Capacity Bounds for Diamond Networks with an Orthogonal Broadcast Channel

Shirin Saeedi Bidokhti
Stanford University
joint work with Gerhard Kramer
Technical University of Munich

New York University
November 30, 2015

Motivation

- Challenge: diversity vs. cooperation

Outline

The Problem Setup

A Lower Bound

An Upper-Bound

Examples
The Gaussian MAC
The binary adder MAC

The Problem Setup

- W message of rate R

The Problem Setup

- W message of rate R
- Bit-pipes of capacities C_{1}, C_{2}

The Problem Setup

- W message of rate R
- Bit-pipes of capacities C_{1}, C_{2}
- Goal: What is the highest rate R such that $\operatorname{Pr}(W \neq \hat{W}) \rightarrow 0$?

A Lower Bound

- Rate splitting: $W=\left(W_{12}, W_{1}, W_{2}\right)$
- Superposition Coding:
W_{12} encoded in V^{n}.
X_{1}^{n}, X_{2}^{n} superposed on V^{n}.
- Marton's Coding

A Lower Bound (Cont.)

Theorem (Lower Bound)

The rate R is achievable if it satisfies the following condition for some pmf $p\left(v, x_{1}, x_{2}, y\right)=p\left(v, x_{1}, x_{2}\right) p\left(y \mid x_{1}, x_{2}\right)$:

$$
R \leq \min \left\{\begin{array}{l}
C_{1}+C_{2}-I\left(X_{1} ; X_{2} \mid V\right) \\
C_{2}+I\left(X_{1} ; Y \mid X_{2} V\right) \\
C_{1}+I\left(X_{2} ; Y \mid X_{1} V\right) \\
\frac{1}{2}\left(C_{1}+C_{2}+I\left(X_{1} X_{2} ; Y \mid V\right)-I\left(X_{1} ; X_{2} \mid V\right)\right) \\
I\left(X_{1} X_{2} ; Y\right)
\end{array}\right\}
$$

$V \in \mathcal{V},|\mathcal{V}| \leq \min \left\{\left|\mathcal{X}_{1} \| \mathcal{X}_{2}\right|+2,|\mathcal{Y}|+4\right\}$

The Cut-Set Bound

Cut-Set bound: R is achievable only if it satisfies the following bounds for some $p\left(x_{1}, x_{2}\right)$:

$$
\begin{aligned}
R & \leq C_{1}+C_{2} \\
R & \leq C_{1}+I\left(X_{2} ; Y \mid X_{1}\right) \\
R & \leq C_{2}+I\left(X_{1} ; Y \mid X_{2}\right) \\
R & \leq I\left(X_{1} X_{2} ; Y\right)
\end{aligned}
$$

Example I: BINARY adder MAC

- $\mathcal{X}_{1}=\mathcal{X}_{2}=\{0,1\}, \quad \mathcal{Y}=\{0,1,2\}$
- $Y=X_{1}+X_{2}$

Example I: BINARY adder MAC

- $\mathcal{X}_{1}=\mathcal{X}_{2}=\{0,1\}, \quad \mathcal{Y}=\{0,1,2\}$
- $Y=X_{1}+X_{2}$

Example II: Gaussian MAC

- $Y=X_{1}+X_{2}+Z, \quad Z \sim \mathcal{N}(0,1)$
- $\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{1, i}^{2}\right) \leq P_{1}, \quad \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{2, i}^{2}\right) \leq P_{2}, \quad P_{1}=P_{2}=1$

Example II: Gaussian MAC

- $Y=X_{1}+X_{2}+Z, \quad Z \sim \mathcal{N}(0,1)$
- $\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{1, i}^{2}\right) \leq P_{1}, \quad \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{2, i}^{2}\right) \leq P_{2}, \quad P_{1}=P_{2}=1$

Example II: Gaussian MAC

- $Y=X_{1}+X_{2}+Z, \quad Z \sim \mathcal{N}(0,1)$
- $\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{1, i}^{2}\right) \leq P_{1}, \quad \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{2, i}^{2}\right) \leq P_{2}, \quad P_{1}=P_{2}=1$

Example II: Gaussian MAC

- $Y=X_{1}+X_{2}+Z, \quad Z \sim \mathcal{N}(0,1)$
- $\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{1, i}^{2}\right) \leq P_{1}, \quad \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{2, i}^{2}\right) \leq P_{2}, \quad P_{1}=P_{2}=1$

Example II: Gaussian MAC

- $Y=X_{1}+X_{2}+Z, \quad Z \sim \mathcal{N}(0,1)$
- $\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{1, i}^{2}\right) \leq P_{1}, \quad \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{2, i}^{2}\right) \leq P_{2}, \quad P_{1}=P_{2}=1$

Is the Cut-Set Bound Tight?

