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Abstract Precise and accurate localization is important for safe autonomous driving.
Given a traffic scenario which has multiple vehicles equipped with internal sensors for
self-localization, and external sensors from the infrastructure for vehicle localization,
vehicle-infrastructure communication can be used to improve the accuracy and precision
of localization. However, as the number of vehicles in a scenario increases, associating
measurement data with the correct source becomes increasingly challenging. We propose
a solution utilizing the symmetric measurement equation filter (SME) for cooperative
localization to address data association issue, as it does not require an enumeration of
measurement-to-target associations. The principal idea is to define a symmetrical trans-
formation which maps measurements to a homogeneous function, thereby effectively
addressing several challenges in vehicle-infrastructure scenarios such as data association,
bandwidth limitations and registration/configuration of the external sensor. To the best
of our knowledge, the proposed solution is among the first to address all these issues
of cooperative localization simultaneously, by utilizing the topology information of the
vehicles.
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1 Introduction

Over the last years, vehicle-to-vehicle and vehicle-to-infrastructure localization has evolved
as an important topic in the intelligent transportation domain [1]. Cooperative localization
has a number of benefits ranging from improved precision to improved situational aware-
ness for applications such as monitoring traffic flow. In modern transportation systems,
the situational awareness system depends on the localization uncertainty. It is possible to
guide vehicles with individual optimal routes, with the help of low precision localization
information calculated in the cloud center. However, for safety applications, high preci-
sion localization information is utilized to assist other advanced driver assistance systems
(ADAS). For instance, precise localization information helps the lane departure system keep
the vehicle in its trajectory when there is a maneuvering behavior.

The commonly available Global Positioning System (GPS) provides an accurate estimate
of receiver location and is widely used by the automotive domain. But the signal character-
istics mean that its integrity is susceptible to interference (intentional or otherwise) and the
receiving antenna should have a clear view of the sky (e.g. [2]). This becomes problematic
in urban environments with high buildings, tunnels and parking lots. Therefore improved
methodologies utilize sensors which are both internal and external to the vehicle [3, 4].

Furthermore, with the development of Car-2-Car (C2C) and Car-2-Infrastructure (C2I)
communication techniques, sharing information, such as sensor measurements and state
estimates, across the whole network has become possible [5]. These new communication
networks can be utilized to improve the perception performance, as cooperative localization
can lead to better state estimates than separate self-localization by each individual vehicle
[1]. Many methods have been proposed for the vehicle-infrastructure cooperative local-
ization, e.g. Extended Kalman Filter [6], Markov Localization [7], Maximum Likelihood
Estimation [8] and Maximum A Posteriori Estimation [9]. But a number of challenges still
exist:

e The data association challenge.

One of the most important tasks for cooperative localization is that of Data Association,
in which sensor measurements are correctly associated to their corresponding targets in
order to estimate the physical state. The development of C2C and C2I techniques supports
vehicles in localizing and identifying other traffic participants correctly. However, in case of
an uncertain (or even missing) measurement-to-target association within the network, it is
a significant challenge to correctly compute a bias free state estimate. Also, measurements
are often obscured or cluttered (measurements not only originate from interesting targets,
but also from the outliers), further diluting the strength of association and increasing the
localization uncertainty.

e  The bandwidth challenge.

A cooperative localization system requires that each node transmits both state and
covariance estimations. System which contains a multiple dimensional state representation
(position, velocity, acceleration) with a high update frequency implies a significant amount
of data. The full covariance matrix (the number of dimensions squared) is required to fully
characterize the multiple dimensional variation. This in turn requires a high bandwidth mul-
tiplexed signal carrier and as the number of vehicles increases, the network is likely to get
overloaded and thus unusable.

e  The coordinate transformation challenge.
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Coordinate transformation plays an important role in cooperative localization. Measure-
ments are acquired from internal and external sensors to localize the positions. The internal
sensor only provides the absolute location in 2D global coordinates whereas the external
sensor often provides the relative position in 2D local coordinates. But in a dynamic environ-
ment where the configuration of the external sensor is unknown, the relative transformation
between different coordinate frames increases the localization issues.

