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Introduction

Later began the convoys of vehicles bringing food to

New York [. . .]. In some squares great detours had

to be made because of the great pressure from the

side streets, so the entire journey stopped and trav-

eled step by step, then it all came on again, so that

for a short while everything rushed by at lightning

speed until as if by a single brake a slowdown took

over and quieted everything again.

— Franz Kafka, Amerika

In the novel Amerika by Franz Kafka, the main character Karl Rossmann is amazed to

see how the massive traffic of vehicles flowing towards New York behaves like a single,

worm-like creature, as if the synchrony of their motion were the result of divine directives

to humanity. It is, indeed, a rather recent discovery, dating to the seminal work of Lorenz

[138] and Mandelbrot [139], that complicated global patterns in nature may emerge from

very simple reiterated local rules. Since then, numerous studies have confirmed that, at

any scale of observation, complexity is often an emergent feature of large systems with

elementary interactions: from the intricate interplays at cellular level [47], passing through

the hierarchical structure of ants’ societies [72], all the way to the myriads of religious and

social customs of human beings [108]. The principles of self-organization in multiagent

systems are employed in swarm robotics to produce cheap, resilient, and efficient squadrons

to perform predefined tasks [16] and to render battles, swarms of animals and hair/fur

textures in CGI animations [129, 154, 164]. The same concepts lie at the core of the Game

of Life, a zero-player game whose capability to reproduce infinite self-replicating patterns

from simple evolution rules makes it Turing complete [28]. The scientific literature on

multiagent self-organizing systems is vast and ever-growing: the interested reader may be

addressed to [19, 174] and references therein for further insights on the topic.

In all the examples above, self-organization is the result of the superimposition of binary

interactions between agents amplified by a steadfast feedback loop. This reinforcement

process is necessary to give momentum to the multitude of feeble local interactions and

eventually let a global pattern appear. Typically, the strength of such interaction forces

is a function of the “social distance” between agents: for instance, birds align with their
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closest neighbors [20] and people agree easier with those who already conform to their

beliefs [122]. Some of the forces of the system may be of cohesive type, i.e., they tend to

reduce the distance between agents: whenever cohesive forces have a comparable strength

at short and long range, we call these systems heterophilious; if, instead, there is a long-

range bias we speak of homophilious societies [146].

Figure 1: On the left: pilgrims walking around the Kaaba in Mecca1. In the center: ants
coordinate to create a bridge2. On the right: a school of fish3.

Heterophilious systems have a natural tendency to keep the trajectories of the agents

inside a compact region, and therefore to exhibit stable asymptotic profiles, modeling

the autonomous emergence of global patterns. On the other hand, self-organization in

homophilious societies can be accomplished only conditionally to sufficiently high levels of

initial coherence that allow the cohesive forces to keep the dynamics compact [143]. Being

such systems ubiquitous in real life (e.g., see [85, 135]), it is legitimate to ask whether –

in case of lost cohesion – external controls with limited strength acting on the agents of

the system may restore stability and achieve pattern formation.

In the case of multiagent systems, efficient control strategies should target only few indi-

viduals of the population, instead of squandering resources on the entire group at once:

taking advantage of the mutual dependencies between the agents, they should trigger a

ripple effect that would spread their influence to the whole system, thus indirectly control-

ling the rest of the agents. The property of control strategies to target only a small fraction

of the total population is known in the mathematical literature as sparsity [48, 96, 105].

The fundamental issue is the selection of the few agents to control: an effective criterion is

to choose them as to maximize the decay rate of some Lyapunov functional associated to

the stability of the desired pattern [67]. In alignment-dominated models, the sparse control

targeting at each instant only the agent farthest away from the mean velocity was shown

to possess this property, see [49]. The stabilizing power of sparse controls goes beyond this

particular class of systems: in [32, 33] similar results for attraction-repulsion models were

obtained, while in [158] sparse controls for linear systems were studied.

Alongside the above centralized approach to control (in the sense that there is an exter-

nal figure implementing the control on the system), also decentralized strategies may be

considered: these consist in assuming that each agent, besides being subjected to forces

induced in a feedback manner by the rest of the population, follows an individual strat-

egy to coordinate with the other agents [37]. Whenever such additional force is the result

of an offline optimization among perfectly informed players, we fall into the realm of

1https://commons.wikimedia.org/wiki/File:Islamm.jpg
2https://commons.wikimedia.org/wiki/File:Ant_bridge.jpg
3https://commons.wikimedia.org/wiki/File:Large_fish_school.png

https://commons.wikimedia.org/wiki/File:Islamm.jpg
https://commons.wikimedia.org/wiki/File:Ant_bridge.jpg
https://commons.wikimedia.org/wiki/File:Large_fish_school.png
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Game Theory [147, 177]. Games without an external regulator model situations where it

is assumed that an automatic tendency to reach “correct” equilibria exists, like the stock

market. However, this optimistic view of the dynamics is often frustrated by evidences of

the convergence to suboptimal configurations [120], whence the need of an external figure

controlling the evolution of the system. The action of the regulator can eventually be op-

timized too, choosing it as the minimizer of a given cost functional: in this case, sparse

controls can be obtained when the control cost is the L1-norm [49].

Figure 2: On the left: swarmbots performing a task4. In the center: Gosper’s Glider Gun,
a recurring pattern in the Game of Life5. On the right: multiagent systems employed in
the videogame Total War: Rome 2 6.

Sometimes, it could be advantageous to control a different population (usually called the

leaders) rather than directly interacting with the original one (the followers). In this

case, followers are controlled indirectly through their interaction with leaders. One way

to introduce sparsity in such context of indirect control is to require that the population

of leaders is numerically inferior to the one of followers. This control setting is, actually,

incredibly common in real life: for instance, to influence public opinion, the control of

few key mass media is often sufficient [125]. Another example is provided by certain kind

of tumors, which spawn trailblazing leader cells with the ability to lead the metastasis

into surrounding tissues: if diverted, the migration process of the tumor could possibly be

halted [59]. Similarly, the recent work [5] has shown the effectiveness of few undercover

coordinated agents in the evacuation of a crowd from an unfamiliar environment.

Unfortunately, the computation and implementation of (direct and indirect, optimal and

feedback) control strategies is affected by the so called curse of dimensionality : roughly

speaking, algorithms to find solutions to such problems become inefficient as the number

of agents N or their dimensionality d increase conspicuously [24]. In the case of N large,

one solution to solve this issue is to combine mean-field approximation techniques (like

the mean-field limit [31, 130], the BBGKY hierarchy [58, 116], and the binary interaction

approximation [7, 151]) with the optimal control problem. Mean-field games stem from

the application of such combination to games involving a large number of players [128,

136, 149], while its application to optimal control problems on multiagent systems leads to

the mean-field optimal control theory [38, 103, 106]. For what concerns large values of d,

recent approaches of a certain relevance to the dimensionality reduction of dynamic data

are diffusion maps [68], geometric multiscale reductions [40], and Johnson-Lindenstrauss

embeddings [101, 131]. Despite the large amount of work devoted to these issues and their

4http://people.idsia.ch/~gianni/SwarmRobotics/swarm_navigation/start-double-chain.jpg
5https://commons.wikimedia.org/wiki/File:Gospers_glider_gun.gif
6http://forums.totalwar.org/vb/showthread.php?148830-Ostrogoth-Campaign

http://people.idsia.ch/~gianni/SwarmRobotics/swarm_navigation/start-double-chain.jpg
https://commons.wikimedia.org/wiki/File:Gospers_glider_gun.gif
http://forums.totalwar.org/vb/showthread.php?148830-Ostrogoth-Campaign
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relevance in many practical situations, the application of the above strategies to control

problems on multiagent systems has only been investigated recently in [36].

Figure 3: On the left: fish evade predators7. In the center: confinement of crowds using
infrastructures8. On the right: a cop overseeing sheep9.

The present thesis is devoted to the study of sparse control and its dimensionality reduction

for multiagent systems. Since in control problems an accurate prior knowledge of the

dynamics is essential, we also address the automatic learning of the fundamental functions

governing the dynamics from sampled observations of the evolutions. In some parts of this

work we consider general multiagent systems, while in others we focus on specific models in

order to assess quantitatively the effectiveness of sparse controls with respect to different

control strategies.

The thesis is organized in seven chapters,each focusing on a specific topic mentioned above.

• Chapter 1 presents general results for the convergence at large times of alignment

models to fully aligned states, as a form of consensus and more in general of self-

organization. We show that the ability of such systems to converge to consensus

is limited, even if we allow for feedback decentralized control strategies. We prove

that consensus emergence can be guaranteed in only very few, specific cases, one of

which being the situation where agents are highly heterophilious. The main results

of this chapter were published in the paper [37] and are integrated with comments

and observations from [49, 121].

• Motivated by the limitations of homophilious societies to self-organize, in Chapter

2 we introduce the concept of (direct) sparse control of multiagent systems. We

show the effectiveness of such control strategy in the case of two prototypical self-

organizing models: the Cucker-Smale system [81] and the Cucker-Dong system [80].

While sparse controls seem intuitively capable of steering multiagent dynamics, it

is however surprising that, for some classes of systems, they are also the most ef-

fective control strategies: for such systems, the control of the instantaneous leaders

of the dynamics is more convenient than controlling simultaneously all agents. The

first significant contribution of this thesis is that the optimality of sparse controls

(initially proven for the Cucker-Smale model, which is a dissipative system) can be

extended also to non-dissipative systems with singular repulsive interaction forces,

like the Cucker-Dong model. The existence of solutions of sparsely controlled mul-

tiagent systems is also studied. The chapter is based on the papers [32, 33], again

supplemented by results from [49].

7https://commons.wikimedia.org/wiki/File:Flocking.jpg
8https://pixabay.com/en/cathedral-square-ulm-human-crowds-592756/
9https://www.flickr.com/photos/31363949@N02/6707219407/sizes/l

https://commons.wikimedia.org/wiki/File:Flocking.jpg
https://pixabay.com/en/cathedral-square-ulm-human-crowds-592756/
https://www.flickr.com/photos/31363949@N02/6707219407/sizes/l
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• In Chapter 3 we investigate the possibility of defining sparse control strategies in

high dimension on the basis of the information obtained from the random projection

of the original system to lower dimension. Our aim is to validate the following

Meta-theorem. For high dimensional multiagent systems, governed by smooth non-

linearities depending on mutual distances between the agents, one can construct low-

dimensional representations of the dynamical system, which allow the computation

of nearly optimal control strategies in high dimension with overwhelming confidence.

The above statement implies that, for a dimensionality d large, the curse of dimen-

sionality for the implementation of efficient controls for multiagent systems can be

circumvented. Since control strategies are in general highly dependent on the spe-

cific dynamical system to which they are applied, we shall prove a specific instance

of the above statement, which nonetheless tackles all the relevant technical issues

potentially lurking in other situations: we shall focus on the sparse control of the

Cucker-Smale model, for which we have already available the tools developed in

Chapter 2. Numerical tests corroborate the theoretical findings. The results shown

here were first obtained in [36].

• Chapter 4 provides two complexity reduction techniques in the case that the number

of agents N makes the direct numerical treatment of multiagent systems unfeasible.

The results on the mean-field limit and the grazing interaction limit are personal

revisions of well-known work [46, 95, 151] and are reported for the sake of complete-

ness, being them central in the subsequent chapters. Several sections of the papers

[5, 34, 38] provided the basis for this chapter.

• In Chapter 5 we show how to infer the interaction mechanism of a dynamical sys-

tem from the observation of its evolution. By means of an approach that blends

together the mean-field limit and a Γ-convergence argument, we illustrate that we

can reconstruct with high accuracy the interaction functions of a large class of first-

order multiagent systems. Such learning problem is remarkably non-standard due

to the need to manipulate highly dependent dynamic data (the trajectories of the

agents) to perform the reconstruction of the function, see [83]. Possible extensions

to second-order models are also discussed. These results were collected in [34].

• In Chapter 6 we study dimensionality reduction techniques for direct and indirect op-

timal control problems for multiagent systems. Roughly speaking, when the number

of agents to control N becomes very large, to compute the optimal control strategy

we have to deal with a numerically intractable number of ODE constraints. One

way to circumvent the curse of dimensionality in this case is to compute the mean-

field limit PDE of the ODEs system and solve the optimal control problem with such

PDE as unique constraint, in place of the ODEs. However, in principle, it is not clear

whether the optimal control strategies we obtain with this procedure are related to

the ones of the original problem or not. In this chapter we prove such connection by

showing that, under certain regularity assumptions, the PDE-constrained optimal

control problem is the Γ-limit of the ODE constrained problems as the number of

agents N tends to ∞. First-order optimality conditions for the limit problem are

also derived. The chapter’s core is the paper [38] together with [103, 106].
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• We conclude the thesis with Chapter 7, which presents an indirect sparse control

strategy for the efficient evacuation of pedestrians from unknown environments under

limited visibility. We propose a model for pedestrians composed of an exploration

and an evacuation phase: being the exit visible only from specific locations, when

agents do not see it, they explore the environment with a random walk coupled with

topological alignment (in order to remain close to their nearest neighbors). Instead,

whenever they see the exit, they perform a sharp motion towards it. If left free to

evolve, pedestrians split into several subgroups, each determined to find the way

out, but evacuation is not guaranteed. The introduction of few invisible leaders (in

the sense that pedestrians do not recognize them as special), whose dynamics is the

result of an optimization procedure, is shown to significantly improve the evacuation

process. To reduce the computational effort of finding optimal strategies in the case

where the number of pedestrians is very large, we derive a mean-field equation for the

pedestrians using the grazing interaction limit procedure. Numerical simulations and

a real experiment with people show the efficiency of the proposed control technique.

This chapter is based on [5].

In accordance with the latest regulations concerning the authorship of the results obtained

in Ph.D. theses, I hereby declare that the content of the following sections are original

and were obtained thanks to my contribution (the symbol – means that also sections in

between are considered): 1.3–1.6, 2.2–2.6, 3.2–3.7, 4.4.2, 4.4.3, 5.1.5, 5.4, 5.5, 6.2–6.4, 7.1–

7.4, 7.7. The remaining sections are re-elaborated versions of results that can be found in

the literature and that are necessary to make the thesis self-contained.

The pictures shown in this Introduction were licensed under a Creative Commons license,

as can be verified by following the related web addresses. No changes were made to them

and no authorship is claimed. The pictures in the rest of the work were either autonomously

produced or the outcome of the scientific partnership with the co-authors of the papers

[5, 32–34, 36, 37].



CHAPTER 1

Consensus emergence and

decentralized feedback control

We start from the analysis of general properties of alignment models, i.e., systems where

imitation is the dominant feedback mechanism. Such systems are ubiquitous in nature since

several species are able to interpret and instinctively reproduce certain manoeuvres that

they perceive (e.g., fleeing from a danger, searching for food, performing defense tactics,

etc.), see [92]. We first derive sufficient conditions for their self-organization, which shows

that only a certain balance between the strength of the alignment forces and the initial

coherence of the group is able to guarantee the formation of a consensus, interpreted in

this case as a state where all agents are aligned. We then introduce decentralized feedback

controls to facilitate the emergence of such patterns. The results reported in this chapter

will make clear how prone to lose their initial coherence these systems are, and how much

an external control to help them organize is needed.

1.1 Self-organization in dynamical communication networks

In many natural and social phenomena, a group of agents faces the problem of coordinating

on the basis of mutual communication. The modeling of such scenarios has to comply

with the nature of protocols and customs governing the interaction among agents, limited

or unreliable information transmission, and changing interaction topologies. Despite the

above complications, networks of agents with oriented information flow under possible link

failure or creation can be effectively represented by means of directed graphs with edges

possibly switching in time.

A directed graph G on a set of nodes A1, . . . , AN is any subset of {A1, . . . , AN}2. Each

pair (A,B) ∈ G is called an edge from A to B, and a directed path from A to B in G is a

sequence of edges (A,Ai1), (Ai1 , Ai2), . . . , (Aik , B) ∈ G. The graph G is said to be strongly
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connected if for any pair A,B of distinct nodes there is a directed path from A to B and

a directed path from B to A.

When studying under which conditions networks of agents are able to self-organize, it is

usually not enough to know if two nodes are connected: the strength of the interaction

between them also matters. Hence, given a system of N ∈ N agents, for each pair of

agents i, j = 1, . . . , N we denote by gij(t) ∈ R+ the weight of the link connecting i with

j: clearly, if gij(t) = 0, i is not connected to j at time t. The value gij(t) can be seen

as the relative intensity of the information exchange flowing from agent i to agent j at

time t ≥ 0. We shall assume for the moment that each weight function gij : R+ → R+ is

piecewise continuous.

The weights gij(·) naturally induce a directed graph structure on the set of agents: we

define, for any ε ≥ 0 and t ≥ 0, the graph Gε(t) as

Gε(t)
∆
=
{

(i, j) ∈ {1, . . . , N}2 : gij(t) > ε
}
.

The adjacency matrix G0(t) is the set of pairs (i, j) for which the communication channel

from i to j is active at time t.

As a prototypical example of a multiagent system and to quantitatively illustrate the

concept of self-organization, we introduce alignment models: if we denote by {v1, . . . , vN} ⊂
Rd the states of the N agents of our systems, then the instantaneous evolution of the state

vi(t) of agent i at time t is given by

v̇i(t) =
N∑
j=1

gij(t)(vj(t)− vi(t)), i = 1, . . . , N. (1.1)

The meaning of the above system of differential equations is the following: at each instant

t ≥ 0, the state vi(t) of agent i tends to the state vj(t) of agent j with a speed that depends

on the strength of the information exchange gij(t). Since (1.1) is a system of ODEs with

possibly discontinuous coefficients, we need for it a proper notion of solution.

Definition 1.1. Let {Ik}k∈N denote a countable family of open intervals such that all the

functions gij are continuous on every Ik and ∪k∈NIk = R+. Given v0 = (v0
1, . . . , v

0
N ) ∈ RdN ,

we say that the curve v = (v1, . . . , vN ) : R+ → RdN is a solution of (1.1) with initial datum

v0 if

(i) v(0) = v0;

(ii) for every i = 1, . . . , N and k ∈ N, vi satisfies (1.1) on Ik.

The notion of self-organization that we are considering for system (1.1) is that of consensus

or flocking, which is the situation where the state variables of the agents asymptotically

coincide.

Definition 1.2 (Consensus for system (1.1)). Let v : R+ → RdN denote a solution of (1.1)

with initial datum v0. We say that v(·) converges to consensus if there exists a v∞ ∈ Rd
such that, for every i = 1, . . . , N , it holds

lim
t→+∞

‖vi(t)− v∞‖`d2 = 0.
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The value v∞ is called the consensus state.

In the definition above, ‖ · ‖`d2 stands for the Euclidean norm on Rd. The subscript `d2 shall

often be omitted whenever clear from context.

Roughly speaking, a system of agents satisfying (1.1) converges to consensus regardless of

the initial condition v0 provided that the underlying communication graph is “sufficiently

connected”. With this we mean that each node must possess, over some dense collection of

time intervals, a strong enough communication path to every other node in the network.

This intuitive idea is made precise in the following result, whose proof can be found in

[121]. A similar answer for discrete-time system was also provided in [145]

Theorem 1.3. Let v : R+ → RdN be a solution of (1.1) with initial datum v0. Suppose

that there exists an ε > 0 and a strongly connected directed graph G on the set of agents

on which the system spends an infinite amount of time, i.e.,

L1 ({t ≥ 0 : Gε(t) = G}) = +∞.

Then v(·) converges to consensus with consensus state v∞ belonging to the convex hull of

{v0
1, . . . , v

0
N}.

The above result also says that, without further hypotheses on the interaction weights gij ,

the value of v∞ is rather an emergent property of the global dynamics of system (1.1)

than a mere function of the initial datum v0. However, it is relatively simple to identify

assumptions on gij for which the latter is true. For example, from a trivial computation

follows

1

N

N∑
i=1

v̇i(t) =
1

N

N∑
j=1

(
N∑
i=1

gij(t)−
N∑
i=1

gji(t)

)
vj(t).

Hence, if for every t ≥ 0 the weight matrix (gij(t))
N
i,j=1 has the property that

∑N
i=1 gij(t) =∑N

i=1 gji(t) for every j = 1, . . . , N , then the average

v(t)
∆
=

1

N

N∑
i=1

vi(t) (1.2)

is an invariant of the dynamics. This implies that

v∞ =
1

N

N∑
i=1

v0
i

holds, i.e., the consensus state is only a function of the initial datum v0.

1.2 Consensus emergence in alignment models

In this section we shall see that the assumptions of Theorem 1.3 can actually be very

restrictive and seldom met when dealing with specific instances of alignment models.
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1.2.1 Some classic examples of alignment models

A general principle in opinion formation is the conformity bias, i.e., agents weight more

opinions that already conform to their beliefs. This can, actually, be extended to coordi-

nation in general, since intuitively it is easier to coordinate with “near” agents than “far

away” ones. Formally, this is equivalent to asking that the weights gij are a nonincreasing

function of the distance between the states of the agents, i.e.,

gij(t) = a(‖vi(t)− vj(t)‖), (1.3)

where a : R+ → R+ is a nonincreasing interaction kernel. Notice that (1.3) trivially implies

the invariance of the mean v (given by (1.2)), and that v∞ = v(0), if it exists.

Several classic opinion formation models combine conformity bias with alignment. In the

DW model, see [180], two random agents i and j update their opinions vi and vj to

1/2(vi + vj), provided they originally satisfy ‖vi − vj‖ ≤ R, where R > 0 is fixed a

priori. Instead, in the popular bounded confidence model of Hegselmann and Krause [122],

opinions evolves according to the dynamics (1.1) where the weights have the form (1.3)

with

a(r) = χ[0,R](r)
∆
=

{
1 if r ∈ [0, R],

0 otherwise,

for some fixed confidence radius R > 0. The dynamics is thus given by the system of ODEs

v̇i(t) =
N∑
j=1

χ[0,R](‖vi(t)− vj(t)‖)(vj(t)− vi(t)), i = 1, . . . , N. (1.4)

It is straightforward to design an instance of this model not fulfilling the hypothesis of

Theorem 1.3. Indeed, consider a group of N = 2 agents in dimension d = 1 with initial

conditions v1(0) = −R and v2(0) = R. Since g12(0) = g21(0) = 0, it follows that Gε(t) = ∅
for all t ≥ 0 and for all ε ≥ 0.

Second-order models are necessary whenever we want to describe the dynamics of physical

agents, like flocks of birds, herds of quadrupeds, schools of fish, and colonies of bacteria,

where individuals are considered aligned whenever they move in the same direction, re-

gardless of their position. Since in such cases it is necessary to perceive the velocities of

the others in order to align, to describe the motion of the agents we need the pair position-

velocity (x, v), but this time only the velocity variable v is the consensus parameter.

One of the first of such models, named Vicsek’s model in honor of one of its fathers, was

introduced in [173]. Very much in the spirit of (1.4), it postulates that the evolution of

the spatial coordinate xi and the orientation θi ∈ [0, 2π] in the plane R2 of the i-th agent

follow the law of motion given by
ẋi(t) = vi(t) = v̂

(
cos(θi(t))

sin(θi(t))

)
,

θ̇i(t) =
1

|ΛR(t, i)|

N∑
j=1

χ[0,R] (‖xi(t)− xj(t)‖) (θj(t)− θi(t)) ,
i = 1, . . . , N, (1.5)
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where v̂ > 0 denotes the modulus of vi(t), ΛR(t, i)
∆
= {j ∈ {1, . . . , N} : ‖xi(t)− xj(t)‖ ≤ R}

and |ΛR(t, i)| stands for its cardinality.

In this model, the orientation of the consensus parameter vi is adjusted with respect to

the other agents according to a weighted average of the differences θj − θi. The influence

of the j-th agent on the dynamics of the i-th one is a function of the (physical or social)

distance between the two agents: if this distance is less than R, the agents interact by

appearing in the computation of the respective future orientation.

t
0 30

w

-1

-0.5

0

0.5

1

Figure 1.1: On the left: a typical evolution of the Hegselmann-Krause model. On the right:
mill patterns in the Vicsek model. (Kind courtesy of G. Albi)

In [81], the authors proposed a possible extension of system (1.5) to dimensions d > 2 as

follows
ẋi(t) = vi(t),

v̇i(t) =
1

|ΛR(t, i)|

N∑
j=1

χ[0,R] (‖xi(t)− xj(t)‖) (vj(t)− vi(t)) ,
i = 1, . . . , N.

The substitution of the function χ[0,R] with a strictly positive kernel a : R+ → R+ let

us drop the highly irregular and nonsymmetric normalizing factor |ΛR(t, i)| in favor of a

simple N , and leads to the system
ẋi(t) = vi(t),

v̇i(t) =
1

N

N∑
j=1

a (‖xi(t)− xj(t)‖) (vj(t)− vi(t)) ,
i = 1, . . . , N. (1.6)

Notice that the equation governing the evolution of vi has the same form as (1.1), and

since now the weights gij are symmetric (i.e., gij = gji for all i, j = 1, . . . , N) then v is a

conserved quantity.

An example of a system of the form (1.6) is the influential model of Cucker and Smale,

introduced in [81], in which the function a is

a(r)
∆
=

H

(σ2 + r2)β
, (1.7)
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where H > 0, σ > 0, and β ≥ 0 are constants accounting for the social properties of

the group. Systems like (1.6) are usually referred to as Cucker-Smale systems due to the

influence of their work, as can be witnessed by the wealth of literature focusing on their

model, see for instance [4, 53, 87, 115, 153, 166].

In the rest of the chapter, we focus on consensus emergence for system (1.6). We shall

consider a kernel a : R+ → R+ which is decreasing, strictly positive, bounded and Lipschitz

continuous.

As already noticed, in second-order models alignment means that all agents move with

the same velocity, but not necessarily are in the same position. Therefore, Definition 1.2

of consensus applies here on the vi variables only.

Definition 1.4 (Consensus for system (1.6)). We say that a solution

(x, v) = (x1, . . . , xN , v1, . . . , vN ) : R+ → R2dN

of system (1.6) tends to consensus if the consensus parameter vectors vi tend to the mean

v, i.e.,

lim
t→+∞

‖vi(t)− v(t)‖ = 0 for every i = 1, . . . , N.

Figure 1.2: Consensus behavior of a Cucker-Smale system. On the left: agents align with
the mean velocity. On the right: agents fail to reach consensus.

The following result is an easy corollary of Theorem 1.3.

Corollary 1.5. Let (x(·), v(·)) be a solution of system (1.6), where the interaction kernel

a is decreasing and strictly positive. Suppose that there exists R > 0 for which it holds

L1 ({t ≥ 0 : ‖xi(t)− xj(t)‖ ≤ R for all i, j = 1, . . . , N}) = +∞.

Then (x(·), v(·)) converges to consensus.

Proof. Since a is decreasing and strictly positive, from the initial assumptions follows

gij(t) =
1

N
a(‖xi(t)− xj(t)‖) ≥

a(R)

N
> 0,
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for every t ≥ 0 for which ‖xi(t)− xj(t)‖ ≤ R holds for every i, j = 1, . . . , N . Therefore,

the condition ‖xi(t)− xj(t)‖ ≤ R for every i, j = 1, . . . , N implies

Ga(R)
N

(t) = {1, . . . , N}2,

which yields

L1
({
t ≥ 0 : Ga(R)

N

(t) = {1, . . . , N}2
})

= +∞,

The statement then follows from Theorem 1.3 for the choice ε = a(R)/N .

Unfortunately, the result above has the serious flaw that it cannot be invoked directly to

infer convergence to consensus, since establishing a uniform bound in time for the distances

of the agents is very difficult, even for smooth kernels like (1.7). Intuitively, consider the

case where the interaction strength is too weak and the agents too dispersed in space

to let the velocities vi align. In this case, nothing prevents the distances ‖xi − xj‖ to

grow indefinitely, violating the hypothesis of Corollary 1.5. Hence, in order to obtain more

satisfactory consensus results, we need to follow approaches that take into account the

extra information at our disposal, which are the strength of the interaction and the initial

configuration of the system.

Originally, this problem was studied in [81, 82] borrowing several tools from Spectral

Graph Theory, see as a reference [61]. Indeed, system (1.6) can be rewritten in the following

compact form {
ẋ(t) = v(t),

v̇(t) = L(x(t))v(t),
(1.8)

where L(x(t)) is the Laplacian1 of the matrix (a (‖xi(t)− xj(t)‖) /N)Ni,j=1, which is a

function of x(t). Being the Laplacian of a nonnegative, symmetric matrix, L(x(t)) encodes

plenty of information regarding the adjacency matrix G0(t) of the system, see [144]. In

particular, the second smallest eigenvalue λ2(t) of L(x(t)), called the Fiedler’s number of

G0(t) is deeply linked with consensus emergence: provided that a sufficiently strong bound

from below of λ2(t) is available, the system converges to consensus.

To establish under which conditions we have convergence to consensus, we shall follow

a different approach. The advantage of it is that it can be employed also to study the

issue of the controllability of several multiagent systems (see Chapter 2), as well as their

dimensionality reduction (see Chapter 3).

1.2.2 The consensus region

A natural strategy to improve Corollary 1.5 would be to look for quantities which are

invariant with respect to v, since it is conserved in systems like (1.6).

Definition 1.6. The symmetric bilinear form B : RdN × RdN → R is defined, for any

1Given a real N ×N matrix A = (aij)
N
i,j=1 and v ∈ RdN we denote by Av the action of A on RdN by

mapping v to (ai1v1 + · · ·+ aiNvN )Ni=1. Given a nonnegative symmetric N ×N matrix A = (aij)
N
i,j=1, the

Laplacian L of A is defined by L = D −A, with D = diag(d1, . . . , dN ) and dk =
∑N
j=1 akj .
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v, w ∈ RdN , as

B(v, w)
∆
=

1

2N2

N∑
i=1

N∑
j=1

(vi − vj) · (wi − wj),

where · denotes the usual scalar product on Rd.

Remark 1.7. It is trivial to prove that

B(v, w) =
1

N

N∑
i=1

(vi · wi)− v · w, (1.9)

where v stands for the average of the elements of the vector v = (v1, . . . , vN ) given by

(1.2). From this representation of B follows easily that the two spaces

Vf
∆
=
{
v ∈ RdN : v1 = . . . = vN

}
,

V⊥
∆
=

{
v ∈ RdN :

N∑
i=1

vi = 0

}
,

are perpendicular with respect to the scalar product B, i.e., RdN = Vf ⊕ V⊥. This means

that every v ∈ RdN can be written uniquely as v = vf + v⊥, where vf ∈ Vf and v⊥ ∈ V⊥.

A closer inspection reveals that for every i = 1, . . . , N it holds

vfi = v and v⊥i = vi − v.

Notice that, since v⊥ ∈ V⊥, for any vector w ∈ Rd it holds

N∑
i=1

(v⊥i · w) =

(
N∑
i=1

v⊥i

)
· w = 0. (1.10)

Since for every v, w ∈ RdN we have B(vf , w) = 0 = B(v, wf ), it holds

B(v, w) = B(v⊥, w) = B(v, w⊥) = B(v⊥, w⊥).

This means that B distinguishes two vectors modulo their projection on Vf . Moreover,

from (1.9) immediately follows that B restricted to V⊥×V⊥ coincides, up to a factor 1/N ,

with the usual scalar product on RdN .

Remark 1.8 (Consensus manifold). Notice that whenever the initial datum (x0, v0) be-

longs to the set RdN × Vf , the right-hand size of v̇i in (1.6) is 0, hence the equality

v1(t) = . . . = vN (t) is satisfied for all t ≥ 0 and the system is already in consensus. For

this reason, the set RdN × Vf is called the consensus manifold.

The bilinear formB can be used to characterize consensus emergence for solutions (x(·), v(·))
of system (1.6) by setting

X(t)
∆
= B(x(t), x(t)) =

1

2N2

N∑
i=1

N∑
j=1

‖xi(t)− xj(t)‖2 , (1.11)
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V (t)
∆
= B(v(t), v(t)) =

1

2N2

N∑
i=1

N∑
j=1

‖vi(t)− vj(t)‖2 . (1.12)

The functionals X and V provide a description of consensus by measuring the spread, both

in positions and velocities, of the trajectories of the solution (x(·), v(·)), as the following

result shows. In Corollary 1.19 we shall see that actually V is a Lyapunov functional for

system (1.6)

Proposition 1.9. The following statements are equivalent:

(i) limt→+∞ ‖vi(t)− v(t)‖ = 0 for every i = 1, . . . , N ;

(ii) limt→+∞ v
⊥
i (t) = 0 for every i = 1, . . . , N ;

(iii) limt→+∞ V (t) = 0.

Proof. The only implication which is not immediate is (ii)⇒(iii), for which it suffices to

notice that it holds

V (t) =
1

N

N∑
i=1

∥∥∥v⊥i (t)
∥∥∥2
.

This concludes the proof.

Remark 1.10. From Proposition 1.9 follows that, in order to establish that a solution

of (1.6) tends to consensus, a possible strategy would be to prove that the Lyapunov

functional V has a sufficiently strong decay. For this purpose, the following computation

shall be often exploited: given a matrix ω ∈ RN×N which is symmetric and with positive

entries, i.e., for every i, j = 1, . . . , N it holds

ωij = ωji and ωij > 0,

for any v ∈ RdN we have

1

N2

N∑
i=1

N∑
j=1

ωij(vj − vi) · vi =
1

2N2

(
N∑
i=1

N∑
j=1

ωij(vj − vi) · vi +
N∑
j=1

N∑
i=1

ωji(vi − vj) · vj

)

= − 1

2N2

N∑
j=1

N∑
i=1

ωij ‖vi − vj‖2

≤ − min
1≤i,j≤N

ωij
1

N

N∑
i=1

∥∥∥v⊥i ∥∥∥2
. (1.13)

A sufficient condition for consensus emergence for solutions of system (1.6) is provided by

the following

Theorem 1.11 ([114, Theorem 3.1]). Let (x0, v0) ∈ RdN × RdN and set X0
∆
= B(x0, x0)

and V0
∆
= B(v0, v0). If the following inequality is satisfied∫ +∞

√
X0

a(
√

2Nr) dr ≥
√
V0, (1.14)
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then the solution of (1.6) with initial datum (x0, v0) tends to consensus.

We shall prove this result in Section 1.6, although stated in a slightly different fashion (see

Theorem 1.30). The meaning of (1.14) is that, as soon as there is a good balance between

X0, V0 and the kernel a (i.e., the agents are neither too dispersed nor too unaligned with

respect to the strength of the mutual interaction), then the system tends to consensus

autonomously.

Definition 1.12 (Consensus region). We call consensus region the set of points (X0, V0) ∈
RdN × RdN satisfying (1.14).

The size of the consensus region gives an estimate of how large the basin of attraction of

the consensus manifold RdN ×Vf is. This estimate is sharp in some cases, as the following

example shows.

Example 1.13 ([81, Proposition 5]). Consider N = 2 agents in dimension d = 1 subject

to system (1.6) with interaction kernel given by (1.7) with H = 1/2, σ = 1, and β = 1. If

we denote by (x1(·), v1(·)) and (x2(·), v2(·)) the trajectories of the two agents, it is easy to

show that the evolution of the relative main state x(t)
∆
= x1(t)− x2(t) and of the relative

consensus state v(t)
∆
= v1(t)− v2(t) is given for every t ≥ 0 by

ẋ(t) = v(t),

v̇(t) = − v(t)

1 + x(t)2
,

(1.15)

with initial condition x(0) = x0 and v(0) = v0 (without loss of generality, we may assume

that x0, v0 > 0). An explicit solution of the above system can be easily derived by means

of direct integration:

v(t)− v0 = − arctanx(t) + arctanx0.

Condition (1.14) in this case reads

π

2
− arctanx0 ≥ v0.

Hence, suppose (1.14) is violated, i.e., arctanx0 + v0 > π/2. This means arctanx0 + v0 ≥
π/2 + ε for some ε > 0, which implies

|v(t)| = | − arctanx(t) + arctanx0 + v0| ≥
∣∣∣− arctanx(t) +

π

2
+ ε
∣∣∣ > ε

for every t ≥ 0. Therefore, the solution of system (1.15) with initial datum (x0, v0) satis-

fying arctanx0 + v0 > π/2 does not converge to consensus, since otherwise we would have

v(t)→ 0 for t→ +∞.

Remark 1.14. Notice that, if
∫ +∞
δ a(r)dr diverges for every δ ≥ 0, then the consensus

region coincides with the entire space RdN×RdN . In other words, in this case the interaction

force between the agents is so strong that the system will reach consensus no matter what

the initial conditions are.
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1.3 The effect of perturbations on consensus emergence

An immediate way to enhance the alignment capabilities of systems like (1.6) consists in

adding a feedback term penalizing the distance of each agent’s velocity from the average

one, i.e.,
ẋi(t) = vi(t),

v̇i(t) =
1

N

N∑
j=1

a (‖xi(t)− xj(t)‖) (vj(t)− vi(t)) + γ(v(t)− vi(t)),
(1.16)

where γ is a prescribed nonnegative constant, modeling the strength of the additional

alignment term.

This approach to the enforcement of consensus is a particular instance of what in the

literature is known as decentralized control strategy, which has been thoroughly studied

especially for its application in the self-organization of unmanned aerial vehicles (UAVs)

[99], congestion control in communication networks [150], and distributed sensor newtorks

[71]. We also refer to [168] for the stability analysis of a decentralized coordination method

for dynamical systems with switching underlying communication network.

As system (1.16) can be rewritten as (1.6) with the interaction kernel a(·) + γ replacing

a(·), by Theorem 1.11 and Remark 1.14 each solution of (1.16) tends to consensus.

However, the apparently innocent fix of adding the extra term above has actually a huge

impact on the interpretation of the model: as pointed out in [49], this approach requires

that each agent must possess at every instant a perfect information of the whole system,

since it has to correctly compute the mean velocity of the group v in order to compute

its trajectory. This condition is seldom met in real-life situations, where it is usually only

possible to ask that each agent computes an approximated mean velocity vector vi, instead

of the true v. These considerations lead us to the model
ẋi(t) = vi(t),

v̇i(t) =
1

N

N∑
j=1

a (‖xi(t)− xj(t)‖) (vj(t)− vi(t)) + γ(vi(t)− vi(t)).
(1.17)

In studying under which conditions the solutions of system (1.17) tend to consensus,

it is often desirable to express the approximated feedback as a combination of a term

consisting on a true information feedback, i.e., a feedback based on the real average v, and

a perturbation term, which models the deviation of vi from v. To this end, we rewrite

system (1.17) in the following form:
ẋi(t) = vi(t),

v̇i(t) =
1

N

N∑
j=1

a (‖xi(t)− xj(t)‖) (vj(t)− vi(t)) + α(t)(v(t)− vi(t)) + β(t)∆i(t),

(1.18)

where α(·) and β(·) are two nonnegative, piecewise continuous functions, and ∆i(·) is
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the (possibly only measurable) deviation acting on the estimate of v by agent i. There-

fore, solutions in this context have to be understood in terms of weak solutions in the

Carathéodory sense, see [100]. For a quick reference, see Appendix B.

Remark 1.15. In what follows, we will not be interested in the well-posedness of system

(1.18), but rather in finding assumptions on the functions a, α, β, and ∆i for which we can

guarantee its asymptotic convergence to consensus. To identify the additional conditions on

a, α, β and ∆i for which existence and/or uniqueness of solutions on a finite time horizon

[0, T ] can be established for system (1.18), we need to check under which hypotheses we

have that, for every i = 1, . . . , N , the function

gi(t, x, v) =
1

N

N∑
j=1

a (‖xi − xj‖) (vj − vi) + α(t)

 1

N

N∑
j=1

vj − vi

+ β(t)∆i(t)

satisfies the hypotheses of Theorems B.1 and/or B.3. In case they are both satisfied for

every T ≥ 0, Remark B.4 tells us how we can obtain a unique solution of the system

defined on the entire half line R+.

System (1.18) provides the advantage of encompassing all the previously introduced mod-

els, as can be readily seen:

• if α = β ≡ γ and ∆i = vi − v, or α = β ≡ 0, then we recover system (1.6),

• the choices α ≡ γ, ∆i ≡ 0 (or equivalently β ≡ 0) yield system (1.16),

• if α = β ≡ γ and ∆i = vi − v we obtain system (1.17).

The introduction of the perturbation term in system (1.18) may deeply modify the nature

of the original model: for instance, an immediate consequence is that the mean velocity of

the system is, in general, no longer a conserved quantity.

Proposition 1.16. For system (1.18), with perturbations given by the vector-valued func-

tion ∆(·) = (∆1(·), . . . ,∆N (·)), for every t ≥ 0 it holds

d

dt
v(t) = β(t)∆(t).

Proof. A trivial computation shows that for every t ≥ 0 it holds

d

dt
v(t) =

1

N

N∑
i=1

v̇i(t)

=
1

N

N∑
i=1

 1

N

N∑
j=1

a (‖xi(t)− xj(t)‖) (vj(t)− vi(t)) + α(t)(v(t)− vi(t)) + β(t)∆i(t)


=

1

N2

N∑
i=1

N∑
j=1

a (‖xi(t)− xj(t)‖) (vj(t)− vi(t))︸ ︷︷ ︸
=0, by simmetry.

+
α(t)

N

N∑
i=1

v⊥i (t)︸ ︷︷ ︸
=0

+
β(t)

N

N∑
i=1

∆i(t)
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= β(t)∆(t).

This proves the statement.

Remark 1.17. As we have already pointed out, it is possible to recover system (1.6) by

setting ∆i = vi−v, whereas we can recover system (1.16) for the choice ∆i ≡ 0. Note that

in both cases we have ∆(t) = 0 for every t ≥ 0, therefore the mean velocity is conserved

both in systems (1.6) and (1.16).

We also highlight the fact that v is not conserved even in the case that for every t ≥ 0,

and for every i = 1, . . . , N we have ∆i(t) = w, where w ∈ Rd\{0}, i.e., the case in which

all agents make the same mistake in evaluating the mean velocity.

1.4 General results for consensus stabilization under per-

turbations

As already noticed in Remark 1.10, a possible strategy for studying under which assump-

tions the solutions of system (1.6) tend to consensus is to obtain an estimate of the decay of

the Lyapunov functional V . We shall follow a similar approach in order to study consensus

emergence for system (1.18). We begin by proving the following lemma.

Lemma 1.18. Let (x(·), v(·)) be a solution of system (1.18). For every t ≥ 0 it holds

d

dt
V (t) ≤ −2a

(√
2NX(t)

)
V (t)− 2α(t)V (t) +

2β(t)

N

N∑
i=1

∆i(t) · v⊥i (t). (1.19)

Proof. Differentiating V for every t ≥ 0, we have

d

dt
V (t) =

d

dt

1

N

N∑
i=1

∥∥∥v⊥i (t)
∥∥∥2

=
2

N

N∑
i=1

v̇⊥i (t) · v⊥i (t)

=
2

N

N∑
i=1

v̇i(t) · v⊥i (t)− 2

N

N∑
i=1

v̇(t) · v⊥i (t),

which, inserting the expression for v̇i(t), yields

d

dt
V (t) =

2

N2

N∑
i=1

N∑
j=1

a (‖xi(t)− xj(t)‖) (vj(t)− vi(t)) · v⊥i (t)︸ ︷︷ ︸
3

+

+
2α(t)

N

N∑
i=1

(v(t)− vi(t)) · v⊥i (t) +
2β(t)

N

N∑
i=1

∆i(t) · v⊥i (t)− 2

N

N∑
i=1

v̇(t) · v⊥i (t).

(1.20)
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Since it holds

‖xi(t)− xj(t)‖ =
∥∥∥x⊥i (t)− x⊥j (t)

∥∥∥
≤
∥∥∥x⊥i (t)

∥∥∥+
∥∥∥x⊥j (t)

∥∥∥
≤
√

2

(
N∑
k=1

∥∥∥x⊥k (t)
∥∥∥)1/2

≤
√

2NX(t),

the fact that a is nonincreasing and inequality (1.13) yield

3 ≤ −2a
(√

2NX(t)
)
V (t). (1.21)

Using Proposition 1.16, we can rewrite the remaining term as

d

dt
V (t)−3 = −2α(t)

N

N∑
i=1

∥∥∥v⊥i (t)
∥∥∥2

+
2β(t)

N

N∑
i=1

∆i(t) · v⊥i (t)− 2β(t)

N

N∑
i=1

∆(t) · v⊥i (t)︸ ︷︷ ︸
=0

= −2α(t)V (t) +
2β(t)

N

N∑
i=1

∆i(t) · v⊥i (t).

(1.22)

Plugging (1.21) and (1.22) inside (1.20) concludes the proof.

The following result is a trivial consequence of Lemma 1.18.

Corollary 1.19. Let (x(·), v(·)) be a solution of system (1.6). Then V is decreasing.

Proof. The choice α = β ≡ 0 in Lemma 1.18 yields the decay estimate

d

dt
V (t) ≤ −2a

(√
2NX(t)

)
V (t). (1.23)

Assume V (0) > 0, otherwise we are already in consensus. By the continuity of the dynam-

ics, there exists a T > 0 for which V (t) > 0 holds for every t ∈ [0, T ]. Directly integrating

(1.23) gives

V (t) ≤ V (0)e
−2
∫ t
0 a
(√

2NX(s)
)
ds

for any t ∈ [0, T ]. Actually this estimate holds for any t ≥ 0 since it is trivially satisfied

whenever V (t) = 0. Since a is strictly positive, it then follows that V is decreasing.

In what follows, since we are interested in the case where ∆i plays an active role in the

dynamics, we assume β(t) > 0 for all t ≥ 0. From Lemma 1.18 we obtain the following

Theorem 1.20. Let (x(·), v(·)) be a solution of system (1.18), and suppose that there
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exists a T ≥ 0 such that for every t ≥ T ,

N∑
i=1

∆i(t) · v⊥i (t) ≤ φ(t)

N∑
i=1

∥∥∥v⊥i (t)
∥∥∥2

(1.24)

for some function φ : [T,+∞)→ [0, `], where

` <
mint≥T α(t)

maxt≥T β(t)
. (1.25)

Then (x(·), v(·)) tends to consensus.

Proof. Under the assumption (1.24), for every t ≥ T the upper bound in (1.19) can be

simplified to

d

dt
V (t) ≤ −2α(t)V (t) +

2β(t)

N

N∑
i=1

∆i(t) · v⊥i (t)

≤ −2α(t)V (t) +
2β(t)

N
φ(t)

N∑
i=1

∥∥∥v⊥i (t)
∥∥∥2

= −2α(t)V (t) + 2β(t)φ(t)V (t)

≤ 2β(t)

(
`− α(t)

β(t)

)
V (t).

Integrating between T and t (where t ≥ T ) we get

V (t) ≤ V (T )e
2
∫ t
T β(s)

(
`−α(s)

β(s)

)
ds
,

and as the factor `− α(s)/β(s) is negative while β is nonnegative, V approaches 0 expo-

nentially fast.

Corollary 1.21. If there exists T ≥ 0 such that ∆⊥i (t) = 0 for every t ≥ T and for every

1 ≤ i ≤ N , then any solution of system (1.18) tends to consensus.

Proof. Noting that ∆⊥i = 0 implies ∆i = ∆, we have, by (1.10)

N∑
i=1

∆i(t) · v⊥i (t) =
N∑
i=1

∆ · v⊥i (t) = 0.

Hence, we can apply Theorem 1.20 with φ(t) = 0 for every t ≥ T to obtain the result.

Remark 1.22. A trivial implication of Corollary 1.21 is that any solution of system (1.16)

tends to consensus (this was already a consequence of Theorem 1.11), but has moreover a

rather nontrivial implication: also any solution of systems subjected to deviated uniform

control, i.e., systems like (1.18) where ∆i(t) = ∆(t) for every i = 1, . . . , N and for every
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t ≥ 0, tends to consensus, because it holds

∆⊥i (t) = ∆i(t)−
1

N

N∑
j=1

∆j(t) = ∆(t)−∆(t) = 0

for every i = 1, . . . , N and for every t ≥ 0, therefore Corollary 1.21 applies. This means that

systems of this kind converge to consensus even if the agents have an incorrect knowledge

of the mean velocity, provided they all make the same mistake.

A final consequence of the previous results is the following corollary, which provides an

upper bound for tolerable perturbations under which consensus emergence can be uncon-

ditionally guaranteed.

Corollary 1.23. For every i = 1, . . . , N , let εi : R+ → [0, `] for ` > 0 as in (1.25). If there

exists T ≥ 0 such that ‖∆i(t)‖ ≤ εi(t)
∥∥v⊥i (t)

∥∥ for every t ≥ T and for every i = 1, . . . , N ,

then any solution of system (1.18) tends to consensus.

Proof. By using the Cauchy-Schwarz inequality we have

N∑
i=1

∆i(t) · v⊥i (t) ≤
N∑
i=1

εi(t)
∥∥∥v⊥i (t)

∥∥∥2

≤ `
N∑
i=1

∥∥∥v⊥i (t)
∥∥∥2
.

The conclusion follows by taking φ(t) = ` for every t ≥ T in Theorem 1.20.

The result above shows that, provided that the magnitude of the perturbation is smaller

than the one of the deviation of the agent’s velocity from the mean, then convergence

to consensus is obtained unconditionally with respect to the initial condition. This is the

case of local estimates of the average, as the largest error that an agent can make when

estimating the group average upon a subset of agents is precisely its own deviation from

the mean, v⊥i .

1.5 Perturbations as linear combinations of velocity devia-

tions

We begin this section by considering a simple case study, which is nevertheless relevant as

it addresses consensus stabilization based on a leader-following feedback.

Example 1.24. Let us use Lemma 1.18 to study the convergence to consensus of a system

like (1.17), where each agent computes its local mean velocity vi by taking into account

itself plus a single common agent (x1, v1), which in turn takes into account only itself by

computing v1 = v1. Formally, given two finite conjugate exponents p, q (i.e., two positive

real numbers satisfying 1/p+ 1/q = 1), we assume that for any i = 1, . . . , N it holds

vi(t) =
1

p
vi(t) +

1

q
v1(t) for every t ≥ 0.
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We shall prove that any solution of this system tends to consensus, no matter how small

the positive weight 1/q of v1 in vi is. We start by writing the system under the form (1.18),

with α(t) = β(t) = γ > 0 and

∆i(t) =
1

p
v⊥i (t) +

1

q
v⊥1 (t) for every t ≥ 0.

Hence, the perturbation term in the estimate (1.19) on the decay of V becomes

2γ

N

N∑
i=1

∆i(t) · v⊥i (t) =
2γ

N

N∑
i=1

1

p
(v⊥i (t) +

1

q
v⊥1 (t)) · v⊥i (t)

=
1

p

2γ

N

N∑
i=1

∥∥∥v⊥i (t)
∥∥∥2

+
1

q

2γ

N
v⊥1 (t) ·

N∑
i=1

v⊥i (t)︸ ︷︷ ︸
=0

=
2γ

p
V (t).

Lemma 1.18 let us bound the growth of V as

d

dt
V (t) ≤ 2γ

(
−1 +

1

p

)
V (t) = −2γ

q
V (t),

which ensures the exponential decay of the functional V for any q > 0.

Motivated by the latter example, we turn our attention to the study of systems like (1.18)

where the perturbation of the mean of the i-th agent has the specific form

∆i(t) =

N∑
j=1

ωij(t)v
⊥
j (t) for every t ≥ 0, (1.26)

for some measurable mapping ω : R+ → RN×N with the property ωij(t) > 0 for all

i, j = 1, . . . , N and t ≥ 0.

We shall see that the results obtained in Section 1.3 help us identify under which assump-

tions on the coefficients ωij we can infer unconditional convergence to consensus.

Theorem 1.25. Consider a system of the form (1.18), where ∆i is given as in (1.26).

Then, if for every t ≥ 0 and every i, j = 1, . . . , N we have ωij(t) = ωji(t), and we set

I(t)
∆
= min

1≤i,j≤N
ωij(t) and S(t)

∆
= max

1≤i≤N

N∑
j=1

ωij(t),

then the following estimate holds:

d

dt
V (t) ≤ −2a

(√
2NX(t)

)
V (t) + 2β(t)

(
S(t)−NI(t)− α(t)

β(t)

)
V (t). (1.27)

Therefore, if there exists a T ≥ 0 such that the quantity S(t) − NI(t) − α(t)
β(t) is bounded

from above by a constant C < 0 in [T,+∞), then any solution of the system tends to
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consensus.

Proof. Standard computations yield

N∑
i=1

∆i(t) · v⊥i (t) =
N∑
i=1

N∑
j=1

ωij(t)v
⊥
j (t) · v⊥i (t)

=

N∑
i=1

N∑
j=1

ωij(t)(v
⊥
j (t)− v⊥i (t)) · v⊥i (t) +

N∑
i=1

 N∑
j=1

ωij(t)

∥∥∥v⊥i (t)
∥∥∥2

= N2

− 1

2N2

N∑
i=1

N∑
j=1

ωij(t) ‖vj(t)− vi(t)‖2
+

N∑
i=1

 N∑
j=1

ωij(t)

∥∥∥v⊥i (t)
∥∥∥2

≤ N (−NI(t) + S(t))V (t),

having used (1.13). Applying this into (1.19) and collecting β, we get (1.27).