Cut-Set bound:

$$
\begin{aligned}
R & \leq C_{1}+C_{2} \\
R & \leq C_{1}+I\left(X_{2} ; Y \mid X_{1}\right) \\
R & \leq C_{2}+I\left(X_{1} ; Y \mid X_{2}\right) \\
R & \leq I\left(X_{1} X_{2} ; Y\right)
\end{aligned}
$$

Maximize over $p\left(x_{1}, x_{2}\right)$.

Is the Cut-Set Bound Tight?

Cut-Set bound:

$$
\begin{aligned}
R & \leq C_{1}+C_{2} \\
R & \leq C_{1}+I\left(X_{2} ; Y \mid X_{1}\right) \\
R & \leq C_{2}+I\left(X_{1} ; Y \mid X_{2}\right) \\
R & \leq I\left(X_{1} X_{2} ; Y\right) .
\end{aligned}
$$

Maximize over $p\left(x_{1}, x_{2}\right)$.

It turns out that the cut-set bound is not tight.

Refining the Cut-Set Bound

- Motivated by [Ozarow'80, KangLiu'11]

Refining the Cut-Set Bound

- Motivated by [Ozarow'80, KangLiu'11]

$$
n R \leq n C_{1}+n C_{2}-I\left(X_{1}^{n} ; X_{2}^{n}\right)
$$

Refining the Cut-Set Bound

- Motivated by [Ozarow'80, KangLiu'11]

$$
n R \leq n C_{1}+n C_{2}-I\left(X_{1}^{n} ; X_{2}^{n}\right)
$$

- For any U^{n} :

$$
\begin{aligned}
I\left(X_{1}^{n} ; X_{2}^{n}\right)= & I\left(X_{1}^{n} X_{2}^{n} ; U^{n}\right)-I\left(X_{1}^{n} ; U^{n} \mid X_{2}^{n}\right)-I\left(X_{2}^{n} ; U^{n} \mid X_{1}^{n}\right) \\
& +I\left(X_{1}^{n} ; X_{2}^{n} \mid U^{n}\right)
\end{aligned}
$$

Refining the Cut-Set Bound

- Motivated by [Ozarow'80, KangLiu'11]

$$
n R \leq n C_{1}+n C_{2}-I\left(X_{1}^{n} ; X_{2}^{n}\right)
$$

- For any U^{n} :

$$
I\left(X_{1}^{n} ; X_{2}^{n}\right) \geq I\left(X_{1}^{n} X_{2}^{n} ; U^{n}\right)-I\left(X_{1}^{n} ; U^{n} \mid X_{2}^{n}\right)-I\left(X_{2}^{n} ; U^{n} \mid X_{1}^{n}\right)
$$

Refining the Cut-Set Bound (Cont.)

$n R \leq n C_{1}+n C_{2}-I\left(X_{1}^{n} X_{2}^{n} ; U^{n}\right)+I\left(X_{1}^{n} ; U^{n} \mid X_{2}^{n}\right)+I\left(X_{2}^{n} ; U^{n} \mid X_{1}^{n}\right)$

Refining the Cut-Set Bound (Cont.)

$n R \leq n C_{1}+n C_{2}-I\left(X_{1}^{n} X_{2}^{n} ; U^{n}\right)+I\left(X_{1}^{n} ; U^{n} \mid X_{2}^{n}\right)+I\left(X_{2}^{n} ; U^{n} \mid X_{1}^{n}\right)$
choose U_{i} as follows:

$$
Y_{i} \rightarrow p_{U \mid Y} \rightarrow U_{i}
$$

Refining the Cut-Set Bound (Cont.)

$n R \leq n C_{1}+n C_{2}-I\left(X_{1}^{n} X_{2}^{n} ; U^{n}\right)+I\left(X_{1}^{n} ; U^{n} \mid X_{2}^{n}\right)+I\left(X_{2}^{n} ; U^{n} \mid X_{1}^{n}\right)$
choose U_{i} as follows:

$$
Y_{i} \rightarrow p_{U \mid Y} \rightarrow U_{i}
$$

$n R \leq I\left(X_{1}^{n} X_{2}^{n} ; Y^{n}\right)$
$n R \leq n C_{1}+n C_{2}-I\left(X_{1}^{n} X_{2}^{n} ; U^{n}\right)+I\left(X_{1}^{n} ; U^{n} \mid X_{2}^{n}\right)+I\left(X_{2}^{n} ; U^{n} \mid X_{1}^{n}\right)$

Refining the Cut-Set Bound (Cont.)

