralized implementation. This will be
addressed later in Chapter 6. In addition, by lowering the probability of channel access for
sub-systems with lower local errors, the channel is made less congested for the sub-systems
which are in more urgent status for transmission and consequently performance enhance-
ment is attained.
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We prove that stochastic stability of the described NCS in Chapter 2 is preserved under
the modified scheduler in terms of f -ergodicity of the overall network-induced error, which
is modeled as a homogeneous Markov chain. Additionally, we derive uniform analytical per-
formance bounds for the similar average cost function in Chapter 3, comprised of a quadratic
error term and transmission penalty. The performance margins for the bi-character schedul-
ing design are then analytically evaluated. Furthermore, it is concluded that the performance
index is indeed a convex function of the error thresholds which consequently facilitates the
search for sub-optimal uniform performance bounds. In addition, the improved performance
claims in terms of average error variances are corroborated by numerical results.

This chapter is structured as follows. We introduce the bi-character event-based schedul-
ing rule for NCSs comprised of multiple heterogeneous control loops exchanging data over
a shared communication network in Section 4.1. Stability analysis is presented in Section
4.2 via stochastic stability notion of f -ergodicity of the overall network state. In Section 4.3
the analytical performance bounds are derived for the modified scheduling law, and a com-
parison is made with those bounds correspond to the pure probabilistic policy illustrating
the performance enhancement. Simulation results in Section 4.4 illustrate that the modified
scheduling architecture presents a reduction in the aggregate network-induced error vari-
ance compared to pure probabilistic, time-triggered and random access scheduling policies,
especially as the number of control loops increases.

4.1 Event-based Deterministic-Probabilistic Prioritized

Scheduling Law

Recalling the discussions in Chapter 3, here in this section we present a modified schedul-
ing rule, compared to the pure probabilistic mechanism introduced in (3.1). It is illustrated
in Section 3.1 that the scheduling law (2.14) can take a form of a probability distribution
function. Taking a step further, we show in this chapter that the scheduling architecture may
possesses both probabilistic and deterministic characteristics. In this section, we introduce an
error-dependent centralized scheduling rule that dynamically prioritizes the channel access
for a network of multiple stochastic LTI sub-systems exchanging information over a shared
communication channel. The prioritization process, unlike the introduced pure probabilistic
law (3.1), is performed in two phases; first according to a local deterministic threshold mech-
anism, and second based on a probabilistic biased mechanism. After comprehensive stability
and performance analysis, we show in this chapter that incorporation of the deterministic
feature to the scheduling law enhances the performance of the overall NCS, while stochastic
stability of the networked system remains valid.

Similar to the previous chapters, assume that the shared communication channel is subject
to the capacity constraint as not all sub-systems can simultaneously use the channel at every
time-step, i.e. the hard constraint (2.2) should be fulfilled at every time-step k,

N∑

i=1

δi
k
= c < N .

Therefore, at every time-step, some of the transmission requests are discarded and the
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corresponding control loops remain open while they can only try to get access to the
channel in further time-steps. The following centralized error-dependent scheduling rule
defines the probability of channel access for each sub-system at a time-step k+ 1, given the
event information at the prior time-step k, according to a deterministic-probabilistic measure:

P[δi
k+1 = 1|e j

k
,λi] =










0 ‖ei
k
‖2

Qi ≤ λi

1 ‖ei
k
‖2

Qi > λi ∧ jλ ≤ c
‖ei

k
‖2

Qi
∑

j∈nλ,k
‖e j

k
‖2

Q j

‖ei
k
‖2

Qi > λi ∧ jλ > c,

(4.1)

where, λi ∈ R+ ∪ {0} is the local error threshold for sub-system i, and nλ,k ≤ N denotes
the number of sub-systems satisfying the threshold condition ‖e j

k
‖2

Q j > λ j at time-step k. In
addition, Qi ∈ Rni×ni represents a positive definite weight matrix associated with sub-system
i. It is clear that the above probability distribution is supported on the semi-infinite interval
[0,∞). Moreover, it is straightforward to see that (4.1) is a probability measure as the as-
signed probabilities to all possible events sums up to one.
The bi-character policy (4.1) states that the process of blocking transmission requests at every
time-step is performed in two independent phases. Initially, according to the first argument
in the scheduling law (4.1), if the weighted square norm of local error of a sub-system i is
less than or equal to the given threshold λi, then no transmission request associated with
sub-system i will be submitted, i.e. if ‖ei

k
‖2

Qi ≤ λi at a time-step k, then δi
k+1 = 0, for the

subsequent time-step k + 1. It is worth noting that this decision is taken locally within each
sub-system, and the decision to either submit a transmission request or not is totally deter-
ministic.
Every sub-system which satisfies the condition ‖ei

k
‖2

Qi > λi, would submit a transmission re-
quest to the centralized scheduler for time-step k + 1. Then, if nλ,k ≤ c, all those requests
are through and the corresponding sub-systems transmit, as it can be seen from the second
argument of the policy (4.1). Otherwise, if nλ,k > c, then the scheduler is switched from
deterministic state to probabilistic and subsequently the priorities are assigned to each trans-
mission request, according to the third argument of (4.1), and the channel is allocated ran-
domly until the capacity is reached. This feature of the scheduler (4.1) is reminiscent of the
pure probabilistic scheduler in (3.1). Other transmission requests, which are not awarded
the channel access, are therefore discarded and their corresponding loops remain open at
least for one time-step. As already discussed in Section 3.1, if nλ,k > c, then there is no
guarantee that a sub-system with higher priority certainly transmits ahead of a sub-system
with lower priority, although it is more likely. Intuitively, the involvement of the determin-
istic feature in the scheduling rule (4.1) facilitates more efficient allocation of the limited
channel capacity among eligible sub-systems by deterministically excluding the sub-systems
for whom a transmission is not crucial at that certain sampling time. Therefore, employing
the scheduler (4.1) concludes that, at every time-step, some sub-systems do not transmit
because they are not eligible to transmit (i.e., the first argument of (4.1)), but there might
be also some sub-systems that do not transmit due to the limited capacity even though they
were eligible for transmission.

Similar to the previous chapter and without affecting the generality of the approach
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presented herein, we assume c = 1 in the interest of analyses and derivations brevity.
Therefore, for every k ≥ 0 we have

N∑

i=1

δi
k
= 1.

The following results, however, can easily be extended towards
∑N

i=1 δ
i
k
= c < N , where

c > 1. Moreover, be reminded that in this chapter, we assume no packet dropout occurs, i.e.,
if δi

k′ = 1 at some time k′, then certainly γi
k′ = 1.

Remark 4.1. The design parameters λi ’s and Qi’s for i ∈ {1, . . . , N} play crucial roles in the
efficacy of the bi-character scheduling rule (4.1), and therefore their appropriate tuning is of
great importance. The error thresholds λi ’s appear in the deterministic part of the schedul-
ing process to recognize the transmission eligibility of each control loop, while the weight
matrices Qi’s directly affect the priorities through the assigned access probabilities. In the
other words, λi ’s determine the acceptable level of local error below which a transmission is
not necessary, and Qi’s specify how often a sub-system needs data transmission.

Remark 4.2. According to (4.1), in case nλ,k > c, the channel access is granted according to
the biased randomization with the bias terms (priorities) determined as in the third argu-
ment of (4.1). Unlike the deterministic MEF-TOD rule, where the highest priorities certainly
transmit, the randomization in (4.1) allows a sub-system with lower priority to have trans-
mission chance. This randomization provides a flexible design framework enabling us to
tune the scheduling parameters appropriately to achieve desired properties, such as dealing
with noisy systems, and implementing the scheduler approximately in decentralized fashion,
as we will see in Chapter 6. Furthermore, it facilitates the investigation of data loss in the
communication channel where comprehensive discussions are presented in Chapter 5. In
addition, by slightly deviating from the current scheduler, we can tune the error thresholds
not locally but centrally in a network manager unit such that the highest priorities transmit
almost surely. Detailed discussions about this is out of scope of this dissertation, however a
similar scenario is proposed in [72].

4.2 Stability Analysis

In this section, we address stability analysis for NCSs under the introduced bi-character
scheduling design (4.1). Firstly, we state that the overall NCS model presented in Section
3.2 remain unchanged, so we assume to have the overall NCS state dynamics as expressed
in (3.2). Moreover, in the following stability analysis, we frequently recall the preliminary
definitions, propositions and theorems presented in Section 3.3.1.

It should be noted that, the modified bi-character scheduling rule (4.1) is a more general
policy than the pure probabilistic law (3.1), because setting the error thresholds λi ’s to zero
and the weight matrices Qi’s to identity for all i ∈ {1, . . . , N} results in having the pure
probabilistic policy (3.1) in Chapter 3 for p = 2. Therefore, the illustrative example discussed
in Section 3.3.2 is still valid and can similarly be referenced in this section to justify the need
for modification of the one-step drift operator defined in (3.3).
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4.2 Stability Analysis

In order to employ Theorem 3.1 to show stochastic stability for the modified scheduling
law, first, we select the following error-dependent non-negative real-valued Lyapunov
candidate V : Rn→ R:

V (ek) =

N∑

i=1

eiT

k
Qiei

k
=

N∑

i=1

‖ei
k
‖2

Qi . (4.2)

The Lyapunov function (4.2) is a special form of (3.4), when p = 2. Therefore, similar to
the proof of Theorem 3.2, and assuming that the capacity constraint (3.6) holds, we consider
the multi-step drift operator (3.7) over the time horizon of N time-steps, as follows:

∆V (ek, N) = E

�
N∑

i=1

‖ei
k+N
‖2

Qi

�
�ek

�

−
N∑

i=1

‖ei
k
‖2

Qi . (4.3)

Theorem 4.1. Consider an NCS consisting of N heterogeneous LTI stochastic sub-systems mod-

eled as (2.1), and a transmission channel subject to the constraint (3.6), and the control, esti-

mation and scheduling laws given by (2.3), (2.4) and (4.1), respectively. Then for any positive

λi ’s and positive definite Qi’s the Markov chain (2.17) is f -ergodic.

Proof. See Appendix A.1.

Remark 4.3. Theorem 4.1 assures that the Markov chain (2.17) visits a compact set D f ⊂ Rn

at most every N time-steps for any λi > 0 and Qi ≥ 0. The boundary of D f however varies
with the design parameters λi ’s, Qi’s, N and system matrices Ai. It is inevitable that large N

and limited capacity c results in quite large boundaries for the error variance.

Corollary 4.1. The multi-loop NCS described in (2.1)-(2.8) with the overall network state
[xT

k
, eT

k
]T under the scheduling law (4.1) is Lyapunov mean square stable.

Before proceeding to the proof of the corollary, we present the definition for Lyapunov

mean square stability (LMSS):

Definition 4.1. [91] An LTI system with state vector Xk is said to possess Lyapunov mean
square stability (LMSS) if given ǫ>0, there exists ρ(ǫ) such that ‖X0‖2<ρ implies

sup
k≥0

E
�

‖Xk‖22
�

≤ǫ.

Proof of Corollary 4.1. Assume Xk=[x
T
k

, eT
k
]T. Then the Lyapunov mean square stability of

the overall NCS state is achieved if
∑

cl
Pi∈cl

E
�

‖ei
k
‖22
�

≤ ǫ for all cl ∈ {c1, c2, c3}, assuming
that the stabilizing control gains Li exist for all i ∈ {1, . . . , N}. Uniform upper-bounds for
E[‖ei∈cl

k
‖22] for cases {c1, c2, l

c3
1 } are derived in (A.3)-(A.5) over intervals with length N , con-

sidering Pcl
= 1, as follows:
∑

i∈c1

E

�

‖ei
k+N
‖2

Qi |ek

�

≤
∑

c1

λi‖Ai‖22 + tr(QiWi), (4.4)
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∑

i∈c2

E

�

‖ei
k+N
‖2

Qi |ek

�

≤
∑

i∈c2

N∑

r=r′
i

‖AN−r
i
‖22 tr(QiWi), (4.5)

∑

i∈l
c3
1

E

�

‖ei
k+N
‖2

Qi |ek

�

≤
∑

i∈l
c3
1



‖AN−r′
i

i
‖22λi +

N−1∑

r=r′
i

‖AN−r−1
i
‖22 tr(QiWi)



 . (4.6)

For the case l
c3
2 , the uniform upper-bound can be obtained employing (A.6) and (A.8), as

∑

i∈l
c3
2

Pi∈l
c3
2
E

�

‖ei
k+N
‖2

Qi |ek

�

≤
∑

j∈l
c3
2

‖AN
j
‖22

N−1∑

r=r̄

‖AN−r
i
‖22 tr(QiWi) +

∑N−1
r=r̄
‖AN−r

i
‖22 tr(QiWi)

∑

j∈c2
λ j +
∑

j∈l
c3
1
λ j

∑

j∈l
c3
2

N∑

r=1

tr(Q jWj)‖AN−r
j
‖22.

(4.7)

It concludes from (4.4)-(4.7) that the overall error expectation remains bounded over every
time interval of length N , and the proof then readily follows.

Remark 4.4. It should be noted that LMSS implies f -ergodicity but not vice-versa since the
latter holds not only with quadratic Lyapunov function but also with any appropriate Lya-
punov variations which fulfill the conditions in Theorem 3.1.

4.3 Analytic Performance Bounds and Design Methods

In the previous section, we showed f -ergodicity of the network-induced error Markov chain
(2.17) ensuring that the error state evolves according to a unique invariant probability distri-
bution (see Definition 3.1). Moreover, Theorem 4.1 confirmed that the error state converges
to some compact subset of the state space Rn at most every N time-steps. In this section, we
investigate the performance of the proposed bi-character error-dependent scheduling policy
(4.1) by obtaining analytical uniform performance bounds for the average of the per-time-
step cost function Jek

introduced in (2.18). Indeed, the obtained performance bounds in this
section are determining the boundaries of the compact set towards which the error state ek

converges. In what follows, we first derive the uniform performance bounds for the similar
NCS setup as in Theorem 4.1, and then we discuss the design methods in order to achieve
the desired performance margins.

4.3.1 Analytic Performance Bounds

Here we recall the per-time-step cost function Jek
as follows:

Jek
=

N∑

i=1

eiT

k
Qi

k
ei

k
+ηkδ

i
k

:=
N∑

i=1

‖ei
k
‖2

Qi
k

+ηkδ
i
k
, (4.8)
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where, the non-negative parameter ηk denotes the cost of channel utilization at time k. The
average cost associated by the introduced per-time-step cost function Jek

in (4.8), over a
finite horizon with length T can be expressed as:

Jave = sup
ek

1
T

T−1∑

k=0

E
�

Jek

�

(4.9)

In order to obtain an analytic upper bound for the average cost function Jave in (4.9),
statement of the following lemma is essential.

Lemma 4.1. [98] Let ek be a Markov chain with general state space X . Introduce Jek
: X → R

and define a measurable function h : X → R. Define the average cost Jave as

Jave = lim
n→∞

sup
1
n

n−1∑

k=0

E
�

Jek

�

.

If h (ek) ≥ 0 for all ek ∈ X , then

Jave ≤ sup
ek∈X

�

Jek
+ E [h (ek+1) |ek]− h (ek)

	

.

Recall that we are interested in intervals of length N while Lemma 4.1 provides the
upper bound for the average cost function over only one-step transitions, i.e. k → k + 1.
To take this into account, and due to the fact that the error state ek is an aperiodic,
time-homogeneous, and ψ-irreducible Markov chain evolving in uncountable state-space
R

n, one can always generate a sampled Markov chain from the original chain which takes
the states of the original Markov chain at time-steps {0, N , 2N , ...}. It is straightforward to
show that ψ-irreducibility and aperiodicity of the original Markov chain are carried over to
the generated sampled chain. Moreover, time-homogeneity of the original Markov chain
implies time-homogeneity of the constructed Markov chain [86, Chapter 1]. Therefore, we
can rewrite the upper bound for the average cost Jave from Lemma 4.1 over a multi-step
interval [k, k+ N], as follows:

Jave ≤ sup
ek∈X

�

Jek
+ E [h (ek+N) |ek]− h (ek)

	

. (4.10)

We introduce the non-negative quadratic function h (ek) =
∑N

i=1 ‖ei
k
‖2

Qi . Recalling the
per-time-step cost (4.8), the upper bound for the average cost (4.10) is reduced to
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Jave ≤ sup
ek∈X

�

Jek
+ E [h (ek+N) |ek]−

N∑

i=1

‖ei
k
‖2

Qi

�

= sup
ek∈X

�

E [h (ek+N) |ek] +

N∑

i=1

ηkδ
i
k

�

= sup
ek∈X

N∑

i=1

�

E

�

‖ei
k+N
‖2

Qi |ek

�

+ηkδ
i
k

�

. (4.11)

Similarity between (4.11) and the expectation of the Lyapunov candidate introduced in
(4.2) can be noticed, which instead facilitates the following derivations in this section.

Theorem 4.2. Consider the NCS described in Theorem 4.1. Then the average cost

Jave = sup
ek

1
N

N−1∑

k=0

E
�

Jek

�

is uniformly upper bounded as a function of system matrices Ai, error thresholds λi, weight

matrices Qi, number of sub-systems N, and noise variance Wi of all i ∈ {1, . . . , N}, over all

initial conditions.

Proof. We derive the upper bounds for the average cost (4.11) for each case c1, c2 and
sub-cases l

c3
1 and l

c3
2 . Since the uniform upper bounds for

∑

i∈cl
E

�

‖ei
k+N
‖2

Qi |ek

�

are obtained
in the proof of Theorem 4.1, we only need to take into account the communication penalty
in (4.11) whenever a transmission happens.
Consider that some sub-systems i belong to the case c1. Then, the upper-bound in (A.3) for
∑

i∈c1
E

�

‖ei
k+N
‖2

Qi |ek

�

is valid. Therefore, it follows from (4.11) that

J i∈c1
ave ≤
∑

i∈c1

λi‖Ai‖22 + nδi

k̃

ηk̃ + tr(QiWi), (4.12)

where, nδi

k̃

is the number of transmissions associated with sub-systems i at arbitrary

time-steps k̃ ∈ [k, k +N].
Similarly, for sub-systems i ∈ c2, we recall (A.4) and therefore (4.11) reduces to

J i∈c2
ave ≤
∑

i∈c2

N∑

r=r′
i

tr(QiWi)‖AN−r
i
‖22 + nδi

k̃

ηk̃. (4.13)

Recalling that the sub-systems belonging to c3 never transmit, therefore nδi

k̃

= 0 for all i ∈ c3.

Both upper bounds derived in (A.5) and (A.6) for the sub-cases l
c3
1 and l

c3
2 are still valid.

Thus, for i ∈ l
c3
1 , we have

J
i∈l

c3
1

ave ≤
∑

i∈l
c3
1



λi‖A
N−r′

i

i
‖22 +

N−1∑

r=r′
i

tr(QiWi)‖AN−r−1
i
‖22



 . (4.14)
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For sub-systems j ∈ l
c3
2 , the error-dependent (non-uniform) upper bound holds from (A.6):

J
j∈l

c3
2

ave ≤ sup
ek

∑

j∈l
c3
2

�

‖AN
j
‖22 V (e

j∈l
c3
2

k
) +

N∑

r=1

tr(Q jWj)‖AN−r
j
‖22

�

. (4.15)

Since we have already derived uniform upper-bounds for J i∈c1
ave , J i∈c2

ave , and J
i∈1

c3
1

ave in (4.12)-
(4.14), respectively, the average cost function Jek

can be rewritten to incorporate the
probability of occurrence Pl

c3
2

as follows:

Jave ≤ J i∈c1
ave + J i∈c2

ave + J
i∈1

c3
1

ave +Pl
c3
2

J
i∈l

c3
2

ave , (4.16)

where, probability of occurrence Pl
c3
2

derived in (A.8) is still valid. Considering again the
worst-case scenario, and from (4.15) we have for all j ∈ l

c3
2

Pl
c3
2

J
j∈l

c3
2

ave ≤ sup
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‖AN−r

i
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‖AN−r
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‖22 tr(QiWi)

∑
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λ j +
∑
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1
λ j +
∑
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2
‖e j
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‖2

Q j

∑
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2
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r=1

tr(Q jWj)‖AN−r
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≤
∑

j∈l
c3
2

‖AN
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‖AN−r
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‖22 tr(QiWi) (4.17)

+

∑N−1
r=r̄
‖AN−r

i
‖22 tr(QiWi)

∑

j∈c2
λ j +
∑

j∈l
c3
1
λ j

∑

j∈l
c3
2

N∑

r=1

tr(Q jWj)‖AN−r
j
‖22.

Finally, employing the uniform upper-bounds (4.12)-(4.17) for all cases c1−c3 and according
to (4.16), the average cost Jave remains bounded uniformly, as follows:

Jave ≤
∑

i∈c1

λi‖Ai‖22 + nδi

k̃

ηk̃ + tr(QiWi) (4.18)

+
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tr(QiWi)‖AN−r
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
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+
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j∈l
c3
2

‖AN
j
‖22

N−1∑

r=r̄

‖AN−r
i
‖22 tr(QiWi) +
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‖22 tr(QiWi)

∑
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1
λ j

∑
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N∑
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tr(Q jWj)‖AN−r
j
‖22.

The bound on Jave is independent of any initial values, however it is conservative due to
multiple upper-bounding. The expression (4.18) represents the boundaries of the compact
set towards which the error state ek is expected to converge at least every N time-steps. This
concludes the proof.
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Remark 4.5. To calculate (4.17), we employed the occurrence probability Pl
c3
2

computed

in (A.8). Remind that we assumed the worst-case scenario, i.e. ‖e j∈l
c3
2

k′ ‖2Q j ≤ ‖e
j∈l

c3
2

k′+1 ‖2Q j

while computing (A.8). Analytically, this worst-case assumption places a condition on the
associated noise process in the error dynamics, for sub-systems belong to the sub-case l

c3
2 .

We already showed that ‖e j

k+N
‖2

Q j for j ∈ l
c3
2 can be written as
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In fact, to satisfy the worst-case scenario, the distribution of the noise-dependent vector
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j
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j
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+ . . . + w

j

k+N−1 := W
�

A j, w j
�

should be restricted to the parts

of the multi-dimensional Gaussian distribution that enlarge the term AN
j
e

j

k
. To facilitate the

derivations, let us assume without loss of generality to have the matrices A j in Jordan form.
The worst case occurs when the noise-dependent and error-dependent terms have the same
signs element-wise. Due to the symmetry of W

�

A j, w j
�

, both positive and negative parts of
the distribution turn out to have the same values. Since the noise variables are independent
and W
�

A j, w j
�

has a zero-mean multi-dimensional Gaussian distribution with covariance

matrix Σ =
�

AN−1
j
+ . . .+ A j + I
�

C j, employing the law of unconscious statistician, we can
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A j, w j
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‖2
Q j |W ≥ 0
�

as follows:
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∫ ∞

0

. . .

∫ ∞

0

‖w‖22exp
�−wT

Σ
−1w

2

�

dw, (4.19)

where w is the n j-dimensional noise-dependent random vector, and |Σ| is the determinant of
the covariance matrix.

Remark 4.6. It can be seen that the upper bounds derived in (4.12)-(4.17) are hyper-
bolic/convex functions of λi. The convexity of these upper bounds streamlines the search for
the unique minimizing value of λi. After finding the minimizing values of the error thresh-
olds λi, a sub-optimal upper bound for the average cost (4.11) is obtained. We drop the full
derivation of the minimizing error thresholds to avoid very lengthy expressions coming out
of taking derivative from the already-lengthy expression (4.18).

4.3.2 Design Methods

The obtained upper-bound for the average cost function Jave in (4.18) represents the bound-
aries of the compact set D f introduced in Theorem 4.1 as the convergent set for the error
state ek. As discussed in Theorem 4.1, f -ergodicity of the network-induced error ek is en-
sured under no restrictive assumption on the parameters such as the system matrices Ai,
noise covariances Wi <∞, number of sub-systems N <∞, error thresholds λi, and weight
matrices Qi, for all sub-systems i ∈ {1, . . . , N}. The obtained results are showed furthermore
under the worst-case channel capacity assumption, i.e. only one possibility of transmission
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is available at every time-step. Although, the boundedness of the average cost function, and
f -ergodicity of the network-induced error Markov chain are shown under very mild assump-
tions, the results are conservative. For example, the boundaries of the compact set D f may
become very large, though finite, which in reality is definitely not desirable. Here we discuss
how to achieve desired performance bounds, and study the roles of different NCS parameters
affecting the obtained bound on the cost function.

As it is expected, the bound on average cost Jave in (4.18) increases if the noise covariance
Wi increases. This suggests that if the random noise is less certain to be around the expected
value, which is zero, then the expected compact set towards which the error state converges
has extended boundaries. In addition, having more unstable sub-systems, i.e. larger eigen-
values for the system matrices Ai, results in having expanded performance bounds, which is
intuitively comprehensible. Assuming that the channel capacity is fixed, if the number of sub-
systems N increases, then the bound on Jave would also increase, according to (4.18). This is
also an expected observation because if c

N
decreases while c is kept constant, the competition

for limited communication resources is inevitably intestified, which consequently results in
longer time periods one sub-system should wait until the channel becomes free. The de-
pendency of the upper-bound for Jave on the channel capacity c is not reflected in (4.18),
because according to (3.6), c = 1. However, it is foreseeable that increasing the capacity c

results in tighter boundaries for the convergent compact set D f . Mathematically speaking, if
we consider to have c possibilities for transmission at every time-step, one of the changes to
the upper-bound (4.18) would be replacing N with N

c
which results in having tighter bounds

on Jave.

As already discussed when introducing the scheduling policy (4.1), the local parameters
λi ’s and Qi’s tune the deterministic threshold and assigned priorities, respectively. The weight
matrices Qi indeed determine the importance of transmissions for a certain sub-system, and
therefore they are designed to assign the priorities in favor of those sub-systems with higher
operational importance. Increasing them would increase the chance the corresponding sub-
system has to be granted the access to the channel. Setting the weight matrix very high for
one certain sub-system results in that sub-system to have expectedly much more frequent
transmissions than the others.

The dependency of the upper-bound (4.18) on the local error thresholds λi ’s has a hyper-
bolic nature. We will illustrate this convex dependency numerically later in the simulation
results. In fact, setting all the error thresholds to zero results in the pure probabilistic schedul-
ing policy (3.1), introduced in the Chapter 3. Although it is shown that the f -ergodicity
remains valid under the policy (3.1), we will see in the next section that the performance of
the bi-character policy (4.1) outperforms that of (3.1). Intuitively, setting the threshold to
zero allows all sub-systems i ∈ {1, . . . , N} to take part in the channel competition at every
time-step. Since the channel access is supposed to be eventually granted through a random-
ized mechanism, even those sub-systems with negligible error values have chances to use the
channel and therefore occupy the limited transmission possibilities. Hence, the channel be-
comes busy and other sub-systems with higher errors remain open-loop and should wait for
next time-steps to transmit, which leads to increase in the aggregate error variance. On the
other hand, setting those thresholds very high means that more sub-systems with relatively
high errors (but still below their corresponding highly set thresholds) are excluded from the
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channel competition and they remain deterministically open-loop until their errors exceed
the corresponding thresholds. This scenario also leads to increased aggregate error variance.
Therefore, there should be optimal error thresholds which maintain the balance between the
aggregate error variance and giving the chance to transmit to the sub-systems which are in
more stringent real-time conditions.
For example, the upper-bound (4.17) for the sub-systems belonging to the sub-case l

c3
2 en-

sures that the partial average cost Pl
c3
2

J
j∈l

c3
2

ave can be made small by increasing the error thresh-
olds λ j ’s for those sub-systems which are competing against the sub-systems belonging to the
sub-case l

c3
2 , i.e. j ∈ c2 and j ∈ l

c3
1 , and decreasing Q j ’s. However, the cost cannot be made

arbitrarily small due to the first term which depends on the constant system parameters. It
intuitively explains that, despite having sub-systems operating in open-loop and sparsity of
the communication resources, which might cause an even unstable sub-system with large
error waiting for channel access for quite some time, the aggregate error remains bounded.

4.4 Numerical Evaluations

In this section, the performance of our proposed bi-character scheduler is investigated and
compared with conventional scheduling policies such as TDMA and CSMA. We also demon-
strate that the deterministic feature of the scheduler yields performance improvements in
comparison with the pure stochastic scheduler introduced in the preceding chapter.

Similar to the results in Section 3.4, we assume an NCS comprised of two heterogeneous
classes each consisting of homogeneous scalar sub-systems. The first class includes N

2 control
loops with unstable plants and parameters A1 = 1.25, B1 = 1, while the second class contains
N
2 loops with stable processes with parameters A2 = 0.75, and B2 = 1. We select x i

0 = 0 for
each sub-system i ∈ {1, . . . , N}, and wi

k
∼ N (0, 1). To stabilize the local sub-systems, we

choose deadbeat control laws Li = Ai, and the model-based observer (2.4). For simplicity,
we select Qi = I for all i ∈ {1, . . . , N}.

For illustrative purposes, we assume that the local error thresholds are equal for all sub-
systems connected to the communication channel in one specific NCS setup. We drop the
subscript i and simply denote the thresholds λ in the rest of this section. Figure 4.1 illustrates
how the variance of the aggregate error (2.17) changes with respect to the local thresholds
λ, for NCSs with different number of sub-systems, employing the bi-character scheduling
policy (4.1). The results are in accordance with Remark 4.6 confirming that the variance
of aggregate error is indeed a convex function of error thresholds λ. This facilitates tuning
the error thresholds optimally in order to minimize the aggregate error variance. As it can
be seen, the optimal value of λ monotonically increases by increasing the number of sub-
systems N whom are sharing the sole transmission channel. This is an expected observation
as the competition to access the sole channel slot intensifies with N growing.

By selecting the optimal error thresholds, Figure 4.2 provides the comparisons in terms
of average error variance between our bi-character policy and TDMA, CSMA, and the event-
triggered threshold policy proposed in [33] for various setups of NCSs with different number
of sub-systems N ∈ {2, 4, 6, 8, 10, 20}, subject to the capacity constraint (3.6). Note that for
N > 2, we have more unstable sub-systems than the available transmission slots meaning
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Figure 4.1: Aggregate error variance vs. error thresholds for NCSs with N ∈ {2, 4, 6, 8, 10}.

that at least one unstable sub-system has to be open-loop at every time-step. The variances in
Figure 4.2 are calculated via Monte Carlo simulations over a horizon of 2×105 samples. The
lower bound is determined by an optimal methodology developed in [33] that replaces the
hard constraint on the number of transmissions per time-step, i.e. (3.6), by an average trans-
mission rate constraint. For comparable results, we disregard the communication penalty in
Figure 4.2 by considering η= 0. Non-zero communication penalty results in a constant (av-
erage) scale up in all curves of Figure 4.2. We will however consider the penalties when
computing the bound for the average cost function Jave.

The selected error thresholds are the optimal values for each NCS setup taken from the
Figure 4.1, and the same values are used in Figure 4.2. The optimal values for the thresholds
can also be obtained from the analytic expression for the average cost Jave in (4.18), however
in the expense of conservatism. The deterministic feature of the bi-character policy (4.1) can
be removed to obtain the pure probabilistic scheduler, as introduced in (3.1), by considering
all sub-systems for the channel access competition at every time-step [84], i.e. by setting
λ= 0.

To compare our results fairly with the TDMA scheme, we derive the optimal pattern for
the token ring by brute force search over a window of finite time-steps. Recall that, optimal
TDMA pattern over infinite horizon is NP-hard problem. We search for the patterns among all
permutations which result in the minimum average error variance over the considered win-
dow for each NSC setup N ∈ {2, 4, 6, 8, 10, 20}. The search for the optimal TDMA pattern is
however not extendable to greater number of sub-systems and longer time windows. For ex-
ample, the brute force search for an NCS with N = 4 over 9 time-steps lasts nearly 11 hours
on a 3.90 GHz 4690 Core i5 CPU to return the optimal token ring. Furthermore, the optimal
pattern is highly sensitive with respect to the system parameters and the token ring changes
the order of transmissions considerably with rather moderate change of e.g. system matrices
Ai. In addition, we compare the performance of our bi-character approach with the CSMA
scheme assuming that transmission probability for a sub-system i with system matrix Ai is
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Figure 4.2: Comparison of the average error variance vs. number of control loops for differ-
ent scheduling policies.

pre-given by
A2

i
∑N

j=1 A2
j

at each time-step. As it can be seen in Figure 4.2, employing the CSMA

protocol results in an acceptable performance only up to N = 4. For N = 6 the variance takes
the value of magnitude 8× 103. This is expected as the CSMA policy allocates the channel
statically resulting in probable non-transmission state over a long horizon for an unstable
system. As the number of sub-systems increases, the performance efficiency of our scheduler
becomes more evident in comparison to the (near)-optimal TDMA and CSMA schemes. To
show that the deterministic feature of the bi-character policy (4.1) leads to enhanced over-
all NCS performance, we additionally plot the error variance under the pure probabilistic
approach, which can be simply obtained by considering λ = 0 for all sub-systems in (4.1).
Expectedly, the aggregate error variance grows compared to the bi-character scheduler, as
sub-systems with small errors might use the channel in the presence of those with large error
values.

Furthermore, the scheduling approach proposed in [33] suggests a bi-character scheme
which is identical to our proposed approach (4.1) in deterministic part, but alters the error-
dependent prioritization by a non-prioritized (uniform) assigning of channel access probabil-
ities (green curve in Figure 4.2). Indeed, if the number of qualified sub-systems for transmis-
sion, i.e. those who exceed their respective thresholds, is greater than the channel capacity,
say c, then the scheduler randomly selects c sub-systems out of the qualified ones according
to the uniform distribution. It can be seen that our approach outperforms all mentioned
scheduling schemes, in terms of the variance of network-induced error, especially when the
size of the NCS increases. More interestingly, the performance of the bi-character approach
closely follows the theoretical lower bound obtained from the optimal approach and does
not diverge considerably from it even by increasing number of sub-systems.

Table 4.1 provides analytic upper bounds for the average cost function Jave in (4.11) via
the expression (4.18), considering NCSs with N = {2, 4, 6, 8, 10}. The upper bounds are
calculated with the minimizing error thresholds derived from the analytical expression (4.18)
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and are considered to be equal for all sub-systems. Since the analytic upper-bound (4.18) is
conservative, the minimizing thresholds are not necessarily equal to the optimal thresholds
obtained from simulation results. In this table, we consider non-zero communication penalty
and for simplicity, we assume ηi = λ, which means that if the weighted error norm of a sub-
system is below its corresponding threshold, then having a transmission is more costly than
being excluded from channel access competition and consequently remaining open-loop. In
order to compare the analytic bound for Jave with the simulation results, we also computed
the aggregate error variance with the new error thresholds, as shown in Table 4.1, by Monte
Carlo simulations.