In the following results we shall assume that for every t ≥ 0 the matrix ω(t) is stochastic,

i.e.,
∑N

j=1 ωij(t) = 1 for every i = 1, . . . , N . This implies, by Proposition 1.16, that ∆(t) =

0 for every t ≥ 0 and that v is conserved. In particular, for the choice α = β the system

can eventually be rewritten in the form of system (1.6), and in this case the following

results can be seen as consequences of Theorem 1.11.

Corollary 1.26. Let ω(t) ∈ RN×N+ be a symmetric stochastic matrix for every t ≥ 0. If

there exists a constant ϑ > 0 such that for every t ≥ 0 it holds

I(t) = min
1≤i,j≤N

ωij(t) ≥ ϑ >
β(t)− α(t)

Nβ(t)
,

then any solution of the system tends to consensus.

Proof. Under the above hypotheses, the quantity S(t) − NI(t) − α(t)/β(t) of Theorem

1.25 is bounded from above by 1−Nϑ−α(t)/β(t), which, by assumption, is negative.

The next result focuses on a specific form of the weight matrix ω which shall be studied

further in the upcoming section.

Corollary 1.27. Suppose that for all i, j = 1, . . . , N the function ωij : R+ → R+ satisfies

ωij(t) =
φ(‖xi(t)− xj(t)‖)

η(t)
for every t ≥ 0,

where φ : R+ → (0, 1] is a non increasing, positive, bounded function, and η : R+ → R+ is

a nonnegative bounded function satisfying

1 ≤ N β(t)

α(t)
≤ η(t) for every t ≥ 0. (1.28)

Then, any solution of system (1.18) with ∆i as in (1.26) tends to consensus.
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Proof. If we consider the quantity X, there are at most two cases: either X(t) is bounded

from above by a constant X for all t ≥ 0, or X(t) is unbounded.

In the first case, we can bound S(t) from above by N . Since ‖xi(t)−xj(t)‖ ≤
√

2NX(t) ≤√
2NX and φ is non increasing, we have that

I(t) = min
1≤i,j≤N

ωij(t) ≥ φ
(√

2NX
)
,

and thus, from (1.28), it follows that for every t ≥ 0 it holds

S(t)−NI(t)− α(t)

β(t)
η(t) ≤ N −Nφ

(√
2NX

)
− α(t)

β(t)
η(t) ≤ −Nφ

(√
2NX

)
. (1.29)

From the positivity of φ we can therefore conclude the proof by invoking Theorem 1.25.

Suppose now, instead, that X(t) is unbounded: in this case the term I(t) is bounded from

below by a term going to 0 (and hence not giving us any useful information) and we have

to take advantage of S(t) as shall be shown now. By definition, X(t) is unbounded if and

only if there exist two agents with indexes h and k such that ‖xh(t)−xk(t)‖ is unbounded.

By the triangle inequality, it follows that for any index i, there is an index j(i) for which

‖xi(t) − xj(i)(t)‖ is unbounded. Thus, we fix ρ > 0 and let T > 0 be the maximum time

t such that φ(‖xi(t) − xj(i)(t)‖) < 1 − ρ for every i = 1, . . . , N . Then for every t ≥ T we

can bound S(t) with

S(t) ≤ 1

η(t)
(N − 1 + 1− ρ) ≤ α(t)

Nβ(t)
(N − ρ),

and therefore, again from (1.28), we have the estimate

S(t)−NI(t)− α(t)

β(t)
η(t) ≤ α(t)

Nβ(t)
(N − ρ)− α(t)

β(t)
η(t)

≤ − α(t)

Nβ(t)
ρ+

α(t)

β(t)
−N

≤ − α(t)

Nβ(t)
ρ

≤ − ρ

η(t)

which is negative for every t ≥ T (since η is bounded). Again an application of Theorem

1.25 gives us the result.

Remark 1.28. A concrete example of a system for which we can apply Corollary 1.27 is

obtained by considering the functions

φ(r)
∆
=

1

(1 + r2)ε
,

(which is the Cucker-Smale function (1.7) with H = 1, σ = 1 and β = ε) and

η(t)
∆
= max

1≤i≤N


N∑
j=1

φ(‖xi(t)− xj(t)‖)

 .
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In this case, ε ∈ R+ can be thought of as a parameter tuning the ability of each agent

to gather information about the speed of the other agents. Indeed, consider the case

‖xi(t) − xj(t)‖ > 0, if i 6= j: then, if ε = 0, it holds vi = v for every i = 1, . . . , N , and

each agent communicates at the same rate with both near and far away agents; if instead

ε → +∞ then vi approaches vi, hence each agent is unable to gain sufficient knowledge

about the speed of the others in order to compute the correct mean. The function η serves

to the purpose of being a common normalizing factor: naturally one would choose for every

agent i the normalizing factor given by

N∑
j=1

φ(‖xi(t)− xj(t)‖), (1.30)

but that would produce a non symmetric matrix ω, for which the above results are not

valid. In this context, the function η is a suitable replacement, being also coherent with

the asymptotic behavior of (1.30) for ε→ 0 and ε→ +∞.

Remark 1.29. The request of positivity of the function φ cannot be removed from Corol-

lary 1.27, as the function φ = χ[0,R] shows. Indeed, what fails in the argument of the proof

is the case in which we suppose that the functional X is bounded from above by X: if the

quantity
√

2NX is not less or equal to R, then φ(
√

2NX) = 0 in the inequality (1.29),

and we cannot invoke Theorem 1.25 in order to infer consensus.

1.6 Perturbations due to local averaging

An interesting case of a system like (1.17) is the one where the local mean is given by

vi(t) =
1

|ΛR(t, i)|
∑

j∈ΛR(t,i)

vj(t) for every t ≥ 0, (1.31)

where ΛR(i)
∆
= {j ∈ {1, . . . , N} : ‖xi(t)− xj(t)‖ ≤ R} and |ΛR(t, i)| stands for its cardi-

nality. In this case, we model the situation in which each agent estimates the average

velocity of the group in the extra feedback term by only counting those agents inside a

ball of radius R centered on him. We want to address the issue of characterizing the be-

havior of system (1.17) with the above choice for vi when the radius R of each ball is either

reduced to 0 or set to grow to +∞. We shall see that we can reformulate this decentralized

system again as a Cucker-Smale model for a different interaction function for which we

can apply Theorem 1.11. We shall show how tuning the radius R affects the convergence

to consensus, from the case R ≥ 0 where only conditional convergence is ensured, to the

unconditional convergence result given for R = +∞.

1.6.1 Preserving the asymptotics

First of all, by means of χ[0,R] we can rewrite vi(t) as

vi(t) =
1∑N

k=1 χ[0,R](‖xi(t)− xk(t)‖)

N∑
j=1

χ[0,R](‖xi(t)− xj(t)‖)vj(t). (1.32)
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As already noted in Remark 1.28, the normalizing terms
∑N

k=1 χ[0,R](‖xi(t)− xk(t)‖) give

rise to a matrix of weights which is not symmetric. Since this will be an issue also in the

present section, we take ηR to be a function approximating the above normalizing terms

and which also preserves its asymptotics for R→ 0 and R→ +∞, as for instance,

ηR(t) = max
1≤i≤N

{
N∑
k=1

χ[0,R](‖xi(t)− xk(t)‖)

}
. (1.33)

Therefore, we replace the vector vi(t) by

1

ηR(t)

N∑
j=1

χ[0,R](‖xi(t)− xj(t)‖)vj(t) .

On top of this, notice that the vector 1

ηR(t)

N∑
j=1

χ[0,R](‖xi(t)− xj(t)‖)

 vi(t)

is an approximation of vi(t) for R → 0 and R → +∞. This motivates the replacement of

the term vi − vi where vi is as in (1.32) with

vi − vi ≈
1

ηR

N∑
j=1

χ[0,R](‖xi − xj‖)vj −

 1

ηR

N∑
j=1

χ[0,R](‖xi − xj‖)

 vi. (1.34)

The term (1.34) can be rewritten as 1/ηR
∑N

j=1 χ[0,R](‖xi − xj‖)(vj − vi), which can be

further simplified as follows

1

ηR

N∑
j=1

χ[0,R](rij)(vj − vi) =
1

ηR

N∑
i=1

(vj − vi) +
1

ηR

N∑
j=1

(1− χ[0,R](rij))(vi − vj)

=
N

ηR
(v − vi) +

1

ηR

N∑
j=1

(1− χ[0,R](rij))(vi − vj),

(1.35)

where we have written rij in place of ‖xi−xj‖ and removed the time dependencies for the

sake of compactness.

It is clear that the choice of the function χ[0,R] is arbitrary and other alternatives can

be selected, provided they give a coherent approximation of the local average (1.31). For

instance, instead of χ[0,R] and ηR, we can consider two generic functions ψε and ηε, where

ε is a parameter ranging in a nonempty set Ω, satisfying the following properties:

(i) ψε : R+ → [0, 1] is a nonincreasing measurable function for every ε ∈ Ω;

(ii) ηε ∈ L∞(R+) for every ε ∈ Ω;

(iii) there are two disjoint subsets ΩCS and ΩU of Ω such that

• if ε ∈ ΩCS then ψε = χ{0} and ηε ≡ 1;
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• if ε ∈ ΩU then ψε = χR+ and ηε ≡ N .

Under the above hypotheses, we consider the perturbation given for every t ≥ 0 by

∆ε
i (t)

∆
=

1

ηε(t)

N∑
j=1

(1− ψε(‖xi(t)− xj(t)‖))(vi(t)− vj(t)). (1.36)

With requirement (iii) we impose that whenever ε ∈ ΩCS then it holds

∆ε
i (t) = − N

ηε(t)
(v(t)− vi(t)),

therefore recovering the Cucker-Smale system (1.6) from (1.37), while whenever ε ∈ ΩU

then ∆ε
i (t) = 0 holds, and we obtain a particular instance of system (1.16).

By means of (1.36), we can rewrite our system with the local average (1.31) in the form

of system (1.18)
ẋi(t) = vi(t),

v̇i(t) =
1

N

N∑
j=1

a (‖xi(t)− xj(t)‖) (vj(t)− vi(t)) + γ
N

ηε(t)
(v(t)− vi(t)) + γ∆ε

i (t).

(1.37)

1.6.2 The enlarged consensus region

In order to study under which conditions the solutions of system (1.37) for ψε = χ[0,R]

and ηε given by (1.33) converge to consensus, we cannot use the results of Section 1.5.

This follows from Remark 1.29 since, if we compare (1.34) and (1.35) to the following

computations

1

ηR

N∑
j=1

χ[0,R](‖xi − xj‖)vj −

 1

ηR

N∑
j=1

χ[0,R](‖xi − xj‖)

 vi =

=

 1

ηR

N∑
j=1

χ[0,R](‖xi − xj‖)

 (v − vi) +
1

ηR

N∑
j=1

χ[0,R](‖xi − xj‖)v⊥j ,

we obtain that the system we are considering is precisely the version of system (1.18)

where

α(t) =
1

ηR

N∑
j=1

χ[0,R](‖xi(t)− xj(t)‖) and β(t) = 1 for every t ≥ 0

and ∆i is of the same kind as the one mentioned in Remark 1.29.

Therefore, we present the following result which gives a sufficient condition on the initial

data for which the solutions of system (1.37) converge to consensus. We point out that



1.6 Perturbations due to local averaging 29

system (1.37) can be rewritten into the shape of a Cucker-Smale type system as follows
ẋi(t) = vi(t),

v̇i(t) =
1

N

N∑
j=1

(
a (‖xi(t)− xj(t)‖) + γ

N

ηε(t)
ψε(‖xi(t)− xj(t)‖)

)
(vj(t)− vi(t)),

and therefore the following result can be also obtained from Theorem 1.11.

Theorem 1.30. Fix γ ≥ 0, consider system (1.37) where ∆ε
i is as in (1.36) and let

(x0, v0) ∈ RdN × RdN . If X0
∆
= B(x0, x0) and V0

∆
= B(v0, v0) satisfy∫ +∞

√
X0

a
(√

2Nr
)
dr +

γN

‖ηε‖L∞(R+)

∫ +∞

√
X0

ψε

(√
2Nr

)
dr ≥

√
V0, (1.38)

then the solution of system (1.37) with initial datum (x0, v0) tends to consensus.

Proof. Notice that we can assume V (t) > 0 for every t ≥ 0, otherwise the system is already

in consensus at time t. From requirement (i) we have

1

N

N∑
i=1

∆i(t) · v⊥i (t) =
1

Nηε(t)

N∑
i=1

N∑
j=1

(1− ψε(‖xi(t)− xj(t)‖))(vi(t)− vj(t)) · v⊥i (t)

≤ N

ηε(t)

(
1− ψε

(√
2NX(t)

))
V (t),

and inequality (1.19) reads

d

dt
V (t) ≤ −2

(
a
(√

2NX(t)
)

+
γN

ηε(t)
ψε

(√
2NX(t)

))
V (t).

Moreover, since

d

dt

√
V (t) =

1

2
√
V (t)

d

dt
V (t) for every t ≥ 0,

from (ii) we have

d

dt

√
V (t) ≤ −2

(
a
(√

2NX(t)
)

+
γN

ηε(t)
ψε

(√
2NX(t)

))√
V (t)

≤ −2

(
a
(√

2NX(t)
)

+
γN

‖ηε‖L∞(R+)

ψε

(√
2NX(t)

))√
V (t), (1.39)

and integrating between 0 and t we obtain

√
V (t)−

√
V (0) ≤ −

∫ t

0

(
a
(√

2NX(s)
)

+
γN

‖ηε‖L∞(R+)

ψε

(√
2NX(s)

))√
V (s) ds.

(1.40)
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We now work on changing the variable inside the integral. We can actually claim that

d

dt
X(t) ≤

√
V (t) for every t ≥ 0, (1.41)

since, indeed, the following computation

d

dt
X(t) =

1

N

N∑
i=1

d

dt

∥∥∥x⊥i (t)
∥∥∥2

=
2

N

N∑
i=1

x⊥i (t) · ẋ⊥i (t)

≤ 2

N

N∑
i=1

∥∥∥x⊥i (t)
∥∥∥∥∥∥v⊥i (t)

∥∥∥
≤ 2

N

(
N∑
i=1

∥∥∥x⊥i (t)
∥∥∥)1/2( N∑

i=1

∥∥∥v⊥i (t)
∥∥∥2
)1/2

= 2
√
X(t)

√
V (t),

and d
dtX(t) = d

dt(
√
X(t)

√
X(t)) = 2

√
X(t) ddt

√
X(t), together yield (1.41). Notice that in

the above computation we have used the following fact

d

dt
x⊥i (t) =

d

dt

xi(t)− 1

N

N∑
j=1

xj(t)

 = vi(t)−
1

N

N∑
j=1

vj(t) = v⊥i (t).

Setting r =
√
X(s) and using (1.41), we can change variable in (1.40) as follows:

√
V (t)−

√
V (0) ≤ −

∫ √X(t)

√
X(0)

(
a
(√

2Nr
)

+
γN

‖ηε‖L∞(R+)

ψε

(√
2Nr

))
dr. (1.42)

Let us suppose that (1.38) is true. Since X(0) = X0 and V (0) = V0, if V (0) = 0 there is

nothing to prove because we are already in consensus. If, instead, it holds

0 <
√
V (0) ≤

∫ +∞

√
X(0)

(
a
(√

2Nr
)

+
γN

‖ηε‖L∞(R+)

ψε

(√
2Nr

))
dr, (1.43)

then there is a X > X(0) such that

√
V (0) =

∫ √X
√
X(0)

(
a
(√

2Nr
)

+
γN

‖ηε‖L∞(R+)

ψε

(√
2Nr

))
dr

(having used the fact that, from (i), the integrand is a non increasing function). Now,

either equality holds in (1.43), and limt→+∞ V (t) = 0 follows by passing to the limit in

(1.42), or we have a strict inequality. But in this case X ≥ X(t) must hold for every t ≥ 0,
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since otherwise there would be a T > 0 for which we have

√
V (0) ≥

√
V (T ) +

∫ √X(T )

√
X(0)

(
a
(√

2Nr
)

+
γN

‖ηε‖L∞(R+)

ψε

(√
2Nr

))
dr

>

∫ √X
√
X(0)

(
a
(√

2Nr
)

+
γN

‖ηε‖L∞(R+)

ψε

(√
2Nr

))
dr

=
√
V (0),

which is obviously a contradiction. Thus, we have that the inequality X ≥ X(t) is true

for every t ≥ 0, and from (1.39) we have

d

dt
V (t) ≤ −2

(
a
(√

2NX
)

+
γN

‖ηε‖L∞(R+)

ψε

(√
2NX

))
V (t).

The fact that limt→+∞ V (t) = 0 follows from the above inequality.

An example of a family of functions (ψε, ηε)ε∈Ω satisfying the hypothesis (i)–(iii) is given

by

ψε(r) =
1

(1 + r2)ε
where ε ∈ Ω = [0,∞],

for which we set ψ∞
∆
= χ{0}, and

ηε(t)
∆
= max

1≤i≤N

{
N∑
k=1

ψε(‖x(t)− xk(t)‖)

}
.

In this case, ΩCS = {0} and ΩU = {+∞}, and (1.38) is satisfied as soon as it holds∫ +∞

√
X0

a
(√

2Nr
)
dr + γ

∫ +∞

√
X0

ψε

(√
2Nr

)
dr ≥

√
V0,

since in this case ‖ηε‖L∞(R+) ≤ N .

The most interesting example of such a family is the one which has introduced this section:

we consider Ω = [0,+∞], the sequence of functions (χ[0,R])R∈Ω and ηR as in (1.33) (notice

that, as before, we have ΩCS = {0} and ΩU = {∞}). Since, again, it holds ‖η‖L∞(R+) ≤ N ,

if R is sufficiently large to satisfy
√

2NX0 ≤ R, condition (1.38) is satisfied as soon as∫ +∞

√
X0

a
(√

2Nr
)
dr + γ

(
R√
2N
−
√
X0

)
≥
√
V0,

by means of a trivial integration. If, instead, R is so small that
√

2NX0 > R holds,

condition (1.38) is satisfied as soon as∫ +∞

√
X0

a
(√

2Nr
)
dr ≥

√
V0,
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recovering Theorem 1.11. As can be seen, we have enlarged the original consensus region

provided by Theorem 1.11 by a term whose size is linearly increasing in R. This implies

that, in the case R = +∞, the consensus region coincides with the entire space RdN×RdN ,

hence the system converges to consensus regardless of the initial datum.

The above results can be seen as the asymptotic outcome of the following more general

approach: consider the set Ω = [0,∞] × (1,∞], write ε as the pair of parameters (R, θ)

and set

ψR,θ(r)
∆
=

1 if r ≤ R,
1

(r −R+ 1)θ
if r > R.

Take ηR,θ(t) to be either

max
1≤i≤N

{
N∑
k=1

ψR,θ(‖xi(t)− xk(t)‖)

}
or min

1≤i≤N

{
N∑
k=1

ψR,θ(‖xi(t)− xk(t)‖)

}

(notice that in both cases we have ‖η‖L∞(R+) ≤ N). This time we have

ΩCS = {0} × {+∞} and ΩU = {+∞}× (1,+∞].

If we suppose that R is sufficiently large to satisfy
√

2NX0 ≤ R, then it holds∫ +∞

√
X0

ψR,θ

(√
2Nr

)
dr =

∫ R√
2N

√
X0

dr +

∫ +∞

R√
2N

11

(
√

2Nr −R+ 1)θ
dr

=
R√
2N
−
√
X0 +

1

θ − 1
,

hence condition (1.38) is satisfied as soon as∫ +∞

√
X0

a
(√

2Nr
)
dr + γ

(
R√
2N
−
√
X0 +

1

θ − 1

)
≥
√
V0,

which shows that the consensus region grows linearly with the radius R while it is inversely

proportional to the growth of θ.

Otherwise, if R is so small that
√

2NX0 > R holds, since in this case∫ +∞

√
X0

ψR,θ

(√
2Nr

)
dr =

∫ +∞

√
X0

1

(
√

2Nr −R+ 1)θ
dr

=
1

(θ − 1)(
√

2NX0 −R+ 1)θ−1
,

we have that condition (1.38) is true whenever∫ +∞

√
X0

a
(√

2Nr
)
dr +

γ

θ − 1

1

(
√

2NX0 −R+ 1)θ−1
≥
√
V0 .

In this case, the consensus region is in practice not modified by R, but only by the decay
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of the far-away interaction θ (the faster the decay, the smaller the consensus region).

In both cases, if θ tends to +∞, we recover the result we obtained for the family of

functions (χ[0,R])R∈[0,+∞].

1.7 Numerical simulations

We present a series of numerical tests illustrating the main results developed throughout

this chapter. We begin by describing the generic setting upon which the initial configu-

rations of agents are determined; we follow similar ideas as those presented in [54]. We

consider a system of N agents in dimension d = 2 with a randomly generated initial

configuration of positions and velocities

(x0, v0) ∈ [−1, 1]2N × [−1, 1]2N ,

interacting by means of the kernel (1.7) with H = 1, σ = 1 and β = 1. We recall

that relevant quantities for the analysis of our results are given by (here we stress the

dependance on x and v)

X[x](t)
∆
=

1

2N2

N∑
i,j=1

‖xi(t)− xj(t)‖2 , and V [v](t)
∆
=

1

2N2

N∑
i,j=1

‖vi(t)− vj(t)‖2 .

Notice that, once a random initial configuration has been generated, it is possible to rescale

it to a desired (X0, V0) parametric pair, by means of

(x, v) =

(√
X0

X[x̃]
x̃,

√
V0

V [ṽ]
ṽ

)
,

such that (X[x], V [v]) = (X0, V0). As simulations of the trajectories have been generated

by prescribing a value for the pair (X0, V0), which is used to rescale randomly generated

initial conditions, there are slight variations on the initial positions and velocities in every

model run, which can affect the final consensus direction. However our results are stated

in terms of X,V , and independently of the specific initial configuration. For simulation

purposes the system is integrated in time with the specific feedback control by means of

a Runge-Kutta 4th-order scheme.

1.7.1 Leader-based feedback

The first case that we address is the one presented in Example 1.24, where we consider a

system like (1.17) where the local mean is computed upon local information and a single

leader, i.e.,

vi(t) = (1− q)vi(t) + qv1(t) for every i = 1, . . . , N and t ≥ 0,

where for convenience we have selected the first agent as the leader of the group. Figure

1.3 shows the behavior of the group of agents depending on the parameter q ∈ (0, 1], which

represents the influence of the leader in the local average. Our result asserts that for every

such q, the system will converge to consensus independently of the initial configuration,
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which is illustrated by our numerical experiments, as shown in Figures 1.3 and 1.4. It can

be observed that, the weaker the influence of the leader, the longer the group of agents

takes to reach consensus.

1.7.2 Feedback under perturbed information

Next, we deal with the setting presented again in Section 1.5, by considering a system of

the form (1.18) where α and β are constant functions and the feedback ∆i is a structured

perturbation written as

∆i(t) =
1

ηi(t)

N∑
j=1

ωij(t)(vj(t)− v(t)) for every t ≥ 0.

In particular, we address the case where the weighting function ωij corresponds to a

Cucker-Smale kernel as for the dynamics, i.e.,

ωij(t) =
1

(1 + ‖xi(t)− xj(t)‖2)ε
and ηi(t) =

1

N

N∑
j=1

ωij(t).

In this test, we fix a large value of β = 10, representing a strong perturbation of the

feedback, and a small value of ε = 1e − 5, related to a disturbance which is distributed

among all the agents. In Figures 1.5 and 1.6 , it is shown how increasing the value of α in

system (1.18), representing the energy of the correct information feedback, induces faster

consensus emergence.

1.7.3 Local feedback control

The last numerical case study presented concerns the dynamical system considered in

Section 1.6, where the feedback is computed according to the local average (1.32). Simu-

lations in Figure 1.7 illustrate the setting. From an uncontrolled system, represented by a

local feedback radius R = 0, by increasing this quantity, partial alignment is consistently

achieved, until full consensus is observed for large radii mimicking a total information

feedback control.

From a theoretical perspective, this result is presented in Theorem 1.30, which describes a

consensus region for a feedback control based on local averages. As it was shown in Example

1.13, that estimates for consensus regions such as the one provided by Theorem 1.11, are

not sharp in many situations. In this direction, we proceed to contrast the theoretical

consensus estimates with the numerical evidence. For this purpose, for a fixed number of

agents, we span a large set of possible initial configurations determined by different values

of (X0, V0). For every pair (X0, V0) we randomly generate a set of 20 initial conditions,

and we simulate for a sufficiently large time frame. We measure consensus according to

a threshold established on the final value of V ; we consider that consensus has been

achieved if the final value of V is lower or equal to 1e − 5. We proceed by computing

empirical probabilities of consensus for every point of our state space (X0, V0); results in

this direction are presented in Figures 1.8 and 1.10. We first consider the simplified case of

2 agents; according to Example 1.13, for this particular case, the consensus region estimate

provided by Theorem 1.11 is sharp, as illustrated by the results presented in Figure 1.8.
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Figure 1.3: Leader-based feedback control. Simulations with 100 agents, the value q indi-
cates the strength of the of the leader in the partial average. It can be observed how, as
the strength of the leader is increased, convergent behavior is improved.
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Figure 1.4: Leader-based feedback control. Simulations with 100 agents, the value q indi-
cates the strength of the of the leader in the partial average. Evolution of X and V for
the simulations in Figure 1.3.
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Furthermore, it is also the case for Theorem 1.30; for R > 0, the predicted consensus

region coincides with the numerically observed ones.

Figures 1.9 and 1.10 illustrate the case when a larger number of agents is considered. In a

similar way as for Theorem 1.11, the consensus region estimate is conservative if compared

with the region where numerical experiments exhibit convergent behavior. Nevertheless,

Theorem 1.30 is consistent in the sense that the theoretical consensus region increases

gradually as R grows, eventually covering any initial configuration, which is the case of

the total information feedback control, as presented in [49, Proposition 2]. The numerical

experiments also confirm this phenomena, as shown in Figure 1.9 , where contour lines

showing the 80% probability of consensus for different radii locate farther from the origin

as R increases.
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generate different consensus behavior; the stronger the correct information term is, the
faster consensus is achieved.
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CHAPTER 2

Sparse control of dynamical

systems

In Chapter 1 we have seen the limitations of decentralized controls in guaranteeing con-

sensus emergence. To overcome them, in this chapter we shall introduce an external policy

maker overseeing the evolution of the dynamics with the task to help the agents coor-

dinate. The centralized control strategy we will design is parsimonious, optimal in terms

of maximizing the decay rate of a certain Lyapunov functional related to the pattern we

want to enforce, and numerically easy to implement.

2.1 Sparse control of the Cucker-Smale model

We have seen throughout Chapter 1 how difficult it is to ensure unconditional convergence

to consensus for alignment models. In particular, in Section 1.6 we have proven that

the addition of a local feedback does not always help: Theorem 1.30 shows that we can

guarantee unconditional convergence to consensus with respect to the initial datum for

dynamical systems of the form
ẋi(t) = vi(t),

v̇i(t) =
1

N

N∑
j=1

a (‖xi(t)− xj(t)‖) (vj(t)− vi(t)) + γ

 1

|ΛR(t, i)|
∑

j∈ΛR(t,i)

vj(t)− vi(t)

 .

only in the case R = +∞, for which the identity

1

|ΛR(t, i)|
∑

j∈ΛR(t,i)

vj(t) = v(t)
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holds. This means that either the agents have perfect information of the state of the entire

system (so that the local mean vi is equal to the true mean v) or, as the numerical simula-

tions in Section 1.7.3 show, there are situations where the agents are not able to converge

to consensus. As already pointed out in Section 1.3, this is a very strong requirement to

ask for, and not many real-life scenarios are able to support it. Consider, for instance, the

case of an assembly of people trying to reach an unanimous decision, like the European

Union Council: since the extra term can be interpreted as an additional desire of each

agent to agree with people whose goal is near to his, the requirement R = +∞ corre-

sponds to asking that all the individual goals are close, i.e., all agents pursue the same

end. A truly imaginative world indeed! We are thus facing an inherent, severe limitation

of the decentralized approach.

To overcome this apparent dead-end, let us write ui(t) = γ(v(t)− vi(t)), i.e.,
ẋi(t) = vi(t),

v̇i(t) =
1

N

N∑
j=1

a (‖xi(t)− xj(t)‖) (vj(t)− vi(t)) + ui(t).
(2.1)

Instead of interpreting ui as a decentralized force, let us consider it as an external force from

an outside source acting on the system to help it coordinate. This new approach casts a

completely different light on the problem: with respect to the example considered before,

is like introducing a moderator heading the discussion, who can make pressure on the

participants to the council to speed up the process of fruitful decision-making. Adding an

external figure implementing intervention policies broadens further the expressive power

of the problem: indeed, since we are in principle no more tied to specific interventions

of the form ui(t) = γ(v(t) − vi(t)), this setting enables us to ask ourselves the following

question

(Q) given a set of constraints, which control u is the best to reach a specific goal?

In this section, we shall study a specific instance of this very general issue in the case of

system (2.1). In our setting, the constraints shall be

(i) we are not able to forecast the evolution of the system (for computational reasons or

for lack of knowledge of the interaction mechanism, for instance). This means that,

since we do not know how the system may react in the future to our intervention,

we focus our attention on locally optimal control strategies.

(ii) the control should act on the least amount of agents possible at any time;

(iii) there is a maximal amount of resources M > 0 that the central policy maker can

spend at any given time for the intervention.

For the time being, our goal is again alignment, hence we seek for a control u for which

the associated solution to system (2.1) tends to consensus in the sense of Definition 1.4.

We have already seen in Chapter 1 that an effective criterion for consensus emergence is

the minimization of the Lyapunov functional V : if we are able to prove that our control
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strategy is able to drive V below the threshold level given by Theorem 1.11, we have

automatically consensus emergence (see Figure 2.1). The maximization of the decay rate

of V is a locally optimal criterion, and hence compatible with point (i); a globally optimal

one, available when predictions on the possible evolution of the system are possible, shall

be discussed in Chapter 6.

Figure 2.1: Steering the system to a point fulfilling the conditions of Theorem 1.11.

However this is not enough. Even if controls can be successful in enforcing alignment,

they may be unfeasible in practice. Undesirable controls are, for example, those that force

the central coordinator to interact at every instant with almost all the agents in the

system, since keeping such a large communication network always active can be extremely

expensive and highly dispersive. This motivates point (ii) and is the reason why we look

for interventions that target the fewest number of agents at any given time.

To translate these words into a mathematical statement we borrow a leaf from compressed

sensing (see as a reference [48, 96, 105]), a branch of mathematical signal processing which

provides optimal results on the ability of the `1-norm minimization of robustly recovering

sparse solutions, i.e., with very few non-zero entries. Therefore, one can obtain control

strategies u = (u1, . . . , uN ) ∈ RdN acting on very few agents by requiring the following

mixed `N1 − `d2-norm of u

N∑
i=1

‖ui‖`d2

to be as small as possible: the `1-norm constraint on the number of components relative

to the agents will select controls that at every instant interact with very few of them.

The above mixed norm has been already used, for instance, in [98, 104]. The use of `1-

norms to penalize controls was first introduced in the seminal paper [74] to model linear

fuel consumption, while lately the use of L1 minimization in optimal control problems

with partial differential equation has become very popular, for instance in the modeling

of optimal placing of sensors [56, 66, 126, 167, 178].

By incorporating also the constraint on the maximal amount of available resources M

given by point (iii), we obtain the following definition of admissible controls.

Definition 2.1 (Admissible controls). A measurable function u = (u1, . . . , uN ) : R+ →
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RdN is an admissible control if it satisfies

N∑
i=1

‖ui(t)‖ ≤M for every t ≥ 0. (2.2)

The following result shows that the problem of finding admissible controls steering the

system to consensus is well-posed.

Proposition 2.2 ([49, Proposition 2]). Fix M > 0, an initial condition (x0, v0) ∈ RdN ×
RdN , and 0 < α ≤M/(N

√
V0). Then, the feedback control defined pointwise in time as

u(t) = −αv⊥(t) for every t ≥ 0,

is admissible. Moreover, system (2.1) admits a unique solution associated to u which tends

to consensus.

Proof. Let (x, v) : R+ → RdN × RdN be a solution of system (2.1) with u as in the

statement. Since with this choice of u we retrieve system (1.17), such solution exists and

is unique by Remark B.4 and tends to consensus by Theorem 1.11. Moreover, since V is

decreasing by Corollary 1.19, it holds

N∑
i=1

‖ui(t)‖ ≤
√
N

√√√√ N∑
i=1

‖ui(t)‖2 = α
√
N

√√√√ N∑
i=1

‖v⊥i (t)‖2 = αN
√
V (t) ≤ αN

√
V0 ≤M,

which implies the admissibility of the control.

2.1.1 Sparse feedback controls

As already noted in [49], Proposition 2.2 has merely a theoretical value: the feedback

control u = −αv⊥ is not convenient for practical purposes, since it requires the external

policy maker to interact at every instant with all the agents in order to steer the system

to consensus, a procedure that requires a large amount of instantaneous communications.

For this reason, we choose controls according to a specific variational principle leading to

a componentwise sparse stabilizing feedback law.

Definition 2.3. For every M > 0 and every (x, v) ∈ RdN ×RdN , let U(x, v) be the set of

solutions of the variational problem

min
u∈RdN

(
B(v, u) + γ(B(x, x))

1

N

N∑
i=1

‖ui‖

)
subject to

N∑
i=1

‖ui‖ ≤M,

where the threshold functional γ is defined as

γ(X)
∆
=

∫ ∞
√
X
a(
√

2Nr)dr. (2.3)

Each value of γ(B(x, x)) yields a partition of RdN × RdN into four disjoint sets:

P1
∆
= {(x, v) ∈ RdN × RdN : max1≤i≤N

∥∥v⊥i ∥∥ < γ(B(x, x))2},
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P2
∆
= {(x, v) ∈ RdN × RdN : max1≤i≤N

∥∥v⊥i ∥∥ = γ(B(x, x))2 and ∃k ≥ 1 and i1, . . . , ik

∈ {1, . . . N} such that
∥∥v⊥i1∥∥ = . . . =

∥∥v⊥ik∥∥ and
∥∥v⊥i1∥∥ > ∥∥∥v⊥j ∥∥∥ for every j 6∈ {i1, . . . , ik}},

P3
∆
= {(x, v) ∈ RdN × RdN : max1≤i≤N

∥∥v⊥i ∥∥ > γ(B(x, x))2 and ∃!i ∈ {1, . . . N} such

that
∥∥v⊥i ∥∥ > ∥∥∥v⊥j ∥∥∥ for every j 6= i},

P4
∆
= {(x, v) ∈ RdN × RdN : max1≤i≤N

∥∥v⊥i ∥∥ > γ(B(x, x))2 and ∃k > 1 and i1, . . . , ik

∈ {1, . . . N} such that
∥∥v⊥i1∥∥ = . . . =

∥∥v⊥ik∥∥ and
∥∥v⊥i1∥∥ > ∥∥∥v⊥j ∥∥∥ for every j 6∈ {i1, . . . , ik}},

Moreover, since we are minimizing B(u, v) = B(u, v⊥), it is easy to see that, for every

(x, v) ∈ RdN × RdN and every element u(x, v) = (u1(x, v), . . . , uN (x, v))T ∈ U(x, v) there

exist nonnegative real numbers εi ≥ 0 such that, for every i = 1, . . . , N , it holds

ui(x, v) =

−εi
v⊥i
‖v⊥i ‖

if ‖v⊥i ‖ 6= 0,

0 if ‖v⊥i ‖ = 0,

(2.4)

where 0 ≤
∑N

i=1 εi ≤ M . The values of the εi’s can be determined on the basis of which

partition (x, v) belongs to:

• if (x, v) ∈ P1 then εi = 0 for every i = 1, . . . , N ;

• if (x, v) ∈ P2 then indicating with i1, . . . , ik the indexes such that
∥∥v⊥i1∥∥ = . . . =∥∥v⊥ik∥∥ = γ(B(x, x)) and

∥∥v⊥i1∥∥ > ∥∥∥v⊥j ∥∥∥ for every j 6∈ {i1, . . . , ik}, we have εj = 0 for

every j 6∈ {i1, . . . , ik};

• if (x, v) ∈ P3 then, indicating with i the only index such that
∥∥v⊥i ∥∥ > ∥∥∥v⊥j ∥∥∥ for every

j 6= i, we have εi = M and εj = 0 for every j 6= i;

• if (x, v) ∈ P4 then, indicating with i1, . . . , ik the indexes such that
∥∥v⊥i1∥∥ = . . . =∥∥v⊥ik∥∥ and

∥∥v⊥i1∥∥ > ∥∥∥v⊥j ∥∥∥ for every j 6∈ {i1, . . . , ik}, we have εj = 0 for every j 6∈

{i1, . . . , ik} and
∑k

`=1 εi` = M .

Notice that any control u(x, v) ∈ U(x, v) acts as an additional force which pulls agents

towards having the same mean consensus parameter. The imposition of the `N1 − `d2-norm

constraint has the function of enforcing sparsity : from the observation above clearly follows

that

U |P1 = {0} and U |P3 = {(0, . . . , 0,−Mv⊥i /‖v⊥i ‖, 0, . . . , 0)T },

for some unique i ∈ {1, . . . , N}, i.e., the restrictions of U to P1 and to P3 are single-

valued. However, even if not all controls belonging to U are sparse, there exist selections

with maximal sparsity.

Definition 2.4 ([49, Definition 4]). We select the sparse feedback control u(x, v) ∈ U(x, v)

according to the following criterion:
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• if max1≤i≤N
∥∥v⊥i ∥∥ ≤ γ(B(x, x))2, then u(x, v) = 0;

• if max1≤i≤N
∥∥v⊥i ∥∥ > γ(B(x, x))2, denote with ι̂(x, v) ∈ {1, . . . , N} the smallest index

such that ∥∥∥v⊥ι̂(x,v)

∥∥∥ = max
1≤i≤N

∥∥∥v⊥i ∥∥∥ .
Then

uj(x, v)
∆
=

−M
v⊥ι̂(x,v)

‖v⊥ι̂(x,v)‖
if j = ι̂(x, v),

0 otherwise.

Unfortunately, the existence of solutions of system (2.1) with the control u as in Definition

2.4 is still an open problem. We shall discuss the reasons in the next section.

2.1.2 Properties of the sparse feedback selection

The feedback control of Definition 2.4 has several other good properties, apart from being

sparse. The next result shows that, if a solution of system (2.1) with control u from Defi-

nition 2.4 exists, then u is the instantaneous maximizer of the decay rate of the Lyapunov

functional V in the set U .

Proposition 2.5. The sparse feedback control of Definition 2.4 is for every t ≥ 0 an

instantaneous minimizer of

D(t, u) =
d

dt
V (t)

over all possible feedback controls in U(x(t), v(t)). The Lyapunov functional V of the so-

lution associated to it satisfies√
V (t) ≤

√
V (0)− M

N
t for every t ≥ 0.

Proof. Let u(t)
∆
= u(x(t), v(t)) ∈ U(x(t), v(t)). Similar computations to (1.20) for system

(2.1) yield

d

dt
V (t) =

2

N2

N∑
i=1

N∑
j=1

a (‖xi(t)− xj(t)‖) (vj(t)− vi(t)) · v⊥i (t)+

+
2

N

N∑
i=1

ui(t) · v⊥i (t)− 2

N

N∑
i=1

v̇(t) · v⊥i (t).

(2.5)

Since
∑N

i=1 v̇(t) · v⊥i (t) = 0 by (1.10), in order to minimize D(t, u) with respect to u we

have to work on the term
∑N

i=1 ui(t) · v⊥i (t). Now, since from (2.4) it follows

2

N

N∑
i=1

ui(t) · v⊥i (t) = −
∑

{i∈{1,...,N}:v⊥i 6=0}
εi

∥∥∥v⊥i ∥∥∥ ,
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minimizing D(t, u) (i.e., maximizing the decay rate of V ) is equivalent to solve

max
∑

{i∈{1,...,N}:v⊥i 6=0}
εi

∥∥∥v⊥i (t)
∥∥∥ subject to

N∑
i=1

εi ≤M. (2.6)

But notice that, if the index j is such that
∥∥∥v⊥j (t)

∥∥∥ ≥ ∥∥v⊥i (t)
∥∥ for all i, then the following

upper bound holds

N∑
i=1

εi

∥∥∥v⊥i (t)
∥∥∥ ≤ ∥∥∥v⊥j (t)

∥∥∥ N∑
i=1

εi

≤M
∥∥∥v⊥j (t)

∥∥∥ .
This clearly implies that the sparse feedback control of Definition 2.4 is a maximizer of

(2.6), since it attains this maximum. Moreover, notice that the solution of (2.6) is unique

whenever for any t ≥ 0 there exists a unique j such that ‖v⊥j (t)‖ > ‖v⊥i (t)‖ for all i 6= j.

Consider now the sparse feedback control u and plug it into (2.5). What we get is

d

dt
V (t) ≤ −2M

N

∥∥∥v⊥ι̂(x(t),v(t))(t)
∥∥∥

= −2M

N

√
V (t).

(2.7)

Integrating between 0 and t yields the desired linear decay rate estimate of
√
V .

An immediate consequence of the decay estimate given by (2.7) is that we can estimate a

priori an upper bound for X, which in practice implies consensus, as seen in Corollary 1.5.

This technical lemma can be found also in [49], but with a slightly different argument we

could improve the inequalities presented there and get rid of an N2 factor. This shall play

a major role in Chapter 3, when sharp estimates of the time of entrance in the consensus

region of controlled Cucker-Smale systems are crucial.

Lemma 2.6. If there exists η > 0 and T > 0 such that

d

dt
V (t) ≤ −η

√
V (t)

for almost every t ∈ [0, T ], then

V (t) ≤
(√

V (0)− η

2
t
)2

and X(t) ≤ 2X(0) +
2

η2
V (0)2

hold for almost every t ∈ [0, T ].

Proof. We can assume V (t) > 0 for every t ∈ [0, T ], otherwise we are already in consensus.

Integrating the assumption one has∫ t

0

d

ds
V (s)

1√
V (s)

ds ≤ −ηt,
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and hence √
V (t)−

√
V (0) =

1

2

∫ t

0

d

ds
V (s)

1√
V (s)

ds ≤ −η
2
t.

Furthermore, to prove the second statement we observe∫ t

0

√
V (s) ds ≤ −1

η

∫ t

0

d

ds
V (s) ds = −1

η
(V (t)− V (0)) ≤ 1

η
V (0).

On the other hand, using the (vector-valued) Minkowski inequality in the second step

√
X(t) =

 1

2N2

N∑
i,j=1

‖xi(t)− xj(t)‖2
1/2

≤

 1

2N2

N∑
i,j=1

‖xi(0)− xj(0)‖2
1/2

+

 1

2N2

N∑
i,j=1

(∫ t

0
‖vi(s)− vj(s)‖ ds

)2
1/2

≤
√
X(0) +

∫ t

0

 1

2N2

N∑
i,j=1

‖vi(s)− vj(s)‖2
1/2

ds

=
√
X(0) +

∫ t

0

√
V (s) ds

≤
√
X(0)− 1

η

∫ t

0

d

ds
V (s)ds

≤
√
X(0) +

1

η
V (0)

and furthermore by (x+ y)2 ≤ 2x2 + 2y2 it follows

X(t) ≤ 2X(0) +
2

η2
V 2(0),

which concludes the proof.

With the estimate of the decay rate of the functional V given by (2.7), it is now very easy

to see that the sparse feedback control forces the system to satisfy the condition

V (t) ≤ γ(X(t)) =

∫ +∞

√
X(t)

a(
√

2Nr)dr

in finite time. Since, by Definition 2.4, after this event happens the control shuts off, it

follows from Theorem 1.11 that the system has entered the consensus region, and thus

tends to consensus. More precisely, we can estimate a priori that the system will enter

the consensus region before the time horizon

T0
∆
=
N

M

(√
V (0)− γ(X)

)
,

where X
∆
= 2X(0) + N2

2M2V (0)2. Indeed, by Lemma 2.6 and the decreasing monotonicity of
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V and γ, for every t ≥ T0 it holds√
V (t) ≤

√
V (T0) ≤

√
V (0)− M

N
T0 = γ(X) ≤ γ(X(t)).

Another direct consequence of Lemma 2.5 is that, for Cucker-Smale systems, a feedback

stabilization is most effective if all the attention of the controller is focused on very few

(actually in this case only one) agents at each time. This also means that, despite the fact

that the external policy maker may have few resources at disposal and can allocate them

at each time only on very few key players in the system, it is always possible to effectively

stabilize the dynamics to return to energy levels where the system tends autonomously to

consensus. This result is perhaps surprising if confronted with the more intuitive strategy

of controlling more, or even all, agents at the same time. This let us answer to the question

(Q) raised at the beginning of this section as follows:

(A) under the constraints (i)− (iii), sparse is better.

However, the sparse feedback control can be in general highly irregular in time, and this is

the reason why it is so difficult to prove the well-posedness of the sparse control problem.

For instance, if there are only three agents and their consensus parameters form an equian-

gular and equinormal set of vectors at a given time t, then u is not pointwise computable

after t because of chattering effects. A method to avoid chattering in such trajectories is

the use of sampling solutions, first introduced in [64].

Definition 2.7. Let U ⊆ Rm and consider f : Rm × U → Rm such that f(ξ, u) is

continuous in ξ and u as well as locally Lipschitz in ξ uniformly on every compact subset

of Rm×U . Given a feedback control function u : Rm → U , a sampling time τ > 0, and an

initial datum ξ0 ∈ Rm we define the sampling solution associated with the sampling time

τ of the differential system {
ξ̇(t) = f(ξ(t), u(ξ(t))),

ξ(0) = ξ0,

as the piecewise C1-function ξ : [0, T ]→ Rm solving

ξ̇(t) = f(ξ(t), ũ(t))

in the interval t ∈ [nτ, (n + 1)τ ] recursively for n ∈ N, where ũ(t)
∆
= u(ξ(nτ)) is constant

for t ∈ [nτ, (n+ 1)τ ]. As the initial value ξ(nτ) we use the endpoint of the solution of the

preceding interval, and start with ξ(0) = ξ0.

This notion of solution has the clear advantage of being very down-to-earth: in practice,

controls cannot be updated instantaneously but require a minimal interval of time be-

tween two switchings. Moreover, there is no need to worry about existence of sampling

solutions, since in this case controls are piecewise constant. The following result shows

that, if the sampling time τ is sufficiently small (i.e., the controller is sufficiently reactive)

then sampled sparse feedback controls are effective in enforcing consensus emergence.
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Theorem 2.8 ([49, Theorem 3]). Fix M > 0, (x0, v0) ∈ RdN × RdN , and let u be the

sparse feedback control introduced in Definition 2.4. Denote by (xτ (·), vτ (·)) the sampling

solution of system (2.1) associated to the control u, the sampling time τ and the initial

condition (x0, v0). Then there exists τ0 > 0 small enough such that for all τ ∈ [0, τ0],

(xτ (·), vτ (·)) reaches the consensus region in finite time.

Unfortunately, it is not true that, as τ → 0, the above sampled control strategy converges

to the sparse feedback control of Definition 2.4: nonetheless, it is not difficult to show that

for every t ≥ 0 the limit control belongs to the set U(x(t), v(t)) introduced in Definition

2.3. By exploiting this fact, it is possible to prove Theorem 2.9 below, which shows that, as

the sampling time becomes smaller and smaller, the sampling solutions of (2.1) associated

with the sparse feedback controls approach uniformly a Filippov solution (that is, an

absolutely continuous function, see [100]) of the differential inclusion

(ẋ(t), v̇(t)) ∈ F (x(t), v(t)) for every t ≥ 0, (2.8)

where the set-valued functional F is defined as

F (x, v)
∆
= {(v, L(x)v + u) : u ∈ U(x, v)} ,

and L(x) is the Laplacian of the matrix (a (‖xi − xj‖) /N)Ni,j=1.

Theorem 2.9 ([49, Theorem 2]). Fix M > 0, (x0, v0) ∈ RdN × RdN , let u be the sparse

feedback control introduced in Definition 2.4, and let (xτ (·), vτ (·)) be as in Theorem 2.8.

Then, as τ tends to 0, (xτ (·), vτ (·)) tends uniformly to a Filippov solution of the differential

inclusion (2.8). Moreover, this solution tends to consensus.

Hence, we can establish the well-posedness of the control problem of system (2.1) for a

control u belonging to the set U which, as already noticed, contains the sparse feedback

control of Definition 2.4. In addition, the above results show that the stabilization of a

Cucker-Smale system by means of sparse controls is unconditional, i.e., it does not depend

on the initial conditions of the dynamics.

2.2 Sparse control of the Cucker-Dong model

In the next sections we shall see how the sparse feedback control strategy previously

developed has far more reaching potential, as it can address also situations which do not

match the structure (1.8), like the Cucker and Dong model of cohesion and avoidance

introduced in [80]. This system has the form{
ẋ(t) = v(t),

v̇(t) = −(La(x(t))− Lf (x(t)))x(t)− v(t)b(t),
(2.9)

where La(x(t)) and Lf (x(t)) are graph-Laplacians associated to competing avoidance and

cohesion forces respectively, and b(t) is a vector-valued function modeling dampening.

Notice that, in contrast to the Cucker-Smale system (1.8), now the Laplacians are acting

on the variable x and not anymore on v, mixing the dynamics of the two components of the
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state. Similar models considering attraction, repulsion and other effects, such as alignment

or self-drive, appear in the recent literature and they seem effectively describing realistic

situations of conditional pattern formation, see, e.g., some of the most related contributions

[52, 60, 79, 97].

We shall introduce this model in more detail below, but we can anticipate that, under

certain conditions on the attraction and repulsion forces, if the total energy of the sys-

tem (2.9), composed of the sum of its kinetic and potential parts, is below a certain

critical threshold, then such systems are known to converge autonomously to the stable

configuration of keeping confined and collision avoiding in space uniformly in time, see

[80, Theorem 2.1]. This is the pattern we want to enforce when dealing with this model,

i.e., cohesiveness and collision avoidance, opposed to the desired alignment pattern of the

Cucker-Smale system (1.6)

If the energy is above such a critical level, then the space coherence can be lost, and this

introduces us to our main goal: we show that in the latter situation of lost self-organization,

one can nevertheless steer the system (2.9) to return to stable energy levels by means of

sparse feedback controls similar to those of Definition 2.4. This is another remarkable

example, beside the one already presented in Section 2.1, of how certain social systems

are naturally prone to sparse stabilization, explaining the effectiveness of parsimonious

interventions of governments in societies.

Let us stress that, although here we follow a conceptually similar path as in the previous

section, the structural differences between the models (1.8) and (2.9) are such that, not

only the analysis of this system requires several nontrivial a priori estimates for stability,

collected below in Section 2.3, which were not necessary for (1.8), but also the final re-

sult turns out to differ substantially. In particular, while the stabilization of Cucker-Smale

systems by means of sparse feedback controls is unconditional with respect to the initial

conditions (see Theorem 2.9), for the Cucker-Dong model our analysis guarantees stabi-

lization only within certain total energy levels, which is suggesting that also stabilization

can be conditional. However, the numerical experiments reported in Section 2.6 suggest

that it is possible to exceed such an upper energy barrier in many cases, even if there are

pathological situations for which there is no hope to steer the agents towards a cohesive

configuration.

2.2.1 The model

The Cucker-Dong model [80] is given by the following system of differential equations

ẋi(t) = vi(t),

v̇i(t) = −bi(t)vi(t) +

N∑
j=1

a
(
‖xi(t)− xj(t)‖2

)
(xj(t)− xi(t)) +

+

N∑
j 6=i

f
(
‖xi(t)− xj(t)‖2

)
(xi(t)− xj(t)) ,

i = 1, . . . , N, (2.10)

The evolution is governed by an attraction force, modeled by a function a : R+ → R+,

which is, for some fixed constant H > 0 and β ≥ 0, of the form

a(r) =
H

(1 + r)β
,
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(notice that here we have r in place of r2, since we write a(‖xi − xj‖2) in place of

a (‖xi − xj‖), hence a has the same form as (1.7)), though in general any Lipschitz-

continuous, nonincreasing function with maximum in a(0) suffices. This force is counter-

acted by a repulsion given by a locally Lipschitz continuous or C1, nonincreasing function

f : (0,+∞)→ R+. We request that∫ +∞

δ
f(r) dr < +∞, for every δ > 0, (2.11)

A typical example of such a function is f(r) = r−p for every p > 1. The uniformly

continuous, bounded functions bi : R+ → [0,Λ], i = 1, . . . , N , for a given Λ ≥ 0, are

interpreted as a friction which helps the system to stay confined.

Figure 2.2: Sum of the attraction and repulsion forces h(r) = f(r)− a(r) as a function of
the distance r > 0. The parameters here are H = 50, β = 0.7, and p = 4.