$n R \leq n C_{1}+n C_{2}-I\left(X_{1}^{n} X_{2}^{n} ; U^{n}\right)+I\left(X_{1}^{n} ; U^{n} \mid X_{2}^{n}\right)+I\left(X_{2}^{n} ; U^{n} \mid X_{1}^{n}\right)$ choose U_{i} as follows:

$$
Y_{i} \longrightarrow p_{U \mid Y} \longrightarrow U_{i}
$$

$n R \leq I\left(X_{1}^{n} X_{2}^{n} ; Y^{n}\right)$
$+$
$n R \leq n C_{1}+n C_{2}-I\left(X_{1}^{n} X_{2}^{n} ; U^{n}\right)+I\left(X_{1}^{n} ; U^{n} \mid X_{2}^{n}\right)+I\left(X_{2}^{n} ; U^{n} \mid X_{1}^{n}\right)$

Refining the Cut-Set Bound (Cont.)

$n R \leq n C_{1}+n C_{2}-I\left(X_{1}^{n} X_{2}^{n} ; U^{n}\right)+I\left(X_{1}^{n} ; U^{n} \mid X_{2}^{n}\right)+I\left(X_{2}^{n} ; U^{n} \mid X_{1}^{n}\right)$ choose U_{i} as follows:

$$
Y_{i} \longrightarrow p_{U \mid Y} \rightarrow U_{i}
$$

$n R \leq I\left(X_{1}^{n} X_{2}^{n} ; Y^{n}\right)$
$+$
$n R \leq n C_{1}+n C_{2}-I\left(X_{1}^{n} X_{2}^{n} ; U^{n}\right)+I\left(X_{1}^{n} ; U^{n} \mid X_{2}^{n}\right)+I\left(X_{2}^{n} ; U^{n} \mid X_{1}^{n}\right)$
$2 n R \leq n C_{1}+n C_{2}+I\left(X_{1}^{n} X_{2}^{n} ; Y^{n} \mid U^{n}\right)+I\left(X_{1}^{n} ; U^{n} \mid X_{2}^{n}\right)+I\left(X_{2}^{n} ; U^{n} \mid X_{1}^{n}\right)$

Refining the Cut-Set Bound (Cont.)

$n R \leq n C_{1}+n C_{2}-I\left(X_{1}^{n} X_{2}^{n} ; U^{n}\right)+I\left(X_{1}^{n} ; U^{n} \mid X_{2}^{n}\right)+I\left(X_{2}^{n} ; U^{n} \mid X_{1}^{n}\right)$ choose U_{i} as follows:

$$
Y_{i} \longrightarrow p_{U \mid Y} \longrightarrow U_{i}
$$

$n R \leq I\left(X_{1}^{n} X_{2}^{n} ; Y^{n}\right)$
$+$
$n R \leq n C_{1}+n C_{2}-I\left(X_{1}^{n} X_{2}^{n} ; U^{n}\right)+I\left(X_{1}^{n} ; U^{n} \mid X_{2}^{n}\right)+I\left(X_{2}^{n} ; U^{n} \mid X_{1}^{n}\right)$

$$
\begin{aligned}
2 n R & \leq n C_{1}+n C_{2}+I\left(X_{1}^{n} X_{2}^{n} ; Y^{n} \mid U^{n}\right)+I\left(X_{1}^{n} ; U^{n} \mid X_{2}^{n}\right)+I\left(X_{2}^{n} ; U^{n} \mid X_{1}^{n}\right) \\
\quad \ldots & \leq n\left(C_{1}+C_{2}+I\left(X_{1} X_{2} ; Y \mid U\right)+I\left(X_{1} ; U \mid X_{2}\right)+I\left(X_{2} ; U \mid X_{1}\right)\right)
\end{aligned}
$$

New Upper-Bounds (1)

Theorem (Upper Bound I)

The rate R is achievable only if there exists a joint distribution $p\left(x_{1}, x_{2}\right)$ for which the following inequalities hold for every auxiliary channel $p\left(u \mid x_{1}, x_{2}, y\right)=p(u \mid y)$

$$
\begin{aligned}
R & \leq C_{1}+C_{2} \\
R & \leq C_{2}+I\left(X_{1} ; Y \mid X_{2}\right) \\
R & \leq C_{1}+I\left(X_{2} ; Y \mid X_{1}\right) \\
R & \leq I\left(X_{1} X_{2} ; Y\right) \\
2 R & \leq C_{1}+C_{2}+I\left(X_{1} X_{2} ; Y \mid U\right)+I\left(X_{1} ; U \mid X_{2}\right)+I\left(X_{2} ; U \mid X_{1}\right)
\end{aligned}
$$

New Upper-Bounds (1)

Theorem (Upper Bound I)
The rate R is achievable only if there exists a joint distribution $p\left(x_{1}, x_{2}\right)$ for which the following inequalities hold for every auxiliary channel $p\left(u \mid x_{1}, x_{2}, y\right)=p(u \mid y)$

$$
\begin{aligned}
R & \leq C_{1}+C_{2} \\
R & \leq C_{2}+I\left(X_{1} ; Y \mid X_{2}\right) \\
R & \leq C_{1}+I\left(X_{2} ; Y \mid X_{1}\right) \\
R & \leq I\left(X_{1} X_{2} ; Y\right) \\
2 R & \leq C_{1}+C_{2}+I\left(X_{1} X_{2} ; Y \mid U\right)+I\left(X_{1} ; U \mid X_{2}\right)+I\left(X_{2} ; U \mid X_{1}\right)
\end{aligned}
$$