A methodology for vehicle-infrastructure cooperative localization based on the Symmet-
ric Measurement Equation (SME) filter [10] is proposed, which extends the previous work
of [11]. With the SME filter, a new type of symmetrical measurement transformation based
on homogeneous symmetric functions has been introduced [12]. The key idea is to con-
vert measurement data with unknown association into a symmetric measurement equation
to estimate the corresponding states [13].

The work-flow of the proposed SME filter is as follows: Measurements from both inter-
nal and external sensors are projected to a symmetric equation to acquire new observations,
where the SME filter recursively estimates the dynamic states.

The advantages of the SME filter are as follows:

Firstly, the data association challenge is addressed. The SME filter provides a new solu-
tion to avoid the data association by using a symmetric measurement equation to build up a
pseudo-measurement space in which data association is unnecessary.

Secondly, the bandwidth challenge is addressed. Since the SME filter is a recursive cen-
tralized Bayes filter which requires the network to transmit only observations, the amount
of data that needs to be exchanged is reduced. In contrast to other methods, the proposed
approach has the minimal bandwidth requirement.

Thirdly, the coordinate transformation challenge is addressed. Measurements are con-
verted to a symmetric measurement equation based on homogeneous symmetric functions,
which avoids the transformation between different coordinate system. Even if the configu-
ration of the external sensor is unknown, the proposed SME filter still works.

This paper is structured as follows: Section 2 briefly describes the scenario of the vehicle-
infrastructure cooperative localization. Section 3 introduces more details about the SME
filter with the implementation details. Section 4 presents simulation results. Finally, the
paper is concluded in Section 5.

2 Background description

Figure 1 illustrates the vehicle-infrastructure cooperative localization scenario and is
described as follows:

e Each vehicle is able to localize itself according to an absolute reference. Here we
assume that the measurements given by internal sensors (e.q. onboard GPS) are in a 2D
global coordinate system. Further values in the 2D global coordinate system represent
location of the vehicles in Cartesian coordinate system.

e The infrastructure is able to measure the relative position of the vehicles. Here we
assume that the measurements given by external sensors are in a 2D local coordinate
system. Further values in the 2D local coordinate system represent the relative location
of the vehicles with respect to the external sensor in Cartesian coordinate system.

e A communication network, to exchange information between the cars and the infras-
tructure, is available. Here we assume that there is no delay in the data-link and no
clutter exists, e.g. there is no false detection in the scenario.
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e The communication method and protocol are not used to identify the individual
vehicles. Also, there is no prior information regarding to the configuration of the
infrastructure, i.e., the location and orientation of the external sensor are unknown.

Assuming that the internal sensors provide measurements with large uncertainties, the
localization becomes imprecise. However, by cooperative localization, the precision is
ensured with the help of the external sensor since its measurements are more precise [1].

Much work has been done for cooperative localization: centralized solution [6—14] and
decentralized solution [15-17]. In the centralized solution, all vehicles are considered as a
single system where the estimation is computed using the Kalman filter. There is no need
of high communication bandwidth because covariance of the state is not transmitted. But as
the number of vehicles increases, the data association computation grows exponentially.