At first glance it may seem perhaps a bit cumbersome to consider a rather arbitrary split-

ting of the force into two terms governed by the functions a and f instead of considering

more naturally a unique function h(r)
∆
= f(r) − a(r) of the distance r > 0, as depicted

in Figure 2.2. However, as we shall clarify later, the interplay of the polynomial decay of

the function h to infinity and its singularity at 0 is fundamental in order to be able to

characterize the confinement and collision avoidance of the dynamics, and such a split-

ting, emphasizing the individual role of these two properties, will turn out to be useful

in our statements. As a matter of fact, several forces in nature do have similar behavior,

for instance the van der Waals forces are governed by Lennard-Jones potentials for which

h(r) = σf/r
13−σa/r7, for suitable positive constants σf and σa. For such forces the poly-

nomial decay corresponds to the parameter β = 7, hence a rather fast decay that makes

the confinement of the system conditional to the initial total energy level (see Theorem

2.12 below).

It is easily seen how the above model can be rewritten as{
ẋ(t) = v(t),

v̇(t) = −L(x(t))x(t)− v(t)b(t),

where for any x ∈ RdN

L(x)
∆
= La(x)− Lf (x) (2.12)
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is the difference between the Laplacians of the two matrices (a(‖xi − xj‖2))Ni,j=1 and

(f(‖xi − xj‖2))Ni,j=1, respectively, and we have set vb
∆
= (vibi)

N
i=1 for any b = (b1, . . . , bN ).

To quantify the behavior of the system we introduce a quantity called the total energy

which includes the kinetic and potential energies; for all (x, v) ∈ RdN × RdN we define

E(x, v)
∆
=

N∑
i=1

‖vi‖2 +
1

2

N∑
i,j=1

i 6=j

∫ ‖xi−xj‖2
0

a(r)dr +
1

2

N∑
i,j=1

i 6=j

∫ +∞

‖xi−xj‖2
f(r)dr. (2.13)

If (x(t), v(t)) describes a point of a trajectory of system (2.10), E(t) will stand for E(x(t), v(t)).

Remark 2.10. Every term appearing in the definition of E(x, v) is nonnegative (and well-

defined by (2.11)), and hence we are allowed to bound from above every term appearing

in the expression of E(x, v) (as, for instance, ‖vi‖2 or 1
2

∫ +∞
‖xi−xj‖2

f(r)dr) by E(x, v) itself.

The total energy E(t) = E(x(t), v(t)) is a Lyapunov functional for system (2.10) and,

provided we are in presence of no friction at all (i.e., Λ = 0), it is a conserved quantity.

Since the proof of this result, already derived in [80], will be helpful later on, we will report

it in full details.

Proposition 2.11. For every t ≥ 0, we have

d

dt
E(t) = −2

N∑
i=1

bi(t)‖vi(t)‖2.

Hence, if Λ = 0 then d
dtE ≡ 0.

Proof. Let us compute

d

dt
E(t) =

d

dt

N∑
i=1

‖vi(t)‖2 +

N∑
i,j=1

a(‖xi(t)− xj(t)‖2)(xi(t)− xj(t)) · (vi(t)− vj(t))−

−
N∑

i,j=1

f(‖xi(t)− xj(t)‖2)(xi(t)− xj(t)) · (vi(t)− vj(t)). (2.14)

The first term of the sum above is

d

dt

N∑
i=1

‖vi(t)‖2 = 2
N∑
i=1

v̇i(t) · vi(t)

= −2

N∑
i=1

bi(t)‖vi(t)‖2−

−
N∑
i=1

N∑
j=1

a(‖xi(t)− xj(t)‖2)(xi(t)− xj(t)) · (vi(t)− vj(t))+

+
N∑
i=1

N∑
j=1

f(‖xi(t)− xj(t)‖2)(xi(t)− xj(t)) · (vi(t)− vj(t)), (2.15)
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which, plugged into (2.14), yields

d

dt
E(t) = −2

N∑
i=1

bi(t)‖vi(t)‖2.

So, if Λ = 0 then bi ≡ 0 for every i = 1, . . . N , and thus d
dtE ≡ 0, as stated.

If the attraction force at far distance is very strong (for β ≤ 1), despite an initial high level

of kinetic energy and of repulsion potential energy, perhaps due to a space compression of

the group of particles, the dynamics is guaranteed to keep confined and collision avoiding

in space at all times. If the attraction force is instead weak at far distance, i.e., β > 1,

then confinement and collision avoidance turn out to be properties of the dynamics only

conditionally to initial low levels of kinetic energy and repulsion potential energy, meaning

that the particles should not be initially too fast and too close to each other. This latter

condition is formulated in terms of a total energy critical threshold

ϑ
∆
= (N − 1)

∫ +∞

0
a(r)dr. (2.16)

This fundamental dichotomy of the dynamics has been characterized in the following

result.

Theorem 2.12 ([80, Theorem 2.1]). Consider an initial datum (x0, v0) ∈ RdN × RdN
satisfying ‖x0

i − x0
j‖2 > 0 for all i 6= j and

E(0)
∆
= E(x0, v0) <

1

2

∫ +∞

0
f(r)dr. (2.17)

Then there exists a unique solution (x(·), v(·)) of system (2.10) with initial condition

(x0, v0). Moreover, if one of the two following hypotheses holds:

(i) β ≤ 1,

(ii) β > 1 and E(0) < ϑ,

then the population is cohesive and collision-avoiding, i.e., there exist two constants B0, b0 >

0 such that, for all t ≥ 0

b0 ≤ ‖xi(t)− xj(t)‖ ≤ B0, for all 1 ≤ i 6= j ≤ N. (2.18)

Motivated by Theorem 2.12, we will call the consensus energy sublevel or consensus region

the set

C
∆
= {w ∈ R : w ≤ ϑ}

We will say that the system (2.10) is in the consensus region at time t if E(t) ∈ C. It is an

obvious corollary of Theorem 2.12 the fact that if system (2.10) is in the consensus region

at time T , for some T ≥ 0, then condition (2.18) is fulfilled for every t ≥ T .
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Remark 2.13. Theorem 2.12 is the Cucker-Dong counterpart of Theorem 1.11. Indeed,

for the choice of a as in (1.7), Theorem 1.11 implies that

(i) if β ≤ 1/2 then a 6∈ L1(R+), therefore consensus is achieved regardless of the initial

conditions;

(ii) if β > 1/2 then a ∈ L1(R+), and consensus is guaranteed only if (1.14) is satisfied.

Remark 2.14. Let us stress again the fact that the word consensus must be intended

here as a stable cohesion and collision-avoiding dynamics, in the spirit of the conclusion

of Theorem 2.12. This is in contrast with the meaning of the word consensus in Chapter 1,

which describes a situation where all the agents move according to the same velocity vector.

We point out that this definition of consensus does not imply this particular feature, but it

is rather intended to make a parallel between Theorem 2.12 and Theorem 1.11, as already

done by the authors in [80, Remark 1].

2.2.2 Introducing the control

Notice the similarity of the present situation and that of Section 2.1: in both cases we

have a system whose desired pattern can be enforced by decreasing a certain Lyapunov

functional under the action of a sparse intervention. Given a positive constant M modeling

the limited resources given to the external policy maker to influence instantaneously the

dynamics, it is very natural to define the set of admissible controls precisely as in Definition

2.1: a control u : R+ → RdN is admissibile if it is a measurable functions which satisfies

the `N1 − `d2-norm constraint for every t ≥ 0

N∑
i=1

‖ui(t)‖ ≤M. (2.19)

Hence, the controlled Cucker-Dong model is given by

ẋi(t) = vi(t),

v̇i(t) = −bi(t)vi(t)+
N∑
j=1

a
(
‖xi(t)−xj(t)‖2

)
(xj(t)−xi(t)) +

+
N∑
j=1

i 6=j

f
(
‖xi(t)−xj(t)‖2

)
(xi(t)−xj(t))+ui(t),

i = 1, . . . , N, (2.20)

where u is admissible. For this system we define again the total energy function E and

the threshold ϑ as in (2.13) and (2.16), respectively.

The control should be exerted until E(T ) < ϑ at some finite time T , and then it should be

turned off, similarly to the sparse selection of Definition 2.4. Since we start from E(0) > ϑ,

then it is necessary that our control forces the total energy to decrease, for instance by

ensuring d
dtE < 0. The following technical result helps us to identify the form of admissible

controls satisfying this property. For the time being, we assume that a Filippov solution

of (2.20) exists, later on we shall prove it.



56 Sparse control of dynamical systems

Lemma 2.15. Suppose there exists a solution of the system (2.20) and let E be the total

energy function associated to it. Then, for every t ≥ 0 we have

d

dt
E(t) = −2

N∑
i=1

bi(t)‖vi(t)‖2 + 2
N∑
i=1

ui(t) · vi(t). (2.21)

Proof. The identity (2.14) in the proof of Proposition 2.11 is still valid for a solution to

(2.20), while (2.15) changes as follows

d

dt

N∑
i=1

‖vi(t)‖2 = −2
N∑
i=1

bi(t)‖vi(t)‖2−

−
N∑
i=1

N∑
j=1

a(‖xi(t)− xj(t)‖2)(xi(t)− xj(t)) · (vi(t)− vj(t))+

+
N∑
i=1

N∑
j=1

f(‖xi(t)− xj(t)‖2)(xi(t)− xj(t)) · (vi(t)− vj(t))+

+ 2
N∑
i=1

ui(t) · vi(t),

because of the control term. Inserting this expression into (2.14) we get (2.21).

From expression (2.21), it is clear that the best way our control can act on E in order

to push it below the threshold is not acting on the mutual distances between agents, but

according to the velocities v. Hence, we focus on the following family of controls, which

closely resembles (2.4) .

Definition 2.16. Let (x, v) ∈ RdN × RdN and 0 ≤ ε ≤ M/E(0). We define the sparse

feedback control u(x, v) = (u1(x, v), . . . , uN (x, v))T ∈ RdN associated to (x, v) as

ui(x, v)
∆
=

−εE(x, v)
vι̂(x,v)

‖vι̂(x,v)‖
if i = ι̂(x, v),

0 otherwise.

where ι̂(x, v) is the minimum index such that

‖vι̂(x,v)‖ = max
1≤j≤N

‖vj‖.

Whenever the point (x, v) is a point of a curve (x, v) : R+ → RdN × RdN , i.e. (x, v) =

(x(t), v(t)) for some t ≥ 0, we will replace everywhere u(x, v) = u(x(t), v(t)) and ι̂(x, v) =

ι̂(x(t), v(t)) with u(t) and ι̂(t), respectively.

The parameter ε will help us to tune the control in order to ensure the convergence to the

consensus region. Moreover, whenever it is clear from the context, we will omit the time

(or the space) dependency of ι̂.

Remark 2.17. Definition 2.16 makes sense if ‖vι̂(t)(t)‖ 6= 0 for at least almost every t ≥ 0.

Notice that, if the latter condition were not holding, then vi(t) = 0 for all i = 1, . . . , N and
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for all t ≥ 0, hence v̇i(t) = 0 for all i = 1, . . . , N and for all t ≥ 0, hence the configuration

of the system would be in a steady state and no control would be needed.

Remark 2.18. Besides this latter observation on the well-posedness of Definition 2.16,

later we show that actually ‖vι̂(t)(t)‖ keeps bounded away from 0 in the interval of time

where we intend the control to act. In particular in the proof of Theorem 2.25 we prove

that if the average speed at time 0 is nonzero, i.e., ‖v(0)‖ > 0, and E(0) is not “too far”

from the threshold (in a precise sense), then we have ‖vι̂(t)(t)‖ > 0 and E(t) ≤ E(0) for

all t such that the control is needed. Hence, for the choice of u as in Definition 2.16 with

parameter ε ≤M/E(0) we have

N∑
i=1

‖ui(t)‖ = εE(t) ≤ M

E(0)
E(t) ≤M,

whence the validity of the constraint (2.19). Therefore, our control is admissible.

2.3 Properties of sample-controlled Cucker-Dong systems

The main goal of this section is to investigate some properties of sampling solutions (see

Definition 2.7) of Cucker-Dong systems associated with the sparse feedback control of Def-

inition 2.16. We shall show that such solutions possess several monotonicity properties,

which will let us conclude that each of these systems satisfying certain regularity conditions

can be driven in the consensus region in finite time. This will pave the way to an exis-

tence result for systems modeled by (2.20) but associated to a class of controls containing

properly the one introduced in Definition 2.16, due to necessary continuity properties.

Therefore, given u as in Definition 2.16 and a sampling time τ > 0, consider the sampling

control

ũi(t)
∆
= u(nτ) for every t ∈ [nτ, (n+ 1)τ ]. (2.22)

Lemma 2.15, together with (2.22), gives us the following crucial fact concerning the growth

of the energy function. Indeed, we can estimate from above the energy function inside every

interval [nτ, (n+ 1)τ ] by a quadratic function on τ .

Lemma 2.19. For all τ > 0, for all n ∈ N and for all s, t such that nτ ≤ s ≤ t ≤ (n+1)τ ,

it holds √
E(t) ≤

√
E(s) + εE(nτ)(t− s). (2.23)

Proof. From (2.21), for all nτ ≤ t < (n+ 1)τ we get

d

dt
E(t) ≤ 2

N∑
i=1

ũi(t) · vι̂(t)

= −2εE(nτ)
vι̂(nτ) · vι̂(t)
‖vι̂(nτ)‖

≤ 2εE(nτ)‖vι̂(t)‖
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≤ 2εE(nτ)
√
E(t)

from Cauchy-Schwarz inequality and the fact that ‖vi(t)‖ ≤
√
E(t) for all i = 1, . . . , N .

Hence, integrating between s and t, where nτ ≤ s ≤ t ≤ (n + 1)τ , we get the desired

inequality.

A useful corollary of the lemma above tells us that, if the energy does not increase in

the interval [0, nτ ], then the agents do not collide until t = (n + 1)τ , i.e., we are able

to bound from below the mutual distances of the agents of system (2.20) on the whole

interval [0, (n+ 1)τ ].

Corollary 2.20. There are sufficiently small τ0 > 0 and ω > 0 such that, for all τ < τ0

there exists d0 > ω satisfying

‖xi(t)− xj(t)‖ ≥ d0, (2.24)

for all 1 ≤ i 6= j ≤ N and for all t ∈ [0, τ ]. Moreover, if E is nonincreasing in [0, nτ ] for

some n ∈ N, then d0 ≥ ω can be chosen such that (2.24) is true for all t ∈ [0, (n+ 1)τ ].

Proof. Hypothesis (2.17) ensures that there are sufficiently small τ0 > 0 and ω > 0 such

that

E(0) < −
[(√

E(0) + εE(0)τ0

)2 − E(0)

]
+

1

2

∫ +∞

ω
f(r)dr. (2.25)

Take τ < τ0. Then, from estimate (2.23) we have that, for all t ∈ [0, τ ],√
E(t) ≤

√
E(0) + εE(0)τ, (2.26)

so, plugging (2.26) into (2.25), we get

E(t) <
1

2

∫ +∞

ω
f(r)dr.

From the definition of E follows that, for all i, j = 1, . . . , N such that i 6= j, it holds∫ +∞

‖xi(t)−xj(t)‖2
f(r)dr <

∫ +∞

ω
f(r)dr;

the thesis then follows from the fact that f is nonincreasing.

Now suppose that E is nonincreasing in [0, nτ ]. Using this fact and estimate (2.23), we

get that (2.26) holds for all t ∈ [0, (n + 1)τ ], and from the same argument as above, we

obtain d0 ≥ ω satisfying (2.24) for all t ∈ [0, (n+ 1)τ ].

Corollary 2.21. For any n ∈ N, if E is nonincreasing in [0, nτ ], then the function L(x(t))

defined in (2.12) is bounded from above for every t ∈ [0, (n+ 1)τ ].

Proof. Since the function a is bounded from above by a(0) and, by Corollary 2.20, the

function f(‖xi(t)− xj(t)‖2) is bounded from above by f(ω2) for every t ∈ [0, (n + 1)τ ],

then L(x(t)) is bounded from above in the whole interval [0, (n+ 1)τ ].
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The following lemma, again a corollary of Lemma 2.19, says that the mutual distances of

the agents grow at most quadratically in time.

Lemma 2.22. Fix τ > 0 and suppose that for all i, j = 1, . . . , N it holds

‖xi(0)− xj(0)‖ ≤ C0

√
E(0),

for some C0 > 0. Then we get

‖xi(t)− xj(t)‖ ≤ (τD(τ) + C0)
√
E(0), (2.27)

for all i, j = 1, . . . , N and for all t ∈ [0, τ ], where

D(τ)
∆
=

M√
E(0)

τ + 2.

Moreover, for all k ∈ N, if E is nonincreasing in [0, kτ ] then for all t ∈ [kτ, (k + 1)τ ] and

all i, j = 1, . . . , N it holds

‖xi(t)− xj(t)‖ ≤ ((k + 1)τD(τ) + C0)
√
E(0). (2.28)

Proof. The following inequalities follow easily from the equations in (2.20), the definition

of the control, and the estimate (2.23): for all kτ ≤ s ≤ t ≤ (k + 1)τ it holds

‖xi(t)− xj(t)‖ ≤
∫ t

s
‖vi(θ)− vj(θ)‖dθ + ‖xi(s)− xj(s)‖

≤
∫ t

s
(‖vi(θ)‖+ ‖vj(θ)‖)dθ + ‖xi(s)− xj(s)‖

≤ 2

∫ t

s

√
E(θ)dθ + ‖xi(s)− xj(s)‖

≤ 2

∫ t

s
(
√
E(s) + εE(nτ)(θ − s))dθ + ‖xi(s)− xj(s)‖

= 2
√
E(s)(t− s) + εE(nτ)(t− s)2 + ‖xi(s)− xj(s)‖,

which, taking s = kτ , yields

‖xi(t)− xj(t)‖ ≤ 2
√
E(kτ)(t− kτ) + εE(kτ)(t− kτ)2 + ‖xi(kτ)− xj(kτ)‖

≤ 2
√
E(kτ)τ + εE(kτ)τ2 + ‖xi(kτ)− xj(kτ)‖. (2.29)

Thus, if k = 0 it holds

‖xi(t)− xj(t)‖ ≤ 2
√
E(0)τ + εE(0)τ2 + ‖xi(0)− xj(0)‖

≤ (τ(ε
√
E(0)τ + 2) + C0)

√
E(0)τ

≤ (τD(τ) + C0)
√
E(0)τ.

Now let us prove by induction on k that, if t ∈ [kτ, (k + 1)τ ] then (2.28) holds assuming

that E is nonincreasing in [0, kτ ]. If k = 0, then it follows from (2.27); so suppose (2.28)
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holds for all j ≤ k. Then from (2.29) we get,

‖xi(t)− xj(t)‖ ≤ 2
√
E(kτ)τ + εE(kτ)τ2 + ‖xi(kτ)− xj(kτ)‖

≤ 2
√
E(0)τ + εE(0)τ2 + (kτD(τ) + C0)

√
E(0)

≤ ((k + 1)τD(τ) + C0)
√
E(0).

This concludes the proof.

The last property of the systems under investigation is the fact that if, at time t = 0 the

norm of the average velocity of the system v is larger in norm than a positive scalar η, then

the norm of v(t) is bounded from below by η until the time horizon t = T ?(η), defined

below.

Lemma 2.23. Suppose that ‖v(0)‖ > 0 and let η be a positive estimate from below of

‖v(0)‖, i.e., ‖v(0)‖ ≥ η > 0. Define the following auxiliary time horizon:

T ?(η)
∆
=

‖v(0)‖2 − η2

2
√
E(0)

(
Λ
√
E(0) + M

N

) .
Furthermore, let ε ≤ M/E(0), fix τ > 0 and n ≤ [T ?(η)/τ ], where [x] stands for the

integer part of x. Then, if E is nonincreasing in [0, nτ ] we have

‖v(t)‖ ≥ η for every t ∈ [0, nτ ]. (2.30)

Proof. Let us compute, for all t ∈ [kτ, (k + 1)τ) with k ≤ n, the derivative of ‖v(t)‖2.

d

dt
‖v(t)‖2 = 2

d

dt
v(t) · v(t)

= − 2

N

N∑
j=1

bj(t)vj(t) · v(t)− 2εE(kτ)

N

vι̂(kτ)(kτ) · v(t)

‖vι̂(kτ)(kτ)‖

≥ −2Λ‖vι̂(t)(t)‖2 −
2εE(kτ)

N
‖vι̂(t)(t)‖,

using the fact that ‖vι̂(t)(t)‖ ≥ max1≤j≤N{‖vj(t)‖, ‖v(t)‖} for all t ≥ 0. Now we use again

the inequality ‖vi(t)‖ ≤
√
E(t), valid for all i = 1, . . . , N , to obtain

d

dt
‖v(t)‖2 ≥ −2‖vι̂(t)(t)‖

[
Λ‖vι̂(t)(t)‖+

εE(kτ)

N

]
≥ −2

√
E(t)

[
Λ
√
E(t) +

εE(kτ)

N

]
≥ −2

√
E(0)

[
Λ
√
E(0) +

εE(0)

N

]
≥ −2

√
E(0)

[
Λ
√
E(0) +

M

N

]
,

since E is nonincreasing in [0, kτ ] for all k ≤ n and ε ≤ M/E(0). Furthermore, since the
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last quantity is constant, by integrating between kτ and t we get

‖v(t)‖2 ≥ −2
√
E(0)

[
Λ
√
E(0) +

M

N

]
(t− kτ) + ‖v(kτ)‖2, (2.31)

for every t ∈ [kτ, (k + 1)τ ]. We will now prove by induction on k ≤ n that

‖v(t)‖2 ≥ −2
√
E(0)

[
Λ
√
E(0) +

M

N

]
t+ ‖v(0)‖2, (2.32)

for every t ∈ [kτ, (k + 1)τ ]. This is straightforward for k = 0, so suppose (2.32) holds for

k ≤ n and let us prove it for k+ 1. From (2.31) and from the inductive hypothesis we get

‖v(t)‖2 ≥ −2
√
E(0)

[
Λ
√
E(0) +

M

N

]
(t− kτ) + ‖v(kτ)‖2

≥ −2
√
E(0)

[
Λ
√
E(0) +

M

N

]
(t− kτ)

− 2
√
E(0)

[
Λ
√
E(0) +

M

N

]
kτ + ‖v(0)‖2

= −2
√
E(0)

[
Λ
√
E(0) +

M

N

]
t+ ‖v(0)‖2.

Hence, if t ≤ nτ ≤ [T ?(η)/τ ]τ ≤ T ?(η), we get

‖v(t)‖2 ≥ η2,

which concludes the proof.

Remark 2.24. We can get a larger interval of validity of (2.30) by using in the proof

above the upper bound ‖vi(t)‖2 ≤ E(t)− Ep(t) instead of ‖vi(t)‖2 ≤ E(t), where

Ep(t)
∆
=

1

2

N∑
i,j=1

i 6=j

∫ ‖xi(t)−xj(t)‖2
0

a(r)dr +
1

2

N∑
i,j=1

i 6=j

∫ +∞

‖xi(t)−xj(t)‖2
f(r)dr

is the potential part of E(t). In this case, given b, B ≥ 0 such that b ≤ ‖xi(t)− xj(t)‖2 ≤ B
for every i 6= j and t ≥ 0, we can estimate Ep(t) from below by

S(b, B)
∆
=

1

2

N∑
i,j=1

i 6=j

∫ b

0
a(r)dr +

1

2

N∑
i,j=1

i 6=j

∫ +∞

B
f(r)dr.

Thus, given b and B as above we get the finer estimate ‖vi(t)‖2 ≤ E(t) − S(b, B), and if

we replace ‖vi(t)‖2 ≤ E(t) with it we get

T ?(η, b, B)
∆
=

‖v(0)‖2 − η2

2
√
E(0)− S(b, B)

(
Λ
√
E(0)− S(b, B) + M

N

) .
Clearly, with the choice b = 0 and B = +∞ we get back T ?(η, b, B) = T ?(η), since
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S(b, B) = 0.

For the convenience of the reader, we now list all the highlighted properties of controlled

Cucker-Dong systems which will be useful in the proof of the main result of the following

section:

(i) linear growth estimate of
√
E(t) (Lemma 2.19);

(ii†) the distance ‖xi(t)− xj(t)‖ can be estimated from below by a constant d0 ≥ ω

(Corollary 2.20);

(iii†) quadratic growth estimate from above of ‖xi(t)− xj(t)‖ (Lemma 2.22);

(iv) if ‖v(0)‖ ≥ η > 0 then there exists T > 0 such that ‖v(t)‖ ≥ η for every t ≤ T

(Lemma 2.23), provided that E is not increasing in [0, T ].

Each condition marked by a † holds in each starting interval [0, τ ] and in every interval

[0, (n+ 1)τ ] provided that E is nonincreasing in [0, nτ ].

2.4 Piecewise-constant sparse controls are effective

We pass to prove that the sampled sparse control strategy is indeed able to steer Cucker-

Dong systems into the consensus region, provided they are not too unruly (in a sense

specified below), from the properties listed in the section above.

Since in what follows, η will always be a fraction of ‖v(0)‖, i.e., η = ‖v(0)‖ /q for some

q > 1, we will set

T ?(q)
∆
= T ?

(
1

q
‖v(0)‖

)
=

‖v(0)‖2

2
√
E(0)

(
Λ
√
E(0) + M

N

) (1− 1

q2

)
.

We can now present the main result of this section, which is the equivalent version of

Theorem 2.8 for Cucker-Dong systems.

Theorem 2.25. Fix M > 0. Let (x0, v0) ∈ RdN × RdN be such that the following hold:

(a) 0 < ‖x0
i − x0

j‖ ≤ C0

√
E(0) for all 1 ≤ i 6= j ≤ N , for some C0 > 0,

(b) ‖v(0)‖ > 0,

(c) suppose there exists a q > 1 satisfying

E(0) ln

(
E(0)

ϑ

)
<

2M

q
‖v(0)‖T ?(q).

Then there exist τ0 > 0, ω > 0 and ε > 0 such that for every τ ≤ τ0

1

2T ?(q)
(

1
q ‖v(0)‖ − µ(τ, q)

) ln

(
E(0)

ϑ

)
≤ ε ≤ M

E(0)
(2.33)
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holds, where for the sake of brevity we have set

µ(τ, q)
∆
= MΛτ2+

(
M+Λ

√
E(0)+(a(0)+f(ω2)) ((T ?(q)+τ)D(τ)+C0)N

√
E(0)

)
τ.

(2.34)

Moreover, the sampling solution of system (2.20) associated with the control u of Definition

2.16 with control parameter ε satisfying (2.33), the sampling time τ ≤ τ0 and initial datum

(x0, v0) reaches the consensus region before time T ?(q).

Proof. Let q > 1 such that it satisfies condition (c) of the statement, and take τ0 and ω

sufficiently small to allow us to apply Corollary 2.20 and to satisfy the inequality

1

q
‖v(0)‖ − µ(τ0, q) ≥

E(0)

2M T ?(q)
ln

(
E(0)

ϑ

)
. (2.35)

Notice that the existence of such τ0 and ω follows from condition (c). Furthermore, (2.35)

grants the existence of an ε > 0 for which (2.33) is satisfied and implies that the following

inequalities are true:

1

q
‖v(0)‖ − µ(τ0, q) + T ?(q)D(τ0) > 0, (2.36)

1

q
‖v(0)‖ − µ(τ0, q) > 0. (2.37)

Moreover, all the above inequalities are still true if we substitute τ0 by any τ ≤ τ0.

Now, denote with (x(·), v(·)) the solution of (2.20) associated with the control u with ε as

in (2.33), the sampling time τ ≤ τ0 and initial datum (x0, v0). As already pointed out in

the proof of Lemma 2.19, for every t ∈ [nτ, (n+ 1)τ) it holds

d

dt
E(t) ≤ −2εE(nτ)

vι̂(nτ) · vι̂(t)
‖vι̂(nτ)‖

,

where ι̂
∆
= ι̂(nτ). We define

φ(t)
∆
= E(nτ)

vι̂(nτ) · vι̂(t)
‖vι̂(nτ)‖

,

and we study its derivative with respect to t ∈ [nτ, (n + 1)τ). Notice that if E is nonin-

creasing in [0, nτ ] and if nτ ≤ T ?(q), then

φ(nτ) = E(nτ)‖vι̂(nτ)‖ ≥ 1

q
‖v(0)‖E(nτ)

holds because we are under the hypothesis of Lemma 2.23 and we can use the estimate

(2.30). We have the following estimate from below

d

dt
φ(t) = E(nτ)

vι̂(nτ) · ddtvι̂(t)
‖vι̂(nτ)‖

=
E(nτ)

‖vι̂(nτ)‖

[
− bι̂(t)vι̂(nτ) ·vι̂(t)+

N∑
j=1

a
(
‖xι̂(t)−xj(t)‖2

)
vι̂(nτ) · (xj(t)−xι̂(t))+
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+
N∑
j=1

f
(
‖xι̂(t)− xj(t)‖2

)
vι̂(nτ) · (xι̂(t)− xj(t))−

εE(nτ)‖vι̂(nτ)‖2

‖vι̂(nτ)‖

]

≥ E(nτ)

[
− bι̂(t)‖vι̂(t)‖ −

N∑
j=1

a
(
‖xι̂(t)− xj(t)‖2

)
‖xj(t)− xι̂(t)‖−

−
N∑
j=1

f
(
‖xι̂(t)− xj(t)‖2

)
‖xι̂(t)− xj(t)‖ − εE(nτ)

]

≥−E(nτ)

Λ‖vι̂(t)‖+
N∑
j=1

(
a(0)+f

(
‖xι̂(t)−xj(t)‖2

))
‖xj(t)−xι̂(t)‖+εE(nτ)


≥−E(nτ)

Λ
√
E(t)+

N∑
j=1

(
a(0)+f

(
‖xι̂(t)−xj(t)‖2

))
‖xj(t)−xι̂(t)‖+εE(nτ)

,
having used the Cauchy-Schwarz inequality and the fact that the damping functions bi
and the attraction force function a are bounded from above.

Now, for the sake of compact notation, set rij(t)
∆
= ‖xi(t)− xj(t)‖. By the mean value

theorem, there exists ξn ∈ [nτ, t] such that, using the estimate (2.23) in Lemma 2.19, we

get

φ(t) ≥ φ(nτ)− τE(nτ)

Λ
√
E(ξn) +

N∑
j=1

(a(0) + f(rι̂j(ξn)2))rι̂j(ξn) + εE(nτ)


≥ E(nτ)

[
‖vι̂(nτ)‖ − (ΛεE(nτ))τ2−

−

(εE(nτ) + Λ
√
E(nτ)

)
+

N∑
j=1

(a(0) + f(rι̂j(ξn)2))rι̂j(ξn)

 τ

]

≥ E(nτ)

‖vι̂(nτ)‖ − β(n)τ2 −

γ(n) +

N∑
j=1

(
a(0) + f(rι̂j(ξn)2)

)
rι̂j(ξn)

 τ

 ,
where we have estimated ε from above by M/E(0) and, again for the sake of brevity, we

have set

β(k)
∆
=

ΛME(kτ)

E(0)
,

γ(k)
∆
=
ME(kτ)

E(0)
+ Λ

√
E(kτ),

for every k ∈ N. So in the end we obtained the estimate

d

dt
E(t) ≤ −2εE(nτ)

‖vι̂(nτ)‖−β(n)τ2−

γ(n)+

N∑
j=1

(a(0)+f(rι̂j(ξn)2))rι̂j(ξn)

 τ

,
which is valid for all t ∈ [nτ, (n+ 1)τ ] where nτ ≤ T ?(q).
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We will now prove by induction on n that E is nonincreasing in [0, (n + 1)τ ], where

nτ ≤ T ?(q). First of all, if n = 0 then ξ0 ∈ [0, τ ], and we can use Corollary 2.20 and

Lemma 2.22 to bound rι̂j(ξ0) from below by ω and from above by (τD(τ) + C0)
√
E(0).

Moreover, since τ ≤ T ?(q), we can bound ‖vι̂(nτ)‖ from below by ‖v(0)‖ /q by Lemma

2.23. So by (2.36) we get

d

dt
E(t) ≤−2εE(0)

[
1

q
‖v(0)‖−β(0)τ2−

(
γ(0)+(a(0)+f(ω2))(τD(τ)+C0)N

√
E(0)

)
τ

]
= −2εE(0)

[
1

q
‖v(0)‖ − µ(τ, q) + T ?(q)D(τ)

]
< 0.

Hence suppose that E is nonincreasing in [0, nτ ] where (n− 1)τ ≤ T ?(q), and let us prove

that it is also true in [nτ, (n + 1)τ ], if nτ ≤ T ?(q). By the fact that ξn ≥ nτ and by

the inductive hypothesis, we can use the bounds from Corollary 2.20, Lemma 2.22, and

Lemma 2.23 as before to get

d

dt
E(t) ≤ −2εE(0)

[
1

q
‖v(0)‖ − β(0)τ2−

−
(
γ(0) + (a(0) + f(ω2))((n+ 1)τD(τ) + C0)N

√
E(0)

)
τ

]

≤ −2εE(0)

[
1

q
‖v(0)‖ − β(0)τ2−

−
(
γ(0) + (a(0) + f(ω2))((T ?(q) + τ)D(τ) + C0)N

√
E(0)

)
τ

]

≤ −2εE(0)

[
1

q
‖v(0)‖ − µ(τ, q)

]
< 0,

by condition (2.37). It is worth noticing that since E is nonincreasing in [0, nτ ] then

β(n) ≤ β(0) and γ(n) ≤ γ(0).

Hence, E is nonincreasing in [0, [T ?(q)/τ ]τ + 1]. From this fact follows that for all n such

that nτ ≤ T ?(q) and for all t ∈ [nτ, (n + 1)τ ] we have E(t) ≤ E(nτ), which gives us,

together with Corollary 2.20, Lemma 2.22, and Lemma 2.23, the following:

d

dt
E(t) ≤ −2εE(nτ)

1

q
‖v(0)‖ − β(n)τ2 −

γ(n) + (a(0) + f(ω2))
N∑
j=1

dι̂,j(ξn)

 τ


≤ −2εE(t)

[
1

q
‖v(0)‖ − µ(τ, q)

]
. (2.38)

By integrating between 0 and t we obtain

E(t) ≤ E(0)e
−2ε

[
1
q
‖v(0)‖−µ(τ,q)

]
t
,
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so if

t ≥ 1

2ε
[

1
q ‖v(0)‖ − µ(τ, q)

] ln

(
E(0)

ϑ

)
,

then E(t) ≤ ϑ and thus the control steers the system into the consensus region in finite

time.

Now we have to ensure that the energy level goes below the threshold before inequality

(2.38) does not hold anymore; clearly, this happens if we impose that

T ?(q) ≥ 1

2ε
[

1
q ‖v(0)‖ − µ(τ, q)

] ln

(
E(0)

ϑ

)
,

and this is true if and only if

ε ≥ 1

2T ?(q)
[

1
q ‖v(0)‖ − µ(τ, q)

] ln

(
E(0)

ϑ

)
,

which holds because ε was chosen to satisfy (2.33).

Moreover, condition (2.19) is also satisfied since, for all t ∈ [nτ, (n+ 1)τ ]

N∑
i=1

‖ui(t)‖ ≤
εE(nτ)

‖vι̂(nτ)‖
‖vι̂(nτ)‖

≤ εE(0)

≤M

which follows from (2.33) and the fact that E is decreasing in the whole time interval of

activity of the control.

We now give a more operative reformulation of condition (c), which gives a clearer idea of

when the above result holds.

Proposition 2.26. Condition (c) of Theorem 2.25 is equivalent to the following request:

(c′) the threshold ϑ satisfies

ϑ > E(0) exp

−2
√

3

9

M‖v(0)‖3

E(0)
√
E(0)

(
Λ
√
E(0) + M

N

)
 .

Moreover, if (c′) is satisfied, one can take

q
∆
=

2M‖v(0)‖3

3E(0)
√
E(0)

(
Λ
√
E(0) + M

N

)
ln
(
E(0)
ϑ

)
for condition (c) to hold true.
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Proof. Remembering that

T ?(q) =
‖v(0)‖2

2
√
E(0)

(
Λ
√
E(0) + M

N

) (1− 1

q2

)
,

we may rewrite condition (c) of Theorem 2.25 as

E(0) ln

(
E(0)

ϑ

)
<

M‖v(0)‖3√
E(0)

(
Λ
√
E(0) + M

N

) (q2 − 1

q3

)
. (2.39)

If we set

K
∆
=
E(0)

√
E(0)

(
Λ
√
E(0) + M

N

)
M‖v(0)‖3

ln

(
E(0)

ϑ

)
,

we obtain from (2.39) the equivalent polynomial inequality in q

Kq3 − q2 < −1.

We now show that the request K < 2
√

3/9 is equivalent to the existence of a q > 0 such

that Kq3 − q2 < −1 holds, and additionally one can choose q > 1, as in the statement.

If we study the derivative of the polynomial π(q) = Kq3 − q2 we find that the stationary

points of π(q) are q = 0 (which is a local maximum) and q = 2/3K (which is a local

minimum). Moreover, since the roots of π(q) are q = 0 and q = 1/K then π(q) ≤ 0 if and

only if q ≤ 1/K. Hence, there exists a q > 0 such that π(q) < −1 if and only if π(q) < −1.

But

π(q) = (Kq − 1)q2

= − 4

27K2
,

so we have π(q) < −1 if and only if

K <
2
√

3

9
. (2.40)

The bound (2.40) trivially implies that q > 1, and furthermore is equivalent to

ln

(
E(0)

ϑ

)
<

2
√

3

9

M‖v(0)‖3

E(0)
√
E(0)

(
Λ
√
E(0) + M

N

) .
From this follows that hypothesis (c) of Theorem 2.25 holds if and only if (c′) holds.

Remark 2.27. Since we were under the hypothesis that the initial energy was above the

threshold, from condition (c′) we get that our control strategy is effective whenever

E(0) > ϑ > E(0) exp

−2
√

3

9

M‖v(0)‖3

E(0)
√
E(0)

(
Λ
√
E(0) + M

N

)
 ,
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which means that the threshold should not be too far away from the initial energy.

2.5 Existence of solutions of controlled Cucker-Dong sys-

tems

In order to prove an existence result for (2.20), as already claimed at the beginning of

Section 2.3 we need to enlarge the set of sparse controls we want to work with. Indeed, as

in the case of the controlled Cucker-Smale system, the family of sparse controls introduced

in Definition 2.16 is too tight because, as the sampling time goes to 0, we may lose the

sparsity we have enforced on our controls, and we have to weaken it to gain convergence

for the sequence of controls.

2.5.1 Enlarging the set of controls

In what follows, we fix a Cucker-Dong system (2.20) satisfying conditions (a) − (c) of

Theorem 2.25, we indicate with E(0) its initial energy and with

γq
∆
=
‖v(0)‖
q

,

where q is as in Proposition 2.26.

Each value of γq yields a partition of RdN × RdN into four disjoint sets:

P1
∆
= {(x, v) ∈ RdN × RdN : max1≤i≤N ‖vi‖ < γq},

P2
∆
= {(x, v) ∈ RdN × RdN : max1≤i≤N ‖vi‖ = γq and ∃k ≥ 1 and i1, . . . , ik
∈ {1, . . . N} such that ‖vi1‖ = . . . = ‖vik‖ and ‖vi1‖ > ‖vj‖ for every j 6∈ {i1, . . . , ik}},

P3
∆
= {(x, v) ∈ RdN × RdN : max1≤i≤N ‖vi‖ > γq and ∃!i ∈ {1, . . . N} such

that ‖vi‖ > ‖vj‖ for every j 6= i},

P4
∆
= {(x, v) ∈ RdN × RdN : max1≤i≤N ‖vi‖ > γq and ∃k > 1 and i1, . . . , ik
∈ {1, . . . N} such that ‖vi1‖ = . . . = ‖vik‖ and ‖vi1‖ > ‖vj‖ for every j 6∈ {i1, . . . , ik}},

Definition 2.28. For every (x, v) ∈ RdN ×RdN we denote with U(x, v) ⊆ RdN the set of

all vectors u(x, v) = (u1(x, v), . . . , uN (x, v))T ∈ RdN , whose vector entries are of the form

ui(x, v) =

−εiE(x, v)
vi
‖vi‖

if ‖vi‖ 6= 0,

0 if ‖vi‖ = 0,

where the coefficients εi ≥ 0 satisfy

N∑
i=1

εi ≤
M

E(0)
,

and

• if (x, v) ∈ P1 then εi = 0 for every i = 1, . . . , N ;
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• if (x, v) ∈ P2 then indicating with i1, . . . , ik the indexes such that ‖vi1‖ = . . . =

‖vik‖ = γq and ‖vi1‖ > ‖vj‖ for every j 6∈ {i1, . . . , ik}, we have εj = 0 for every

j 6∈ {i1, . . . , ik};

• if (x, v) ∈ P3 then, indicating with i the only index such that ‖vi‖ > ‖vj‖ for every

j 6= i, we have εi = M/E(0) and εj = 0 for every j 6= i;

• if (x, v) ∈ P4 then, indicating with i1, . . . , ik the indexes such that ‖vi1‖ = . . . = ‖vik‖
and ‖vi1‖ > ‖vj‖ for every j 6∈ {i1, . . . , ik}, we have εj = 0 for every j 6∈ {i1, . . . , ik}
and

∑k
`=1 εi` = M/E(0).

Remark 2.29. For every 0 ≤ ε ≤M/E(0) and for every t ≥ 0, the control u(t) introduced

in Definition 2.16 associated to ε belongs to U(x(t), v(t)) whenever t ≤ T ?(q), since Lemma

2.23 guarantees maxi≤i≤N ‖vi(t)‖ ≥ γq for every t ∈ [0, T ?(q)].

The set U(x, v) is closed and convex, and, moreover, has the following very elegant alter-

native variational interpretation, reminiscent of Definition 2.3.

Proposition 2.30. For every (x, v) ∈ RdN × RdN and for every M ≥ 0, set

M(x, v)
∆
= M

E(x, v)

E(0)
and K(x, v)

∆
=

{
u ∈ RdN :

N∑
i=1

‖ui‖ ≤M(x, v)

}
.

Let J : RdN → R be the functional defined by

J (u, v)
∆
= v · u+ γq

N∑
i=1

‖ui‖ . (2.41)

Then

U(x, v) = arg min
u∈K(x,v)

J (u, v).

Proof. Without loss of generality one can minimize (2.41) componentwise, i.e., considering

the minimization of the function

ui 7→ vi · ui + γq ‖ui‖ ,

for all i = 1, . . . , N individually. If ‖vi‖ < γq then, by Cauchy-Schwarz, we infer that

vi · ui + γq ‖ui‖ ≥ 0, for all u ∈ K(x, v),

and in particular the choice ui = 0 minimizes this component. Otherwise, if ‖vi‖ ≥ γq
then, due to the isotropy of the norm ‖ui‖, the minimal direction is the opposite to vi,

i.e., for ui = −αivi/‖vi‖, for some αi ≥ 0, or equivalently there exists εi ≥ 0 such that

αi = εiE(x, v). Hence, now the problem is how to allocate the weights εi in order to keep

u within K(x, v) and simultaneously to minimize J (·, v). Clearly, for u to be in K(x, v),

the choice of εi has to be such that ∑
{i∈{1,...,N}:‖vi‖≥γq}

εi ≤
M

E(0)
.
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To conclude, from a direct check of the individual cases depending on the partition P`,
` = 1, . . . , 4, we can easily infer that U(x, v) is the set of minimizers of J (·, v) over the set

K(x, v).

Another key property of the set U is that, as a set-valued function of (x, v), it is upper

hemicontinuous.

Definition 2.31. A set-valued function F from a topological space X to P(Y ), the power

set of a real vector space Y , is said to be upper hemicontinuous at x0 ∈ X if and only if

for every continuous linear functional p : Y → R the function

x 7→ sup
u∈F (x)

p(u)

is upper semicontinuous at x0 ∈ X. F is called upper hemicontinuous if it is upper hemi-

continuous at every x0 ∈ X.

Proposition 2.32. The function U : RdN × RdN → P(RdN ) which associates to every

point (x, v) the set U(x, v) is upper hemicontinuous.

Proof. We have to prove that for every continuous linear functional p from RdN to R, the

function σ : RdN × RdN → R defined as follows

σ : (x, v) 7→ sup
u∈U(x,v)

p(u)

is upper semicontinuous, i.e., for every (x, v) ∈ RdN ×RdN and for every ε > 0 there exists

a neighborhood N of (x, v) such that σ(x̃, ṽ) ≤ σ(x, v) + ε for all (x̃, ṽ) ∈ N whenever

σ(x, v) > −∞, and σ(x̃, ṽ) tends to −∞ as (x̃, ṽ) tends to (x, v) whenever σ(x, v) = −∞.

First of all, notice that since U(x, v) is closed and bounded, then it is compact and hence

σ(x, v) > −∞.

Hence fix a continuous linear functional p from RdN to R, (x, v) ∈ RdN and ε > 0. From

Definition 2.28, an entry uj of u ∈ U(x, v) is zero if and only if ‖vj‖ < max{γq,max1≤i≤N ‖vi‖},
so if the latter condition holds, by the continuity of ‖·‖ we can find a neighborhood N of

(x, v) such that for every (x̃, ṽ) ∈ N we have

‖ṽj‖ < max

{
γq, max

1≤i≤N
‖ṽi‖

}
.

Since given any two vectors u,w ∈ U(x, v), ui is zero if and only if wi is, this implies that

for every (x̃, ṽ) ∈ N and for every ũ ∈ U(x̃, ṽ), the component ũi is zero only if ui is zero

for some u ∈ U(x, v).

Moreover, if ‖vi1‖ = . . . = ‖vik‖ = max1≤i≤N ‖vi‖ and for some (x̃, ṽ) ∈ N there exists

1 ≤ h ≤ k such that

max
{∥∥∥ṽij1∥∥∥, . . . ,∥∥∥ṽijh∥∥∥} < ∥∥∥ṽi`1∥∥∥ = . . . =

∥∥∥ṽi`k−h∥∥∥ = max
1≤i≤N

‖ṽi‖ ,

for i`s 6= ijr , for all s = 1, . . . , k − h and r = 1, . . . , h, then ũij1 = . . . = ũijh = 0, while

ũi`s 6= 0 for every 1 ≤ s ≤ k − h, for all ũ ∈ U(x̃, ṽ).
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These two facts together bring us to the conclusion that U(N ) = U(x, v), so for every

(x̃, ṽ) ∈ N , σ(x̃, ṽ) = σ(x, v) < σ(x, v) + ε, proving the upper semicontinuity of σ.

Remark 2.33. The problem with the family of controls introduced in Definition 2.16 is

that if we were to take U(x, v) = {u(x, v)} instead of the set in Definition 2.28, where u

is as in Definition 2.16, then U would not have been upper hemicontinuous.

2.5.2 Existence of solutions for the differential inclusion

We are going to use the following convergence result concerning hemicontinuous set-valued

functions.

Theorem 2.34 ([17, Theorem 1]). Let F be a proper hemicontinuous map from a Haus-

dorff locally convex space X to the closed convex subsets of a Banach space Y . Let I be

an interval of R and (xn)n∈N and (yn)n∈N be measurable functions from I to X and Y

respectively, satisfying

(i) for almost every t ∈ I and for every neighborhood N of 0 in X × Y there exists n0

such that for every n ≥ n0, yn(t) ∈ F (xn(t)) +N ;

(ii) (xn)n∈N converges almost everywhere to a function x : I → X;

(iii) (yn)n∈N ⊆ L1(I;Y ) and converges weakly to y in L1(I;Y ).

Then for almost every t ∈ I it holds

y(t) ∈ F (x(t)).

Theorem 2.35. For every M > 0 and for every initial condition (x0, v0) ∈ RdN ×RdN , if

system (2.20) satisfies conditions (a)− (c) of Theorem 2.25 then there exist q > 1, τ0 > 0,

ω > 0, and ε > 0 such that

1

2T ?(q)
(

1
q ‖v(0)‖ − µ(τ0, q)

) ln

(
E(0)

ϑ

)
≤ ε ≤ M

E(0)
(2.42)

holds, where µ(τ, q) is as in (2.34).

Moreover, for every t ≤ T ?(q) there exists a solution of

z(t) = z0 +

∫ t

0

(
g(z(s)) + u(z(s))

)
ds, z = (x, v), g(z) = (v,−L(x)x− vb)

associated with a control u such that u(t) ∈ U(z(t)) for every t ≤ T ?(q). Here we use the

compact notation introduced in (2.12).

Proof. Apply Theorem 2.25 to get q > 1, τ0 > 0, ω > 0, and ε > 0 satisfying (2.42). Notice

that, if τ ≤ τ0, then

1
1
q ‖v(0)‖ − µ(τ, q)

<
1

1
q ‖v(0)‖ − µ(τ0, q)
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which implies that ε satisfies also (2.33) for every τ ≤ τ0.

Hence, for every n > 1/τ0, Theorem 2.25 guarantees the existence of a sampling solution

zn(·) ∆
= (xn(·), vn(·)) of system (2.20) associated with the feedback control u satisfying

Definition 2.16, the sampling time τ = 1/n and initial datum z0 = (x0, v0). Setting ũn(t)

to be the RdN × RdN vector (0, . . . , 0, u(z([nt]/n)))T , we have that

zn(t) = z0 +

∫ t

0

(
g(zn(s)) + ũn(s)

)
ds. (2.43)

By Corollary 2.21 the function L(x(t)) defined in (2.12) is bounded in the interval [0, T ?(q)],

thus there is a constant α > 0 such that the following linear growth estimate for g holds

for every n ∈ N and s ∈ [0, T ?(q)]:

‖g(zn(s))‖ ≤ α(‖zn(s)‖+ 1).

Plugging this estimate into (2.43) and using Gronwall’s Lemma A.1, we get that the

inequality

‖zn(t)‖ ≤
(∥∥z0

∥∥+ (α+M)t
)
eαt

is true in [0, T ?(q)], hence the sequence of piecewise C1 functions (zn)n∈N is pointwise

equibounded by the function

C(t)
∆
=
(∥∥z0

∥∥+ (α+M)t
)
eαt, for every t ∈ [0, T ?(q)].

Moreover, the sequence (zn)n∈N is also equicontinuous in [0, T ?(q)] since for every t, s ∈
[0, T ?(q)] such that t ≤ s, it holds

‖zn(t)− zn(s)‖ ≤
∫ t

s
(‖g(zn(θ))‖+M)dθ ≤ (t− s)(α(C(T ?(q)) + 1) +M).

Therefore, an application of the Ascoli-Arzelá Theorem yields a subsequence which we

rename again as (zn)n∈N converging uniformly to a continuous function z : [0, T ?(q)] →
RdN × RdN and, by the continuity of g, (g(zn))n∈N converges to g(z). Concerning the

sequence of controls (un)n∈N, since each un has norm bounded by M , it is a uniformly

integrable sequence; hence it satisfies the hypothesis of the Dunford-Pettis Theorem (see

[11, Theorem 1.38]), which means that, up to subsequences, it converges weakly in L1 to

a function u ∈ L1([0, T ?(q)]).

From Proposition 2.32, by taking F = U , I = [0, T ?(q)], (xn)n∈N = (zn)n∈N, (yn)n∈N =

(un)n∈N, x = z and y = u, we are under the hypothesis of Theorem 2.34 and so we can

conclude that u(t) ∈ U(z(t)) for every t ≤ T ?(q) (since by Remark 2.29 we can guarantee

un(t) ∈ U(zn(t)) only if t ≤ T ?(q)). Since (un)n∈N converges weakly to u in L1([0, T ?(q)]),

in particular we have

lim
n→∞

∫ t

0
un(s)ds =

∫ t

0
u(s)ds

for every t ≤ T ?(q). Hence passing to the limit in (2.43) we conclude the proof.
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We are thus able to prove existence for Filippov solutions to the differential inclusion

associated to system (2.9) with controls belonging to U , in the spirit of Theorem 2.9.

Corollary 2.36. For every M > 0 and every (x, v) ∈ RdN × RdN define

F (x, v)
∆
= {(v,−L(x)x− vb+ u) : u ∈ U(x, v)} .

Then, for every (x0, v0) ∈ RdN×RdN , if conditions (a)−(c) of Theorem 2.25 are satisfied,

the differential inclusion

(ẋ(t), v̇(t)) ∈ F (x(t), v(t))

with initial condition (x(0), v(0)) = (x0, v0) is well-posed as long as t ∈ [0, T ?(q)].

2.5.3 Decay rate estimate for sparse control strategy and instantaneous
optimality

Let us stress again that in general the existence of a solution associated to a sparse control

as in Definition 2.16 does not follow from Corollary 2.36, as we can say only that solutions

exists within the class of feedback controls U(x, v), which is much larger and contains

nonsparse controls as well. Nevertheless, in what follows, we do suppose there exists a

solution to system (2.20) associated to the control introduced in Definition 2.16 with

ε = M/E(0), and we analyze what could be the corresponding rate of convergence to the

consensus region, compared with any other solution within the class of feedback controls

U(x, v).

Proposition 2.37. If ‖v(0)‖ ≥ η > 0 then, for every t ∈ [0, T ?(q)] it holds

E(t) ≤ E(0)e
− 2η
E(0)

Mt
.