Table 4.1: Simulative mean variances vs. analytic upper bounds for the average cost (4.18)
with costly communication (ηi = λ)

Number of sub-systems (N) 2 4 6 8 10
Error threshold (λ) 0.28 6 10 15 18
Simulative mean variance 1.33 2.53 3.43 4.50 5.26
Upper bound on Jave 3.12 3.99 6.14 12.28 25.60

It can be seen from Table 4.1 that the analytic bound for Jave is conservative in compar-
ison with the simulation results. This is expected as the upper-bound (4.18) is derived for
the worst-case scenario and in addition we computed it via multiple upper-bounding. In
addition, the simulative aggregate error variances in Table 4.1, where the thresholds are ob-
tained from the conservative bound (4.18), are higher in comparison with that of Figure 4.2,
wherein the averages are calculated with the optimal thresholds in Figure 4.1. This is again
show the conservatism of the analytic bound (4.18) and is in accordance of our expectations.
Note that the analytic cost values shown in Table 4.1 are derived considering non-zero com-
munication penalty, while the communication penalty is not considered in the stimulative
results. The absence of the communication penalty in the average cost (4.18) decreases the
overall cost as demonstrated in the Table 4.2.

Table 4.2: Simulative mean variances vs. analytic upper bounds for the average cost (4.18)
with cost-less communication (ηi = 0)

Number of sub-systems (N) 2 4 6 8 10
Error threshold (λ) 0.28 6 10 15 18
Simulative mean variance 1.33 2.53 3.43 4.50 5.26
Analytic upper bounds on Jave 1.65 3.25 5.30 11.35 24.70

4.5 Summary

In this chapter, we first introduced a novel bi-character error-dependent scheduling mecha-
nism for multiple-loop NCSs under capacity constraints, with the scheduler possessing both
deterministic and probabilistic features. Introducing local error thresholds for each sub-
system, those with lower error values than their corresponding thresholds are determinis-

67



4 Centralized Bi-character State-dependent Scheduling Design

tically kept out of channel access competition. This typically decreases the congestion in
channel access requests and is in favor of those sub-systems with greater error values. The
deterministic feature of the bi-character scheduler is shown to be a useful addition to the pure
probabilistic scheme introduced in Chapter 3. The error thresholds, which determine which
sub-systems are allowed to submit transmission requests, can be tuned appropriately in order
to use the communication resource more efficiently. Afterwards, if the channel capacity is still
not enough for all those sub-systems who have submitted a transmission request, then the
probabilistic mechanism of the bi-character scheduler is triggered and it allocates the com-
munication channel among all those sub-systems according to a prioritized randomization.
We addressed stochastic stability under the bi-character policy in terms of f -ergodicity, and
later derived analytic uniform performance bound for an average cost function, comprised
of the network-induced error variance and communication penalty. Although the analytic
bound for the average cost is shown to be moderately conservative, it provides a measure
of the compact set towards which the error Markov chain is expected to converge, irrespec-
tive of the initial values. Our theoretical claims are validated through simulations and the
efficacy of our proposed bi-character scheme is illustrated when being compared with the
conventional scheduling architectures. Moreover, the simulation results suggest that the ad-
dition of deterministic feature is highly beneficial compared to pure probabilistic scheduling
mechanism.

4.6 Contributions

The presented results in this chapter are partially from the author’s own work in [99, 100].
Main efforts in this chapter are focused on stability analysis and performance evaluation of
an error-dependent bi-character scheduling policy which deterministically expels some of
the sub-systems from channel access competition based on a local threshold policy, before
allocating the channel in a biased probabilistic fashion among the remaining sub-systems.

Similar works in the area of real-time scheduling of resource constrained NCSs are accom-
plished, e.g. see [33, 50, 101–103]. As discussed in Section 4.4, our presented results differ
from the analysis in [33] as the authors of the mentioned work consider a uniform randomiza-
tion to allocate the communication channel, and the performance of our biased randomized
approach is shown to be superior. Moreover, the same threshold policy as in (4.1) is em-
ployed in [101] to allocate a multi-hop communication medium among sub-systems based
on the slotted ALOHA MAC scheme. A state-dependent local scheduling architecture is also
presented in [50] allocating the channel in a contention-based scenario depending on the
local measurement information and transmission history. However, non of the mentioned
works considered the error-dependency in two phases, i.e. probabilistic and deterministic,
so in that sense our presented results are completely original.

In the numerical section, the illustrative Figure 4.2 and Tables 4.1 and 4.2 are already
presented in the author’s own work [99]. Moreover, Figure 4.1 is presented in [100].
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Scheduling over Non-Ideal Channels

Control over shared communication resources often imposes various imperfections, such as
capacity limitation, congestion, collisions, time delays and data loss, that impair the con-
trol performance and can even lead to instability of the overall networked system. In real
applications of networked systems, we inevitably have to deal with one or some of those
mentioned challenges which need to be carefully considered when designing control and
scheduling strategies. In this chapter, we take into account non-idealities in the communi-
cation channel to evaluate the robustness of the proposed design approaches with respect to
the mentioned phenomena. More precisely, we address the control and scheduling designs
for a multiple-loop stochastic NCS wherein the local sub-systems exchange their sensory data
over a shared capacity-limited communication channel subject to data loss. Additionally, in
a centralized design, it is often assumed that the controlling units have constantly access to
global information from all distributed entities. In the preceding chapters, we assume that
the centralized scheduler receives network-induced error information from all sub-systems
which are requesting for a transmission. This however is an ideal assumption because this
sheer amount of information exchange cannot always be processed in timely manner, which
in turn gives rise to delays. Therefore, scheduling approaches requiring complete informa-
tion in every sampling times might not be feasible in practice due to the additional traffic
imposed by the scheduler to coordinate among different control loops. A desired architecture
should be capable of allocating resources efficiently even provided with partial information
from local entities. In this chapter, we also address the problem of scheduling with incom-
plete information and we show that our proposed scheduling approach is indeed robust with
respect to the lack of information from the entities who use the resources.

This chapter is organized as follows. We first introduce the challenges that may arise from
having a non-ideal shared communication channel among multiple control loops in Section
5.1. We then focus on the data packet loss in communication channels in Section 5.2 and
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show stability guarantees under event-based scheduling law over lossy channels. Section 5.3
investigates the effect of incomplete information for a centralized scheduler and presents a
modified architecture in order to cope with not having access to the central information in a
timely manner. Numerical evaluations in Section 5.4 illustrate that the proposed scheduling
approaches can indeed guarantee the required robustness with respect to those phenomena.

5.1 Non-Idealities in Shared Communication Channels

An ideal communication channel is usually referred to a data transmission medium over
which a data packet1, which is scheduled for channel usage, will be transferred without
end-to-end latency, and will surely be received by the intended station. The non-idealities
in a communication medium may come from two different sources; one from the physical
limitations of the communication infrastructure and the other one might be resulted from
the employed medium access control (MAC) mechanism. Network congestion is a direct
consequence of limited communication bandwidth and inevitably occurs when the incoming
data traffic from sending stations exceeds the outgoing traffic. Network congestion leads
to reduction of throughput, while results in an increase in dropouts and latency. Usually
network protocols employ compensatory mechanisms, such as re-transmission back-off tech-
nique in CSMA-CA (carrier-sense multiple access with collision avoidance), to reduce the
effects of network congestion. Although packet dropouts are often occur due to network
congestion, they may caused by other factors such as erroneous network links, malfunc-
tioning network hardware, weak-power wireless signals from stations located far, or even
intentionally through e.g. dynamic source routing (DSR) routing protocol.
Apart from the aforementioned channel imperfections, we may face data packet collisions
which are caused if more than one sending stations attempt to transmit data packets through
a single channel link, simultaneously. It can be concluded from the definition of packet col-
lisions that the occurrence of such phenomenon is tightly coupled with the channel access
mechanism. We typically categorize various media access control strategies into two groups,
so called, contention-based protocols and contention-free protocols. The former type of MAC
protocols facilitate the situation where multiple stations are able to share a communication
medium without pre-coordination. In fact, data transmission in contention-based MAC pro-
tocols may occur at any time and the channel is typically granted based on the first-come,
first-served scenario. It is obvious that within such protocols, collisions may happen which
can lead to successive packet dropouts and consequently can impair the network perfor-
mance. The most famous contention-based communication medium is Ethernet which is de-
signed to make a network shared among multiple computers. In case a collision is detected,
the collided packets are either dropped or sent back to their corresponding stations to be
re-transmitted, e.g. CSMA-CD (carrier-sense multiple access with collision detection). On
the other hand, contention-free MAC protocols coordinate the channel access for every single
station which requests to have a transmission. Most famous types of contention-free MAC
protocols are time-division multiple access (TDMA), code-division multiple access (CDMA),

1Here in this dissertation, when we talk about data and communication channel, we refer to data with packet-
switched network format which can be transmitted through single-hop shared or multi-hop simultaneous
channels. Therefore, traditional bit-stream communication is not treated in this research.
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and frequency-division multiple access (FDMA) where they pre-determine a time-duration,
code sequence or frequency range over which one station should use the shared communica-
tion channel. Due to the pre-given schedule, this group of protocols represent collision-free
MAC strategies.
The appropriate type of MAC protocol to be employed is tightly dependent on the specific
application of the networked system, number of users or stations, and even geographical
conditions. Contention-based MAC strategies offer distributed implementation, represent
easy-to-install, low-cost and scalable channel access design which are essentially suitable for
networked systems with a large number of users. However, collisions take place inevitably
within these protocols and need to be handled with care as an important design criteria.
Contention-based protocols in addition might be less secure compared to contention-free
counterparts, as no global administration unit exits. In addition, collision avoidance mecha-
nisms, e.g. the listen-before-talk scheme, call for all nodes to sense the channel permanently,
which instead requires high energy consumption due to idle listening, overhearings, and mes-
sage overhead. Contention-free protocols on the other hand offer collision-free and precise
channel scheduling with higher throughput compared to contention-based protocols. More-
over, they consume less energy compared to e.g. carrier sense multiple access with collision
avoidance (CSMA-CA), where each node senses the channel permanently [104]. Further-
more, QoS support and bandwidth arbitration is facilitated as they can prioritize channel
access. However, their major drawback is lack of flexibility and scalability which make them
not quite suitable for large-scale networks due to their synchronous nature.
In the following sections, we will address the problem that whether event-based data schedul-
ing over communication channels subject to bandwidth limitations, packet dropouts and lack
of centralized information is beneficial. The considered type of scheduling mechanism in
this chapter is centralized, hence contention-free. Data collisions will be studied later in
the Chapter 6 when the decentralized contention-based scheduling mechanism is discussed.
In what follows, we first address the scheduling synthesis under packet dropouts (without
considering incomplete information for the scheduler) and then investigate the capability of
our introduced scheduling approach under information sparsity considering ideal channel
characteristics. However, the obtained results can be combined as these two phenomena are
independent from each other.

5.2 Data Scheduling with Packet Dropouts

We consider here in this section, the previously described NCS formulation in Chapter 4.
We assume an NCS comprised of N heterogeneous LTI control loops, with stochastic plants
described by the difference equation (2.1), coupled through a non-ideal shared communica-
tion network subject to the capacity constraint (2.2). The control process is assumed to take
an emulation-based form and the local controllers are synthesized according to the LQG
framework, as discussed in Chapter 2 through expressions (2.10)-(2.13). The distributed
model-based estimators are also designed as expressed in (2.4). Moreover, the scheduling
mechanism in this section has the identical profile as the bi-character error-dependent
prioritizing architecture which is comprehensively introduced in Section 4.1. In addition to
the mentioned characteristics of the local sub-systems and the communication network, we
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assume in this section that the communication channel is subject to data packet dropouts.
Further in Section 5.3, we analyze the event-based scheduling design assuming that the
scheduler does not have access to the updated events information from every sub-system at
every time-step.
Assume that the centralized error-dependent bi-character scheduling law introduced in
(4.1) is employed as the contention-free mechanism to allocate the limited communication
resource among the sub-systems. To take into account the packet loss, we need to monitor
if a packet is successfully received by the end-station or not. Assume that the successful
transmission of a sub-system i which has been granted the channel access by the scheduler,
at a time-step k, is acknowledged by the binary-valued signal γi

k
as follows:

γi
k
=

¨

1, x i
k

successfully received

0, x i
k

dropped.

Therefore, the aggregate state vector [x iT

k
, eiT

k
]T, corresponds to sub-system i, can be

described as (2.6), and therefore the overall NCS state vector [xT
k

, eT
k
]T is expressed as

follows:

�

xk+1

ek+1

�

2n

=

�

A− BL (In −∆k+1)BL

0n×n (In −∆k+1)A

�

2n×2n

�

xk

ek

�

2n

+ [wk]2n, (5.1)

where, the parameters A, BL, and [wk]2n are already described in (3.2), and,

∆k+1 =





δ1
k+1γ

1
k+1 0

...
0 δN

k+1γ
N
k+1





n×n

.

The dropout model considered in this chapter is deterministic, i.e. we assume the com-
munication channel experiences m dropouts over a finite length time-interval. Then we
address how stability margins change with respect to the number of dropouts. However,
counterpart stochastic models for packet dropouts, i.e. assigning a dropout probability to
each sub-system which is awarded the channel access at every time-step, may similarly be
considered, see e.g. [105, 106]. In what follows, we show that stochastic stability of NCSs
over shared communication network which are subject to packet dropouts can be shown
employing event-based data scheduling.

5.2.1 Stability Analysis

Here, we should remind that the preliminary definitions, propositions and theorems
presented in Section 3.3.1 are all valid so we may frequently recall them in this section.
Moreover, the scheduling mechanism and the related parameters such as error thresholds
and weight matrices follow the bi-character event-based architecture introduced in (4.1).
In addition, the illustrative example presented in Section 3.3.2 to insist the need for
modification of the one-step drift operator ∆V (ek) defined in (3.3) can be repeated in this
section again, to justify the use of the multi-step drift operator.
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First, we select the error-dependent non-negative real-valued Lyapunov candidate
V : Rn→ R as follows:

V (ek) =

N∑

i=1

eiT

k
Qiei

k
=

N∑

i=1

‖ei
k
‖2

Qi .

Then it is straightforward to check that, under the capacity constraint (3.6), i.e. only one
data packet is allowed to be sent through the communication channel at every time-step,
if a packet which is scheduled for transmission is dropped in the communication channel,
then the length of the interval over which Theorem thm:driftcrit can be employed, needs to
be increased by one. Indeed, we can imagine that, instead of having a transmission from
the scheduled real sub-system, a virtual sub-system has transmitted. Therefore, similar to
the proof of Theorem 3.2, and assuming that over the interval [k, k + N], m packets are
dropped, we can modify the multi-step drift operator (3.7) over the time horizon of N +m

time-steps, as follows:

∆V (ek, N +m) = E

�
N∑

i=1

‖ei
k+N+m
‖2

Qi

�
�ek

�

−
N∑

i=1

‖ei
k
‖2

Qi . (5.2)

It should be recalled that ergodicity is an asymptotic type of stability, thus if it holds according
to a negative drift over an interval, then it holds by defining the drift over any longer interval.

Theorem 5.1. Consider an NCS consisting of N heterogeneous LTI stochastic sub-systems mod-

eled as (2.1), and a transmission channel subject to the constraint (3.6), and the control, es-

timation and scheduling laws given by (2.3), (2.4) and (4.1), respectively. Assume that the

communication channel experiences m ∈ N ∪ {0} packet dropouts. Define the multi-step drift

(5.2) over any time interval of length N+m. Then for any positive λi ’s and positive definite Qi’s

the Markov chain (2.17) is f -ergodic.

Proof. See Appendix A.2.

Remark 5.1. Similar stability guarantees can be provided for a probabilistic model of packet
dropouts, i.e. by assigning a probability of dropping out to each data packet which is granted
the channel access. Comprehensive stability analysis for this scenario is not brought in this
dissertation, but it follows the same ideas for the deterministic packer dropout scenario.

Remark 5.2. Uniform performance bounds for the average cost function Jave introduced in
(4.11) can similarly be obtained when packet dropouts are taken into account. As it is shown
for stability proof, we can take the same scenario and extend the horizon from N to N+m and
obtain initial-value-independent upper bounds for Jave. The upper bounds would expectedly
be greater than that of the case without packet dropouts, as derived in Chapter 4.

5.3 Scheduling with Incomplete Event Information

So far, in the design of centralized event-triggered scheduling mechanisms in this disserta-
tion, we have assumed that the scheduler is provided with the updated event information,
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in a timely manner, from all sub-systems who decide to participate in the channel access
competition. In this section however, we take into account the possibility that the event
information from one or more than one of the sub-systems, which are requesting for channel
access, are received by the scheduler with some delays.
To clarify further analyses while taking into account the delays in sending event information
for the centralized scheduler, we should here mention that it is assumed that the NCS
of interest is associated with two different communication media for data transmission.
One is the shared communication channel over which the sub-systems transmit their state
information to their corresponding controllers (if they are awarded the access by the
scheduler). This communication channel is subject to the capacity constraint c < N , as well
as the possibility that the scheduled data packets are dropped (see Section 5.2 of the present
chapter.). We assume that the aforementioned communication channel is delay-free, i.e. if
a sub-system is awarded the access at some time k′, and if the data packet is not dropped
(i.e. θ i

k′ = 1), then the ith controller will be immediately updated with the transmitted state
information.
There is, in addition, another communication channel established between the sub-systems
and the centralized scheduling unit over which the local sub-systems who intend to transmit,
send their event information (weighted error norms in this dissertation) to the scheduler.
This channel is assumed to have no capacity constraint since the amount of data being
exchanged over this channel is much lower than the data traffic load over the former com-
munication channel. This channel, however, is supposed to be subject to the time-varying
delay d i

k′ . This declares that despite a transmission request from a local sub-system i is
submitted at some time k′, the required error information needed for error-dependent
scheduling is received by the scheduler with some delay time d i

k′ . These delays might be
induced by scheduler overhead or from congestion in the corresponding channel if a lot
of sub-systems send their information in one time-step. Consequently, the scheduler will
consider that request as soon as it is received. Delay time d i

k′ is assumed to be a multiple of
sampling time and can vary time to time for each sub-system, but is assumed to be finite.
From now on we make difference between these two channels by denoting the former
channel by communication channel, and the latter by scheduling channel.
It is straightforward to check that only the scheduling policy is going to be affected by these
introduced delays and not the difference equation (2.8). Assuming that not all sub-systems
can simultaneously transmit according to (2.2), the following bi-character error-dependent
rule defines the channel access probability for each sub-system i ∈ {1, . . . , N} at time-step
k + 1, given possibly the outdated event information form one or more of those eligible
sub-systems, according to a deterministic-probabilistic probability measure:

P[δi
k+1 = 1|e j

k
,λ j] =











0, ‖ei
k
‖2

Qi ≤ λi

1, ‖ei

k−d i
k

‖2
Qi > λi ∧ nλ,k ≤ c

‖ei

k−di
k

‖2
Qi

∑

nλ,k
‖e j

k−d
j
k

‖2
Q j

, ‖ei

k−d i
k

‖2
Qi > λi ∧ nλ,k > c,

(5.3)

where, λi ’s represent the local error thresholds for sub-systems i ∈ {1, . . . , N}, d i
k

denotes the
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Figure 5.1: Schematic of centralized error-dependent scheduling mechanism with channel
imperfections.

delay time in transmission request submission at time-step k, and Qi’s are symmetric positive
definite weight matrices. Moreover, nλ,k denotes the number of qualified sub-systems for
channel access competition, while c < N denotes the channel capacity.
As the local errors are known to their corresponding control loops, the first argument of policy
(5.3) is checked locally within each sub-system to decide whether a transmission request
should be submitted. If the condition ‖ei

k
‖2

Qi > λi holds, then, a transmission request from
sub-system i is submitted at time-step k to the scheduler. Depending on the delay time d i

k
,

the scheduler takes the channel access request into account either in the same time step (in
case d i

k
= 0) or later on (in case d i

k
6= 0). It can be seen from (5.3) that only the norm of error

is required for the scheduler to assign the priorities, and not the whole error vector. If a sub-
system is awarded the channel access, either from a transmission request at that current time-
step or from a delayed request, the corresponding controller will be updated with the latest
state vector. If nλ,k ≤ c, then all of the received requests will be allowed to transmit as seen
from the second argument of (5.3). Otherwise, the channel is allocated probabilistically until
the capacity is reached, while the other transmission requests are blocked. The described
NCS with both communication channel and scheduling channel, employing the scheduling
process under the delay time d i

k
is schematically depicted in Figure 5.1.

5.3.1 Stability Analysis

Reminding that the preliminary definitions, propositions and theorems discussed in Section
3.3.1 are valid, we invoke Theorem 3.1 in order to show that the modified event-based
scheduling law (5.3) preserves f -ergodicity of the network-induced error ek, if the multi-step
drift is defined over the time-interval [k, k + N].
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5 Scheduling over Non-Ideal Channels

Theorem 5.2. Consider an NCS consisting of N heterogeneous LTI stochastic sub-systems mod-

eled as (2.1), and a transmission channel subject to the constraint (3.6), and the control and

estimation processes are given by (2.3) and (2.4), respectively. Suppose that the transmission

request from an arbitrary sub-system i is received by the scheduler with delay time d i
k
< N. As-

suming that the channel access is scheduled by (5.3), then the Markov chain (2.17) is f -ergodic.

Proof. See Appendix A.2.

Remark 5.3. In case d i
k′ ≥ N , i.e. the error of system i remains unknown to the scheduler

for the entire interval [k, k+N], f -ergodicity of the Markov chain cannot necessarily be
guaranteed by computing the drift over [k, k+N]. Instead, one can extend the length of the
interval to 2N , 3N , etc. to show ergodicity, assuming that d i

k′ is finite.

5.4 Numerical Evaluations

In this section, we numerically validate the robustness claims of our bi-character approach
with respect to the possibility of packet dropouts, and scheduling with incomplete event in-
formation. For the results to be comparable with the numerical evaluations in the previous
chapters, where we assume pure probabilistic and bi-character policies but with ideal com-
munication channels, we consider similar NCS setup as employed in Section 3.4. Therefore,
we assume NCSs with different number of sub-systems N ∈ {2, 4, 6, 8, 10}, where each NCS
is comprised of two heterogeneous classes each consisting of N

2 homogeneous scalar sub-
systems. The first class includes unstable control loops with parameters A1 = 1.25, B1 = 1,
while the second class contains control loops with stable processes where the parameters
are A2 = 0.75, and B2 = 1. We select x i

0 = 0 for each sub-system i ∈ {1, . . . , N}, and
wi

k
∼N (0, 1). Local sub-systems are assumed to be stabilized, in case a transmission is suc-

cessfully received, by deadbeat control laws Li = Ai, and the model-based observer is given
as (2.4). For illustrative purposes, we select Qi = I for all i ∈ {1, . . . , N}, which suggests that
all sub-systems have identical pre-given priorities.

We compare the performance of our bi-character scheduling mechanism under channel
phenomena such as data loss and delay in transmission request submission, with the pure
probabilistic policy proposed in Chapter 3, and the bi-character policy for ideal communi-
cation channels presented in Chapter 4. The error thresholds λ are assumed to be equal
for all sub-systems in a certain NCS setup, and they are selected optimally according to the
Figure 4.1, for the ideal channel assumptions. The selected values for different NCS setups
are shown in Figure 5.2

Figure 5.2 demonstrates the simulation results providing the comparison between dif-
ferent strategies for NCSs with different number of sub-systems N ∈ {2, 4, 6, 8, 10}. The
communication constraint (3.6) asserts that for NCSs with N > 2, we have more unstable
sub-systems than the available transmission slots per time-step (c = 1). The averages are
calculated via Monte Carlo simulations over a horizon of 5× 105. The lower bound is deter-
mined by an optimal methodology developed in [33] that replaces the hard constraint on the
number of transmissions per time-step by an average transmission rate constraint (the grey
solid curve in Figure 5.2). As already discussed, employing the bi-character design leads to
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Figure 5.2: Comparison of the average error variance vs. number of control loops for differ-
ent scheduling policies.

improved average error variance compared to the pure probabilistic protocol, (see Section
4.4).

The average error variances are calculated, for the same thresholds λ, considering one
packet dropout over every N time-steps, for an unstable control loop (red-dotted curve in
Figure 5.2). The sub-system for which the corresponding packet is supposed to be dropped
and the time-step at which the packet dropout happens, are chosen randomly. The error vari-
ance expectedly increases compared to the case without packet dropouts (yellow solid curve
in Figure 5.2). We also simulate the average error variances considering a randomly chosen
delay time d i

k
∈ [0, N − 1] for two sub-systems; one stable and one unstable (green-dotted

curve in Figure 5.2). As it can be seen in Figure 5.2, the error variance is slightly different
compared to the ideal case where d i

k
= 0. This observation is expected since a delayed trans-

mission request might lead to a higher chance of channel access for a specific sub-system (as
the corresponding error might decrease over time). Moreover, even if a transmission request
with the highest priority is received undelayed, an eventual transmission is not guaranteed
due to the probabilistic character of the scheduling policy. Thus the average variances when
receiving the transmission requests with delay remain close to the undelayed scenario.

5.5 Summary

In this chapter, we investigated the applicability of the event-triggered prioritizing bi-
character scheduling rule when the shared communication channel does not guarantee that
a scheduled data packet will be received by the receiving end station, i.e., the channel is sub-
ject to packet dropouts. In addition, we analyzed robustness of the scheduling architecture
assuming that the event information is not timely updated, and the scheduler has to cope
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5 Scheduling over Non-Ideal Channels

with outdated channel requests. Considering a deterministic model for packet dropouts,
it is shown, both theoretically and numerically, that the margins of stability are enlarged
with increasing number of dropouts, (compared to stability margins in Chapter 4). As a re-
transmissions is not allowed in case a packet is dropped, this conclusion is expected, since a
dropout is equivalent to have N open-loop sub-systems. We proved that the network-induced
error remains f -ergodic, even if the scheduled data packets are dropped, but over a lengthier
time horizon.
Furthermore, it is of great importance to evaluate the robustness of the proposed centralized
scheduling approach with respect to availability of up-to-date event information. Since the
deterministic part of the scheduler can be implemented locally within each sub-system, the
centralized event information is needed only for assigning the priorities. However, chan-
nel access is eventually granted according to a biased randomization, and not according
to the priorities. Of course a sub-system with high priority is more likely to be awarded
the channel access, but within our approach this is not deterministically guaranteed. We
showed theoretically that f -ergodicity holds in case the scheduler is not updated perfectly,
and consequently the priorities are assigned based on outdated event information. Through
numerical evaluations, it is shown that performance of the scheduler remains in the vicinity
of the case which the scheduler is updated routinely. Expectedly, increasing the number of
outdated event information from channel requesting sub-systems, especially from unstable
sub-systems, results in further increase in the error variance, as discussed in Remark A.1.

5.6 Contributions

The presented theoretical and numerical results in this chapter are partly from the au-
thor’s own research in [99, 107]. The main contribution of this chapter is to evaluate ro-
bustness of event-triggered prioritizing bi-character scheduling law with respect to packet
dropouts and lack of up-to-date centralized event information for the scheduler. Numerous
works have considered different aspects of non-ideal communication channels, where among
all [79,80,82,83,108] are addressing the problem of data packet loss either within determin-
istic or probabilistic frameworks. In [80, 82, 108], probabilistic models of dropout are used
where in the latter two the dropouts are modeled according to the Bernoulli process. In the
deterministic framework [79], worst-case bounds for the number of consecutive dropouts
are derived. In [83] the authors seek performance guarantees under network-induced de-
lays and varying data packet rates in a probabilistic setting, by modeling a packet dropping
network as an erasure channel.

We discussed that our proposed scheduling architecture is capable of coping with data
packet dropouts in a deterministic fashion. Moreover, the scheduler is capable of effectively
assigning the priorities in the absence of up-to-date error information from the networked
entities. As the proposed scheduling approach in this dissertation is original, comprehensive
robust analysis is essential. It is worth mentioning that, in centralized framework collisions
do not take place, however, we will extensively discuss about collisions in the next chapter,
when we introduce the decentralized event-based scheduling mechanism.

Numerical evaluations validate our claims about performance margins through the illus-
tration Figure 5.2, which is taken from the author’s own work in [107].

78



6

Decentralized Implementation of State-

Dependent Scheduling Law

Scheduling protocols can be realized in a centralized or distributed fashion. Time division
multiple access (TDMA), frequency division multiple access (FDMA), code division multi-
ple access (CDMA), and Try Once Discard (TOD) are well-known centralized protocols pre-
ferred in, for instance, medium-size wireless sensor networks. Centralized approaches offer
collision-free and precise channel scheduling with higher throughput compared to decen-
tralized protocols. Moreover, the offline centralized approaches consume less energy com-
pared to e.g. carrier sense multiple access with collision avoidance (CSMA-CA), where each
node needs to sense the channel permanently. Furthermore, QoS support and bandwidth
arbitration is facilitated as they can prioritize channel access. However, they lack flexibility
and scalability and therefore are not well-suitable for large-scale networks due to their syn-
chronous nature. Furthermore, centralized protocols are characterized by a single point of
failure, which can compromise the NCS performance. Distributed approaches however, rep-
resent easy-to-install, low-cost and scalable scheduling architectures suitable for NCSs with
a large number of nodes. However, collisions take place inevitably within distributed pro-
tocols and need to be handled with care in the NCS design. In terms of overall operational
security, they might be insecure as no global administration unit exits. In addition, collision
avoidance mechanisms, e.g. the listen-before-talk scheme, call for all nodes to sense the
channel permanently, which instead requires high energy consumption due to idle listening,
overhearings, and message overhead. Altogether, both centralized and distributed schedul-
ing mechanisms are practical depending on the application purpose and therefore need to
be comprehensively investigated.

In this chapter, we discuss the implementation of the bi-character error-dependent
scheduling approach in decentralized fashion for multiple loop stochastic networked control
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systems in which the individual control loops are coupled through a shared communication
channel. The results in this chapter correspond to three main contributions; first in Section
6.1, we assume that the local schedulers have access to the true error state of their corre-
sponding local sub-systems. Then the results are extended in Section 6.4 to the case where
the local event-triggers are defined assuming that only noisy sensor measurements are acces-
sible and not the true error values. Finally, we address the problem of event-based medium
access control for multi-hop networks in Section 6.5. In this section, we assume that true
state values are accessible, i.e. similar to the assumptions in Section 6.1, however the results
can be generalized with almost the same procedure as in Section 6.4. In all mentioned con-
tributions, the decentralized scheduling designs are assumed to combine deterministic and
probabilistic attributes to efficiently allocate the limited communication resource among the
control loops in an event-based fashion. Given local error thresholds, each control loop de-
termines whether to compete for the channel access in a deterministic manner. Note that
this process is performed locally within each control loop because the triggering condition
is checked locally. Therefore, implementation of the probabilistic scheduling process in de-
centralized fashion is indeed discussed in this chapter. It should be mentioned here that, in
the third section of this chapter, we assume that the channel access is determined based on
probabilistic slotted ALOHA protocol, i.e. no state-dependent prioritization is considered to
select the sub-systems for channel access. So, the approach is known to be decentralized.
We demonstrate stochastic stability of the described NCSs under decentralized MAC archi-
tectures in terms of Lyapunov Stability in Probability (LSP). The numerical results certify our
stability claim and illustrate that our approach improves resource utilization and reduces the
network-induced error variance in comparison with time-triggered and uniform random ac-
cess scheduling policies.
This chapter is organized as follows. We present the decentralized bi-character error-
dependent scheduling architecture under the assumption that perfect state information is
accessible for event-triggers, and discuss the structural properties of such systems in Sec-
tion 6.1. In addition, the implementation procedure of the proposed scheduling scenario is
addressed for practical NCS realizations. In Section 6.2 stochastic stability of the described
capacity-limited NCSs under the introduced decentralized scheduling rule is addressed by the
concept of Lyapunov stability in probability. A comprehensive analysis shows that the col-
lision rate can be effectively controlled by the design parameters which consequently leads
to the performance enhancement. Numerical simulations in Section 6.3 validate our stabil-
ity assertion and corroborate the improved performance claims. Then the same sequence of
analyses is performed in Section 6.4 wherein we relax the assumption on having access to
the perfect state information, and instead assume that only noisy sensor measurements are
available. Finally, Section 6.5 presents stability and numerical evaluations of a bi-character
scheduling design in form a threshold policy complemented by slotted ALOHA MAC protocol
in a multi-hop channel scenario.
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6.1 Event-based Decentralized Prioritized Scheduling

Design

In Chapter 3 we introduced the pure probabilistic event-based scheduling rule where it
follows by incorporation of the deterministic feature to the scheduler in Chapter 4. Both
of the proposed scheduling approaches are intrinsically centralized which assumes that
the event triggers, in our case the weighted error norms, from all sub-systems involved in
channel access competition, are provided for the scheduler at every time-step. Therefore,
the scheduling process for those chapters has the form of a centralized control unit where
all sub-systems are connected to and update their event information in a timely manner.
This approach, as earlier discussed, might not always be desirable due to e.g. far distance
between the sending stations, high amount of data which needs to be transmitted and
analyzed by the centralized scheduling unit, extra transmission costs, and even privacy
issues. Decentralized control and scheduling mechanisms, which they introduce local deci-
sion making units capable of execution of control and scheduling inputs with only having
access to the local information, are appropriate architectures for those networked systems.
In what follows we introduce a decentralized event-triggered error-dependent prioritizing
scheduling mechanism which is capable of efficiently allocating scarce communication
resources among multiple control entities according to their local real-time conditions.
Recalling expression (2.14) as the mapping from the centralized information set {e1

k
, . . . , eN

k
}

to the binary scheduling variable δi
k+1 for every sub-systems i ∈ {1, . . . , N}, we can state the

decentralized error-dependent counterpart mapping as follows:

δi
k+1 = ̺

i
k
(ei

k
), (6.1)

where, the scheduling law ̺ i
k

might be either deterministic, probabilistic, or a combination
of both, but is allowed to be solely dependent on local information of sub-system i. We will
discuss the specific form of the scheduling rule further in this section.
The sub-systems characteristics, i.e. the dynamics of the processes, local control laws and
local estimators are assumed to be identical to the described model in Chapter 3 and Chapter
4. Therefor, the overall NCS model derived in Section 3.2 will be used throughout this
section as well. Therefore, we assume to have the overall NCS state dynamics expressed
in (3.2), with the only difference to be the selection of the scheduling variables δi

k+1’s, and
of course the effect of collisions should be taken into account, as a direct consequence of
having decentralized local schedulers. A multiple-loop NCS with decentralized scheduling
mechanism is schematically depicted in Figure 6.1.