In contrast to the centralized architecture, a decentralized solution uses multiple fusion
centers. Each fusion center handles part of the local information (only the observed neigh-
bors). Still, the computational demand is very high. Moreover, it often exceeds the network
bandwidth limitations since each fusion center requires both the states and the correspond-
ing covariances. Therefore, both the communication and computational demands present a
number of difficulties in decentralized solutions.
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Consider the case where a number of interconnected vehicles communicate the esti-
mated location of another vehicle relative to themselves, which is then fused with another
state estimate provided by another vehicle (or the same vehicle at a different time step).
Traditional Bayes Fusion (either centralized or decentralized approach) adopts a divide-
and-conquer strategy: first by performing efficient measurement-to-target association and
then applying Bayesian filtering techniques to estimate each of the vehicles. However, in
cooperative localization, it is a chicken-and-egg problem: knowing measurement-to-target
association, it is rather easy to predict and estimate interesting vehicles, but in cluttered
scenes, it is often difficult to associate targets without further knowledge about vehicles. In
addition, the data association approach not only suffers from a number of technical diffi-
culties but also the combinatorial growth in the number of vehicles. For a low number of
vehicles, the association of state estimates/sensor measurements can be made naively by
testing the distance between state estimates (e.g. using the Mahalanobis distance). How-
ever, explicitly testing the association for multiple vehicles in clutter environment becomes
computationally prohibitive.

Furthermore, none of the above solution considers the coordinate transformation issue
during the localization process. Both centralized and decentralized approaches assume that
the transformation between the global measurement and the relative measurement is known,
or at least could be estimated with the associated measurements.

In the next section, the SME filter is presented which takes into account all the issues.
This work is developed in cooperation with the SADA Project (BMWi funded, ‘IKT fiir
Elektromobilitit III" [18]), to evaluate the performance of the cooperative localization
between vehicle and infrastructure sensors.

3 The symmetric measurement equation (SME) filter

The SME filter based on homogeneous symmetric function is proposed because of its ability
to simultaneously address the identified issues within a multi-target tracking scenario.

3.1 Overview on SME filter

A major hurdle in multi-target tracking domain is the data association between the measure-
ment and either a new or an existing track. In the past decades, various methods have been
developed to address this such as the Joint Probabilistic Data Association filter (JPDA) [19],
the Probability Hypothesis Density filter (PHD) [20] and the Multi Hypothesis Tracking fil-
ter [21] (MHT). However, as the number of targets grows, the computational requirements
grow exponentially.

The Symmetric Measurement Equation (SME) filter removes the data association by uti-
lizing a symmetrical transformation. This allows us to bypass the combinatorial complexity
of the association tasks. The SME filter transforms the association issue into a nonlin-
ear state estimation problem with non-additive Gaussian noise. In this way, one difficult
problem is traded for another difficult, but different, problem [22].

The first work on the SME filter was presented by Kamen [10]. It was also proposed to address
the nonlinear conditions by the Unscented Kalman filter [22] and the Particle filter [23].

M. Baum [24] implemented the SME filter in the field of group targets tracking. The
result illustrates that the SME filter is an effective solution for the multiple target tracking.
In addition, it was shown that the SME filter is suitable for a large number of closely-spaced
targets during the tracking phase.
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This paper applies the SME filter to vehicle-infrastructure cooperative localization.
Assuming there is no missed or false detection, the SME filter is utilized to localize the
vehicles based on the symmetric measurement equations.

3.2 Mathematic background of the SME filter

In formulation, the input of SME filter is defined as a finite set valued random variable
(e.g. set-valued state and set-valued measurement). The essential difference between a set-
valued variable and a vector is: the number of constituent points in the set-valued variable
is random and the points themselves are consisted of individual states and measurements
collected at each step; a random vector is exactly one constituent point which is constructed
by either single state or measurement.

The idea of the SME filter is to generate ’pseudo-measurements’ that consist of
symmetric functions of the original measurement from targets.

e  Problem formulation

A set-valued state

Xi = [(g,i)T, 2 (ka)T]T M

consists of N ordered points with random object states 5}(, e &]{V each taking values in a

state space R", where n > 0 is the dimension of each state x, . By representing as this form,

X) contains the complete state of the individual objects and the corresponding numbers.
Similarly,

= (o) (o) (1 (xw)T]T @

is utilized to describe the measurement collection which returns a number of N measure-
ments whose values h ,ﬁ (Xk)s oees h,iv (xx) are random (each measurement takes value in an
observation space R™, where m is the dimension of measurement function Ay (Xx).)