Proof. Before we start, notice that we can prove a continuous-time analogous of Lemma

2.23 in the same way, thus obtaining the fact that if ‖v(0)‖ ≥ η > 0 then ‖v(t)‖ ≥ η for

every t ≤ T ?(η). Using Lemma 2.15 together with this fact we get

d

dt
E(t) ≤ 2

(
−εE(t)

vι̂(t)(t)∥∥vι̂(t)(t)∥∥
)
· vι̂(t)(t)

= −2εE(t)
∥∥vι̂(t)(t)∥∥

≤ −2ηM

E(0)
E(t),

hence, integrating between 0 and t we get the desired estimate.

The next result shows that this decay estimate is the best we can get among the controls

introduced in Definition 2.28. It is the Cucker-Dong counterpart of Proposition 2.5.

Theorem 2.38. The feedback control of Definition 2.16 associated to the solution of The-

orem 2.25 is an instantaneous minimizer of

D(t, u)
∆
=

d

dt
E(t)
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over all possible feedback controls in U(x(t), v(t)).

Proof. We have already proven in Lemma 2.15 that

d

dt
E(t) = −2

N∑
i=1

bi(t)‖vi(t)‖2 + 2
N∑
i=1

ui(t) · vi(t),

so in order to minimize D(t, u) with respect to u ∈ U(x(t), v(t)) we have to work on the

second term. Now, since

N∑
i=1

ui(t) · vi(t) = −E(t)

N∑
i=1

εi ‖vi(t)‖,

minimizing D(t, u) is equivalent to solve

max

N∑
i=1

εi ‖vi(t)‖ subject to

N∑
i=1

εi ≤
M

E(0)
. (2.44)

By definition

N∑
i=1

εi ‖vi(t)‖ ≤
∥∥vι̂(t)(t)∥∥ N∑

i=1

εi

≤ M

E(0)

∥∥vι̂(t)(t)∥∥ ,
which means that the choice of the control made in Definition 2.16 is a maximizer of

(2.44). Moreover, the solution of the problem is unique whenever
∥∥vι̂(t)(t)∥∥ > ‖vj(t)‖ for

all j 6= ι̂(t).

Similarly to what we have seen in the case of the Cucker-Smale system, the previous result

shows that the most effective control strategy that the external policy maker can enact

is to allocate all the resources at its disposal only on very few key agents in the system,

in order to keep the dynamics bounded and collision avoiding. One of the most relevant

differences with respect to Theorem 2.9 though is that for the Cucker-Smale model the

stabilization can be achieved unconditionally, i.e., independently of the initial conditions

(x0, v0). For the Cucker-Dong model, instead, a similar sparse control strategy yields only

a conditional results, i.e., we obtain stabilization conditionally to an initial energy level

ϑ < E(0) < cϑ,

for a constant c > 1, as stated in condition (c′) of Proposition 2.26. Our numerical ex-

periments, which follow below, suggest that it is possible to exceed such an upper energy

barrier, but it is unclear whether this is just a matter of fortunate choices of good initial

conditions or we can actually have a broader stabilization range than the one analytically

derived in the previous sections.
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2.6 Numerical validation of the sparse control strategy

In this section we will report the results of significant numerical simulations on Cucker-

Dong systems in dimension d = 2 with and without the use of the sparse control strategy

outlined in Definition 2.16. Throughout the section, we will keep fixed the number of

agents (N = 8), the friction applied (Λ = 0, i.e., frictionless) and the form of the repulsive

function (f(r) = r−p). We restrict only to N = 8 simply for an easier visualization of the

results. This means that we will vary the shape of the function a (i.e., we will act on β),

the slope of the repulsion function (changing the value of p) and the maximum amount of

strength of the sparse control (the parameter M). The parameter ε is always set equal to

M/E(0).

2.6.1 First case study: β = 1.1 and p = 2

Figure 2.3 displays the spatial evolution and speeds of the agents of a Cucker-Dong system

with β = 1.1 and p = 2:
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Figure 2.3: Space evolution and speeds of the uncontrolled system.

Though we can not infer the divergence of the system from this finite-time simulation,

the portrayed situation seems far from going towards a flocking behavior. The only agents

which seem to flock are Agent 1, Agent 2, Agent 5 and Agent 6 (resp. black, blue, red and

magenta trajectories), as it is also visible by the corresponding speed graph, in which the

speed of each agent is adjusted to the one of the other agents.
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Figure 2.4: Energy profile of the uncontrolled system.

Figure 2.4 shows that the total energy E (the red line) is constant and far away from

the consensus threshold ϑ (black line). The increase in the distances between particles is
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reflected in an increase in the adhesion potential energy (the one due to a, see (2.13)) and

in a decrease in the repulsive one (due to f).

If instead we apply our sparse control strategy with M = 35 on the same system with the

same initial conditions, the situation gets immediately far better from a consensus point

of view, as we can witness from Figure 2.5.
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Figure 2.5: Space evolution and speeds of the controlled system.

The spatial evolution graph shows a braid movement which resembles a pattern near to

flocking as it is commonly interpreted. The action of our control is evident from the energy

profile of the system, portrayed in Figure 2.6, where the total energy is driven below the

threshold in a very short time. The fall of the total energy is mainly due to its kinetic part

(the green line), which is the only one directly affected by our control strategy. The sharp

decrease of the kinetic energy is also witnessed in the graph showing the modulus of the

speeds, where, after a quick, strong brake at the beginning, they stabilize at a very low

level.
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Figure 2.6: Energy profile of the controlled system.

2.6.2 Second case study: β = 1.02 and p = 1.1

The second case study takes into account a system with a weaker communication rate

than before (β = 1.02) and with a different form of the repulsive function (p = 1.1), and

we apply on it our control strategy with several values for M .

The top-left corner of Figure 2.7 is the uncontrolled system: it seems legitimate to suppose

that it is very unlikely that the system will converge to consensus, especially looking at

its energy profile graph (top-right corner of Figure 2.7), which shows an increase in the

adhesion potential energy, phenomenon associated to an increase in the distance between
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Figure 2.7: Spatial evolutions (left) and relative energy profiles (right). From top to bottom:
M = 0,M = 0.1,M = 1,M = 10. The colors in the left column stand for: total energy
(red), consensus region (black), adhesion energy (magenta), repulsion energy (blue), kinetic
energy (green).

particles, as already pointed out. In the second line we see the spatial evolution graph of

the same system but with the sparse control strategy acting with parameter M = 0.1,

where the agents are starting to converge to consensus, as is also evident in their energy

profile. The two bottom lines of Figure 2.7 display the action of controls with M = 1 and

M = 10, respectively. It is clear how the situation goes better as M increases, which is due

to the fact that the threshold is reached in shorter time (see the relative energy profile).



78 Sparse control of dynamical systems

The right column of Figure 2.7 also clearly confirms the behavior of the decay rate of the

energy as a function of M , as predicted by our analytical result of Proposition 2.37: E(t)

decreases as e−kMt, for a certain constant k > 0.

It is interesting to notice that convergence to the consensus region occurs even if the

hypothesis of Proposition 2.26 is not met, i.e., ϑ is very far away from E(0), as it is likely

to be a sub-optimal sufficient condition. Indeed, in all the case studies above

E(0) exp

−2
√

3

9

M ‖v(0)‖3

E(0)
√
E(0)

(
Λ
√
E(0) + M

N

)
 ≈ E(0),

but, nonetheless, we were able to steer each system to consensus in finite time.

2.6.3 A counterexample to unconditional sparse controllability

The last numerical experiment we report shows that in certain pathological situations the

sparse control strategy can fail to steer a Cucker-Dong systems to consensus.

We consider N = 2 agents in dimension d = 2 and choose the interaction parameters as

H = 1, β = 2, p = 1.1 and M = 1. In this situation, the force balance f−a is completely in

favor of the repulsive force, as Figure 2.8 shows: this means that, regardless of the mutual

positions of the agents, they shall always be repelled from each other.

0 2 4 6 8 10 12 14 16 18 200
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8

10

12

Figure 2.8: Sum of the attraction and repulsion forces h(r) = f(r)− a(r) as a function of
the distance r > 0 in the case study of Section 2.6.3

If we exert the sparse control strategy, the only result that we obtain is to freeze the agents

where they are. Indeed, Figure 2.9 shows that the agents’ speeds are rapidly reduced to

values close to 0 as an effect of the control (also visible in the energy profile from the

trajectory of the kinetic energy), but the total energy stays far away from the consensus

region (the black line). The picture makes very clear that our control does not affect the

potential energy of the system, as the sum of the adhesion and repulsion energies stays

constant in time (the adhesion energy line is almost totally juxtaposed to the consensus

line, as the theory prescribes in the case of N = 2 agents).

Furthermore, notice that, as soon as we shut down the control, the two agents will start

to move again in opposite directions (very slowly, since the energy of a system without

control stays constant), hence not only the total energy remains above the threshold, but

also the system is not in consensus.

However, it must be observed that the control strategy fails in this situation due to the
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Figure 2.9: Space evolution, speeds and energy profile of the system considered in Section
2.6.3.

peculiar nature of the system. As a matter of fact, being the force balance strictly repulsive,

the trajectories of any solution will never remain cohesive. This leaves open the question

whether there exist “non-pathological” instances of the Cucker-Dong model (in the sense

that their solutions are not doomed to diverge regardless of the initial condition) for which

the sparse control strategy does not work.
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CHAPTER 3

Sparse control in high dimension

In the previous chapter we have seen several features of sparse feedback controls: effec-

tiveness, parsimony and efficiency. However, since feedback controls need at every instant

the current state of the entire system to perform their task, processing this information

to compute the sparse control strategy may quickly become unfeasible as d increases, an

instance of the phenomenon that Richard Bellman in [24] named curse of dimensionality.

In this chapter we shall see how we can circumvent such inconvenience by means of a

dimensionality reduction via Johnson-Lindenstrauss embeddings.

3.1 The curse of dimensionality

To visualize the idea behind the curse of dimensionality consider, as an example, the

problem of numerically simulating the familiar Cucker-Smale system
ẋi(t) = vi(t),

v̇i(t) =
1

N

N∑
j=1

a (‖xi(t)− xj(t)‖) (vj(t)− vi(t)) ,
i = 1, . . . , N, (3.1)

where (xi(t), vi(t)) ∈ R2d for every t ≥ 0. When the number of agents N and their

dimensionality d are relatively modest – say, around 100 each – this is far from being a

challenge: any Runge-Kutta scheme will perform the task quickly and with a reasonable

degree of accuracy. But when N or d are of the order of thousands, or worse of millions,

such strategy could need hours or days to return meaningful results. And this is not

caused by the particular numerical scheme one might choose: this is a severe limitation of

the formulation of the problem. And this is what, in practice, the curse of dimensionality

is: the cost of the numerical computations needed to find solutions of a problem blows up

as the size of certain parameters increases.
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The curse of dimensionality hits also the sparse feedback strategy of Definition 2.4: to know

which is the agent ι̂(t) that must be controlled at time t, we must compute the discrepancies

from the mean v⊥i (t) (which is a d-dimensional vector) for each agent i = 1, . . . , N , again

a procedure that scales horribly with N and d.

The issue of understanding how sparse controls can be implemented as N → ∞ and d is

modest has been investigated in [103, 106], and we shall have a closer look to these (and

related) results in Chapter 4 and 6. In this chapter we instead focus on the other case,

i.e., d→∞ and N remains relatively low.

One might argue that systems such as (3.1) have no application outside the three dimen-

sional Euclidean space, since they were introduced to study the coordination of animals.

However, there are several instances of “abstract alignment” which may occur in high-

dimension: for instance, in [3] the authors consider an application of alignment models

to predict the collective phenomenon of asset pricing and volatilities in financial markets,

while in [23] similar models are used to describe qualitatively the evolution of systemic

risk in the banking sector.

Furthermore, notice that solving such an issue is of paramount importance, since in view

of the increasing technical ability of collecting large amounts of time-evolving data and

of potentially modeling them into high-dimensional dynamical systems, the controllabil-

ity of complex multi-agent interactions has an enormous social and economical impact.

Therefore, in those circumstances where the dimensionality of the dynamics is very high,

it becomes a relevant question whether it is possible to define control strategies of the

dynamics overcoming the curse of dimensionality.

3.1.1 Dimensionality reduction via Johnson-Lindenstrauss embeddings

In recent years, several techniques have been developed in order to reduce the dimension-

ality of time-evolving point clouds, such as diffusion maps applied to networks changing

in time [68] and geometric multiscale dimensionality reductions [40], just to mention few

of them.

Besides these perhaps involved methods based on computationally demanding nonlinear

embeddings of the high-dimensional clouds in lower dimension, Johnson-Lindenstrauss

embeddings, introduced in the seminal work [131], have the remarkable property of being

simple linear operators M ∈ Rk×d preserving the distances between points in the cloud

P ⊂ Rd up to an ε-distortion, i.e.,

(1− ε)‖x− x′‖`d2 ≤ ‖Mx−Mx′‖`k2 ≤ (1 + ε)‖x− x′‖`d2 , for all x, x′ ∈ P,

where the projected dimension k satisfies

k ∼ ε−2 log(|P|). (3.2)

The above property is called quasi-isometry property, and as Johnson-Lindenstrauss em-

beddings with such scaling of the projected dimension are constructed by generating ran-

dom projections, the quasi-isometry property on the point cloud is usually stated with

a certain (high) probability. The random linear projection of high-dimensional systems

governed by smooth nonlinearities depending on mutual distances has been investigated

in [101]: roughly speaking, given a dynamical system in high dimension d � 1 governed
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by locally Lipschitz functions fi : RN×N+ → Rd

żi(t) = fi((‖zj(t)− z`(t)‖)Nj,`=1) ∈ Rd, i = 1, . . . , N,

and its lower-dimensional counterpart

ζ̇i(t) = Mfi((‖ζj(t)− ζ`(t)‖)Nj,`=1) ∈ Rk, i = 1, . . . , N,

where M : Rd → Rk is a Johnson-Lindenstrauss linear embedding for k ∼ ε−2 log(N), the

following finite-time approximation holds with high probability

‖ζi(t)−Mzi(t)‖ ≤ CT ε, for all t ∈ [0, T ]. (3.3)

Notice here the key property of projected dynamical systems: intuitively, if the number of

agents N is very small in comparison to their dimensionality d, we expect the projected

dimensionality k given by (3.2) to be very small with respect to d, and hence we save a

huge amount of time by simulating the projected system ζi(t) instead of the original one

zi(t). Since, by (3.3), the distance ‖ζi(t)−Mzi(t)‖ is “small”, we can then reconstruct the

original dynamics zi(t) using compressed sensing techniques, see [101].

Figure 3.1: Dimensionality reduction of dynamical systems.

In this chapter we shall see how this method of projecting high-dimensional systems in low

dimension can also be applied in the context of sparse controls, leading to the following

Meta-theorem. For high dimensional multiagent systems, governed by smooth nonlinear-

ities depending on mutual distances between the agents, one can construct low-dimensional

representations of the dynamical system, which allow the computation of nearly optimal

control strategies in high dimension with overwhelming confidence.

As control is usually goal-oriented, hence highly dependent on the specific dynamical sys-

tem, investigating the qualitative applicability of this statement in its full generality may

risk to dilute its quantitative understanding. Thus, we shall prove a specific instance of it,

which conveys nonetheless all the relevant aspects and technical issues potentially encoun-

tered in other situations: we shall focus on the sparse control of the Cucker-Smale model,

for which we have already at our disposal all the knowledge accumulated in Chapters 1

and 2. We mention that similar results for the Cucker-Dong model are obtained in [27].
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Intuitively, if we applied a Johnson-Lindenstrauss embedding M ∈ Rk×d verbatim to each

equation of a Cucker-Smale system (3.1), we would obtain the following approximation

d

dt
Mvi(t) =

1

N

N∑
j=1

a (‖xj(t)− xi(t)‖) (Mvj(t)−Mvi(t))

wish∼ 1

N

N∑
j=1

a (‖Mxj(t)−Mxi(t)‖) (Mvj(t)−Mvi(t)) ,

leading to the formulation of the low-dimensional system in Rk
ẏi(t) = wi(t),

ẇi(t) =
1

N

N∑
j=1

a (‖yi(t)− yj(t)‖) (wj(t)− wi(t)) ,
i = 1, . . . , N,

with initial conditions (y0, w0) = (Mx0,Mv0) ∈ RkN ×RkN , where (x0, v0) ∈ RdN ×RdN
is the initial datum of the d-dimensional system (3.1) and for the sake of brevity we have

set

(Mx0,Mv0)
∆
= (Mx0

1, . . . ,Mx0
N ,Mv0

1, . . . ,Mv0
N ). (3.4)

The first result of this chapter, refining and generalizing those in [101], is roughly summa-

rized as follows.

Theorem 3.1. Let (x(·), v(·)) be a solution of the d-dimensional Cucker-Smale system

for the given initial datum (x0, v0) ∈ RdN × RdN , and let M ∈ Rk×d be a Johnson-

Lindenstrauss matrix for a suitable ε > 0 distortion parameter and low dimension k

depending on the logarithm of the number of agents N . Then the k-dimensional solu-

tion (y(·), w(·)) with initial values (y0, w0) = (Mx0,Mv0) stays close to the projected

d-dimensional trajectory (Mx(·),Mv(·)), i.e.,

‖y(t)−Mx(t)‖+ ‖w(t)−Mv(t)‖ . εeCt, for every t ≤ T. (3.5)

As we highlight in details in Section 3.3, not only the approximation (3.5) holds for finite

time, but, remarkably, the lower dimensional representation also shows a rather impres-

sive faithfulness in terms of the asymptotic (long time) detection of collective behavior

emergence, i.e., global alignment occurs in lower dimension k if and only if it occurs in

high dimension d with high probability. The key technical tool for proving this result and

the ones following is a weak form of the Johnson-Lindenstrauss Lemma, formulated below

in Lemma 3.6, valid for continuous trajectories and not only for clouds of points. Similar

results appear, to some extent in greater generality in [22, 94], but not in the weak form

considered in this chapter.

3.1.2 Dimensionality reduction and sparse controls

As already mentioned, we combine the above analysis with the sparse controllability of

Cucker-Smale systems outlined in Section 2.1, and show that a high-dimensional dynamical
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system of Cucker-Smale type can be nearly optimally stabilized towards consensus by

means of a control strategy completely identified by the optimal control strategy in low

dimension with high probability. More formally, we consider for a given initial datum

(x0, v0) the high-dimensional controlled system
ẋi(t) = vi(t),

v̇i(t) =
1

N

N∑
j=1

a (‖xj(t)− xi(t)‖) (vj(t)− vi(t)) + uhi (t),
i = 1, . . . , N,

and its low-dimensional counterpart with initial datum (y0, w0) = (Mx0,Mv0) in the

sense of (3.4),
ẏi(t) = yi(t),

ẇi(t) =
1

N

N∑
j=1

a (‖yj(t)− yi(t)‖) (wj(t)− wi(t)) + u`i(t).
i = 1, . . . , N,

The family of sparse control strategies applied to the systems are defined as follows: fix

θ > 0 and for every t ≥ 0 set

u`i(t)
∆
=

−θ
w⊥ι̂ (t)

‖w⊥ι̂ (t)‖
if i = ι̂(t),

0 otherwise,

uhi (t)
∆
=

−θ
v⊥ι̂ (t)

‖v⊥ι̂ (t)‖
if i = ι̂(t),

0 otherwise,

(3.6)

where ι̂(t) is the smallest index such that ‖w⊥ι̂ (t)‖ = max
1≤j≤N

‖w⊥j (t)‖.

Notice that:

• the control u`(t) is precisely the sparse feedback control of Definition 2.4;

• the control uh(t) is sparse (all the components are zero except one);

• uh(t) is defined exclusively through the following information: the index ι̂(t) which is

computed from the low-dimensional control problem, the consensus parameter vι̂(t),

which is actually the only information to be observed in high dimension, and the

mean consensus parameter

v(t) = v(0) +
1

N

N∑
i=1

∫ t

0
uhi (s)ds,

which one does compute by integration and sums of previous controls.

The main result of this chapter reads as follows.

Theorem 3.2. Let M ∈ Rk×d and θ > 0. Assume that (x(·), v(·)) and (y(·), w(·)) are

solutions of the d-dimensional and k-dimensional controlled Cucker-Smale systems with
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the control strategy (3.6) and with initial values (x0, v0) and (Mx0,Mv0), respectively.

Further assume that M is a Johnson-Lindenstrauss matrix for a certain distortion ε > 0

and low dimension k (which depends exponentially on the number of agents, but not on

the dimension d). Then both solutions

(i) stay close to each other, after the projection of the high-dimensional trajectories;

(ii) reach the consensus region of Theorem 1.11 in finite time, and

(iii) reach the consensus region when a certain parameter of the low-dimensional system

falls below a known threshold.

We consciously do not wish to be more detailed at this point than this rather general

and perhaps rough explanation because the precise statements appear in the rest of the

chapter in a rather technical form and we want here, in the introduction, mainly to convey

their fundamental message: sparse controls can be effectively and efficiently implemented

on a large class of dynamical systems regardless of the dimensionality.

3.2 A continuous Johnson-Lindenstrauss Lemma

As it will be made clear below, we intend to reduce the computational effort of extracting

fundamental features of the dynamical system (3.1), for instance its asymptotic behavior,

by projecting it to a k-dimensional space for k � d by a linear mapping M ∈ Rk×d. In

particular, as already outlined in the previous section, we apply such a matrix M to each

equation of (3.1) and by setting yi = Mxi as well as wi = Mvi for i = 1, . . . , N , we obtain

the system 
ẏi(t) = wi(t),

ẇi(t) =
1

N

N∑
j=1

a (‖yi(t)− yj(t)‖) (wj(t)− wi(t)) ,
i = 1, . . . , N,

where we formally applied the identity

‖xi(t)− xj(t)‖`d2
!

= ‖Mxi(t)−Mxj(t)‖`k2
(

= ‖yi(t)− yj(t)‖`k2
)
. (3.7)

For (3.7) to hold, at least approximately, we need that M is “nearly” an isometry (here

we further refine and extend results from [101, Section 3]).

Definition 3.3. Let M ∈ Rk×d, δ > 0, and ε ∈ (0, 1). Then we say, that M is fulfilling

the weak Johnson-Lindenstrauss property of parameters ε and δ at x ∈ Rd if either

(1− ε)‖x‖`d2 ≤ ‖Mx‖`k2 ≤ (1 + ε)‖x‖`d2 (3.8)

or

‖x‖`d2 ≤ δ and ‖Mx‖`k2 ≤ δ (3.9)

holds. We say thatM is fulfilling the (strong) Johnson-Lindenstrauss property of parameter

ε at x ∈ Rd if exclusively (3.8) holds at x ∈ Rd.
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Remark 3.4. The earliest result providing the existence of matrices M for which (3.8)

holds for every x ∈ P, where P ⊆ Rd is such that N = |P| and for the dimensionality k

scaling as

k ∼ ε−2 logN, (3.10)

is the celebrated Johnson-Lindenstrauss Lemma from the seminal paper [131]. We refer to

[94] for a rather general version of this result and to the references therein for an extended

literature.

The only constructions of a matrix M fulfilling the (strong) Johnson-Lindenstrauss prop-

erty with scaling (3.10) known up to now are stochastic, i.e., the matrix is randomly

generated and satisfies (3.8) with high probability. One of the remarkable features of these

embeddings, which we exploit extensively in this paper, is that for their construction there

is no need to know the specific points in advance: given a fixed cloud of points (not nec-

essarily explicitly given!) a random matrix drawn according to certain distributions will

fulfill the (strong) Johnson-Lindenstrauss property with high probability. Let us recall

briefly some well-known instances of such distributions:

(S1) k×d matrices M whose entries mij are independent realizations of Gaussian random

variables, i.e.,

mij ∼ N
(

0,
1

k

)
;

(S2) k× d matrices M whose entries mij are independent realizations of scaled Bernoulli

random variables, i.e.,

mij =


+

1√
k

with probability
1

2
,

− 1√
k

with probability
1

2
.

Notice that it holds 1 ≤ ‖M‖`d2→`k2 ≤
√
d.

(S3) k × d matrices M which are random projections and are scaled by a factor
√
d/k,

see [88]. In particular, it holds ‖M‖`d2→`k2 =
√
d/k.

Remark 3.5. While the Johnson-Lindenstrauss Lemma is a result for a finite number of

points, we need an analogous continuous result for projecting trajectories of dynamical

systems. A result in this direction was given in [101, Theorem 3.3]: given ε > 0 and a

C1-curve ϕ : [0, 1]→ Rd, if ϕ has finite curvature, i.e.,

ρ
∆
= max

t∈[0,1]

‖ϕ′(t)‖
‖ϕ(t)‖

< +∞, (3.11)

then there exists a matrix M ∈ Rk×d for k ∼ ε−2 log(d · ρ · ε−1) such that

(1− ε)‖ϕ(t)‖ ≤ ‖Mϕ(t)‖ ≤ (1 + ε)‖ϕ(t)‖ for all t ∈ [0, 1]. (3.12)
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As already announced at the beginning of this section, we want to use (3.12) for

ϕ(t)
∆
= xi(t)− xj(t) or ϕ(t)

∆
= vi(t)− vj(t)

being (xi(·), vi(·)) the trajectory of the i-th agent in (3.1).

Unfortunately, (3.11) does not hold in this case even if we assume that ‖xi(0)− xj(0)‖ ≥
c > 0 for all i 6= j. Let us consider, for instance, Example 1.13 of a Cucker-Smale system

of the type (3.1) of two agents moving on the real line with positions and velocities at

time t given by (x1(t), v1(t)) and (x2(t), v2(t)). We already noticed that, by indicating

with x(t) = x1(t) − x2(t) the relative main state and by v(t) = v1(t) − v2(t) the relative

consensus parameter at time t, then it holds

ẋ(t) = v(t) = − arctan(x(t)) + arctan(x(0)) + v(0).

Now, if x(0) < 0 and v(0) + arctan(x(0))
∆
= c0 > 0, then v(t) > c0 as long as x(t) < 0.

Hence, there has to be a T > 0 with x(T ) = 0 and v(T ) = c0. Therefore (3.11) is violated

for the curve ϕ(t) = x1(t)− x2(t).

Let us stress that (3.11) is a necessary condition for (3.12) to hold (see [101, Remark

1]). This motivates the relaxation of the strong Johnson-Lindenstrauss property to its

weak version in Definition 3.3. We now prove a result based on the more general weak

Johnson-Lindenstrauss property which will be sufficient for us in the following.

From now on, given two normed spaces X and Y with norms ‖ ·‖X and ‖ ·‖Y , respectively,

by Lip(X ;Y) we denote the set of Lipschitz functions ϕ : X → Y, i.e., the functions for

which the quantity

LipX (ϕ)
∆
= sup

x,y∈X
x 6=y

‖ϕ(x)− ϕ(y)‖Y
‖x− y‖X

exists and is finite.

Lemma 3.6. Let ϕ : [0, 1] → Rd be a Lipschitz function with Lipschitz constant Lϕ
∆
=

Lip[0,1](ϕ), and fix δ > 0 and ε ∈ (0, 1). Let k be such that a matrix M ∈ Rk×d –

stochastically generated as in (S2) or (S3) of Remark 3.4 – satisfies the (strong) Johnson-

Lindenstrauss property of parameter ε̃ = ε/2 at N arbitrary points with some (high)

probability, where

N ≥ 4Lϕ(
√
d+ 2)

δε
. (3.13)

Then the matrix M fulfills the weak Johnson-Lindenstrauss property of parameters ε and

δ at ϕ(t) for every t ∈ [0, 1] with the same high probability, i.e., either

(1− ε)‖ϕ(t)‖ ≤ ‖Mϕ(t)‖ ≤ (1 + ε)‖ϕ(t)‖

or

‖ϕ(t)‖ ≤ δ and ‖Mϕ(t)‖ ≤ δ
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holds for all t ∈ [0, 1].

Proof. We shall adapt the arguments from the proof of [101, Theorem 3.3]: set

ti
∆
=

i

N
, for i = 0, . . . ,N − 1,

and assume that M : Rd → Rk fulfills the (strong) Johnson-Lindenstrauss property with

parameter ε̃ = ε/2 at the points (ϕ(ti))
N−1
i=0 , i.e., we have

(1− ε̃)‖ϕ(ti)‖ ≤ ‖Mϕ(ti)‖ ≤ (1 + ε̃)‖ϕ(ti)‖

for all i = 0, . . . ,N − 1. Furthermore, we may assume 1 ≤ ‖M‖ ≤
√
d, see (S2) and (S3)

of Remark 3.4.

Let t ∈ [0, 1] and choose j ∈ {0, . . . ,N − 1} such that t ∈ [tj , tj+1]. Let us for the moment

assume that

‖ϕ(tj)‖ ≤
δ

2
. (3.14)

Since ε ∈ (0, 1), by (3.13) we have that

N ≥ 4Lϕ
√
d

δ
.

Using this latter inequality and the Lipschitz continuity of ϕ we obtain

‖ϕ(t)‖ ≤ ‖ϕ(t)− ϕ(tj)‖+ ‖ϕ(tj)‖ ≤
Lϕ
N

+
δ

2
≤ δ,

and also

‖Mϕ(t)‖ ≤ ‖M‖‖ϕ(t)− ϕ(tj)‖+ ‖Mϕ(tj)‖ ≤
√
d
Lϕ
N

+ (1 + ε′)‖ϕ(tj)‖ ≤
δ

4
+

3

2
· δ

2
≤ δ.

Now, suppose instead that (3.14) does not hold, i.e., we have

‖ϕ(tj)‖ >
δ

2
.

Using again the Lipschitz continuity of ϕ we obtain the estimate

‖ϕ(t)− ϕ(tj)‖ ≤
Lϕ
N
≤ Lϕ
N
· 2‖ϕ(tj)‖

δ
≤ δε

4(
√
d+ 2)

· 2‖ϕ(tj)‖
δ

≤ ‖ϕ(tj)‖(ε− ε̃)
‖M‖+ 1 + ε

,

where in the last inequality we used that

‖M‖+ 1 + ε ≤
√
d+ 2.

This estimate of the distance ‖ϕ(t)−ϕ(tj)‖ and the (strong) Johnson-Lindenstrauss prop-

erty at ϕ(tj) enable us to extend the (strong) Johnson-Lindenstrauss property at ϕ(t) as
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well, as a direct application of [101, Lemma 3.2], i.e.,

(1− ε)‖ϕ(t)‖ ≤ ‖Mϕ(t)‖ ≤ (1 + ε)‖ϕ(t)‖.

Both cases together show the (weak) Johnson-Lindenstrauss property at ϕ(t) for every

t ∈ [0, 1].

In the following lemma, we show that the mean-square norm and the relative order of the

magnitudes of points in a cloud in high dimension are nearly preserved when projected in

lower dimension by a weak Johnson-Lindenstrauss embedding.

Lemma 3.7. Let a1, . . . , aN ∈ Rd, b1, . . . , bN ∈ Rk and M ∈ Rk×d such that there is ∆ > 0

with the following properties:

(i) The matrix M fulfills the weak Johnson-Lindenstrauss property with ε = 1/2 and

δ = ∆ for the points ai, i.e., either

1

2
‖ai‖ ≤ ‖Mai‖ ≤

3

2
‖ai‖ (3.15)

or

‖ai‖ ≤ ∆ and ‖Mai‖ ≤ ∆ (3.16)

holds for all i = 1, . . . , N .

(ii) We have the following approximation bound

‖Mai − bi‖ ≤ ∆

for all i = 1, . . . , N .

Let ι̂ be the smallest index such that ‖bι̂‖ ≥ ‖bj‖ for all j = 1, . . . , N and let

A
∆
=

1

N

N∑
j=1

‖aj‖2 and B
∆
=

1

N

N∑
j=1

‖bj‖2.

If
√
B ≥ 2∆, then, for c

∆
= 1/

√
289, it holds

‖aι̂‖ ≥
1

4
‖bι̂‖, ‖aι̂‖ ≥ c

√
A, and B ≤ 16NA.

If
√
B ≤ 2∆, then, for C

∆
=
√

72, it holds

√
A ≤ C∆.

Proof. First suppose that
√
B ≥ 2∆: since ‖bι̂‖ is maximal, we have ‖bι̂‖ ≥

√
B ≥ 2∆. By

(ii) it holds

‖Maι̂‖ ≥ ‖bι̂‖ −∆ ≥ 2∆−∆ ≥ ∆
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and hence using (3.15) we get

‖aι̂‖ ≥
1

2
‖Maι̂‖ ≥

1

2
(‖bι̂‖ −∆) ≥ 1

4
‖bι̂‖. (3.17)

This shows the first estimate of the statement. Let us address the second estimate. Let

j ∈ {1, . . . , N} for j 6= ι̂. If ‖bj‖ ≥ 2∆, then, using the same argument as above, we have

‖Maj‖ ≥ ∆ and thus by (3.15) we get

‖aj‖ ≤ 2‖Maj‖ ≤ 2(‖bj‖+ ∆) ≤ 2 · 3

2
· ‖bj‖ = 3‖bj‖. (3.18)

On the other hand, if ‖bj‖ < 2∆, then ‖Maj‖ ≤ 3∆. Then either (3.15) holds and we have

‖aj‖ ≤ 2‖Maj‖ ≤ 6∆, (3.19)

or (3.16) holds and automatically ‖aj‖ ≤ ∆. Now we can estimate the mean-square norm

A. We obtain

NA =
N∑
j=1

‖aj‖2 = ‖aι̂‖2 +
∑
j∈A1

‖aj‖2 +
∑
j∈A2

‖aj‖2,

where A1 is the index set of all j ∈ {1, . . . , N} \ {ι̂} such that ‖bj‖ ≥ 2∆ and A2 is the

index set of all j ∈ {1, . . . , N} for which ‖bj‖ < 2∆. Using (3.18) and (3.19) we obtain

NA ≤ ‖aι̂‖2 + 9
∑
j∈A1

‖bj‖2 + |A2| · 36∆2

≤ ‖aι̂‖2 + 9NB + 9N‖bι̂‖2

≤ ‖aι̂‖2 +N‖aι̂‖2(9 · 16 + 9 · 16)

≤ 289‖aι̂‖2N,

using the maximality of ‖bι̂‖ and the inequality (3.17). Furthermore, we have

NB =
N∑
j=1

‖bj‖2 ≤ N‖bι̂‖2 ≤ 16N‖aι̂‖2 ≤ 16N2A,

whence the inequality B ≤ 16NA.

Let now
√
B ≤ 2∆. We can argue similarly to the second estimate of the first part:

• if ‖bj‖ ≥ 2∆, then as in (3.18) we have ‖aj‖ ≤ 3‖bj‖;

• if ‖bj‖ ≤ 2∆, then by (3.19) and the arguments thereafter we get ‖aj‖ ≤ 6∆.

Putting both estimates together and using the notation Ã1 for the index set of all j ∈
{1, . . . , N} such that ‖bj‖ ≥ 2∆ as well as Ã2 for the index set of all j ∈ {1, . . . , N} such

that ‖bj‖ < 2∆ yield

NA =
N∑
j=1

‖aj‖2
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=
∑
j∈Ã1

‖aj‖2 +
∑
j∈Ã2

‖aj‖2

≤ 9
∑
j∈Ã1

‖bj‖2 + |Ã2| · 36∆2

≤ 9NB + 36N∆2

≤ N(9B + 36∆2)

≤ N(36∆2 + 36∆2)

≤ 72N∆2.

Taking the square root on both sides finishes the proof.

3.3 Dimension reduction of the Cucker-Smale system with-

out control

In this section we consider the projection of the Cucker-Smale system without control. We

compare two quantities: first, we calculate the trajectory (x(·), v(·)) of the high-dimensional

Cucker-Smale system and we project them by M ∈ Rk×d, to obtain (Mx(·),Mv(·)) in the

sense of (3.4). Second, we project the initial configurations to dimension k by M , and then

we compute from these initial values the trajectories of the corresponding low-dimensional

Cucker-Smale system (y(·), w(·)). What we shall do in the upcoming Theorem 3.9 is to give

a precise bound from above to the distance between the the two k-dimensional trajectories

(Mx(·),Mv(·)) and (y(·), w(·)).
Formally, given M ∈ Rk×d (where k ≤ d) and initial conditions (x0, v0) for (3.1), we

indicate with (y(·), w(·)) the solution of the Rk-projected Cucker-Smale system
ẏi(t) = wi(t),

ẇi(t) =
1

N

N∑
j=1

a (‖yi(t)− yj(t)‖) (wj(t)− wi(t)) ,
i = 1, . . . , N,

with initial data y0 =
(
Mx0

1, . . . ,Mx0
N

)
∈ RkN and w0 =

(
Mv0

1, . . . ,Mv0
N

)
∈ RkN .

We define the low-dimensional analogues of X and V (introduced in (1.11) and (1.12),

respectively) by

Y (t)
∆
= B(y(t), y(t)), W (t)

∆
= B(w(t), w(t)). (3.20)

Here the bilinear form B is intended to act on RkN instead of RdN , but with the same

meaning of the symbol as before.

Remark 3.8. By Corollary 1.19 we know that V and W are decreasing. Hence for all

i, j = 1, . . . , N, it holds

‖wi(t)− wj(t)‖2 ≤ 2
(
‖wi(t)− w(t)‖2 + ‖wj(t)− w(t)‖2

)
≤ 2

N∑
`=1

‖w`(t)− w(t)‖2
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≤ 2NW (t)

≤ 2NW (0),

thus

‖wi(t)− wj(t)‖ ≤
√

2NW (0).

An analogous estimate holds for V and v. Furthermore, we have

‖xi(0)− xj(0)‖ ≤
√

2NX(0).

Theorem 3.9. Let δ > 0, let ε ∈ (0, 1), and let M ∈ Rk×d be a matrix satisfying the weak

Johnson-Lindenstrauss property of parameters ε and δ at the vectors xi(t) − xj(t) for all

t ∈ [0, T ] and all i, j = 1, . . . , N .

Define the following errors:

exi (t)
∆
= ‖yi(t)−Mxi(t)‖, evi (t)

∆
= ‖wi(t)−Mvi(t)‖,

Ex(t)
∆
= max

1≤i≤N
exi (t), Ev(t) ∆

= max
1≤i≤N

evi (t),

Ex2 (t)
∆
=

(
1

N

N∑
i=1

(exi (t))2

)1/2

, Ev2 (t)
∆
=

(
1

N

N∑
i=1

(evi (t))
2

)1/2

.

(3.21)

Furthermore, let La
∆
= LipR+

(a) and set

K1
∆
= La

√
NW (0)

√
2X(0), K2

∆
= 2La

√
NW (0), K3

∆
=
La
2

√
NW (0)

√
2V (0).

Then for all t ∈ [0, T ] the estimates

Ex(t) + Ev(t) ≤
√
N((εK1 + δK2)t+ εK3t

2) · et‖K‖`1→`1

and

Ex2 (t) + Ev2 (t) ≤ ((εK1 + δK2)t+ εK3t
2) · et‖K‖`1→`1

hold, where

K ∆
=

(
2a(0) 2La

√
NW (0)

1 0

)
.

Moreover, we have

Ev(t) ≤
√
N min

{
((εK1 + δK2)t+ εK3t

2) · et‖K‖`1→`1 , ‖M‖
√
V (t) +

√
W (t)

}
.

Proof. We estimate the decay of Ex2 and Ev2 in order to use Gronwall’s Lemma A.1. For

the following estimates we may assume that – without loss of generality – evi (t) 6= 0 for

t ∈ [0, T ] and for every i = 1, . . . , N : if this is not the case, either evi ≡ 0 in a neighborhood

of t or, by continuity, the estimates will also hold true at t. Hence we may assume that evi
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is differentiable at t ∈ [0, T ]. By the Cauchy-Schwarz inequality it holds

d

dt
evi (t) =

(wi(t)−Mvi(t)) · ddt(wi(t)−Mvi(t))

‖wi(t)−Mvi(t)‖
≤ ‖ẇi(t)−Mv̇i(t)‖

≤ 1

N

N∑
j=1

∥∥∥∥a(‖yi(t)− yj(t)‖)(wj(t)− wi(t))−

− a(‖xi(t)− xj(t)‖)(Mvj(t)−Mvi(t))

∥∥∥∥.
Using the triangle inequality, the Lipschitz continuity of a and its monotonicity, we obtain

d

dt
evi (t) ≤

1

N

N∑
j=1

[
|a(‖yi(t)− yj(t)‖)− a(‖xi(t)− xj(t)‖)| ‖wj(t)− wi(t)‖+

+ a(‖xi(t)− xj(t)‖) ‖(wj(t)− wi(t))− (Mvj(t)−Mvi(t))‖
]

≤ 1

N

N∑
j=1

[
La |‖yi(t)− yj(t)‖ − ‖xi(t)− xj(t)‖| ‖wj(t)− wi(t)‖+

+ a(0) ‖(wj(t)− wi(t))− (Mvj(t)−Mvi(t))‖
]
.

(3.22)

We can now estimate the derivative of Ev2 . First of all, again by the Cauchy-Schwarz

inequality it follows

d

dt
Ev2 (t) =

d

dt

(
1

N

N∑
i=1

‖(wi(t)−Mvi(t))‖2
)1/2

=

(
1
N

∑N
i=1 ‖(wi(t)−Mvi(t))‖ · ddt ‖(wi(t)−Mvi(t))‖

)1/2

(
1
N

∑N
i=1 ‖(wi(t)−Mvi(t))‖2

)1/2

≤

(
1

N

N∑
i=1

(
d

dt
‖(wi(t)−Mvi(t))‖

)2
)1/2

=

(
1

N

N∑
i=1

(
d

dt
evi (t)

)2
)1/2

. (3.23)

If we insert (3.22) into the last inequality and we use the triangle as well as the Cauchy-

Schwarz inequality in sequence, we get

d

dt
Ev2 (t) ≤

1

N

N∑
i=1

1

N

N∑
j=1

La |‖yi(t)− yj(t)‖ − ‖xi(t)− xj(t)‖ ‖wj(t)− wi(t)‖

21/2

+

+

 1

N

N∑
i=1

 1

N

N∑
j=1

a(0) ‖(wj(t)− wi(t))− (Mvj(t)−Mvi(t))‖

21/2
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≤ La

 1

N

N∑
i=1

(
1

N

N∑
j=1

|‖yi(t)− yj(t)‖ − ‖xi(t)− xj(t)‖|2
×

×

 1

N

N∑
j=1

‖wj(t)− wi(t)‖2
)1/2

+

+ a(0)

 1

N2

N∑
i,j=1

‖(wj(t)− wi(t))− (Mvj(t)−Mvi(t))‖2
1/2

≤ La

 1

N2

N∑
i,j=1

|‖yi(t)− yj(t)‖ − ‖xi(t)− xj(t)‖|2
1/2

×

× max
1≤i≤N


 1

N

N∑
j=1

‖wj(t)− wi(t)‖2
1/2

+

+ a(0)

 1

N2

N∑
i,j=1

‖(wj(t)− wi(t))− (Mvj(t)−Mvi(t))‖2
1/2

.

We now estimate the first term of the sum. It holds

|‖yi − yj‖ − ‖xi − xj‖| = |‖yi − yj‖ − ‖Mxi −Mxj‖+ ‖Mxi −Mxj‖ − ‖xi − xj‖|
≤ |‖yi − yj‖ − ‖Mxi −Mxj‖|+ |‖Mxi −Mxj‖ − ‖xi − xj‖|
≤ ‖yi −Mxi‖+ ‖yj −Mxj‖+ |‖Mxi −Mxj‖ − ‖xi − xj‖|
≤ exi + exj + |‖Mxi −Mxj‖ − ‖xi − xj‖| ,

(3.24)

and for all i = 1, . . . , N , we have

1

N

N∑
j=1

‖wj(t)− wi(t)‖2 ≤
1

N

N∑
i=1

i−1∑
j=1

‖wj(t)− wi(t)‖2

=
1

2N

N∑
i,j=1

‖wj(t)− wi(t)‖2

= NW (t).

Furthermore, for the second summand we have(
1

N2

N∑
i,j=1

‖(wj(t)− wi(t))− (Mvj(t)−Mvi(t))‖2
)1/2

≤

≤

(
1

N

N∑
i=1

‖(wi(t)−Mvi(t))‖2
)1/2

+

 1

N

N∑
j=1

‖(wj(t)−Mvj(t))‖2
1/2

≤ 2Ev2 (t).
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Hence our computation yields

d

dt
Ev2 (t) ≤ La

√
NW (t)

 1

N2

N∑
i,j=1

|‖Mxi −Mxj‖ − ‖xi − xj‖|2
1/2

+

+ 2La
√
NW (t)Ex2 (t) + 2a(0)Ev2 (t).

Now we use the properties we assumed the matrix M has: for every i, j = 1, . . . , N and

t ∈ [0, T ] either (3.8) holds, and then

|‖Mxi(t)−Mxj(t)‖ − ‖xi(t)− xj(t)‖|≤ ε‖xi(t)− xj(t)‖

≤ ε
(
‖xi(0)− xj(0)‖+

∫ t

0
‖vi(s)− vj(s)‖ds

)
,

(3.25)

or (3.9) holds, and then

|‖Mxi(t)−Mxj(t)‖ − ‖xi(t)− xj(t)‖| ≤ 2δ,

so we always have

|‖Mxi(t)−Mxj(t)‖ − ‖xi(t)− xj(t)‖| ≤ ε

(
‖xi(0)− xj(0)‖+

+

∫ t

0
‖vi(s)− vj(s)‖ ds

)
+ 2δ.

Using the (vector-valued) Minkowski inequality and observing again that, by Corollary

1.19, V and W are decreasing, we derive

d

dt
Ev2 (t) ≤ εLa

√
NW (t)

 1

N2

N∑
i,j=1

‖xi(0)− xj(0)‖2
1/2

+

+ εLa
√
NW (t)

 1

N2

N∑
i,j=1

(∫ t

0
‖vi(s)− vj(s)‖ ds

)2
1/2

+

+ 2La
√
NW (t)(δ + Ex2 (t)) + 2a(0)Ev2 (t)

≤ εLa
√
NW (0)

√2X(0) +

∫ t

0

 1

N2

N∑
i,j=1

‖vi(s)− vj(s)‖2
1/2

ds

+

+ 2La
√
NW (0)(δ + Ex2 (t)) + 2a(0)Ev2 (t)

≤ εLa
√
NW (0)

(√
2X(0) +

∫ t

0

√
2V (s) ds

)
+

+ 2La
√
NW (0)(δ + Ex2 (t)) + 2a(0)Ev2 (t) (3.26)

≤ εLa
√
NW (0)

(√
2X(0) + t

√
2V (0)

)
+ 2δLa

√
NW (0)+
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+ 2La
√
NW (0)Ex2 (t) + 2a(0)Ev2 (t). (3.27)

On the other hand, in the same way as in (3.23), we obtain

d

dt
Ex2 (t) ≤

(
1

N

N∑
i=1

(
d

dt
‖(yi(t)−Mxi(t))‖

)2
)1/2

≤

(
1

N

N∑
i=1

∥∥∥∥ ddt(yi(t)−Mxi(t))

∥∥∥∥2
)1/2

=

(
1

N

N∑
i=1

‖wi(t)−Mvi(t)‖2
)1/2

= Ev2 (t).

Let K1
∆
= La

√
NW (0)

√
2X(0), K2

∆
= 2La

√
NW (0), K3

∆
= 1/2 ·La

√
NW (0)

√
2V (0), and

K ∆
=

(
2a(0) 2La

√
NW (0)

1 0

)
be as in the statement. If we integrate the two inequalities for d

dtE
x
2 and d

dtE
v
2 from 0 to t

we obtain

Ev2 (t) ≤ Ev2 (0) + (εK1 + δK2)t+ εK3t
2 +

∫ t

0

(
2a(0)Ev(s) + 2La

√
NW (0)Ex(s)

)
ds,

Ex2 (t) ≤ Ex2 (0) +

∫ t

0
Ev(s)ds,

which can be rearranged in vector form in the following way:(
Ev2 (t)

Ex2 (t)

)
≤
(
Ev2 (0) + (εK1 + δK2)t+ εK3t

2

Ex2 (0)

)
+

∫ t

0
K ·
(
Ev(s)
Ex(s)

)
ds.

Notice that

‖K‖`1→`1 = max
{

2a(0) + 1, 2La
√
NW (0)

}
≥ 1.

Now we apply the `1-norm to the inequality and we use Gronwall’s Lemma A.1 to deduce∥∥∥∥ Ev2 (t)

Ex2 (t)

∥∥∥∥
`1

≤
∥∥∥∥ Ev2 (0) + (εK1 + δK2)t+ εK3t

2

Ex2 (0)

∥∥∥∥
`1

· et‖K‖`1→`1 ,

thus

Ev2 (t) + Ex2 (t) ≤
[
Ev2 (0) + Ex2 (0) + (εK1 + δK2)t+ εK3t

2
]
· et‖K‖`1→`1

= ((εK1 + δK2)t+ εK3t
2) · et‖K‖`1→`1 ,

(3.28)

since Ev(0) = Ex(0) = 0 by definition.

Moreover, since by Proposition 1.16 we have v(t) = v(0) and w(t) = w(0) for every t ≥ 0,
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it holds

‖Mvi(t)− wi(t)‖ = ‖Mvi(t)− w(0) + w(0)− wi(t)‖
≤ ‖Mvi(t)−Mv(0)‖+ ‖w(0)− wi(t)‖
≤ ‖M‖‖vi(t)− v(t)‖+ ‖w(t)− wi(t)‖,

and hence we have

Ev2 (t) ≤ ‖M‖

(
1

N

N∑
i=1

‖vi(t)− v(t)‖2
)1/2

+

(
1

N

N∑
i=1

‖wi(t)− w(t)‖2
)1/2

.

Together with (3.28), we deduce the upper bound

Ev2 (t) ≤ min
{

((εK1 + δK2)t+ εK3t
2) · et‖K‖`1→`1 , ‖M‖

√
V (t) +

√
W (t)

}
.

Using the trivial estimate of the `∞-norm by the `2-norm we conclude as well the estimate

Ev(t) ≤
√
N min

{
((εK1 + δK2)t+ εK3t

2) · et‖K‖`1→`1 , ‖M‖
√
V (t) +

√
W (t)

}
.

and

Ev(t) + Ex(t) ≤
√
N((εK1 + δK2)t+ εK3t

2) · et‖K‖`1→`1 .

This finally concludes the proof.

Remark 3.10. In the proof we used the fact that both V and W are decreasing. When

in what follows we will consider controlled systems, however, we shall even have a better

estimate on the integral of V . In particular we shall use the following: assume, additionally

to the hypotheses of Theorem 3.9 that∫ t

0

√
2V (s) ds ≤ α for all t ≤ T,

for a fixed α > 0. Then for all t ≤ T we have

Ex(t) + Ev(t) ≤
√
N((ε(K1 +K4) + δK2)t) · et‖K‖`1→`1

with K1,K2,K as in Theorem 3.9, and K4
∆
= La

√
NW (0)α.

To verify the latter estimate, just consider the boundedness of
∫ t

0

√
2V (s) ds within the

inequality (3.26) in the proof of Theorem 3.9, and then proceed further as before.

Remark 3.11. Among the hypotheses of Theorem 3.9, we assumed the existence of a

matrix M ∈ Rk×d fulfilling the weak Johnson-Lindenstrauss property for all curves of the

form xi(t) − xj(t), where i, j = 1, . . . , N and t ∈ [0, T ]. We show now that M is such a

matrix provided that the target dimension k is sufficiently large and that it fulfills the

(strong) Johnson-Lindenstrauss property for all the (finite) vectors of the form xi(tm) −
xj(tm), where i, j = 1, . . . , N , and

tm =
m

dT · N ′e
, for m = 0, . . . , dT · N ′e − 1,
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with

N ′ ≥
4
√

2NV (0)(
√
d+ 2)

δε
. (3.29)

Indeed, we can adapt the proof of Lemma 3.6 in order to obtain a result valid simultane-

ously for all the curves ϕij : [0, T ]→ Rd given by ϕij(t) = xi(t)− xj(t). For each of these

curves we have the Lipschitz estimate

‖(xi(t1)− xj(t1))− (xi(t2)− xj(t2))‖
|t1 − t2|

≤ sup
t∈[0,T ]

∥∥∥∥ ddt(xi(t)− xj(t))
∥∥∥∥

= sup
t∈[0,T ]

‖vi(t)− vj(t)‖

≤
√

2NV (0),

(3.30)

from which follows Lip[0,T ](ϕij) ≤
√

2NV (0). In order for the argument of the proof to

work, for each curve ϕij we need N ′ ·T points (where N ′ is as in (3.29), and the factor T is

due to stretching the dynamics from a reference time domain [0, 1] to [0, T ]) at which the

(strong) Johnson-Lindenstrauss property must hold, bringing the total number of points

N at which that property must be true to N ′ · T ·N2. So it holds

N ∼
√
NV (0) ·

√
d

δε
· T ·N2.

Thus, if M is a k × d matrix fulfilling the (strong) Johnson-Lindenstrauss property of

parameter ε at these N points, where k ≥ k0 with

k0 . ε−2 log(N )

. ε−2 log

(√
NV (0) ·

√
d

δε
· T ·N2

)
∼ ε−2 (log(T ·N · d · V (0)) + | log(δε)|) ,

then M satisfies also the hypothesis of Theorem 3.9 for any δ > 0.