In order to introduce the decentralized scheduling mechanism, it is essential to have a
closer look at the communication channel. First of all, we assume that the operational time
scale of the communication channel, denoted as micro time slots, is much finer than that
of the local control systems, denoted as macro time slots. Lets define T as the sampling
period of the control systems. Therefore, we assume between two consecutive macro time
slots k→ k+1, the micro slots are distributed as {kT, kT +τ, . . . , kT +(h−1)τ, kT + hτ},
where τ is the temporal duration of each micro slot and h ≫ 1 denotes the number of
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Figure 6.1: A multiple-loop NCS with a shared communication channel and decentralized
scheduling mechanism.

micro slots within one macro slot, hence T = hτ. Considering the current communication
and telecommunication standards in terms of bandwidth and speed, and compare it with
proper sampling rate of LTI control systems, it is quite reasonable to assume h ≫ 1. One
data packet can be transmitted through the communication channel starting from every
micro time slot {1, . . . , h}. As a simplifying assumption, we consider that a data packet will
be received by the corresponding controller immediately after being transmitted, therefore
even if the packet is sent at time slot (h− 1)τ, it is assumed to be received before starting
the next macro time slot.
We aim for a decentralized approach, i.e. the ith sub-system is provided with only local
information Ai, Bi, Wi, λi, Z i

k
and the distribution of x i

0, where λi is the local error threshold
and Z i

k
= {z i

0, . . . , z i
k
}. We remind that

z i
k
=

¨

x i
k
, δi

k
= 1∧ γi

k
= 1

∅, otherwise.

Every sub-system i ∈ {1, . . . , N} has the knowledge about the latest local error ei
k′ at an

arbitrary time-step k′ as well as λi to decide whether to compete for channel access at
the subsequent time-step k′ + 1. Remind that the deterministic feature of the centralized
bi-character scheduling rule (4.1) is a local threshold policy, as every sub-system can check
whether its weighted error norm exceeds the local threshold. Therefore, the deterministic
scheduling process introduced in Chapter 4, can be carried over to the decentralized scenario
without any modification. Hence, if the weighted square norm of the latest time-step error
of a sub-system i is smaller or equal to the given local threshold, sub-system i will be
deterministically excluded from the channel access competition. Thus, we have
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P[δi
k′+1 = 1|ei

k′] = 0 if ‖ei
k′‖

2
Qi ≤ λi. (6.2)

As already discussed, the weighting matrix Qi contains characteristic information about each
local sub-system which specifies how frequent a sub-system needs data transmission. For
example, an unstable system usually needs more data transmission than a stable system and
consequently is more sensitive to the size of error. To account for this, the corresponding
weight matrices can be selected to be larger for unstable sub-systems to give them higher
chance of transmission than the stable ones.
Each sub-system i which becomes eligible to compete for the channel access at time-step
k′ + 1, satisfies the following condition:

‖ei
k′‖

2
Qi > λi. (6.3)

After determining whether a sub-system is eligible for transmission through the determin-
istic threshold policy (6.2), the allocation of the channel is performed via a decentralized
probabilistic mechanism. The mechanism is error-dependent in the way that the sub-systems
with larger error values have higher chances of being granted the channel access. In the
absence of centralized information, our proposed probabilistic mechanism determines
the transmission order locally within each sub-system. For the purpose of simplicity in
derivations, we assume that only one sub-system can transmit at multiples of τ between
every subsequent time-steps k→ k+ 1, i.e.

N∑

i=1

δi
k
= 1. (6.4)

The provided results can be readily extended for
∑N

i=1δ
i
k
= c < N assuming that the c

channels are single-hop. The multi-hop scenario will be treated later in Section 6.5.
Assume that each station which is about to send a data packet over the communication

channel is capable of sensing or hearing the carrier to see if there exists free bandwidth. The
idea behind the decentralized scheduling law is then straightforward; an eligible sub-system
for channel access at some time-step k′ + 1 locally inspects whether the channel is free or
occupied. If the channel is sensed as free (idle), then the data packet is sent, otherwise, if
the channel is sensed as occupied (busy), the sub-system backs off. We ideally assume that
upon granting the channel access to a sub-system, the data packet will be received instantly.
The channel is also assumed to be error-free which is not a visionary assumption due to the
negligible error rate of existing high-speed communication technologies and high reliability
guaranteed by error detection and correction mechanisms.
Before presenting our proposition for the decentralized scheduling law, we first introduce
integer random variables νi

k′ ∈ {τ, 2τ, . . . , (h − 1)τ}, called waiting times. The waiting
times denote the time duration a transmission-eligible sub-system i, which satisfies the
condition (6.3), waits before listening to the channel. In the other words, sub-system i

starts sensing the channel at time k′h + νi
k′ . If the channel is sensed as free, sub-system

i immediately transmits, i.e. at communication time slot k′h + νi
k′ . Otherwise, it backs
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off and does not attempt to re-transmit again until the end of that time-step. Indeed, we
assume that each sub-system attempts only once for transmission at every time-step k′,
and if the attempt fails, that sub-system remains open-loop and tries to transmit at further
time-steps {k′+1, k′+2, . . .}. It is worth mentioning that the dependency of random waiting
times, which is a MAC layer parameter, on error values from the application layer (i.e. the
control layer), couples the medium access to the application. In the following, we propose
for a sub-system i that the waiting time νi

k′ to be chosen randomly from an arbitrary but
finite-variance and concave probability mass function with the given error-dependent mean

E[νi
k′] =

αi
k′

‖ei
k′‖2Qi

. (6.5)

where, αi
k′ ∈ R+ is a tuning parameter, and E[νi

k′] ∈ (0,αi
k′λ
−1
i
) according to the assumption

(6.3). The random variables νi
k′ for each sub-system are chosen according to their corre-

sponding local probability mass functions. The concavity of the local distribution empha-
sizes the prioritized character as it ensures that the random waiting times are chosen with
higher probabilities around the mean (6.5). The local distribution functions are defined
on the interval [k′h, (k′ + 1)h] and for the next time-step the same procedure repeats with
the updated local error values. Having said that, each sub-system i randomly chooses its
νi

k′ ∈ [k′h+τ1, . . . , k′h+ τh]. Figure 6.2 depicts a schematic of probability mass functions
for two sub-systems competing for sole channel slot within one time-step.

The intuition behind the error-dependent mean (6.5) is that if a sub-system is character-
ized by a large error value at a specific time-step k′, then the mean of the local distribution,
from which the waiting time is chosen, becomes small. Consequently, the waiting time is
more likely to be shorter which eventually increases the chance of sensing the channel as
free. Finally, depending on the randomly chosen waiting times, the sub-system with the
shortest waiting time is the only sub-system which senses the channel as free, and transmits.
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The other candidates have to wait for next time steps, when the same process repeats again
depending on the updated local error values. This happens due to the constraint (6.4) that
only one data packet is allowed to be sent through the channel.
It should be noted that the mean value E[νi

k′] may not coincide exactly with a sampling

instance τs ∈ [τ1,τh] of the discrete local distributions because
αi

k′
‖ei

k′‖
2
Qi

may take any values

and not necessarily the multiples of τ. To take this into account, we select the closest time

instance to the value
αi

k′
‖ei

k′‖
2
Qi

to be the mean of the discrete distributions, i.e. we choose

either τs or τs+1, where τs <
αi

k′
‖ei

k′‖
2
Qi

< τs+1. The assumption h≫ 1 ensures that the distance

αi
k′

‖ei
k′‖

2
Qi

− τs or τs+1−
αi

k′
‖ei

k′‖
2
Qi

is negligible in comparison with h.

As the introduced policy is decentralized, the possibility of packet collisions should also be
accounted for. Within the presented scenario, a collision occurs if at least two sub-systems
choose exactly identical waiting times and start sensing the channel simultaneously. We
assume that each sub-system is informed by the collision detection unit, in case a collision
occurs. Moreover, assuming that if a collision is detected, the collided packets are all
dropped, a collision can be treated as a dropout in the communication channel. As already
discussed for the packet loss in Chapter 5, at every time-step k, a successful transmission is
reported via the binary variable γk:

γi
k
=

¨

1, x i
k

successfully received

0, x i
k

dropped.
(6.6)

Similarly, the dynamics of the local error state ei
k

becomes

ei
k+1 =
�

1− θ i
k+1

�

Aie
i
k
+wi

k
, (6.7)

where θ i
k
= δi

k
γi

k
. We can achieve such a design within a TCP-like protocol, where the

acknowledgment of a successful transmission is sent over an error-free reverse link to each
sub-system.
Indeed, having the scheduling law in probabilistic fashion is beneficial in decreasing the rate
of collisions. First, if two or more sub-systems end up having identical error values, then
E[νi

k′] = E[ν
j

k′], which within our proposed probabilistic mechanism, does not necessarily
imply νi

k′ = ν
j

k′ . Moreover, the probabilistic scheduling law excels when having homoge-
neous sub-systems with similar dynamics. Usually, the noise values are negligible with
respect to the systematic error, then considering the waiting time in absolute form would
increase the chance of collisions.
Assume that Gk′ denotes the set of eligible sub-systems for transmission at the next time-step
k′ + 1, i.e.

j ∈ Gk′ if ‖e j

k′‖
2
Q j > λ j. (6.8)

Considering the communication constraint (6.4), the probability that a sub-system j ∈ Gk′
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Figure 6.3: Multiple-loop NCS with error-dependent decentralized scheduling algorithm and
collision detection unit.

transmits at time-step k′ + 1 can be expressed as

P[δ
j

k′+1 = 1|e j

k
] = P[ν

j

k′ < ν
l
k′], ∀l ∈ Gk′, l 6= j. (6.9)

Basically, if a sub-system j transmits then it ensures that its waiting time has been shorter than
all other eligible sub-systems l ∈ Gk′, l 6= j, i.e. ν j

k′ < ν
l
k′. The sub-systems that find the chan-

nel occupied, might try to transmit in future time-steps adhering to the similar procedure,
if they are eligible depending on their updated error values. The decentralized algorithm is
schematically shown in Figure 6.3 for a multi-loop NCS with collision detection unit.

6.2 Stability Analysis

In this section, we study stability of multiple-loop NCSs with shared communication networks
subject to the capacity constraint (6.4), and the proposed decentralized scheduling policy
(6.2) and (6.9). Essentially, we show Lyapunov stability in probability (LSP) for the described
NCS. Before proceeding to the main stability results, we state some preliminaries about LSP.

6.2.1 Preliminaries

Definition 6.1. (Lyapunov Stability in Probability (LSP), [91]) A linear system with state
vector xk possesses LSP if given ǫ,ǫ′>0, exists ρ(ǫ,ǫ′)>0 such that |x0|<ρ implies
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lim
k→∞

supP
�

xT
k

xk ≥ ǫ′
�

≤ ǫ. (6.10)

The following lemma shows that, considering the separation property discussed in Chapter
2, the LSP is achievable by solely investigating the aggregate error state ek.

Lemma 6.1. For a shared resource multiple-loop NCS with the plants, controllers, estimators,
and state described by (2.1)-(2.6), the condition in (6.10) is equivalent to

lim
k→∞

supP
�

eT
k

ek ≥ ξ′
�

≤ ξ, (6.11)

where ξ′ > 0 and the constant ξ fulfills 0 ≤ ξ ≤ ǫ.

Proof. We know that the system state x i
k

for each control loop i evolves as

x i
k+1 = (Ai − Bi Li)x

i
k
+ (1− θ i

k+1)Bi Lie
i
k
+wi

k
. (6.12)

As already discussed in Chapter 2, the evolution of the error ei
k

is independent of the system
state x i

k
within each individual control loop i ∈ {1, . . . , N}. Furthermore, by assumption,

the emulative control law (2.3) ensures the closed-loop matrix (Ai − Bi Li) is Hurwitz. To-
gether with the assumption that the initial value x i

0 is randomly chosen from a bounded
variance distribution, it follows that the system state x i

k
is converging. In addition, the dis-

turbance process wi
k

is i.i.d. according to N (0, Wi), and is bounded in probability. Thus,
showing limk→∞ supP

�

eiT

k
ei

k
≥ ξ′

i

�

≤ ξi ensures existence of constants ǫi and ǫ′
i
> 0 such

that limk→∞ supP
�

x iT

k
x i

k
≥ ǫ′

i

�

≤ ǫi.
As individual control loops operate independently, we take the aggregate NCS state (xk, ek).
Then, the existence of ξ and ξ′ > 0 such that limk→∞ supP

�

eT
k

ek ≥ ξ′
�

≤ ξ, implies exis-
tence of ǫ and ǫ′ > 0 such that limk→∞ supP

�

xT
k

xk ≥ ǫ′
�

≤ ǫ, and the proof then readily
follows.

Remark 6.1. One can recall from Lemma 6.2 the separation property between the control
law and scheduling law synthesis discussed comprehensively in Chapter 2. Indeed, exis-
tence of the stabilizing control law ensures LSP of the system states, and therefore showing
the network-induced error also possesses LSP is enough to ensure that the aggregate state
[x i⊤

k
, ei⊤

k
]⊤ is Lyapunov stable in probability.

As expected values are more straightforward in pursuing further analyses than probabili-
ties, we employ the Markov’s inequality which ensures for ξ′ > 0

P
�

eT
k

ek ≥ ξ′
�

≤
E
�

eT
k

ek

�

ξ′
. (6.13)

The above inequality confirms that showing the error is uniformly bounded in expectation
ensures finding appropriate ξ and ξ′ > 0 such that (6.11) is satisfied for arbitrary ρ(ξ′,ξ).
Therefore, from now on, we focus on deriving upper-bound for the expectation of aggregate
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weighted quadratic error norm:

E
�

eT
k
Qek

�

=

N∑

i=1

E

�

eiT

k
Qiei

k

�

=

N∑

i=1

E

�

‖ei
k
‖2

Qi

�

, (6.14)

where Q = diag(Qi). Incorporating the weight matrices, the condition (6.11) can be
modified as

lim
k→∞

supP
�

eT
k
Qek ≥ ξ̄′
�

≤ ξ̄. (6.15)

Due to the capacity constraint (6.4), the boundedness of (6.14) cannot always be shown over
one step transition. Similar to the Chapter 3 and Chapter 4, this observation can be shown
via constructing the following illustrative example.
Illustrative example Consider an NCS composed of two identical scalar sub-systems
competing for the sole channel slot. For the illustrative purposes, assume Q1 = Q2 = 1,
α1

k
= α2

k
= 1, and λ1 = λ2 = λ̄. In addition, assume that both sub-systems start from

identical initial value at time-step k, i.e. e1
k
= e2

k
= ēk. To avoid triviality, consider that the

condition (6.3) is fulfilled and consequently both sub-systems are eligible for channel access
competition at the time-strep k + 1. Further, assume that both sub-systems have identical
local distributions to choose their waiting times ν1

k+1 and ν2
k+1 from. According to (6.5), both

distributions have the same means 1
‖ēk‖22

. Thus, the transmission chance for each sub-system

is 1
2 . Therefore, from (6.7) with ek = [e

1
k

e2
k
]T, it follows that

∑

i=1,2

E
�

‖ei
k+1‖

2
2

�

=
∑

i=1,2

E
�

‖
�

1− θ i
k+1

�

Aie
i
k
+wi

k
‖22
�

=
1
2

�

E[‖Aēk +w1
k
‖22|ek] + E[‖w2

k
‖22]
�

+
1
2

�

E[‖Aēk +w2
k
‖22|ek] + E[‖w1

k
‖22]
�

= tr(W1) + tr(W2) + ‖Aēk‖22,

which is not bounded in expectation for arbitrary ēk and system matrix A. As already dis-
cussed, between two consecutive transmissions of each sub-system, they operate in open-
loop. Hence, in general, the respective local errors are expected to grow. Thus to obtain
boundedness of error state, all sub-systems need to have transmission chances. Due to the
constraint (6.4), an interval of length N provides enough transmission possibilities.

6.2.2 Stability Analysis – Lyapunov Stability in Probability

After expressing all the necessary preliminaries, in this section we aim to show that the
proposed decentralized scheduling policy introduced in (6.2) and (6.9), leads to Lyapunov
stability in probability for the overall NCS. The stability analysis takes almost similar pro-
cedure as already discussed in Chapter 3 and Chapter 4 by dividing the entire state-space
to sub-spaces and then analyze the error state behavior in each of them. The change in the
notion of stochastic stability, i.e. from f -ergodicity to LSP, when employing decentralized
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Figure 6.4: Illustration of an LSP process in an uncountable state space.

scheduling rule is inevitable due to the possibility of successive packet collisions. Indeed,
f -ergodicity provides tighter stability margins than LSP, thus if a stochastic system is shown
to be f -ergodic, then it possesses LSP as well, but not the vice-versa. Figure 6.4 depicts a
schematic of an LSP process evolving in an arbitrary state-space. Despite the fact that in our
NCS scenario, packet collision has the same effect of packet dropout, i.e. both end up with
the channel being blocked, these two are resulted from different sources. A collision happens
as the direct consequence of MAC design while packet dropouts may occur due to hardware
malfunctioning and excessive channel traffic.

Similar to the previous chapters, we let the NCS of interest operate over the interval
[k, k + N], with arbitrary initial state ek. Similar to the proof of Theorem 3.2, we assume
that the network-induced error evolves from the initial time-step k until k + N − 1 and we
predict its evolution considering all the possible scenarios under the introduced decentralized
scheduling policy over the interval [k, k+N −1]. Then, looking at time-step k+N , we show
the aggregate error state ek+N fulfills (6.15). Stability of the overall NCS with aggregate
network state [xk, ek] is summarized in the following theorem:

Theorem 6.1. Consider an NCS with N heterogeneous LTI control loops, with the plants given

by (2.1), sharing a communication channel subject to the constraint (6.4). Given the control

laws (2.3) and scheduling laws (6.2) and (6.9), the aggregate network state [xk, ek] is Lyapunov

stable in probability for any positive λi ’s and αi
k
’s and any positive definite Qi’s.

Proof. Similar to the proof of the Theorem 4.1, we divide the sub-systems i ∈ {1, . . . , N} at
time-step k+N−1 into three disjoint but complementary sets c1− c3 covering the entire state
space Rn as follows:
Sub-system i:

c1: has either successfully transmitted or not within the past N −1 time-steps, and is in set
Ḡk+N−1, i.e.

i ∈ Ḡk+N−1 ⇒ ‖ei
k+N−1‖

2
Qi ≤ λi,

c2: has successfully transmitted at least once within the past N −1 time-steps, and is in set
Gk+N−1, i.e.

∃k′ ∈ [k, k +N − 1] : θ i
k′ = 1 and ‖ei

k+N−1‖
2
Qi > λi,

l
c3
1 has not transmitted within the past N − 1 time-steps, but has been in Ḡ at least once,

the last occurred at a time-step k+ r ′
i
, with r ′

i
∈ [0, . . . , N − 2],
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l
c3
2 has not transmitted within the past N−1 time-steps, and has been inG for all time-steps
[k, k + N − 1].

where,

i ∈
¨

Gk′ if ‖ei
k′‖2Qi > λi,

Ḡk′ if ‖ei
k′‖2Qi ≤ λi,

(6.16)

satisfying Gk′ ∪ Ḡk′ = N . According to (6.2), sub-systems belonging to Gk′ are considered for
transmission at time-step k′ + 1.
Suggested by the expression (6.13), we need to study the boundedness of error expectation
over the interval [k, k + N] for all cases c1-c3. Since, the cases are complementary and
mutually exclusive, we can calculate the probability that each case may happen, and express
(6.14) as

N∑

i=1

E

�

‖ei
k+N
‖i

Qi

�

=
∑

i∈cl

Pcl
E

�

‖ei
k+N
‖i

Qi |cl ,Pcl

�

, for cl ∈ {c1, c2, c3}, (6.17)

where
∑3

l=1Pcl
= 1. Assuming Pc1

= Pc2
= Pl

c3
1
= 1, we can make the upper-bound for

(6.17) as follows:

N∑

i=1

E

�

‖ei
k+N
‖i

Qi

�

≤
∑

i∈c1,c2,l
c3
1

E

�

‖ei
k+N
‖i

Qi |cl

�

+
∑

i∈l
c3
2

E

�

‖ei
k+N
‖i

Qi |l c3
2 ,Pl

c3
2

�

. (6.18)

As we comprehensively discussed in the proof of the Theorem 4.1, the boundedness of the
expectation of error norm of a sub-system i, i.e. E

�

‖ei
k+N
‖i

Qi

�

which belongs to the cases c1,

c2, and l
c3
1 can be shown regardless of the scheduling law. This can be seen from the derived

upper-bound expressions (A.3), (A.4), and (A.5) for the cases c1 and c2 and the sub-case
l
c3
1 , respectively. Relying on those upper-bounds for the mentioned cases, we have for those

sub-systems i belong to c1 from (A.3) that,

∑

i∈c1

E

�

‖ei
k+N
‖2

Qi |ei
k

�

≤
∑

i∈c1

‖Ai‖22λi + tr(QiWi).

Therefore, the condition (6.15) is fulfilled by assuming ξ̄′ >
∑

i∈c1
‖Ai‖22λi +E

�

‖wi
k+N−1‖2Qi

�

,

and ξ̄ =
∑

i∈c1
E

h

‖ei
k+N
‖2

Qi
|ei

k

i

ξ̄′
< 1. The LSP then readily follows for sub-systems i ∈ c1.

For sub-systems i ∈ c2, we have the upper-bound on the error norm expectation according
to the expression (A.4), as follows:

∑

i∈c2

E

�

‖ei
k+N
‖2

Qi |ei
k

�

≤
∑

i∈c2

N∑

r=r′
i

‖AN−r
i
‖22 tr(QiWi).
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Hence, the condition (6.15) becomes satisfied considering ξ̄′ >
∑

i∈c2

∑N

r=r′
i

‖AN−r
i
‖22 tr(QiWi),

and ξ̄ =
∑

c2
E

h

‖ei
k+N
‖2

Qi
|ei

k

i

ξ̄′
< 1.

For sub-systems belonging to the sub-case l
c3
1 , we have the following upper-bound from

(A.5):

∑

i∈l
c3
1

E

�

‖ei
k+N
‖2

Qi |ei
k

�

≤
∑

i∈l
c3
1



‖AN−r′
i

i ‖22λi +

N−1∑

r=r′
i

‖AN−r−1
i
‖22 tr(QiWi)



 .

The necessary condition (6.15), ensuring the LSP for i ∈ l
c3
1 , is therefore satisfied by choosing

ξ̄′ >
∑

i∈l
c3
1

�

‖AN−r′
i

i ‖22λi +
∑N−1

r=r′
i
‖AN−r−1

i
‖22 tr(QiWi)
�

, and ξ̄ =

∑

l
c3
1

E

h

‖ei
k+N
‖2

Qi
|ei

k

i

ξ̄′
< 1.

The sub-systems j ∈ l
c3
2 have always been candidates for channel access, i.e. j ∈ G[k,k+N−1].

Hence, ‖e j

k′‖2Q j > λ j for all k′ ∈ [k, k +N − 1]. Hence, from (6.7), we conclude that

∑

j∈l
c3
2

E

�

‖e j

k+N
‖2

Q j |e j

k

�

=
∑

j∈l
c3
2

E

�

‖(1− θ j

k+N
)A je

j

k+N−1+w
j

k+N−1‖2Q j |e j

k

�

≤
∑

j∈l
c3
2

‖A j‖22E
�

‖A je
j

k+N−1‖2Q j |e j

k

�

+ tr(Q jWj). (6.19)

Expression (6.19) is not uniformly bounded since the term e
j

k+N−1 in (6.19) is not upper
bounded according to (6.16). However, as discussed before, we can calculate the proba-
bility that a sub-system ends up in the sub-case l

c3
2 for the entire interval according to the

decentralized scheduling policy (6.9). To calculate Pl
c3
2

we need to consider the possibility of
packet collisions. As it is already explained, if a collision is acknowledged, then the channel
will not be awarded to any sub-system at that specific time-step. Collisions may happen at
all time-steps, therefore there is a non-zero probability that all the scheduled data packets
collide. What follows is simple; all sub-systems operate in open-loop at all time steps, since
no transmission would occur. Within the sub-case l

c3
2 , we investigate two collision scenarios

over the interval of interest, i.e. [k, k+ N]:

1. there has been at least one successful transmission over the interval [k, k +N],

2. there has been no successful transmission over the entire interval [k, k+ N].

Starting with the first scenario, we assume that whenever a collision is detected and
consequently all the sub-systems are expelled from having access to the channel, a virtual
control loop has successfully transmitted. This means that at the time-step that the collision
is detected, N real sub-systems and one virtual one share the communication channel
while channel is awarded to the virtual sub-system. The virtual loops are assumed to have
the same discrete LTI dynamics as described in (2.1). Since we need to have at least one
successful transmission, the worst case situation entails that the channel may experience
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m ≤ N − 1 collisions over the interval [k, k + N]. Hence, at time-step k + N we have N

real and m virtual sub-systems competing for channel access, where all virtual ones have
already transmitted exactly once. Since, we have N + m sub-systems, we need to extend
our interval from [k, k + N] to [k, km], where km := k + N +m. Introduction of the virtual
loops is merely a justification for extending the time interval and plays no more role in
stability analysis. If a sub-system j ∈ l

c3
2 successfully transmits at time-step km, then its

error norm becomes bounded in expectation. Otherwise, if j never successfully transmits
over the interval [k, km], then there exists another sub-system, say i ∈ {1, . . . , N + m},
which transmits at time-step km while i has already transmitted successfully at least once.
Let k + r̄ denote the most recent time-step at which θ i

k+r̄
= 1 for r̄ ≤ N + m − 1. Based

on the decentralized scheduling law (6.9), the probability that sub-system i re-transmits
at the final time-step km, in the presence of the sub-system j ∈ l

c3
2 can be computed as follows:

P[θ i
km
= 1|ei

k
,θ i

k+r̄
= 1,θ j

k′ = 0, ∀k′ ∈ [k, km]]

= P[ν
j

km−1 > ν
i
km−1|e

i
k
,θ i

k+r̄
= 1,θ j

k′ = 0, ∀k′ ∈ [k, km]]

≤
E[ν

j

km−1|ei
k
,θ j

k′ = 0, ∀k′ ∈ [k, km]]

si
km−1τ

,

where, the last upper-bound follows from the Markov’s inequality considering that sub-system
i is chosen the positive constant waiting time νi

km−1 = si
km−1τ, with si

km−1 ∈ {1, . . . , h − 1}.
From the law of iterated expectation, it follows that

E[ν
j

km−1|θ
j

k′ = 0 ∀k′ ∈ [k, km]]

si
km−1τ

=
E[E[ν

j

km−1|e
j

km−1]|θ
j

k′ = 0 ∀k′ ∈ [k, km]]

si
km−1τ

=
α

j

km−1

si
km−1τ‖e

j

km−1‖
j

Q j

, (6.20)

where the last equality follows from the assumption (6.5) on the mean of the local probability
mass functions. The expression (6.20) confirms that having large error values corresponding
to sub-systems j ∈ l

c3
2 , with no prior transmission over the entire interval [k, km], reduces

the probability of re-transmission of a sub-system i /∈ l
c3
2 with at least one prior successful

transmission.

Having the time interval extended to [k, km], and furthermore considering the expression
(6.19) for the error expectation of a sub-system j ∈ l

c3
2 , it follows from (6.17) that
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∑

j∈l
c3
2

Pl
c3
2
E

�

‖e j
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‖2

Q j |e j

k

�

=
∑

j∈l
c3
2

P[ν
j

km−1 > ν
i
km−1|θ

i
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= 1]E
�

‖e j

km
‖2

Q j |e j

k

�

≤
∑

j∈l
c3
2

α
j

km−1‖A j‖22‖e
j

km−1‖2Q j

si
km−1τ‖e

j

km−1‖2Q j

+
α

j

km−1 tr(Q jWj)

si
km−1τ‖e

j

km−1‖2Q j

≤
∑

j∈l
c3
2

α
j

km−1‖A j‖22
si

km−1τ
+
α

j

km−1 tr(Q jWj)

λ js
i
km−1τ

, (6.21)

where the last inequality follows from (6.16) ensuring that ‖e j

km−1‖2Q j > λ j for every
sub-system j ∈ l

c3
2 .

Since (6.21) is a uniform upper-bound independent of initial values e
j

k
, LSP condition (6.15)

holds by selecting ξ̄ =

∑

j∈l
c3
2

E

h

‖e j

km
‖2

Q j
|e j

k

i

ξ̄′
< 1 and ξ̄′ >
∑

j∈l
c3
2

α
j

km−1‖A j‖22
si
km−1τ

+
α

j

km−1 tr(Q j Wj)

λ j s
i
km−1τ

, over the

interval [k, km].
Expression (6.21) can be made small by appropriately tuning λ j ’s, α

j

km−1’s, and Q j ’s.
However, it should be noted that there exist always trade-offs, e.g. increasing the threshold
λ j, on the one hand decreases (6.21), but on the other hand keeps the sub-system j out
of channel access competition for higher error values. The same can be said about α j

km−1
as decreasing it leads to tighter bounds in (6.21), however, it also cause higher chances of
collisions as the mean of the distributions concentrate on smaller areas of multiple micro
time slots. Therefore, tuning the scheduling parameters should be carefully performed.
It is shown earlier that condition (6.15) holds over time interval [k, k + N] for the cases c1,
c2, and sub-case l

c3
1 , which implies that they stay bounded in expectation over longer finite

horizons, i.e. [k, km]. Thus, rewriting (6.18) over the extended interval [k, km] yields,

N∑

i=1

E

�

‖ei
k+N
‖i

Qi

�

≤
∑

i∈c1

‖Ai‖22λi + tr(QiWi) +
∑

i∈c2

N∑

r=r′
i

‖AN−r
i
‖22 tr(QiWi)

+
∑

i∈l
c3
1



‖AN−r′
i

i
‖22λi+

N−1∑

r=r′
i

‖AN−r−1
i
‖22 tr(QiWi)



+α
j

km−1

∑

j∈l
c3
2

‖A j‖22
si

km−1τ
+

tr(Q jWj)

λ js
i
km−1τ

.

Therefore, assuming that at least one successful transmission happens over [k, k + N], the
above expression ensures that the error Markov chain ek satisfies (6.15) over the interval
[k, km], which in turn affirms that the overall NCS possesses LSP.

The second collision scenario prevents us to employ the same procedure by computing
the probability Pl

c3
2

to ensure (6.15) for sub-case l
c3
2 . The reason is that within this scenario

no transmission happens over [k, k + N] due to successive collisions. Consequently, all
sub-systems remain open-loop over the entire interval which leads to instability of the
overall NCS state in Lyapunov mean-square stability sense.
To infer (6.15) for the scenario of having successive collisions, we should calculate the prob-
ability that at least two sub-systems select identical waiting times at every time-step. Assume
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that a sub-system i has selected νi
k′ = si

k′τ at some time-step k′, with si
k′ ∈ {1, . . . , h− 1}. To

calculate the probability of a collision, the probability that a sub-system j selects exactly the
identical waiting time ν j

k′ = si
k′τ should be calculated. We know that

E[ν
j

k′] =

h−1∑

m=1

mτ P(ν
j

k′ = mτ).

Therefore, the probability that ν j

k′ = si
k′τ, can be computed as

P(ν
j

k′ = si
k′τ) =

1

si
k′τ


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m=1,m 6=si
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
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m=1,m 6=si
k′

mτ P(ν
j

k′ = mτ)



≤
α

j

k′

si
k′τλ j

.

The obtained probability above should be extended for every permutations of sub-systems
i and j which may collide at every time-step k′ ∈ [k, k +N]. Therefore, we can find the
upper-bound for the probability of occurring successive collisions over the entire interval
[k, k + N] as follows:

P

�
N∑

i=1

θ i
k′ = 0,∀k′ ∈ [k, k+ N]

�

≤
k+N∏

k′=k

N∑

i=1

N∑

j=1, j 6=i

α
j

k′

si
k′τλ j

. (6.22)

From the expression (3.9), it follows that if no sub-system transmits at all, we have
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Therefore, to infer (6.15), we choose ξ̄′ =
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i
ei
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+
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r=0 AN−r−1
i
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sup
ek

P

�
N∑
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‖ei
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k+N∏
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N∑

j=1, j 6=i

α
j

k′

si
k′τλ j

, (6.23)

for an arbitrary ρ(ξ̄′, ξ̄), and hence LSP of the overall NCS is readily obtained according to
(6.15).

Remark 6.2. One can infer from (6.23) that, by having extremely large thresholds λi, very
small values of α j

k′ or infinite number of communication samples h, the probability of having
consecutive collisions converges to zero. This is expected as by enlarging the error thresh-
olds, we are keeping more sub-systems out of the channel access competition which leads to
less congestion and consequently less collision. In addition, as h →∞, the chance of col-
lisions converges to zero because the chance that at least two sub-systems choose identical
waiting times becomes infinitesimal. We also discussed that decreasing α j

k′ leads to decrease
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in the successive collision rate. However, setting the thresholds extremely large causes that
the corresponding sub-systems do not practically attempt for channel access, as according
to (6.2) the error values need to pass very large values to be eligible for transmission. This
increases the aggregate error variance. In addition, h → ∞ is a non-realistic assumption
considering the current communication technologies. Therefore, these trade-offs should al-
ways be taken into account. Note that, excluding the second collision scenario, the stronger
stability notion, in terms of Lyapunov mean square stability (LMSS), will be obtained [91].

Remark 6.3. As the number of sub-systems occupying the communication channel increases,
the probability of collisions grows. Nevertheless, we still can show LSP as long as the ratio
h/N is larger than zero, i.e. N is finite. It is to be expected , however, that the performance
of the overall networked system decreases as the ratio h/N decreases.

Remark 6.4. A more efficient way to treat the collisions is to adopt the persistent transmission
policy. Assume two sub-systems choose identical waiting times νi

k′ = ν
j

k′ = k′h+ τ̄, leading
to a collision. A re-transmission can be considered within the interval [k′h + τ̄, k′h + τh]

repeating the same procedure of selecting new waiting times. This approach is more efficient
especially for large scale NCSs.