To avoid the data association between the measurements and targets, each component h;c
should remain unchanged for any permutation in the argument of the states, which is called
’symmetric transformation’.

3.2.1 Measurement model

Assuming at each step the measurements are available, the following equations give the
‘pseudo-measurements’

yl = b (s + oo o al ol

N N (.1 1 .2, 2 N N
Ve = (£k+vk7£k+”ks“"£k +Uk) )
where each h}< is a permutation in the symmetric group which specifies the unknown asso-

ciation assignment and v,i is considered as the additive zero-mean white noise. Combined
with the joint set-valued state, Eq. 3 can be composed as follows
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1
b hl(xi, i)
: =1: “)
N hy (X, Vi)
—— N————’
Yk Hy (xi)
where y; denotes the joint set-valued measurement.
3.2.2 Process model
The target system model in SME filter is represented as
1 1.1 1
Xpp1 = ApXp + wy
X = ARy wp )

where Ay is the process transformation and wy is the additive white noise. Equation 5 can
also be composed as

1 1 1 1
Xht1 Ay Xk Wy
: = . : + : (6)
N N N N
Xit1 Ay Xk Wy
—_— ) —— e N— —
Xi+1 Ay Xk Wi

3.2.3 Symmetric transformation

Since the SME filter removes the data association between the measurements and the
targets, a symmetrical transformation is thus required.

The transformation is done by adding or multiplying acquired measurements such that
all generated ‘pseudo-measurements’ have values from all the targets. This makes the mea-
surement matrix Hy(xx) independent of the permutation in the argument of the state x.
Thus there is no data association requirement.

Two simple examples of how to construct the symmetric measurement equations for
three targets are given as follows:

Example 1. Sum-of-product

mi + my + m3
Sprod = | mymy + moms3 + mym3 N
mimams3

Example 2. Sum-of-powers

my +ma +m3
Spow = m%—l—m%—i—m% (8)

m; + m% + m;
For three targets that evolve according to a random walk model in one dimension sce-
nario, the process model and the measurement model are thus given by one-dimension
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identity matrix 1. m; is the measurement from the i, target. If the measurement-to-target
association is known, the Kalman filter is applied individually as following:

gf;Jr]:g};—l—w}; mi:£};+v,i,i:1,2,3. )

where w,’{ and v,’{ are Gaussian white noises. With the same manner, it can also be
represented as

1 1 1
X1 llé wlé
e + Wi
Aht1 X% Wy
—— N’ — —
Xk41 Xk Wi
1 1 1 1
Ve m 100 X (A hy Xk, Vi)
vil=|mi{=|010]|xf|+]|v|=]|hiGx v (10)
¥ m3 001 [xf v hg (X, Vi)
——— N—— ————
Yk Hy Xk Vi Hy (X, vi)

It is observed that each component h;{ depends on the permutation order in set-valued state
X, which is called ‘data association’.

If the measurement-to-target association is unknown, the performance of Eq. 10 drops
immediately. The SME filter when applied, makes h;c remain unchanged for any permuta-
tion in the argument of the state, which is called ‘symmetric transformation function’:

1 1 1
S B 1
St | = X% + w1§
Xpt1 X Wi
— — ——— N——
Xk+1 Xk Wk
1
J my + my + m3 i (xp, i)
2 2 2 2
X% = | my+my+m3 | =| hi(Xk, Vi) (11
3 3 3 3
Vi mi +m; + m3 hy Xk, Vi)
—_—— ———
Yk S]mw =Hy (x¢)

Although the pseudo-measurement S (Sum-of-powers) represents the information from
a linear space to a nonlinear space, the original measurement m; can still be recovered
uniquely. Therefore, there is no information loss with the symmetrical transformation. Since
the transformed equations are symmetrically represented which does not rely on the permu-
tation order in X, the data association issue is thus addressed. By using nonlinear Bayesian
estimators such as Extended Kalman filter (EKF) [10], Unscented Kalman filter (UKF) [22]
or Particle filter (PF) [23], the set-valued states Xx; is estimated recursively.