Remark 3.12. In the remark above we calculated the necessary minimal dimension k0

for a matrix M to satisfy the weak Johnson-Lindenstrauss property for all curves of the

form xi(t) − xj(t), where i, j = 1, . . . , N and t ∈ [0, T ]. The dependency of k0 on N and

ε is quite natural, but the dependency on the dimension d, even only logarithmically, is

perhaps not desirable, since we are under the hypothesis that d is very large. But one can

circumvent this dependence on the dimension d using certain direct estimates within the

proof of Theorem 3.9. In analogy to what we did before, take

tm =
m

N ′
, for m = 0, . . . , dT · N ′e − 1,

and N ′ – the number of sampling points – is to be chosen large enough later on. Further-

more, we assume that the matrix M fulfills the (strong) Johnson-Lindenstrauss property

at tm, i.e., we require that M satisfies

(1− ε)‖xi(tm)− xj(tm)‖ ≤ ‖M(xi(tm)− xj(tm))‖ ≤ (1 + ε)‖xi(tm)− xj(tm)‖,
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and

(1− ε)‖vi(tm)− vj(tm)‖ ≤ ‖M(vi(tm)− vj(tm))‖ ≤ (1 + ε)‖vi(tm)− vj(tm)‖,

for all i, j = 1, . . . , N and m = 0, . . . , dT · N ′e − 1. Now, for any t ∈ [0, T ] choose m ∈
{0, . . . , dT · N ′e − 1} such that t ∈ [tm, tm+1]. We start at the estimate (3.24):

|‖xi(t)− xj(t)‖ − ‖yi(t)− yj(t)‖| ≤ |‖xi(tm)− xj(tm)‖ − ‖yi(tm)− yj(tm)‖|+
+ |‖xi(t)− xj(t)‖ − ‖xi(tm)− xj(tm)‖|+
+ |‖yi(t)− yj(t)‖ − ‖yi(tm)− yj(tm)‖|
≤ |‖xi(tm)− xj(tm)‖ − ‖Mxi(tm)−Mxj(tm)‖|+

+ exi (tm) + exj (tm) +
Lxi−xj
N ′

+
Lyi−yj
N ′

, (3.31)

where Lxi−xj
∆
= L[0,T ](xi(·) − xj(·)) and Lyi−yj

∆
= L[0,T ](yi(·) − yj(·)) are the Lipschitz

constants of the functions xi(·)−xj(·) and yi(·)−yj(·) on [0, T ], respectively. Furthermore,

using the (strong) Johnson-Lindenstrauss property of M at tm we get the same estimates

as in (3.25), only with tm instead of t:

|‖Mxi(tm)−Mxj(tm)‖ − ‖xi(tm)− xj(tm)‖| ≤ ε‖xi(tm)− xj(tm)‖

≤ ε

(
‖xi(0)− xj(0)‖+

+

∫ tm

0
‖vi(s)− vj(s)‖ ds

)
.

For the estimate of the last two terms in (3.31) we choose N ′ large enough so that

N ′ ∼
max1≤i,j≤N

{
Lxi−xj , Lyi−yj

}
δ

.

Thus we arrive at

|‖xi(t)− xj(t)‖ − ‖yi(t)− yj(t)‖| ≤ exi (tm) + exj (tm) + ε

(
‖xi(0)− xj(0)‖+

+

∫ tm

0
‖vi(s)− vj(s)‖ ds

)
+ 2δ.

Following the steps of the proof of Theorem 3.9, we can get an analogue of (3.27):

d

dt
Ev2 (t) ≤ εLa

√
NW (0)

(√
2X(0) + t

√
2V (0)

)
+ 2δLa

√
NW (0)+

+ 2La
√
NW (0)Ex2 (tm) + 2a(0)Ev2 (t).

So, the main difference is the replacement of Ex2 (t) with Ex2 (tm) on the right-hand sides,

with tm = m/N ′. At this point in the proof of Theorem 3.9 we applied Gronwall’s Lemma,

see the estimates before (3.28). Now here we intend to use its discrete version, Lemma
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A.2: if K1, K2, and K3 are as in the statement of Theorem 3.9, then, integrating between

tm and t, we get(
Ev2 (t)

Ex2 (t)

)
≤
(
Ev2 (tm) + (εK1 + δK2)(t− tm) + εK3(t2 − t2m) +K2Ex2 (tm)(t− tm)

Ex2 (tm)

)
+

+

∫ t

tm

K′ ·
(
Ev(s)
Ex(s)

)
ds,

where

K′ ∆
=

(
2a(0) 0

1 0

)
.

Now applying the `1-norm and Lemma A.2 we get∥∥∥∥ Ev2 (t)

Ex2 (t)

∥∥∥∥
`1

≤
∥∥∥∥ Ev2 (0) + (εK1 + δK2)t+ εK3t

2

Ex2 (0)

∥∥∥∥
`1

· et
(
‖K′‖`1→`1+K2

)
.

This is a slightly worse estimate than the original one of Theorem 3.9 by a factor 2 in the

exponential, since

‖K‖`1→`1 = max
{

2a(0) + 1, 2La
√
NW (0)

}
≤ 2La

√
NW (0) +

∥∥∥∥( 2a(0) 0

1 0

)∥∥∥∥
`1→`1

= K2 + ‖K′‖`1→`1
≤ 2 max

{
2a(0) + 1, 2La

√
NW (0)

}
= 2‖K‖`1→`1 .

So eventually we obtain

Ev2 (t) + Ex2 (t) ≤
[
Ev2 (0) + Ex2 (0) + (εK1 + δK2)t+ εK3t

2
]
· e2t‖K‖`1→`1

= ((εK1 + δK2)t+ εK3t
2) · e2t‖K‖`1→`1 .

However, at the cost of a slightly worse estimate, we gain that the admissible lower dimen-

sionality k of the matrix M does not depend anymore on the higher dimension d: indeed

we used the (strong) Johnson-Lindenstrauss property on N = 2dT · N ′eN2 points. Hence,

it suffices to take the minimal target dimension k0 such that M ∈ Rk×d with k ≥ k0 for

k0 . ε−2 log
(
T · N ′ ·N2

)
.

Actually, in order to verify the independence of the dimension d, we have to estimate the

number of sampling points N ′ independently of it. By (3.30) in Remark 3.11, we know

that Lxi−xj ≤
√

2NV (0). Analogously, for Lyi−yj we have

‖(yi(t1)− yj(t1))− (yi(t2)− yj(t2))‖
|t1 − t2|

≤
√

2NW (0)
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≤
√

2NV (0)(1 + ε)2

≤
√

8NV (0),

since

‖wi(0)− wj(0)‖ = ‖Mvi(0)−Mvj(0)‖ ≤ (1 + ε)‖vi(0)− vj(0)‖.

Hence we obtain

k . ε−2 log
(
T · N ′ ·N

)
. ε−2 log

(
T ·
√
NV (0) · δ−1 ·N

)
∼ ε−2 (log (T ·N · V (0)) + | log δ|) ,

and this confirms that there is no asymptotic dependence on d.

Remark 3.13. The estimate of Theorem 3.9

Ev(t) ≤
√
N min

{
((εK1 + δK2)t+ εK3t

2) · et‖K‖`1→`1 , ‖M‖
√
V (t) +

√
W (t)

}
.

explains the plot presented in [101, Figure 3.5], where surprisingly the error for large time

was shown to decrease instead of exploding according to classical Gronwall’s estimates.

Indeed, since V and W are decreasing functions, there is a time when the bound swaps

from the exponential Gronwall-type bound to the decreasing curve given by

√
N
(
‖M‖

√
V (t) +

√
W (t)

)
.

Moreover, if both the high-dimensional and the low-dimensional trajectories entered the

consensus region already, then V (t) and W (t) approach 0 as t tends to +∞, forcing

Ev(t) to tend to 0. The vanishing of the discrepancy between the low-dimensional tra-

jectory (wi(·))Ni=1 of the consensus parameters and the projected trajectory (Mvi(·))Ni=1

is a remarkable property of the Cucker-Smale system (3.1) as the initial mean-consensus

parameter w(0) = Mv(0) is actually a conserved quantity by Proposition 1.16.

3.4 Dimension reduction of the Cucker-Smale system with

control

In this section we consider a k-dimensional Cucker-Smale system (where k � d) hav-

ing as initial conditions the projected initial configuration of the original d-dimensional

system. The projection will be done by a matrix M ∈ Rk×d fulfilling the (strong) Johnson-

Lindenstrauss property for a certain amount of points. We then apply to both systems the

sparse control strategy defined in (3.6). We shall prove the controlled analog of Theorem

3.9: the solution of the controlled k-dimensional system obtained in this way stays close

to the projected dynamics of the controlled original d-dimensional system via the matrix

M . This, in turn, shall allow us to prove our main result: if we gather the information

of which is the furthest agent away from consensus in the k-dimensional system and we

control this agent in the original high-dimensional system by the sparse strategy presented
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in Definition 2.4, then we will still be able to drive the high-dimensional system to the

consensus region in finite time with a near-optimal rate.

One of the main consequences of this fact is that simulations following this strategy will

save a relevant amount of computational time with respect to approaching directly the

problem in high dimension: indeed, we present in Section 3.6 numerical tests, which show

that we can take k even conspicuously smaller than d and still be able to implement a

successful sparse control strategy steering the dynamics to the consensus region.

Formally, let us now consider a controlled version of the high-dimensional system
ẋi(t) = vi(t),

v̇i(t) =
1

N

N∑
j=1

a (‖xi(t)− xj(t)‖) (vj(t)− vi(t)) + uhi (t),
i = 1, . . . , N, (3.32)

with initial datum (x0, v0) ∈ RdN × RdN , and of the associated low-dimensional system
ẏi(t) = wi(t),

ẇi(t) =
1

N

N∑
j=1

a (‖yi(t)− yj(t)‖) (wj(t)− wi(t)) + u`i(t),
i = 1, . . . , N, (3.33)

with initial condition (y0, w0) ∈ RkN × RkN , where y0
i = Mx0

i and w0
i = Mv0

i for every

i = 1, . . . , N , and M ∈ Rk×d is a matrix fulfilling the (strong) Johnson-Lindenstrauss

property at certain points of the high-dimensional trajectories.

Remark 3.14. Notice this apparent logical loop: we have already stated that the control

uh in high dimension shall depend on u`, the low-dimensional one. Since the latter control

is a function of the low-dimensional dynamics determined by the initial datum (y0, w0),

which in turn depends on M , the trajectories of the high-dimensional dynamics depend

on M as well.

As already stated before, given a set of N points, not necessarily explicitly, a random

matrix generated by one of the constructions reported in Remark 3.4 fulfills the Johnson-

Lindenstrauss property at these N points with a certain high probability. Unfortunately, in

the current situation and differently from the one encountered in Section 3.3, the points on

the trajectories at which the Johnson-Lindenstrauss property has to hold, seem to depend

on the matrix M that we have generated!

As we shall see in detail in Section 3.5, we can resolve this dependency of the high-

dimensional trajectories on the generated matrix M , by observing that the realization of

the trajectories depends actually on a finite number of control switchings. Hence, for the

moment, we just assume that the Johnson-Lindenstrauss property holds at certain points

of the trajectory and we postpone to Section 3.5 the explanation of how this assumption

can in fact hold true.

In what follows, we shall always indicate with θ > 0 the maximal amount of resources

that the external policy maker is allowed to spend at every instant to keep the system

confined. This means that our controls uh and u` will satisfy – respectively – the `N1 − `d2
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and the `N1 − `k2 constraints

N∑
i=1

‖uhi ‖`d2 ≤ θ and
N∑
i=1

‖u`i‖`k2 ≤ θ.

Definition 3.15. Fix T > 0 and let (x, v) : [0, T ] → RdN × RdN and (y, w) : [0, T ] →
RkN ×RkN be continuous functions. Let V and W be as in (1.12) and (3.20), respectively.

Let us fix a Γ ≥ 0 and define

T c0
∆
=

{
inf {t ∈ [0, T ] : W (t) ≤ Γ} if the set is non-empty,

T otherwise.

We define the componentwise feedback controls uh and u` as follows:

• if t ≤ T c0 , let ι̂(t) ∈ {1, . . . , N} be the smallest index ι̂ such that

‖w⊥ι̂ (t)‖ = max
1≤i≤N

‖w⊥i (t)‖, (3.34)

then define the controls as

u`i(t)
∆
=

−θ
w⊥ι̂(t)(t)

‖w⊥ι̂(t)(t)‖
if i = ι̂(t),

0 otherwise,

uhi (t)
∆
=

−θ
v⊥ι̂(t)(t)

‖v⊥ι̂(t)(t)‖
if i = ι̂(t),

0 otherwise.

(3.35)

• if t > T c0 , then uh(t)
∆
= 0 and u`(t)

∆
= 0. In this case, ι̂(t) is undefined.

We say that the trajectory in low dimension has entered the consensus region given by the

threshold Γ if t ∈ [T c0 , T ).

Let us stress again the following observation.

Remark 3.16. Notice that the control uh is sparse (all the components are zero at most

except one) and defined exclusively through the following information: the index ι̂ which

is computed from the low-dimensional control problem according to (3.34), the consensus

parameter vι̂, which is actually the only information to be observed in high dimension and

enters the definition (3.35), and the mean consensus parameter

v(t) = v(0) +
1

N

N∑
i=1

∫ t

0
uhi (s)ds,

which one easily computes by integration and sum of previous controls, and it is also used

in (3.35).
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As already noticed in Section 2.1, sparse controls can be in general very irregular in time.

To overcome this drawback, we introduced the notion of sampling solution in Definition

2.7, which we use again now in this context. Let us fix a sampling time τ > 0. In the

following we shall consider d-dimensional and k-dimensional Cucker-Smale systems for

k � d and feedback controls uh and u`, respectively, as introduced in Definition 3.15.

We shall focus on their sampling solutions (x(·), v(·)) and (y(·), w(·)) associated with τ as

defined in Definition 2.7, hence

ũ`(t)
∆
= u`(nτ) and ũh(t)

∆
= uh(nτ) for t ∈ [nτ, (n+ 1)τ).

Since we are only able to change the control at times which are multiples of τ , we define

the switch-off time of the sampled control associated with the threshold Γ as

T0
∆
=

 inf
n∈N
{nτ : W (nτ) ≤ Γ} if the set is non-empty,

T otherwise.
(3.36)

In the following, we shall show an estimate of the error between the projection of the

sampled controlled high-dimensional system and the sampled controlled low-dimensional

system, under the crucial assumption of the validity of the weak Johnson-Lindenstrauss

property for M for the differences of trajectories of the system. This result is the controlled

counterpart of Theorem 3.9.

Proposition 3.17. Let T > 0, ∆ > 0 and k ∈ N with k ≤ d. Let τ > 0 be a sampling

time, T̂ > 0 be such that T̂ + τ ≤ T and let M ∈ Rk×d.
Let (x(·), v(·)) be the sampling solution of the d-dimensional Cucker-Smale system (3.32)

with initial conditions (x0, v0) and (y(·), w(·)) be the sampling solution of the Rk-projected

Cucker-Smale system (3.33) with initial conditions (y0, w0) given by

y0 =
(
Mx0

1, . . . ,Mx0
N

)
∈ RkN and w0 =

(
Mv0

1, . . . ,Mv0
N

)
∈ RkN ,

as defined in Definition 2.7, where uhi and u`i are the controls from Definition 3.15 with

threshold Γ = (2∆)2. Moreover, let T0 be as in (3.36).

Suppose that W is non-increasing in time and that there exists a constant α ≥ 0 such that∫ t

0

√
2V (s) ds ≤ α, for all t ∈ [0,min{T̂ + τ, T0}].

Let ε′ ∈ (0, 1) be so small that

∆

2
≥ ε′
√
N

(
4La

√
NV (0)

(√
2X(0) + α

)
+

θ√
N

)
×

× (T̂ + τ)e
(T̂+τ)

(
max

{
2a(0)+1,4La

√
NV (0)

}
+8θ/∆

)
,

and assume that the matrix M

(JL1) has the weak Johnson-Lindenstrauss property of parameter ε = ε′ and

δ = min

{
ε′
√

2X(0) + α

2
,
1

2

}
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at all points xi(t)− xj(t) for i, j = 1, . . . , N , and t ∈ [0, T̂ + τ ];

(JL2) has the weak Johnson-Lindenstrauss property of parameter ε = ε′ and δ = ∆ at all

points vi(nτ)− v(nτ) for all i = 1, . . . , N and n = 0, . . . , bT̂ /τc+ 1;

(JL3) has the (strong) Johnson-Lindenstrauss property of parameter ε = 1/2 at the points

vi(0)− v(0) and xi(0)− x(0) for all i = 1, . . . , N .

Finally, define the errors exi (t), evi (t), Ex(t), Ev(t), Ex2 (t), and Ev2 (t) as in (3.21).

Then for every t ∈ [0,min{T̂ + τ, T0}] it holds

∆

2
≥ ε′
√
N

(
4La

√
NV (0)

(√
2X(0) + α

)
+

θ√
N

)
· tet

(
max

{
2a(0)+1,4La

√
NV (0)

}
+8θ/∆

)

≥ Ev(t) + Ex(t).

(3.37)

Proof. We argue by induction: we want to show that if (3.37) holds true for every t ∈
{0, τ, . . . , nτ}, then it is also true for t ∈ [n, (n+ 1)τ ] (and in particular at t = (n+ 1)τ) as

long as nτ ≤ T̂ and nτ < T0, i.e., the control is not switched off before (n+1)τ . Obviously,

(3.37) holds for n = 0, this means at t = 0, and actually arguing in the same way as in

the following inductive step, the base step is verified.

So, let t ∈ [nτ, (n+ 1)τ ] for n ∈ N. First, we consider the estimate on the agent on which

the control is acting. We shall estimate the decay in order to use Gronwall Lemma as in

Theorem 3.9. We have

d

dt
evι̂ (t) ≤

∥∥∥∥ ddt (wι̂(t)−Mvι̂(t))

∥∥∥∥
≤ 1

N

N∑
j=1

∥∥∥a(‖yι̂(t)− yj(t)‖)(wj(t)− wι̂(t))−

− a(‖xι̂(t)− xj(t)‖)(Mvj(t)−Mvι̂(t))
∥∥∥+

+ θ

∥∥∥∥ w⊥ι̂ (nτ)

‖w⊥ι̂ (nτ)‖
−
Mv⊥ι̂ (nτ)

‖v⊥ι̂ (nτ)‖

∥∥∥∥ .
(3.38)

For all i = 1 . . . , N such that i 6= ι̂ we have

d

dt
evi (t) ≤

1

N

N∑
j=1

∥∥∥a(‖yi(t)− yj(t)‖)(wj(t)− wi(t))−

− a(‖xi(t)− xj(t)‖)(Mvj(t)−Mvi(t))
∥∥∥.

(3.39)

We now focus on the control term:∥∥∥∥ w⊥ι̂ (nτ)

‖w⊥ι̂ (nτ)‖
−
Mv⊥ι̂ (nτ)

‖v⊥ι̂ (nτ)‖

∥∥∥∥ =

=
1

‖w⊥ι̂ (nτ)‖‖v⊥ι̂ (nτ)‖

∥∥∥‖v⊥ι̂ (nτ)‖w⊥ι̂ (nτ)− ‖w⊥ι̂ (nτ)‖Mv⊥ι̂ (nτ)
∥∥∥
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=
1

‖w⊥ι̂ (nτ)‖‖v⊥ι̂ (nτ)‖

∥∥∥∥∥(‖v⊥ι̂ (nτ)‖ − ‖w⊥ι̂ (nτ)‖
)
w⊥ι̂ (nτ)−

− ‖w⊥ι̂ (nτ)‖
(
Mv⊥ι̂ (nτ)− w⊥ι̂ (nτ)

)∥∥∥∥∥
≤ 1

‖v⊥ι̂ (nτ)‖

∣∣∣‖v⊥ι̂ (nτ)‖ − ‖w⊥ι̂ (nτ)‖
∣∣∣+

1

‖v⊥ι̂ (nτ)‖

∥∥∥Mv⊥ι̂ (nτ)− w⊥ι̂ (nτ)
∥∥∥ . (3.40)

Since by assumption nτ < T0 and (3.37) holds at nτ by inductive hypothesis, we get

‖w⊥ι̂ (nτ)‖ ≥
√
W (nτ) > 2∆, (3.41)

as well as

‖Mv⊥ι̂ (nτ)− w⊥ι̂ (nτ)‖ ≤ ‖Mvι̂(nτ)− wι̂(nτ)‖+
1

N

N∑
j=1

‖Mvj(nτ)− wj(nτ)‖

≤ 2Ev(nτ)

≤ ∆.

(3.42)

Hence we have

‖Mv⊥ι̂ (nτ)‖ > ∆. (3.43)

From assumption (JL2) and (3.43) it follows that the (strong) Johnson-Lindenstrauss

property with parameter ε = ε′ holds at v⊥ι̂ . Therefore∣∣∣‖v⊥ι̂ (nτ)‖ − ‖w⊥ι̂ (nτ)‖
∣∣∣ ≤ ∣∣∣‖v⊥ι̂ (nτ)‖ − ‖Mv⊥ι̂ (nτ)‖

∣∣∣+
∣∣∣‖Mv⊥ι̂ (nτ)‖ − ‖w⊥ι̂ (nτ)‖

∣∣∣
≤
∣∣∣‖v⊥ι̂ (nτ)‖ − ‖Mv⊥ι̂ (nτ)‖

∣∣∣+ ‖Mv⊥ι̂ (nτ)− w⊥ι̂ (nτ)‖

≤ ε′‖v⊥ι̂ (nτ)‖+ ‖Mv⊥ι̂ (nτ)− w⊥ι̂ (nτ)‖

and

‖v⊥ι̂ (nτ)‖ ≥ 1

1 + ε′
‖Mv⊥ι̂ (nτ)‖ ≥ ∆

2
.

Inserting these estimates into (3.40) and using (3.41) and (3.42) we get∥∥∥∥ w⊥ι̂ (nτ)

‖w⊥ι̂ (nτ)‖
−
Mv⊥ι̂ (nτ)

‖v⊥ι̂ (nτ)‖

∥∥∥∥ ≤ ε′ + 2
‖Mv⊥ι̂ (nτ)− w⊥ι̂ (nτ)‖

‖v⊥ι̂ (nτ)‖

≤ ε′ + 8Ev(nτ)

∆
.

Now we add the estimates for the derivatives of evι̂ in (3.38) and evi for i 6= ι̂ in (3.39). By

(JL1) the weak Johnson-Lindenstrauss property of parameter ε = ε′ and

δ = min

{
ε′
√

2X(0) + α

2
,
1

2

}
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holds at xi(t)−xj(t) for t ∈ [0, (n+ 1)τ). Hence, for the first (uncontrolled) part of (3.38)

and (3.39) we can use the same estimate as in (3.26). Therefore, by using the inequality

Ev(nτ) ≤
√
NEv2 (nτ) and the definition of δ, we obtain the bound

d

dt
Ev2 (t) ≤

(
1

N

N∑
i=1

(
d

dt
evi (t)

)2
)1/2

≤ ε′La
√
NW (0)

(√
2X(0) +

∫ t

0

√
2V (s) ds

)
+

+ 2La
√
NW (0)(δ + Ex2 (t)) + 2a(0)Ev2 (t)+

+
θ√
N

∥∥∥∥ w⊥ι̂ (nτ)

‖w⊥ι̂ (nτ)‖
−
Mv⊥ι̂ (nτ)

‖v⊥ι̂ (nτ)‖

∥∥∥∥
≤ ε′

(
2La

√
NW (0)

(√
2X(0) + α

)
+

θ√
N

)
+

+ 2La
√
NW (0)Ex2 (t) + 2a(0)Ev2 (t) +

8θ

∆
Ev2 (nτ).

For Ex2 we have

d

dt
Ex2 (t) ≤

(
1

N

N∑
i=1

(
d

dt
exi (t)

)2
)1/2

≤

(
1

N

N∑
i=1

(evi (t))
2

)1/2

= Ev2 (t).

By integrating the estimates for d
dtE

v
2 and d

dtE
x
2 between nτ and t we get the inequalities

Ev2 (t) ≤
(

1 +
8θ

∆
(t− nτ)

)
Ev2 (nτ) + ε′

(
K1 +

θ√
N

)
(t− nτ)+

+

∫ t

nτ

(
2a(0)Ev2 (s) + 2La

√
NW (0)Ex2 (s)

)
ds,

Ex2 (t) ≤ Ex2 (nτ) +

∫ t

nτ
Ev2 (s)ds,

which can be recast in vector form in the following way:(
Ev2 (t)

Ex2 (t)

)
≤

( (
1 + 8θ

∆ (t− nτ)
)
Ev2 (nτ) + ε′

(
K1 + θ√

N

)
(t− nτ)

Ex2 (nτ)

)
+

+

∫ t

nτ
K ·
(
Ev2 (s)

Ex2 (s)

)
ds,

with

K ∆
=

(
2a(0) 2La

√
NW (0)

1 0

)
and K1

∆
= 2La

√
2NW (0)

(√
2X(0) + α

)
.



3.4 Dimension reduction of the Cucker-Smale system with control 109

Now we apply the `1-norm to the inequality and obtain

Ev2 (t) + Ex2 (t) ≤ ε′
(
K1 +

θ√
N

)
(t− nτ) +

(
1 +

8θ

∆
(t− nτ)

)
(Ev2 (nτ) + Ex2 (nτ)) +

+

∫ t

nτ
‖K‖`1→`1 · (E

v
2 (s) + Ex2 (s)) ds.

The discrete Gronwall Lemma A.2 applied for

β1(t) =
8θ

∆
t, β2(t) = ‖K‖`1→`1 ,

ρ(t) =

(
K1 +

θ√
N

)
ε′t, u(t) = Ev2 (t) + Ex2 (t) ≥ 0,

yields

Ev2 (t) + Ex2 (t) ≤ [Ev2 (0) + Ex(0)] · et
(
‖K‖`1→`1+8θ/∆

)
+ ε′

(
K1 +

θ√
N

)
te
t
(
‖K‖`1→`1+8θ/∆

)

= ε′
(
K1 +

θ√
N

)
te
t
(
‖K‖`1→`1+8θ/∆

)

because the initial time errors are 0 by definition of the low-dimensional system. Hence

using a trivial estimate of the `2-norm by the `∞-norm we conclude the induction and also

the proof:

Ev(t) + Ex(t) ≤ ε′
√
N

(
K1 +

θ√
N

)
te
t
(
‖K‖`1→`1+8θ/∆

)

≤ ε′
√
N

(
4La

√
NV (0)

(√
2X(0) + α

)
+

θ√
N

)
×

× tet
(

max
{

2a(0)+1,4La
√
NV (0)

}
+8θ/∆

)

using that
√
W (0) ≤ (1 + 1/2)

√
V (0) ≤ 2

√
V (0) by (JL3).

Now we are in the position to show that we can steer both the low- and high-dimensional

systems simultaneously to the consensus region using the sampled version of the control

defined in Definition 3.15. We repeat that this means that we choose the index of the agent

on which the sparse control acts from the low-dimensional system and use it to control

the high-dimensional one.

The challenge here is ensuring that the control coming out of this procedure drives the high-

dimensional system to consensus as well. For this we need the estimates from Proposition

3.17 to show that the error of the projection of the high-dimensional system and the low-

dimensional system stay near to each other. Moreover, from Proposition 2.5 it is known

that the low-dimensional system is steered optimally to the consensus region in finite time,

if using the sampled version of the control introduced in Definition 3.15.

Theorem 3.18. Let (x0, v0) ∈ RdN ×RdN , k ≤ d and M ∈ Rk×d be given. Let c, C be the

constants from Lemma 3.7 and define

X
∆
= 2X(0) +

2N2

c2θ2
V (0)2, (3.44)
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where γ is given by (2.3), as well as

∆
∆
= min

{
γ(X)

C
,
1

2
γ
(
4X
)}

, (3.45)

and

T̂
∆
=

2N

θ

(
2
√
V (0)− 2∆

)
. (3.46)

Choose τ0 > 0 to satisfy

τ0

(
a(0)
√
N
√
V (0) + θ

)
+ τ2

0 a(0)θ ≤ ∆

4
(3.47)

and fix τ ∈ (0, τ0]. Let uh and u` be the controls as in Definition 3.15 with threshold

Γ = (2∆)2. Denote by (x(·), v(·)) the sampling solution of the d-dimensional system
ẋi(t) = vi(t),

v̇i(t) =
1

N

N∑
j=1

a (‖xi(t)− xj(t)‖) (vj(t)− vi(t)) + uhi (t),
i = 1, . . . , N,

with initial conditions (x0, v0) associated with the sampling time τ , and by (y(·), w(·)) the

sampling solution of the Rk-projected system
ẏi(t) = wi(t),

ẇi(t) =
1

N

N∑
j=1

a (‖yi(t)− yj(t)‖) (wj(t)− wi(t)) + u`i(t),
i = 1, . . . , N,

with initial conditions given by (y0, w0) =
(
Mx0

1, . . . ,Mx0
N ,Mv0

1, . . . ,Mv0
N

)
∈ RkN ×RkN

associated with the sampling time τ .

Set α
∆
=
√

2N/cθ and choose ε′ ∈ (0, 1) to satisfy

∆

2
≥ ε′
√
N

(
4La

√
NV (0)

(√
2X(0) + α

)
+

θ√
N

)
×

× (T̂ + τ)e
(T̂+τ)

(
max

{
2a(0)+1,4La

√
NV (0)

}
+8θ/∆

)
,

(3.48)

and assume that the matrix M

(JL1) has the weak Johnson-Lindenstrauss property of parameter ε = ε′ and

δ = ε′
√

2X(0) + α

2

at all points xi(t)− xj(t) for all i, j = 1, . . . , N , t ∈ [0, T̂ + τ ];

(JL2) has the weak Johnson-Lindenstrauss property of parameter ε = ε′ and δ = ∆ at all

points vi(nτ)− v(nτ) for all i = 1, . . . , N and n = 0, . . . , bT̂ /τc+ 1;
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(JL3) has the (strong) Johnson-Lindenstrauss property of parameter ε = 1/2 at the points

vi(0)− v(0) and xi(0)− x(0) for all i = 1, . . . , N .

Then there exists an n ∈ N such that
√
W (nτ) ≤ 2∆. Moreover, setting

T0 = n∗τ, where n∗
∆
= min

{
n ∈ N :

√
W (nτ) ≤ 2∆

}
,

it holds that at T0 both the high-dimensional and the projected low-dimensional systems

are in the consensus region defined by Theorem 1.11. Furthermore, we have the estimates

T0 ≤
2N

θ

(√
W (0)− 2∆

)
+ τ ≤ T̂ + τ

as well as

max
t∈[0,T0]

max
1≤i,j≤N

‖xi(t)− xj(t)‖ ≤ 2
√
NX,

max
t∈[0,T0]

max
1≤i,j≤N

‖vi(t)− vj(t)‖ ≤ 2
√
NV (0).

(3.49)

Proof. The proof is divided into several steps.

First step: let

Y
∆
= 2Y (0) +

2N2

θ2
W (0)2. (3.50)

We shall prove that the following implication is true for every n ∈ N such that nτ ≤ T̂ :

if
√
W (mτ) > 2∆ for every m = 0, . . . , n and the subsequent assumptions P1(n), P2(n),

and P3(n) depending on n hold

P1(n) : for t ∈ [0, nτ) it holds

d

dt
W (t) ≤ − θ

N

√
W (t) < 0 and

d

dt
V (t) ≤ −cθ

N

√
V (t) < 0;

P2(n) : Y (t) ≤ Y and X(t) ≤ X hold in [0, nτ ];

P3(n) : it holds ∫ nτ

0

√
2V (s) ds ≤ α,

then also P1(n+ 1), P2(n+ 1), and P3(n+ 1) hold true.

So let us assume
√
W (mτ) > 2∆ for every m = 0, . . . , n, which means that T0 ≥ (n+ 1)τ

by definition of T0, and assume P1(n), P2(n), and P3(n). We begin by computing the

derivative of V and W for t ∈ [nτ, (n+ 1)τ ]: by (2.5) follows

d

dt
V (t) ≤ 2

N

N∑
i=1

uhi (nτ) · v⊥i (t) and
d

dt
W (t) ≤ 2

N

N∑
i=1

u`i(nτ) · w⊥i (t).
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Remember that, by definition, u`ι̂(nτ) = −θw⊥ι̂ (nτ)/‖w⊥ι̂ (nτ)‖ where ι̂ is the smallest

index such that ‖w⊥ι̂ (nτ)‖ ≥ ‖w⊥j (nτ)‖ for all j = 1, . . . , N , and u`j(nτ) = 0 for every

j 6= ι̂. Then uhι̂ (nτ) = −θv⊥ι̂ (nτ)/‖v⊥ι̂ (nτ)‖ and uhj (nτ) = 0 for every j 6= ι̂. Therefore,

similarly to what we have done in the proof of Theorem 2.25 we may define

φh(t)
∆
=
v⊥ι̂ (nτ) · v⊥ι̂ (t)

‖v⊥ι̂ (nτ)‖
and φ`(t)

∆
=
w⊥ι̂ (nτ) · w⊥ι̂ (t)

‖w⊥ι̂ (nτ)‖
,

in order to study the decay estimate of the Lyapunov functionals V and W . Indeed, we

immediately get

d

dt
V (t) ≤ −2θ

N
φh(t) and

d

dt
W (t) ≤ −2θ

N
φ`(t). (3.51)

As we want to prove that P1(n + 1) holds, we need to deduce suitable lower bounds on

φh(t) and φ`(t) to estimate the right-hand side of (3.51). To this purpose we need first to

derive auxiliary bounds on the growth of
√
V (t) and

√
W (t), see formula (3.52) below:

the general estimate

a · bi
‖a‖

≤ ‖bi‖ ≤
√
N

(
1

N

N∑
i=1

‖bi‖2
)1/2

valid for arbitrary vectors a, b1, . . . , bN , yields

|φ`(s)| ≤
√
N
√
W (s), |φh(s)| ≤

√
N
√
V (s)

for all s ∈ [nτ, (n+ 1)τ ]. We use these bounds to estimate the right-hand side of (3.51)

d

ds

√
V (s) =

1

2
√
V (s)

d

ds
V (s) ≤ θ√

N
,

d

ds

√
W (s) =

1

2
√
W (s)

d

ds
W (s) ≤ θ√

N
.

An integration between nτ and s ∈ [nτ, (n+ 1)τ ] yields√
W (s) ≤

√
W (nτ) + (s− nτ)

θ√
N
≤
√
W (nτ) + τ

θ√
N
,√

V (s) ≤
√
V (nτ) + (s− nτ)

θ√
N
≤
√
V (nτ) + τ

θ√
N
.

(3.52)

With the help of (3.52) we now work out lower bounds for φ` and φh. It holds

φ`(t) =
w⊥ι̂ (nτ) · w⊥ι̂ (t)

‖w⊥ι̂ (nτ)‖

=
w⊥ι̂ (nτ) · w⊥ι̂ (nτ)

‖w⊥ι̂ (nτ)‖
−
w⊥ι̂ (nτ) · (w⊥ι̂ (nτ)− w⊥ι̂ (t))

‖w⊥ι̂ (nτ)‖
≥ ‖w⊥ι̂ (nτ)‖ − ‖w⊥ι̂ (nτ)− w⊥ι̂ (t)‖

≥ ‖w⊥ι̂ (nτ)‖ −
∫ t

nτ
‖ẇ⊥ι̂ (s)‖ ds.

(3.53)
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We now estimate the integrand. From

ẇ⊥ι̂ (t) =
1

N

N∑
j=1

a(‖yj(t)− yι̂(t)‖)(w⊥j (t)− w⊥ι̂ (t)) + u`ι̂(nτ)− 1

N

N∑
j=1

u`j(nτ)

=
1

N

N∑
j=1

a(‖yj(t)− yι̂(t)‖)(w⊥j (t)− w⊥ι̂ (t))− θN − 1

N

w⊥ι̂ (nτ)

‖w⊥ι̂ (nτ)‖
,

and the inequality

1

N

N∑
j=1

‖w⊥j − w⊥ι̂ ‖ ≤

 1

N

N∑
j=1

‖w⊥k − w⊥ι̂ ‖2
1/2

≤

 1

N

N∑
j=1

j−1∑
j′=1

‖w⊥j′ − w⊥j ‖2
1/2

=

 1

2N

N∑
j=1

N∑
j′=1

‖w⊥j − w⊥j′‖2
1/2

=
√
N
√
W,

it follows

‖ẇ⊥ι̂ (s)‖ ≤ a(0)
√
N
√
W (s) + θ

N − 1

N
, for all s ∈ [nτ, (n+ 1)τ).

Using (3.52) we get

‖ẇ⊥ι̂ (s)‖ ≤ a(0)
√
N

(√
W (nτ) + τ

θ√
N

)
+ θ.

Plugging the last inequality into (3.53) we deduce

φ`(t) ≥ ‖w⊥ι̂ (nτ)‖ − τ
(
a(0)
√
N

(√
W (nτ) + τ

θ√
N

)
+ θ

)
≥ ‖w⊥ι̂ (nτ)‖ − τ

(
a(0)
√
N
√
W (nτ) + θ

)
− τ2a(0)θ.

The same calculations give us

φh(t) ≥ ‖v⊥ι̂ (nτ)‖ − τ
(
a(0)
√
N
√
V (nτ) + θ

)
− τ2a(0)θ.

Together with (3.51) this yields

d

dt
W (t) ≤ −2θ

N

(
‖w⊥ι̂ (nτ)‖ − τ

(
a(0)
√
N
√
W (nτ) + θ

)
− τ2a(0)θ

)
, (3.54)

d

dt
V (t) ≤ −2θ

N

(
‖v⊥ι̂ (nτ)‖ − τ

(
a(0)
√
N
√
V (nτ) + θ

)
− τ2a(0)θ

)
. (3.55)



114 Sparse control in high dimension

By the assumption on τ ≤ τ0 in (3.47) and by assumption (JL3) we have

τ
(
a(0)
√
N
√
W (0) + θ

)
+ τ2a(0)θ ≤ τ

(
2a(0)

√
N
√
V (0) + θ

)
+ τ2a(0)θ ≤ ∆

2
≤ ∆.

Applying this inequality and the fact that W is decreasing in [0, nτ ] (which follows from

P1(n)) we use (3.54) to deduce the following upper bound

d

dt
W (t) ≤ −2θ

N

(
‖w⊥ι̂ (nτ)‖ − τ

(
a(0)
√
N
√
W (nτ) + θ

)
− τ22a(0)θ

)
≤ −2θ

N

(√
W (nτ)− τ

(
a(0)
√
N
√
W (0) + θ

)
− τ22a(0)θ

)
≤ −2θ

N

(√
W (nτ)−∆

)
.

Since we assumed that
√
W (nτ) > 2∆, this shows that W is decreasing on [nτ, (n+ 1)τ ].

Additionally, using this assumption we also can estimate

d

dt
W (t) ≤ −2θ

N

(√
W (nτ)−∆

)
≤ − θ

N

√
W (nτ) ≤ − θ

N

√
W (t)

for all t ∈ [nτ, (n + 1)τ ]. Together with P1(n) this shows the stated assertion for d
dtW in

P1(n+ 1).

In order to conclude the statement of P1(n) for d
dtV we need to take advantage of the

estimates of the lower dimensional dynamics, of Proposition 3.17, and Lemma 3.7. By

assumption P3(n) it holds that ∫ nτ

0

√
2V (s) ds ≤ α.

Thus, by the choice of ε′ in (3.48) and the assumptions (JL1), (JL2), and (JL3), the hy-

potheses of Proposition 3.17 are fulfilled in the interval [0, nτ ] (since nτ ≤ T0 by definition

of T0 as the time where we switch the control to 0). Hence (3.37) holds, but in particular

we have the validity of (3.42), which reads

‖Mv⊥i (nτ)− w⊥i (nτ)‖ ≤ ∆.

This estimate and assumption (JL2) allow us to use Lemma 3.7 for the vectors ai = v⊥i (nτ)

and bi = w⊥i (nτ). Together with
√
W (nτ) > 2∆ this results in the following inequalities

‖v⊥ι̂ (nτ)‖ ≥ 1

4
‖w⊥ι̂ (nτ)‖,

‖v⊥ι̂ (nτ)‖ ≥ 1

4

√
W (nτ) ≥ ∆

2
,

‖v⊥ι̂ (nτ)‖ ≥ c
√
V (nτ).

By assumption P1(n) we know that V is decreasing in [0, nτ ]. Using the estimate (3.55)

together with the choice of τ ≤ τ0 in (3.47) we obtain

d

dt
V (t) ≤ −2θ

N

(
‖v⊥ι̂ (nτ)‖ − τ

(
a(0)
√
N
√
V (nτ) + θ

)
− τ2a(0)θ

)
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≤ −2θ

N

(
‖v⊥ι̂ (nτ)‖ − τ

(
a(0)
√
N)
√
V (0) + θ

)
− τ2a(0)θ

)
≤ −2θ

N

(
‖v⊥ι̂ (nτ)‖ − ∆

4

)
≤ − θ

N
‖v⊥ι̂ (nτ)‖

≤ −cθ
N

√
V (nτ),

for all t ∈ [nτ, (n+ 1)τ ]. This shows that also V is decreasing in [nτ, (n+ 1)τ ] and hence

d

dt
V (t) ≤ −cθ

N

√
V (nτ) ≤ −cθ

N

√
V (t)

for all t ∈ [nτ, (n+ 1)τ ]. Together with P1(n) this finishes the proof of P1(n+ 1).

We can now use Lemma 2.6 with η = θ/N and η = cθ/N to get the following estimates

for Y and X, respectively:

Y (t) ≤ Y and X(t) ≤ X, for all t ∈ [0, (n+ 1)τ ]

with X as defined in (3.44) and Y as defined in (3.50). This shows P2(n+1). Furthermore,

P1(n+ 1) yields by integration∫ (n+1)τ

0

√
2V (s)ds ≤ −

√
2N

cθ

∫ (n+1)τ

0

d

ds
V (s)ds =

√
2N

cθ
(V (0)− V ((n+ 1)τ)) ≤ αV (0),

with α =
√

2N/cθ as in the statement. Hence, under the assumptions P1(n), P2(n), and

P3(n) we have shown P1(n+1), P2(n+1) as well as P3(n+1), provided that
√
W (mτ) > 2∆

for every m = 0, . . . , n.

Second step: we shall now prove that there exists an n∗ ∈ N such that n∗τ ≤ T̂ + τ and√
W (n∗τ) ≤ 2∆ holds, where T̂ is defined as in (3.46). By definition of the threshold

Γ = (2∆)2, this implies the switching of the control to 0 at time n∗τ . Assume on the

contrary that √
W ((n+ 1)τ) > 2∆ (3.56)

for all n ∈ N with nτ ≤ T̂ . In the first step we showed that this yields in particular for

t ∈ [0, (n+ 1)τ) the estimates

d

dt
W (t) ≤ − θ

N

√
W (t) < 0 and

√
W (t) > 2∆.

Hence for all t ∈ [0, (n+ 1)τ) it holds√
W (t) ≤

√
W (0) + t · sup

ξ∈(0,(n+1)τ)

d

dξ

√
W (ξ)

=
√
W (0) + t · sup

ξ∈(0,(n+1)τ)

d

dξ
W (ξ)

1

2
√
W (ξ)

≤
√
W (0)− t · θ

2N
.
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Taking n0 ∈ N such that n0τ ≤ T̂ < (n0 + 1)τ and using (JL3) we have

√
W ((n0 + 1)τ) ≤

√
W (T̂ )

≤
√
W (0)− T̂ θ

2N

=
√
W (0)− 2N

θ

(
2
√
V (0)− 2∆

) θ

2N

≤
√
W (0)− 2N

θ

(√
W (0)− 2∆

) θ

2N

≤ 2∆.

(3.57)

This contradicts assumption (3.56). Therefore there exists an n∗ ∈ N that satisfies n∗τ ≤
T̂ + τ and for which it holds √

W (n∗τ) ≤ 2∆. (3.58)

Third step: We shall show that (3.58) implies that the trajectories of both the low- and

high-dimensional systems are in the consensus region identified by Theorem 1.11 at time

n∗τ , i.e., √
W (n∗τ) ≤ γ(Y (n∗τ)) and

√
V (n∗τ) ≤ γ(X(n∗τ)).

We shall start considering the low-dimensional system. Notice that by (JL3) it holds

Y (0) ≤
(

1 +
1

2

)2

·X(0) ≤ 4X(0) and W (0) ≤ 4V (0).

Hence, by the fact that the constant c from Lemma 3.7 is smaller than 1, we can estimate

Y = 2Y (0) +
2N2

θ2
W (0)2 ≤ 4

(
2X(0) +

2N2

c2θ2
V (0)2

)
= 4X.

This together with (3.58), the definition of ∆ in (3.45), and P2(n∗) lead to√
W (n∗τ) ≤ 2∆ ≤ γ

(
4X
)
≤ γ(Y ) ≤ γ(Y (n∗τ)).

It remains to prove that the high-dimensional system is in the consensus region identified

by Theorem 1.11. Again, the conditions of Lemma 3.7 for the vectors ai = v⊥i (n∗τ) and

bi = w⊥i (n∗τ) are fulfilled: as in the first step we have by Proposition 3.17 that (3.42)

holds, i.e.,

‖Mv⊥i (n∗τ)− w⊥i (n∗τ)‖ ≤ ∆,

and property (JL2) holds at n∗τ . Thus, an application of Lemma 3.7 shows√
V (n∗τ) ≤ C∆.

The definition of ∆ in (3.45) and P2(n∗) then yield√
V (n∗τ) ≤ C∆ ≤ γ(X) ≤ γ(X(n∗τ)).
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We conclude that both the trajectories of the systems are in the consensus region at time

n∗τ . By Theorem 1.11 we are allowed to switch the control to 0 and both systems tend to

consensus autonomously.

Fourth step: In the second and third steps we have proven that both systems enters the

consensus region at time T0 = n∗τ , where n∗τ ≤ T̂ + τ . By the computations in (3.57),

we have the following estimate

T0 ≤
2N

θ

(√
W (0)− 2∆

)
+ τ ≤ T̂ + τ.

Moreover, by P2(n∗) we have for every t ∈ [0, n∗τ ]

‖xi(t)− xj(t)‖2 ≤ 2‖xi(t)− x(t)‖2 + 2‖xj(t)− x(t)‖2 ≤ 4NX(t) ≤ 4NX,

and from P1(n∗) it follows

‖vi(t)− vj(t)‖2 ≤ 2‖vi(t)− v(t)‖2 + 2‖vj(t)− v(t)‖2 ≤ 4NV (t) ≤ 4NV (0)

for every t ∈ [0, n∗τ ]. This shows (3.49) and the proof is concluded.

3.5 How to find a Johnson-Lindenstrauss matrix

The main ingredient of Proposition 3.17 and Theorem 3.18 is the existence of a Johnson-

Lindenstrauss matrix M ∈ Rk×d for the trajectories. Let ∆ and ε′ be as in Theorem 3.18

and let us recall what we explicitly needed. Assume that T̂ is an upper estimate for T0,

the switch off time of the control. Then we need to define a matrix M ∈ Rk×d such that

the following properties hold:

(JL1) Let ε = ε′ and

δ =

√
2

2
ε′
(√

X(0) +
N

cθ

)
.

For all t ∈ [0, T̂ + τ ] and i, j = 1, . . . , N, either we have

(1− ε)‖xi(t)− xj(t)‖ ≤ ‖M(xi(t)− xj(t))‖ ≤ (1 + ε)‖xi(t)− xj(t)‖

or

‖xi(t)− xj(t)‖ ≤ δ and ‖M(xi(t)− xj(t))‖ ≤ δ.

(JL2) Let ε = ε′ and δ = ∆. For all n = 0, . . . , bT/τc+ 1 and i = 1, . . . , N, either we have

(1− ε)‖vi(nτ)− v(nτ)‖ ≤ ‖M(vi(nτ)− v(nτ))‖ ≤ (1 + ε)‖vi(nτ)− v(nτ)‖

or

‖vi(nτ)− v(nτ)‖ ≤ δ and ‖M(vi(nτ)− v(nτ))‖ ≤ δ.
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(JL3) Let ε = 1/2. Then for all i = 1, . . . , N we have

(1− ε)‖vi(0)− v(0)‖ ≤ ‖M(vi(0)− v(0))‖ ≤ (1 + ε)‖vi(0)− v(0)‖

and

(1− ε)‖xi(0)− x(0)‖ ≤ ‖M(xi(0)− x(0))‖ ≤ (1 + ε)‖xi(0)− x(0)‖.

In order to prove conditions (JL2) and (JL3) one can directly invoke the Johnson-Lindenstrauss

Lemma as discussed in Remark 3.4, while for (JL1) one can use its continuous version,

Lemma 3.6, which boils down again to the application of the Johnson-Lindenstrauss

Lemma on points sampled from the trajectories.

However, the Johnson-Lindenstrauss Lemma applies on points which are fixed a priori

before generating randomly the matrix M ∈ Rk×d. At a first look, due to the fact that

the high-dimensional controls depend on the low-dimensional ones, which depend on the

matrix M , the points on which we apply the Johnson-Lindenstrauss Lemma may be seen

as directly depending on M as well.

In order to resolve this apparent paradox, we want to clarify that actually, due to the finite

number of sampling times of the control and the finite number of agents, the number of

possible realizable trajectories, and consequently the number of possible sampling points

for the Johnson-Lindenstrauss Lemma, is finite and independent of the choice of the matrix

M . Hence we are now left with the tasks of counting the number of such trajectories and

of verifying that they fulfill the necessary Lipschitz continuity assumptions for applying

Lemma 3.6.

Let us state again that the lower dimension k of M ∈ Rk×d scales as

k ∼ ε−2 log(N ), (3.59)

where ε ∈ (0, 1) is the allowed distortion and N is the number of sampling points on all

possible trajectories.

We focus first in (3.59) on the dependence of ε = min{ε′, 1/2} on N , the number of

agents, and the dimension d. According to (3.48) in Theorem 3.18 the estimate on ε′

scales exponentially with N , i.e., ε′ . e−N , since T̂ scales (at least) linearly with N , see

(3.46) (assuming that θ is independent of N and d). The positive aspect, however, is that

the estimate for ε′ does not involve the dimension d.

In order to compute N in (3.59) we need, first of all, to estimate the number of realizable

trajectories. Since we are insisting on sparse controls acting at most on one agent at the

time, at every switching time nτ with nτ ≤ T0, i.e., as long as the control is not switched

off, there are precisely only N possible controls and hence N possible branches of future

developments of the trajectories. By Theorem 3.18 it holds T0 ≤ T̂ + τ , and we can then

estimate the number P of possible paths by

P ≤ N b
T
τ
c+1.

Surprisingly, accounting for all the possible future branches is sufficient to show that we

can already deterministically fix points a priori on which later apply an independently
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randomly drawn matrix!

(i) In order to fulfill (JL1) for every possible trajectory, an application of Lemma 3.6

yields an estimate of the number of necessary sampling points

N1 = P (T̂ + τ) ·
(
N

2

)
· 4Lx(

√
d+ 2)

δε
, (3.60)

where the factor P (T̂ + τ) accounts for the number of trajectories and their time

length, the factor
(
N
2

)
accounts for the number of space trajectory differences xi(·)−

xj(·), and Lx is an upper estimate for the individual Lipschitz constants. Lx can be

computed explicitly from an estimate similar to (3.30) and the result from Theorem

3.18 that V is decreasing until T0 as follows

Lx = max
1≤i,j≤N

{
Lxi−xj (0, T0) : i, j = 1, . . . , N

}
≤ sup

t∈(0,T0)

√
2NV (t) ≤

√
2NV (0).

(ii) To fulfill (JL2) we shall now count the necessary sampling points at every switching

time nτ . For n = 0 we have to consider N sampling points. For n = 1 there are

already N possible paths to take into account and hence we need to take N2 = N ·N
sampling points. Going on in this way, at time nτ we have Nn possible outcomes of

the dynamical system and hence we have to take Nn+1 = Nn ·N sampling points,

as long as nτ ≤ T̂ + τ . Summing up the number of sampling points, we conclude

N2 =

bT
τ
c+1∑

n=0

Nn+1 ≤ N b
T
τ
c+3

(iii) To fulfill (JL3) we need only N3 = 2N sampling points.

Hence we can eventually estimate N from above by

N ≤ N1 +N2 +N3

= N b
T
τ
c+1(T̂ + τ) ·

(
N

2

)
·

4
√

2NV (0)(
√
d+ 2)

δε
+N b

T
τ
c+3 + 2N.

Thus, we can choose the dimension k of a Johnson-Lindenstrauss matrix M ∈ Rk×d as

k ∼ ε−2 · log(N )

∼ ε−2

[(
T̂

τ
+ 1

)
logN + log(T̂ + τ) + log d+ log V (0) + | log(δε)|

]
,

where

ε = min

{
ε′,

1

2

}
and δ = min

{
∆,

√
2

2
ε′
(√

X(0) +
N

cθ

)}
.

Since the estimate of ε′ scales exponentially in N , i.e., ε′ . e−N , the dimension k grows
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exponentially in N . The positive aspect is that the estimate of k only scales logarithmically

with the dimension d. Hence we have shown that at least for a large dimension d� 1 and

a relatively small number of agents N our dimensionality reduction approach pays off in

terms of the size of the projected dimension k.