6.3 Numerical Evaluations

In this section, we numerically evaluate stability margins for an NCS composed of multi-
ple heterogeneous LTI control loops which are sharing a band-limited communication net-
work under our proposed decentralized scheduling mechanism introduced in (6.2) and (6.9).
Moreover, we show performance efficiency of the decentralized scheduler when it is com-
pared with conventional approaches such as TDMA and idealized CSMA protocols. Further-
more, we compare our results with those obtained from the bi-character centralized and pure
probabilistic scheduling policies introduced in [99] and [94], respectively.

Similar to the numerical sections in the previous chapters, we consider an NCS with N

scalar sub-systems divided into two heterogeneous classes; N

2 homogeneous control loops
with unstable and N

2 homogeneous control loops with stable processes. The system parame-
ters are as already introduced, i.e. A1 = 1.25, B1 = 1 for the unstable class, and A2 = 0.75,
B2 = 1 for the stable class. The initial state is chosen as x1

0 = x2
0 = 0, and the noise sequence

is given by the i.i.d. process wi
k
∼N (0, 1). To stabilize the sub-systems, we similarly choose

deadbeat control laws Li = Ai, and we select Qi = I for both classes. In addition, we select
the design parameter λi ’s according to the Table (6.1).

Table 6.1: Selected error thresholds and the number of collisions.
Number of plants (N) 2 4 6 8 10
Error threshold (λ) 0.25 1.45 2.80 4.30 6.00
Collisions in 2× 105 samples 252 972 2094 3535 5009
Collisions (%) 0.126 0.486 1.047 1.767 2.504

Figure 6.5 provides the comparisons in terms of aggregate error variance between our
proposed decentralized bi-character policy and the related protocols for NCSs with different
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6 Decentralized Implementation of State-Dependent Scheduling Law

number of sub-systems N ∈ {2, 4, 6, 8, 10} subject to the constraint (6.4). This ensures that
for N > 2, at least one unstable sub-system operates in open-loop at each time-step. As for
the time-triggered TDMA approach, we consider periodic transmissions for each control loop
with periods of exactly N time-steps. Idealized CSMA operates statically such that the chance
of transmission is 1

N
for each sub-system at each time-step. The averages are calculated

via Monte Carlo simulations over a horizon of 2 × 105 samples. For comparison we also
consider the lower bound by relaxing the hard capacity constraint (6.4) to a soft average
transmission rate [33]. For simplicity, we calculate the error variances by considering equal
local error thresholds λi ’s for all sub-systems in an NCS setup, according to Table 6.1. The
increase of λ as N increases follows from assuming fixed channel capacity. The number of
micro slots within one macro slot is assumed to be h = 150. The local parameters αi

k
’s are

also assumed to be constant for all time-steps and they are αi
k
= 150 for all i ∈ {1, . . . , N}

with N ∈ {2, 4, 6, 8, 10}. In addition, the local waiting times are chosen randomly from the
Poisson distributions for each sub-system at every time-step, where the mean of the Poisson
distributions are time varying according to (6.5). The number of detected collisions, under
the employment of the proposed decentralized scheduling law is shown in Table 6.1. It can
be seen that, although collisions inevitably happen, the collision rate is rather low which
indicates that the decentralized policy can be tuned properly to avoid high collision rates.
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Figure 6.5: Comparison of the average error variance vs. the number of control loops for
different scheduling policies.

The idealized CSMA protocol (blue curve in Figure 6.5), as also demonstrated in previ-
ous sections, results in an acceptable performance only for N = 2, while the bi-character
approaches, centralized and decentralized, outperform TDMA (red curve in Figure 6.5). The
performance gap increases with increasing number of sub-systems N . The bi-character cen-
tralized scheduler, drawn as the dotted blue curve in Figure 6.5, slightly outperforms the
bi-character decentralized law (black curve in Figure 6.5), according to Figure 6.5. This
observation is expected though due to the absence of packet collisions within centralized
approaches. Comparing the performance of the decentralized policy with that of the pure
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probabilistic scheduler shows that the performance can become enhanced under the former
protocol. This is however not a firm conclusion, as we usually expect to get better perfor-
mance out of centralized designs. The reason for having an improved performance in Fig-
ure 6.5 from the decentralized approach is that the pure probabilistic approach is probably
not the optimal centralized way of arbitrating the communication channel.

6.4 Scheduling Design with Noisy Measurements

So far in this chapter, it is assumed that perfect state information is accessible for the event-
triggers. In many real situations however, only noisy measurements correlated to state vari-
ables are accessible, therefore realistic design of control and scheduling mechanisms for net-
worked control systems (NCS) often entails dealing with noise-deteriorated sensor measure-
ments. In this section, we extend our proposed decentralized event-triggered medium access
control (MAC) for a network of multiple control loops with noisy sensor measurements. In
contrast to the previous sections of this chapter, the event triggers are considered as the dis-
crepancy between the sensor measurements and the estimated state, thus no need to have
access to the perfect state information. Local noise-prone sensor stations measure system
states and use the shared medium in order to transmit those sensory data to their respective
control units. We first express the NCS model and the state estimation problem.

Each control loop i ∈ {1, . . . , N} in the NCS is composed of an LTI stochastic process
Pi, sensor Si, and a control unit which itself includes a Kalman filter Fi and a feedback
controller Ci. The controlled sub-system i can be described by the following discrete-time
stochastic difference equation

x i
k+1 = Ai x

i
k
+ Biu

i
k
+wi

k
,

y i
k
= Ci x

i
k
+ v i

k
,

(6.24)

where, x i
k
∈Rni , ui

k
∈Rmi , Ai ∈Rni×ni and Bi ∈Rni×mi describe the ith sub-system state vector,

control input, system matrix, and input matrix, respectively. For the ease of derivations,
we assume the output matrix is square, i.e. Ci ∈ Rni×ni , and C−1

i
exists. In addition, the

pair (Ai, Bi) is assumed to be controllable, and (Ai, Ci) to be observable. System noise
wi ∈ Rni , and measurement noise v i ∈ Rqi are i.i.d. random sequences with realization
wi

k
∼ N (0, Wi) and v i

k
∼ N (0, Vi), at each time-step k. Due to capacity limitation of the

communication channel, scheduling units are integrated in sensor stations to determine
whether a transmission is feasible. The scheduling decision at each time-step k is taken
locally, and is denoted by the binary variable δi

k
∈ {0, 1}, as

δi
k
=

¨

1, y i
k

sent through the channel

0, y i
k

blocked.

We assume a loss-less network, i.e. there is no externally caused packet loss. However,
packets from different control loops may collide during the medium access. Acknowledg-
ments of successful transmissions are broadcasted via an error-free reserved link back to
the sub-systems. We assume the link to be of the broadcast type so every station will be
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informed if a collision takes place. We assume that if a collision is detected, the involved
sub-systems are discarded with no chance of re-transmission. At every time-step k, the
acknowledgement signal γi

k
∈ {0, 1}, received by every sub-system i, is described as follows:

γi
k
=

¨

1, y i
k

successfully received,

0, y i
k

collided.

For the expressions (6.28) and (6.29) to represent the collisions, δi
k+1 should be replaced by

θ i
k+1, where θ i

k+1=δ
i
k+1γ

i
k+1.

The system state values are estimated by the local Kalman filters at the control units, and
the control inputs are then computed by the local feedback controllers. Thus, the signal
received by the control unit Ci at a time-step k, i.e. z i

k
, can be expressed based on new

event-triggers as

z i
k
=

¨

y i
k
, if δi

k
γi

k
= 1

∅, if δi
k
γi

k
= 0.

We define I i
k
= {θ i

0, y i
0, . . . ,θ i

k
, y i

k
} as the history of received signals at the control side Ci,

where θ i
k
= δi

k
γi

k
. Then, the control input ui

k
is computed by the following state-feedback

law described by a measurable and causal mapping of past observations as

ui
k
= −Li E[x

i
k
|I i

k
] = −Li x̂

i
k
, (6.25)

where, Li ∈ Rmi×ni is a stabilizing feedback gain. Depending on whether new sensory
measurements are arriving, we compute the state estimate x̂ i

k
via the Kalman filter [109], as

x̂ i
k
= x̂ i−

k
+ θ i

k
K i

k
(y i

k
− Ci x̂

i−
k
) (6.26)

with the a priori state estimate x̂ i−
k

, and estimate error covariance P i−
k

=

E
�

(x i
k
− x̂ i−

k
)(x i

k
− x̂ i−

k
)T
�

given as follows

x̂ i−
k+1 = Ai x̂

i
k
+ Biu

i
k
,

P i−
k+1 = Ai P

i
k
AT

i
+Wi,

and the following optimal Kalman gain K i
k

and the a posteriori estimate error covariance
P i

k
=E
�

(x i
k
− x̂ i

k
)(x i

k
− x̂ i

k
)T
�

:

K i
k
= P i−

k
CT

i
(Ci P
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CT
i
+ Vi)

−1,

P i
k
= P i−

k
− K i

k
(Ci P

i−
k

CT
i
+ Vi)K

iT

k
,
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with initial conditions x̂ i
0=0 and P i

0=0. It follows from the expressions (6.24)-(6.26) that
θ i

k
= 0 leads to a model-based estimate of x i

k
, i.e. x̂ i

k
= x̂ i−

k
= (Ai − Bi Li) x̂ i

k−1. The estimate
is well-behaved as the gain Li is stabilizing, and (Ai, Bi) is stabilizable.

We introduce the network-induced error ei
k

for each sub-system i ∈ {1, . . . , N}, at ev-
ery time-step k as the difference between measurements and state estimates at the controller,

ei
k

:= y i
k
− ŷ i

k
, (6.27)

where, ŷ i
k
= Ci x̂

i
k
. Recalling (6.24)-(6.27), it is straightforward to conclude the network-

induced error state ei
k

evolves according to the following stochastic difference equation

ei
k+1 =
�

Ini
− θ i

k+1CiK
i
k+1

� �

CiAiC
−1
i
(ei

k
− v i

k
) + Ciw

i
k
+ v i

k+1

�

. (6.28)

The system state dynamics can similarly be obtained as follows

x i
k+1 = (Ai − Bi Li)x

i
k
+ Bi LiC

−1
i

�

ei
k
− v i

k

�

+wi
k
. (6.29)

Immediate conclusion from (6.28) and (6.29) is that evolution of the network-induced error
state ei

k
is independent of the system state x i

k
. This asserts the separation property holds be-

tween the control law and scheduling law synthesis. Thus, we take an emulation-based sce-
nario and choose a stabilizing controller a priori. The control inputs are computed according
to this law at triggering times and kept constant in between triggering times. Stabilizability
of pairs (Ai, Bi) ensures the closed-loop matrix (Ai − Bi Li) is stable. Then it follows from
(6.29) that the aggregate state of sub-system i, i.e. [x iT

k
eiT

k
]T is stable if ei

k
is convergent.

Remark 6.5. In this paper we assume that output matrices are invertible. Relaxing this as-
sumption urges the inclusion of additional observers which results in an additional obser-
vation error. Since the pairs (Ai, Ci) are observable for all i’s, stabilizing observer gains ex-
ist such that stability of the closed-loop system, including the observer state, is ensured in
the absence of the capacity constraint. It is straightforward to show that, the evolution of
network-induced error defined in (6.27) remains independent from the observer state and
hence the scheduling process remains unaffected. The relaxation to arbitrary output matri-
ces Ci, i.e. true output feedback control, is not considered here due to ease of derivations.
The essential techniques to show stability, however, extend to this case as well.

We consider the same channel modeling as introduced in Section 6.1, i.e. the sampling
interval of the communication network (micro slots), is much finer than that of the opera-
tional time scale of control systems (macro slots). Assuming that T is the sampling period
of the control systems, we assume that between two consecutive macro time slots k→k+1,
the micro slots are distributed as {kT, kT +τ, . . . , kT +(h−1)τ, kT + hτ}, where τ is the
temporal duration of each micro slot and h ≫ 1 denotes the number of micro slots within
one macro slot, hence T = hτ. The sampling delays corresponding to transmission time can
be ignored assuming high enough channel throughput. Having a decentralized architecture,
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the ith control and scheduling units are assumed to be provided with local information Ai,
Bi, Ci, Wi, Vi, Li, K i

k
, λi, Qi, I i

k
and the distribution of x i

0. With no need of accessing true
state value x i

k′, every scheduling unit only receives the latest local error state ei
k′ defined in

(6.27). The measurement vector y i
k′+1 is forwarded for transmission at the subsequent time

k′+1 only if the square weighted norm of ei
k′ exceeds the local threshold λi, otherwise y i

k′+1
will be discarded. In the other words,

P[δi
k′+1 = 1
�
�ei

k′] = 0 if ‖ei
k′‖

2
Qi ≤ λi. (6.30)

The set of sensor stations cleared to transmit at time-step k′+1 is denoted by Gk′+1, i.e.
for each i ∈ {1, . . . , N}, i ∈ Gk′+1 if ‖ei

k′‖2Qi > λi. Again, we assume that only one sensor
station can transmit over every macro time-step, satisfying eq. (6.4). Assuming that
transmitted data will be received instantly, a transmission can be commenced at any micro
slot τ before reaching the end of the macro slot, i.e. {0,τ, 2τ, . . . , (h−1)τ}. In order to
determine the commence time, randomly selected waiting times νi

k′∈{0,τ, 2τ, . . . , (h−1)τ}
are chosen independently for each sub-system and at each time-step. As already discussed,
they denote the time duration a sensor station i ∈ Gk′+1 waits and then starts sensing
the channel. Measurement vector y i

k′+1 is transmitted only if the channel is sensed as
idle. Otherwise, a back off time of the length hτ − νi

k′ is considered, which ensures that
station i does not attempt a re-transmission over the macro slot k′ → k′+1. The waiting
times are selected according to independent local discrete distributions associating with
finite-variance concave probability mass functions (pmf), where the set of all possible
outcomes is restricted to the micro slots between k′ → k′+1. Similar to the discussions
in Section 6.1, the expected value of a local pmf is supposed to be error-dependent as follows:

E[νi
k′] =

αi
k′

‖ei
k′‖2Qi

, (6.31)

where, αi
k′ is the scheduling parameter which is tuned appropriately to avoid high collision

rates. The sensor station associated with the shortest waiting time transmits, and the other
stations are discarded. Therefore, considering (6.4), the probability that sensor station
i∈Gk′+1 transmits at time-step k′+1 can be written as follows:

P[δi
k′+1 = 1
�
�ei

k′] = P[νi
k′ < ν

l
k′], ∀l ∈ Gk′+1, l 6= i. (6.32)

Remark 6.6. Selecting the waiting times randomly, on the one hand reduces the collision rate
by introducing the communication micro-frames as a collision avoidance mechanism. On the
other hand, increasing the traffic corresponds to sub-systems with high error values leads to
concentration of local pmfs across early micro slots, which increases the collision rate. To
avoid so, parameter αi

k
can be properly adjusted to place the mean of the pmfs farther than

the congested area. To tune αi
k
, broadcasted channel feedback, containing information about

the latest traffic and collisions, can be used.
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6.4.1 Stability Analysis

In this section, we study stability properties of the multi-loop networked control systems,
subject to noise-prone sensor measurements, under the proposed event-based decentralized
MAC scheme. The following analysis follows the same lines as already presented in Section
6.2. The major difference between the results in this sections and Section 6.2 is the change
of the event triggers, which consequently results in different evolution dynamics for the sys-
tem state and error state. Comparing eq. (6.7) and (6.28), the influence of having access
to the noisy measurements, instead of having access to the true state values, can be seen. It
requires more efforts to analyze stability with new definition of the event triggers, however
this is a more applicable assumption, as in many situations assuming to have access to the
perfect state values is not realistic.
As also discussed in Section 6.2, the system state x i

k
, defined in (6.29) remains stable consid-

ering the emulation-based strategy, only if the error state ei
k

in (6.28) is stable. We similarly
take the concept of Lyapunov stability in probability (LSP) to show stochastic stability of
the error state ei

k
. It should be noted that, the proposed MAC design in this section is a

generalized approach compared to the presented MAC architecture in Section 6.1. It is an
evident conclusion since the introduced event trigger in Section 6.1 is a special case of the
event trigger considered in this section, i.e. by assuming Ci as identity, and no measurement
noise. The results obtained in Lemma 6.1 can be extended for the new error and system state
evolution, as follows:

Lemma 6.2. For a control loop with state vector [x iT

k
eiT

k
]T, where the error and systems states

are described in (6.28) and (6.29), respectively, the LSP condition (6.10) is equivalently
satisfied if exists ξ′

i
> 0 and 0≤ ξi ≤ ǫi such that

lim
k→∞

supP
�

eiT

k
ei

k
≥ ξ′

i

�

≤ ξi.

Proof. It is shown that the system state x i
k

within each control loop i evolves according to
(6.29), where the closed-loop matrix (Ai−Bi Li) is Hurwitz since stabilizing gains Li ’s exist.
In addition, we know that the error-dependent term Bi LiC

−1
i

�

ei
k
− v i

k

�

is independent of x i
k
,

according to (6.28). It follows from the Markov’s inequality that for ζ′
i
> 0

P
�

(ei
k
− v i

k
)T(ei

k
− v i

k
) ≥ ζ′

i

�

≤
E
�

(ei
k
− v i

k
)T(ei

k
− v i

k
)
�

ζ′i

=
E
�

‖ei
k
− v i

k
‖22
�

ζ′
i

≤
E
�

‖ei
k
‖22
�

+tr(Vi)+2
q

tr(Vi)E
�

‖ei
k
‖22
�

ζ′
i

where the last inequality follows from E
�

‖ei
k
− v i

k
‖22
�

= E
�

‖ei
k
‖22
�

+E
�

‖v i
k
‖22
�

−2Cov(eiT

k
, v iT

k
),

and Cov(eiT

k
, v iT

k
) ≤
q

Var(v i
k
)Var(ei

k
). Together with the assumption that x i

0 is selected
from a bounded moment distribution, and wi

k
is i.i.d. process according to N (0, Wi), it

follows that the closed-loop dynamics (Ai−Bi Li)x
i
k
+wi

k
is bounded in expectation, and con-

sequently possesses LSP, according to the Markov’s inequality. Thus, showing E
�

eiT

k
ei

k

�

=
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E
�

‖ei
k
‖22
�

is bounded, i.e. exists ξi,ξ
′
i
> 0 such that limk→∞ supP

�

eiT

k
ei

k
≥ ξ′

i

�

≤ ξi, en-

sures limk→∞ supP
�

(ei
k
− v i

k
)T(ei

k
− v i

k
) ≥ ζ′

i

�

≤ ζi with ζi =
E[‖ei

k
‖22]+tr(Vi)+2
Ç

tr(Vi)E[‖ei
k
‖22]

ζ′
i

. This

implies boundedness of E
�

x iT

k+1x i
k+1

�

which assures ǫi ≥ ξi and ǫ′
i
> 0 exist such that

limk→∞ supP
�

x iT

k+1x i
k+1 ≥ ǫ′i
�

≤ǫi, and LSP of the aggregate state [x iT

k
eiT

k
]T follows.

Note that the random variables ei
k

and v i
k

are statistically dependent, according to the
expression (6.28), and hence the error state ei

k
is not inherently Markovian. This is in line

with the fact that network-induced error in (6.28), with event-triggers (6.27), is seldomly
characterized by Markov chains. However, Markovianity of a process state is not a necessity
to achieve LSP, see Definition 6.1. We further show that the statistical dependence of ei

k
and

v i
k

can be treated to show LSP of the aggregate state [x iT

k
eiT

k
]T within each sub-system.

Remark 6.7. Although, Markovianity of a process state is not a necessary property to achieve
LSP, it is quite beneficiary when studying the real-time system behavior via Lyapunov ap-
proaches. We briefly suggest here that the error state ei

k
and measurement noise process v i

k

can be grouped as one state to represent a newly generated Markovian stochastic process.
However this approach should be followed carefully as the grouped state is not observable
since the noise measurement is not observable. For detained information see [86].

Similar discussions as in Section 6.2 can be followed here again to conclude that the LSP
condition is equivalent to the expression (6.15). Employing Markov’s inequality, we can
instead state the following:

P
�

eT
k
Qek ≥ ξ̄′
�

≤
E
�

eT
k
Qek

�

ξ̄′
=

∑N

i=1 E

�

‖ei
k
‖2

Qi

�

ξ̄′
. (6.33)

In addition, the illustrative example constructed in Section 6.2 to motivate the multi-step in-
terval, is still valid here. Therefore, without modifying the illustrative example, and assum-
ing constraint (6.4), we study stability for the even-based decentralized MAC architecture
with the new event triggers, in terms of LSP by monitoring the error state evolution over an
interval with length N .

Theorem 6.2. Consider a multi-loop NCS consisting of N heterogeneous LTI stochastic sub-

systems modeled as in (6.24), sharing a communication channel subject to the constraint (6.4).

Under the emulative control, estimation and scheduling laws given by (2.3), (6.26), (6.30), and

(6.32), respectively, the overall NCS state [xT

k
, eT

k
]T is Lyapunov stable in probability, for any

positive λi ’s and αi
k
’s, and any positive definite Qi’s.

Proof. See Appendix A.3.

Remark 6.8. A comparison between stability notion for centralized scheduling discussed in
Chapter 4, i.e. f -ergodicity, and the concept of Lyapunov stability in probability employed in
this chapter clarifies that an f -ergodic process is also Lyapunov stable in probability. How-
ever, a stochastic process which is Lyapunov stable in probability is not necessarily f -ergodic.
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Table 6.2: Decentralized and uniform bi-character scheduling

Number of plants (N) 2 4 6 8 10 12

decentralized bi-character

Error threshold (λ) 0.01 0.10 0.40 0.70 0.88 0.98
aggregate error variance 1.08 1.50 1.96 2.50 3.17 4.20
collision rate (%) 0.78 0.89 1.12 1.35 1.58 1.88

uniform bi-character

Error threshold (λ) 0.10 2.10 3.80 6.00 11.20 14.00
aggregate error variance 0.90 1.91 2.79 3.79 5.10 7.61
collision rate (%) 0.19 0.19 0.24 0.30 0.27 0.35

6.4.2 Performance Evaluations

In this section we evaluate performance of the proposed decentralized event-triggered MAC
protocol in terms of the overall network-induced error variance and collision rate consid-
ering the new event-triggers. To show our approach efficacy, comparisons are made with
the known protocols such as CSMA, TDMA, and the try-once-discard (TOD). Furthermore,
we underscore the benefit of error dependency in selecting the waiting times on the colli-
sion rate and the resulting average error variance by providing a comparison with a uniform
mechanism for selecting the waiting times.

We consider the same networked model as described in Section 6.3. So we quickly
summarize that we consider NCSs with two heterogeneous classes {cl1, cl2} of scalar
sub-systems with state-space representations (Acl1

, Bcl1
, Ccl1

, Dcl1
) = (1.25, 1, 1, 0), and

(Acl2
, Bcl2

, Ccl2
, Dcl2

) = (0.75, 1, 1, 0). Each sub-system is controlled via a dead beat control

law, and we select Qi = I for all sub-systems. The initial values are set as x
cl1
0 = x

cl2
0 =0. The

process noise and the measurement noise are assumed to be Gaussian with wi
k
∼N (0, 1)

and v i
k
∼N (0, 0.1), respectively. We conduct a Monte Carlo simulation with 2×105 sam-

ples and assume a channel capacity of c = 1. The simulations are performed for a varying
number of connected sub-systems N ∈{2, 4, 6, 8, 10, 12}, with N

2 sub-systems belong to each
class. Moreover, in every simulated NCS setting the same error thresholds λ are applied for
all sub-systems. The number of micro slots is set to h=150 and the waiting times in every
macro slot are chosen from Poisson distributions with error-dependent mean (6.5). To tune
the scaling factor αi

k′, we use the feedback signal broadcasted from the channel, according
to the following empirical law

αi
k′ = qtnt,k′−1 + qcnc,k′−1, (6.34)

where we consider the traffic nt,k−1, i.e. the number of systems trying to transmit, and the
collision rate nc,k−1 from the previous time step. The weights qt and qc scale the importance
of the respective channel information.

Table 6.2 shows the resulting aggregate error variance of our proposed decentralized MAC
for different number of sub-systems N , with the error thresholds λ and the scaling weights
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6 Decentralized Implementation of State-Dependent Scheduling Law

qt = 60 and qc = 34. Furthermore, Table 6.2 provides the collision rates, which are shown
to be low due to a proper parameterization of the Poisson distributions. The second part of
the table shows the results of a uniform distributed realization, i.e. sub-systems are deter-
ministically excluded from channel access if their error is underneath the threshold λ and
otherwise waiting times are chosen based on a uniform distribution. As expected, this leads
to less collision rates since the waiting times are selected by identical probabilities across the
entire macro slot, but at the same time to increased error variances since the channel access
is not prioritized.

Number of sub-systems in NCS (N)
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Figure 6.6: Comparison of the aggregate error variances for a varying number of subsystems
and different MAC protocol realizations

The comparison with other protocols is illustrated in Figure 6.6. The TOD approach,
which is a centralized scheduling realization expectedly leads to the best performance and
can be considered as the lower bound. For the CSMA realization the constant channel access
probabilities are assigned to each sub-system depending on the system matrices, i.e.

‖Ai‖22
∑N

j=1 ‖A j‖22
.

This approach illustrates an acceptable performance only for N=2. The performance of our
decentralized MAC protocol, even for higher numbers of sub-systems, follows that of the
centralized TOD closely. Moreover, it outperforms the TDMA, where a constant time-based
access order for the connected systems is assumed where only unstable plants are part of the
transmission schedule. Moreover, the uniform bi-character comparison shows a decrease in
the collision rates, but error variances can not compete with the introduced approach for a
high number of sub-systems.

Figure 6.7 shows the impact of the distribution scaling on the collision rate and the aggre-
gate error variance. It shows the probability density of the waiting time over one macro slot
for N=8. The red pdf, where mean of the scaling factor αi

k′ equals 77.5, the selected waiting
times are concentrated at the beginning of the macro slot, and leads to a collision rate of
3.47%, and error variance of 2.71. The result can be improved by increasing the mean of αi

k′

to 163.00. The consequence is a better utilization of the whole channel sampling range in
one time-step, which leads to less collisions (1.35%) and lower error variance of 2.50.
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Figure 6.7: pdf of resulting waiting times with mean value αi
k′ = 77.51 and αi

k′ = 163.00, for
NCS with N = 8 sub-systems during one macro slot.

6.5 Event-based Scheduling for NCSs with Multi-link

Communication Network

So far in this chapter, we addressed decentralized event-based MAC architectures for single-
hop channels, i.e. there is only one link for the transmitting station to send its data packet. In
this section, we extend our results to multiple link scenario and we introduce a MAC design to
arbitrate the contention-based channel access based on multi-channel slotted ALOHA proto-
col. We analyze the behavior of the multi-channel slotted ALOHA medium access, considering
an event-based networked control system consisting of multiple LTI control sub-systems as
the communication endpoints. First, a local threshold-based scheduler determines whether a
sub-system is eligible for a transmission attempt. Afterwards, according to the multi-channel
slotted ALOHA protocol, each eligible sub-system selects one of the multiple transmission
channels randomly to send its own data packet. Stability of the resulting NCS over the multi-
channel slotted ALOHA is discussed in terms of Lyapunov stability in probability (LSP). We
evaluate the performance of the event-based scheduler, and further propose an improvement
to it by incorporating adaptive thresholds. In the modified scheduler design, network and
control systems are coupled via the knowledge of the network state, and each local scheduler
adapts its threshold based on the available network resources. Numerically, we demonstrate
that an adaptive choice of the transmission threshold is beneficiary compared to the non-
adaptive static design.

6.5.1 Network modeling and structural analysis

We consider the similar networked model considered in Section 6.1, i.e. the sub-systems
dynamics, control laws and estimators are described as in (2.1), (2.3), and (2.4). The local
scheduler situated at each local control loop decides to access the medium at every time-step
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k only if the following threshold inequality holds:

‖ei
k
‖2 > λi, (6.35)

where, λi is the local error threshold for sub-system i. Therefore, if (6.35) is satisfied at
some time-step k, then the corresponding sub-system is eligible for transmission at the next
time-step k+ 1. Otherwise, it is deterministically excluded from the channel access, i.e.

P[δi
k+1 = 1|ei

k
] =

¨

0, if ‖ei
k
‖2 ≤ λi

1, otherwise.
(6.36)

According to (6.36), all sub-systems with error norms greater than their corresponding local
thresholds randomly select one of the channels to transmit. If there is no collision with other
eligible sub-systems, data packets will be sent. Otherwise, in case at least two sub-systems
select the same transmission link to transmit, no packet would go through. Note that the
deployed scheduling policy (6.36) is not explicitly dependent on whether the transmission
has been successful or it has collided, therefore, channel sensing of acknowledgments are
not necessary for the policy’s realization.

The communication network model is restricted to the Medium Access Layer (MAC) and
is represented by a multi-channel slotted ALOHA protocol [110], see Figure 6.8. As the
most common practical example, we can refer to LTE-based system and its Random Access
Channel [111], while mappings to different single-channel wireless or even bus systems can
also be imagined. In every time slot, we assume M non-overlapping transmission channels
are available, where M ≥ 2. The information about the available number of channels is
assumed to be known to all sub-systems in the beginning of each time slot.

For the sake of simplicity, we assume that the communication time slots are equal in du-
ration to the control sampling periods, and that all sub-systems’ control periods are synchro-
nized. Thus, in every control period we have M available transmission channels, meaning:

N∑

i=1

θ i
k
≤ M , (6.37)

M channels

kth timeslot(k-1)th timeslot (k+1) timeslot

{uniform choice

Figure 6.8: Multi-channel slotted ALOHA. One time slot is assumed equal to a control period
of any sub-system. A channel can represent a frequency, code [1] or time domain
transmission opportunity, depending on the communication technology in use.
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where, θ i
k
= δi

k
γi

k
, and γi

k
is the collision indicator and introduced in (6.6). According to

the slotted ALOHA protocol, if a packet is scheduled for transmission, it will be sent through
one of M channels, which is randomly chosen. We denote the set of sub-systems which
are eligible for transmission at time-step k + 1 as Gk. Then, the probability of successful
transmission for a given eligible sub-system time-step at time k+ 1 is calculated as:

P
�

γi
k+1 = 1
�
�‖ei

k
‖2 > λi

�

=

�
M − 1

M

�gk

, (6.38)

where gk is the cardinality of the set Gk.
The transmission threshold λi is directly affecting both the error of the corresponding

sub-system, and the arrival rate of the transmission requests for network access. Since the
network is modeled by slotted ALOHA mechanism, too high arrival rate of requests will
result in a high collision rate and consequently degrades the performance of the overall
networked system, significantly. Following this observation, our hypothesis is that adapting
λi to network state, leads to the enhancement of control performance. This motivates us to
further modify the introduced local event-based resource-aware scheduling design with an
adaptive choice of the error thresholds. We illustrate numerically the efficacy of our proposed
approach in terms of reducing the average networked-induced error variance, and show the
superiority of the adaptive event-based scheduler compared to the scheduling design with
non-adaptive thresholds.

6.5.2 Stability Analysis

In this section, we study stability of multiple-loop NCSs with shared multi-channel com-
munication networks subject to the constraint (6.37), and the introduced threshold-based
decentralized scheduling policy (6.36). Similar to the previous sections, we describe the
overall network state at some time-step k by the aggregation of the system states x i

k
, and

error states ei
k

from all sub-systems i ∈ {1, . . . , N}, i.e.
�

xT
k

, eT
k

�T
, where xk =
�

x1T

k
, . . . , x NT

k

�T

and ek =
�

e1T

k
, . . . , eNT

k

�T
.

Following stability analysis follows the similar procedure as in Section 6.2. The major
difference is the constraint on the channel capacity, and the MAC protocol, which is
ALOHA-based in this section, and error-dependent prioritizing in Section 6.2.
We already discussed in Section 6.2 that the system state x i

k
, defined in (2.7) remains stable

assuming the stabilizing control laws are pre-designed, only if the error state ei
k

in (6.7)
is stable. We similarly take the concept of Lyapunov stability in probability (LSP) to show
convergence of the error state ei

k
. It should be mentioned that the conclusion obtained from

Lemma 6.1 remains valid for the problem framework in this section. With similar discussions
as in Section 6.2, it is concluded that the LSP condition is equivalent to the expressions
(6.15). Employing Markov’s inequality, we can instead use the expression (6.13). In
addition, the illustrative example in Section 6.2 to justify the multi-step interval for studying
LSP, can be constructed here again according to the new ALOHA-based scheduling law.
Recall that to obtain boundedness of error expectation, we need to look at an interval of
time-steps over which, given the channel capacity constraint (6.37), all sub-systems have
non-zero chances of transmission. Since, we have multiple transmission links, one can infer
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that an interval of length
�
� N

M−1

�
� provides enough transmission possibilities for an NCS of

N sub-systems and M available transmission channels. For stability analysis, we assume
the worst case scenario by considering the minimum number of available transmission
channels, i.e. M = 2. This yields that the minimum length of the interval over which LSP is
investigated equals N .

Theorem 6.3. Consider an NCS with N heterogeneous LTI control sub-systems, with the plants

given by (2.1), sharing a multi-channel communication network with two available transmission

channels per time-step. Given the control law (2.3), the estimation process (2.4) and threshold

policy (6.36), the NCS of interest is Lyapunov stable in probability under slotted ALOHA MAC

protocol.

Proof. See Appendix A.3.

Remark 6.9. In Theorem 6.3, stability is guaranteed considering no prioritization in channel
arbitration, since slotted ALOHA is a uniform random arbitration mechanism. However,
any prioritized mechanism, which allocate the channel not uniformly but based on some
priority measure, can also be considered. The design of such mechanism should be performed
very carefully since improper prioritization may lead to higher collision rate than uniform
arbitration.