3.3 Implementation of SME filter

The mathematic background of the SME filter has been briefly introduced in Section 3.2.
However, there are still open issues regarding to the implementation, e.g. how to utilize the
SME filter in vehicle-infrastructure cooperative localization? How to utilize external sensor
in unknown environments?

For the process model, each single state 1}; = [pf(’k, ﬁi’k, p’) o p’y ¢’ consists of the
positions (py x, py,x) and velocities (py k, Py k), where the set-valued state is thus given by
X = [T, - O™

]T
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Following the constant velocity model, the related parameters can be represented as:

1700
0100
1 2 N
Ak=Ai==4 =90 17 |
0001
A
Ay = (12)
Ay

T2/4T?/20 0
T?2/2T 0 0

1 N 2
S =
O Ok 0 0 T*4T?2 |
0 0 T2n2T
O
Qr = (13)
o
In constant turn rate model, the related parameters are changed to
sinwT 0 1 —coswT
0 ¥ T 0 i aT)
1 42 _ _ AN _ Ccosw —Ssinw
A=A = = Ay = 1 —coswT ] sinwT ’
w w
0 sinwT 0 coswT
A
Ay = (14)
Ay
" 2(wT —sinwT) 1 —coswT oT —sinwT 7
0 -
3 w? w?
1 —coswT — (T — sinwT)
; o T T — 2 0
Oy =39 —(@T —sinoT) 2T ~sinoT) 1—cosol |-
0 a)2 0)3 0)2
oT —sinwT 1 —coswT
2 0 2 r
L w w -
0
Q= (15)
o
The process model for set-valued state is thus given as:
Xp+1 = Ag - X + Wy (16)

where Qy is denoted as the covariance of the process noise wg, T is the sampling interval and
d is the standard deviation. For constant turn rate scenarios, w is considered as the angular
(turn) rate in circular motion. More details can be found in [25].

In measurement model, the transformation of the original measurements into the
symmetric equation form is done both for the internal and the external sensors.
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To map the state to the observation space, measurements from internal sensors are
converted as the Sum-of-powers:

vl =lyx,.yy, 1" (17)

where

N . N ] N '
v, =0 Pl 2 (phot e Yl oM

i=1 i=1 i=1

N N N
ﬂk = [Z ply,/o Z(p;;,k)z’ T Z(p;,k)N]T
i=1 i=1 i=1
As observed in Fig. 1, the relative distances among vehicles are invariant in both the
internal and external sensors. For internal sensor, since the measurement is presented in
the global coordinate, Eq. 17 is utilized as the set-valued measurement in the SME filter.
For external sensor, since the transformation from local coordinate to global coordinate is
unknown, the corresponding measurements could not be utilized in format of Eq. 17. Thus
the topology information is utilized to represent the relative distances as follows:

N-1 N . N-1 N A
YEC=1D. D Pha—pi)’+ D Y (i —pl 7 (18)
i=1 j=i+l i=1 j=i+l
It has to be noticed that Eq. 17 utilizes measurements collected from the internal sen-
sor, whereas Eq. 18 utilizes measurements collected from the external sensor. Although
the transformation from the local coordinate to the global coordinate is still missing,
the topology information is now utilized as an additional measurement to the set-valued
measurement.
The final pseudo-measurement yy is consisted as

p;’k‘f'Pi’k'f',"' ,+pi\fk T
(Pr >+ (P2 -+ (PN )?

| ) N
Hk:|:§€ ]Z py’k+p2”‘+’“"+pyk
) (p;,k)z + (py,k)2+» . +(p§\fk)2

Py OV PN+ PN DY _

L P = Pl S = Py )7
(19)