However, as we shall show in Section 3.6, these theoretical bounds turn out to be by far

over-pessimistic and, surprisingly, this method of dimensionality reduction works effec-

tively with a lower dimensions k conspicuously smaller than d. Moreover, in the Remarks

3.20 and 3.21 below, we show two tricks to circumvent the exponential dependency of k

with respect to N at the cost of using sequences of Johnson-Lindenstrauss matrices.

Remark 3.19. The log(d)-dependency only comes into play when we derive (JL1) from

Lemma 3.6. One can actually use a similar argument as in Remark 3.12 in order to get rid

of this logarithmic dependency. We do not elaborate further on this issue which appears

to us just a mere and perhaps unnecessary technicality at this point.

Remark 3.20. We observed that in the worst-case scenario the dimension k of the

Johnson-Lindenstrauss matrix blows up exponentially with the number of agents N . A

practical approach to circumvent this problem is to use not one, but a whole family of

matrices M0, . . . ,M` to project the high-dimensional system. The matrix M0 is used from

time 0 up to a certain time t0 > 0 and thus only needs to fulfill the Johnson-Lindenstrauss

property in the short time interval [0, t0]. At time t0 a new matrix M1 is chosen: we observe

the positions and the consensus parameters in high dimension at t0 and project the system

to low dimension using the new matrix M1. Then we use the new low-dimensional system

to calculate the index of the control for the high-dimensional system from time t0 up to

time t1, and eventually we repeat the procedure again with new matrices M2,M3, . . .

This approach has the advantage that it requires the Johnson-Lindenstrauss properties

for Mi, i = 1, . . . , `, only for a short time interval. The disadvantage is that we have to

observe the high-dimensional system and project it to low-dimension again at every time

ti, i = 0, . . . , `− 1.

Remark 3.21. We now show how to get rid of the mutual dependency between the matrix

and the points of the trajectories using families of matrices as in Remark 3.20.

First, we take a matrix M0 having the Johnson-Lindenstrauss properties (JL2) at t = 0

and (JL3). We compute the index ι̂0 of the control (as defined in Definition 3.15) at t = 0

using the projection M0.

Then we choose a matrix M1 having the Johnson-Lindenstrauss properties (JL1) for all

t ∈ [0, τ), (JL2) at t = τ , and (JL3). We compute the low-dimensional system using the

projection M1 in [0, τ ] and let the control act on the agent ι̂0 calculated by M0. This is

the main trick of the procedure: the points of the high-dimensional system in [0, τ ] are not

influenced by the matrix M1 and hence the mutual dependency is removed, meaning that

there is no need to consider all trajectories P anymore, in contrast to (3.60).

Now, from the low-dimensional system, computed by M1 with control acting on ι̂0 in [0, τ ],

we choose the agent ι̂1 at τ on which the control will act in the next interval [τ, 2τ ].

This procedure can be carried out using a family of matrices {Mp : p = 0, . . . , `} such that

Mp fulfils the Johnson-Lindenstrauss properties (JL1) for all t ∈ [0, pτ), (JL2) at t = pτ ,

and (JL3). The agent ι̂p on which the control shall act in the interval [pτ, (p + 1)τ) is
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computed at pτ using the low-dimensional system projected by Mp, while the control acts

on ι̂q in [qτ, (q + 1)τ) for q = 0, . . . p − 1. Therefore, in [0, pτ ] the index of the controlled

agent and hence the trajectories of the high-dimensional system are independent of Mp.

3.6 Numerical implementation of sparse controls in high di-

mension

We shall now present some numerical experiments to confirm the theoretical observations

of the interplay between the Cucker-Smale system, the dimension reduction by a Johnson-

Lindenstrauss matrix and the quality of the control chosen from the low-dimensional (pro-

jected) system as defined in Definition 3.15.

For every ` = 0, 1, . . . we recursively solve the d-dimensional Cucker-Smale system
ẋi(t) = vi(t),

v̇i(t) =
1

N

N∑
j=1

vj(t)− vi(t)(
1 + ‖xi(t)− xj(t)‖2

)β + ui(`τ),
t ∈ [`τ, (`+ 1)τ ], i = 1, . . . , N,

numerically, using as the initial value (x(`τ), v(`τ)) the solution of the preceding interval

[(`− 1)τ, `τ ] and as the starting value for ` = 0 the given values x(0) = x0 and v(0) = v0.

The experiments are implemented by using Matlab applying a Runge-Kutta method of

order 4 solving the systems of ODEs with step width τ . The following are the different

control strategies ui we compare in our experiments:

(SP) Sparse control implemented in the high-dimensional system: this is the sparse control

strategy outlined in Definition 2.4. The control acts on the agent with consensus

parameter furthest away from the mean consensus parameter as long as we are not

in the consensus region given by Theorem 1.11: for every ` ∈ N let ι̂ ∈ {1, . . . , N}
be the smallest index such that

‖v⊥ι̂ (`τ)‖ = max
1≤i≤N

‖v⊥i (`τ)‖,

and define the control as

uj(`τ)
∆
=

−θ
v⊥ι̂ (`τ)

‖v⊥ι̂ (`τ)‖
if j = ι̂,

0 otherwise,

as long as V (`τ) > γ(X(`τ))2. As soon as V (nτ) ≤ γ(X(nτ))2 is satisfied for some

n ∈ N, we set T0
∆
= nτ and the control to zero.

This control was shown to be optimal in Proposition 2.5 in terms of maximizing the

rate of convergence to the consensus region, and shall be therefore employed as a

benchmark to test the effectiveness of the other controls.

(U) Uniform control: this control strategy acts on every agent simultaneously using a

control pointing towards the mean consensus parameter with norm equal to θ/N as
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long as V (`τ) > γ(X(`τ))2 . This means

uj(`τ) = − θ

N

v⊥j (`τ)

‖v⊥j (`τ)‖
for all j = 1, . . . , N.

Again, as soon as V (nτ) ≤ γ(X(nτ))2 is satisfied for some n ∈ N, we set T0
∆
= nτ

and the control to zero.

(R) Random sparse control: as long as V (`τ) > γ(X(`τ))2, at every sampling time `τ

we choose an index i ∈ {1, . . . , N} at random following a uniform distribution. Then

we define the control as

uj(`τ)
∆
=

−θ
v⊥i (`τ)

‖v⊥i (`τ)‖
if j = i,

0 otherwise.

As in the above controls, as soon as V (nτ) ≤ γ(X(nτ))2 is satisfied for some n ∈ N,

we set T0
∆
= nτ and the control to zero.

(DR) Dimension reduction sparse control chosen from the low-dimensional projected sys-

tem: here ui(`τ) = uhi (`τ) is defined as in Definition 3.15. In order to test the

performance of this control, and to avoid the stability complications arising from

finite precision approximation, we calculate the trajectories of both the high- and

the low-dimensional system: if the high-dimensional system enters the consensus re-

gion first (i.e., V (nτ) ≤ γ(X(nτ))2 for some n ∈ N), then we set the control to

zero and T0
∆
= nτ . Instead, if the system in low dimension reaches the consensus

region first (i.e., W (`τ) ≤ γ(Y (`τ))2 for some ` ∈ N), then we switch the control

for the high-dimensional system to the random sparse control strategy (R) until

V (nτ) ≤ γ(X(nτ))2 is eventually satisfied for some n ∈ N.

Notice that all the controls above are time sparse, and only the uniform control strategy

(U) is not componentwise sparse.

Remark 3.22. The reasons for using the random sparse control strategy in the end phase

of (DR) (in the case that the low-dimensional system reaches the consensus region before

the high-dimensional one) are of numerical and computational nature. In fact, the step

width τ computed in Theorem 3.18 to ensure convergence to the consensus region in

finite time is often way too small, and in our numerical experiments we need to exceed

it. Moreover, as soon as the high-dimensional system enters the consensus region, the

difference between consensus parameters becomes so small to render, for such a large time

step, the choice of the sparse control highly inaccurate, leading to inefficient chattering

phenomena, without steering the high-dimensional system to consensus.

As an alternative, we employ the random sparse control as soon as the low-dimensional

system has reached the consensus region (if this happens before the high-dimensional

system does). This procedure has the advantage of always steering the high-dimensional

system to the consensus region, and to only slightly affect the overall time of the process,
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since it is usually necessary only for a very short time (provided that the dimension of the

Johnson-Lindenstrauss matrix is sufficiently large).

3.6.1 Content of the Numerics

The following are the driving issues concerning the controls introduced above.

(i) Does the control steer the system to the consensus region given by Definition 1.4 in

finite time?

(ii) If yes, how long does it take to steer the system to the consensus region?

In the following, for every experiment we fix the number of agents N , the dimension d,

the control strength θ, the power β for the interaction kernel a as in (1.7) with H = 1 and

σ = 1, the step width τ , and in particular the configuration (x0, v0) ∈ RdN × RdN at the

beginning. We report the maximal step width τ0 (theoretically) allowed by the formula

(3.47), and the estimate from above for the time to consensus T̂ (taken from Theorem

3.18). We also report the quantity V (0)− γ(X(0))2, accounting for the discrepancy of the

original configuration from the consensus region.

For every configuration we shall present a table containing the performances of the different

controls, measured by the time employed by the high-dimensional system to reach the

consensus region T0, and the time T0.5 it takes to halve the “distance” to the consensus

region: this means that T0.5 is the minimal time satisfying

V (T0.5)− γ(X(T0.5))2 ≤ 1

2

(
V (0)− γ(X(0))2

)
.

To test the performances of the control (DR) we shall use a variety of Bernoulli random

matrices M ∈ Rk×d for different dimensions k. For any of these dimensions, we also

report the initial discrepancy W (0)− γ(Y (0))2 from the consensus region of the projected

system, and the switching time TS at which the random sparse control replaces the original

dimension reduction control strategy (if the high-dimensional system enters the consensus

region before the low-dimensional one, we set TS
∆
= T0).

Figure 3.2 below shows the first two coordinates of the initial configurations used in each

section.

3.6.2 Examples where (DR) performs second best after (SP)

3.6.2.1 Configuration with one outlier

We take into account N = 9 agents in dimension d = 100 for which the j-th spatial

component of the i-th agent is given by the formula

(x0
i )j =

1

2
cos(i+ j

√
2) for j = 1, . . . , d and i = 1, . . . , N.

The result obtained is a set of points non-homogeneously distributed over an almost spher-

ical configuration, which, projected in R2, resembles an ellipse. A similar configuration is

used for the consensus parameter of each agent, for which we have

(v0
i )j = sin(i

√
3− j) for j = 1, . . . , d and i = 1, . . . , N − 1;
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Figure 3.2: From top-left to bottom-right: first two coordinates of the initial configurations
of Sections 3.6.2.1, 3.6.2.2, 3.6.2.3, 3.6.3.1, 3.6.3.2. The blue points are the positions of the
agents, the red arrows their consensus parameters.

the initial consensus parameter of the N -th agent is instead the vector with all entries set

equal to 10.

N θ β d τ0 T̂ τ V (0)− γ(X(0))2

9 5 0.6 100 7.33 · 10−4 115.17 10−2 1031.3

The following table reports the performance of the different controls considered:

Control (SP) (U) (R) (R) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR)

k - - - - 1 1 5 5 10 10 25 25 32 40 55 55

W (0)− γ(Y (0))2 - - - - 202.0 1014.2 509.9 870.2 1651.4 1072.3 1035.2 582.18 933.0 1273.1 1054.5 1046.5

T0 27.78 87.21 87.90 88.79 69.75 30.98 44.27 30.47 35.55 29.65 27.8 44.75 30.65 32.49 28.20 28.19

T0.5 5.44 22.96 22.64 23.21 5.92 5.44 5.44 5.44 5.44 5.44 5.44 5.44 5.44 5.44 5.44 5.44

TS - - - - 13.47 22.25 17.81 22.39 32.62 29.03 27.8 23.14 26.2 28.94 28.20 28.15

We first observe that if the system is left alone, with no control acting on it, the quantity

V (t)− γ(X(t))2 decreases only from 1031.3 to 946.2 at time t = 100, from which we can

infer that the system would not reach the consensus region without an external interven-

tion. Notice that the Sparse Control (SP) is the fastest; this shall be a common feature of

all our experiments, as expected by its optimality shown in Proposition 2.5. The uniform

control (U) and the random control (R) perform similarly and both take more than three

times longer to reach the consensus region as (SP). The control (DR) has comparable

performances to (SP), and very surprisingly even when projecting to dimension k = 1 the

system reaches the consensus region faster than with the controls (U) and (R).
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Figure 3.3: Time to consensus for (DR) in
function of the projected dimension k, and
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Figure 3.4: Time to consensus in function
of the exactness of the matrix at 0 for the
fixed dimension k = 10.

In Figure 3.3, we illustrate the time T0 the system takes to reach the consensus region as a

function of the projected dimension k for the control (DR). If multiple tests are made with

the same dimension k, we consider an average of the results. We also report, in different

colors, the values of T0 we obtain with the control (SP) and the control (R) (blue and

green line, respectively). It can be seen how the performance of (DR) is basically the same

as (SP) even if we reduce the dimensionality by 80% .

Up to now, we don’t have any procedure to test if the randomly generated matrix we

use to implement the control (DR) satisfies the requested properties of Theorem 3.18.

Moreover, to get a precise answer, we would need to gather information which belongs to

the high-dimensional system beyond time t = 0, something which we are not allowed to

know in advance. We claim, however, that the quantity, which we call the exactness of the

matrix M at 0,

EM
∆
=

∣∣∣∣1− V (0)

W (0)

∣∣∣∣ =

∣∣∣∣∣1−
∑N

i=1 ‖v⊥i (0)‖2∑N
i=1 ‖Mv⊥i (0)‖2

∣∣∣∣∣ .
is a measure of how “good” the matrix M is. To show that, we have considered six different

M ∈ Rk×d for k = 10 and their respective time to the consensus region: we report in Figure

3.4 the time to consensus for the system in function of the exactness of the matrices at 0.

A correlation between how EM is close to zero and how effective is the control, is clearly

visible.

3.6.2.2 Configuration generated by a geometric distribution

In this section we consider a system where the locations are distributed as in the example

before, while the consensus parameters are given by the formula

(v0
i )j = (1.2)(i−1)/2 sin(i

√
3− j) for j = 1, . . . , d and i = 1, . . . , N − 1;

This results in a more heterogeneous situation at the beginning. We also increase the

dimension d to 500, the strength of the force θ to 20 and β to 0.65.
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N θ β d τ0 T̂ τ V (0)− γ(X(0))2

15 20 0.65 500 1.26 · 10−4 51.82 10−2 1195.5

The following table summarizes the results of the experiments:

Control (SP) (U) (R) (R) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR)

k - - - - 1 1 10 10 50 50 50 100 100

W (0)− γ(Y (0))2 - - - - 1194.2 1191.9 1194.3 1197.5 1007.2 1199.7 1178.2 1079.1 1204.7

T0 23.45 38.02 38.10 39.82 40.96 45.41 26.66 29.81 27.45 24.33 26.48 26.88 24.02

T0.5 5.49 7.60 7.68 7.66 7.455 9.04 5.64 5.86 5.55 5.5 5.59 5.59 5.50

If we let the system free to evolve, the quantity V (t)−γ(X(t))2 decreases only from 1195.5

to 1122.3 at time t = 30. The slowness of the decay implies the necessity of a control. The

uniform control (U) and the random control (R) perform similarly, as in the example

before. However, the control (DR) overwhelms both when the projected dimension is large

enough (k ≥ 10). Figure 3.5 shows the performance of (DR) in function of k and compares

it with (R) and (SP).

Time to consensus for (DR) in function of the
projected dimension k, and comparison with (SP) and (R)
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3.6.2.3 Configuration generated by a Cauchy distribution

For the system considered in this section, the initial configuration is calculated as follows:

the j-th spatial component of the i-th agent is the value of a normal distribution with

expected value 0 and standard deviation 1, independently selected for different i and j.

The j-th component of the consensus parameter of the i-th agent is ruled by a Cauchy

distribution, whose density is given by

f(x) =
b

π(b2 + x2)
.

We choose the height to be b = 1/40 (to get a reasonably large V (0) in the computations).

The initial configuration is generated once and then fixed for all the experiments with the
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different controls (SP), (R), (U) and (DR).

Below we list the parameters we fix for this section:

N θ β d τ0 T̂ τ V (0)− γ(X(0))2

25 5 0.6 100 3.77 · 10−4 214.76 10−2 464.03

The following table reports the performances of the various controls:

Control (SP) (U) (R) (DR) (DR) (DR) (DR) (DR) (DR) (DR)

k - - - 1 1 2 5 5 10 10

W (0)− γ(Y (0))2 - - - 461.04 461.04 475.48 464.39 464.39 465.00 465.00

T0 33.45 266.44 265.14 48.04 48.6 38.07 37.98 38.16 36.11 35.41

T0.5 6.1 70.55 68.54 6.1 6.1 6.1 6.1 6.1 6.1 6.1

As in the examples before, the control (DR) clearly outperforms both (R) and (U), and

in this case even for k = 1. Figure 3.6 compares the effectiveness of the controls (DR)

(in function of k), (R) and (SP). We point out that, even in this situation, a control is

necessary to steer the system to consensus since the quantity V (t) − γ(X(t))2 decreases

only from 464 to 436.5 in the time frame [0, 50] if no control is applied.

3.6.3 Examples in which (R) and (U) are comparable to (DR)

3.6.3.1 Configuration generated by a normal distribution

In this example, the j-th spatial (resp., velocity) component of the i-th agent is indepen-

dently generated by a normal distribution with expected value 0 and standard deviation

10 (resp., 8). As in Section 3.6.2.3, we generate the initial configuration once and we use

it for all the experiments with the controls.

N θ β d τ0 T̂ τ V (0)− γ(X(0))2

10 20 0.65 500 2.55 · 10−6 165.68 5 · 10−3 27458

The parameters used for this configuration are listed in the table above, while on the one

belowe we report the performances of the various controls.

Control (SP) (U) (R) (R) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR)

dim. k - - - - 1 1 2 5 10 10 20 50 50 100 100

W (0)− γ(Y (0))2 - - - - 27496 27469 27421 27425 27458 27493 27464 27482 27481 27495 27498

T0 82.65 84.56 85.82 85.25 129.28 153.02 115.91 99.79 95.31 100.18 96.7 89.79 91.02 91.67 89.60

T0.5 24.09 24.13 24.15 24.13 36.195 42.76 29.28 26.47 26.75 25.25 25.32 24.7 24.74 24.44 24.32

TS - - - - 68.06 62.94 76.91 80.51 80.55 77.30 81.57 82.25 82.25 82.49 82.57
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This time the controls (R) and (U) are quasi-optimal, performing in almost the same way

as the benchmark control (SP). Figure 3.7 shows that the control (DR) behaves similarly

to (R) and (SP) up to a reduced dimension k = 50 (hence up to 10% of the original

dimension): from that point on the efficiency rapidly deteriorates, making the control

unfeasible.

Time to consensus for (DR) in function of the
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3.6.3.2 Uniform configuration

As last example we consider a configuration similar to the one of Section 3.6.2.1: the j-th

spatial and consensus parameter components of the i-th agent are both given by

(x0
i )j = (v0

i )j = cos(i+ j
√

2) for j = 1, . . . , d and i = 1, . . . , N.

N θ β d τ0 T̂ τ V (0)− γ(X(0))2

15 5 0.8 200 1.91 · 10−5 59.48 10−3 98.30

The above tables report the parameters of the configuration taken into account and the

one below the outcomes of the experiments with the different controls.

Control (SP) (U) (R) (R) (DR) (DR) (DR) (DR) (DR) (DR) (DR) (DR)

k - - - - 1 1 10 10 20 20 50 50

W (0)− γ(Y (0)) - - - - 95.98 43.50 95.85 96.70 77.12 101.65 97.02 122.83

T0 28.95 29.95 30.86 30.74 53.97 44.47 38.13 32.35 33.08 32.73 29.41 32.45

T0.5 7.99 8.30 8.30 8.31 9.74 9.21 8.92 8.15 8.21 8.17 7.99 8.14

As before, (R) and (U) perform similarly to (SP); (DR) is able to compete up to a di-

mension reduction of 25% of the original dimension (k = 50). From there on, its efficiency

steadily declines. This phenomenon can be witnessed in Figure 3.8.
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3.6.4 Conclusions from the experiments

In this section we summarize the conclusions that can be drawn from the list of experiments

reported in this numerical section.

(i) A common feature of all the experiments is that the control (DR) is highly compet-

itive with respect to the benchmark control (SP) up to a reduced dimension which

is 10% of the original one. Indeed, in this case (DR) takes between 5 to 22% more

time than (SP) to steer the system to consensus. This suggests that the approach

of dimension reduction works in general much better practically than theoretically,

and that our analysis in Theorem 3.18 is quite conservative.

(ii) The dimension of the matrix is not the only necessary ingredient to obtain a com-

petitive control: a matrix should also fulfill the Johnson-Lindenstrauss property for

certain points of the high dimensional system. Since to check the latter condition we

need information regarding the future development of the system, we need to design

different criteria to distinguish “good” matrices from “bad” ones. In Section 3.6.2.1,

we have seen that a possible sieve is the notion of exactness of a matrix at 0: the

smaller this value is, the better the control shall perform, according to the empirical

data we have gathered.

(iii) There is no proof yet that the random sparse control (R) forces the system to enter

the consensus region almost surely for every configuration, but numerical experi-

ments suggest this behavior. Furthermore, it is interesting to notice that the time

to consensus obtained by the use of the uniform control (U) is always very close to

the one we get by using the random sparse control strategy (R): this strongly hints

that the expected value of the time to consensus of the random control (R) could be

very near or even equal to the one of (U).

(iv) A common feature of the last two examples is the “relative homogeneity” of the

consensus parameters with respect to the mean consensus parameter: by this we

mean that the consensus parameters of all the agents compete to be the furthest

away from it, and thus the sparse control will jump from one to another continuously,

showing a chattering behavior. In contrast, all the first three experiments feature a

relatively small subgroup of agents whose consensus parameters are the furthest

away from the mean consensus parameter by a considerable margin. These are the

cases where the controls (SP) and (DR) are substantially more efficient than (R)

and (U): by firmly acting on the most “badly behaving” agents, we are able to steer

the system to consensus faster than employing control strategies which are blind to

the structure of the group. It is thus advisable to use sparse strategies only when

the consensus parameters of the agents are sufficiently “asymmetric” at the starting

point.

(v) In the next section we shall propose an asymmetry measure of a group of agents which

tries to quantify how “heterogeneous” a configuration of agents is. This measure is

designed to satisfy the following property: if the asymmetry of the initial configura-

tion (x0, v0) is large, then (DR) markedly outperforms the control (R). If, instead,

the asymmetry of (x0, v0) is small, the discrepancy between the performances of the
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controls (SP) and (R) is small, thus making (R) a viable substitute of it and of (DR).

With such a tool, we shall be able to know in advance if it is reasonable to take on

the computational effort to calculate (DR), or if a random choice of the agent to

control is a feasible option.

3.6.5 The asymmetry measure of a configuration

We have seen in the numerical experiments of the last section that sometimes the Ran-

dom control strategy (R) is not only sufficient to steer the system to consensus, but also

performs almost as efficiently as the benchmark control (SP). Knowing in advance if a

system reacts well to (R) or not can save a huge amount of computational time, both at

the implementation level and for what concerns the speed of the convergence to consensus.

Based on the empirical evidences we have collected in Section 3.6, in this section we pro-

pose a criterion to decide a priori if it is convenient to employ the Dimension Reduction

control (DR) or the Random control (R).

We start by noticing that from (3.51) follows that whenever the control strategy we use

acts on a single agent at a time, say the ι̂-th agent, then we can estimate the decay of the

Lyapunov functional V as

d

dt
V (t) ≤ −2θ

N

v⊥ι̂ (nτ) · v⊥ι̂ (t)

‖v⊥ι̂ (nτ)‖
≤ −2θ

N
‖v⊥ι̂ (t)‖.

Hence, since we are trying to maximize this decay rate, the “right” agent to control is the

farthest away from the mean consensus parameter. But how much does this choice pay

off? This clearly depends on the overall symmetry of the configuration: if the distances of

the agents from the mean v are more or less the same, i.e.,

‖v⊥i (t)‖ ≈ ‖v⊥j (t)‖, for all i 6= j,

then it does not matter “too much” which agent should be controlled. However, whenever

there is an agent whose distance from the mean consensus parameter is considerably larger

than the others, it is crucial to pick precisely this agent in order to maximize the decay

rate (which is also the idea behind Proposition 2.5).

To quantify this rough idea, define for every p ∈ [1,∞) the p-normalized asymmetry

measure at 0 as

σp
∆
=

 1

N

N∑
i=1

∣∣∣∣∣∣‖v⊥i (0)‖ − 1

N

N∑
j=1

‖v⊥j (0)‖

∣∣∣∣∣∣
p1/p

.

One might be tempted to use p = 2 since then σ2 resembles the standard deviation of the

moduli of the velocities. However, as we have already pointed out, a single outlier should

“count” more than a large group of agents with similar distances from the mean velocity.

And since it holds

lim
p→∞

σp = max
1≤i≤N

∣∣∣∣∣∣‖v⊥i (0)‖ − 1

N

N∑
j=1

‖v⊥j (0)‖

∣∣∣∣∣∣ ,
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then a value p � 2 will be more susceptible to react to the presence of possible outliers.

This is the reason why in what follows we choose p = 100.

We now show that there is a correlation between how large the asymmetry measure of an

initial configuration (x0, v0) is and how well (R) performs to steer the system starting at

(x0, v0) to the consensus region. To measure the difference between the performance of the

benchmark control (SP) and the Random control (R), let T
(SP )
0 be the time to consensus

when using (SP), and let T
(R)
0 be the time to consensus when using (R), averaged over

several runs. We define the relative time perfomance T1 as

T1
∆
=
T

(R)
0 − T (SP )

0

T
(SP )
0

.

Notice that, by the optimality of (SP), we expect T1 to be a positive quantity.

We also measure the difference between the performances of (R) and (DR) (which, notice,

might also be negative). If T
(DR)
0 is the average time to consensus using the control (DR)

– averaged among all dimensions k in the examples – then the relative time perfomance

T2 is given by

T2
∆
=
T

(R)
0 − T (DR)

0

T
(SP )
0

.

Table 3.1 reports the values of T
(SP )
0 , T

(DR)
0 , T

(R)
0 , T1, T2 and σ100 for the five examples of

the last section. We can see that the first three examples have a high asymmetry and both

T1 and T2 are positive. The last two examples have a relatively lower level of asymmetry,

together low values of T1 and T2 (which is negative since, as we have seen in the last

section, in these examples (R) is faster that (DR) in bringing the system to consensus).

Example Section 6.2.1 6.2.2 6.2.3 6.3.1 6.3.2

T
(SP )
0 27.78 23.45 33.45 82.65 28.95

T
(DR)
0 34.41 26.70 40.34 113.49 36.93

T
(R)
0 88.35 38.65 265.14 85.53 30.80

T1 2.18 0.67 6.93 0.04 1.39

T2 1.94 0.51 6.72 -0.34 -0.21

σ100 65.87 21.74 90.67 8.28 1.3943

Table 3.1: Values of T
(SP )
0 , T

(DR)
0 , T

(R)
0 , T1, T2 and σ100 for the examples in Section 3.6.

We illustrate this further with two histograms using a richer data set of initial configu-

rations, encompassing those of the previous sections. Figure 3.9 reports the correlation

between T1 and σ100, while Figure 3.10 shows the correlation between T2 and σ100. The

histograms clearly show that the asymmetry measure σ100 is a suitable detector of when

the (DR) control strategy is needed or when the Random control (R) is sufficient in order
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to steer the system to consensus.

Figure 3.9: Correlation between T1 and σ100. Figure 3.10: Correlation between T2 and σ100.

3.7 Real-life approach

We conclude this chapter by listing several guidelines for the use of sparse controls and

dimensionality reduction techniques. These points are summing up both the theoretical

and numerical analysis we carried out in the last two chapters, and should be considered

as a practical receipt to follow whenever sparse control on a dynamical system is needed

but its dimensionality makes the implementation of the direct strategy problematic.

(i) Fix a threshold A > 0 for the maximal asymmetry level allowed, and another one

E > 0 for the maximal exactness of the matrices at 0 (that is, EM ) allowed.

(ii) Given an initial configuration (x0, v0), compute V (0) and γ(X(0)). If the system is

already in the consensus region, then there is nothing to do. If not, compute the

asymmetry σ100 of (x0, v0).

(iii) If σ100 < A, then use the Random control (R). Notice that the only high-dimensional

information needed at each step is the consensus parameter vi of the agent to control,

since i is randomly chosen.

(iv) If σ100 ≥ A, choose a feasible projected dimension k ≥ d (experiments suggest

k ∼ d/10), generate a random matrix M ∈ Rk×d as in (S2) or (S3) of Remark 3.4

and compute EM , its exactness at 0.

(v) If EM ≥ E then repeat the step above. If EM < E, enact the control strategy

(DR) using the projected system obtained via M . Again, the only high-dimensional

information needed at each step is the consensus parameter vι̂ of the agent to control,

since ι̂ is chosen in low dimension.



CHAPTER 4

The mean-field approximation

We now make a brief pause from sparse controls and show how the curse of dimensionality

can be circumvented when the number of agents N is very large while their dimension

d remains modest. The strategy relies on a very simple idea: instead of considering the

influence that the entire population has on a single agent, we substitute it with an averaged

one (a process known in the literature as mean-field approximation), thus reducing a many-

body problem to a one-body problem. This let us drop the original huge system of ODEs

in favor of a single PDE for the probability density of agents in the state space: the price

to pay is that, in this way, we only have an average knowledge of the behavior of the

agents. We shall study in detail two approaches to derive rigorously this procedure: the

mean-field limit and the grazing interaction limit. All the results presented here are slight

variations of well-known results and are reported for the sake of completeness, since they

will be employed at several times in the forthcoming chapters. We remand to the reviews

[107, 130, 162] and the book [151] for further insights.

4.1 The Wasserstein space of probability measures

We start by introducing the basic definitions and properties regarding spaces of measures.

For more details, we refer to the classical references [13, 176].

Let Mb(Rd1 ;Rd2) be the space of finite vector measures from Rd1 to Rd2 equipped with

the total variation norm ‖ · ‖Mb(Rd1 ;Rd2 ). We denote by Mb(Rd)
∆
=Mb(Rd;R+) the set of

finite positive measures defined on the Borel sets of Rd, and we define P(Rd) as the subset

ofMb(Rd) of all the probability measures on Rd, i.e., all µ ∈Mb(Rd) for which µ(Rd) = 1.

The space Pp(Rd) is the subset of P(Rd) whose elements have finite p-th moment, i.e.,∫
Rd
‖x‖pdµ(x) < +∞.
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Clearly, we can extend the notation to any subset Ω ⊆ Rd and, whenever Ω is bounded, it

holds Pp(Ω) = P(Ω) for every p ≥ 1. We denote by Pc(Rd) the set of all µ ∈ P(Rd) with

compact support, i.e., for which the set

supp(µ)
∆
= {x ∈ Rd : for every open set A such that x ∈ A it holds µ(A) > 0}

is contained in a compact set of Rd. Notice that Pc(Rd) ⊂ Pp(Rd) for every p ≥ 1.

For any µ ∈ P(Rd1) and any Borel function f : Rd1 → Rd2 , we denote by f#µ ∈ P(Rd2)

the push-forward of µ through f , defined as

f#µ(B)
∆
= µ(f−1(B)) for every B ⊆ Rd2 Borel set.

In particular, if one considers the projection operators π1 and π2 defined on the product

space Rd1 ×Rd2 , for every ρ ∈ P(Rd1 ×Rd2) we call first (resp., second) marginal of ρ the

probability measure π1#ρ (resp., π2#ρ). Given µ ∈ P(Rd1) and ν ∈ P(Rd2), we denote by

Γ(µ, ν) the subset of all probability measures in P(Rd1 × Rd2) with first marginal µ and

second marginal ν.

On the set Pp(Rd) we shall consider the following distance, called the Wasserstein or

Monge-Kantorovich-Rubinstein distance,

Wp(µ, ν)
∆
= inf

ρ∈Γ(µ,ν)

{∫
R2d

‖x− y‖pdρ(x, y)

}1/p

. (4.1)

If p = 1, we have the following dual representation for the Wasserstein distance

W1(µ, ν) = sup

{∫
Rd
ϕ(x)d(µ− ν)(x) : ϕ ∈ Lip(Rd;R), LipRd(ϕ) ≤ 1

}
.

We denote by Γo(µ, ν) the subset of measures ρ ∈ Γ(µ, ν) for which the minimum in (4.1)

is attained, i.e.,

ρ ∈ Γo(µ, ν) ⇐⇒ ρ ∈ Γ(µ, ν) and

∫
R2d

‖x− y‖pdρ(x, y) =Wp(µ, ν)p.

It is well-known that Γo(µ, ν) is non-empty for every (µ, ν) ∈ Pp(Rn)×Pp(Rn), hence the

infimum in (4.1) is actually a minimum.

For any µ ∈ Mb(Rd) and f : Rd → Rd, the notations f ∗ µ and 〈f, µ〉 stand for the

convolution and the duality pairing between f and µ, respectively, i.e.,

(f ∗ µ)(x)
∆
=

∫
Rd
f(x− y)dµ(y) and 〈f, µ〉 ∆

=

∫
R2d

f(x)dµ(x),

whenever those quantities are well-defined (for example, whenever f is sublinear and µ ∈
P1(Rd), or simply whenever f is bounded). Furthermore, if ω ∈ C(Rd;Rd) is sublinear and

µ ∈ P1(Rd), we define the Radon vector measure ωµ ∈Mb(Rd;Rd) as

ωµ(A)
∆
=

∫
A
ω(x)dµ(x) for every A ⊂ Rd bounded. (4.2)



4.2 The mean-field equation and existence of solutions 135

We shall denote by
∫
ωµ

∆
= ωµ(Rd) = 〈ω, µ〉.

For any β ∈ Nd we set |β| ∆
=
∑d

i=1 βi, and for any function h ∈ Cp(R2d;R), with p ≥ 0 and

β ∈ Nd such that |β| ≤ p, we define for every (x, v) ∈ R2d

∂βv h(x, v)
∆
=

∂|β|h

∂β1v1 · · · ∂βdvd
(x, v),

with the convention that if β = (0, . . . , 0) then ∂βv h(x, v)
∆
= h(x, v).

Later on in the chapter, we shall need the following class of test functions.

Definition 4.1 (Test functions). For every δ > 0, we denote by Tδ the set of compactly

supported functions ϕ from R2d to R such that for any multi-index β ∈ Nd we have:

(i) if |β| < 2, then ∂βv ϕ(x, ·) is continuous for every x ∈ Rd;

(ii) if |β| = 2, then there exists an M > 0 such that

(a) ∂βv ϕ(x, ·) is uniformly Hölder continuous of order δ for every x ∈ Rd with Hölder

bound M , that is for every x ∈ Rd and for every v, w ∈ Rd it holds∥∥∥∂βv ϕ(x, v)− ∂βv ϕ(x,w)
∥∥∥ ≤M ‖v − w‖δ ;

(b) ‖∂βv ϕ(x, v)‖ ≤M for every (x, v) ∈ R2d.

Notice that C∞c (R2d;R) ⊆ Tδ for every δ ∈ (0, 1].

4.2 The mean-field equation and existence of solutions

Notice that by using the functional G[a] : R2d → R2d defined as

G[a](x, v)
∆
= (v,−a(‖x‖)v), for all (x, v) ∈ R2d,

we can rewrite the Cucker-Smale system (1.6) in the following compact form

(ẋi(t), v̇i(t)) =
1

N

N∑
j=1

G[a](xi(t)− xj(t), vi(t)− vj(t)). (4.3)

This shows that systems of this kind are all basically first-order, and it is thus not restrictive

to focus our attention on systems of the form

ẋi(t) =
1

N

N∑
j=1

K(xi(t)− xj(t)) + g(t, xi(t)), (4.4)

at least for the sake of compactness. To shorten the notation further, we pass from dimen-

sion 2d as in (4.3) to simply d: hence in (4.4), the interaction kernel K is a map from Rd
to Rd. The extra term g : [0, T ] × Rd → Rd stands for an (optional) external vector field

applied to each agent and changing in time.
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The situation of equation (4.4) in which the force exerted on each agent is of order 1 as

N → ∞ is known in the mathematical literature as the mean-field (or weak coupling)

scaling.

In order to study the behavior of the solutions of system (4.4) as N →∞, we consider the

family of ODE systems (indexed by N ∈ N) with finite time horizon T > 0 given by
ẋi,N (t) =

1

N

N∑
j=1

K(xi,N (t)− xj,N (t)) + gN (t, xi,N (t)) for t ∈ (0, T ],

xi,N (0) = x0
i,N ,

i = 1, . . . , N.

(4.5)

Notice the label N on the term gN , since its form may also depend on the number of

agents.

As N increases, so does the complexity of system (4.5): this specifies, for instance, into a

chaotic behavior – which means a strong sensitivity to small perturbations – and numerical

intractability. Indeed, not even fast particles methods [111, 112] can handle the number of

1025 agents that are sometimes needed in several applications. However, a first milestone

towards the complexity reduction of such systems comes from exploiting the mean-field

scaling.

Definition 4.2 (Empirical measures). The empirical distribution of system (4.5) is the

curve µN : [0, T ]→ Pc(Rd) defined as

µN (t)
∆
=

1

N

N∑
i=1

δxi,N (t) for every t ∈ [0, T ], (4.6)

where xN : [0, T ]→ RdN is the solution of system (4.5) and δx denotes the Dirac measure

centered on x ∈ Rd.

By means of empirical measures, system (4.5) can be rewritten as{
ẋi,N (t) = (K ∗ µN (t))(xi,N (t)) + gN (t, xi,N (t)) for t ∈ (0, T ],

xi,N (0) = x0
i,N ,

i = 1, . . . , N. (4.7)

It is well-known that renormalized sums of Dirac measures like (4.6) are dense in P(Rd),
hence under further hypotheses on the atoms (xi,N (·), . . . , xi,N (·)) (which we overlook, for

the moment) we may assume that there exists µ : [0, T ]→ P(Rd) such that µN (t) ⇀ µ(t)

for every t ∈ [0, T ]. The approximation µN ≈ µ valid for N large implies that the solution

of (4.7) is close to that of{
ξ̇(t) = (K ∗ µ(t))(ξ(t)) + g(t, ξ(t)) for t ∈ (0, T ],

ξ(0) = x0
i,N ,

(4.8)

(provided that gN converges uniformly to the function g). However, the above equation

is nothing but a characteristic curve of the PDE

∂µ

∂t
(t) = −∇x ·

(
(K ∗ µ(t) + g(t))µ(t)

)
,
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which is a particular instance of the general Vlasov-type transport equation

∂µ

∂t
(t) = −∇x · (V (t, µ(t))µ(t)) (4.9)

for the choice of the vector field

V (t, µ)(x) = (K ∗ µ)(x) + g(t, x).

Definition 4.3 (Weak solution of (4.9)). We say that a map µ : [0, T ] → P1(Rd) is a

solution of (4.9) if the following holds:

(i) µ(·) has uniformly compact support, i.e., there exists R > 0 such that supp(µ(t)) ⊆
B(0, R) for every t ∈ [0, T ];

(ii) µ(·) is continuous with respect to the Wasserstein distance W1;

(iii) µ(·) satisfies (4.9) in the weak sense, i.e. (see [13, Equation (8.1.4)]),

d

dt

∫
Rd
φ(x) dµ(t, x) =

∫
Rd
∇φ(x) · V (t, µ(t))(x) dµ(t, x),

for every φ ∈ C∞c (Rd;R) and every t ∈ [0, T ].

Remark 4.4 ([106, Section 4]). Since the linear span of functions of the type η(t)ζ(x, v)

with η ∈ C∞c ([0, T ];R) and ζ ∈ C∞c (Rd;R) is dense in C∞c ([0, T ]×Rd;R), it is not difficult

to manipulate equation (4.9) to see it is equivalent to∫ T

0

∫
Rd

(
∂ϕ

∂t
(t, x) +∇xϕ(t, x) · V (t, µ(t))(x)

)
dµ(t, x)dt = 0,

for every ϕ ∈ C∞c ([0, T ] × Rd;R). Another equivalent reformulation of (4.9) involving

the duality pairing between continuous functions and measures is the following: for every

t ∈ [0, T ] and φ ∈ C∞c (Rd;R) it holds

〈φ, µ(t)− µ(0)〉 =

∫ t

0

∫
Rd
∇φ(x) · V (s, µ(s))(x)dµ(s, x)ds.

Motivated by the above insights, we consider the system
∂µ

∂t
(t) = −∇x ·

(
(K ∗ µ(t) + g(t))µ(t)

)
for t ∈ (0, T ],

µ(0) = µ0,

(4.10)

and we pass to determine under which conditions the formal computations that led us to

it actually hold true. As a preliminary result, we can show that solutions of system (4.5)

are also solutions of system (4.10), whenever conveniently rewritten.

Proposition 4.5. Let N ∈ N be given. Let (x1,N , . . . , xN,N ) : [0, T ]→ RdN be the solution

of (4.5) with initial datum (x0
1,N , . . . , x

0
N,N ) ∈ RdN . Then the empirical measure-valued
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curve µN : [0, T ]→ P1(Rd) defined as in (4.6) is a solution of (4.10) with initial datum

µ0 = µ0
N

∆
=

1

N

N∑
i=1

δx0
i,N
.

Proof. It is straightforward to check that inserting µN (·) into (4.10) and using the equa-

tions of (4.5), we get an identity.

Remark 4.6. In view of the above result, there is no ambiguity whenever we say that

the empirical measure-valued curve µN (·) is a solution of the discrete system (4.5).

4.2.1 Existence results for convolution-type ODEs

To link solutions of (4.5) to those of (4.10), we first need two results concerning the

regularity of the interaction kernel K.

Lemma 4.7. If K ∈ Liploc(Rd) and µ ∈ P(Rd) then K ∗ µ ∈ Liploc(Rd).

Proof. For any compact set Ω ⊂ Rd and for every x, y ∈ Ω it holds

‖(K ∗ µ)(x)− (K ∗ µ)(y)‖ =

∥∥∥∥∫
Rd
K(x− z)dµ(z)−

∫
Rd
K(y − z)dµ(z)

∥∥∥∥
≤ Lip

Ω̂
(K)‖x− y‖,

for any conveniently larger compact set Ω̂ ⊂ Rd depending only on Ω. This shows the local

Lipschitz continuity of K ∗ µ.

Lemma 4.8. If K is sublinear and µ ∈ P1(Rd) then K ∗ µ is sublinear. Furthermore, it

holds

‖(K ∗ µ)(x)‖ ≤ CK
(

1 + ‖x‖+

∫
Rd
‖y‖dµ(y)

)
, (4.11)

where CK stands for the sublinearity constant of K.

Proof. If CK is the sublinearity constant of K, an easy computation shows that

‖(K ∗ µ)(x)‖ =

∥∥∥∥∫
Rd
K(x− y)dµ(y)

∥∥∥∥
≤
∫
Rd
‖K(x− y)‖dµ(y)

≤ CK
∫
Rd

(1 + ‖x‖+ ‖y‖)dµ(y)

≤ CK
(

1 + ‖x‖+

∫
Rd
‖y‖dµ(y)

)
≤ C(1 + ‖x‖),

for a suitably large constant C > 0. In particular, (4.11) holds.
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By the two lemmas above, we can invoke the usual Cauchy-Lipschitz theory (in its

Carathéodory version, see Theorems B.1 and B.3) to prove the existence and unique-

ness of solutions of system (4.5). What is remarkable, and at the heart of the first rigorous

results on the mean-field limit (see [41, 95, 148]), is that several peculiar properties of the

solutions of system (4.5) are independent of N . This fact will turn out to be crucial when

we shall extend these properties to solutions of system (4.10).

Proposition 4.9. Assume that K ∈ Liploc(Rd) and is sublinear, and that the function

gN ∈ C([0, T ]× Rd;Rd) satisfies

(i) there exists a constant G > 0 independent of N such that

gN (t, x) · x ≤ G(1 + ‖x‖2) for every (t, x) ∈ [0, T ]× Rd; (4.12)

(ii) for every compact Ω ⊂ Rd there exists LN,Ω ∈ L1([0, T ]) satisfying

‖gN (t, x)− gN (t, y)‖ ≤ LN,Ω(t)‖x− y‖ for every t ∈ [0, T ] and x, y ∈ Ω; (4.13)

(iii) for every compact Ω ⊂ Rd there exists GΩ > 0 independent of N for which it holds

‖gN‖L∞([0,T ]×Ω) ≤ GΩ.

Then, for every N ∈ N, system (4.5) admits a unique global solution defined on [0, T ] for

every initial datum (x0
1,N , . . . , x

0
N,N ) ∈ RdN .

Moreover, if there exists a bounded set B ⊂ Rd such that x0
i,N ∈ B for every N ∈ N and

every i = 1, . . . , N , then there exist two constants L,R > 0 independent of N such that

• ‖xi,N (t)‖ ≤ R, for every t ∈ [0, T ] and i = 1, . . . , N ,

• ‖xi,N (t)− xi,N (s)‖ ≤ L|t− s|, for every t, s ∈ [0, T ] and i = 1, . . . , N .

Proof. We begin by proving that, if K ∈ Liploc(Rd) then for any N ∈ N the Carathéodory

function F : RdN → RdN defined for every (x1, . . . , xN ) ∈ RdN as

F (x1, . . . , xN )
∆
=

 1

N

N∑
j=1

K(x1 − xj), . . . ,
1

N

N∑
j=1

K(xN − xj)

T

,

satisfies F ∈ Liploc(RdN ). Indeed, for any (x1, . . . , xN ), (y1, . . . , yN ) ∈ Ω compact subset

of RdN , it holds

‖F (x1, . . . , xN )− F (y1, . . . , yN )‖ ≤
N∑
i=1

∥∥∥∥∥∥ 1

N

N∑
j=1

K(xi − xj)−
1

N

N∑
j=1

K(yi − yj)

∥∥∥∥∥∥
≤ 1

N

N∑
i=1

N∑
j=1

‖K(xi − xj)−K(yi − yj)‖

≤ 1

N
Lip

Ω̂
(K)

N∑
i=1

N∑
j=1

‖xi − xj − yi + yj‖
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≤ 2 Lip
Ω̂

(K)
N∑
i=1

‖xi − yi‖

≤ 2
√
N Lip

Ω̂
(K) ‖(x1, . . . , xN )− (y1, . . . , yN )‖

having used Lemma 4.7 for a sufficiently large compact subset Ω̂ ⊂ Rd. The factor
√
N

comes from having estimated the `1-norm with the `2-norm.

We now invoke the sublinearity of K and Lemma 4.8 to show the sublinearity of F :

‖F (x1, . . . , xN )‖ ≤
N∑
i=1

∥∥∥∥∥∥ 1

N

N∑
j=1

K(xi − xj)

∥∥∥∥∥∥
≤ 1

N

N∑
i=1

N∑
j=1

‖K(xi − xj)‖

≤ CK
N

N∑
i=1

N∑
j=1

(1 + ‖xi‖+ ‖xj‖)

≤ CK

(
N + 2

N∑
i=1

‖xi‖

)
≤ 2NCK(1 + ‖(x1, . . . , xN )‖).

By setting H : RdN → RdN to be

H(t, x1, . . . , xN )
∆
= (gN (t, x1), . . . , gN (t, xN ))T ,

it follows by (i) and (ii) that F+H satisfies the hypotheses of Theorems B.1 and B.3, which

yield the existence of a unique Carathéodory solution (x1,N , . . . , xN,N ) : [0, T ] → RdN of

system (4.5) for every N ∈ N.

Now suppose there exists a bounded set B ⊂ Rd such that x0
i,N ∈ B for every N ∈ N

and every i = 1, . . . , N . Let us now fix N ∈ N and estimate the growth of ‖xNi (t)‖2 for

i = 1, . . . , N . From Lemma 4.8 and the hypotheses on K and gN it follows

1

2

d

dt
‖xi,N (t)‖2 = ẋi,N (t) · xi,N (t)

= ((K ∗ µN (t))(xi(t)) + gN (t, xi,N (t))) · xi,N (t)

≤ ‖(K ∗ µN (t))(xi,N (t))‖‖xi,N (t)‖+ gN (t, xi,N (t)) · xi,N (t)

≤ CK

1 + ‖xi,N (t)‖+
1

N

N∑
j=1

‖xj,N (t)‖

 ‖xi,N (t)‖+G‖xi,N (t)‖2 +G

≤ C1 max
1≤j≤N

‖xj,N (t)‖2 + C2, (4.14)

with C1
∆
= CK/2 +G+ 2 and C2

∆
= CK/2 +G. We now denote by

ζ(t)
∆
= max

1≤j≤N
‖xj,N (t)‖2 for every t ∈ [0, T ].
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Notice that, since xi,N (·) ∈W 1,∞([0, T ];Rd), then ζ(·) ∈W 1,∞([0, T ];R). This implies that

ζ(·) is a.e. differentiable, hence by Stampacchia’s Lemma (see for instance [134, Chapter

2, Lemma A.1]) for a.e. t ∈ [0, T ] there exists j ∈ {1, . . . , N} such that

ζ̇(t) =
d

dt
‖xj,N (t)‖2,

which let us conclude the inequality

ζ̇(t) ≤ 2C1ζ(t) + 2C2.

Since x0
i,N ∈ B, by setting

δ(B)
∆
= sup {‖x‖ : x ∈ B} ,

from Gronwall’s Lemma A.1 we obtain

ζ(t) ≤ (ζ(0) + 2C2t)e
2C1t ≤ (δ(B) + 2C2t)e

2C1t,

Therefore, ‖xj,N (t)‖ ≤ R where

R
∆
=
√
δ(B) + 2C2T e

C1T . (4.15)

This implies that, for all N ∈ N and i = 1, . . . , N , from hypothesis (iii) we have

‖ẋi,N (t)‖ ≤ 1

N

N∑
j=1

∥∥K(t, xi,N (t)− xj,N (t)
)∥∥+ ‖gN (t, xi,N (t))‖

≤ CK

1 + ‖xi,N (t)‖+
1

N

N∑
j=1

‖xj,N (t)‖

+ ‖gN‖L∞([0,T ]×B(0,R))

≤ (1 + 2R)CK +GB(0,R),

which, integrating between s and t implies

‖xi,N (t)− xi,N (s)‖ ≤
(

(1 + 2R)CK +GB(0,R)

)
|t− s|.

This gives us the uniform continuity of the curve xi,N (·) with an upper bound for the

Lipschitz constant given by L
∆
= (1 + 2R)CK +GB(0,R), which is uniform in i and N .

4.2.2 The mean-field limit

We now establish the existence of solutions of system (4.10). Informally, to do so we shall

consider the solutions of the discrete convolution-type ODE systems (4.5), write them in

the form of empirical measures µN , and then take the limit for N →∞ in the Wasserstein

space of probability measures P1(Rd). This procedure, also known as mean-field limit, will

let us extend the results obtained in Proposition 4.9 to solutions to (4.10).

We first need a preliminary estimate, variants of which are [106, Lemma 6.7] and [46,

Lemma 4.7]
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Lemma 4.10. Let K ∈ Liploc(Rd) and let µ : [0, T ]→ Pc(Rd) and ν : [0, T ]→ Pc(Rd) be

two continuous maps with respect to W1 satisfying

supp(µ(t)) ∪ supp(ν(t)) ⊆ B(0, R̂), (4.16)

for every t ∈ [0, T ], for some R̂ > 0. Then for every r > 0 there exists a constant L
K,R̂,r

such that

‖K ∗ µ(t)−K ∗ ν(t)‖L∞(B(0,r)) ≤ LK,R̂,rW1(µ(t), ν(t)) (4.17)

for every t ∈ [0, T ].

Proof. Fix t ∈ [0, T ] and take π ∈ Γo(µ(t), ν(t)). Since the marginals of π are by definition

µ(t) and ν(t), it follows

K ∗ µ(t)(x)−K ∗ ν(t)(x) =

∫
B(0,R̂)

K(x− y)dµ(t)(y)−
∫
B(0,R̂)

K(x− z)dν(t)(z)

=

∫
B(0,R̂)2

(K(x− y)−K(x− z)) dπ(y, z)

By hypothesis (4.16), K ∈ Liploc(Rd), and the definition of the Wasserstein distance W1

it follows

‖K ∗ µ(t)−K ∗ ν(t)‖L∞(B(0,r)) ≤ ess sup
x∈B(0,r)

∫
B(0,R̂)2

|K(x− y)−K(x− z)| dπ(y, z)

≤ Lip
B(0,R̂+r)

(K)

∫
B(0,R̂)2

|y − z|dπ(y, z)

= Lip
B(0,R̂+r)

(K)W1(µ(t), ν(t)),

hence (4.17) holds by setting L
K,R̂,r

∆
= Lip

B(0,R̂+r)
(K).

We are now ready to state under which conditions the approximation for N large of the

discrete systems (4.5) by the mean-field dynamics (4.10) holds.