New Upper-Bounds (1)

Theorem (Upper Bound I)

The rate R is achievable only if there exists a joint distribution $p\left(x_{1}, x_{2}\right)$ for which the following inequalities hold for every auxiliary channel $p\left(u \mid x_{1}, x_{2}, y\right)=p(u \mid y)$

$$
\begin{aligned}
R & \leq C_{1}+C_{2} \\
R & \leq C_{2}+I\left(X_{1} ; Y \mid X_{2}\right) \\
R & \leq C_{1}+I\left(X_{2} ; Y \mid X_{1}\right) \\
R & \leq I\left(X_{1} X_{2} ; Y\right) \\
2 R & \leq C_{1}+C_{2}+I\left(X_{1} X_{2} ; Y \mid U\right)+I\left(X_{1} ; U \mid X_{2}\right)+I\left(X_{2} ; U \mid X_{1}\right)
\end{aligned}
$$

- max-min problem

New Upper-Bounds (1)

Theorem (Upper Bound I)

The rate R is achievable only if there exists a joint distribution $p\left(x_{1}, x_{2}\right)$ for which the following inequalities hold for every auxiliary channel $p\left(u \mid x_{1}, x_{2}, y\right)=p(u \mid y)$

$$
\begin{aligned}
R & \leq C_{1}+C_{2} \\
R & \leq C_{2}+I\left(X_{1} ; Y \mid X_{2}\right) \\
R & \leq C_{1}+I\left(X_{2} ; Y \mid X_{1}\right) \\
R & \leq I\left(X_{1} X_{2} ; Y\right) \\
2 R & \leq C_{1}+C_{2}+I\left(X_{1} X_{2} ; Y \mid U\right)+I\left(X_{1} ; U \mid X_{2}\right)+I\left(X_{2} ; U \mid X_{1}\right)
\end{aligned}
$$

- max-min problem
- $2 R \leq C_{1}+C_{2}+I\left(X_{1} X_{2} ; Y\right)-I\left(X_{1} ; X_{2}\right)+I\left(X_{1} ; X_{2} \mid U\right)$

New Upper-Bounds (2)

Theorem (Upper Bound II)

The capacity is bounded from above by

- $|\mathcal{Q}| \leq\left|\mathcal{X}_{1}\right|\left|\mathcal{X}_{2}\right|+3$.

New Upper-Bounds (2)

Theorem (Upper Bound II)

The capacity is bounded from above by

$$
\max _{\substack{ \\
p\left(x_{1}, x_{2}\right)}}^{\max \left(u \mid x_{1}, x_{2}, y\right)} \begin{aligned}
& p\left(q \mid x_{1}, x_{2}, y, u\right) \\
& =p(u \mid y) \\
& =p\left(q \mid x_{1}, x_{2}\right)
\end{aligned} \min \left\{\begin{array}{l}
C_{1}+C_{2}, \\
C_{1}+I\left(X_{2} ; Y \mid X_{1} Q\right), \\
C_{2}+I\left(X_{1} ; Y \mid X_{2} Q\right), \\
I\left(X_{1} X_{2} ; Y \mid Q\right), \\
C_{1}+C_{2}-I\left(X_{1} ; X_{2} \mid Q\right)+I\left(X_{1} ; X_{2} \mid U Q\right)
\end{array}\right\}
$$

- $|\mathcal{Q}| \leq\left|\mathcal{X}_{1}\right|\left|\mathcal{X}_{2}\right|+3$.
- last term is related to the Hekstra-Willems dependence balance bound and can be written as

$$
R \leq C_{1}+C_{2}-I\left(X_{1} X_{2} ; U \mid Q\right)+I\left(X_{2} ; U \mid X_{1} Q\right)+I\left(X_{1} ; U \mid X_{2} Q\right)
$$

New Upper-Bounds (2)

Theorem (Upper Bound II)

The capacity is bounded from above by

- $|\mathcal{Q}| \leq\left|\mathcal{X}_{1}\right|\left|\mathcal{X}_{2}\right|+3$.
- last term is related to the Hekstra-Willems dependence balance bound and can be written as

$$
R \leq C_{1}+C_{2}-I\left(X_{1} X_{2} ; U \mid Q\right)+I\left(X_{2} ; U \mid X_{1} Q\right)+I\left(X_{1} ; U \mid X_{2} Q\right)
$$