6.5.3 Performance Evaluations

In this section, we evaluate the performance of a threshold-based scheduler over multi-
channel slotted aloha. Both communication and control-related aspects are investigated.
For the simulations, we consider the similar evaluation setup as introduced in Section 6.3.
The number of transmission channels at each time-slot, unless stated otherwise, is consid-
ered to be M = 10. It is worth mentioning that not only stability or instability of a plant
determines the urge of a transmission, but also system noise, which is modeled as a random
process evolves according to unsupported Gaussian distribution, influences the threshold-
based policy. Therefore, it is not guaranteed that if a plant is stable, then it is asymptotically
stable even if no transmission is associated with that sub-system. Due to presence of noise,
a sub-system with stable plant might become in more urgent situation for transmission than
a sub-system with unstable plant.
To evaluate control performance, we study the average error variance of N sub-systems:

Σ=
1
N

N∑

i=1

var[ei
k
] (6.39)

From the communication point of view, we use two metrics. First one is average channel
utilization, commonly known as throughput T , defined as:

T =
E[ns

p
]

M
, (6.40)
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Figure 6.9: Average error variance var[ei
k
] vs. number of sub-systems N (30 runs): M = 10,

λ′ = 2.

where E[ns
p
] is expected number of successful transmissions per time-slot. Ratio of collided

packets is used as the second performance metric, and is defined as:

rcol l =
E[nc

p
]

E[nc
p
] + E[ns

p
]
, (6.41)

where E[nc
p
] is the expected number of collided transmissions per time-slot.

The transmission threshold λi is considered homogeneous for all N sub-systems throughout
the simulation i.e. λi = λ j, for all i, j ∈ N . To simplify the notations, we denote it by λ′.

Static Threshold Scheduler

First, we consider a scheduler where the transmission threshold is chosen independent of
the number of transmission channels M . Figure 6.9 demonstrates the average error vari-
ances versus the increasing number of sub-systems N . We observe a non-linear growth of
the error variance, and higher confidence interval for the resulting variance over multiple
runs. The growth of the error variance can be explained by looking at Figure 6.11: with the
increasing number of sub-systems we see an increase in collision rate. Since for the unsta-
ble sub-systems, the error accumulates exponentially with every collision, linear increase in
collisions results in a non-linear increase in the variance of the error. Furthermore, we ob-
serve in Figure 6.11, that the shape of the throughput curve (solid blue curve) corresponds to
the commonly known dependency for multi- and single-channel slotted aloha with Poisson
distribution arrival rate [1]. The highest value T ≈ 1/e ≈ 0.368 is achieved at N = 26.

Figure 6.10 shows the dependency of the error variance on the transmission threshold λ′.
As we observe, and it is inline with the hypothesis we have stated previously, the dependency
is convex. In the one hand, with λ′ close to 0, the transmission is attempted almost at every
time-step, thus, causing many collisions and shifting the throughput T operating region as
in Figure 6.11 to the right. The collisions, in turn, further increase the ‖ei

k
‖2 for all unstable
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Figure 6.10: Average error variance var[ei
k
] vs. λ′. M = 10.

sub-systems with Ai > 1, which results is further increase in the number of access attempts.
As expected, the average error variance grows. On the other hand, if λ′ is chosen too high,
the increase in the error variance is caused by the underutilized communication medium
(throughput T low). Thus, it is observed that there exists an optimal value for λ′ in a given
NCS scenario defined by N , M .
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Figure 6.11: Average throughput and collision rate vs. number of sub-systems N . M = 10
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Table 6.3: Optimal λ′ = f (N , M).
N

4 6 8 10 12 14 16
M = 5 1.0 1.5 2.0 2.4 3.5 5.2 8.1
M = 10 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Scheduler with Threshold Adaptation

Following the observation about the existence of an optimal λ′, we propose an improvement
to the threshold design defined in (6.42). Namely, we use the knowledge about network
state M and the number of present sub-systems N , in order to select the λ′ such that the
performance is improved:

λ′ = f (M), (6.42)

where higher number of channels results in a higher λ′. Numerically obtained values for λ′,
depending on M , and N are summarized in Table 6.3.

This approach is mainly beneficiary for varying number of the available channels M . For
simplicity, we model the number of channels as a random variable with two possible values
M ∈ {M1, M2}, M1 < M2, with:

P[M = M1] = 1−P[M = M2]. (6.43)

These two states can represent presence or absence of a background traffic with reserved
channels, for example, as described in [112,113]. Although we consider only two states for
M , the proposed scheduling design is extendable for a more general case of multiple states.
In the evaluation scenario M1 = 5 and M2 = 10, and P[M = M1] = 0.5 are considered.
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Figure 6.12: Average error variance vs. number of sub-systems N for three cases: Adaptive
λ′, Non-Adaptive (λ′ optimal for M1 channels), Non-Adaptive (λ′ optimal for
M2 channels). M1 = 5, M2 = 10, P[M = M2] = 0.5.
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Figure 6.13: Adaptation gain Gadap vs. Probability of the “good” channel P[M = M2] for
N ∈ {4, 10, 14}. M1 = 5, M2 = 10.

For comparisons between the static and adaptive scheduler, we consider two simulative
scenarios for the static scheduler: (A) λ′ is statically set to minimize the error variance for
M = M1, and (B) λ′ is statically set to minimize the error variance for M = M2, for a given
number of sub-systems N . The comparisons are demonstrated in Figure 6.12. It is observed
that the adaptive scheduler outperforms the non-adaptive one in terms of average error vari-
ance. It also shows that the first static scenario, i.e. (A), which is optimizing the threshold for
the lower number of channels M2, is performing noticeably better than scenario (B), which
is optimizing the threshold for the higher number of channels M1. This observation is sup-
ported by Figure 6.10 illustrating that the slope of the curves on the left side of the optimal
point is much higher than that of the right side of it. This shows that over-utilization is more
deteriorating, in terms of average error variance, than under-utilization.

To evaluate the influence of adaptation on the performance, we introduce Σna and Σa as
the average error variances for non-adaptive and adaptive schedulers, respectively. Then,
the adaptation gain can be defined as follows:

Gadap =
Σna −Σa

Σna

. (6.44)

The results are depicted in Figure 6.13. The parameter P[M = M2] is a measure of how
frequently the network state changes. For P[M = M2] = 0.1 almost no change take place,
hence, both schedulers are close in terms of performance. Moreover, for P[M = M2] = 1,
although no change in network state takes place, the default state of the channel is M = M2.
Thus, the static scheduler is not optimal for all time-slots. For the network state changing
every second time, the adaptive scheduler is able to reduce the error variance by up to 30%.
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6.6 Summary

So far in this dissertation, we discussed event-triggered centralized scheduling mechanisms
for shared resource NCSs, assuming the event information from all sub-systems are accessi-
ble. In this chapter, we first introduced an event-based decentralized bi-character scheduling
mechanism which is capable of prioritizing the channel access among sub-systems based on
only local event information. The scheduling architecture possesses both deterministic and
probabilistic features, where the former feature aims at having less congested competition
for scarce resources, and the latter feature provides a flexible design framework enabling us
to properly adjust the scheduling parameters to avoid high collision rate.
In the second part of this chapter, we addressed the decentralized scheduling problem consid-
ering that noise-prone sensors measure the system states. The previous results were all based
on the fact that perfect state information is accessible for the scheduler, which is not always a
realistic assumption. Thus, we opted to design the event triggers not based on the true error
values, but depending on estimated values based on noisy sensor measurements. Through
numerical evaluations, it is shown that the new event triggers are sufficiently convenient to
be employed to prioritize the channel access. It is moreover shown that performance of the
overall NCS under the new event triggers closely follows the optimal centralized protocol.
Finally, in third part of this chapter, we analyzed the applicability of the decentralized bi-
character policy for NCSs with multi-channel networks. For the ease of analysis, we assumed
a threshold-based scheduler and then we employed the non-prioritized slotted ALOHA MAC
protocol to assign the available channels to transmission requests.
For all the decentralized scenarios introduced in this chapter, stability of the stochastic NCS
is addressed in terms of Lyapunov stability in probability. Despite the fact that collisions are
unavoidable in decentralized scenarios, we showed that appropriate tuning of the scheduling
parameters leads to acceptable collision rates. It is concluded in this chapter that the error-
dependent scheduling design is locally implementable for NCSs with realistic assumptions,
and is capable of improving the overall performance compared to the existing approaches.

6.7 Contributions

The presented discussions and results in this chapter are mainly from the author’s work in
[114,115] and a collaborative work in [101]. We demonstrated in this chapter that stochastic
stability of multiple-loop NCSs can be preserved under the employment of decentralized
error-dependent scheduling policies. Often in the literature, the channel access is assigned
randomly among the sub-systems which leads to decreased performance due to the possibility
of awarding the channel to a system with low real-time priority. We showed in this chapter
that the randomization in awarding the channel access may become biased based on real-
time requirements of local control entities. We discussed that event-based approaches can
effectively be applied on networked systems even in the absence of having access to the
perfect state information [115], and in addition in case of multi-link channels [101].
Decentralized scheduling mechanisms are an attractive field of research in the area of NCSs,
e.g., [32,33,47,48,58,116,117]. Often, in the mentioned works, events are defined in terms
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of deterministic thresholds, and after that the contention is resolved randomly. In [33],
an optimal threshold policy is introduced for the design of scheduling laws in the absence of
collisions. The communication resource is afterwards allocated with a CSMA-based approach
for a single-hop scenario. In [47,48] the event-based approaches are employed accompanied
with unslotted and slotted ALOHA MAC protocols, respectively. However, to the best of our
knowledge, the error dependency is not carried over to the randomization process when it
comes to contention-based channel allocation. The design of such scheduling mechanisms
however should be performed with maximum care due to collisions. In fact, careless design of
biased randomization leads to high collision rates which lowers the performance, sometimes
even lower compared to performance of unbiased randomization.
The illustrations presented in this chapter, i.e. Figure 6.5 and Table 6.1 are taken from the
author’s own publication in [114]. Moreover, the figures and tables presented in Section
6.4.2 are from the author’s research submitted in [115]. In addition, the plots and tables
presented in Section 6.5.3, are presented in a collaborative work published in [101].
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7

Control and Scheduling Design for Inter-

connected NCSs

Interconnected networked control systems represent a system class with application ex-
amples ranging from infrastructure systems, e.g. distributed electrical power grids, and
water/gas distribution systems to mechatronic systems like large-scale telescopes, shape-
adaptive aircraft wings and, adaptive mechanical structures. The unifying property is that
several components are physically interconnected.

In this chapter, we extend our control and scheduling architectures to be applicable for
a wider range of NCS models by considering the physical interconnections among the in-
dividual controlled sub-systems. Considering that the dynamics of a controlled sub-system
is affected by the dynamic behavior of other sub-systems through physical links adds an
extra coupling dimension to networked control systems and inevitably makes the architec-
ture more complex to be properly designed. Compared to the scenario of NCSs consisting of
physically isolated sub-systems where the coupling only appears in the communication chan-
nel, in this chapter we have to deal with an additional coupling point which occurs through
the physical interconnection links. More precisely, we address the problem of event-based
data scheduling and control for physically interconnected networked control systems over
capacity-limited communication resources. Due to complexity of analysis for very general in-
terconnection models including bi-directional and cyclic interconnections, we identify a class
of interconnected networked systems within which the state-dependent prioritizing schedul-
ing policy can be implemented. We consider an interconnected NCS consisting of multiple
heterogeneous stochastic LTI sub-systems where the physical interconnection is modeled by
a directed acyclic graph (DAG). DAGs are used to model systems with some sort of hierarchy,
e.g. security systems, vehicle platoons or traffic networks. The sub-systems are controlled by
a networked controller through a shared communication channel, which depending on the

115



7 Control and Scheduling Design for Interconnected NCSs

type of communication channel and information structure can be designed ranging from de-
centralized to distributed and to fully centralized control laws. In order to cope well with the
expected transmission traffic, we employ a bi-character deterministic-probabilistic schedul-
ing mechanism which dynamically assigns access priorities to each sub-system at each time-
step according to an error-dependent priority measure. The sub-systems which are granted
channel access then transmit their state information through the communication network.
We prove stability of such interconnected networked systems under the proposed scheduling
law in terms of f -ergodicity of overall network-induced error. Simulation results illustrate the
proposed approach and show a reduction in the error variance compared to time-triggered
TDMA and uniform random-access scheduling policies such as CSMA.

This chapter is structured as follows. We present the model of an interconnected NCS
and introduce the considered physical interconnection model and information pattern in
Section 7.1. Moreover, we investigate the structural properties of the overall interconnected
NCS under DAG physical topology. We then discuss the control and estimation processes
in Section 7.2 and derive the necessary conditions on the information propagation pattern.
Section 7.3 represents the scheduling process and discusses the influence of state-dependency
in decision making process on the network performance. Under the given assumptions on
interconnection structure and information pattern, we employ a method based on cascading
in Section 7.4, which leads to stability guarantee in terms of f -ergodicity. The improved
performance claims and simulation results are validated by numerical results in Section 7.5.

7.1 NCS Model, Interconnection Architecture, and

Information Pattern

So far in this dissertation, we have discussed the control and scheduling mechanisms for
multiple-loop networked control systems where the control-loops are supposed to be phys-
ically isolated. In the other words, the only point of coupling between the sub-systems is
in the shared communication channel. Each local control loop in that scenario is supposed
to be steered by a local controller and local system states x i’s for all i ∈ {1, . . . , N} are also
independent from each other. In this section, we introduce the physical interconnections as
an extra point of coupling between the control entities of an NCS. The physical intercon-
nections bring extra complexity to design methodologies and consequently complicate the
analyses, as we will notice further in this chapter. Therefore, we focus on a special class of
interconnected NCSs and apply our design propositions on that specific class of systems.
Consider networked control systems composed of N heterogeneous LTI controlled sub-
systems which are physically interconnected and they are additionally coupled through a
shared communication network, as depicted in Figure 7.1. Each controlled sub-system con-
sists of a stochastic discrete time LTI plant Pi and a linear feedback controller Ci, where
the communication network is installed between the plant and controller as the medium for
state information to be transmitted from the plant to the controller.

To have a better understanding of the terminologies which are used in this chapter, we
introduce the following: A connected graph with the set of vertices V and set of directed
edges E is represented by Gc(V ,E ). A node j ∈ V is called an affecting node if at least one
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Figure 7.1: A physically interconnected NCS over a shared communication network with
error-dependent centralized scheduler.

node i exists between which a directed path from j to i is established. Node i is called an
affected node. If the path’s length is one, node j is a direct neighbor of node i. A node l ∈ V
is called multi-hop neighbor of node i if a directed path of length greater than one exists
from l to i.
Having the terminologies introduced, we assume that the transmitted data from a specific
node across the communication channel is accessible for all corresponding affected sub-
systems (nodes). The control unit Ci computes the control input for sub-system i utilizing
the state estimates according to the topology of the distributed control law. Therefore, con-
trol unit Ci corresponding to sub-system (node) i has access to the transmitted information
from all direct and multi-hop neighbors of node i. To allocate the capacity-limited channel
among sub-systems, a scheduler decides whether the ith state x i

k
∈ Rni is an event to be

scheduled for channel access. A directed acyclic graph (DAG) Gc represents the physical
interconnections between the sub-systems i ∈ {1, . . . , N}, wherein every sub-system i is
represented by a node. This formulation defines a class of interconnected networked
systems in which there exist no cycles and two nodes cannot be the respective neighbors of
each other. An edge from node j to node i indicates that the dynamics of ith node is directly
affected by node jth. We define the set of all direct and multi-hop neighbors of a node i as
S̃ i

n
, while the set of only direct neighbors of node i is denoted by S i

n
.

Considering the physical interconnections, dynamics of an LTI stochastic plant Pi can be
expressed according to the following stochastic difference equation:

x i
k+1 = Ai x

i
k
+ Biu

i
k
+
∑

j∈Si
n

Ai j x
j

k
+wi

k
, (7.1)

where the noise sequence wi
k
∈ Rni is i.i.d. with N (0, Wi) at each time-step k.

The constant matrices Ai, Ai j and Bi are all from appropriate dimensions, such that
Ai ∈ Rni×ni , Ai j ∈ Rni×n j , Bi ∈ Rni×mi describe system matrices, interconnection matrices and
input matrices for every i ∈ {1, . . . , N}, respectively. The initial state x i

0 is supposed to be
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randomly chosen from an arbitrary distribution with bounded variance. According to DAG
properties, if node j is either a direct or multi-hop neighbor of node i, i.e. Ai j 6= [0]ni×n j

,
then node i is not a direct nor a multi-hop neighbor of node j, i.e. A ji = [0]n j×ni

. The initial
state x0 := [x1⊤

0 , . . . , x N⊤
0 ]
⊤, together with the noise sequence wk, generate the probability

space (Ω,A ,P), where Ω is the set of all possible outcomes, A represents the events with
probabilities determined by the function P.
Concatenation of the system state from all sub-systems leads to the overall networked
system state as

xk+1 = Axk + Buk +wk, (7.2)

where the aggregate state x = [x1⊤ , . . . , x N⊤]⊤ ∈ Rn, aggregate control input u =

[u1⊤ , . . . , uN⊤]⊤ ∈ Rm, overall system matrix A ∈ Rn×n consists of the blocks Ai on the diago-
nal, and Ai j on the off-diagonal, and the overall control matrix B ∈ Rn×m is block-diagonal

with the entries Bi. Clearly,
∑N

i=1 ni = n and
∑N

i=1 mi = m.
Recall that we confine our focus on a special class of interconnected NCSs where the

structure of interconnections follows directed-acyclic graphs (DAGs). Figure 7.2 illustrates
a typical DAG with eight nodes, where the only-affecting and only-affected nodes are desig-
nated by blue circles and red circles, respectively.

1

5

6

7

8

32

4

Figure 7.2: A DAG with eight nodes and twelve directed edges. A node j is direct neighbor
of node i if there exists an edge from node j to node i.

Two main properties of DAGs are as follows:

1. There exists no cycle which ensures that the Markov property is not violated,

2. If node j is either a direct or multi-hop neighbor of node i, i.e. j ∈ S̃ i
n
, then node i is

not a direct nor a multi-hop neighbor of node j, i.e. i /∈ S̃ j
n
.

These two properties play an essential role in analyzing stability of the overall intercon-
nected NCS, as we will see later in this chapter. We can re-arrange the nodes and edges
of all DAGs to have a better understanding of the interconnection representation. Having
DAGs, we are always able to divide the nodes into different layers, from the layer including
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Figure 7.3: A DAG with eight nodes and twelve directed edges. Node 6 is the only-affected
node while nodes 4 and 5 are the only-affecting nodes.

only-affecting nodes to the layer containing only-affected nodes. In Figure. 7.3 the identical
DAG from Figure 7.2 is redrawn from the highest layer containing the only-affecting nodes
(node 4 and 5) to the lowest layer containing the only-affected nodes (node 6).

It is clear from (7.1) that the only-affecting nodes possess only local dynamics as they are
not affected by any other node in the graph (see nodes 4 and 5 in Figure 7.3). This property
enables us to look at the overall interconnected NCS from the highest layer to the lowest
such that the sub-systems (nodes) belonging to the lower layers possess cascaded dynamics.

7.2 Control Synthesis and Estimation Process

So far in this chapter, we described the physical interconnection topology, which follows
DAGs. In this section, we address control law synthesis for such interconnected NCSs.
First of all, it should be noticed that the control law synthesis is tightly coupled with the
information topology, and not the physical interconnection. Although the interconnection
topology in this chapter is restricted to be of DAG type, it is not necessary for the control
laws to follow such assumption. However, we need to impose a requirement on the available
set of information for the control unit of a sub-system (node). Under this assumption, the
control laws are then allowed to be designed in centralized, distributed or decentralized
fashion, depending on the information topology. The assumption is as follows:

Assumption 7.1. Control unit of a sub-system i, including the model-based estimator and
controller, is required to have access to the real-time information transmitted across the
shared communication channel from all its direct or indirect neighbors. In addition, we
assume that ith control unit has access to the system information of its direct or indirect
neighbors j ∈ S̃ i

n
, such as A j, B j, Ai j, Li j and the distribution of Wj and x

j

0. If j is an indirect
neighbor of node i, then the information about all Aql for those nodes q and l which are
connecting the nodes i and j should be accessible for node i.

Under the given assumption, let the concatenated networked system (7.2) be driven by
a state feedback control uk = [u1⊤

k
, . . . , uN⊤

k
]⊤. According to the minimum requirement on
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the information pattern, each node has access to the information about its own affecting
nodes in the interconnection graph. The affecting nodes of a certain node i include direct
and multi-hop neighbors of node i. Thus, the local control unit Ci can exploit this available
information to compute the control signal ui

k
. This leads to a distributed control law having

the same DAG structure as the interconnection graph. It is worth noting that control laws
do not necessarily need to have distributed form and can still be designed decentrally as
long as they are stabilizing. For the purpose of simplicity and notational convenience, we
assume that the control laws are designed in distributed fashion with a structure that is
identical to that of physical interconnection DAG. This ensures that the control units exploit
the information they have access to, according to the assumption 7.1. Furthermore, this
assumption simplifies the theoretical representations in this chapter, while the results are
readily extendable to arbitrary information structures.
The control law ui

k
is updated with true state values x i

k
and x

j

k
if all direct neighbors j ∈ S i

n

transmit at time-step k along with the ith node itself. In case of a non-transmission from
either the node i or a direct neighboring node j, the estimates x̂ i

k
or x̂

j

k
are computed by a

model-based estimator:

ui
k
= −LiE[x

i
k
|I i

k
]−
∑

j∈S̃i
n

Li jE[x
j

k
|I i

k
], (7.3)

where I i
k

is the information set available at node i at a time-step k, which according to
assumption 7.1, is as follows:

I i
k
= {z i

0, . . . , z i
k−1} ∪ j∈S̃i

n
{z j

0, . . . , z
j

k−1} (7.4)

with, Li and Li j representing the feedback gains. Depending on the scheduling variable δi
k

for each sub-system i, the received information at the control side Ci, and in addition at all
control stations for which node i is either a direct or an indirect neighbor, is

z i
k
=

¨

x i
k
, δi

k
= 1

∅, δi
k
= 0.

In what follows, we calculate the estimate of a neighboring node’s state vector, given the
available information at node i. Assuming j ∈ S i

n
, we have,

E
�

x i
k+1|I

i
k

�

= E



Ai x
i
k
+ Biu

i
k
+
∑

j∈Si
n

Ai j x
j

k
+wi

k

�
�I i

k





= (Ai − Bi Li)E
�

x i
k

�
�I i

k
,I i,−i

k

�

+
∑

j∈Si
n

�

Ai j − Bi Li j

�

E
�

x
j

k

�
�I i

k

�

.

Therefore, the estimate of the state vector x
j

k
computed at node i is required to have an
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expectation of the local error state x i
k+1. We know,

E
�

x
j

k+1|I
i
k

�

= E



A j x
j

k
+ B ju

j

k
+
∑

l∈S
j
n

A jl x
l
k
+w

j

k

�
�I i

k





=
�

A j − B j L j

�

E
�

x
j

k

�
�I i

k

�

+
∑

l∈S
j
n

�

A jl − B j L jl

�

E
�

x l
k

�
�I i

k

�

.

It can be straightforwardly checked that the state estimate x̂
j

k
of a node j ∈ S i

n
computed at

node i, i.e. E
�

x
j

k
|I i

k

�

coincides with the estimation of x
j

k
computed at node j, i.e. E

�

x
j

k
|I j

k

�

.
This directly follows from the fact that, according to the DAG interconnection structure,
if j ∈ S i

n
, the information set I i

k
includes the information set I j

k
, i.e. I j

k
⊂ I i

k
. In the other

words, E
�

x
j

k+1|I
j

k

�

= E
�

x
j

k+1|I i
k

�

. Therefore, we have

E
�

x i
k
|I i

k

�

= (Ai − Bi Li)E
�

x i
k−1|I i

k−1

�

+
∑

j∈Si
n

(Ai j − Bi Li j)E
�

x
j

k−1|I
j

k−1

�

, (7.5)

with initial distribution E
�

x i
0|I i

0

�

= E[x
j

0|I
j

0 ] = 0.
Assuming stabilizability of the concatenated system (7.2), i.e. pair (A, B) is stabilizable, an

emulation-based control law, e.g. with the approach proposed in [118], is enough to ensure
that the feedback gain L, consisting of blocks Li on the diagonal and Li j on the off-diagonal,
is stabilizing. Therefore, the closed-loop matrix (A− BL) is Hurwitz.

The network-induced error correspond to a node i at time-step k is defined as the
difference between actual and estimated state values:

ei
k

:= x i
k
− E
�

x i
k
|I i

k−1

�

. (7.6)

Define the aggregate state
�

x i⊤

k
, ei⊤

k

�⊤
at node i. Then, considering identical DAGs for inter-

connection structure and information topology, dynamics of the ith node can be expressed
as below, following the equations (7.1)-(7.6):

�

x i
k+1

ei
k+1

�

=

�

(Ai − Bi Li) (1−δi
k
)Bi Li

0 (1− δi
k
)Ai

��
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1
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+
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�

(1− δ j

k
)Bi Li j

0 (1−δ j

k
)Ai j

��

x
j

k

e
j

k

�

. (7.7)

As it can be seen, (7.7) demonstrates a triangular dynamics which ensures that the evolution
of the local error state ei

k
is independent of the local system state x i

k
, and the neighboring

states x
j

k
for all j ∈ S̃ i

n
. However, the error state ei

k
is affected through physical intercon-

nections and therefore dynamics of ei
k

is not independent from the error states of the ith

sub-system’s neighboring nodes.
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It should be noticed that, if the information topology does not follow the same DAG that of
interconnection structure, the triangularity of the expression (7.7) is not violated, instead
extra terms appear on the first rows of the block-square matrices in expression (7.7).

7.3 State-Dependent Scheduling Law

Having discussed the control synthesis in distributed fashion, we consider the emulation-
based framework assuming that the feedback gain L, consisting of blocks Li on the diagonal
and blocks Li j on the off-diagonal, stabilizes the system state (7.2), in the absence of
capacity constraints. Hence, we focus on the scheduling design with limited communication
resources. Due to the capacity limitation of the shared communication channel, not all
sub-systems can transmit simultaneously. Therefore, the scheduling unit decides which
sub-systems use the channel at each time-step k. The scheduling decision variable has,
similar to the previous chapters, the following binary form

δi
k
=

¨

1, x i
k

sent through the channel

0, x i
k

blocked.

As discussed in the previous section, if the channel is granted to a sub-system i, at a time-step
k, then x i

k
is sent across the channel and is accessible for all sub-systems whom are affected by

sub-system i through the physical interconnections. To determine the scheduling decision,
we propose an event-based law which dynamically prioritizes the limited communication
resources among the sub-systems in an interconnected NCS. Assume the communication
channel has the capacity constraint c < N . Then, the following bi-character error-dependent
scheduling rule defines the probability of channel access for each node i at a time-step k+1
given the error values e

j

k
and error thresholds λ j for all j ∈ {1, . . . , N} at exactly the most

recent time-step k:

P[δi
k+1 = 1|e j

k
,λ j] =










0 ‖ei
k
‖2

Qi ≤ λi

1 ‖ei
k
‖2

Qi > λi ∧ nλ,k ≤ c
‖ei

k
‖2

Qi
∑

nλ,k
‖e j

k
‖2

Qi

‖ei
k
‖2

Qi > λi ∧ nλ,k > c

(7.8)

where λi is the local error threshold for node i. The number of nodes satisfying ‖ei
k
‖2

Qi > λi

at time-step k is denoted by nλ,k, and Qi is a positive definite weight matrix. It is clear that
the probability distribution above is supported on interval [0,∞).
The introduced scheduling law is characterized by both deterministic and probabilistic
features. First, if ‖ei

k
‖2

Qi ≤ λi, then the corresponding node is deterministically excluded
from channel access competition. For those being qualified for a transmission, in case
nλ,k > c, then c nodes are randomly selected such that the ones with larger errors have more
chances of being selected, as indicated in the last line of (7.8). We assume that the scheduler
is updated with error norms ‖ei

k
‖2

Qi ∈ R from all nodes i at every time-step k. This can be
realized by considering a low-capacity channel between the scheduler and sub-systems to
send those N real-valued data to the scheduler.
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7.4 Stability Analysis under DAG Interconnection Architecture

The randomization in the last line of (7.8) allows us to implement the scheduling policy
approximately in decentralized fashion. A similar decentralization approach is presented
in [114] for physically isolated NCSs, however for interconnected NCSs the decentralization
should be performed with more care, which is out of scope of this dissertation.
From (7.7), it can be concluded that the local error state ei

k
evolves as follows:

ei
k+1 =
�

1− δi
k+1

�

Aie
i
k
+
∑

j∈Si
n

�

1− δ j

k+1

�

Ai je
j

k
+wi

k
. (7.9)

We define the aggregate network-induced error state ek ∈ Rn by stacking the local error
vectors from all sub-systems i ∈ {1, . . . , N} as follows:

ek = [e
1T
k

, . . . , eNT
k
]T, (7.10)

The discussions in Lemma 2.1 can be repeated here again to conclude that the aggregate error
vector (7.10) induced by the network scheduled by the introduced law (7.8) is a homoge-
neous, aperiodic and ψ-irreducible Markov process. It should be noted that, the Markov
property, in its original definition, holds only assuming the interconnections follow the DAG
structure.

7.4 Stability Analysis under DAG Interconnection

Architecture

In this section, we address stochastic stability of the described interconnected NCSs under
the proposed event-triggered scheduling mechanism. As we already discussed in Section 7.2,
the aggregate state [x iT

k
, eiT

k
]T has triangular dynamics within each sub-system i implying

that the evolution of the local error state ei
k

is independent of the system state x i
k

and
neighboring states x

j

k
for all j ∈ S i

n
. Employing the emulation-based control strategy which

leads to have stable closed-loop control systems, expression (7.9) suggests that convergence
of the network-induced error state ek introduced in (7.10) is sufficient to show the overall
stability of the interconnected NCS, in terms of state convergence. We discussed that the
error state ek is a time-homogeneous aperiodic and ψ-irreducible Markov chain. This
motivates us to evaluate the behavior of ek stochastically in terms of convergence to a
compact set. In fact, having the concatenated system (7.2) stabilized in the absence of the
communication constraint, the triangularity of (7.7) allows us to invoke Theorem 3.1 to
analyze the stochastic behavior of the error state ek, which itself is steered by the scheduling
input, according to expression (7.9). In the following stability analysis, we frequently recall
the preliminary definitions, propositions and theorems presented in Section 3.3.1.
In order to invoke Theorem 3.1, we first define a non-negative real-valued Lyapunov function
V (ek) : Rn→ R+ as follows:

V (ek) =

N∑

i=1

ei⊤

k
Qiei

k
=

N∑

i=1

‖ei
k
‖2

Qi . (7.11)
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Due to characteristics of the selected function (7.11), employing the drift operator ∆V , in-
troduced in Definition 3.3, over one transition step, i.e. k → k + 1, for the Markov chain
(7.10) becomes too conservative. Similar to the previous chapters, we construct the follow-
ing example to illustrate this observation:

Illustrative Example: Consider an interconnected NCS consisting of two identical scalar
sub-systems competing for the sole channel slot at each time-step. The parameters are
assumed to be A1 = A2 = A, A12 6= 0 which implies, according to the DAG properties
that A21 = 0. For illustration purposes, assume Q1 = Q2 = 1 and identical initial values
e1

k
= e2

k
= ēk > λ1 = λ2. Thus, starting from time-step k, the transmission chance for

each node at time-step k + 1 is 1
2 according to (7.8). From (7.9) and (7.11), the one-step

drift (3.3) can be calculated as follows:

∆V (ek) = E[V (ek+1)|ek]− V (ek)

=
1
2

�

‖A12 ēk‖22 +E
�

‖w1
k
‖22
�

+ ‖Aēk‖22 +E
�

‖w2
k
‖22
��

+
1
2

�

‖Aēk‖22 + E
�

‖w1
k
‖22
�

+ E
�

‖w2
k
‖22
��

− 2‖ēk‖22

= ‖Aēk‖22 +
1
2
‖A12 ēk‖22 + tr(W1) + tr(W2)− 2‖ēk‖22.

For A>
p

2 or A12 > 2, the drift is not converging, which violates the condition in Theorem

3.1. To obtain a negative drift, as it is extensively discussed in earlier chapters, all sub-
systems need to have chances of transmission. Having the communication channel subject
to the capacity constraint

∑N

i=1δ
i
k
= 1, an interval with length N ensures that enough

transmission possibilities are provided, although it does not guarantee that a sub-system
certainly transmits over that interval. To that end, to infer f -ergodicity, we exploit the
modified multi-step-drift operator over an N time-step interval, e.g. over the interval
[k, k + N], as already introduced in (3.3):

∆V (ek, N) = E[V (ek+N)|ek]− V (ek), ek ∈ Rn. (7.12)

We will see in the main theorem of this chapter that f -ergodicity of the Markov chain (7.10)
is recovered by employing (7.12), under the scheduling policy (7.8) considering that the
interconnection topology follows the DAG pattern.
Before proceeding to the theorem, it is essential to observe how the error of a sub-system i

in an interconnected NCS evolves over an interval. Employing (7.9), the error at the final
time of the interval [k, k + N], i.e. ei

k+N
, can be written as a function of an error value ei

k+ri

at an arbitrary prior time-step k+ ri ∈ [k, k+ N], as follows:
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ei
k+N
=

N∏

α=ri+1

�

1− δi
k+α

�

A
N−ri

i ei
k+ri

(7.13)

+

N−1∑

r=ri

�
N∏

α=r+2

�

1− δi
k+α

�

AN−r−1
i

wi
k+r

�

︸ ︷︷ ︸

Corresponds to local dynamics of node i

+
∑

j∈Si
n




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β=0
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(1−δ j

k+γ
)

N∏
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(1−δi
k+κ
) A

β̄1
i

Ai j A
β

j



 e
j
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+
∑

j∈Si
n





N−ri−2∑

β=0
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(1−δ j

k+γ
)
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(1−δi
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β̄2
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Ai j A
β

j


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k+ri

+
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j∈Si
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


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ri+β+3∏

γ=ri+3

(1−δ j

k+γ
)

N∏

κ=ri+β+4

(1−δi
k+κ
) A

β̄3
i

Ai j A
β

j



w
j

k+ri+1

+ . . .

+
∑

j∈Si
n





1∑

β=0

N+β−1∏

γ=N−1

(1− δ j

k+γ
)

N∏

κ=N+β

(1− δi
k+κ
) A

1−β
i Ai j A

β

j



w
j

k+N−3

+
∑

j∈Si
n

(1− δ j

k+N
) Ai j w

j

k+N−2

︸ ︷︷ ︸

The effect of direct neighbors j ∈ Si
n

+
∑

j∈Si
n

∑

l∈S
j
n

Fe(δ
i,δ j,δl , Ai, A j, Al , Ai j, A jl) el

k+ri

+
∑

j∈Si
n

∑

l∈S
j
n

Fw(δ
i,δ j,δl, Ai, A j, Al , Ai j, A jl) wl

[k+ri :k+N−3]

+ . . .