Theorem 4.11. Let µ0 ∈ Pc(Rd) be given. Let (µ0
N )N∈N ⊂ Pc(Rd) be a sequence of

empirical measures of the form

µ0
N =

1

N

N∑
i=1

δx0
i,N
, for some x0

i,N ∈ supp(µ0)

satisfying the condition

lim
N→∞

W1(µ0
N , µ

0) = 0,

and assume that the sequence (gN )N∈N ⊂ C([0, T ]×Rd;Rd) satisfying (i)–(iii) of Proposi-

tion 4.9 converges uniformly to g ∈ C([0, T ]×Rd;Rd). For every N ∈ N, let µN : [0, T ]→
P1(Rd) be the curve (4.6) where (x1,N (·), . . . , xN,N (·)) is the unique solution of system

(4.5) with initial datum (x0
1,N , . . . , x

0
N,N ).
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Then, there exists R > 0 depending only on T , K, G, and µ0 such that the sequence

(µN )N∈N converges uniformly in P1(B(0, R)) equipped with the Wasserstein metric W1 to

a solution µ(·) of (4.10) with initial datum µ0 satisfying

supp(µN (t)) ∪ supp(µ(t)) ⊆ B(0, R), for every N ∈ N and t ∈ [0, T ].

Proof. First of all notice that, for every N ∈ N, the unique solution (x1,N (·), . . . , xN,N (·))
of system (4.5) with initial datum (x0

1,N , . . . , x
0
N,N ) exists by Proposition 4.9.

Again by Proposition 4.9, the elements of the sequence (µN )N∈N ⊂ C([0, T ];P1(B(0, R)))

have support uniformly contained in the ball B(0, R), where R is given by (4.15), and

they are Lipschitz continuous with uniform bound in N for a Lipschitz constant given by

L > 0. We have thus found a sequence (µN )N∈N ⊂ C([0, T ],P1(B(0, R))) for which the

following holds:

• (µN )N∈N is equicontinuous and is contained in a closed subset of P1(B(0, R)) equipped

with the W1 metric, because of the uniform Lipschitz constant bound L;

• for every t ∈ [0, T ], the sequence (µN (t))N∈N is relatively compact in P1(B(0, R))

equipped with the W1 metric. This holds because (µN (t))N∈N is a tight sequence,

since B(0, R) is compact, and hence relatively compact with respect to weak con-

vergence due to Prokhorov’s Theorem. By [13, Proposition 7.1.5] and the uniform

integrability of the first moments of the family (µN (t))N∈N follows the relative com-

pactness also in the metric space P1(B(0, R)) equipped with W1.

Therefore, we can apply the Ascoli-Arzelá Theorem for functions with values in a metric

space (see for instance, [133, Chapter 7, Theorem 18]) to infer the existence of a subse-

quence (µNk)k∈N of (µN )N∈N such that

lim
k→∞

W1(µNk(t), µ(t)) = 0, uniformly for a.e. t ∈ [0, T ], (4.18)

for some µ ∈ C([0, T ],P1(B(0, R))) with Lipschitz constant bounded by L. The hypothesis

limN→∞W1(µ0
N , µ

0) = 0 now obviously implies µ(0) = µ0.

We are left with verifying that this curve µ(·) is a solution of (4.10). For all t ∈ [0, T ], for

all N ∈ N and for all φ ∈ C∞c (Rd;R), it holds

d

dt
〈φ, µN (t)〉 =

1

N

d

dt

N∑
i=1

φ(xi,N (t)) =
1

N

N∑
i=1

∇φ(xi,N (t)) · ẋi,N (t),

hence, by directly applying the substitution ẋi,N (t) = (K ∗µN (t))(xi,N (t)) + gN (t, xi,N (t))

from system (4.7), we have

〈φ, µN (t)− µN (0)〉 =

∫ t

0

[∫
Rd
∇φ(x) ·

(
(K ∗ µN (s))(x) + gN (s, x)

)
dµN (s, x)

]
ds.

Since the uniform Wasserstein convergence (4.18) implies that for every t ∈ [0, T ] and

φ ∈ C∞c (Rd;R) it holds

lim
k→∞
〈φ, µNk(t)− µNk(0)〉 = 〈φ, µ(t)− µ(0)〉
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then, by Remark 4.4, in order to show that µ(·) is a solution to (4.10) we simply need to

prove that

lim
k→∞

∫ t

0

[ ∫
Rd
∇φ(x)·

(
(K ∗ µNk(s))(x) + gNk(s, x)

)
dµNk(s, x)

]
ds =

=

∫ t

0

[∫
Rd
∇φ(x) ·

(
(K ∗ µ(s))(x) + g(s, x)

)
dµ(s, x)

]
ds.

To do so, notice that by Lemma 4.10 (with r = R̂ = R) and the uniform W1 convergence

of the µNk to µ, it holds∫ t

0

∫
Rd
‖((K ∗ µNk(s))(x)− (K ∗ µ(s))(x)) · ∇φ(x)‖ dµ(s, x)ds ≤

≤ LK,R,R
∫ t

0
W1(µNk(s), µ(s))

[∫
Rd
‖∇φ(x)‖dµ(s, x)

]
ds

≤ LK,R,R sup
t∈[0,T ]

W1(µNk(t), µ(t))

∫ t

0

[∫
Rd
‖∇φ(x)‖dµ(s, x)

]
ds

→ 0 as k →∞,

since ∇φ is bounded and µ(·) has uniform compact support in time. The same holds true

for gNk and g in place of K ∗ µNk and K ∗ µ, respectively, due to the uniform convergence

gN → g.

Therefore, from the dominated convergence theorem and the Lipschitz continuity of K ∗µ
and g, we obtain

〈φ, µ(t)− µ(0)〉 =

∫ t

0

∫
Rd
∇φ(x) · (K ∗ µ(s))(x)dµ(s, x)ds = 0,

which proves that µ(·) is a solution of (4.10) with initial datum µ0. The fact that the

sequence (µN )N∈N converges to µ without passing to a subsequence shall follow from the

uniqueness of µ, see Remark 4.18, which will be proven in the following section.

Remark 4.12. A way to choose the initial data x0
1,N , . . . , x

0
N,N for every N ∈ N in order

to guarantee the condition limN→∞W1(µ0
N , µ

0) = 0, is the following: let (xi)i∈N be a

sequence of independently and identically drawn vectors from supp(µ0) according to the

probability law µ0. If for every N ∈ N we define

x0
i,N

∆
= xi, for all i = 1, . . . , N,

then the validity of limN→∞W1(µ0
N , µ

0) = 0 follows from [102, Lemma 3.3].

4.3 The transport map and uniqueness of solutions

The transport map provides a direct way to describe the evolution in time of the initial

measure µ0 and is often employed in connection with stability estimates for the solutions

of (4.10). It can be constructed by considering a characteristic curve of equation (4.10),
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which yields the system{
ξ̇(t) = (K ∗ µ(t))(ξ(t)) + g(t, ξ(t)) for t ∈ (0, T ],

ξ(0) = ξ0,
(4.19)

where ξ is a mapping from [0, T ] to Rd. We assume here that K ∈ Liploc(Rd;Rd) is

sublinear and g ∈ C([0, T ] × Rd;Rd) satisfies (4.12)–(4.13). The map µ : [0, T ] → P1(Rd)
is continuous with respect to the Wasserstein distance W1 and satisfies µ(0) = µ0 as well

as supp(µ(t)) ⊆ B(0, R) for every t ∈ [0, T ], for a given R > 0.

The following preliminary result shows that system (4.19) has a unique solution ξ(·) defined

on the whole time interval [0, T ].

Proposition 4.13. Suppose that K ∈ Liploc(Rd;Rd) is sublinear and that g ∈ C([0, T ] ×
Rd;Rd) satisfies (4.12)–(4.13). Fix T > 0, µ0 ∈ Pc(Rd), ξ0 ∈ Rd and R > 0. Then, for

every map µ : [0, T ] → P1(Rd) which is continuous with respect to W1 and satisfies both

µ(0) = µ0 and

supp(µ(t)) ⊆ B(0, R) for every t ∈ [0, T ],

there exists a unique solution of system (4.19) with initial value ξ0 defined on the whole

interval [0, T ].

Proof. By Lemma 4.8 follows that, for any compact set Ω ⊂ Rd containing ξ0, there exists

a function mΩ ∈ L1([0, T ]) for which the function G(t, y) = (K ∗µ(t))(y) + g(t, y) satisfies

(B.2) of Theorem B.1. Moreover, for fixed t this function is locally Lipschitz continuous

in y, as follows from Lemma 4.7, thus G is a Carathéodory function.

From the hypothesis that supp(µ(t)) is contained in B(0, R) uniformly in t ∈ [0, T ] and

Lemma 4.8, follows the existence of a constant C depending on T , K and µ0 such that

‖(K ∗ µ(t))(y)‖ ≤ C(1 + ‖y‖)

holds for every y ∈ Rd and for every t ∈ [0, T ]. Hence the function G(t, y) = (K ∗µ(t))(y)+

g(t, y) satisfies (B.3) (see also Remark B.2). By considering a sufficiently large compact

set Ω containing ξ0, Theorem B.1 then guarantees the existence of a solution of system

(4.19) defined on [0, T ].

To establish uniqueness, notice that by Lemma 4.7, the functionK∗µ(t) is locally Lipschitz.

Adding the local Lipschitz continuity of g, uniqueness follows from Theorem B.3 by taking

g1 = g2 = G, y0
1 = y0

2 = ξ0 and r = ‖ξ0‖.

Fix now K ∈ Liploc(Rd;Rd) sublinear and g ∈ C([0, T ] × Rd;Rd) satisfying (4.12)–(4.13),

and consider a solution µ(·) of (4.10) with K and g (which exists by Theorem 4.11). Since

µ(·) satisfies the hypotheses of the proposition above, we can consider the family of flow

maps T µt : Rd → Rd, indexed by t ∈ [0, T ], defined by

T µt (ξ0)
∆
= ξ(t),

where ξ : [0, T ] → Rd is the unique solution of (4.19) with initial datum ξ0. It is well-
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known, see [46, Theorem 3.10], that a map µ : [0, T ] → P1(Rd) is a solution of (4.10)

with initial datum µ0 if and only if it is the unique fixed point of the push-foward map

Γ[ν](t)
∆
= (T νt )#µ

0, i.e., it holds

µ(t) = (T µt )#µ
0 for every t ∈ [0, T ]. (4.20)

A relevant basic property of the transport map is proved in the following

Proposition 4.14. If K ∈ Liploc(Rd;Rd) is sublinear and g ∈ C([0, T ]× Rd;Rd) satisfies

(4.12)–(4.13), then T µt is a locally Lipschitz map. Moreover, if g ≡ 0, then T µt is a locally

bi-Lipschitz map, i.e., it is invertible, locally Lipschitz and with locally Lipschitz inverse.

Proof. Let R > 0 be sufficiently large such that supp(µ0) ⊆ B(0, R). Then, the choice

r = R in Theorem B.3 trivially implies the following stability estimate

∥∥T µt (x)− T µt (y)
∥∥ ≤ eT(LipB(0,R)(K)+Lip[0,T ]×B(0,R)(g)

)
‖x− y‖, for every x, y ∈ B(0, R).

i.e., T µt is locally Lipschitz with

LipB(0,R)(T
µ
t ) ≤ eT

(
LipB(0,R)(K)+Lip[0,T ]×B(0,R)(g)

)
. (4.21)

Suppose now that g ≡ 0. In view of the uniqueness of the solutions of the ODE (4.19),

it is also clear that, for any t0 ∈ [0, T ], the inverse of T µt0 is given by the transport map

associated to the backward-in-time ODE{
ξ̇(t) = (K ∗ µ(t))(ξ(t)) for t ∈ [0, t0),

ξ(t0) = ξ0.

However, this problem in turn can be cast into the form of an usual IVP simply by

considering the reverse trajectory ν(t) = µ(t0 − t). Then y(t) = ξ(t0 − t) solves{
ẏ(t) = −

(
K ∗ ν(t)

)
(y(t)) for t ∈ (0, t0],

y(0) = ξ(t0).

The corresponding stability estimate for this problem then yields that the inverse of T µt
exists and is locally Lipschitz (with the same estimate for the local Lipschitz constant as

(4.21)).

Thanks to the transport map we can prove Theorem 4.16 below, stating the continuous de-

pendance on initial data for system (4.10), which in turn yields the uniqueness of solutions.

The following lemma and inequality (B.6) are the main ingredients of its proof.

Lemma 4.15. Let T1 and T2 : Rn → Rn be two bounded Borel measurable functions. Then,

for every µ ∈ P1(Rn) one has

W1((T1)#µ, (T2)#µ) ≤ ‖T1 − T2‖L∞(supp(µ)).
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If in addition T1 is locally Lipschitz continuous, and µ, ν ∈ P1(Rn) are both compactly

supported on a ball B(0, r) of Rn, then

W1((T1)#µ, (T1)#ν) ≤ LipB(0,r)(T1)W1(µ, ν).

Proof. See [46, Lemma 3.11] and [46, Lemma 3.13].

Theorem 4.16. Fix T > 0, K1,K2 ∈ Liploc(Rd;Rd) sublinear and g1, g2 ∈ C([0, T ] ×
Rd;Rd) satisfying (4.12)–(4.13). Let µ1, µ2 : [0, T ]→ P1(Rd) be solutions of

∂µi
∂t

(t) = −∇x ·
(

(Ki ∗ µi(t) + gi(t))µi(t)
)

for t ∈ (0, T ],

µi(0) = µ0
i ,

i = 1, 2,

equi-compactly supported in a ball B(0, R), for some R > 0. Then the following estimate

holds for every t ∈ [0, T ]

W1(µ1(t), µ2(t)) ≤ αW1(µ0
1, µ

0
2) + β

∫ t

0

(
LK1,R,R

W1(µ1(s), µ2(s))+

+ ‖K1 −K2‖L∞(B(0,2R)) + ‖g1(s)− g2(s)‖L∞(B(0,R))

)
ds,

where the positive constants α and β depend only on µ0
1, µ0

2, K1, K2, g1, g2, R and T .

Hence, if K1 = K2 and g1 = g2 it holds

W1(µ1(t), µ2(t)) ≤ CW1(µ0
1, µ

0
2) for every t ∈ [0, T ]. (4.22)

In particular, solutions of (4.10) are uniquely determined by the initial datum.

Remark 4.17. The estimate (4.22) is known as Dobrushin’s inequality and was first

presented in [95].

Proof. Let T 1
t and T 2

t be the flow maps associated to system (4.19) with measure µ1 and

µ2, respectively. By (4.20), the triangle inequality, Lemma 4.15 and (4.21) we have for

every t ∈ [0, T ]

W1(µ1(t), µ2(t)) =W1((T 1
t )#µ

0
1, (T 2

t )#µ
0
2)

≤ W1((T 1
t )#µ

0
1, (T 1

t )#µ
0
2) +W1((T 1

t )#µ
0
2, (T 2

t )#µ
0
2)

≤ LipB(0,R)(T
1
t )W1(µ0

1, µ
0
2) + ‖T 1

t − T 2
t ‖L∞(B(0,R))

≤ αW1(µ0
1, µ

0
2) + ‖T 1

t − T 2
t ‖L∞(B(0,R)),

(4.23)

where α = e
T
(

LipB(0,R)(K1)+Lip[0,T ]×B(0,R)(g1)
)
.

Using inequality (B.6) with y0
1 = y0

2 = ξ0 we get

‖T µt −T νt ‖L∞(B(0,R)) ≤ β
∫ t

0
‖K1 ∗µ1(s)+g1(s)−K2 ∗µ2(s)−g2(s)‖L∞(B(0,R)) ds, (4.24)

for β = maxi=1,2 e
T
(

LipB(0,R)(Ki)+Lip[0,T ]×B(0,R)(gi)
)
.
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To estimate the integrand, notice that

‖K1 ∗ µ2(s)−K2 ∗ µ2(s)‖L∞(B(0,R)) ≤ sup
x∈B(0,R)

∫
Rd
‖K1(x− y)−K2(x− y)‖dµ2(s, y)

≤ sup
x∈B(0,R)

sup
y∈B(0,R)

‖K1(x− y)−K2(x− y)‖

≤ ‖K1 −K2‖L∞(B(0,2R)),

therefore we have

‖K1 ∗ µ1(s)−K2 ∗ µ2(s)‖L∞(B(0,R)) ≤ ‖K1 ∗ µ1(s)−K1 ∗ µ2(s)‖L∞(B(0,R))+

+ ‖K1 ∗ µ2(s)−K2 ∗ µ2(s)‖L∞(B(0,R))

≤ LK1,R,R
W1(µ1(s), µ2(s)) + ‖K1 −K2‖L∞(B(0,2R)),

where we have used Lemma 4.10 with K = K1 and r = R̂ = R. By plugging the above

estimate in (4.24) we get

‖T µt − T νt ‖L∞(B(0,R)) ≤ β
∫ t

0

(
LK1,R,R

W1(µ1(s), µ2(s)) + ‖K1 −K2‖L∞(B(0,2R))+

+ ‖g1(s)− g2(s)‖L∞(B(0,R))

)
ds,

Combining (4.23) and the above estimate we obtain

W1(µ1(t), µ2(t)) ≤ αW1(µ0
1, µ

0
2) + β

∫ t

0

(
LK1,R,R

W1(µ1(s), µ2(s))+

+ ‖K1 −K2‖L∞(B(0,2R)) + ‖g1(s)− g2(s)‖L∞(B(0,R))

)
ds,

which is the desired inequality. In particular, if K1 = K2 and g1 = g2, from Gronwall’s

Lemma A.1 we get (4.22) with C = αe
TβLK1,R,R .

Consider now two solutions µ1(·) and µ2(·) of (4.10) with the same initial datum µ0.

The above estimate tells us that they are the same curve in P1(Rd). This concludes the

proof.

Remark 4.18. Going back to the application of the Ascoli-Arzelá Theorem in Theorem

4.11, consider another converging subsequence of the sequence (µN )N∈N. It straightfor-

wardly follows that its limit is another solution of (4.10) with the same initial datum.

However, since there is only one of such solutions for Theorem 4.16, we have that all

converging subsequences of (µN )N∈N have the same limit, from which follows that the

sequence (µN )N∈N has limit µ too.

4.4 The Boltzmann equation

This section is devoted to the Boltzmann equation, which is a partial integro-differential

equation describing the evolution of the particle density of a rarefied monatomic gas de-

rived from the mathematical model of elastic balls by means of mechanical and statistical
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considerations.

The starting point of the Boltzmann analysis is the same that motivates the mean-field

limit procedure: to renounce to study the gas in terms of the detailed motion of the

particles which constitutes it because of their huge number, and start to investigate a

nonnegative function f(t) ∈Mb(R2d) which represents the distribution of particles in the

phase space R2d at time t.

Boltzmann considered the situation of a system of N identical particles, viewed as hard

spheres with radius 0, in which collisions are purely elastic. Taken any two particles with

state parameters (x, v) and (x̂, v̂), the post-collisional coordinates (x∗, v∗) and (x̂∗, v̂∗) are

given by the change of variables{
v∗ = v − [(v − v̂) · n]n,

v̂∗ = v̂ + [(v − v̂) · n]n,
(4.25)

where n is a unitary vector in S2
+ = {n : (v − v1) · n ≥ 0}. The equations (4.25) are con-

sequence of the conservation of energy, momentum, and angular momentum.

If particles would not collide, then the dynamics for the distribution f(·) of a single particle

should follow the law
∂f

∂t
(t) + v · ∇xf(t) = 0,

where the term v · ∇xf(t, x, v) represents the effect of free particle transport. However,

due to collisions, we have an equation like

∂f

∂t
(t) + v · ∇xf(t) = G(t)− L(t),

where the gain term G(t) “counts” the particles that acquire the velocity v at time t due

to the collisions of other particle, i.e., how much the quantity f(t, x, v) dx dv increases.

Similarly, the loss term L(t) describes the loss of f(t, x, v) dx dv due to all collisions in

which particles with velocity v acquire a different velocity.

The Boltzmann equation is therefore given by

∂f

∂t
(t) + v · ∇xf(t) = Q(f, f)(t), (4.26)

where the collision operator Q accounts for the bilateral loss and gain terms as follows

Q(f, f)(t, x, v)
∆
=

∫
R3

∫
S2

+

(v − v̂) · n
(
f(t, x, v∗)f(t, x, v̂∗)− f(t, x, v)f(t, x, v̂)

)
dv̂ dn.

Remark 4.19. In the mathematical literature concerning the Boltzmann equation (see,

for instance, [151, Section 2.3]), when integrating against the distribution of agents f(t) it

is customary to write f(t, x, v) dx dv, instead of df(t, x, v), even if f(t) is not absolutely

continuous with respect to the Lebesgue measure L2d on R2d. This is because, in this case,

one sees f(t) as a generalized function rather than a measure. We shall also adhere to this

tradition whenever dealing with Boltzmann-like systems.

One of the advantages of the Boltzmann approach is its flexibility: it is naturally prone
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to generalizations in contexts outside physics, like biology and social sciences, and has

experienced great success in economics as a cornerstone of econophysics (see, for instance,

the classic [141]).

Another advantage is provided by the availability of binary interaction algorithms to solve

numerically the nonlocal PDE (4.26): these meshless Monte Carlo methods have a re-

duced computational cost with respect to mesh-based methods and guarantee high level

of accuracy [7, 151]. We shall make use of them in Chapter 7.

4.4.1 The Boltzmann approach outside physics

Mathematically speaking, nothing prevents us to use a different change of variables from

(4.25) and study the Boltzmann-like equation related to it. Actually, nobody even pre-

scribes that interactions are only allowed within agents of the same population f . We can

therefore consider two distributions f, g ∈Mb(R2d) (which can, of course, coincide), take

an agent from f with state parameters (x, v) ∈ R2d and another one from g with coordi-

nates (x̂, v̂) ∈ R2d: we then prescribe their post-interaction states to satisfy the following

general change of variables{
v∗ = v + η [α(x, v)ξ + β(x, v) + γ(x, v, x̂, v̂)] ,

v̂∗ = v̂ + η
[
α′(x̂, v̂)ξ′ + β′(x, v) + γ′(x̂, v̂, x, v)

]
,

(4.27)

where η is the strength of interaction and ξ and ξ′ are random variables whose entries are

i.i.d. following a normal distribution with mean 0, variance ς2 and taking values in a set

B ⊆ Rd. The functions α and α′ are stochastic self-propulsion terms (since they are acting

on the random variables ξ and ξ′), while β and β′ are deterministic drifts. The interaction

kernels γ and γ′ determine the reaction of the agents to the collision. Likely to (4.25), in

what follows we assume that it holds

(Inv) system (4.27) constitutes an invertible change of variables from (v, v̂) to (v∗, v̂∗).

Following Boltzmann’s ansatz (see [58, 160]), we introduce the Boltzmann-Povzner colli-

sional operator Q(f, g) associated to (4.27) as follows

Q(f, g)(t, x, v)
∆
= E

[∫
R2d

(
1

J
f(t, x∗, v∗)g(t, x̂∗, v̂∗)− f(t, x, v)g(t, x̂, v̂)

)
dx̂ dv̂

]
. (4.28)

In the above expression

• the pair (x∗, v∗) is the pre-interaction states that generates (x, v) via (4.27), and J

is the Jacobian of the change of variables given by (4.27) (well-defined by (Inv));

• the expected value E is computed with respect to ξ ∈ B.

The time evolution of f(·) is then given by the following Boltzmann-type equation

∂f

∂t
(t) + v · ∇xf(t) = λQ(f, g)(t), (4.29)

where λ stands for the interaction frequencies among the two populations f and g.
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Notice that, since the interaction (4.27) do not correspond at this point to any physical

phenomenon, the conservation of the mass of f and g, i.e., the quantities

ρ[f ](t)
∆
=

∫
R2d

f(t, x, v) dx dv and ρ[g](t)
∆
=

∫
R2d

g(t, x, v) dx dv, (4.30)

is not anymore guaranteed. Therefore, in specifying the definition of a solution of (4.29),

we have to require that ρ[f ] remains constant.

Definition 4.20. Fix T > 0, δ > 0, and let g ∈ L2([0, T ];Mb(R2d)) be such that ρ[g](t) =

ρ[g](0) < +∞ for every t ∈ [0, T ]. By a δ-weak solution of the initial value problem for

the equation (4.29) with initial datum f0 ∈ Mb(R2d) in the interval [0, T ], we mean any

f ∈ L2([0, T ];Mb(R2d)) satisfying

(i) f(0, x, v) = f0(x, v) for every (x, v) ∈ R2d;

(ii) there exists R > 0 depending only on f0, T , δ, g, α, β, and γ, such that supp(f(t)) ⊆
B(0, R) for every t ∈ [0, T ];

(iii) ρ[f ](t) = ρ[f ](0) for every t ∈ [0, T ];

(iv) f(·) satisfies the weak form of the equation (4.29), i.e., for every ϕ ∈ Tδ and t ∈ (0, T ]

it holds

∂

∂t
〈f(t), ϕ〉+ 〈f(t), v · ∇xϕ〉 = λ 〈Q(f, g)(t), ϕ〉 ,

where

〈Q(f, g)(t), ϕ〉=E
[∫

R4d

(ϕ(x, v∗)−ϕ(x, v)) f(t, x, v)g(t, x̂, v̂) dx dv dx̂ dv̂

]
, (4.31)

and where v∗ is given by (4.27).

Remark 4.21. In this thesis, we shall not be concerned about the existence or uniqueness

of solutions in the sense of Definition 4.20 for system (4.29), but only about their mean-

field approximation. General well-posedness results for Boltzmann-like equations can be

found in [9, 26, 93].

4.4.2 The grazing interaction limit

The brand-new point of view adopted with the Boltzmann approach raises several issues

concerning the phenomena it tries to model.

(i) The Boltzmann equation is not a mean-field equation, since it still retains the mi-

croscopic interaction rules between agents given by (4.27). Is it possible to pass to a

mean-field approximation by means of some procedure?

(ii) The analysis of equation (4.29) is in general quite difficult due to the highly convo-

luted operator Q. Is there a way to obtain a more regular operator, from which it is

possible to determine explicitly the evolution of f(·) and its asymptotic behavior?
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(iii) How is the binary interaction model related to the usual multiagent system
ẋ(t) = v(t),

v̇(t) = α(x(t), v(t))ζ + β(x(t), v(t)) +

∫
R2d

γ(x(t), v(t), x̂, v̂)g(t, x̂, v̂) dx̂ dv̂,

(4.32)

where ζ is a d-dimensional random variable with normal distribution N (0, σ2)? To

see that (4.32) is a generalization of already encountered multiagent models, consider

f(t) = g(t) =
1

N

N∑
i=1

δ(xi(t),vi(t)).

where, for every i = 1, . . . , N , (xi(·), vi(·)) solves
ẋi(t) = vi(t),

v̇i(t) =
1

N

N∑
j=1

a(‖xi(t)− xj(t)‖)(vj(t)− vi(t)).

i.e., (x(·), v(·)) is a solution of the Cucker-Smale system (1.6). Then (xi(·), vi(·)) also

solves (4.32) for the choices γ(x, v, x̂, v̂) = a(‖x− x̂‖)(v̂ − v) and α = β ≡ 0.

To answer the above questions, let us have a closer look to (4.32). If we consider the

measure

f(t) =

N∑
i=1

δ(xi(t),vi(t))

where (xi(·), vi(·)) is a solution of (4.32) for every i = 1, . . . , N , then it can be shown, by

direct substitution and using Itô’s Lemma, that f(·) solves the following Fokker-Planck -

type equation [165]

∂f

∂t
(t) + v · ∇xf(t) = −∇v ·

(
H[g](t)f(t)

)
+

1

2
σ2∆v(α

2f(t)), (4.33)

where we have set

H[g](t, x, v)
∆
= β(x, v) +

∫
R2d

γ(x, v, x̂, v̂)g(t, x̂, v̂) dx̂ dv̂. (4.34)

The integro-differential operator

FP (f, g)(t, x, v)
∆
= −∇v ·

(
H[g](t, x, v)f(t, x, v)

)
+

1

2
σ2∆v(α

2(x, v)f(t, x, v))

is called the Fokker-Planck operator and consists of a Vlasov-type term describing the

interaction between f and g plus a diffusion term which accounts for the random walk

of each particle. Equation (4.33) is a mean-field type equation which, as shown, e.g., in

[8, 169], can be easily manipulated in order to obtain long time stationary profiles of the

dynamics. The three questions above can then be roughly reformulated into a single one:
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is there a way to play with λ, η and ς of (4.27) and (4.29) in such a way that, denoting

by Qλ,η,ς(f
λ,η,ς , g) the collisional operator associated to the choice of the parameters, the

limit

λ〈Qλ,η,ς(fλ,η,ς , g)(t), ϕ〉 → 〈FP (f, g)(t), ϕ〉

holds for all nice enough test functions ϕ? The regime under which this limit holds is

called grazing interaction limit. This technique, analogous to the so-called “grazing collision

limit” in plasma physics, has been thoroughly studied in [91, 175] and allows, as pointed

out in [151], to obtain a mean-field approximation for the binary Boltzmann description

introduced in the previous section.

The mean-field approximation via grazing interaction limit of the Boltzmann-like equa-

tion (4.29) holds under a proper scaling of the quantities λ, η and ς that resembles the

mean-field scaling 1/N . Indeed, we have to tune the frequency λ and the strength η of

interactions in such a way that, as the number of interactions increases, their intensity

diminish proportionally. Hence, in both cases the overall force acting on a single agent

turns out to be of order 1.

Formally, we assume that the interaction strength η scales according to a parameter ε,

the interaction frequency λ scales as 1/ε, and we let ε → 0. In order to avoid losing the

diffusion term in the limit, we also scale the variance of the noise term ς2 as 1/ε. More

precisely, we set

η
∆
= ε, λ

∆
=

1

ε
, ς2 ∆

=
σ2

ε
. (4.35)

We now pass to study the Boltzmann equation (4.29) to see if simplifications may occur

under the above scaling assumptions.

Let us fix T > 0, δ > 0, ε > 0, an initial datum f0 ∈Mb(R2d), and a measure-valued curve

g ∈ L2([0, T ];Mb(R2d)) such that ρ[g](t) = ρ[g](0) < +∞ for every t ∈ [0, T ]. Consider a

δ-weak solution f(·) = f ε(·) of equation (4.29) with initial datum f0 and let the scaling

(4.35) holds for the chosen ε.

Remark 4.22. Fix t ∈ [0, T ]. Since, from (ii)–(iii) of Definition 4.20, the distributions

{f ε(t)}ε≥0 have equal constant mass and uniformly bounded support, it follows that this

class is tight. Therefore, by virtue of Prokhorov Theorem, any sequence {f εn(t)}n∈N admits

a subsequence converging weakly to some limit distribution f(t).

Following the ideas in [54, 70], if we denote by Q(f, g)
∆
= Qε(f ε, g) the collisional operator

(4.28) associated to the scaling (4.35) for the chosen ε, then we can expand ϕ(x, v∗) inside

(4.31) in Taylor’ series of v∗ − v up to the second order, to get

〈Q(f, g)(t), ϕ〉 = E

[∫
R4d

∇vϕ(x, v) · (v∗ − v) f(t, x, v)g(t, x̂, v̂) dx dv dx̂ dv̂+

+
1

2

∫
R4d

 d∑
i,j=1

∂(i,j)
v ϕ(x, v) (v∗ − v)i (v∗ − v)j

 f(t, x, v)g(t, x̂, v̂) dx dv dx̂ dv̂

]
+Rϕ,
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where the remainder Rϕ of the Taylor expansion has the form

Rϕ = E

[
1

2

∫
R4d

 d∑
i,j=1

(
∂(i,j)
v ϕ(x, v)− ∂(i,j)

v ϕ(x, v)
)

(v∗ − v)i (v∗ − v)j

×
× f(t, x, v)g(t, x̂, v̂) dx dv dx̂ dv̂

]
,

with v = ϑv∗ + (1 − ϑ)v for some ϑ ∈ [0, 1]. By using the substitution given by the

interaction rule (4.27), i.e.

v∗ − v = η [α(x, v)ξ + β(x, v) + γ(x, v, x̂, v̂)] ,

we obtain∫
R4d

∇vϕ(x, v) · (v∗ − v) f(t, x, v)g(t, x̂, v̂) dx dv dx̂ dv̂ =

= η

∫
R4d

∇vϕ(x, v) · [α(x, v)ξ + β(x, v) + γ(x, v, x̂, v̂)] f(t, x, v)g(t, x̂, v̂) dx dv dx̂ dv̂

= ηρ[g](t) 〈f(t),∇vϕ · αξ〉+ η 〈f(t),∇vϕ · H[g](t)〉 , (4.36)

where H[g] is as in (4.34). By taking the expected value with respect to ξ ∈ B of (4.36),

the term ηρ[g](t) 〈f(t),∇vϕ · αξ〉 is canceled out, since E [ξ] = 0.

The same substitution yields for the second order term

1

2

∫
R4d

 d∑
i,j=1

∂(i,j)
v ϕ(x, v) (v∗ − v)i (v∗ − v)j

 f(t, x, v)g(t, x̂, v̂) dx dv dx̂ dv̂ =

=
1

2
η2

∫
R4d

[
d∑

i,j=1

∂(i,j)
v ϕ(x, v)

(
α(x, v)ξ + β(x, v) + γ(x, v, x̂, v̂))

)
i
×

×
(
α(x, v)ξ + β(x, v) + γ(x, v, x̂, v̂)

)
j

]
f(t, x, v)g(t, x̂, v̂) dx dv dx̂ dv̂.

Notice that if we also compute the expected value of the expression above, all the cross

terms ξiξj vanish, since they are drawn independently from each other. Hence we obtain

λ 〈Q(f, g)(t), ϕ〉 = λη 〈f(t),∇vϕ · H[g](t)〉+

+
1

2
λη2ς2

〈
f(t),∆v(α

2ϕ)
〉

+
1

2
λη2Ξϕ[f, g] + λRϕ,

where the notation Ξ[f, g] stands for

Ξϕ[f, g]
∆
=

∫
R4d

(
d∑

i,j=1

∂(i,j)
v ϕ(x, v)

(
β(x, v) + γ(x, v, x̂, v̂)

)
i

(
β(x, v) + γ(x, v, x̂, v̂)

)
j

)
×

× f(t, x, v)g(t, x̂, v̂) dx dv dx̂ dv̂.
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If we now apply the rescaling rules (4.35), the following simplifications occur

λη = 1, λη2ς2 = σ2, λη2 = ε.

Hence, if we let ε→ 0 and we assume that, for every ϕ ∈ Tδ,

lim
ε→0

(
ε

2
‖Ξϕ[f, g]‖+

1

ε
‖Rϕ‖

)
= 0 (4.37)

holds true, we obtain, up to subsequences, the following weak formulation of a Fokker-

Planck-type equation for the dynamics of the limit distribution f(·)

∂

∂t
〈f(t), ϕ〉+ 〈f(t), v · ∇xϕ〉 =

〈
f(t),∇vϕ · H[g](t) +

1

2
σ2∆v(α

2ϕ)

〉
. (4.38)

Since ϕ has compact support, equation (4.38) can be recast in strong form by means of

integration by parts. The resulting PDE is the Fokker-Planck-type equation (4.33).

The details of the proof of the limit (4.37) are given in the following section.

4.4.3 Estimates for the remainder terms

Motivated by the results in [169], we shall estimate the quantity ‖Rϕ‖ as follows: since

v = ϑv∗ + (1− ϑ)v implies ‖v − v‖ ≤ ϑ ‖v − v∗‖, then for every ϕ ∈ Tδ it follows that∥∥∥∂(i,j)
v ϕ(x, v)− ∂(i,j)

v ϕ(x, v)
∥∥∥ ≤M ‖v − v‖δ ≤Mϑδ ‖v − v∗‖δ ,

for some M > 0. Hence we get

1

ε
‖Rϕ‖ ≤

1

2ε
MϑδE

[∫
R4d

‖v∗ − v‖2+δ f(t, x, v)g(t, x̂, v̂) dx dv dx̂ dv̂

]
=

1

2ε
Mϑδη2+δE

[∫
R4d

‖α(x, v)ξ + β(x, v) + γ(x, v, x̂, v̂)‖2+δ ×

× f(t, x, v)g(t, x̂, v̂) dx dv dx̂ dv̂

]

=
1

2
Mϑδε1+δE

[∫
R4d

‖α(x, v)ξ + β(x, v) + γ(x, v, x̂, v̂)‖2+δ ×

× f(t, x, v)g(t, x̂, v̂) dx dv dx̂ dv̂

]
.

From the inequality

‖α(x, v)ξ + β(x, v) + γ(x, v, x̂, v̂)‖2+δ ≤

≤ 22+2δ
(
‖α(x, v)ξ‖2+δ + ‖β(x, v)‖2+δ + ‖γ(x, v, x̂, v̂)‖2+δ

)
,
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we obtain

‖Rϕ‖ ≤ 21+2δMϑδε1+δ

(
ρ[g](t) E

[
‖ξ‖2+δ

] ∫
R2d

‖α(x, v)‖2+δ f(t, x, v) dx dv+

+ ρ[g](t)

∫
R2d

‖β(x, v)‖2+δ f(t, x, v) dx dv+

+

∫
R4d

‖γ(x, v, x̂, v̂)‖2+δ f(t, x, v)g(t, x̂, v̂) dx dv dx̂ dv̂

)
.

Similar computations performed on the term Ξϕ[f, g] yield the inequality

ε

2
‖Ξϕ[f, g]‖ ≤ ε

2
Mϑ

(
ρ[g](t)

∫
R2d

‖β(x, v)‖2 f(t, x, v) dx dv+

+

∫
R4d

‖γ(x, v, x̂, v̂)‖2 f(t, x, v)g(t, x̃, ṽ) dx dv dx̂ dv̂

)
.

Remembering that solutions of (4.29) have support uniformly bounded in time and that

we asked for a g with finite constant mass (i.e., ρ[g](t) = ρ[g](0) < +∞), the following

result follows from Remark 4.22.

Theorem 4.23. Fix T > 0, δ > 0, and g ∈ L2([0, T ];Mb(R2d)) such that ρ[g](t) =

ρ[g](0) < +∞ for every t ∈ [0, T ]. For every ε > 0, let f ε(·) be a δ-weak solution of (4.29)

with initial datum f0 ∈ Mb(R2d), and where the quantities η, λ and ς2 are rescaled with

respect to ε according to (4.35). Suppose that

(i) E
[
‖ξ‖2+δ

]
is finite, and

(ii) the functions α, β, and γ belong to Lploc for p = 2, 2 + δ.

Then, as ε→ 0, the solutions f ε(·) converge pointwise, up to a subsequence, to f(·) which

satisfies the Fokker-Planck-type equation (4.33) with initial datum f0.

Remark 4.24. We stress again that the above result is not concerned about the well-

posedness of system (4.29) (see Remark 4.21): it only addresses the relationship between

the solutions of (4.29) and those of (4.33) under the grazing interaction regime.



CHAPTER 5

Learning from observations of

evolutive systems

Continuity equations with nonlocal interaction kernels like (4.10) are currently the subject

of intensive research towards the modeling of the biological and social behavior of microor-

ganisms, animals, humans, etc. (we refer to [51, 54] for recent overviews on this subject).

Despite the tremendous theoretical success of such research directions in terms of mathe-

matical results regarding the well-posedness and the asymptotic behavior of solutions, one

of the issues which is so far scarcely addressed is their actual applicability. With this we

mean that the interaction functions appearing in biological and social contexts are likely

to differ significantly from those employed in well-known models in physics, and most of

the results at disposal address a purely qualitative analysis given certain properties of the

kernel without looking at the precise interaction function that is needed in applications.

Besides, the correct knowledge of the interaction kernel is also of paramount importance

for the optimal controllability of such systems, as will be stressed in Chapter 6. A solid

mathematical framework which establishes the conditions of “learnability” of the interac-

tion kernels from observations of the dynamics is currently not available and it will be the

main subject of this chapter.

5.1 The learning problem

Many time-dependent phenomena in physics, biology and social sciences can be modeled

by systems of differential equations of the type

ẋi(t) =
1

N

N∑
j=1

K(xi(t)− xj(t)), i = 1, . . . , N,



158 Learning from observations of evolutive systems

for a proper choice of the interaction kernel K : Rd → Rd. Very often, in the study

of such phenomena, the kernel K is just chosen to reproduce, at least approximately or

qualitatively, some of the macroscopical effects of the observed dynamics, such as the

formation of certain emerging patterns. The goal of this chapter is to provide a learning

framework to find the kernel K matching at best the data from real-life observations. We

shall focus our attention on alignment models (see Section 1.1) of the form

ẋ
[a]
i (t) =

1

N

N∑
j=1

a(‖x[a]
i (t)− x[a]

j (t)‖)(x[a]
j (t)− x[a]

i (t)), i = 1, . . . , N. (5.1)

Notice that a : R+ → R can also be negative, meaning that it may give rise to repulsive

forces between agents. Hence, the kernel to be learned is of the form K = F [a] where

F [a](x)
∆
= −a(‖x‖)x for every x ∈ Rd.

The function a characterizes the dynamics of the system and it is the crucial information we

want to retrieve from the observation of the evolution of the solution x[a] = (x
[a]
1 , . . . , x

[a]
N ) :

[0, T ]→ RdN of system (5.1).

We restrict our attention to interaction functions a belonging to the following set of ad-

missible kernels

X
∆
=
{
b : R+ → R : b ∈ L∞(R+) ∩W 1,∞

loc (R+)
}
.

In particular, every a ∈ X is weakly differentiable, and its local Lipschitz constant LipΩ(a)

is finite for every compact set Ω ⊂ R+. Notice that the lemma below, together with

Proposition 4.9, implies that (5.1) is well-posed for any given initial datum x0 ∈ RdN and

for every N ∈ N, motivating the restriction to the kernels in X.

Lemma 5.1. If a ∈ X then F [a] ∈ Liploc(Rd;Rd) and is sublinear.

Proof. For any compact set Ω ⊂ Rd and for every x, y ∈ Ω it holds

‖F [a](x)− F [a](y)‖ = ‖a(‖x‖)x− a(‖y‖)y‖
≤ |a(‖x‖)|‖x− y‖+ |a(‖x‖)− a(‖y‖)|‖y‖
≤ (|a(‖x‖)|+ LipΩ(a)‖y‖)‖x− y‖,

and since a ∈ L∞(R+) and y ∈ Ω, it follows that F [a] is locally Lipschitz with Lipschitz

constant depending only on a and Ω. Also the sublinearity trivially follows from a ∈
L∞(R+) since

‖F [a](x)‖ ≤ ‖a‖L∞(R+)‖x‖.

Therefore the sublinearity constant is given by ‖a‖L∞(R+).

The fundamental question that we shall address in this chapter is: can we recover a ∈ X
with high accuracy given some observations of the realized evolutions x[a](·)? This question

is prone to several specifications: for instance, we may want to assume that the initial
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conditions x0 are generated according to a certain probability distribution or they are

chosen deterministically ad hoc to determine at best a; that the observations are complete

or incomplete, etc. As one quickly realizes, this is a very broad field to explore with many

possible developments. We remand to [20, 21, 57, 124, 127, 140] and references therein for

recent studies on the inference of social rules in collective behavior.

5.1.1 The optimal control approach and its drawbacks

Let us introduce an approach which perhaps would be naturally considered at a first

instance. Given a certain solution x[a](·) of system (5.1) depending on the unknown pa-

rameter function a, one might decide to design the recovery of a as an optimal control

problem [42]: for instance, one may seek a parameter function â which minimizes

E [a](â)
∆
=

1

T

∫ T

0

[
1

N
‖x[a](t)− x[â](t)‖2 +R(â)

]
dt, (5.2)

being x[â](·) the solution of (5.1) with interaction kernel â in place of a, and R(·) is a

suitable regularization functional, which restricts the possible minimizers of (5.2) to a

specific class of kernels. Notice that here ‖ · ‖ denotes the `2–norm in RdN .

The first fundamental problem one immediately encounters with this formulation is the

strongly nonlinear dependency of x[â](·) on â, which results in a strong non-convexity of the

functional (5.2). This also implies that a direct minimization of (5.2) would risk to lead

to suboptimal solutions, and even the computation of first order optimality conditions

in terms of the Pontryagin’s Maximum Principle would not characterize uniquely the

minimal solutions. Besides these fundamental hurdles, the numerical implementation of

either strategy (direct optimization or solution of the first order optimality conditions) is

expected to be computationally unfeasible to reasonable degree of accuracy as soon as the

number of agents N is significantly large (an instance of the already encountered curse of

dimensionality).

5.1.2 A variational approach towards learning interaction kernels

Instead of the nonconvex optimal control problem above, we propose an alternative, direct

approach which is both computationally very efficient and guarantees accurate approxi-

mations under reasonable assumptions. In particular, we consider as an estimator of the

kernel a a minimizer of the following discrete error functional

E [a],N (â)
∆
=

1

T

∫ T

0

1

N

N∑
i=1

∥∥∥∥ 1

N

N∑
j=1

(
â(‖x[a]

i (t)− x[a]
j (t)‖)(x[a]

i (t)− x[a]
j (t))− ẋ[a]

i (t)
)∥∥∥∥2

dt,

(5.3)

among all competitors â ∈ X. Actually, the minimization of E [a],N has a close connection to

the optimal control problem of the previous section, since it also promotes the minimization

of the discrepancy ‖x[a](t)− x[â](t)‖2 in (5.2), as the following result shows.

Proposition 5.2. If a, â ∈ X then there exist a constant C > 0 depending on T , â, a,

and x0 such that
1

N
‖x[a](t)− x[â](t)‖2 ≤ CE [a],N (â), (5.4)
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for all t ∈ [0, T ], where x[a] and x[â] are the solutions of (5.1) with initial datum x0 and

for the interaction kernels a and â, respectively.

Proof. Before starting, notice that for every i = 1, . . . , N and t ∈ [0, T ] we can write

1

N

N∑
j=1

(
â(‖x[a]

i (t)− x[a]
j (t)‖)(x[a]

i (t)− x[a]
j (t))− ẋ[a]

i (t)
)

=
(

(F [â] − F [a]) ∗ µN (t)
)

(x
[a]
i (t)),

(5.5)

having used the expression of the dynamics (5.1) and the empirical measure

µN (t) =
1

N

N∑
i=1

δ
x

[a]
i (t)

for every t ∈ [0, T ]. (5.6)

Let us denote by x
∆
= x[a] and x̂

∆
= x[â]. Two applications of Proposition 4.9, one for the

choice K = F [a] and gN ≡ 0, the other for K = F [â] and gN ≡ 0, yield the existence of

an R > 0 depending only on T , â, a and x0 for which ‖xi(t)‖, ‖x̂i(t)‖ ≤ R holds for every

t ∈ [0, T ]. Therefore, we can estimate by Jensen (or Hölder) inequality

1

N
‖x(t)− x̂(t)‖2 =

1

N

∥∥∥∥∫ t

0
(ẋ(s)− ˙̂x(s))ds

∥∥∥∥2

≤ t
∫ t

0

1

N
‖ẋ(s)− ˙̂x(s)‖2ds

≤ 2t

∫ t

0

[
1

N

N∑
i=1

∥∥∥((F [a] − F [â]) ∗ µN (s)
)

(xi(s)))
∥∥∥2

+

+
1

N

N∑
i=1

∥∥∥∥∥ 1

N

N∑
j=1

â(‖xi(s)− xj(s)‖)
(

(x̂j(s)− xj(s)) + (xi(s)− x̂i(s))
)

+

+
(
â(‖x̂i(s)− x̂j(s)‖)− â(‖xi(s)− xj(s)‖)

)
(x̂j(s)− x̂i(s))

∥∥∥∥∥
2]
ds

≤ 2T 2E [a],N (â) +

∫ t

0
8T (‖â‖2L∞(Ω) + (RLipΩ(â))2)‖x(s)− x̂(s)‖2ds,

where Ω
∆
= [0, 2R]. An application of Gronwall’s Lemma A.1 yields the estimate

1

N
‖x(t)− x̂(t)‖2 ≤ 2T 2e

8T 2(‖â‖2
L∞(Ω)

+(RLipΩ(â))2)E [a],N (â)

for any t ∈ [0, T ], which is the desired bound.

Therefore, if â makes E [a],N (â) small, the trajectories x[â](·) of system (5.1) with inter-

action kernel â instead of a are a good approximation of the trajectories x[a](·) at finite

time. For simplicity of notations, we may choose to ignore below the dependence on a of

the trajectories, and write x
∆
= x[a] when such a dependence is clear from the context.

Additionally, whenever we consider the limit N → ∞, we may denote the dependency of

the trajectory on the number of agents N ∈ N by setting xN
∆
= x = x[a].
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Contrary to the optimal control approach, the functional E [a],N is convex and can be

easily computed from witnessed trajectories x(·) and ẋ(·). We may even consider discrete-

time approximations of the time derivatives ẋi (e.g., by finite differences) and we shall

assume that the data of the problem is the full set of observations (x(t))t∈[0,T ], for a

prescribed finite time horizon T > 0. Furthermore, being a simple quadratic functional,

its minimizers can be efficiently numerically approximated on a finite element space: given

a finite dimensional space V ⊂ X, we pick

âN,V ∈ arg min
â∈V

E [a],N (â). (5.7)

The fundamental mathematical question addressed in this chapter can then again be

restated as

(Q) for which choice of the approximating spaces V ∈ Λ (we assume here that Λ is a

countable family of invading subspaces of X) does âN,V → a for N →∞ and V → X

and in which topology should this convergence hold?

We show now how to address this issue by means of a variational approach, seeking a limit

functional for which techniques of Γ-convergence [86] – whose general aim is establishing

the convergence of minimizers for a sequence of equi-coercive functionals to minimizers of

a target functional – may provide a clear charaterization of the limits for the sequence of

minimizers (âN,V )N∈N,V ∈Λ. By means of (5.5), we rewrite the functional (5.3) as follows:

E [a],N (â) =
1

T

∫ T

0

1

N

N∑
i=1

∥∥∥∥ 1

N

N∑
j=1

(
F [â] − F [a]

)
(xi(t)− xj(t))

∥∥∥∥2

dt

=
1

T

∫ T

0

∫
Rd

∥∥∥∥((F [â] − F [a]) ∗ µN (t)
)

(x)

∥∥∥∥2

dµN (t, x)dt.

(5.8)

This formulation of the functional makes it easy to recognize the candidate for a Γ-limit

of E [a],N (â). Indeed, it is well-known by Chapter 4 that for N →∞ a mean-field approxi-

mation holds of system (5.1): by Theorem 4.11 and Remark 4.12, if the initial conditions

x0
i,N are independently and identically distributed according to a compactly supported

probability measure µ0 ∈ Pc(Rd) for every i = 1, . . . , N and for every N ∈ N, then the

empirical measures curves (µN )N∈N given by (5.6) weakly converge for N → ∞ to the

probability measure-valued trajectory µ(·) satisfying
∂µ

∂t
(t) = −∇x · ((F [a] ∗ µ(t))µ(t)) for t ∈ (0, T ],

µ(0) = µ0,
(5.9)

in the sense of Definition 4.9 with vector field V (t, µ)(x) = (F [a] ∗ µ)(x).

The candidate Γ-limit is then

E [a](â)
∆
=

1

T

∫ T

0

∫
Rd

∥∥∥∥((F [â] − F [a]) ∗ µ(t)
)

(x)

∥∥∥∥2

dµ(t, x)dt, (5.10)

where µ(·) is the above weak solution with µ(0) = µ0, as soon as the initial conditions
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x0
i,N are identically and independently distributed according to µ0.

Remark 5.3. For the rest of the section, we shall assume that the initial conditions x0
i,N

are i.i.d. according to µ0 for every i = 1, . . . , N and N ∈ N. Therefore we are under the

hypotheses of Theorem 4.11 and, in particular, there exists R > 0 (given by (4.15)) for

which it holds supp(µN (t)) ∪ supp(µ(t)) ⊆ B(0, R) for every N ∈ N and t ∈ [0, T ].

5.1.3 The coercivity condition

Although all of this is very natural, several issues need to be addressed at this point.

The first one is to establish the space where a result of Γ-convergence may hold and the

identification of a can take place. As the trajectories x[a](·) do not explore the whole space

in finite time, we expect that such a space may not be independent of the initial probability

measure µ0, as we clarify immediately. By Jensen inequality we have

E [a](â) ≤ 1

T

∫ T

0

∫
Rd

∫
Rd
|â(‖x− y‖)− a(‖x− y‖)|2‖x− y‖2dµ(t, x)dµ(t, y)dt

=
1

T

∫ T

0

∫
R+

∣∣â(r)− a(r)
∣∣2r2d%(t, r)dt

(5.11)

where %(t) is the pushforward of µ(t)⊗µ(t) by the Euclidean distance map d : Rd×Rd →
R+ defined by d : (x, y) 7→ ‖x − y‖. In other words, % : [0, T ] → P1(R+) is defined for

every Borel set A ⊂ R+ as

%(t)(A)
∆
= (µ(t)⊗ µ(t))

(
d−1(A)

)
. (5.12)

The mapping t ∈ [0, T ] 7→ %(t)(A) is lower semi-continuous for every open set A ⊆ R+,

and it is upper semi-continuous for any compact set A (see Lemma 5.7). We may therefore

define a time-averaged probability measure ρ on the Borel σ-algebra of R+ by averaging

%(t) over t ∈ [0, T ]: for any open set A ⊆ R+ we define

ρ(A)
∆
=

1

T

∫ T

0
%(t)(A)dt, (5.13)

and extend this set function to a probability measure on all Borel sets. Finally we define

ρ(A)
∆
=

∫
A
r2dρ(r), (5.14)

for any Borel set A ⊆ R+, to take into account the polynomial weight r2 as appearing in

(5.11). Then one can reformulate (5.11) in a very compact form as follows

E [a](â) ≤
∫
R+

∣∣â(r)− a(r)
∣∣2dρ(r) = ‖â− a‖2L2(R+,ρ). (5.15)

Notice that ρ is defined through µ which depends on the initial probability measure µ0.