Based on the above procedure, multiple challenges in vehicle-infrastructure cooper-
ative localization are addressed simultaneously. The state is estimated by the pseudo-
measurement in consecutive frames. We would like to remind the reader that the new
measurement noise covariance matrix Ry is calculated with respect to the SME pseudo-
measurement space, not in the original Cartesian measurement space. More details of the
covariance matrix Ry can be found in [12, 22]. We do not consider this problem further in
this paper. Compared to the previous work in [10, 12, 22], the proposed solution utilizes
target topology information as an additional measurement during the tracking phase. Mea-
surements from both internal and external sensors are collected as a set-value measurement
to update states of all the vehicles, given the configuration of the external sensor is unknown.
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Also, there is no difference between sum of power, or sum of product. The goal of the
symmetric measurement equation is to transfer the original measurement from linear space
to the nonlinear space where the data association issue is avoided. The performance should
remain the same with different representations, since the original measurement is recovered
uniquely from both transformed functions. Based on the symmetric non-linear transfor-
mation equation, the SME filter can be implemented by the non-linear Bayesian state
estimators such as Extended Kalman filter, Unscented Kalman filter and the Particle filter.
In this paper, the particle filter is utilized to execute the SME filter with the sum of powers
format.

4 Simulation and discussion
4.1 Simulation

The simulation was implemented with five vehicles on the two dimension ground plane.
The performance of the SME filter is demonstrated with respect to the Kalman filter and the
Gaussian Mixture Probability Hypothesis Density (GMPHD) filter. The evaluated scenarios
are: Constant Velocity (CV) model and Constant Turn Maneuver (CTM) model.

In simulation, vehicles are equipped with internal sensors to measure their global coordi-
nates. The external sensor provides observations with a higher precision in a local coordinate
system where the transformation to the global coordinate system is unknown. Such infor-
mation is thus unnecessary for the filtering phase in both the Kalman filter and the PHD
filter.

The simulation is based on the following assumptions:

e Each vehicle gives rise to exactly one single measurement per sensor, i.e., no missed
detection.

e There are no false detections during the whole process, i.e., measurements originate
from vehicles.

e [t is not able to identify the others through the communication system, i.e., the
measurement-to-target association is unknown.

During the process, noises from internal sensors are assumed to be white Gaussian dis-
tributed with zero mean and covariance diag[0.5, 0.5], and the noise from external sensor
has zero mean and covariance diag[0.1, 0.1]. The initial states for the five vehicles are
as following: x, = [0, —1.5,100, —11T,x, = [0, —1.5,0, 11T, x; = [0,0,0,3]1T,x, =
[0, 1.5,0, 11T, x5 = [0, 1.5, 100, —1]T. Thus the joint state for the SME filter is given by
X =[x}, Xp, X3, X »£5]T-

The corresponding process model A in the SME filter has already been introduced in
Section 3.3 in Eq. 6, where the sampling interval T is defined as 1. The standard deviation
of the process noise § is defined as 0.5 and the process covariance matrix Q is initialed as
diag[2.5,1,2.5,1,---,2.5,1,2.5,1].

To better evaluate the proposed approach, it is assumed that the association between
the measurements and targets is known to the Kalman filter (only by internal sensors for
comparison). Since the transformation between local coordinate and global coordinate is
unknown, observations from external sensor are not used (It is possible to estimate the loca-
tion and orientation of the external sensor, when data association is given or calculated by
both the internal and the external sensors. Once the transformation between two coordinate
systems is confirmed, it is expected that the Kalman filter should be the optimal filter for
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the localization task. This is out of the scope of this paper as we only consider that the data
association and the corresponding transformation in unknown environments).

The PHD filter also avoids the data association challenges under the Random Finite
Set (RFS) statistics, but only measurements from internal sensors are used to estimate the
states ( it is still impossible to utilize measurements from external sensor with unknown
configuration).

Assume each measurement (py, py) takes one communication bit in the network com-
munication, for both the internal and external sensors. Then SME filter requires only 2N
bits bandwidth at each step, which also meets the minimal requirements for the network
communicating (There is a total of N measurements acquired by external sensor and N
measurements acquired by internal sensors. To communicate the whole measurement on
the network, 2N bits bandwidth is thus the minimal requirement. In contrast to decentral-
ized solutions, the SME filter only operates on the measurements level whereas the others
operate on both the states and covariances level).