The Gaussian MAC

$$
Y=X_{1}+X_{2}+Z
$$

$$
\begin{aligned}
& Z \sim \mathcal{N}(0,1), \\
& \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{1, i}^{1}\right) \leq P, \\
& \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{2, i}^{2}\right) \leq P
\end{aligned}
$$

The Gaussian MAC

$$
Y=X_{1}+X_{2}+Z \quad \begin{array}{ll}
Z \sim \mathcal{N}(0,1), \\
& \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{1, i}^{2}\right) \leq P, \\
& \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{2, i}^{2}\right) \leq P
\end{array}
$$

$R \leq 2 C$
$R \leq C+I\left(X_{1} ; Y \mid X_{2} Q\right)$
Max-Min-Max problem
$R \leq C+I\left(X_{2} ; Y \mid X_{1} Q\right)$
$R \leq I\left(X_{1} X_{2} ; Y \mid Q\right)$
$R \leq C_{1}+C_{2}-I\left(X_{1} X_{2} ; U \mid Q\right)+I\left(X_{1} ; U \mid X_{2} Q\right)+I\left(X_{2} ; U \mid X_{1} Q\right)$

The Gaussian MAC

$$
\begin{array}{ll}
Y=X_{1}+X_{2}+Z & Z \sim \mathcal{N}(0,1), \\
& \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{1, i}^{2}\right) \leq P, \\
& \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{2, i}^{2}\right) \leq P
\end{array}
$$

Choose $U=Y+Z_{N}$
$R \leq 2 C$
$R \leq C+I\left(X_{1} ; Y \mid X_{2} Q\right)$
$Z_{N} \sim \mathcal{N}(0, N)$
N to be optimized.
$R \leq C+I\left(X_{2} ; Y \mid X_{1} Q\right)$
$R \leq I\left(X_{1} X_{2} ; Y \mid Q\right)$
$R \leq C_{1}+C_{2}-I\left(X_{1} X_{2} ; U \mid Q\right)+I\left(X_{1} ; U \mid X_{2} Q\right)+I\left(X_{2} ; U \mid X_{1} Q\right)$

The Gaussian MAC

$$
\begin{array}{ll}
Y=X_{1}+X_{2}+Z & Z \sim \mathcal{N}(0,1), \\
& \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{1, i}^{2}\right) \leq P, \\
& \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{2, i}^{2}\right) \leq P
\end{array}
$$

Choose $U=Y+Z_{N}$
$R \leq 2 C$
$Z_{N} \sim \mathcal{N}(0, N)$
$R \leq C+\log \left(1+P\left(1-\rho^{2}\right)\right) / 2 \quad N$ to be optimized.
$R \leq C+I\left(X_{2} ; Y \mid X_{1} Q\right)$
$R \leq I\left(X_{1} X_{2} ; Y \mid Q\right)$
$R \leq C_{1}+C_{2}-I\left(X_{1} X_{2} ; U \mid Q\right)+I\left(X_{1} ; U \mid X_{2} Q\right)+I\left(X_{2} ; U \mid X_{1} Q\right)$

The Gaussian MAC

$$
\begin{array}{ll}
Y=X_{1}+X_{2}+Z & Z \sim \mathcal{N}(0,1), \\
& \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{1, i}^{2}\right) \leq P, \\
& \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{2, i}^{2}\right) \leq P
\end{array}
$$

Choose $U=Y+Z_{N}$
$R \leq 2 C$
$Z_{N} \sim \mathcal{N}(0, N)$
$R \leq C+\log \left(1+P\left(1-\rho^{2}\right)\right) / 2 \quad N$ to be optimized.
$R \leq C+\log \left(1+P\left(1-\rho^{2}\right)\right) / 2$
$R \leq I\left(X_{1} X_{2} ; Y \mid Q\right)$
$R \leq C_{1}+C_{2}-I\left(X_{1} X_{2} ; U \mid Q\right)+I\left(X_{1} ; U \mid X_{2} Q\right)+I\left(X_{2} ; U \mid X_{1} Q\right)$

The Gaussian MAC

$$
\begin{array}{ll}
Y=X_{1}+X_{2}+Z & Z \sim \mathcal{N}(0,1), \\
& \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{1, i}^{2}\right) \leq P, \\
& \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{2, i}^{2}\right) \leq P
\end{array}
$$

	Choose $U=Y+Z_{N}$
$R \leq 2 C$	$Z_{N} \sim \mathcal{N}(0, N)$
$R \leq C+\log \left(1+P\left(1-\rho^{2}\right)\right) / 2$	N to be optimized.
$R \leq C+\log \left(1+P\left(1-\rho^{2}\right)\right) / 2$	
$R \leq \log (1+2 P(1+\rho)) / 2$	
$R \leq C_{1}+C_{2}-I\left(X_{1} X_{2} ; U \mid Q\right)+I\left(X_{1} ; U \mid X_{2} Q\right)+I\left(X_{2} ; U \mid X_{1} Q\right)$	