+
∑

j∈Si
n

∑

l∈S
j
n

. . .
∑

o∈S t
n

(1− δ j

k+N
) (1− δl

k+N−1) . . . (1−δo
k+ri+1) Āio eo

k+ri

︸ ︷︷ ︸

The effect of multi-hop neighbors of node i

where, β̄1 = N − ri − β − 1, β̄2 = N − ri − β − 2, and Āio = Ai jA jl . . . Ato. The two matrices
Fe and Fw are not given explicitly due to space limitations, but they represent the effect of
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7 Control and Scheduling Design for Interconnected NCSs

two-hop neighbors l ∈ S j
n
. 1 In addition, having a finite number of sub-systems ensures that

the last term in (7.13) includes a finite number of summation operators.
We know that Ai je

j

k
represents the interconnection effect from node j ∈ S i

n
on the error

state ei
k
, according to error evolution (7.9). In addition, e

j

k
contains the interconnection ef-

fects from its own neighboring nodes l ∈ S j
n
, which are not necessarily direct neighbors of

the node i. Therefore, to have a comprehensive understanding of how the error of a node i

evolves, it does not suffice to observe only dynamics and transmission times of the ith node
and its direct neighbors. It is also essential to take into account the interconnection effects
from the indirect neighbors. Therefore, as it is suggested by the expression (7.13), it is ex-
tremely complex to analyze and expect the behavior of a single node of an NCS under the
very general form of interconnection topology. Indeed, in general form of interconnection
structure, which is represented by connected graphs with circles and bi-direction edges, to
analyze the behavior of a single node i, the behavior of all nodes need to be observed at all
sampling times. With these explanations, selection of DAGs as the interconnection model
between the networked sub-systems in this Chapter can be better justified.
As already reviewed in Section 7.1, a DAG represents a graph with no cycle and in addition
if a node j is either a direct or multi-hop neighbor of node i, i.e. in our notation convention,
j ∈ S̃ i

n
, then node i is neither a direct nor a multi-hop neighbor of node j, i.e. i /∈ S̃ j

n
. Having

these two properties, we showed that a DAG can always be divided into hierarchies, from the
highest including only-affecting nodes to the lowest containing only-affected nodes. More-
over, it can be concluded from (7.13) that the only-affecting nodes possess local dynamics
as they are not affected by any other node. This is a powerful conclusion which enables us
to analyze (7.13) by initially looking at the only-affecting nodes. The interconnection effect
from the only-affecting nodes can be regarded as cascaded effect. Note that, the intercon-
nection effects from the higher layers to the lower layers can be represented as cascaded
effect only due to the DAG properties. In fact, it is ensured through the non-existence of
cycles in a DAG that the interconnection effect from an affecting node is not circulating back
to that node again through the circles in the graph. Considering an interconnected NCS as
a cascade system is quite beneficial because the cascade of f -ergodic systems is f -ergodic.
Therefore, showing that the only affecting nodes are stable in terms of f -ergodicity affirms
that f -ergodicity of their neighboring nodes (if they are regardless of the neighboring ef-
fects) is not violated through the interconnection with an f -ergodic affecting node. In fact,
given an only-affecting node j which admits an f -ergodic error state, then f -ergodicity of an
affected node i is preserved if j is a neighbor of i. In Figure 7.3 for example, nodes 4 and 5
are only-affecting. Assuming that these nodes, which are not affected through the intercon-
nections, are f -ergodic, then nodes 2 and 8 are also f -ergodic if and only if their respective

1The explicit forms of Fe and Fw for special case ri = N − 3 are as follows:

Fe = (1−δi
k+N
)(1−δ j

k+N−1)(1−δ
l
k+N−2)AiAi jA jl

+ (1−δ j

k+N
)(1−δ j

k+N−1)(1−δ
l
k+N−2)Ai jA jA jl

+ (1−δ j

k+N
)(1−δl

k+N−1)(1−δl
k+N−2)Ai jA jlAl

Fw = (1−δ j

k+N
)(1−δl

k+N−1)Ai jA jl .

126



7.5 Numerical Evaluations

PSfrag

6 1

8

5

4

7

2

3

Figure 7.4: The DAG interconnection structure for the simulated NCS.

local dynamics (excluding the interconnection effect from nodes 4 and 5) are stable in terms
of f -ergodicity. Similarly, stability of nodes 4 and 8 ensure stochastic stability of node 7, if
and only if the local dynamics of node 7 is stable. We can continue this scenario until reach-
ing the only-affected node 6. Following this approach enables us to look at the error state
of each node independent of the neighboring effects. Now we are ready to present the main
theorem of this paper.

Theorem 7.1. Consider an interconnected NCS with N heterogeneous LTI stochastic sub-systems

given in (7.1) and a communication channel subject to the capacity constraint
∑N

i=1δ
i
k
= 1, and

the control, estimation and scheduling laws given by (7.3), (7.5), and (7.8), respectively. Let

the interconnections between sub-systems be modeled by a DAG Gc(V ,E ). Then for any positive

real λi ’s and positive definite Qi’s the Markov chain (7.10) is f -ergodic.

Proof. See Appendix A.4.

Remark 7.1. For general interconnection structures with undirected edges and cycles, the
ergodicity of the error (3.9) cannot be guaranteed. This follows from the fact that the error
of a node i at some prior time-steps might appear in its dynamics again in future through
the neighboring nodes, which violates the Markov property. However, the DAG assumption
on the control structure can be relaxed, which in turn introduces extra coupling terms in the
system state dynamics x i

k
, i.e. in the first rows of the squared matrices in (7.7).

7.5 Numerical Evaluations

In this section, we evaluate the performance of our event-triggered bi-character scheduler
for an NCS composed of both stable and unstable sub-systems which are physically intercon-
nected according to a DAG structure. First, we illustrate that the variance of network-induced
error states for each sub-system (node) remain bounded on average. Then, the performance
of our proposed scheduling mechanism is compared with that of TDMA and CSMA policies.
To illustrate the simulation results, we consider an interconnected NCS comprised of eight
scalar sub-systems competing for the sole channel slot at each time-step. The DAG intercon-
nection between sub-systems is depicted in Figure 7.4. In Figure 7.4 the red and blue nodes
represent only-affected and only-affecting nodes in the NCS, respectively.

For the sake of illustration, we assume that the NCS is composed of two classes of homo-
geneous sub-systems. First class includes stable sub-systems and the second class contains
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Figure 7.5: Error variances for each node of the DAG in Figure 7.4.

unstable sub-systems. System parameters within each class are assumed to be identical for
all sub-systems. We consider that the nodes {3, 4, 5, 6} represent stable sub-systems with
parameters A1 = 0.7, B1 = 1 and λ1 = 7. The second class includes the remaining four sub-
systems represented by the nodes {1, 2, 7, 8} with parameters A2 = 1.2, B2 = 1 and λ2 = 7.
Both classes are assumed to start from zero initial condition x1

0 = x2
0 = 0, and the noise

sequences wi
k

is i.i.d. according to N (0, 1). In addition, we assume to have a distributed
control policy, meaning that each sub-system is steered by a state feedback controller having
stabilizing gains Li and Li j from all neighboring nodes j. As it is ensured that a sub-system is
closed-loop stable if it transmits, we can remove the effect of the system states, and focus on
the error behavior over time. To do so, we choose a deadbeat control law to stabilize local
sub-systems, having the form Li = Ai and Li j = Ai j for all i, j with the model-based observer
(7.5). For the sake of simplicity, we select Q1 = Q2 = I for both classes {1, 2}. In addition,
we assume that all interconnection strengths Ai j, if they exist, are identical, and are denoted
by Aint. The following simulations results are derived under the scheduling law (7.8).

Figure 7.5 provides the average error variances for all nodes {1, . . . , 8}, under the inter-
connection structure depicted in Figure 7.4, for different interconnection strengths Aint =

{0.1, 0.2, 0.3, 0.4, 0.5}. It is worth mentioning that, since we have four sub-systems with
unstable plants while only one transmission slot per time-step is available, at least three un-
stable sub-systems operate in open-loop at each time-step. The averages are calculated via
Monte Carlo simulation over the horizon of 5 × 104 samples. The lower bound is derived
by removing the capacity constraint, i.e. every sub-system transmits at every time-step. The
simulation results indicate that the average error variances increase with increasing inter-
connection strength Aint. This is indeed an expected conclusion, since increasing Aint implies
that the behavior of a sub-system is under increasingly influence of its direct and indirect
neighboring sub-systems, which one or some of them might be unstable.
The error variances corresponding to nodes 4 and 5, which are the only-affecting nodes and
consequently are under no neighboring effects, change only slightly with increasing Aint. The
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slight increase in their corresponding variances follows from having the event-based sched-
uler which takes into account the real-time error values of each node in order to allocate
the channel. In fact by increasing Aint, transmission chances for nodes 4 and 5 decrease be-
cause the other nodes which are under neighboring effect, would have an increased error
and therefore higher chances of having channel access. As the channel access probabilities
for the affected nodes increase, nodes 4 and 5 transmit less occasionally over time, which
generally leads to an slight increase of their error values.
The error variance corresponding to the node 6 grows rapidly by increasing Aint, which re-
sults from the nodes 6 being the most affected node. In addition, the higher growth rate of
error variances for the nodes {1, 2, 7, 8} follows from having unstable plants.
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Figure 7.6: Comparison of error variances for different scheduling protocols.

In Figure 7.6, performance of our proposed event-triggered policy is compared with that of
TDMA and uniform CSMA protocols, which are time-triggered and random access schemes,
respectively. For the results to be fairer when compared with the TDMA approach, we con-
sider two types of token rings. In the first scenario, all unstable sub-systems which are desig-
nated by nodes {1, 2, 7, 8} in Figure 7.4, are prioritized in an offline fashion by having double
transmission occasions compared to the stable sub-systems, i.e. nodes {3, 4, 5, 6}. Therefore,
the token ring for this scenario repeats every twelve time-steps over which stable sub-systems
transmit at four occasions and unstable ones transmit at eight occasions. The performance of
this scenario is depicted by the solid blue curve in Figure 7.6. Within the next TDMA scenario,
we assume that the sub-systems which are under the greatest interconnection effects trans-
mit double than the rest of the sub-systems. To that end, nodes {1, 3, 6, 7} which represent
the four most affected sub-systems transmit twice than the nodes {2, 4, 5, 8}. This scenario
is shown in Figure 7.6 by the solid violet curve. It can be seen that the former scenario pro-
vides better performance in terms of average aggregate error variance, and the performance
gap becomes more evident as the interconnection strength increases. This is however an
expected observation, because more transmission from unstable sub-systems mean more re-
setting in their respective errors which are also affecting the dynamics of other sub-systems
through interconnections. Therefore, it is conjectured that having more transmission from
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7 Control and Scheduling Design for Interconnected NCSs

unstable nodes is more beneficial than more transmissions from most affecting nodes. This
is however not a rule, as the performance of the TDMA approach is tightly coupled with the
system parameters, such as system matrices Ai, interconnection matrices Ai j, noise variables,
channel capacity, and the number of sub-systems.
Finding the global optimal pattern for the TDMA approach over infinite horizon is an NP-hard
problem, while searching for near optimal patterns over finite horizon requires an exhaustive
brute force search. Not only near optimal TDMA patterns are computationally expensive to
be induced, but the patterns also are not extendable to different NCS setups as the tokens are
highly dependent on system parameters, especially for interconnected systems. It can be seen
from Figure 7.6 that the event-based prioritized scheme outperforms both TDMA scenarios
in terms of average error variance. Moreover, the superiority of our proposed scheduling
protocol is noticeable when the interconnection strength increases.
In addition, a comparison with the idealized CSMA protocol, which is a uniform random
access scheme, is illustrated in Figure fig:plot2. Considering the uniform access probability

A2
i
∑N

j=1 A2
j

for each node i ∈ {1, . . . , 8} at each time-step, the average error variance for a low

interconnection strength Aint = 0.1 has the order of 108. This is expected since employing
CSMA results in a probable non-transmission state for a node with rapidly growing error.

7.6 Summary

In this chapter we addressed the event-triggered scheduling design for NCSs consisting of
multiple heterogeneous control loops which are not only coupled through a shared commu-
nication medium, but are also physically interconnected. Design paradigms for these types
of networked systems are often difficult due to the complex nature of their dynamic behav-
ior which is not solely dependent on the characteristics of a local sub-system but also on
the neighboring ones. We considered a special class of interconnected networked systems
and proposed a centralized error-dependent scheduling mechanism capable of allocating the
channel among physically interconnected control loops in a prioritized fashion.
Within this class of interconnected NCSs, the physical interconnections are assumed to follow
DAG structure. This assumption implies two essential properties which enable us to look at
the NCS as a cascaded system, from the highest hierarchy including the only-affecting nodes,
to the lowest layer containing the only-affected nodes. These properties are as follows: 1)
on a DAG, there exists no cycle, 2) if a node is a direct or indirect neighbor of another node,
then the latter is neither a direct nor an indirect neighbor of the former node.
Under those properties, the Markov property of the network-induced error state is shown to
be preserved, and furthermore, we proved f -ergodicity of each sub-system’s local error state.
Since, cascade of f -ergodic processes admits an f -ergodic cascaded process, stochastic sta-
bility of the overall interconnected NCS is concluded from convergence of local error states.
Although the interconnection structure is assumed to follow DAGs, the control structure is
allowed to have centralized, distributed, or decentralized architectures, depending on infor-
mation topology. If the control of a sub-system has access to the information transmitted
across the communication channel, e.g. having a broadcast channel, then the controllers can
be synthesized centrally. In case, the control unit of a node has limited information access,
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then distributed design is feasible. Otherwise, decentralized control can be applied.
Numerical evaluations illustrated that theoretical stability claim, in terms of boundedness
of error variance for each node, is valid. Furthermore, we showed that the event-triggered
approach leads to an enhanced performance compared with typical scheduling approaches
such as TDMA and CSMA.

7.7 Contributions

Most of the presented analyses, results and discussions in this chapter are from the author’s
work in [119]. Figure 7.1 and graph representations in Figure 7.2 and Figure 7.3 demon-
strated in Section 7.1 are also from the mentioned work. In addition, Figure 7.5, presented in
Section 7.5, is from the same work by the author of this dissertation. The major efforts in this
chapter are devoted to showing the efficacy of event-triggered scheduling rules for physically
interconnected networked control systems. We first introduced a special class of intercon-
nected NCSs wherein the interconnection topology is assumed to be a directed acyclic graph.
Afterwards, we proposed control and scheduling laws taking into account the information
pattern and physical interconnection topology. Focusing on the scheduling architecture and
its performance efficiency, we proposed a centralized error-dependent scheduling mecha-
nism possessing both deterministic and probabilistic features. The scheduler receives the
error norms from each sub-system to decide which sub-system should transmit at each time-
step. The probabilistic character of the proposed scheduler will be beneficial to implement it
approximately in decentralized fashion. We already demonstrated this for physically isolated
NCSs in this dissertation in Chapter 5. The same procedure is conjectured to be applicable,
with more care about the interconnections, for the physically interconnected NCSs.
There exist numerous works on the distributed control of interconnected systems, see e.g.
[118,120–123]. To the best of our knowledge, however, the event-based scheduling for inter-
connected NCSs such that the scheduler takes into account the real-time requirements of each
control entity, has attracted very little attention, see some notable works in [49, 117, 124].
This area of research on NCSs is currently wide open and calls for the advent methodologies
and novel applicable design approaches.
As an early step towards the event-triggered scheduling for interconnected NCSs, we dis-
cussed in this chapter that event-based approaches can preserve stability of interconnected
networked systems, at least for special classes. The main advantage of employing event-
based laws is their superior performance compared to the conventional static scheduling
approaches, such as time-triggered and random access schemes.
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In this dissertation, the notion of state-dependent medium access control (MAC) protocols
for multiple-loop networked control systems under the influence of limited communication
resources is examined. We proposed error-dependent MAC architectures in various forms to
comply with divers design challenges, for networked systems comprised of multiple stochas-
tic linear time-invariant control loops sharing a common communication network. The nov-
elty in the MAC design lies in the incorporation of error states in the MAC layer, where
the error dependency appears in both deterministic and probabilistic fashions. MAC archi-
tectures with deterministic character often excel in efficient allocation of the scarce com-
munication resources among the network entities. However, they usually lack the required
flexibility to cope with the wider range of design challenges as deterministic mechanisms
often come short with respect to scalability and robustness. In addition, implementation
of deterministic approaches which are capable of prioritizing network access based on the
real-time conditions of the channel consumers’ conditions, are often computationally very
expensive. Therefore, to take care of deterministic approaches’ deficiencies, yet exploiting
the offered benefits, we employed the concept of bi-character event-based scheduling ar-
chitectures. First, the sub-systems which are eligible for having access to the communica-
tion channel are identified through an error-dependent deterministic threshold policy. Af-
terwards, the qualified sub-systems would compete for the scarce transmission opportunities
and the competition is eventually decided according to a biased randomization. The bias
term is error-dependent making the randomization process biased with respect to the real-
time situations of the transmission-qualified sub-systems. In other words, higher channel
access probabilities are assigned to sub-systems for with more stringent real-time conditions.
In this dissertation, we have focused on stability guarantees and efficiency of the proposed
MAC architectures. Since the considered control loops are driven by stochastic noise pro-
cesses, we employed notions of stochastic stability, such as ergodicity, mean square stability,
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and Lyapunov stability in probability, to achieve stability certificates. We also demonstrated
that event-triggered bi-character architectures are capable of being adjusted appropriately in
order to excel in resource allocation problem under various design challenges such as data
loss, and collisions. In addition, distributed implementation of the mentioned MAC strategies
is thoroughly discussed to emphasize the applicability of the event-based MAC approaches.
In what follows, we briefly summarize the main highlights and conclusions of each chapter
of this dissertation.

8.1 Conclusions

Chapter 2

In this chapter, we studied the structural properties of multiple-loop networked control sys-
tems under resource constraints, considering feedback control laws and general form of
scheduling architecture. The main conclusion in this chapter is the existence of separation
property between the control law and scheduling law synthesis within the considered NCS
framework. This facilitates designing appropriate mechanisms for generating the control in-
puts and allocating the scarce communication resources, independently. The control laws are
synthesized via local state feedback controllers and it is shown that if the state information is
updated in timely fashion, i.e. in the absence of communication constraints, the local control
loops are stabilized. Furthermore, the event-based scheduling mechanism is discussed, and
the events are introduced as the discrepancy between the real and estimated state values
for each local control side. Finally, the overall NCS state is introduced as the aggregation of
system states and error states from all sub-systems, and the NCS dynamics is derived.

Chapter 3

In this chapter, we introduced a pure probabilistic event-triggered scheduling mechanism for
multi-loop NCSs constrained by capacity limitation. Within the proposed architecture, the
channel access priorities are determined for each sub-system by a centralize scheduler such
that higher access probabilities are assigned to the sub-systems with higher estimation er-
rors. The final decision on which sub-systems transmit is taken via a biased randomization.
The proposed scheduling scheme can be thought as the probabilistic counterpart of the de-
terministic MEF-TOD approach, which awards the channel to the sub-systems with highest
errors. Stochastic stability of the overall NCS is studied under the proposed MAC design
in terms of f -ergodicity of the overall network-induced error, which instead guarantees sta-
bility of system states under the capacity constraints. It is illustrated numerically that the
suggested approach outperforms the conventional protocols such as TDMA and CSMA, in
terms of aggregate error variance, and behaves robustly with growing size of the NCS.

Chapter 4

In this chapter, we introduced a bi-character MAC scheme by complementing the pure prob-
abilistic scheduling approach with a deterministic mechanism. Within the new scheduling
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design, every sub-system initially decides whether to take part in channel access competition.
This decision is taken according to a deterministic threshold policy such that the local events
are compared with their pre-designed thresholds and the ones exceeding the thresholds are
forwarded for transmission. Then, the access probabilities are assigned to each eligible sub-
system and the biased randomization determines which sub-systems eventually transmit. The
deterministic feature of the scheduling process makes the access competition less intense by
excluding the sub-systems which are not in stringent transmission state. We showed that the
separation property remains valid under the modified scheduler. Stochastic stability of the
overall networked system is also guaranteed in terms of f -ergodicity. In addition, theoretical
uniform upper-bounds are derived for an average cost function comprising of transmission
cost and variance of the aggregate error state. Numerical comparison with pure probabilistic
mechanism illustrate performance enhancement when employing the bi-character design.

Chapter 5

In chapter 5, we investigated robustness properties of the bi-character scheduling policy with
respect to non-idealities of the communication channel. In addition, we analyzed the situ-
ation which the event-based scheduler is not updated with the latest event information in
a timely manner. It is shown that the probabilistic feature of the bi-character scheduler is
providing the required design flexibility to cope with such imperfections. Although the over-
all NCS performance is degraded under the mentioned non-idealities, stochastic stability is
still guaranteed, but with larger margins. It is additionally addressed that the centralized
scheduler is capable of allocating the scarce communication resources among sub-systems
efficiently even if the event information is not updated regularly, or if the transmission re-
quests are outdated. Packet dropouts are also shown to be dealt with by the bi-character
scheduling law, considering a deterministic model of data packet dropouts.

Chapter 6

In this chapter, we introduced the procedure to implement the bi-character event-based
scheduling policy in decentralized fashion. In many applications, centralized information
is not accessible for control or scheduling units. To take this into account, we proposed a
systematic scheduling approach capable of prioritizing the channel access based on the local
real-time system states. First, it is locally determined that whether a sub-system is eligible
to transmit, according to a deterministic threshold policy. Then, if a transmission attempt
is approved, a random waiting time is selected from a local probability mass function with
error-dependent expected value. After elapsing this time, the sub-system senses the channel
and transmits, if the channel is sensed as idle, and backs off otherwise. Furthermore, we pro-
pose a similar approach but assuming that the local scheduling units have access only to the
noise-deteriorated sensor measurements. Finally, we study event-based scheduling for multi-
link channels where each transmitting node randomly selects one of the available channel
links. We assume that the randomization is uniform though, i.e. a link is selected according
to the ALOHA strategy. For the mentioned scenarios, stochastic stability is guaranteed by the
notion of Lyapunov stability in probability, and it is further shown that appropriate tuning of
the scheduling parameters is instrumental in lowering the collision rates.
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Chapter 7

In this chapter, the concept of event-based data scheduling is extended for networked systems
comprised of physically interconnected sub-systems. Due to complexity of the physically
coupled NCSs, we analyzed the event-based scheduling architecture only for a special class
of interconnection topology, wherein the interconnections follow directed acyclic graphs.
Within DAG structure, a sub-system is allowed to be the neighbor of another sub-system
only if the latter itself is not a direct or indirect neighbor of the former sub-system. This
assumption facilitates the derivation of stability certificates by ensuring that Markov property
remains intact under the interconnection effects. Moreover, under DAG structure, every path
in the graph starting from the only-affecting node to the only-affected node, can be viewed as
cascade of nodes where the previous one affects the one after, but not the vice-versa. Having
this property, we can guarantee stochastic stability by looking at only local dynamics of each
sub-system. Relaxing the assumption on the DAG structure results in the contravention of
the Markov property in its original definition, and more importantly, cascading dynamics.

8.2 Outlook

Over more than a decade, numerous research is conducted on event-triggered approaches
as an efficient methodology to govern control systems, especially for large-scale networked
and cyber physical systems. Various practical and theoretical aspects of the event-triggered
sampling have been addressed in the literature, yet the topic is still increasingly attentive. In
this dissertation, we have focused towards a fundamental understanding of event-triggered
methodology for efficient synthesis of medium access control strategies for networked control
systems. However, there exist a vast amount of open challenges which need to be examined
with care. Open problems are to be addressed to support the event-triggered methodology as
a powerful approach for modern control and decision making topics. The so-far-developed
results in this area suggest that event-triggered control has a great potential to excel in future
of control research and application.
Several research directions can be followed in order to further develop the presented results
in this dissertation. We summarize the main future research paths in the followings:

Optimal design of event-triggered prioritizing bi-character scheduling law

In the bi-character event-based scheduling design, the error thresholds are introduced
as the local deterministic measures to determine whether a transmission request should be
forwarded. It is shown numerically that the average variance of the aggregate error state
is a convex function of the error thresholds. Furthermore, it was illustrated that the upper-
bounds for the average aggregate error variance are also convex with respect to those thresh-
olds. However, the upper-bounds are conservative and even if the optimal thresholds are de-
rived from those upper-bounds, they are not global optimal values. This raises the challenge
that whether the optimal error thresholds are theoretically attainable. Some works have con-
sidered deriving the optimal event triggers under simplifying assumptions, however in those
works, the probabilistic channel arbitration takes the form of a uniform randomization.
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State-dependent scheduling design for multi-link communication channels

In this dissertation, it is often assumed that the communication channel is composed of
a single transmission link, or multiple dedicated channels. This ensures that there would
not be any conflicts in selecting a transmission channel. However, this might not be a real-
istic scenario especially for wireless networks where the nodes usually select a channel ran-
domly and consequently, collisions may take place. We tackled the challenge by proposing a
threshold-based scheduling mechanism for a multi-link channel NCS, however, the eventual
transmissions are determined through the non-prioritized slotted ALOHA mechanism. This
raises the question that how an event-based prioritizing scheduling architecture can be im-
plemented for multi-channel networks such that the collisions can be effectively taken care
of.

General interconnection topology for physically coupled sub-systems

In chapter 7, we addressed the state-dependent scheduling for multiple-loop networked
control systems wherein the control loops are coupled not only in the shared communication
channel, but also through the physical interconnection links. However, the considered inter-
connection structure is assumed to be confined to the directed acyclic graph (DAG) topology.
Although it is unlikely that the very same results we obtained for that special class of in-
terconnected NCSs can be repeated for the generic interconnected structure, it is crucial to
classify the other interconnection topologies and search for appropriate solution frameworks
to extend the concept of event-based prioritizing scheduling for such highly coupled systems.

Realization of the event-based scheduling within available communication technology

The design methodologies proposed in this work would be of added excellency if they
are applied to real experiments and available communication technologies. What we have
shown in this dissertation, is an initial step to draw the attentions that state-dependency
can be employed as a powerful concept to achieve enhanced quality of control. We made
the first attempt by showing that our propositions are implementable in distributed fashion.
The next step can be realizing the state-dependency for well-known schemes, e.g. the error
dependency can be well accommodated in the IEEE 802 protocols through the back-off expo-
nents. It is conjectured that, rather than increasing or decreasing the lengths of the back-off
windows exponentially, it might be beneficial to determine the back-off windows according
to real-time conditions of transmitting node, e.g. by some suitably defined error states.

Observability of stochastic NCSs with limited capacity

Considering the overall NCS as a single control system, a unique criterion for observability
of such a control system, especially when the channel access is orchestrated by a stochastic
governing unit, is missing in the literature. In fact, assuming that state of the overall net-
worked system is the aggregation of local states from local sub-systems, then the observability
firmly depends on the scheduling output. The structural conditions under which an overall
NCS is called observable is still an open research question. Furthermore, if the scheduling
mechanism possesses a stochastic feature, it is even more challenging to formulate observ-
ability. It is conjectured that under such a scenario, steady-state probabilities for observability
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can be provided, however, to our best knowledge, there exist no approved result on that.
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A.1 Appendix to Chapter 4

A.1.1 Proof of Theorem 4.1

Proof. To study stochastic stability of the overall NCS state dynamics (3.2), we again assume
that the NCS has operated over time-steps k to k + N − 1 under the bi-character policy
(4.1). Then, the last time-step k + N is scheduled considering all possible scenarios that
might have happened in the probability space Rn over horizon [k, k + N − 1]. To this end,
we define at every arbitrary time-step k′ ∈ [k, k + N], two time-varying disjoint sets of sub-
systems, namely S1

k′ and S2
k′ , such that every i ∈ {1, . . . , N} is categorized in one set as follows:

i ∈
�

S1
k′ if ‖ei

k′‖2Qi ≤ λi

S2
k′ if ‖ei

k′‖2Qi > λi

, (A.1)

where it is straightforward to check S1
k′ ∪ S2

k′ = N . According to (A.1), all eligible sub-
systems for transmission at time-step k′ + 1 are included in the set S2

k′, while S1
k′ contains

those which are deterministically excluded from channel access competition. These two sets
are time-varying because the sub-systems might transit between them during time transition
k′ → k′ + 1. However, not only a transmission necessarily results in error decrement, or on
the other hand a non-transmission necessarily results in error increment, but also the ran-
dom noise process with range (−∞,+∞) might decrease or increase the error. Therefore,
sub-systems’ inclusion in either set S1

k′ or S2
k′ depends on both transmission occurrence and

realization of the random noise process at time k′. To take this into account and due to the
bi-character scheduling law (4.1), we discern three complementary and mutually exclusive
cases to characterize the transition of a sub-system i up to time-step k+ N − 1 as:

A subsystem i ∈ {1, . . . , N}:

c1: has either transmitted or not within the past N − 1 time-steps, and i ∈ S1
k+N−1, i.e.,

i ∈ S1
k+N−1 ⇒ ‖ei

k+N−1‖
2
Qi ≤ λi,
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c2: has transmitted at least once within the past N − 1 time-steps, latest at k + r ′
i
∈

[k, k + N − 1], and i ∈ S2
k+N−1, i.e.,

∃k′ ∈ [k, k+ N − 1] : δi

k+r′
i

= 1 and δi

[k+r′
i
+1,...,k+N−1] = 0 and ‖ei

k+N−1‖
2
Qi > λi,

c3: has not transmitted within the past N − 1 time-steps, and i ∈ S2
k+N−1, i.e.,

∀k′ ∈ [k, k+ N − 1] : δi
k′ = 0 and ‖ei

k+N−1‖2Qi > λi.

Each subsystem is characterized by exactly one of the above disjoint cases, thus cardinality
of the union of sub-systems belonging to c1, c2 and c3 equals N .

We apply Theorem 3.1 for each introduced case c1, c2 and c3 employing Lyapunov function
(4.2). The multi-step drift (4.3) is split into partial drifts ∆V (e

i∈cl

k
, N) for each case cl , l ∈

{1, 2, 3}, as follows:

∆V (e
i∈cl

k
, N) =
∑

i∈cl

E

�

‖ei
k+N
‖2

Qi |ek

�

− V (e
i∈cl

k
), (A.2)

where V (e
i∈cl

k
) =
∑

i∈cl
‖ei

k
‖2

Qi .

According to definition of the first case c1, sub-systems i ∈ c1 belong to the set S1
k+N−1,

which immediately implies ‖ei
k+N−1‖2Qi ≤ λi, whether they have already transmitted or not.

This implies δi
k+N
= 0 for all i ∈ c1. Therefore, we have

∑

i∈c1

E

�

‖ei
k+N
‖2

Qi |ek

�

=
∑

i∈c1

E

�

‖Aie
i
k+N−1+wi

k+N−1‖2Qi |ek

�

≤
∑

i∈c1

‖Ai‖22E
�

‖ei
k+N−1‖

2
Qi |ek

�

+ tr(QiWi),

where the above inequality is ensured according to the Cauchy-Schwarz rule. Since
‖ei

k+N−1‖2Qi ≤ λi for all i ∈ c1, it follows that

∑

c1

E

�

‖ei
k+N
‖2

Qi |ek

�

≤
∑

c1

λi‖Ai‖22 + tr(QiWi). (A.3)

According to (A.2), the partial drift for c1 becomes

∆V (e
i∈c1
k

, N) ≤
∑

i∈c1

λi‖Ai‖22 + tr(QiWi)−V (e
c1
k
).

Therefore, we define fc1
(e

c1
k
) = ε1V (e

c1
k
) − ξb+

1 , with positive and bounded term ξb+

1 =
∑

c1
λi‖Ai‖22 + tr(QiWi), and ε1 ∈ (0, 1]. As already discussed in Proposition 3.3, compact

sets of Rn are all small. Thus, we can find a small set D1 and a constant ε1 such that fc1
≥ 1

and ∆V (e
i∈c1
k

, N) ≤ − fc1
for e

c1
k
/∈ D1.

For a sub-system i ∈ c2, it is assumed that the latest transmission has occurred at time-step
k + r ′

i
, where r ′

i
∈ [0, N − 1]. This yields δi

k+r′
i

= 1 and δi

[k+r′
i
+1,...,k+N−1]

= 0. Recalling the
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expression (3.9), and following the statistical independence of the noise sequence wi
k+r

and
error vector ei

k+r′
i

, we have

∑

i∈c2

E

�

‖ei
k+N
‖2

Qi |ek

�

=
∑

i∈c2

E












N∏

d=r′
i

�

1− δi
k+d

�

A
N−r′

i
+1

i
ei

k+r′
i
−1








2

Qi

�
�ek





+
∑

i∈c2

E












N∑

r=r′
i

N∏

d=r+1

�

1− δi
k+d

�

AN−r
i

wi
k+r−1








2

Qi





=
∑

i∈c2

E












N∑

r=r′
i

AN−r
i

wi
k+r−1








2

Qi





≤
∑

i∈c2

N∑

r=r′
i

‖AN−r
i
‖22 tr(QiWi). (A.4)

From the multi-step drift definition (A.2), it follows

∆V (e
i∈c2
k

, N) ≤
∑

i∈c2

N∑

r=r′
i

‖AN−r
i
‖22 tr(QiWi)− V (e

c2
k
).

We similarly define fc2
(e

c2
k
) = ε2V (e

c2
k
) − ξb+

2 , where positive and bounded term ξb+

2 =

‖AN−r
i
‖22 tr(QiWi), and ε2 ∈ (0, 1]. Then we can find a small set D2 ⊂ Rn and a constant

ε2 such that fc2
≥ 1 and ∆V (e

c2

k
, N) ≤ − fc2

for e
c2

k
/∈ D2.

Sub-systems included in the third case are all submitting transmission request at the final
time-step k + N , since ‖ei

k+N−1‖2Qi > λi for all i ∈ c3. Moreover, they have never transmitted
before, i.e.
∑

i∈c3
δi

k′ = 0 for all time-steps k′ ∈ [k, k + N − 1]. To invoke Theorem 3.1 in the
third case, we split the case c3 into two complementary and disjoint sub-cases, as follows:

l
c3
1 A sub-system i ∈ c3 has not transmitted within the past N − 1 time steps, but has been

in the set S1
k+r′

i

at least once over that period, the latest at a time k+ r ′
i
∈ [k, k + N − 2],

l
c3
2 A sub-system i ∈ c3 has not transmitted within the past N −1 time-steps, and has been

in the set S2
k̄

for all k̄ ∈ [k, k+ N − 1].