Figure 2 exhibits true trajectories and the corresponding estimations in three scenar-
ios: one CV scenario and two CTM scenarios (two and four vehicles are maneuvering in
CTM scenarios, with w = +0.05°). Although Kalman filter has been proved as the optimal
Bayesian filter in linear environment, the corresponding precisions are worse than the SME
filter. Also compared to the PHD filter, the SME filter performs better.

The high performance of the SME filter is mainly from the topology information mea-
sured by the external sensor. Although the external sensor’s configuration is unknown, the
topology information is still utilized. This is visualized in Fig. 1. It is observed that either
in global or in local coordinate system, the distances between vehicles are invariant. In
Kalman filter, it is not possible to use this data from external sensor. Still, the performance
of the Kalman filter is better than the PHD filter, which is due to the fact that the PHD cal-
culations are based on propagation of a multi-target first-order moment statistic, whereas
Kalman filter uses each targets’ posterior distribution.

Figure 3 indicates the precision of all methods by calculating the RMSE (root mean
square deviation) value. The total error is calculated by summing up the RMSE of all
vehicles as follows:

2
Error = (pist _ p;rue) + (p;st _ p;rue)Z

n N J
i - Error;
Total_error = \/ L= Zl;] : (20)

where 7 is the step index (The PHD filter estimates the vehicles as a set-valued state, it
does not distinguish them. Individual states are unordered within the set-valued state. To
compare the performance, a state-to-target association process is implemented to label the
PHD estimations).

Figure 3 illustrates that each filter has a certain estimation error which depends on each
sensors’ capability. This error is caused by the uncertainties in the measurements; as no
errant data was introduced to the system, these values should represent the lower bound of
the estimate. It shows that the overall performance of the SME filter is better than the others.

Although the SME filter utilizes additional precise measurements, the improvement
still does not match the lower bound of the external sensor. This is because the topology
information only represents the distributions among vehicles, which partly represents the
localization information. In contrast to the scenario when the coordinate transformation
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Fig. 2 Vehicles’ true trajectories and the estimations

is known, the external sensor provides the complete information and there should be an
improvement in the estimation.

Figure 3 also illustrates that the performance of the SME filter depends on the vehicles’
behaviors. It is observed that for CTM with @ = 40.05° for two vehicles, the performance
of the SME filter is almost same as the CV scenario. For CTM with w = £0.05 for four
vehicles, the performance degrades a lot when compared to CV scenario. This phenomenon
is explained as follows:

In Kalman filter, each vehicle relies on its own measurements during the filtering phase.
The precision of the estimation relies on the uncertainties of its own measurements. On the
other hand, in SME filter, the state is estimated by the pseudo-measurements which con-
sist of all the measurements. If some measurements have unexpected noises from vehicles,
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Fig. 3 The performance of the estimation

the influence on the pseudo-measurement space is negligible. This phenomenon helps the
CV scenario, but for CTM scenarios SME filter may consider various maneuver of vehi-
cles as noises from sensors. With the additional information from the external sensor, the
performance of the SME filter is thus ensured. The PHD filter treats the measurements as
set valued measurement but without considering any information from external sensor. This
does not impact the performance of CV scenario but for the CTM it degrades.

4.2 Discussion

To study the robustness of the SME filter in real applications, the following issues need
further discussion.

@ Springer



Geoinformatica (2016) 20:159-178 173

4.2.1 False detection and missed detection

In this paper, both internal and external sensors are assumed to work in an ideal environ-
ment which means that all the measurements originate from the vehicles. The SME filter
estimates the states without considering the data association issue. However, in practice, the
number of measurements M may not be equal to the number of vehicles N, which can be
caused by false or missed detections (due to clutter). In order to address this challenge, the
SME filter should be implemented in parallel, c.p. [26, 27].