The Gaussian MAC

$$
Y=X_{1}+X_{2}+Z
$$

$$
\begin{aligned}
& Z \sim \mathcal{N}(0,1), \\
& \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{1, i}^{1}\right) \leq P, \\
& \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{2, i}^{2}\right) \leq P
\end{aligned}
$$

$R \leq 2 C$
Choose $U=Y+Z_{N}$
$Z_{N} \sim \mathcal{N}(0, N)$
$R \leq C+\log \left(1+P\left(1-\rho^{2}\right)\right) / 2$
N to be optimized.
$R \leq C+\log \left(1+P\left(1-\rho^{2}\right)\right) / 2$
$R \leq \log (1+2 P(1+\rho)) / 2$
$R \leq C_{1}+C_{2}-I\left(X_{1} X_{2} ; U \mid Q\right)+\log \left(\frac{1+N+P\left(1-\rho^{2}\right)}{1+N}\right)$

The Gaussian MAC (Cont.)

$$
\text { - } U=Y+Z_{N}, Z_{N} \sim \mathcal{N}(0, N)
$$

$$
\begin{aligned}
& I\left(X_{1} X_{2} ; U \mid Q\right)=h(U \mid Q)-h\left(U \mid X_{1} X_{2}\right) \\
& \stackrel{\text { EPI }}{\geq} \frac{1}{2} \log \left(2 \pi e N+2^{2 h(Y \mid Q)}\right)-\frac{1}{2} \log (2 \pi e(1+N)) \\
& I\left(X_{1} X_{2} ; Y \mid Q\right)=h(Y \mid Q)-\frac{1}{2} \log (2 \pi e) \geq R
\end{aligned}
$$

The Gaussian MAC (Cont.)

- $U=Y+Z_{N}, Z_{N} \sim \mathcal{N}(0, N)$

$$
\begin{aligned}
& I\left(X_{1} X_{2} ; U \mid Q\right)=h(U \mid Q)-h\left(U \mid X_{1} X_{2}\right) \\
& \stackrel{\text { EPI }}{\geq} \frac{1}{2} \log \left(2 \pi e N+2^{2 h(Y \mid Q)}\right)-\frac{1}{2} \log (2 \pi e(1+N)) \\
& I\left(X_{1} X_{2} ; Y \mid Q\right)=h(Y \mid Q)-\frac{1}{2} \log (2 \pi e) \geq R
\end{aligned}
$$

$$
\begin{aligned}
R \leq & C_{1}+C_{2}-\frac{1}{2} \log \left(N+2^{2 R}\right)-\frac{1}{2} \log (1+N) \\
& +\log \left(1+N+P\left(1-\rho^{2}\right)\right)
\end{aligned}
$$

The Gaussian MAC (Cont.)

- $U=Y+Z_{N}, Z_{N} \sim \mathcal{N}(0, N)$

$$
\begin{aligned}
& I\left(X_{1} X_{2} ; U \mid Q\right)=h(U \mid Q)-h\left(U \mid X_{1} X_{2}\right) \\
& \stackrel{\text { EPI }}{\geq} \frac{1}{2} \log \left(2 \pi e N+2^{2 h(Y \mid Q)}\right)-\frac{1}{2} \log (2 \pi e(1+N)) \\
& I\left(X_{1} X_{2} ; Y \mid Q\right)=h(Y \mid Q)-\frac{1}{2} \log (2 \pi e) \geq R
\end{aligned}
$$

$$
\begin{aligned}
R \leq & C_{1}+C_{2}-\frac{1}{2} \log \left(N+2^{2 R}\right)-\frac{1}{2} \log (1+N) \\
& +\log \left(1+N+P\left(1-\rho^{2}\right)\right)
\end{aligned}
$$

- Strictly tighter than [KangLiu'11]

The Gaussian MAC (Cont.)

On The Capacity of The Gaussian MAC

Theorem

For a symmetric Gaussian diamond network, the upper bound meets the lower bound for all C such that $C \geq \frac{1}{2} \log (1+4 P)$, or

$$
C \leq \frac{1}{4} \log \frac{1+2 P\left(1+\rho^{(2)}\right)}{1-\left(\rho^{(2)}\right)^{2}}
$$

where

$$
\rho^{(2)}=\sqrt{1+\frac{1}{4 P^{2}}}-\frac{1}{2 P}
$$

The Optimal Choice of N

- $U=Y+Z_{N}$ (motivated by [Ozarow'80, KangLiu'11])
- $\left(X_{1}, X_{2}\right)$ an optimal jointly Gaussian input for the lower bound

$$
\left[\begin{array}{cc}
P & \lambda^{\star} P \\
\lambda^{\star} P & P
\end{array}\right]
$$