Recall that sub-systems i ∈ c3 belong to S2
k+N−1 at time-step k + N − 1. For sub-system

belonging to the sub-case l
c3
1 , suppose that k + r ′

i
has been the last time-step for which

i ∈ S1
k+r′

i

, which implies ‖ei
k+r′

i

‖2
Qi ≤ λi. Knowing that δi

k′ = 0 for all i ∈ c3 up to time-step
k+N , and also recalling (3.9), we reach to
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∑

i∈l
c3
1

E

�

‖ei
k+N
‖2

Qi |ek

�

=
∑

i∈l
c3
1

E







A

N−r′
i

i
ei

k+r′
i

+

N−1∑

r=r′
i

AN−r−1
i

wi
k+r






2

Qi

�
�ek





≤
∑

i∈l
c3
1



‖AN−r′
i

i
‖22 E
�

‖ei

k+r′
i

‖2
Qi |ek

�

+

N−1∑

r=r′
i

‖AN−r−1
i
‖22E
�

‖wi
k+r
‖2

Qi

�





≤
∑

i∈l
c3
1



‖AN−r′
i

i
‖22λi +

N−1∑

r=r′
i

‖AN−r−1
i
‖22 tr(QiWi)



 . (A.5)

Substitute (A.5) in the partial drift (A.2), we get for the sub-case l
c3
1

∆V (e
i∈l

c3
1

k
, N) ≤
∑

i∈l
c3
1



‖AN−r′
i

i
‖22λi +

N−1∑

r=r′
i

‖AN−r−1
i
‖22 tr(QiWi)



− V (e
l
c3
1

k
).

Define fl
c3
1
(e

l
c3
1

k
) = εl

c3
1

V (e
l
c3
1

k
)−ξb+

l
c3
1

, whereξb+

l
c3
1

=
∑

i∈l
c3
1

�

‖AN−r′
i

i
‖22λi +
∑N−1

r=r′
i
‖AN−r−1

i
‖22 tr(QiWi)
�

,

and εl
c3
1
∈ (0, 1]. Hence, we can find an appropriate small set Dl

c3
1
⊂ Rn and an εl

c3
1

such that

fl
c3
1
≥ 1, and ∆V (e

l
c3
1

k
, N) ≤ − fl

c3
1

for e
l
c3
1

k
/∈ Dl

c3
1

.
In sub-case l

c3
2 , the belonging sub-systems i are always eligible candidates for channel

access because i ∈ S2
k̄

for all k̄ ∈ [k, k +N − 1], although they have never transmitted due
to the probabilistic nature of the scheduling policy (4.1), thus δi

k̄
= 0 for all i ∈ l

c3
2 and for

all k̄ ∈ [k, k + N − 1]. Knowing that ‖ei
k′‖2Qi

> λi for all time-steps k′ ∈ [k, k +N − 1], and
recalling (3.9) with r ′

i
= 0, we reach to

∑

i∈l
c3
2

E

�

‖ei
k+N
‖2

Qi |ek

�

=
∑

i∈l
c3
2

E

�



AN

i
ei

k
+

N−1∑

r=0

�

AN−r−1
i

wi
k+r

�




2

Qi

�
�ek

�

≤
∑

i∈l
c3
2

N−1∑

r=0

‖AN−r−1
i
‖22E
�

‖wi
k+r
‖2

Qi

�

+ ‖AN
i
‖22‖ei

k
‖2

Qi

≤
∑

i∈l
c3
2

N−1∑

r=0

‖AN−r−1
i
‖22 tr(QiWi) + ‖AN

i
‖22V (e

l
c3
2

k
). (A.6)

It follows from (A.6) that the upper-bound for
∑

i∈l
c3
2
E

�

‖ei
k+N
‖2

Qi

�

is dependent on the initial

values ek via the last term V (e
l
c3
2

k
), unlike the other cases c1 and c2 and the sub-case l

c3
1 for

which we calculated the uniform upper bounds for
∑

i∈cl
E

�

‖ei
k+N
‖2

Qi

�

. As the introduced
cases and sub-cases are mutually exclusive and complementary for the state-space Rn, we
can calculate the probability Pcl

for each case c1 − c3 according to the scheduling policy
(4.1). Recalling from Section 3.3.2, the multi-step drift operator (3.8) can be expressed as
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follows when the probabilities Pcl
are associated:

∆V (ek, N) =

3∑

cl ,l=1

Pcl
E





∑

i∈cl

‖ei
k+N
‖2

Qi |ek



−
N∑

i=1

‖ei
k
‖2

Qi , (A.7)

where, Pcl
represents the occurrence probability of each case {c1, c2, c3}, and

∑3
l=1Pc j

= 1.
As the only sub-case for which we are not able to find a uniform upper-bound without
calculating its occurrence probability is l

c3
2 , it suffices to calculate Pl

c3
2

in order to invoke
Theorem 3.1. Recall that the length of the interval of interest equals N . The intuition is
simple; if one sub-system, say j, is not granted the channel access during the entire interval
[k, k + N] while j has always been an eligible candidate, i.e. j ∈ l

c3
2 , then certainly exists

another sub-system, say i, which transmits more than once (recall that all sub-systems
belonging to c3 never transmit over [k, k + N − 1]). Let k + r̄ denotes the most recent
time-step at which sub-system i has transmitted, i.e. δi

k+r̄
= 1. The probability that the very

same sub-system i re-transmits at k+N , i.e. δi
k+N
= 1, in expense of blocking the sub-system

j ∈ l
c3
2 with no prior transmission at all time steps k̄ ∈ [k, k+ N − 1], can be computed as

P

�

δi
k+N
= 1|δi

k+r̄
= 1,δ j

k̄
= 0,‖e j

k̄
‖2

Q j > λ j,∀k̄ ∈ [k, k+ N − 1]
�

= E

�

P[δi
k+N
= 1|ek]|δi

k+r̄
= 1,δ j

k̄
= 0,‖e j

k̄
‖2

Q j > λ j

�

= E




‖ei

k+N−1‖2Qi

∑

j∈S2 ‖e j

k+N−1‖2Q j

�
�δi

k+r̄
= 1,δ j

k̄
= 0,‖e j

k̄
‖2

Q j > λ j



 ,

where, the second line in above expression is obtained according to the law of iterated
expectations. Here we consider a worst-case scenario within the sub-case l

c3
2 such that the

sub-system j ∈ l
c3
2 have monotonically increasing error norms, i.e. between two consecutive

time-steps k′→ k′ + 1, we assume ‖e j∈l
c3
2

k′ ‖2Q j ≤ ‖e
j∈l

c3
2

k′+1 ‖2Q j . Then, we arrive at

E




‖ei

k+N−1‖2Qi

∑

j∈S2 ‖e j

k+N−1‖2Q j

�
�δi

k+r̄
= 1,δ j

k̄
= 0,‖e j

k̄
‖2

Q j > λ j,‖e
j∈l

c3
2

k′ ‖
2
Q j ≤ ‖e

j∈l
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2
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2
Q j





= E




‖ei
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∑
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k+N−1‖2Q j +
∑
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k+r̄
= 1,δ j
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j∈l
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2
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


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
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∑
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


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

∑N−1
r=r̄
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‖22 tr(QiWi)

∑
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j∈l
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1
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∑

j∈l
c3
2
‖e j
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Q j

�
�ek





=

∑N−1
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‖AN−r

i
‖22 tr(QiWi)

∑

j∈c2
λ j +
∑

j∈l
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1
λ j +
∑

j∈l
c3
2
‖e j

k
‖2

Q j

= Pl
c3
2

. (A.8)
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From (A.8) we can infer that the probability of subsequent transmissions for a certain
sub-system i, in presence of sub-systems j with large error norms and without prior
transmissions, can be made arbitrarily close to zero by tuning λ j ’s and Q j ’s. Intuitively, when
a sub-system j ∈ l

c3
2 , its chance of transmission at the final time-step k+ N can be increased

by raising the error thresholds λ j of the other eligible-for-transmission candidates belonging
to the cases c2 and l

c3
1 (recall that the sub-systems in set c1 are not eligible candidates for

transmission at time-step K + N .). By increasing the error threshold correspond to the
aforementioned sub-systems j ∈ c2 and j ∈ l

c3
1 , more of them are left out of the channel

competition in favor of the sub-systems j ∈ l
c3
2 .

Recalling the upper-bound (A.6), and applying the probability (A.8) for the case l
c3
2 , we can

find the upper bound for the partial drift ∆V (e
j∈l

c3
2

k
, N) as follows:

∆V (e
j∈l

c3
2

k
, N) = Pl

c3
2

∑

j∈l
c3
2

E

�

‖e j

k+N
‖2

Q j |ek

�

− V (e
l
c3
2

k
)

≤ Pl
c3
2





∑

j∈l
c3
2

N−1∑

r=0

‖AN−r−1
j
‖22 tr(Q jWj) + ‖AN

j
‖22V (e

l
c3
2

k
)



− V (e
l
c3
2

k
)

≤



Pl
c3
2

∑

l
c3
2

‖AN
j
‖22 − 1



V (e
l
c3
2

k
) +Pl

c3
2

∑

j∈l
c3
2

N−1∑

r=0

‖AN−r−1
j
‖22 tr(Q jWj). (A.9)

Similar to the previous cases, we now define fl
c3
2
(e

l
c3
2

k
) = εl

c3
2

V (e
l
c3
2

k
) − ξb+

l
c3
2

, where ξb+

l
c3
2

=

Pl
c3
2

∑

j∈l
c3
2

∑N−1
r=0 ‖AN−r−1

j
‖22 tr(Q jWj), and εl

c3
2
∈ (0, 1]. It can be seen that we can find a small

set Dl
c3
2

and εl
c3
2

such that fl
c3
2
≥ 1, and ∆V (e

j∈l
c3
2

k
, N) ≤ − fl c3

2
for e

l
c3
2

k
/∈ Dl

c3
2

. Intuitively, for

large values of e
l
c3
2

k
, we have large V (e

l
c3
2

k
) and small Pl

c3
2

, so Dl
c3
2

can be determined such that
the condition fl

c3
2
≥ 1 satisfies. On the other hand, to have a decreasing drift, the coefficient

of V (e
l
c3
2

k
) in (A.9), i.e.

�

Pl
c3
2

∑

l
c3
2
‖AN

j
‖22 − 1
�

should be kept negative, which instead means
that the small set Dl

c3
2

should be determined to be sufficiently large.
So far, the partial drifts for all cases c1−c3 are shown to be convergent. Therefore, the small

set D f ⊂ Rn can be selected as D f = D1 ∪D2 ∪Dl
c3
1
∪Dl

c3
2

ensuring that real-valued functions
f (ek) ≥ 1 exist such that ∆V (ek, N) ≤ −min f (ek) for ek ∈ Rn\D f , and ∆V (ek, N) <∞ for
ek ∈ D f . This confirms the condition in Theorem 3.1 holds for multi-step drift (A.7), which
readily proves that the Markov chain (2.17) is f -ergodic.

A.2 Appendix to Chapter 5

A.2.1 Proof of Theorem 5.1

Proof. The cases c1−c3, and l
c3
1 , l

c3
2 , introduced in the proof of Theorem 4.1, can be considered

again in this proof, if only the word "transmission" is replaced by "successful transmission".
Thus the cases can be re-expressed as follows:
A sub-system i ∈ {1, . . . , N}:
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c1: has either successfully transmitted or not within the past N − 1 time-steps, and i ∈
S1

k+N−1, i.e.,
i ∈ S1

k+N−1 ⇒ ‖ei
k+N−1‖

2
Qi ≤ λi,

c2: has successfully transmitted at least once within the past N − 1 time-steps, latest at
k+ r ′

i
∈ [k, k+ N − 1], and i ∈ S2

k+N−1, i.e.,

∃k′ ∈ [k, k + N − 1] : δi

k+r′
i

γi

k+r′
i

= 1 and δi

[k+r′
i
+1,...,k+N−1] = 0 and ‖ei

k+N−1‖
2
Qi > λi,

l
c3
1 A sub-system i ∈ c3 has not successfully transmitted within the past N − 1 time steps,

but has been in the set S1
k+r′

i

at least once over that period, the latest at a time k+ r ′
i
∈

[k, k+ N − 2],

l
c3
2 A sub-system i ∈ c3 has not successfully transmitted within the past N − 1 time-steps,

and has been in the set S2
k̄

for all k̄ ∈ [k, k + N − 1].

It is straightforward to check that we merely need to investigate the sub-case l
c3
2 , as the

other cases can be uniformly upper bounded independently of the scheduling process. This
conclusion can be observed through the previously obtained expressions (A.3), (A.4), and
(A.5) for the cases c1 and c2 and the sub-case l

c3
1 , respectively. The intuition is that within

those cases there exist a priori knowledge about the error Markov chain at a specific prior
time-step. In fact, it is known that either the square norm of error of a specific sub-system
i is either below the threshold λi or gets reset at some time-steps. Since the error evolves
as a homogeneous Markov chain, driven by the variance-bounded Gaussian noise process,
it suffices to know that the Markov chain has been bounded at a prior time-step in order
to show boundedness of the error expectation in the future over a finite horizon. Remind
that for the sub-systems belonging to the set c2, at least a successful transmission should
occur, thus if a sub-system is scheduled for transmission and, at all transmission times, the
corresponding packets are dropped, then that sub-system non longer belongs to the set c2.

Recall the inequality (A.6) for the expectation of square weighted error norm correspond
to sub-systems belonging to the sub-case l

c3
2 :

∑

i∈l
c3
2

E

�

‖ei
k+N
‖2

Qi |ek

�

≤
∑

i∈l
c3
2

N−1∑

r=0

‖AN−r−1
i
‖22 tr(QiWi) + ‖AN

i
‖22V (e

l
c3
2

k
). (A.10)

We similarly calculate the probability that a sub-system which belongs to the sub-case l
c3
2 ,

remains in that sub-case for the final time-step k+N , considering that m scheduled packets
for transmission are dropped over the time-interval [k, k + N]. The idea to employ the f -
norm ergodic theorem is whenever a packet is dropped, we assume that a virtual control loop
has successfully transmitted instead of the sub-system for whom the scheduled data packet
is dropped. Basically, when a dropout occurs, it is assumed that N real and one virtual
sub-systems share the communication channel, and the channel is awarded to the virtual
sub-system. The virtual control loops are assumed to have the same discrete LTI dynamics as
described in (2.8) with appropriately chosen system parameters. Over the interval [k, k+N],
we assume having as many virtual loops connected to the NCS as the dropped packets. Notice
that this scenario only affects the scheduling mechanism, as we expect a dropout does affect
the assigned probabilities. Hence, extending the interval length over which we evaluate the
Markov chain behavior, is merely the consequence of having m dropouts, which requires
lengthier intervals in order to imagine non-zero chances of transmission for every real sub-
system. The virtual sub-systems incur no extra cost in the average cost function, and the
increased cost is the direct consequence of having no transmission when a scheduled data
packet is dropped.
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Let the communication channel experiences m dropouts over the interval [k, k + N − 1]
such that at least one transmission has been successful. Thus, at time-step k + N we have
N real and m virtual sub-systems, where all virtual sub-systems have transmitted. Similar
to the proof of Theorem 4.1, the probability that a sub-system i which has successfully
transmitted at least once at earlier time-steps, re-transmits at time-step k+N+m in the pres-
ence of sub-systems j ∈ l

c3
2 , while m packets are already dropped can be computed as follows:

P[δi
k+N+m

= 1|δi
k+r̄
= 1, e

j

k
, m,‖e j

k̄
‖2

Q j > λ j]

= E





‖ei
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‖2
Qi

∑

j∈S2 ‖e j
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k
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= 1,‖e j
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= P̃l
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(A.11)

where, kdm
= N + m − 1. The upper-bound (A.11) is obtained considering the worst-case

scenario, i.e. ‖e j∈l
c3
2

k′ ‖2Q j ≤ ‖e
j∈l

c3
2

k′+1 ‖2Q j for all time-steps k′ ∈ [k, k + N + m − 1]. In addition,

we take the inequality
∑

l
c3
1
‖e j

k+N+m−1‖2Q j >
∑

l
c3
1
λ j, which results from inclusion in the

sub-case l
c3
1 . It can be seen from (A.11) that in case of having m packets being dropped,

the probability that a sub-system j ∈ l
c3
2 is expelled from transmission can still be made

arbitrarily close to zero, but over a larger horizon [k, k+N +m]. Recall that the f -ergodicity
of the Markov chain (2.17) for the other cases c1, c2, and l

c3
1 are shown according to a

negative drift over N time-step horizon, which ensures that f -ergodicity holds for those
cases even if the drift is defined over any longer interval. Finally, employing (5.2), we
calculating the N +m-step drift for the sub-case l

c3
2 as follows:

∆V (e
j∈l
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2

k
, N +m) = P̃l
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‖AN+m
j
‖22 − 1



V (e
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‖AN−r−1
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‖22 tr(Q jWj)

Define f̃l
c3
2
= ε̃l

c3
2

V (e
l
c3
2

k
)− ξ̃b+

l
c3
2

, where ξ̃b+

l
c3
2

= P̃l
c3
2

∑

j∈l
c3
2

∑N+m−1
r=0 ‖AN−r−1

j
‖22 tr(Q jWj) and ε̃l

c3
2
∈

(0, 1]. Then, we can find a small set D̃l
c3
2

such that f̃l
c3
2
≥ 1, and ∆V (e

l
c3
2

k
, N + m) ≤ − f̃l

c3
2

for e
l
c3
2

k
/∈ D̃l

c3
2

. This confirms that the conditions in Theorem 3.1 hold for the sub-systems
belonging to the sub-case l

c3
2 over the horizon [k, k + N + m]. Hence, the f -norm ergodic

theorem ensures the ergodicity of the Markov chain (2.17) with the drift defined over the
interval of length N+m, in case of m packet dropouts, and the proof then readily follows.
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A.2.2 Proof of Theorem 5.2

Proof. Similar to the proof of Theorem 5.1, we can define the cases c1 − c3 and sub-cases
l
c3
1 and l

c3
2 , and it is then straightforward to check that only sub-case l

c3
2 needs to be

re-considered when the time-delays are incorporated in the scheduling design. This follows
since the delay variables d i

k
’s only appear in the scheduling law and solely affect the assigned

priorities. The obtained uniform upper-bounds (A.3), (A.4), and (A.5) for the weighted
error variance at time k + N for the cases c1 and c2 and sub-case l

c3
1 , remain unchanged

within the new scheduling set up in this theorem.
For the sub-case l

c3
2 , we already obtained the following bound on the expectation of the

weighted error norm in N time-step ahead as follows:

∑

j∈l
c3
2

E

�

‖ei
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Qi |ek

�

≤
∑

j∈l
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N−1∑
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i
‖22 tr(Q jWj) + ‖AN

i
‖22V (e

l
c3
2

k
)

Dependency of the above expression on the initial values ei
k

via the last term implies that
an appropriate fl

c3
2

to invoke Theorem 3.1 cannot be found such that the conditions of the
theorem are fulfilled. In a similar approach and due to the fact that the considered cases
are mutually exclusive, we calculate the probability that a sub-system ends up belonging to
the sub-case l

c3
2 over the entire interval [k, k + N], according to the scheduling policy (5.3).

Moreover, assume that no packet dropout happen.
Assume that the scheduler is about to assign the priorities at the final time-step k+N , while
ei

k+N−d i
k+N−1−1

is the latest received event information at the scheduler from sub-system i,

with d i
k+N−1 < N . Recall that the sub-systems in the set c1 are not eligible for transmission

at time-step k + N , thus if a sub-system i /∈ l
c3
2 transmits in the presence of sub-systems

j ∈ l
c3
2 , then i ∈ c2 or i ∈ l

c3
1 . We consider the worst-case scenario by assuming that the

sub-systems included in l
c3
2 satisfy ‖e j

k′‖2Q j ≤ ‖e j

k′+1‖2Q j . In fact, the worst case scenario
considers j ∈ l

c3
2 with their respective errors monotonically increasing from one time-step

to the next. Assume k + r̄ < k + N is the latest time-step at which sub-system i ∈ c2 has
transmitted i.e. δi

k+r̄
= 1. Thus, the probability of re-transmission for sub-system i ∈ c2

considering delayed information update is computed as follows:
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
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≤
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∑
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∑
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∑
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k
‖2

Q j
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c3
2

. (A.12)

where, kdi
= N − d i

k+N−1. From (A.12) one infers that the probability of subsequent trans-
mission for a certain sub-system, in the presence of other competitors with large errors and
without prior transmissions, can be made arbitrarily close to zero by tuning λ j ’s and Q j ’s.
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Intuitively, in case d i
k′ 6= 0, the error thresholds should be increased further (in comparison

with the up-to-date information case d i
k′ = 0) in order to make the probability of happening

the sub-case l
c3
2 arbitrarily close to zero.

Accompanying the obtained probability Pl
c3
2

, it follows for sub-case l
c3
2

Pl
c3
2
∆V (e

j∈l
c3
2

k
, N) ≤
�

Pl
c3
2
‖AN

j
‖22 − 1
�

V (e
l
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2

k
) +ξb+

l
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2

,

where ξb+

l
c3
2

= Pl
c3
2

∑

j∈l
c3
2

∑N−1
r=0 ‖AN−r−1

i
‖22 tr(Q jWj). We now define fl

c3
2
= εl

c3
2

V (e
l
c3
2

k
) − ξb+

l
c3
2

,

with εl
c3
2
∈ (0, 1]. Similarly, We can find a small set Dl

c3
2

and εl
c3
2

such that fl
c3
2
≥ 1, and

∆V (e
l
c3
2

k
, N) ≤ − fl

c3
2

for e
l
c3
2

k
/∈ D̃l

c3
2

. This confirms that the condition in Theorem 3.1 holds, and
f -ergodicity of Markov chain (2.17) is then readily followed.

Remark A.1. It is worth observing how the probability (A.12) changes with delay time d i
k′

depending on whether the delay corresponds to a stable sub-system or an unstable one. If
the plant P i is stable, then longer delay results in larger values in the numerator. Thus,
we need larger error thresholds λi for i ∈ c2 and λ j for j ∈ l

c3
1 , in comparison with d i

k′ = 0,
in the denominator to make Pl

c3
2

arbitrarily close to zero. This observation is expected as a
stable plant often has lower chance to access the channel in the presence of sub-systems with
unstable plants and no prior transmission.
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A.3 Appendix to Chapter 6

A.3.1 Proof of Theorem 6.2

Proof. As discussed in Lemma 6.2, LSP of the overall NCS state [xT
k

, eT
k
]T follows if the

aggregate error state ek possesses LSP. Furthermore, it is shown in (6.33) that LSP of
the error state defined in (6.28) can alternatively be investigated by searching for a
uniform upper-bound for the expectation of the weighted error norm. In addition, we
discussed that LSP is supposed to be shown by monitoring the evolution of error state
over an interval with length N , i.e. assuming time-step k as an arbitrary initial sample
time, convergence of error state is addressed over the interval [k, k+N]. The following
expression enables us to evaluate dynamic behavior of a local error state ei

k
while transiting

up to time-step k+N , by stepping backward in time to any prior time k+ri, with ri∈[0, N−1]:

ei
k+N
=
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(A.13)

+
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Āc
i

��

∆
i
k+q2
− I
�

v i
k+q2
+∆i

k+N
v i

k+N
,

where, ∆i
k′ = I − θ i

k′CiK
i
k′, and Āc

i
= CiAiC

−1
i

, and we define
∏−1

0 (·) := 1, and
∑N−1

N
(·) := 0.

We first analyze the case that successive collisions occur over the interval [k, k + N],
i.e. θ i

k′ = 0 for all i ∈ {1, . . . , N} at all time-steps k′ ∈ [k, k + N]. Let ri = 0,
then from (A.13) we have ei

k+N
= ĀcN−ri−1

i

�

ei
k
− v i

k

�

+
∑N−1
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Ciw

i
k+q1

+ v i
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.
The probability that such a scenario occurs is computed in (6.22). Setting
ξ̄′ =
∑N

i=1 ‖ĀcN−ri−1

i
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− v i
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+
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Qi , it follows from (6.15)
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k′τλ j

,

which ensures Lyapunov stability with probability (6.22). In the rest of this proof, we assume
that not all data packets collide over the interval [k, k+N]. Behavior of a sub-system i while
transiting from k to k+N can be characterized by one of the following three complementary
and mutually exclusive occurrences, covering the entire state space. First, a sub-system i
is in the set Ḡk′ := N−Gk′, at least in one occasion over [k, k+N], where N is the set of
all sub-systems {1, . . . , N} and Gk′ is introduced in (6.8). Second, a sub-system i is always
in Gk′, but has successfully transmitted at least once over [k, k+N]. Third, over the same
period, a sub-system i is always in the set Gk′, and has never successfully transmitted.
For the first scenario, denoted as s1, assume that the time-step k+ ri is the latest occasion
such that i ∈ Ḡk+ri

. This implies ‖ei
k+ri
‖2

Qi ≤ λi. From (A.13), and due to mutual statistical
independence of ei

k+ri
, wi

k+q1
, v i

k+q2
, and v i

k+N
, and in addition, noting that I−CiK

i
k′ is positive

definite, the following upper-bound can be obtained for all i ∈ s1
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(A.14)
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where, ζi
b

stands for the second line of the above expression. LSP condition (6.15) is then

fulfilled with ξ̄′ selected larger than (A.14) and ξ̄=
∑

i∈s1
E

h

‖ei
k+N
‖2

Qi
|ei

k

i

ξ̄′
< 1.

For sub-systems i experiencing the second scenario, denoted as s2, assume k+ ri is the latest
time-step of a corresponding successful transmission, i.e. θ i

k+ri
= 1. Hence, θ i

k+rii
= 0 for all

ri < rii ≤ N . It follows from (A.13)
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where, P i
k+ri

is the a posteriori covariance matrix of estimation error x i
k+ri
− x̂ i

k+ri
. Upper-

bound (A.15) follows from the Kalman filter properties ensuring that if θ i
k+ri

= 1, the
followings hold:
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]).

Thus, LSP condition (6.15) satisfies with ξ̄′ selected to be larger than (A.15) and

ξ̄ =

∑

i∈s2
E

h

‖ei
k+N
‖2

Qi
|ei

k

i

ξ̄′
< 1.

Denoting the third scenario as s3, all sub-systems i ∈ s3 never transmit over the interval
[k, k + N] while all of them are in Gk′ for all k′ ∈ [k, k + N]. This implies that a uniform
upper-bound for E

�

‖ei
k+N
‖2

Qi

�

cannot be found since ‖ei
k′‖2Qi > λi for all k′. However, as

the introduced scenarios s1 − s3 are mutually exclusive, we can compute the probability
that a sub-system i remains in the set s3 for all time-steps [k, k + N], according to the MAC
protocol (6.32). Assuming not all transmission attempts fail due to collisions, a sub-system
i ∈ s3 never transmits successfully due to either never finding the channel free, or having
collisions whenever the channel is sensed idle. Recall the similar scenario of having virtual
sub-systems, discussed in the proof of Theorem 6.1, and let the channel experiences m<N
collisions over the interval [k, k+N]. Having N +m sub-systems requires to extend our
operational interval to [k, km], where km = k+N +m. For a sub-system i to be in s3, it is
required that another sub-system, say j, which has already transmitted, re-transmits at the
final time km. Let k+ r j denote the latest step at which θ j

k+r j
= 1 before the final step km.

The probability that sub-system j re-transmits at km, in the presence of sub-system i with no
prior transmission, can be calculated as

P[θ
j

km
=1|θ j

k+r j
= 1,θ i

k′ = 0, ∀k′∈[k, km]]

= P[νi
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≤
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, (A.16)
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where, the last expression follows from Markov’s inequality, and ν j

km−1=s
j

km−1τ for arbitrary

s
j

km−1∈{1, . . . , h−1}. Exploiting the law of iterated expectation, we can compute (A.16), given
the latest error vector ei

km−1, and from (6.31), as
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Incorporating the probability obtained in (A.17), we have for a sub-system i ∈ s3 that
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where, the last line follows from ‖ei
km−1‖2Qi > λi for all i∈ s3. Incorporating the probability

of occurrence for each scenario, and extending the interval to [k, km], (6.14) becomes

∑
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We know that LSP holds for the error state ek over any longer interval than [k, k+N]. More-
over for the last scenario s3, since (A.18) is uniformly bounded, LSP condition (6.15) will be

satisfied over [k, km] by setting ξ̄′ greater than (A.18) and selecting ξ̄ =
∑

i∈s3
Ps3 E

h

‖ei
km
‖2

Qi
|ei

k

i

ξ̄′
<

1. This ensures the aggregate error state ek possesses LSP while transiting over a finite inter-
val [k, km] with m collisions. Together with Lemma 6.2, LSP of the overall networked state
[xT

k
eT

k
]T readily follows.

A.3.2 Proof of Theorem 6.3

Proof. To show LSP, let the NCS of interest operate over the interval [k, k+N] of length N ,
starting from time-step k with arbitrary initial state ek. We take the similar approach as
in the proof of Theorem 6.2 and depending on whether the condition (6.35) is satisfied at
every time-step k′, we divide the sub-systems i ∈ {1, . . . , N} into two complementary and
disjoint sets as follows:

i ∈
§Gk′ ‖ei

k′‖2 > λi,
Ḡk′ ‖ei

k′‖2 ≤ λi,
(A.19)

where Gk′∪ Ḡk′ = N . In accordance with the slotted ALOHA policy, if a sub-system i is el-
igible for transmission at some time k′ + 1, i.e. if ‖ei

k′‖2 > λi, then i selects one of the
available transmission channels in uniform random fashion. If no other transmission-eligible
sub-system j 6= i selects that certain transmission channel, then sub-system i successfully
transmits. Otherwise, a collision occurs and collided packets are dropped. The correspond-
ing sub-systems then have to wait until the next time-step, i.e. k′ + 2, to transmit, only if
the inequality (6.35) is satisfied with the updated error at time k + 1. To address stability,
we discern four complementary and mutually exclusive cases, covering the entire state space
over which the error state ek evolves until time-step k+N−1 as follows:
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Sub-system i:

c1: has either successfully transmitted or not within the past N−1 time-steps, and is in set
Ḡk+N−1, i.e.

i ∈ Ḡk+N−1 ⇒ ‖ei
k+N−1‖2 ≤ λi,

c2: has successfully transmitted at least once within the past N−1 time-steps, and is in set
Gk+N−1, i.e.

∃k′∈ [k, k+N−1] : θ i
k′ = 1 and ‖ei

k+N−1‖2 > λi,

c3: has not successfully transmitted within the past N−1 time-steps, and is in the setGk+N−1,
but has been in the set Ḡk′ at least once at a time-step k′ ∈ [k, k +N − 2], i.e.

∀k′∈ [k, k+N−1] : θ i
k′ = 0 and ‖ei

k′‖2 ≤ λi.

c4: has not successfully transmitted within the past N−1 time-steps, and has always been
in the set Gk′ for all time-steps k′ ∈ [k, k+N−1], i.e.

∀k′∈ [k, k+N−1] : θ i
k′ = 0 and ‖ei

k′‖2 > λi.

Introducing the above cases, we study the boundedness of error norm expectation over the
interval [k, k+N] for cases c1-c4. Since, the cases are complementary and mutually exclusive,
i.e. each sub-system belongs exactly to one of the cases c1-c4, we can express (6.14) as
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Suppose that some sub-systems i belong to c1. Since i∈Ḡk+N−1, it follows from (A.19) that
‖ei

k+N−1‖≤λi . Thus, those sub-systems are not eligible for transmission at time-step k + N ,
i.e. θ i

k+N
= 0. Then, it follows from (6.7) and (A.20) that
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This fulfills the condition (6.15) with ξ̄′ >
∑
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i
‖Ai‖22 + tr(Wi), and ξ̄ =
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For some i∈ c2, let a successful transmission occur at time-step k+ri, where ri∈[1, N−1],
i.e. θ i

k+ri
=1. We can express ei
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as a function of the error at time k+ri−1 as
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where we define
∏N

N+1(1 − θ i
k+ j
) := 1. The first term of the above equality vanishes as

θ i
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=1. By statistical independence of wi
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, it follows from (A.22)

∑

i∈c2

E
�

‖ei
k+N
‖22|ek

�

=
∑

i∈c2

E



‖
N∑

r=r′
i

N∏

j=r+1

�

1− θ i
k+ j

�

AN−r
i

wi
k+r−1‖

2
2





≤
∑

i∈c2

N∑

r=r′
i

E
�

‖AN−r
i

wi
k+r−1‖

2
2

�

≤
∑

i∈c2

N∑

r=r′
i

‖AN−r
i
‖22 tr(Wi). (A.23)

Hence, the condition (6.15) is satisfied considering ξ̄′ chosen to be larger than (A.4), and

ξ̄=

∑

c2
E[‖ei

k+N
‖22|ek]

ξ̄′
< 1. Note that we assume to have only two transmission channels per time

slot in this proof, therefore if the number of sub-systems which are eligible for transmission
at a specific time-step is greater than two, and one sub-system belongs to c2, then the rest
of sub-systems belong to either set c3 or c4. This means that, one successful transmission
occurs through one of the two available channels, while the other eligible sub-systems will
not successfully transmit.

For the case c3, assume that the k + ri is the last time-step for sub-systems i ∈ c3 that
i ∈ Ḡk+ri

, which in turn implies that ‖ei
k+ri
‖2≤λi. Recall that the sub-systems i∈ c3 belong to

Gk+N−1. Knowing that θ i
k′ = 0 for i ∈ c3 for all k′ ∈ [k, k+ N − 1], we reach
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The condition (6.15) is met by selecting ξ̄′ larger than the uniform upper bound (A.24), and

ξ̄=

∑

c3
E[‖ei

k+N
‖22|ek]

ξ̄′
< 1.