4.2.2 External sensor estimation

To jointly estimate the vehicles and the infrastructure configuration, the transformation
between the coordinates needs to be calculated. But there are two major problems: the data
association problem and the over-convergence problem. As the key contribution of the pro-
posed paper is to localize vehicles in an unknown data association scenario, coordinates
transformation is thus not considered. Over-convergence problem is due to the stochastic
interdependence between the estimations when sharing the information [4]. For example,
a scenario when the configuration of the external sensor has already been estimated. The
observation from external sensor cannot be directly used since the transformed information
is dependent to the internal sensors.

4.2.3 Implementation issue

Since the SME filter transforms the original measurements from linear space to the non-
linear space by using the symmetric measurement equations, the corresponding targets’
states are thus estimated based on the non-linear Bayesian filters, e.g. Extended Kalman
filter, Unscented Kalman filter and the particle filter. In this paper, five vehicles polynomials
up to order five are considered. Due to the highly nonlinear functions in such situation, only
the particle filter is utilized. Both the EKF and UKF do not give satisfying results due to
the strong non-linearities and numerical instabilities. It should be noticed that due to the
non-linear transformation, the symmetric transformations are unsuitable for larger target
numbers as the order of the involved polynomial increases with the amounts, i.e., for 10
vehicles polynomials up to order 10 are required. Therefore, for large number of vehicles,
the SME filter do not give satisfying results due to the high nonlinearities.

o Benefits

First, data association is avoided. With the symmetric measurement equations, the data
association issue is traded for another difficult, but different, problem. Thus the SME filter
only focuses on the analytic nonlinear estimation. By utilizing the homogeneous symmetric
functions, the original measurements are projected to the pseudo-measurements where no
information is lost during the transformation. In this way, it is possible to estimate states
without considering the association between measurements and targets.

Second, the requirement for communication bandwidth is minimized. The inter-
communication system only transmits the original measurements to the SME filter which
results in minimal consumption requirements. In contrast to decentralized solutions, it does
not rely on each vehicle’s state and the corresponding covariance in fusion process.

Third, coordinate transformation is not required. By using the topology information
among vehicles, the coordinate transformation is avoided. Even if the configuration of the
infrastructure is unknown, measurements can still be utilized by the SME filter.
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5 Conclusion

Cooperatively localizing vehicles for highly assisted, autonomous and intelligent infras-
tructure driving scenarios presents a number of challenges which limit the feasibility of
traditional Bayesian approaches. Specifically the measurement-to-track association uncer-
tainty and unknown coordinate transformation between sensors (i.e. the sensor registration)
must either be known and communicated between all nodes; or computed explicitly at each
node. Thus, the computational complexity and bandwidth requirements increase exponen-
tially with the number of nodes in the system. In this paper, we have proposed a recursive
Bayesian solution for the cooperative localization problem utilizing the Symmetric Mea-
surement Equation filter. The SME filter treats all nodes within the system as a joint
single state which is updated using the symmetric measurement equations. The proposed
method has been evaluated in simulations and the results demonstrate error performance
which is proportional to the Kalman Filter, but with improved efficiency and without
the requirement that measurement-to-track association and sensor registration are either
known or computed explicitly, greatly reducing the computational and communicational
burden.

The primary contribution of this paper has been to show that the SME filter can be
applied to a multi-vehicle cooperative localization scenario, achieving error performance
which is equivalent to traditional Kalman filter approaches. This technique could greatly
improve the efficiency of intelligent transportation systems which rely on precise local-
ization of vehicles, but within a framework of bandwidth and computationally limitations.
However, it should be noted that the results so far are limited to simulated data governed
by well understood and statistically well behaved noise models. In order to fully understand
the benefits of this technique, further investigation should be paid to data sets which include
clutter, obscuration and erroneous measurements. Furthermore, additional investigation
should seek to understand the stability of the algorithms in real-world scenarios and whether
the additional performance can be justified in terms of reliability for increasingly large data
sets.
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