- $N=\left(P\left(\frac{1}{\lambda^{\star}}-\lambda^{\star}\right)-1\right)^{+}$
- $P\left(\frac{1}{\lambda^{\star}}-\lambda^{\star}\right)-1 \geq 0: X_{1}-U-X_{2}$ forms a Markov chainnew upper-bound
- $P\left(\frac{1}{\lambda^{\star}}-\lambda^{\star}\right)-1 \leq 0$: the cut-set bound

The Binary Adder MAC

$Y=X_{1}+X_{2}, \quad \mathcal{X}_{1}=\mathcal{X}=\{0,1\}, \quad \mathcal{Y}=\{0,1,2\}$

$$
\begin{aligned}
& R \leq C_{1}+C_{2} \\
& R \leq C_{2}+I\left(X_{1} ; Y \mid X_{2} Q\right) \\
& R \leq C_{1}+I\left(X_{2} ; Y \mid X_{1} Q\right) \\
& R \leq I\left(X_{1} X_{2} ; Y \mid Q\right) \\
& R \leq C_{1}+C_{2}-I\left(X_{1} X_{2} ; U \mid Q\right)+I\left(X_{1} ; U \mid X_{2} Q\right)+I\left(X_{2} ; U \mid X_{1} Q\right)
\end{aligned}
$$

The Binary Adder MAC

$Y=X_{1}+X_{2}, \quad \mathcal{X}_{1}=\mathcal{X}=\{0,1\}, \quad \mathcal{Y}=\{0,1,2\}$

$$
\begin{aligned}
R & \leq C_{1}+C_{2} \\
R & \leq C_{2}+I\left(X_{1} ; Y \mid X_{2} Q\right) \\
R & \leq C_{1}+I\left(X_{2} ; Y \mid X_{1} Q\right) \\
R & \leq I\left(X_{1} X_{2} ; Y \mid Q\right) \\
R & \leq C_{1}+C_{2}-I\left(X_{1} X_{2} ; U \mid Q\right)+I\left(X_{1} ; U \mid X_{2} Q\right)+I\left(X_{2} ; U \mid X_{1} Q\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { THE BINARY ADDER MAC } \\
& Y=X_{1}+X_{2}, \quad \mathcal{X} 1=\mathcal{X}=\{0,1\}, \quad \mathcal{Y}=\{0,1,2\} \\
& R \leq C_{1}+C_{2} \\
& R \\
& R \leq C_{2}+h_{2}(q) \\
& R \\
& R
\end{aligned}
$$

The Interplay in the upper bound

$$
\begin{gathered}
I\left(X_{1} X_{2} ; U \mid Q\right)=H(U \mid Q)-H\left(U \mid X_{1} X_{2}\right) \\
\quad \stackrel{\text { MGL }}{\geq} h_{2}\left(\alpha \star h_{2}^{-1}(H(\tilde{Y} \mid Q))\right)-(1-q) h_{2}(\alpha)-q \\
I\left(X_{1} X_{2} ; Y \mid Q\right)=H(\tilde{Y} \mid Q)+h_{2}(q)-q \geq R
\end{gathered}
$$

The Binary Adder MAC (Cont.)

The interplay in the upper bounds

$$
\begin{aligned}
& R \leq I\left(X_{1} X_{2} ; Y \mid Q\right) \\
& R \leq C_{1}+C_{2}-I\left(X_{1} X_{2} ; U \mid Q\right)+I\left(X_{2} ; U \mid X_{1} Q\right)+I\left(X_{1} ; U \mid X_{2} Q\right)
\end{aligned}
$$

The interplay in the upper bounds

$$
\begin{aligned}
R & \leq I\left(X_{1} X_{2} ; Y \mid Q\right) \\
& \leq H(Y \mid Q)-H\left(Y \mid X_{1} X_{2}\right) \\
R & \leq C_{1}+C_{2}-I\left(X_{1} X_{2} ; U \mid Q\right)+I\left(X_{2} ; U \mid X_{1} Q\right)+I\left(X_{1} ; U \mid X_{2} Q\right)
\end{aligned}
$$

The interplay in the upper bounds

$$
\begin{aligned}
R & \leq I\left(X_{1} X_{2} ; Y \mid Q\right) \\
& \leq H(Y \mid Q)-H\left(Y \mid X_{1} X_{2}\right) \\
R & \leq C_{1}+C_{2}-I\left(X_{1} X_{2} ; U \mid Q\right)+I\left(X_{2} ; U \mid X_{1} Q\right)+I\left(X_{1} ; U \mid X_{2} Q\right) \\
& \leq C_{1}+C_{2}-H(U \mid Q)-H\left(U \mid X_{1} X_{2}\right)+H\left(U \mid X_{1} Q\right)+H\left(U \mid X_{2} Q\right)
\end{aligned}
$$