The sub-systems i ∈ c4 have always been candidates for channel access, but they have
never transmitted, which indicates that every single attempt from those sub-systems resulted
in a collision. Hence, ‖ei

k′‖2>λi for all k′∈ [k, k+N−1] while θ i
k′ = 0. To show LSP in this

case, we consider the worst case scenario by assuming that every attempts to access one of
the two available channels results in collisions and consequently no successful transmission
would happen over the entire period [k, k+N]. Generally, the probability that such a scenario
happens for M available transmission channels can be calculated as follows:

P f ail =
∏k+N

t=k
P

t
f ail

, (A.25)

where P
k
f ail

denotes the probability that all sub-systems collide in a given slot k over M

available channels. Let the number of sub-systems eligible for transmission in a given slot k

is denoted by gk = |Gk−1|. Thus, the probability P
k
f ail

can be derived as:

P
k
f ail
=

M gk −m1s

M gk

, (A.26)

where M gk is the total number of possible channel selections for all transmitting sub-systems
at time k, and m1s is the number of outcomes with at least one successful transmission.
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The probability that of one specific sub-system to succeed is given in (6.38). As it can be
any of gk sub-systems, and they can be successful with any channel, total number of such
outcomes can be computed as follows:

gk M

�
M − 1

M

�gk

(A.27)

Now, by inclusion-exclusion principle, the probabilities of two successful transmissions in
the slot k are counted in (A.27) twice. There are exactly 2! ways for two success matches,
and they can occur for any pair of channels and for any pair of sub-systems, resulting in

2!
�

M

2

��
gk

2

�

(M − 2)gk−2 (A.28)

possible outcomes. We still need to subtract the number of outcomes with three successes,
and so forth. Thus, at the end, we can derive m1s as follows:

m1s =

min(gk,M)∑

j=1

(−1) j+1 · j!
�
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j

��
gk

j

�
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Using expression (A.29) in (A.26), the probability that all transmissions fail in one slot be-
comes:

P
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, (A.30)

Note that for any given slot, maximum number of eligible for transmission sub-systems is
at most N , thus, gk ≤ N . Therefore, we can derive the upper bound on the Pf ail as:

P f ail ≤ (Pk
f ail
)N , (A.31)

with:
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From (A.22), if no sub-system transmits over the N -step horizon, we can choose ξ̄′ =
∑N

i=1 ‖AN
i
ei

k
+
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r=1 AN−r
i
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k+r−1‖22>0, which implies
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�
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for an arbitrary ρ(ξ̄′, ξ̄), and LSP of the overall NCS then readily follows according to (6.15).
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A.4 Appendix to Chapter 7

A.4.1 Proof of Theorem 7.1

Proof. According to the earlier discussions about the node layers under the DAG intercon-
nection structure, we study convergence of the error state ei

k
for each sub-system considering

only its local dynamics, i.e. we look at the first two terms in (7.13):

e
i,local
k+N

=

N∏

α=ri+1

�

1− δi
k+α

�

A
N−ri

i
ei

k+ri
+

N−1∑

r=ri

�
N∏

α=r+2

�

1− δi
k+α

�

AN−r−1
i

wi
k+r

�

. (A.34)

We follow a similar approach as in Chapter 5 by assuming that, over an interval with length
N , each sub-system has operated from time-step k to k + N − 1 utilizing the policy (7.8).
Then, the last time k + N is scheduled considering all possible scenarios which might have
happened over the entire state-space during the transitional interval [k, k + N − 1]. Note
that, according to (7.8), the scheduling unit receives true error values from each node and
decides the priorities considering the interconnections as well. Therefore, the error values
in (7.8) are given by the expression (7.13). We define at every time-step k′ ∈ [k, k+N], two
time-varying disjoint sets S1

k′ and S2
k′, such that for every node i ∈ {1, . . . , N}

i ∈
�

S1
k′ if ‖ei

k′‖2Qi ≤ λi

S2
k′ if ‖ei

k′‖2Qi > λi

, (A.35)

with S1
k′ ∪ S2

k′ = N . Eligible nodes to transmit at time k′ + 1 are included in S2
k′, while S1

k′

contains the excluded nodes from channel access competition. In order to schedule the final
time-step k + N , we discern three complementary and disjoint cases for a node i which is
assumed to have evolved until time-step k+ N − 1, as follows:

c1: Node i has either transmitted or not within the past N − 1 steps, and i ∈ S1
k+N−1, i.e.

i ∈ S1
k+N−1 ⇒ ‖ei

k+N−1‖
2
Qi ≤ λi,

c2: Node i has transmitted at least once within the past N − 1 steps, and i ∈ S2
k+N−1, i.e.

∃k′ ∈ [k, k+ N − 1] : δi
k′ = 1 and ‖ei

k+N−1‖
2
Qi > λi,

c3: Node i has not transmitted within the past N − 1 time-steps, and is in set S2
k+N−1, i.e.

∀k′ ∈ [k, k +N − 1] : δi
k′ = 0 and ‖ei

k+N−1‖
2
Qi > λi.

Each node is characterized by exactly one of the above cases during transition from k
to k + N − 1, thus the cardinality of the union of sub-systems belonging to c1, c2 and c3
equals N . We similarly apply Theorem 3.1 to the cases c1− c3 employing the drift (7.12) and
Lyapunov function (7.11). To show f -ergodicity of only the local part of the error state ei

k
,

the N -step drift (7.12) can be split into partial drifts as follows:

∆V (e
i∈cl

k
, N) =
∑

i∈cl

E

�

‖ei,local
k+N
‖2

Qi |ek

�

− V (e
cl

k
), (A.36)
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where V (e
cl

k
) =
∑

i∈cl
‖ei

k
‖2

Qi , for ∀i ∈ cl and l ∈ {1, 2, 3}.
For a sub-system i belonging to the case c1, we know ‖ei

k+N−1‖2Qi ≤ λi. This ensures
that δi

k+N
= 0 for ∀i ∈ c1. Setting ri = N − 1 in (A.34), yields

∑

i∈c1

E

�

‖ei,local
k+N
‖2

Qi |ek

�

=
∑

i∈c1

E

�

‖Aie
i
k+N−1+wi

k+N−1‖
2
Qi |ek

�

≤
∑

i∈c1

‖Ai‖22E
�

‖ei
k+N−1‖

2
Qi |ek

�

+E

�

‖wi
k+N−1‖

2
Qi

�

≤
∑

i∈c1

‖Ai‖22λi + tr(QiWi). (A.37)

It should be noticed that in the local error dynamics (A.34), the prior error state ei
k+ri

contains the interconnection effects as is shown in (7.13). That is why in obtaining
(A.37), we are allowed to exploit the inequality ‖ei

k+N−1‖2Qi ≤ λi, which is comparing the
actual error value, not the local value of the error state, with the given error threshold.
Having (A.37), the following uniform upper-bound for the partial drift (A.36) can be derived:

∆V (e
i∈c1
k

, N) ≤
∑

i∈c1

‖Ai‖22λi + tr(QiWi)− V (e
c1
k
).

Defining fc1
(ek) = ε1V (e

c1

k
)− ξb+

1 , where ξb+

1 =
∑

i∈c1
‖Ai‖22λi + tr(QiWi), and ε1 ∈ (0, 1], we

can find a small set D1 and constant ε1 such that fc1
≥ 1 and ∆V (e

c1
k

, N) ≤ − fc1
for e

c1
k
/∈ D1.

For a sub-system i ∈ c2, we assume that the last transmission has taken place at time-step
k + ri, i.e. δi

k+ri
= 1. Considering the statistical independence of the system noise sequence

wi
k+r

and error state ei
k+ri−1, it follows from (A.34) that

∑

i∈c2

E

�

‖ei,local
k+N
‖2

Qi |ek

�

=
∑

i∈c2

N−1∑

r=ri

E

�

‖AN−r−1
i

wi
k+r
‖2

Qi

�

≤
∑

i∈c2

N−1∑

r=ri

‖AN−r−1
i
‖22 tr(QiWi). (A.38)

From (A.36), the following upper-bound for the partial drift can be obtained

∆V (e
c2

k
, N) ≤
∑

i∈c2

N−1∑

r=ri

‖AN−r−1
i
‖22 tr(QiWi)− V (e

c2

k
).

Similar to the case c1, define fc2
(ek) = ε2V (e

c2
k
) − ξb+

2 , where ξb+

2 =
∑

i∈c2

∑N−1
r=ri
‖AN−r−1

i
‖22 tr(QiWi), and ε2 ∈ (0, 1]. We can then find a small set D2 ⊂ Rn

and constant ε2 such that fc2
≥ 1 and ∆V (e

c2
k

, N) ≤ − fc2
, for e

c2
k
/∈ D2.

The sub-systems i belonging to the set c3 are eligible for channel access at the final time-
step k + N because i ∈ S2

k+N−1. To infer f -ergodicity, we split the case c3 into two comple-
mentary and disjoint sub-cases as follows:
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l
c3
1 node i has not transmitted within the past N − 1 time-steps, but has been in the set S1

at least once, latest at a time-step k+ ri ∈ [k, k + N − 2],

l
c3
2 node i has not transmitted within the past N − 1 time-steps, and has been in S2 for all

time-steps [k, k + N − 1].

A sub-system i ∈ l
c3
1 , has been in the set S1

k+ri
for the last time, which implies ‖ei

k+ri
‖2

Qi ≤ λi.

Knowing that for all i ∈ l
c3
1 , we have δi

k̄
= 0 for k̄ ∈ [k, k +N − 1], it follows that

∑

i∈l
c3
1

E

�
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Qi |ek

�

≤
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�
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�

. (A.39)

Define fl
c3
1
(ek) = εl

c3
1

V (e
l
c3
1

k
)−ξb+
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1

, whereξb+
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=
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,

with εl
c3
1
∈ (0, 1]. Thus, we can find a small set Dl

c3
1

and εl
c3
1

such that fl
c3
1
≥ 1,

and ∆V (e
l
c3
1

k
, N) ≤ − fl

c3
1

, for e
l
c3
1

k
/∈ Dl

c3
1

.
For sub-systems belonging to the sub-case l

c3
2 , we know ‖ei

k̄
‖2

Qi > λi for all time-steps

k̄ ∈ [k, k+ N − 1]. From (A.34), with setting ri = 0, we have
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‖22 tr(QiWi) (A.40)

Expression (A.40) depends on ei
k

via the term V (e
l
c3
2

k
), thus it is not uniformly upper bounded

for arbitrary initial values. As the considered cases cannot happen all together, we calculate
the probability that a sub-system i ∈ l

c3
2 does not transmit at the final time k + N , and

instead another sub-system, which has had at least one prior transmission, re-transmits.
Recall that the length of the interval equals N . Thus, if a node, say i, does not transmit for
all time-steps k̄ ∈ [k, k+ N], then inevitably another node, say j, transmits more than once.
Let k+ r j denote the latest time-step at which node j transmitted, i.e. δ j

k+r j
= 1. Inevitably,

node j which is qualified for transmission at time-step k+N belongs to the set c2. Thus, the
probability that j ∈ c2 re-transmits at k+ N , in the presence of node i ∈ l

c3
2 is

P[δ
j

k+N
= 1|δ j

k+r j
= 1,δi

k̄
= 0,‖ei
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‖2

Qi > λi]

= E
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

 .
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So far, f -ergodicity of the error states for sub-systems belonging to the cases c1, c2, and
sub-case l

c3
1 is shown without calculating the probability of occurrence of those cases. For

sub-systems included in the sub-case l
c3
2 however, f -ergodicity cannot be shown without in-

corporating the probability of occurrence. Remember that the scheduler assigns the priorities
based on true error values (7.13) and not the local values (A.34). Although we study stability
of overall networked system by separately looking at each node, the interconnections affect
the chance of transmission for a special node. Consider the worst-case scenario which entails

‖el
c3
2

k′ ‖2Qi
≤ ‖el

c3
2

k′+1‖2Qi
, for all i ∈ l

c3
2 . Recalling that for nodes q ∈ c1, we have δq
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= 0, we reach
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Due to the linearity of control loops and the error dynamics (7.9) and since ‖e j

k
‖Q j is finite

for all nodes j ∈ {1, . . . , N}, we conclude ‖e j

k+N−1‖2Q j
is finite. Thus, by selecting appropriate

λi ’s and Qi’s we can theoretically make the latest inequality arbitrarily close to zero.
Intuitively, the probability of subsequent transmissions for a certain node, in presence of

nodes with large errors and without prior transmissions, can be made arbitrarily close to
zero by tuning λi ’s and Qi’s. In fact, by increasing λ j for j /∈ l

c3
2 , more of them are left out

of channel competition in favor of nodes in l
c3
2 . The N -step drift (7.12) can be rewritten in

terms of partial drifts incorporating their occurrence probabilities as

∆V (e
cl
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∑
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E

�

‖ei,local
k+N
‖2

Qi

�

− V (e
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k
), (A.41)

where, Pcl
is the occurrence probability of a case cl , such that

∑

cl
Pcl
= 1 for l ∈ {1, 2, 3}.

Therefore, the overall drift can be expressed as
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where, we assume in the above inequality that Pc1
= Pc2

= Pl
c3
1
= 1. Thus for the sub-case

l
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2 , and with (A.40), we have
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Define fl
c3
2
= εl

c3
2

V (e
l
c3
2

k
)−Pl

c3
2

∑

i∈l
c3
2

∑N−1
r=0 ‖AN−r−1

i
‖22 tr(QiWi), with εl

c3
2
∈ (0, 1]. We can then

find small set Dl
c3
2

and εl
c3
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such that fl
c3
2
≥ 1, and ∆V (e

l
c3
2

k
, N) ≤ − fl

c3
2

, for e
l
c3
2

k
/∈ Dl

c3
2

.
We have shown that the conditions of Theorem 3.1 hold separately for each case cl . As

the cases are complementary and disjoint, we define the small set D f ⊂ Rn and ε f ∈ (0, 1]
such that f (ek) ≥ 1, and ∆V (ek, N) ≤ − f (ek), for ek /∈ D f . This confirms that Theorem 3.1
holds for the overall drift (A.41), which proves the Markov chain (A.34) is f -ergodic. This
yields that the random error values for each sub-system are selected from bounded variance
distributions. This proves the f -ergodicity of local error state (A.34) and consequently the
f -ergodicity of the cascade system represented in (7.13).
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A.5 Matrix Algebra

In this appendix, we will briefly review some of the basic concepts and principles in matrix
algebra which are extensively used throughout this dissertation. We remind some of the
crucial matrix algebraic operations, and further we will have an overview of norm operators.
The following presentations can be found in [125–127], or in similar reference textbooks.

A.5.1 Matrix principles and Operations

In the following definitions, unless otherwise stated, a m× n matrix A, consisting of m rows
and n columns of real-valued elements, is represented by Am×n. If m = 1, then A is called a
row vector, and if n = 1, A is a column vector.

Definition A.1 (Matrix Transpose). Transpose of the m-by-n matrix Am×n is denoted by A⊤,
and is a n-by-m matrix whose rows and columns are the columns and rows of the matrix
Am×n, respectively. If a matrix A equals its transpose, i.e. A= A⊤, then A is called a symmetric
matrix. It is clear that a symmetric matrix is always a square matrix.

Definition A.2 (Positive Definite (Semi-Definite) Matrix). A symmetric matrix An×n is positive
definite (positive semi-definite) if and only if all eigenvalues of A are positive (non-negative).

Definition A.3 (Trace Operator). Trace of the square matrix An×n is the summation of the
elements aii, i.e. the elements on the main diagonal. Trace operator is not defined for non-
square matrices.

Trace operator is an invariant linear mapping with the following properties:

1. tr(A+ B) = tr(A) + tr(B).

2. tr(cA) = c tr(A), for constant and scalar c.

3. tr(A) = tr(A⊤).

4. tr(An×n) =
∑n

i=1λi, where λi ’s are the eigenvalues (real and complex) of matrix A.

5. tr(AB) = tr(BA), for Am×n and Bn×m.

6. Trace operator is invariant under the cyclic permutations, i.e. tr(ABC) = tr(BCA) =

tr(CAB). Generally, non-cyclic permutations are not allowed, i.e. tr(ABC) 6= tr(ACB),
for general A, B, and C matrices of appropriate dimensions.

Definition A.4 (Hurwitz Matrix). A square matrix An×n is called Hurwitz if all eigenvalues of
A have strictly negative real parts.

Definition A.5 (Matrix Power). If p is a positive integer, then for An×n, Ap is the p times
product of matrix A, and is an n-by-n matrix, i.e. Ap = A . . .A

︸ ︷︷ ︸

p−times

.
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A.5.2 Norm Operators

Definition A.6 (Norm Definition). A norm operator T is a linear mapping from a vector space
V to the non-negative real values space R+ ∪ {0}, i.e. T : V → R+ ∪ {0}.

Assume u and v are two real-valued vectors with appropriate dimensions. The norm operator
then admits the following properties:

1. T (v)≥ 0.

2. If T (v) = 0, then v is the zero vector, i.e. the vector with all zero elements.

3. T (−v) = T (v).

4. T (u+ v) ≤ T (u) + T (v).

5. T (u− v) ≥ |T (u)− T (v)|, where | · | is the absolute value operator.

6. If c is a scalar, then T (cv) = |c|T (v).

Definition A.7 (Euclidean Norm). Assume a real-valued vector v = [v1, v2, . . . , vn]
⊤ ∈ Rn.

Then, the Euclidean norm of v is defined as

‖v‖2 :=
�

v2
1 + v2

2 + . . .+ v2
n

� 1
2 .

This norm is also known as 2-norm. The Euclidean norm can equivalently be expressed as

‖v‖2 :=
�

v⊤v
� 1

2 .

The general Lp-norm of the vector v is defined as follows:

‖v‖p :=

�
n∑

i=1

|vi|p
� 1

p

.

Norm operator can similarly be applied on matrices. However, there exist different defini-
tions for norm of a matrix. In below, we introduce the most important two, so-called induced

norm and Frobenius norm.

Definition A.8 (Frobenius Matrix Norm). Consider a m × n matrix Am×n, with real-valued
entries ai j, for i = {1, . . . , m} and j = {1, . . . , n}. Then the Frobenius (2-norm) of matrix A is
defined as follows:

‖A‖F :=

�
m∑

i=1

n∑

j=1

|ai j|2
� 1

2

.

Frobenius norm of matrix Am×n can be equivalently stated as

‖A‖F =
�

tr(A⊤A)
� 1

2 .

Reminding the definition of singular values of a matrix, the Frobenius norm can simply be
expressed as
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‖A‖F =
�

min{m,n}∑

l=1

σ2
l

� 1
2

,

where, σl ’s are the singular values of matrix A.
Generally, the p-norm operator, known also as Schatten norm, is defined as

‖A‖p =
�

min{m,n}∑

l=1

σ
p

l

� 1
p

.

Definition A.9 (Induced Matrix Norm). Assume v is any vector with non-zero p-norm ‖v‖p 6=
0. Then the induced norm of matrix A with appropriate dimension is defined as

‖A‖p = sup
v 6=0

‖Av‖p
‖v‖p

.

For the special case p = 2, we have

‖A‖2 =
�

λmax(A
⊤A)
� 1

2 = σmax(A).

It is straightforward to conclude from the matrix norm definitions above that

‖A‖2 = σmax(A)≤
�

min{m,n}∑

l=1

σ2
l

� 1
2

= ‖A‖F .

Thus, Frobenius norm of a matrix is an upper bound for its induced norm.
In the following, we summarize the properties of matrix Frobenius norms. Assume A and B

are two real-valued matrices with appropriate dimensions. Then

1. ‖A‖2 ≥ 0.

2. If ‖A‖2 = 0, then A is the zero matrix.

3. ‖A+ B‖2 ≤ ‖A‖2 + ‖B‖2.

4. If A and B are square matrices, then ‖AB‖2 ≤ ‖A‖2‖B‖2.

5. ‖cA‖2 = |c|‖A‖2 for all scalars c.
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A.6 Probability Theory and Random Variables

Throughout this dissertation, we considered systems whose dynamics are affected with
stochastic noise processes and random disturbances. This urges us to analyze the system
behavior in probabilistic sense. In this appendix, we intend to review the basic concepts of
probability spaces and then we summarize properties of random variables. The presented
notions, definitions, and concepts are mainly from the textbooks [128,129], and can also be
found in similar references.

A.6.1 Probability Theory

In this part, we provide the essential definitions of measure theory and then we define prob-
ability spaces.

Definition A.10 (σ-algebra). A σ-algebra A defined on a set Ω is a set containing subsets
of Ω including the empty set.

Definition A.11 (Measurable Space). A pair (Ω,A ), whereA is a σ-algebra on Ω, is called
a measurable space.

Definition A.12 (Measure). Assume that the pair (Ω,A ) represent a measurable space.
Then, a non-negative set function µ : A → [0,∞] is called a measure on the measurable
space (Ω,A ), if µ is countably additive, i.e. if B = {Bi}∞i=1 ⊂A is a countable collection of
mutually disjoint sets Bi, then

µ
�

∪∞
i=1Bi

�

=

∞∑

i=1

µ (Bi) .

Definition A.13 (Probability Measure). A measureµ defined on the measurable space (Ω,A )
is called a probability measure if µ(Ω) = 1.

Definition A.14 (Probability Space). A probability space is represented by three essential
components so-called sample space Ω, σ-algebra or event space A , and probability measure
P. This three-tuple, often presented as (Ω,A ,P), are defined in the followings:

sample space Ω is a non-empty set including all possible outcomes in a process or experi-
ment, where an outcome is defined as the output of a single run of the experiment.

σ-algebra A is a collection of subsets of the sample space Ω. The event space A contains
the outcomes of the process that we expect to happen.

probability measure P :A → [0, 1] is a measure on (Ω,A ), which assigns a probability in
the range of [0, 1] to each of the outcomes of the σ-algebraA .

Having above definition, we can summarize the properties of probability spaces as follows:

1. The σ-algebraA is a subset of 2Ω, i.e. A ⊂ 2Ω.
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2. The sample set Ω is contained inA , i.e. Ω ∈A .

3. P(Ω) = 1, and P(∅) = 0.

4. IfB ∈A , thenB c ∈A , where c denotes the complement of setB , i.e. B c = Ω \B .

5. Assume B1 and B2 are two sets of events in the σ-algebra A . If B1 ⊂ B2, then
P(B1) ≤ P(B2).

Definition A.15 (Complete Probability Space). A probability space (Ω,A ,P) is called com-
plete if every subset of every setB ∈A , with P(B) = 0, is included in the σ-algebraA .

A.6.2 Random variables

In this part, we present the definitions of random variables, expectation and conditional
expectation, and then summarize the properties of those operators. The presented properties
have been extensively used throughout this dissertation.

Definition A.16 (Random Variable). Let the triplet (Ω,A ,P) represent a probability space,
andB is a measurable space. A measurable function x : Ω→B is called a random variable.
If B = R, then x is called a real-valued random variable.

Definition A.17 (Generated σ-algebra). Assume x is a random variable defined on a prob-
ability space (Ω,A ,P). Then, the smallest σ-algebra on which x is measurable, can be ob-
tained as the intersection of all σ-algebras on which x is measurable. This σ-algebra which
is denoted as σ(x), is called generated σ-algebra by x .

Definition A.18 (Expected Value). Let x be a random variable defined on a probability space
(Ω,A ,P). The expectation of x is defined as follows

E[x] =

∫

Ω

x(ω)P(dω).

Expected value is a linear operator with the following properties which are stated without
proof: (in the followings, X and Y are assumed to be random variables with finite expecta-
tions.)

1. E[c] = c, for every constant c.

2. If X ≤ Y , then E[X ] ≤ E[Y ].

3. E[X + Y ] = E[X ] + E[Y ].

4. E[X Y ] = E[X ]E[Y ], only if X and Y are uncorrelated, i.e. Cov(X , Y ) = 0.
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Definition A.19 (Markov’s Inequality). Consider x as a non-negative random variable with
E[x]<∞. For every a > 0, it follows

P(x > a) ≤ E[x]

a
.

Definition A.20 (Jensen’s Inequality). Assume h is a convex function and X is a random
vector. Then,

E[h(X )]≥ h(E[X ]).

If h is concave, then
E[h(X )]≤ h(E[X ]).

Definition A.21 (Cauchy-Schwartz Inequality). Assume X and Y are two random variables
with finite standard deviations σX and σY , respectively. Then

Cov(X , Y ) ≤ σXσY =
Æ

Var(X )Var(Y ).

Definition A.22 (Conditional Expectation). Let X : Ω → Rn be a random variable defined
on the probability space (Ω,A ,P) with E[|X |] <∞. Assume σ(Y ) ⊂A is the Y -generated
σ-algebra on the same probability space (Ω,A ,P), where Y is another random variable with
E[|Y |]<∞. The conditional expectation of X given Y , i.e. E[X |Y ], is defined as the almost
surely unique mapping which fulfills the following two conditions

1. E[X |Y ] is σ(Y ) measurable.

2.
∫

Y
E[X |Y ]d P=
∫

Y
X d P, for all Y ∈ σ(Y ).

Conditional expectations are also linear operators with the following properties which are
expressed without proof. Assume X , Y and Z are integrable random variables, then

1. Assume X > Y almost surely, then E[X |Z]> E[Y |Z].

2. E[aX + bY |Z] = aE[X |Z] + bE[Y |Z], for every a, b ∈ R.

3. E[E[X |Z]|Z] = E[X |Z].

4. E[X |Z] = E[X ], if X and Z are independent random variables.

5. E[E[X |Y ]|Z] = E[X |Z] = E[E[X |Z]|Y ], if Z is σ(Y )-measurable.

6. E[X Z |Y ] = E[X |Y ]Z , if Z is σ(Y )-measurable, and E[|X Z |]<∞.
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A.7 Stability of Markov Processes

Throughout this dissertation, we used Markov chains as an appropriate model framework
for the system evolution over uncountable state spaces. This appendix gives a brief look to
the basics and principles of Markov processes evolving on uncountable state spaces. Fur-
thermore, the notion of stability for stochastic Markovian processes over uncountable state
spaces is summarized. The presentations in this appendix are mainly from the textbook [86].

A.7.1 Markov Chains

In this part, we present some essential preliminaries about Markov chains and summarize
the properties of Markovian processes evolving over uncountable state spaces.

Definition A.23 (Countable vs. General State Spaces). Let S be a state space. Then,

• S is called a countable state space, if it contains finite or countable number of elements
and is discrete, withA (S ) the σ-algebra of all subsets of S .

• S is called a general state space, if S is assigned a countably generated σ-algebra
A (S ).

Definition A.24 (Transition Probability Kernel). Let S be a general state space with count-
ably generated σ-algebra A (S ). We call P = {P(s, A), s ∈ S , A ∈ A (S )} a transition
probability kernel if the followings hold:

1. P(·, A) is non-negative and measurable on state space S , for each A∈A (S ),

2. P(s, ·) is a probability measure on the σ-algebraA (S ), for each s ∈ S .

Theorem A.1. Let P = {P(s, A), s ∈ S , A ∈ A (S )} denote any transition probability kernel
on general state space S with the σ-algebra A (S ). For any initial measure µ on A (S ),
a stochastic process Φ = {Φ0,Φ1, . . .} exists on the probability space (Ω,F ,Pµ), where Ω =
∏∞

i=0Si is a product space, measurable with respect to the product σ-algebra F = ∨∞
i=0A (Si),

with the probability of the event Φ ∈ A given by Pµ(A), where Pµ is a probability measure onF ,

such that

Pµ (Φ0 ∈ A0,Φ1 ∈ A1, . . .Φn ∈ An) =

∫

z0∈A0

. . .

∫

zn−1∈An−1

µ(dz0)P(z0, dz1) . . . P(zn−1, An),

(A.42)
for every measurable Ai ⊂ Si, i = 0, 1, . . . , n, and for any n.

Proof. See [86], Chapter 3.

Definition A.25 (Markov Chains on General State Spaces). A stochastic process Φ =
{Φ0,Φ1, . . .} defined on (Ω,F ) is called time homogeneous Markov chain with transition prob-
ability kernel P(s, A) and initial distribution µ, if the finite dimensional distributions of Φ
fulfill (A.42) for every positive integer n. ( [86], Chapter 3).
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Definition A.26 (n-step Transition Probability Kernel). Let S be a general state space
equipped with σ-algebra A (S ). Then the n-step transition probability kernel {Pn(s, A), s ∈
S , A∈A (S )} is defined as

Pn(s, A) =

∫

S
P(s, dz)Pn−1(z, A), s ∈ S , A∈A (S ), (A.43)

where, we set,

P0(s, A) =

n1 s ∈ A
0 s /∈ A

Proposition A.1 (Markov Property). LetΦ= {Φ0,Φ1, . . .} be a Markov chain defined on (Ω,F )
equipped with the initial measure µ. Assume h : Ω→ R is a measurable and bounded function.
Then for any positive integer n, the Markov property follows as

Eµ [h (Φn+1,Φn+2, . . .) |Φ0, . . . ,Φn,Φn = s] = E
Φ
[h(Φ1,Φ2, . . .)] .

According to Proposition A.1, the Markov property implies that the evolution of a Markov
state is forgetful of all its past values except the most immediate value.

Definition A.27 (Occupation Times, and Return Times). Let S be a general state space
equipped with σ-algebraA (S ). Then for any A∈A (S ),

1. the occupation time, refers to the measurable function ηA : Ω → Z+ ∪ {∞}, which
denotes the number of visits to set A by the Markov chain Φ= {Φ1,Φ2, . . .}, i.e.

ηA :=
∞∑

n=1

I{Φn ∈ A}.

2. the return time, refers to the measurable function τA : Ω→ Z+ ∪ {∞}, which denotes
the first return time to the set A by the Markov chain Φ= {Φ1,Φ2, . . .}, i.e.

τA := min{n ≥ 1 : Φn ∈ A}.

A.7.2 Stochastic Stability

Stability analysis of Markov chains evolving over uncountable state spaces requires additional
care compared to the developed stability approaches for Markov chains on countable spaces.
Here in this part, we briefly review the essential modifications and extensions on those results
to be applicable for analyzing the behavior of Markov chains over uncountable state spaces.

Definition A.28 (ϕ-Irreducible Markov Chains). Let the Markov chain Φ be defined on
(S ,A ), and ϕ be a measure on the σ-algebraA (S ). Then Φ is said to be ϕ-irreducible, if
for every s ∈ S , ϕ(A)> 0 implies

Ps(τA<∞)> 0.

The measure ϕ is then called the irreducibility measure of the Markov chain Φ.
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The definition of ϕ-irreducibility concludes that the entire state space of a ϕ-irreducible
Markov Chain can be reached via finite number of transitions, regardless of the initial state.
We will see in what follows that this property plays an essential role in stability analysis of
Markov chains on uncountable state spaces.

Theorem A.2 (ψ-Irreducible Markov Chains). If a Markov chain Φ defined on (S ,A ) is ϕ-
irreducible, then a unique maximal irreducibility measure ψ exists onA (S ) such that

1. ψ ≻ ϕ,

2. Markov chain Φ is ϕ′-irreducible for any other measure ϕ′, if and only if ψ ≻ ϕ′,

3. ψ(A) > 0 implies Ps(τA<∞) > 0, for every s ∈ S ,

4. If ψ(A) = 0, then ψ(Ā) = 0, where Ā := {z : Pz(τA <∞) > 0}.

Proof. See [86], Chapter 4.

Definition A.29 (ν-Petite Sets). A subsetA∈A (S ) is called ν-petite if a non-trivial measure
ν onA (S ) exists such that for all s ∈ A, and B ∈A (S ), the sampled chain Φa satisfies

K(s, B) ≥ ν(B),

where K(s, B) :=
∑∞

0 Pn(s, B)a(n) is the probability transition kernel of the sampled chain
with sampling distribution a.

Definition A.30 (ν-Small Sets). A subset A ∈ A (S ) of the measurable space (S ,A ) is
called ν-small if a non-trivial measure ν on A (S ) and k > 0 exists such that for all s ∈ A,
and B ∈A (S )

Pk(s, B) ≥ ν(B).

Proposition A.2. [86, 5.5.2] If a subset A∈A (S ) is ν-small, then A is petite.

Proposition A.3. [86, 6.3.3] Assume X is a linear state-space model, then every compact subset
of X is small.

It can be concluded from definitions A.29 and A.30, and propositions A.2 and A.3, that every
compact subset of a linear state space is petite.

Definition A.31 (Aperiodic and Strongly Aperiodic Markov Chain). Let Φ be a ϕ-irreducible
Markov chain. The Markov chainΦ is called aperiodic if the largest common period for which
a d-cycle occurs equals one. The chain Φ is called strongly aperiodic if exists a ν-small set A
such that ν(A) > 0.

In what follows, we introduce three notions of stochastic stability which can be employed to
analyze the asymptotic behavior of Markov chains in uncountable state spaces.
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Definition A.32 (Harris Recurrence). A ϕ-irreducible Markov chain Φ = (Φ0,Φ1, . . .) is called
Harris recurrent if for every s ∈ S , and every A∈A (S ) with ϕ(A)> 0

Ps(τA<∞) = 1.

Definition A.33 (Positive Harris Recurrence). Let the Markov chain Φ = (Φ0,Φ1, . . .) evolve
in some general state spaceS , with the individual random variables measurable with respect
to some known σ-algebraA (S ). Then Φ is said to be positive Harris recurrent (PHR) if

1. There exists aσ-algebra measure ν(A) > 0 for a set A∈A such that for all initial states
Φ0 ∈ S

P(Φk ∈ A, k <∞) = 1,

2. Φ admits a finite invariant probability measure.

Intuitively, definition 3.2 states that if a state of a PHR Markov chain leaves a subset A∈ A
with non-zero probability, then the state returns to A after finite transitions with probability
one.

Proposition A.4. Let f ≥ 1 be a real-valued function in Rn. A Markov chain Φ is said to be
f -ergodic, if one of the followings hold:

1. Φ is positive Harris recurrent with the unique invariant probability measure π,

2. the expectation π( f ) :=
∫

f (Φk)π(dΦk) is finite,

3. limk→∞ ‖Pk(Φ0, .)−π‖ f = 0, for every initial value Φ0 ∈ X , where ‖ν‖ f = sup|g|≤ f |ν(g)|.

The following definition introduces the notion of Markov chain gradient (drift) in discrete
time, with respect to a real-valued function of states.

Definition A.34 (Drift for Markov chains). Let V : Rn→ [0,+∞) be a real-valued function
and Φ be a Markov chain. The drift operator ∆ is defined for any non-negative measurable
function V as follows

∆V (Φn) = E[V (Φn+1)|Φn]− V (Φn), Φn ∈ Rn. (A.44)

Theorem A.3 (Foster’s Criterion). LetΦ be a ϕ-irreducible Markov chain. If there exists a small
set A∈A (S ) such that for any non-negative measurable function V on S

∆V (Φ) ≤ −1, Φ ∈ S \ A,

and ∆V (Φ) <∞ for Φ ∈ A, Markov chain Φ is positive Harris recurrent.
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