The interplay in the upper bounds

$$
\begin{aligned}
R & \leq I\left(X_{1} X_{2} ; Y \mid Q\right) \\
& \leq H(Y \mid Q)-H\left(Y \mid X_{1} X_{2}\right) \\
R & \leq C_{1}+C_{2}-I\left(X_{1} X_{2} ; U \mid Q\right)+I\left(X_{2} ; U \mid X_{1} Q\right)+I\left(X_{1} ; U \mid X_{2} Q\right) \\
& \leq C_{1}+C_{2}-H(U \mid Q)-H\left(U \mid X_{1} X_{2}\right)+H\left(U \mid X_{1} Q\right)+H\left(U \mid X_{2} Q\right)
\end{aligned}
$$

- Up to now: Entropy Power Inequality, Mrs. Gerber's Lemma

1. $\min \{H(U) \mid H(Y)=t\} \geq f(t)$
2. $f(t)$ is convex in t

The interplay in the upper bounds

$$
\begin{aligned}
R & \leq I\left(X_{1} X_{2} ; Y \mid Q\right) \\
& \leq H(Y \mid Q)-H\left(Y \mid X_{1} X_{2}\right) \\
R & \leq C_{1}+C_{2}-I\left(X_{1} X_{2} ; U \mid Q\right)+I\left(X_{2} ; U \mid X_{1} Q\right)+I\left(X_{1} ; U \mid X_{2} Q\right) \\
& \leq C_{1}+C_{2}-H(U \mid Q)-H\left(U \mid X_{1} X_{2}\right)+H\left(U \mid X_{1} Q\right)+H\left(U \mid X_{2} Q\right)
\end{aligned}
$$

- Up to now: Entropy Power Inequality, Mrs. Gerber's Lemma

1. $\min \{H(U) \mid H(Y)=t\} \geq f(t)$
2. $f(t)$ is convex in t

The interplay in the upper bounds

$$
\begin{aligned}
R & \leq I\left(X_{1} X_{2} ; Y \mid Q\right) \\
& \leq H(Y \mid Q)-H\left(Y \mid X_{1} X_{2}\right) \\
R & \leq C_{1}+C_{2}-I\left(X_{1} X_{2} ; U \mid Q\right)+I\left(X_{2} ; U \mid X_{1} Q\right)+I\left(X_{1} ; U \mid X_{2} Q\right) \\
& \leq C_{1}+C_{2}-H(U \mid Q)-H\left(U \mid X_{1} X_{2}\right)+H\left(U \mid X_{1} Q\right)+H\left(U \mid X_{2} Q\right)
\end{aligned}
$$

- Up to now: Entropy Power Inequality, Mrs. Gerber's Lemma

1. $\min \{H(U) \mid H(Y)=t\} \geq f(t)$
2. $f(t)$ is convex in t

- What we want to do:

1. $\min \left\{H(U)-H\left(U \mid X_{1}\right)-H\left(U \mid X_{2}\right) \mid H(Y)=t\right\} \geq f(t)$
2. $f(t)$ is convex in t

The Binary Adder MAC: Upper Bound

$$
\begin{aligned}
& R \leq 2 C \\
& R \leq C+h_{2}(q) \\
& R \leq 1+h_{2}(q)-q \\
& R \leq 2 C-h_{2}\left(\alpha \star\left(\frac{q}{2}+(1-q) h_{2}^{-1}\left(\min \left(1, \frac{\left(R-h_{2}(q)\right)^{+}}{1-q}\right)\right)\right)\right) \\
& \quad-(1-q) h_{2}(\alpha)-q+2 h_{2}\left(\alpha \star \frac{q}{2}\right)
\end{aligned}
$$

Capacity of The Binary Adder MAC

Theorem
The capacity of diamond networks with binary adder MACs is

$$
\max _{0 \leq p \leq \frac{1}{2}} \min \left\{\begin{array}{l}
C_{1}+C_{2}-1+h_{2}(p) \\
C_{1}+h_{2}(p) \\
C_{2}+h_{2}(p) \\
h_{2}(p)+1-p
\end{array}\right.
$$

The optimal Choice of α

- Let $\left(X_{1}, X_{2}\right)$ be an optimizing doubly symmetric binary pmf with parameter p^{\star} for the lower bound
- α is such that

$$
\alpha(1-\alpha)=\left(\frac{p^{\star}}{2\left(1-p^{\star}\right)}\right)^{2}
$$

and it makes the following Markov chain $X_{1}-U-X_{2}$.

Capacity of The Binary Adder MAC

Summary and Work in Progress

- Lower and Upper bounds on the capacity of a class of diamond networks
- A new upper bound which is in the form of a max-min problem
- Gaussian MACs:
- improved previous lower and upper bounds
- characterized the capacity for interesting ranges of bit-pipe capacities.
- Binary adder MAC: fully characterized the capacity
- Work in progress: the general class of 2-relay diamond networks, n-relay diamond networks with orthogonal BC components