To establish the coercivity of the learning problem it is essential to assume that there

exists cT > 0 such that also the following additional bound holds

cT ‖â− a‖2L2(R+,ρ) ≤ E
[a](â), (5.16)
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for all relevant â ∈ X ∩L2(R+, ρ). This crucial assumption eventually determines also the

natural space X ∩ L2(R+, ρ) for the solutions, which therefore depends on the choice of

the initial conditions µ0 via the measure ρ. In particular the constant cT ≥ 0 might not be

nondegenerate for all the choices of µ0 and one has to pick the initial distribution so that

(5.16) can hold for cT > 0. In Section 5.3 we show that for some specific choices of a and

rather general choices of â ∈ X one can construct probability measure-valued trajectories

µ(·) which allow to validate (5.16).

In order to ensure the compactness of the sequence of minimizers of E [a],N , we shall need

to restrict the sets of possible solutions to classes of the type

XM,Ω
∆
=
{
b ∈W 1,∞(Ω) : ‖b‖L∞(Ω) + ‖b′‖L∞(Ω) ≤M

}
,

where M > 0 is some predetermined constant and Ω ⊂ R+ is a suitable compact set.

We now introduce the key property that a family of approximation spaces VN must pos-

sess in order to ensure that the minimizers of the functionals E [a],N over VN converge to

minimizers of E [a].

Definition 5.4. Let M > 0 and Ω = [0, 2R] interval in R+ be given. We say that a family

of closed subsets VN ⊂ XM,Ω, N ∈ N has the uniform approximation property in L∞(Ω)

if for all b ∈ XM,Ω there exists a sequence (bN )N∈N converging uniformly to b on Ω and

such that bN ∈ VN for every N ∈ N.

We are ready to state the main result of the chapter, which in addition answers the question

(Q) raised in Section 5.1.2.

Theorem 5.5. Assume a ∈ X, fix µ0 ∈ Pc(Rd) and let Ω = [0, 2R] ⊂ R+ with R > 0 as

in Theorem 4.11. Set

M ≥ ‖a‖L∞(Ω) + ‖a′‖L∞(Ω).

For every N ∈ N, let x0
1,N , . . . , x

0
N,N be i.i. µ0-distributed and define E [a],N as in (5.8) for

the solution µN of the equation (5.9) with initial datum

µ0
N =

1

N

N∑
i=1

δx0
i,N
.

For N ∈ N, let VN ⊂ XM,Ω be a sequence of subsets with the uniform approximation

property as in Definition 5.4 and consider

âN ∈ arg min
â∈VN

E [a],N (â).

Then the sequence (âN )N∈N has a subsequence converging uniformly on Ω to some contin-

uous function â ∈ XM,Ω such that E [a](â) = 0.

If we additionally assume the coercivity condition (5.16), then â = a in L2(R+, ρ). More-

over, in this latter case, if there exist rates α, β > 0, constants C1, C2 > 0, and a sequence

(aN )N∈N of elements aN ∈ VN such that

‖a− aN‖L∞(Ω) ≤ C1N
−α, (5.17)
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and

W1(µ0
N , µ

0) ≤ C2N
−β, (5.18)

then there exists a constant C3 > 0 such that

‖a− âN‖2L2(R+,ρ) ≤ C3N
−min{α,β}, (5.19)

for all N ∈ N. In particular, in this case, it is the entire sequence (âN )N∈N (and not only

subsequences) to converge to a in L2(R+, ρ).

Remark 5.6. We remark that the L2(R+, ρ) used in the above result is useful when ρ has

positive density on large intervals of R+. Notice that the main result, under the validity of

the coercivity condition, not only ensures the identification of a on the support of ρ, but

it also provides a prescribed rate of convergence. For functions a in XM,Ω and for finite

element spaces VN of continuous piecewise linear functions constructed on regular meshes

of size N−1 a simple sequence (aN )N∈N realizing (5.17) with α = 1 and C1 = M is the

piecewise linear approximation to a which interpolates a on the mesh nodes. Indeed, for

the approximation estimate (5.18) there are plenty of results concerning such rates and

we refer to [90] and references therein. Roughly speaking, for µ0
N the empirical measure

obtained by sampling N times independently from µ0, one expects β to be of order 1/d

(more precisely see [90, Theorem 1]), which is a manifestation of the aforementioned curse

of dimensionality. While it is in general relatively easy to increase α independently of d

as the smoothness of a increases (since a is a function of one variable only), obtaining

β > 1/d is in general not possible unless µ0 has very special properties, see [101, Sections

4.4 and 4.5].

5.1.4 Numerical implementation of the variational approach

The strength of the result obtained via the variational approach followed in Section 5.1.2 is

the total arbitrariness of the sequence VN except for the assumed uniform approximation

property, and that the result holds – deterministically – with respect to the uniform con-

vergence, which is quite strong. However, the condition that the spaces VN are to be picked

as subsets of XM,Ω requires the prior knowledge of the bound M ≥ ‖a‖L∞(Ω) + ‖a′‖L∞(Ω).

Therefore, the finite dimensional optimization (5.7) is not anymore a simple unconstrained

least squares (as claimed in the paragraph before (5.7)), but a problem constrained by a

uniform bound on both the solution and its derivative. Nevertheless, as we clarify in Sec-

tion 5.5, for M > 0 fixed and choosing VN made of piecewise linear continuous functions,

imposing the uniform L∞ bound in the least square problem does not constitute a severe

difficulty. Also the tuning of the parameter M > 0 turns out to be rather simple. In fact,

for N fixed, numerical evidences suggest that the minimizers âN = âN,M obtained with

different values of the constraint parameter M have the property that the map

M 7→ E [a],N (âN,M )

is monotonically decreasing as a function of M and it becomes constant for M ≥ M∗,

where M∗ > 0 does not depend on N . We claim that this special value M∗ is indeed the

“right” parameter for the L∞ bound. For such a choice, we show also numerically that,

as expected, if we let N grow, the minimizers âN approximates better and better the
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unknown potential a.

Despite the fact that both the tuning of M > 0 and the constrained minimization over

XM,Ω requiring L∞ bounds are not severe issues, it would be way more efficient to perform

an unconstrained least squares over X. In the upcoming paper [35] a strategy based on

the approach developed by DeVore et al. in [29, 30] towards universal algorithms for

learning regression functions from independent samples drawn according to an unknown

probability distribution is used. This extension presents several challenges including the

lack of independence of the samples collected in our framework and the nonlocality of the

scalar products of the corresponding least squares. This has a price to pay: the spaces VN
need to be carefully chosen and the convergence result holds only with high probability.

5.1.5 Extensions to second order systems

The learning framework developed in the previous sections can be extended to second-

order dynamical systems, like the Cucker-Smale one (1.6), by considering the following

error functional

E [a],N (â)
∆
=

1

T

∫ T

0

1

N

N∑
i=1

∥∥∥∥ 1

N

N∑
j=1

(
â(‖x[a]

i (t)− x[a]
j (t)‖)(v[a]

i (t)− v[a]
j (t))− v̇[a]

i (t)
)∥∥∥∥2

dt,

(5.20)

where (x[a], v[a]) : [0, T ] → RdN × RdN is the solution of system (1.6) with the true a as

interaction kernel. Figure 5.1 below shows the reconstruction of a Cucker-Smale kernel a

by successive minimizations of the above error functional for increasing values of N . Also

in this case, an improvement in the quality of the approximation as the number of agents

increases is a clearly visible trend.
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Figure 5.1: Recostruction of the Cucker-Smale kernel (1.7) with parameters H = 10, σ = 1
and β = 0.6 by minimization of the error functional (5.20) for N = 10, 20, 40.

However, despite the above promising preliminary results, the extension of the variational

approach to the second-order case is not trivial and a careful analysis of its feasibility has

not yet been performed.

5.2 The measure ρ

As already explained in the above sections, our goal is to learn a ∈ X from the observation

of the dynamics x[a](·), which is the solution of system (5.1) with a as interaction kernel,

(x0
1, . . . , x

0
N ) as initial datum and T as finite time horizon. Remember that, by Remark

4.6, it is equivalent to speak about x[a](·) or the empirical measure-valued curve µN (·)
defined by (5.6).
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Roughly speaking, we should pick â among those functions in X which would give rise to a

dynamics close to µN : more precisely, as discussed in Section 5.1.2, we choose âN ∈ X as a

minimizer of the discrete error functional given by (5.3), which we rewrite for convenience:

E [a],N (â) =
1

T

∫ T

0

1

N

N∑
i=1

∥∥∥∥ 1

N

N∑
j=1

(
â(‖x[a]

i (t)− x[a]
j (t)‖)(x[a]

i (t)− x[a]
j (t))− ẋ[a]

i (t)
)∥∥∥∥2

dt.

Let us remind that, by Proposition 5.2, this optimization guarantees also that any min-

imizer âN produces good trajectory approximations x[âN ](t) to the “true” ones x[a](t) at

least at finite time t ∈ [0, T ].

In order to rigorously introduce the coercivity condition (5.16), we need to explore finer

properties of the family of measures (%(t))t∈[0,T ] given by (5.14).

Lemma 5.7. For every open set A ⊆ R+ the mapping t ∈ [0, T ] 7→ %(t)(A) is lower

semi-continuous, whereas for any compact set A it is upper semi-continuous.

Proof. As a first step we show that for every given sequence (tn)n∈N converging to t ∈ [0, T ]

we have the weak convergence %(tn) ⇀ %(t) for n→∞. We first note that µ(tn)⊗µ(tn) ⇀

µ(t)⊗ µ(t), since µ(tn) ⇀ µ(t) holds because of the continuity of µ(t) in the Wasserstein

metricW1. This implies the claimed weak convergence %(tn) ⇀ %(t), since for any function

f ∈ C(R+), it holds f ◦ d ∈ C(Rd × Rd), and hence∫
R+

f d%(tn) =

∫
R2d

(f ◦ d)(x, y)d(µ(tn)⊗ µ(tn))(x, y)

n→∞−→
∫
R2d

(f ◦ d)(x, y)d(µ(t)⊗ µ(t))(x, y) =

∫
R+

f d%(t).

The claim now follows from general results for weakly* convergent sequences of Radon

measures, see e.g. [11, Proposition 1.62].

Lemma 5.7 justifies the following

Definition 5.8. The probability measure ρ on the Borel σ-algebra on R+ is defined for

any Borel set A ⊆ R+ as follows

ρ(A)
∆
=

1

T

∫ T

0
%(t)(A)dt. (5.21)

Notice that Lemma 5.7 shows that (5.21) is well-defined only for sets A that are open or

compact in R+. This directly implies that ρ can be extended to any Borel set A, since

both families of sets provide a basis for the Borel σ-algebra on R+. Moreover ρ is a regular

measure on R+, since Lemma 5.7 also implies that for any Borel set A

ρ(A) = sup {ρ(F ) : F ⊆ A, F compact} = inf {ρ(G) : A ⊆ G, G open} .

The measure ρ “measures” which – and how much – regions of R+ (the set of inter-point

distances) are explored during the dynamics of the system. Highly explored regions are
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where our learning process ought to be successful, since these are the areas where we do

have enough samples from the dynamics to reconstruct the function a.

We now show the absolute continuity of ρ with respect to L1xR+ , the Lebesgue measure

on R restricted to R+.

Lemma 5.9. Let µ0 be absolutely continuous with respect to the d-dimensional Lebesgue

measure Ld. Then µ(t) is absolutely continuous with respect to Ld for every t ∈ [0, T ].

Proof. Both µ0 and µ(t) are supported in B(0, R), with R as in (4.15). By (4.20) and

Proposition 4.14, the measure µ(t) is the pushforward of µ0 under the locally bi-Lipschitz

map T µt . Since T µt has Lipschitz inverse on B(0, R), this inverse maps Ld-null sets to

Ld-null sets, so µ0-null sets are not only Ld-null sets by assumption, but are also µ(t)-null

sets.

Lemma 5.10. Let µ0 be absolutely continuous with respect to Ld. Then, for all t ∈ [0, T ],

the measures %(t) and ρ are absolutely continuous with respect to L1xR+.

Proof. Fix t ∈ [0, T ]. By Lemma 5.9 we already know that µ(t) is absolutely continuous

with respect to Ld, and so µ(t)⊗µ(t) is absolutely continuous with respect to L2d. It hence

remains to show that L2d is absolutely continuous with respect to L1xR+ , where d denotes

the distance function, but this follows easily by observing that d−1(A) = 0 for every

L1xR+-null set A, and by an application of Fubini’s Theorem. The absolute continuity of

ρ now follows immediately from the one of %(t) for every t ∈ [0, T ] and its definition as an

integral average (5.21).

As an easy consequence of the fact that the dynamics of our system has support uniformly

bounded in time, we get the following crucial properties of the measure ρ.

Lemma 5.11. Let µ0 ∈ Pc(Rd). Then the measure ρ is finite and has compact support.

Proof. We have

ρ(R+) =
1

T

∫ T

0
%(t)(R+)dt =

1

T

∫ T

0

∫
Rd×Rd

‖x− y‖dµ(t, x)dµ(t, y)dt < +∞,

since the distance function is continuous and the support of µ is uniformly bounded in

time. This shows that ρ is bounded. Since the supports of the measures %(t) are the subsets

of Ω = {‖x− y‖ : x, y ∈ B(0, R)} = [0, 2R], where R is given by (4.15), by construction

we also have supp(ρ) ⊆ Ω.

5.3 On the coercivity assumption

With the measure ρ at disposal, we may define ρ as in (5.14). An easy consequence of

Lemma 5.11 is that if a ∈ X, then

‖a‖2L2(R+,ρ) =

∫
R+

∣∣a(r)
∣∣2dρ(r) ≤ ρ(R+)‖a‖2L∞(supp(ρ)) ,
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and therefore X ⊆ L2(R+, ρ). As already mentioned in the previous section, for N → ∞
a natural mean-field approximation to the learning functional is given by

E [a](â) =
1

T

∫ T

0

∫
Rd

∥∥∥∥((F [â] − F [a]) ∗ µ(t)
)

(x)

∥∥∥∥2

dµ(t, x)dt,

where µ(·) is a weak solution to (4.10). Remember that using the definition of ρ we obtain

E [a](â) ≤ 1

T

∫ T

0

∫
R+

∣∣â(r)− a(r)
∣∣2r2d%(t, r)dt = ‖â− a‖2L2(R+,ρ).

This inequality suggested in turn the coercivity condition (5.16):

E [a](â) ≥ cT ‖â− a‖2L2(R+,ρ).

The main reason this condition is of interest to us is given by the following

Proposition 5.12. Assume a ∈ X and that the coercivity condition (5.16) holds. Then

any minimizer of E [a] in X coincides ρ-a.e. with a.

Proof. Notice that E [a](a) = 0, and since E [a](â) ≥ 0 for all â ∈ X this implies that a is a

minimizer of E [a]. Now suppose that E [a](â) = 0 for some â ∈ X. By (5.16) we obtain that

â = a in L2(R+, ρ), and therefore they coincide ρ-almost everywhere.

5.3.1 Coercivity is “generically” satisfied

We make the case that while “degeneracies” would cause our coercivity condition to fail

(i.e., cT = 0), in a “generic” case the coercivity inequality holds. On the one hand, we show

that if we could model the misfit K(r)
∆
= (a(r)−â(r))r to behave randomly, in a sufficiently

independent manner, over a finite set of trajectory distances, then the coercivity condition

holds with high probability. While the needed independence assumptions will typically be

too strong to hold in practice, the arguments we provide are by far not the most general

possible, and we view them as one possible notion of a “generic” case. On the other hand,

in the next subsection we also present a more rigorous deterministic argument to verify

the coercivity condition for particular choices of a.

With the notation of the misfit just introduced, the coercivity condition reads

1

T

∫ T

0

∫
Rd

∥∥∥∥∥
∫
Rd
K(‖x− y‖) x− y

‖x− y‖
dµ(t, x)

∥∥∥∥∥
2

dµ(t, y) ≥

≥ cT
T

∫ T

0

∫
Rd

∫
Rd
|K(‖x− y‖)|2 dµ(t, x)dµ(t, y).

If the inequality holds without the time average for a fixed t0,

∫
Rd

∥∥∥∥∥
∫
Rd
K(‖x− y‖) x− y

‖x− y‖
dµ(t0, x)

∥∥∥∥∥
2

dµ(t0, y) ≥

≥ c′t0

∫
Rd

∫
Rd
|K(‖x− y‖)|2 dµ(t0, x)dµ(t0, y),
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then by a continuity argument it can be extended to a nontrivial time interval. We will

therefore freeze time and investigate the inequality at this fixed time. Additionally, for

the moment we restrict our attention to the case where µ(t0) is a discrete measure µN =∑N
i=1 δxi/N (we drop t0 since it is now fixed), so that the inequality reads

1

N

N∑
i=1

∥∥∥∥∥∥ 1

N

N∑
j=1

K(‖xi − xj‖)
xi − xj
‖xi − xj‖

∥∥∥∥∥∥
2

≥
c′t0
N2

N∑
i=1

N∑
j=1

|K(‖xi − xj‖)|2 . (5.22)

We argue now that this (“instantaneous”) inequality holds with high probability as soon

as the matrix K
∆
= (K(‖xi − xj‖))Ni,j=1 is modeled as a random matrix. Although it is

not completely plausible to argue statistical independence of the entries of such a matrix

because it comes from evaluating a smooth function over distances of non-random points,

this model is not completely unreasonable: after all, K involves the difference of our

estimator â and the target influence function a. For least squares estimators this difference

is random with the samples used to construct the estimator, often with nearly independent,

perhaps even Gaussian, fluctuations.

Proposition 5.13. Let K
∆
= (K(‖xi − xj‖))Ni,j=1, where K(r) = (a(r) − â(r))r, be a

random matrix with independent Gaussian rows, each with variance σ2IN . Then with high

probability the coercivity bound (5.22) holds with a constant c′t0 = O(1/N).

Moreover, if there is α > 0 such that K(‖xi−xj‖)‖xi−xj‖
α
2 is distributed as ηij, where ηij

are independent standard normal distributions, and the quantity 1/N
∑N

j=1 ‖xi − xj‖−α ∈
[c1, c2] for all i = 1, . . . , N , and for all N large enough, with c1, c2 > 0, then coercivity

holds with a constant c′t0 independent of N .

Proof. By assumption K has independent Gaussian rows, each with variance σ2IN . Since

the estimates below and the bounds we wish to obtain are scale invariant, we may assume

σ = 1. Also, having fixed a given time t0, we shall omit it from the notation. Let Xi ∈ RN×d
be the matrix whose j-th row is the vector (xi − xj)‖xi − xj‖ ∈ Rd, and let K(i, :) ∈ RN
be the i-th row of K. The coercivity inequality (5.22) can be re-written as

1

N

N∑
i=1

∣∣∣∣ 1

N
K(i, :)Xi

∣∣∣∣2 ≥ c′t
N2
‖K‖2F, (5.23)

where ‖ · ‖F is the Frobenius matrix norm. We have

E
[
|K(i, :)Xi|2

]
=

d∑
l=1

N∑
j,j′=1

E
[
K(‖xi − xj‖)K(‖xi − xj′‖)|

]( xi − xj
‖xi − xj‖

)
l

(
xi − xj′
‖xi − xj′‖

)
l

=

N∑
j=1

E
[
K(‖xi − xj‖)2

] d∑
l=1

(
xi − xj
‖xi − xj‖

)2

l

=

N∑
j=1

E
[
K(‖xi − xj‖)2

]
= N,
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where we used independence, and in the last step we used the fact that every row of Xi is

a unit vector. By concentration arguments (e.g., [172]) one readily obtains that with high

probability

1

N

N∑
i=1

∣∣∣∣ 1

N
K(i, :)Xi

∣∣∣∣2 ≥ C

N
.

One the other hand, since E[||K||2F] ≤ CN2 by standard random matrix theory results

(e.g., [172]), and in fact not just in expectation but also with high probability, the right

hand side of (5.23) is bounded by c′t0C from above. Choosing c′t0 small enough (and at

least as small as O(1/N), as a function of N), we obtain (5.23) with high-probability.

For the second case, we proceed exactly as above, and note that in this case it holds

E
[
|K(i, :)Xi|2

]
=

N∑
j=1

‖xi − xj‖−α.

Continuing as above, we obtain that with high probability

1

N

N∑
i=1

∣∣∣∣ 1

N
K(i, :)Xi

∣∣∣∣2 ≥ 1

N

N∑
i=1

C

N

N∑
j=1

‖xi − xj‖−2α ≥ C,

which implies the claim.

Let us comment on the second part of the statement. First of all there are two key addi-

tional assumptions. The first one captures the situation that the quantity 1/N
∑N

j=1 ‖xi−
xj‖−α ought to have, at least for some α, and under reasonable assumptions, a positive

limit as N tends to infinity, and so in particular it is bounded above and below, and away

from 0, for N large. The second one requires that the estimator has errors that decrease

with the distance ‖xi−xj‖ in the fashion prescribed: if the kernel and its gradient decrease

with the distance r, then it is indeed natural to expect that the estimator would have this

property. Under these assumptions, we obtain that the coercivity condition holds with a

constant independent of N , which in turns suggests it also holds in the continuous limit.

The argument may be generalized to other models of random matrices, for example with

sub-Gaussian rows (for K) and uniformly lower-bounded smallest singular values. One

may also consider Xi random, sufficiently uncorrelated with K, and obtain similar results.

Also, the continuous case is not substantially different from the discrete case, as it may be

derived by smoothing discrete approximations. We do not pursue these generalizations, as

our purpose here is to show that the coercivity assumption is “generically” satisfied.

5.3.2 The deterministic case

We construct now deterministic examples of trajectories µ(·) for which the coercivity

condition (5.16) holds. Again it is convenient to write K(r)
∆
= (a(r) − â(r))r, so that the

coercivity condition for a discrete system with N agents in this case can be reformulated
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in the following way

1

T

∫ T

0

1

N

N∑
i=1

∥∥∥∥∥ 1

N

N∑
j=1

K(‖xi(t)−xj(t)‖)
xi(t)− xj(t)
‖xi(t)− xj(t)‖

∥∥∥∥∥
2

dt ≥

≥ cT
N2T

∫ T

0

N∑
i=1

N∑
j=1

|K(‖xi(t)− xj(t)‖)|2dt.

(5.24)

We start with the simple case of two agents, i.e., N = 2, for which no specific assumptions

on a, â are required to verify (5.16) other than their boundedness in 0. Now, let us omit

the time dependency and observe more closely the integrand on the left-hand-side. If for

every i = 1, 2 we denote by j(i) ∈ {1, 2} the index such that j(i) 6= i, we obtain

1

2

2∑
i=1

∥∥∥∥∥∥1

2

2∑
j=1

K(‖xi − xj‖)
xi − xj
‖xi − xj‖

∥∥∥∥∥∥
2

=
1

2

2∑
i=1

∥∥∥∥∥∥1

2

2∑
j 6=i
K(‖xi − xj‖)

xi − xj
‖xi − xj‖

∥∥∥∥∥∥
2

=
1

4

2∑
i=1

∥∥∥∥K(‖xi − xj(i)‖)
xi − xj(i)
‖xi − xj(i)‖

∥∥∥∥2

=
1

4

2∑
i=1

∣∣K(‖xi − xj(i)‖)
∣∣2

=
1

4

2∑
i=1

2∑
j=1

|K(‖xi − xj‖)|2.

Integrating over time the latter equality yields (5.24) for N = 2 with an actual equal

sign and cT = 1. Notice that here we have not made any specific assumptions on the

trajectories xi(·) for i = 1, 2.

Let us then consider the case of N = 3 agents. Already in this simple case the angles

between particles may be rather arbitrary and analyzing the many possible configurations

becomes an involved exercise. (Notice that we circumvented this problem in the random

model in Section 5.3.1 thanks to the assumed independence of the entries of the rows

of K.) To simplify the problem we assume that d = 2 and that at a certain time t the

particles are disposed precisely at the vertexes of a equilateral triangle of edge length r.

This makes the computation of the angles very simple. We also assume that K gets its

maximal absolute value precisely at r, hence

1

9

3∑
i=1

3∑
j=1

|K(‖xi(t)− xj(t)‖)|2 ≤ ‖K‖2L∞(R+) = K(r)2 for every t ∈ [0, T ].

Notice that, independently of the behavior of the agents at any other time t ∈ [0, T ], it

holds also

1

9T

∫ T

0

3∑
i=1

3∑
j=1

|K(‖xi(t)− xj(t)‖)|2dt ≤ ‖K‖2L∞(R+) = K(r)2. (5.25)
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A direct computation in the case of agents disposed at the vertexes of a equilateral triangle

shows that

1

3

3∑
i=1

∥∥∥∥∥∥1

3

3∑
j=1

K(‖xi(t)− xj(t)‖)
xi(t)− xj(t)
‖xi(t)− xj(t)‖

∥∥∥∥∥∥
2

=
1

3
K(r)2, (5.26)

and therefore

1

3

3∑
i=1

∥∥∥∥∥∥1

3

3∑
j=1

K(‖xi(t)− xj(t)‖)
xi(t)− xj(t)
‖xi(t)− xj(t)‖

∥∥∥∥∥∥
2

≥ 1

18

3∑
i=1

3∑
j=1

|K(‖xi(t)− xj(t)‖)|2.

Unfortunately the assumption that K achieves its maximum in absolute value at r does

not allow us yet to conclude by a simple integration over time the coercivity condition

as we did for the case of two particles. In order to extend the validity of the inequality

to arbitrary functions taking maxima at other points, we need to integrate over time by

assuming now that the particles are vertexes of equilateral triangles with time dependent

edge length, say from r = 0 growing in time up to r = 2R > 0. This will allow the

trajectories to explore any possible distance within a given interval and to capture the

maximal absolute value of any kernel. More precisely, let us now assume that K is an

arbitrary bounded continuous function, achieving its maximal absolute value over [0, 2R],

say at r ∈ (0, 2R) and we can assume that this is obtained corresponding to the time

t0 ∈ [0, T ] when the particles form precisely the equilateral triangle of side length r. Now

we need to make a stronger assumption on â, i.e., we require â to belong to a class of equi-

continuous functions, for instance functions which are Lipschitz continuous with uniform

Lipschitz constant (such as the functions in XM,Ω). Under this equi-continuity assumption,

there exist ε > 0 and a constant cT,ε > 0 independent of K (but perhaps depending only

on its modulus of continuity) such that

1

T

∫ T

0

1

3

3∑
i=1

∥∥∥∥∥1

3

3∑
j=1

K(‖xi(t)− xj(t)‖)
xi(t)− xj(t)
‖xi(t)− xj(t)‖

∥∥∥∥∥
2

dt ≥

≥ 1

T

∫ t0+ε

t0−ε

1

3

3∑
i=1

∥∥∥∥∥∥1

3

3∑
j=1

K(‖xi(t)− xj(t)‖)
xi(t)− xj(t)
‖xi(t)− xj(t)‖

∥∥∥∥∥∥
2

dt

≥
cT,ε
3
K(r)2

≥
cT,ε
18T

∫ T

0

3∑
i=1

3∑
j=1

|K(‖xi(t)− xj(t)‖)|2dt.

In the latter sequence of inequalities we have used (5.26) and (5.25). Hence, also in this

case, one can construct examples for which the coercivity assumption is verifiable. Actually

this construction can be extended to any group of N particles disposed on the vertexes

of regular polygons. As an example of how one should proceed, let us consider the case

of N = 4 particles disposed instantaneously at the vertexes of a square of side length
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√
2r > 0. In this case one directly verifies that

1

4

4∑
i=1

∥∥∥∥∥∥1

4

4∑
j=1

K(‖xi − xj‖)
xi − xj
‖xi − xj‖

∥∥∥∥∥∥
2

=
1

16
(K(2r) +

√
2K(
√

2r))2. (5.27)

Let us assume that the maximal absolute value of K in absolute value is attained precisely

at
√

2r. Then the minimum of the expression on the right-hand side of (5.27) is attained

for the case where K(2r) = −K(
√

2r) yielding the following estimate from below

1

4

4∑
i=1

∥∥∥∥∥∥1

4

4∑
j=1

K(‖xi − xj‖)
xi − xj
‖xi − xj‖

∥∥∥∥∥∥
2

≥ 3− 2
√

2

16
K(
√

2r)2.

Hence, also in this case, we can apply the continuity argument above to eventually show

the coercivity condition. Similar procedures can be followed for any N ≥ 5. However, as

N →∞ one can show numerically that the lower bound vanishes quite rapidly, making it

impossible, perhaps not surprisingly, to conclude the validity of the coercivity condition

for the uniform distribution over the circle.

All the examples presented so far are based on discrete measures µN (t) =
∑N

i=1 δxi(t)/N

supported on agents lying on the vertexes of polytopes. However, one can consider a gε
for which gε → δ0 as ε→ 0, and the corresponding regularized probability measure

µε(t, x)
∆
= gε ∗ µN (t, x) =

1

N

N∑
i=1

gε(x− xi(t)) for every x ∈ Rd.

This diffuse measure approximates µN in the sense thatW1(µε, µN )→ 0 for ε→ 0, hence,

in particular, integrals against Lipschitz functions ϕ can be well-approximated∣∣∣∣∫
Rd
ϕ(x)dµε(t, x)−

∫
Rd
ϕ(x)dµN (t, x)

∣∣∣∣ ≤ LipRd(ϕ)W1(µε(t), µN (t)).

Under the additional assumption that LipΩ(â) ∼ ‖â‖L∞(Ω) (and this is true whenever

â is a piecewise polynomial function over a finite partition of R+, with the constant of

the equivalence depending on the particular partition) one can extend the validity of the

coercivity condition for µN (5.24) to µε as follows

1

T

∫ T

0

∫
Rd

∥∥∥∥∥
∫
Rd
K(‖x− y‖) y − x

‖y − x‖
dµε(t, x)

∥∥∥∥∥
2

dµε(t, y)dt ≥

≥
cT,ε
T

∫ T

0

∫
Rd

∫
Rd
|K(‖x− y‖)|2dµε(t, x)dµε(t, y)dt,

for a constant cT,ε > 0 for ε > 0 small enough.

Summing up the present section, we showed that the coercivity condition holds for “generic”

cases as well as for highly structured deterministic ones. In practice we can numerically

verify that it holds in many situations, see Section 5.5.3, and from now on we assume it

without further concerns.
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5.4 Γ-convergence of E [a],N to E [a]

This section is devoted to a proof of Theorem 5.5 using the methods of Γ-convergence. We

start with its definition and several basic properties. We redirect the interested reader to

the classical monograph [86] for further insights on the topic.

Definition 5.14 (Γ-convergence, [86, Definition 4.1, Proposition 8.1]). Let X be a metriz-

able separable space and consider for every N ∈ N a functional JN : X → (−∞,+∞].

We say that (JN )N∈N Γ-converges to J for a given J : X → (−∞,+∞], whenever the

following hold:

(i) Γ− lim inf condition: for every u ∈ X and every sequence uN → u,

J (u) ≤ lim inf
N→∞

JN (uN ).

(ii) Γ − lim sup condition: for every u ∈ X, there exists a sequence uN → u, called

recovery sequence, such that

J (u) ≥ lim sup
N→∞

JN (uN ).

We call the sequence (JN )N∈N equi-coercive if for every c ∈ R there is a compact set

Ω ⊆ X such that {u ∈ X : JN (u) ≤ c} ⊆ Ω for all N ∈ N.

As a direct consequence of Γ-convergence and equi-coercivity, assuming for all N ∈ N that

u∗N ∈ arg minu∈X JN (u) 6= ∅, we can infer that there exist a subsequence (u∗Nk)k∈N and an

element u∗ ∈ X such that

u∗Nk → u∗ ∈ arg min
u∈X

J (u),

i.e., the minimizers of the functionals JN converge to a minimizer of J .

In order to establish the Γ-convergence of E [a],N to E [a], we start with the analysis of the

discrete error functional E [a],N .

5.4.1 Existence of minimizers of E [a],N

The following result, which is a straightforward consequence of the Ascoli-Arzelá Theorem,

indicates the right ambient space where to state an existence result for the minimizers of

E [a],N .

Proposition 5.15. Fix M > 0 and Ω = [0, 2R] ⊂ R+ for any R > 0. Recall the set

XM,Ω =
{
b ∈W 1,∞(Ω) : ‖b‖L∞(Ω) + ‖b′‖L∞(Ω) ≤M

}
.

The space XM,Ω is relatively compact with respect to the uniform convergence on Ω.

Proof. Consider (ân)n∈N ⊂ XM,Ω. The Fundamental Theorem of Calculus (applicable to

functions in W 1,∞, see [11, Theorem 2.8]) implies that the functions ân are all Lipschitz

continuous with uniformly bounded Lipschitz constant, and are therefore equi-continuous.
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Since they are also pointwise uniformly equi-bounded, by the Ascoli-Arzelá Theorem there

exists a subsequence converging uniformly on Ω to some â ∈ XM,Ω.

Proposition 5.16. Assume a ∈ X. Fix M > 0 and Ω = [0, 2R] ⊂ R+ for R > 0 as in

Theorem 4.11. Let V be a closed subset of XM,Ω with respect to the uniform convergence.

Then, the optimization problem

min
â∈V
E [a],N (â)

admits a solution.

Proof. For proving the statement we apply the direct methods in the Calculus of Varia-

tions. Since inf E [a],N ≥ 0, we can consider a minimizing sequence (ân)n∈N ⊂ V , i.e., such

that

lim
n→∞

E [a],N (ân) = inf
â∈V
E [a],N (â).

By Proposition 5.15 there exists a subsequence of (ân)n∈N (labelled again as (ân)n∈N)

converging uniformly on Ω to a function â ∈ V (since V is closed). We now show that

limn→∞ E [a],N (ân) = E [a],N (â), from which it follows that the functional E [a],N attains its

minimum in V .

As a first step, notice that the uniform convergence of (ân)n∈N to â on Ω and the com-

pactness of Ω imply that the functionals F [ân](x− y) converge uniformly to F [â](x− y) on

B(0, R) × B(0, R) (where R is as in (4.15)) for n → ∞. Moreover, we have the uniform

bound

sup
x,y∈B(0,R)

‖F [ân](x− y)− F [a](x− y)‖ = sup
x,y∈B(0,R)

|ân(‖x− y‖)− a(‖x− y‖)|‖x− y‖

≤ 2R sup
r∈Ω
|ân(r)− a(r)|

≤ 2R
(
M + ‖a‖L∞(Ω)

)
. (5.28)

As the measure-valued curves µN (·) are compactly supported in B(0, R) uniformly in time,

the bound (5.28) allows us to apply three times the dominated convergence theorem to

obtain

lim
n→∞

E [a],N (ân) = lim
n→∞

1

T

∫ T

0

∫
Rd

∥∥∥∥∫
Rd

(
F [ân](x− y)− F [a](x− y)

)
dµN (t, y)

∥∥∥∥2

dµN (t, x)dt

=
1

T

∫ T

0
lim
n→∞

∫
Rd

∥∥∥∥∫
Rd

(
F [ân](x− y)− F [a](x− y)

)
dµN (t, y)

∥∥∥∥2

dµN (t, x)dt

=
1

T

∫ T

0

∫
Rd

∥∥∥∥ lim
n→∞

∫
Rd

(
F [ân](x− y)− F [a](x− y)

)
dµN (t, y)

∥∥∥∥2

dµN (t, x)dt

=
1

T

∫ T

0

∫
Rd

∥∥∥∥∫
Rd

(
F [â](x− y)− F [a](x− y)

)
dµN (t, y)

∥∥∥∥2

dµN (t, x)dt

= E [a],N (â),

which proves the statement.
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5.4.2 Uniform convergence estimates

The following technical result is the main ingredient of the forthcoming Γ-convergence

result in Corollary 5.18.

Lemma 5.17. Under the assumptions of Theorem 5.5, let (bN )N∈N ⊂ XM,Ω be a sequence

of continuous functions and b ∈ XM,Ω, for Ω = [0, 2R] with R > 0 as in (4.15). Then there

exists c1, c2 > 0 independent of N for which it holds∣∣E [a],N (bN )− E [a](b)
∣∣ ≤ c1W1(µ0

N , µ
0) + c2‖bN − b‖L∞(Ω). (5.29)

Proof. By Dobrushin’s inequality (4.22) it holds

W1(µ(t), µN (t)) ≤ CW1(µ0, µ0
N )

uniformly in t ∈ [0, T ] for some constant C > 0 independent of N . Moreover, for all

x, y, y′ ∈ B(0, R), by the triangle inequality we have

‖(F [a] − F [b])(x− y′)−(F [a] − F [b])(x− y)‖ ≤

≤
(

2R
(

LipΩ(a) + LipΩ(b)
)

+ ‖a‖L∞(Ω) + ‖b‖L∞(Ω)

)
‖y − y′‖,

which implies the Lipschitz continuity of (F [a]−F [b])(x−·) in B(0, R) for fixed x ∈ B(0, R).

Since a, b ∈ XM,K , it follows

LipB(0,R)

(
‖(F [a] − F [b])(x− ·)‖

)
≤ 2(2R+ 1)M, (5.30)

uniformly with respect to x ∈ B(0, R). Consequently, we have∥∥∥∥∫
Rd

(
F [b] − F [a]

)
(x− y)dµN (t, y)−

∫
Rd

(
F [b] − F [a]

)
(x− y)dµ(t, y)

∥∥∥∥ ≤
≤ LipB(0,R)

(
‖(F [a] − F [b])(x− ·)‖

)
W1(µN (t), µ(t))

≤ 2C(2R+ 1)MW1(µ0
N , µ

0),

uniformly with respect to t ∈ [0, T ] and x ∈ B(0, R). Furthermore, we also have the

estimates

sup
x,y∈B(0,R)

‖F [bN ](x− y)− F [b](x− y)‖ ≤ 2R‖bN − b‖L∞(Ω), (5.31)

sup
x,y∈B(0,R)

‖F [a](x− y)− F [b](x− y)‖ ≤ 2R‖a− b‖L∞(Ω). (5.32)

Hence we further obtain∣∣∣∣∣
∥∥∥∥∫

Rd

(
F [bN ]−F [a]

)
(x− y)dµN (t, y)

∥∥∥∥− ∥∥∥∥∫
Rd

(
F [b] − F [a]

)
(x− y)dµ(t, y)

∥∥∥∥
∣∣∣∣∣ ≤

≤
∥∥∥∥∫

Rd

(
F [bN ] − F [a]

)
(x− y)dµN (t, y)−

∫
Rd

(
F [b] − F [a]

)
(x− y)dµ(t, y)

∥∥∥∥
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≤

∥∥∥∥∥
∫
Rd

(
F [bN ] − F [b]

)
(x− y)dµN (t, y)

∥∥∥∥∥+

+

∥∥∥∥∫
Rd

(
F [b] − F [a]

)
(x− y)dµN (t, y)−

∫
Rd

(
F [b] − F [a]

)
(x− y)dµ(t, y)

∥∥∥∥
≤ 2R‖bN − b‖L∞(Ω)

∫
Rd
dµN (t, y) + 2(2R+ 1)MW1(µN (t), µ(t))

≤ 2R‖bN − b‖L∞(Ω) + 2C(2R+ 1)MW1(µ0
N , µ

0). (5.33)

We define for every (t, x) ∈ [0, T ]×B(0, R) the following quantities

HN (t, x)
∆
=

∥∥∥∥∥
∫
Rd

(
F [bN ] − F [a]

)
(x− y)dµN (t, y)

∥∥∥∥∥
2

, GN (t)
∆
=

∫
Rd
HN (t, x)dµN (t, x),

H(t, x)
∆
=

∥∥∥∥∥
∫
Rd

(
F [b] − F [a]

)
(x− y)dµ(t, y)

∥∥∥∥∥
2

, G(t)
∆
=

∫
Rd
H(t, x)dµ(t, x).

Then immediately it follows

|GN (t)−G(t)| ≤
∣∣∣∣∫

Rd
H(t, x)dµN (t, x)−

∫
Rd
H(t, x)dµ(t, x)

∣∣∣∣+
+

∫
Rd
|HN (t, x)−H(t, x)| dµN (t, x).

(5.34)

From (5.32) and (5.30) we obtain

LipB(0,R)(H(t, ·)) ≤ 2

(
sup

x,y∈B(0,R)
‖F [a](x− y)− F [b](x− y)‖

)
×

× LipB(0,R)

(
(F [a] − F [b])(· − y)

)
≤ 4R‖a− b‖L∞(Ω) · 2(2R+ 1)M,

and therefore∣∣∣∣∫
Rd
H(t, x)dµN (t, x)−

∫
Rd
H(t, x)dµ(t, x)

∣∣∣∣ ≤ LipB(0,R)(H(t, ·))W1(µN (t), µ(t))

≤ 8R(2R+ 1)CM‖a− b‖L∞(Ω)W1(µ0
N , µ

0)

≤ 16R(2R+ 1)CM2W1(µ0
N , µ

0)

(5.35)

uniformly in t ∈ [0, T ]. Similarly, (5.31), (5.30), and (5.33) imply∣∣HN (t, x)−H(t, x)
∣∣ ≤ (2R‖bN − b‖L∞(Ω) + 2C(2R+ 1)MW1(µ0

N , µ
0)
)
×

× 2R
(
‖bN − a‖L∞(Ω) + ‖b− a‖L∞(Ω)

)
≤ 8RM

(
2R‖bN − b‖L∞(Ω) + 2C(2R+ 1)MW1(µ0

N , µ
0)
) (5.36)
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uniformly in t ∈ [0, T ] and x ∈ B(0, R). A combination of (5.34), (5.35) and (5.36) yields

|GN (t)−G(t)| ≤ 32CR(2R+ 1)M2W1(µ0
N , µ

0) + 16R2M‖bN − b‖L∞(Ω)

uniformly in t ∈ [0, T ]. Thus we finally arrive at

∣∣E [a],N (bN )− E [a](b)
∣∣ =

∣∣∣∣ 1

T

∫ T

0

(
GN (t)−G(t)

)
dt

∣∣∣∣
≤ 32CR(2R+ 1)M2W1(µ0

N , µ
0) + 16R2M‖bN − b‖L∞(Ω).

This proves the claim for c1 = 32CR(2R+ 1)M2 and c2 = 16R2M .

As a corollary, we immediately obtain the following Γ-convergence result. Notice that we

implicitly use the identity

min
â∈VN

E [a],N (â) = min
â∈XM,Ω

(
E [a],N (â) + IVN (â)

)
,

where, for any V ⊆ XM,Ω, the indicator function IV : XM,Ω → {0,+∞} is defined as

IV (b) =

{
0 if b ∈ V,
+∞ if b 6∈ V.

Corollary 5.18. Under the assumptions of Theorem 5.5, the sequence of functionals

(JN )N∈N defined for every b ∈ XM,Ω as

JN (b)
∆
= E [a],N (b) + IVN (b)

Γ-converges to the functional

J (b)
∆
= E [a](b).

Proof. First notice that, under the assumptions of Theorem 5.5, if (bN )N∈N ⊂ XM,Ω is a

sequence of continuous functions uniformly converging to b ∈ XM,Ω on Ω = [0, 2R] with

R > 0 as in (4.15), then it holds

lim
N→∞

E [a],N (bN ) = E [a](b). (5.37)

Indeed, this follows immediately from the estimate (5.29), upon noticing that we have

W1(µ0, µ0
N )→ 0 for N →∞ as a consequence of Remark 4.12.

Therefore, we start by fixing the metrizable space of Definition 5.14 as X ∆
= XM,Ω endowed

with the metric of uniform convergence, and we pass to prove the Γ − lim inf condition.

Let us fix a uniformly convergent sequence of functions bN → b in XM,Ω. Then, since

b ∈ XM,Ω, it trivially follows

0 = IXM,Ω(b) ≤ lim inf
N→∞

IVN (bN ),

whence from (5.37)

E [a](b) = E [a](b) + IXM,Ω(b) ≤ lim inf
N→∞

(
E [a],N (bN ) + IVN (bN )

)
.
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We now prove the Γ − lim sup condition. We fix b ∈ XM,Ω and consider the recovery

sequence (bN )N∈N guaranteed by the uniform approximation property (see Definition 5.4).

This implies that bN ∈ VN for every N ∈ N and bN → b uniformly on Ω. Therefore, since

IVN (bN ) = 0 for every N ∈ N, by (5.37) again follows

E [a](b) = E [a](b) + IXM,Ω(b) ≥ lim sup
N→∞

(
E [a],N (bN ) + IVN (bN )

)
,

and this proves the claimed Γ-convergence.

5.4.3 Proof of Theorem 5.5

The sequence of minimizers (âN )N∈N is by definition a subset of XM,Ω, which is a compact

set with respect to the uniform convergence by Proposition 5.15. Therefore, the sequence

(JN )N∈N is equicoercive, and (âN )N∈N admits a subsequence (âNk)k∈N uniformly converg-

ing to a function â ∈ XM,Ω.

To show the optimality of â in XM,Ω we need to prove that it is actually a minimizer of

E [a]. To this end, we use the fact that E [a] is the Γ-limit of the sequence (E [a],N + IVN )N∈N
as proved in Corollary 5.18. Let b ∈ XM,Ω be an arbitrary function and let (bN )N∈N be a

recovery sequence given by the Γ− lim sup condition, so that

E [a](b) ≥ lim sup
N→∞

(
E [a],N (bN ) + IVN (bN )

)
,

for every N ∈ N. By the optimality of âNk in VNk and the Γ− lim inf condition, it follows

E [a](b) ≥ lim sup
k→∞

(
E [a],Nk(bNk) + IVNk (bNk)

)
≥ lim inf

k→∞

(
E [a],Nk(bNk) + IVNk (bNk)

)
≥ lim inf

k→∞

(
E [a],Nk(âNk) + IVNk (âNk)

)
≥ E [a](â).

We can therefore conclude that for every b ∈ XM,Ω

E [a](b) ≥ E [a](â). (5.38)

In particular, (5.38) applies to b = a ∈ XM,Ω (by the particular choice of M), which finally

implies

0 = E [a](a) ≥ E [a](â) ≥ 0 =⇒ E [a](â) = 0,

showing that â is also a minimizer of E [a]. When the coercivity condition (5.16) holds, it

follows that â = a in L2(R+, ρ), by Proposition 5.12.

Assume now that (5.17) and (5.18) hold together with (5.16). Then, by these latter con-

ditions, two applications of (5.29), the minimality of âN , and the optimality of a in the

sense that E [a](a) = 0, we obtain the following chain of estimates

‖âN − a‖2L2(R+,ρ) ≤
1

cT
E [a](âN )
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≤ 1

cT

(
E [a],N (âN ) + (E [a](âN )− E [a],N (âN ))

)
≤ 1

cT

(
E [a],N (âN ) + c1W1(µ0

N , µ
0)
)

≤ 1

cT

(
E [a],N (aN ) + E [a](a)︸ ︷︷ ︸

=0

+c1W1(µ0
N , µ

0)
)

≤ 1

cT

(
2c1W1(µ0

N , µ
0) + c2‖a− aN‖L∞(Ω)

)
≤ C3N

−min{α,β}.

This concludes the proof.

5.5 Numerical experiments

In this section we report several numerical experiments to document the validity and

applicability of Theorem 5.5. We will first show how the reconstruction of the unknown

kernel a gets better as the number of agents N increases, in accordance with the Γ-

convergence result reported in Section 5.4. This feature holds true also for at least some

interaction kernels not lying in the function space X, as shown in Figure 5.3. We will

then investigate empirically the validity of the coercivity condition (5.16) comparing the

functional E [a],N (âN ) with ‖a − âN‖2L2(R+,ρN ) where ρN is constructed as ρ but referring

to the empirical measures µN . Then we address the behavior of E [a],N (âN,M ) for N fixed,

while we let the constraint constant M vary (here âN,M = âN ). Finally, we show how we

can get a very satisfactory reconstruction of the unknown interaction kernel by keeping N

fixed and averaging the minimizers of the functional E [a],N obtained from several samples

of the initial data distribution µ0.

5.5.1 Numerical framework

All experiments rely on a common numerical set-up, which we pass to clarify. All the

initial data µ0
N are drawn from a common probability distribution µ0 which is the uniform

distribution on the d-dimensional cube [−L,L]d. For every µ0
N , we simulate the evolution

of the system starting from µ0
N until time T , and we shall denote by R the maximal

distance between particles reached during the time frame [0, T ]. Notice that we have at

our disposal only a finite sequence of snapshots of the dynamics: if we denote by 0 = t0 <

t1 < . . . < tm = T the time instants at which these snapshots are taken, we can consider

the discrete-time error functional

E [a],N
∆ (â)

∆
=

1

m

m∑
k=1

1

N

N∑
j=1

∥∥∥∥∥ 1

N

N∑
i=1

â(‖xj(tk)− xi(tk)‖)(xj(tk)− xi(tk))− ẋi(tk)

∥∥∥∥∥
2

,

which is the time-discrete counterpart of the continuous-time error functional E [a],N . As

already mentioned in the introduction, derivatives ẋi(tk) appearing in E [a],N
∆ are actually

approximated by finite differences: in our experiments we use the simplest approximation

ẋi(tk)
∆
=
xi(tk)− xi(tk−1)

tk − tk−1
for every k ≥ 1.
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Regarding the reconstruction procedure, we fix the constraint level M > 0 and consider

the sequence of invading subspaces VN of XM,Ω (Ω = [0, 2R] here) generated by a B-spline

basis with D(N) elements supported on [0, 2R]: for every element â ∈ VN it holds

â(r) =

D(N)∑
λ=1

aλϕλ(r) for every r ∈ [0, 2R].

In order for VN to increase in N and invade XM,Ω, we let D(N) be a strictly increasing

function of N . For the sake of simplicity, we shall employ a linear uniform B-spline basis

supported on the interval [0, 2R] with 0-smoothness conditions at the boundary, see [89].

Whenever â ∈ VN , we can rewrite the functional E [a],N
∆ as

E [a],N
∆ (â) =

1

m

m∑
k=1

1

N

N∑
j=1

∥∥∥∥∥∥ 1

N

N∑
i=1

D(N)∑
λ=1

aλϕλ(‖xj(tk)− xi(tk)‖)(xj(tk)− xi(tk))− ẋi(tk)

∥∥∥∥∥∥
2

=
1

m

m∑
k=1

1

N

N∑
j=1

∥∥∥∥∥∥
D(N)∑
λ=1

aλ
1

N

N∑
i=1

ϕλ(‖xj(tk)− xi(tk)‖)(xj(tk)− xi(tk))− ẋi(tk)

∥∥∥∥∥∥
2

=
1

mN
‖C~a− ~v‖2`2 ,

where ~a = (a1, . . . , aD(N)), ~v = (ẋ1(t1), . . . , ẋN (t1), . . . , ẋ1(tm), . . . , ẋN (tm)) and the tensor

C ∈ Rd×Nm×D(N) satisfies for every j = 1, . . . , N , k = 1, . . . ,m, λ = 1, . . . , D(N)

C(jk, λ) =
1

N

N∑
i=1

ϕλ(‖xj(tk)− xi(tk)‖)(xj(tk)− xi(tk)) ∈ Rd.

We shall numerically implement the constrained minimization with the software CVX

[109, 110], which allows constraints and objectives to be specified using standard MATLAB

expression syntax. In order to use it, we need to rewrite the constraint of our minimization

problem, which reads

‖a‖L∞([0,2R]) + ‖a′‖L∞([0,2R]) ≤M,

using only the minimization variable of the problem, which is the vector of coefficients of

the B-spline basis ~a. Notice that the property of being a linear B-spline basis implies that,

for every λ = 1, . . . , D(N)− 1, the property supp(ϕλ) ∩ supp(ϕλ+j) 6= ∅ holds if and only

if j = 1. Hence, for every a ∈ VN we have

‖a‖L∞([0,2R]) = max
r∈[0,2R]

∣∣∣∣∣∣
D(N)∑
λ=1

aλϕλ(r)

∣∣∣∣∣∣ ≤ max
1≤λ≤D(N)−1

(|aλ|+ |aλ+1|) ≤ 2‖~a‖`∞ ,

‖a′‖L∞([0,2R]) = max
r∈[0,2R]

∣∣∣∣∣∣
D(N)∑
λ=1

aλϕ
′
λ(r)

∣∣∣∣∣∣ ≤ max
1≤λ≤D(N)−1

|aλ+1 − aλ| = ‖B~a‖`∞ ,
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where, in the last line, B is the standard finite difference matrix

B =



1 −1 0 . . . 0 0

0 1 −1 . . . 0 0
...

...
. . .

. . .
...

...

0 0 0 . . . 1 −1

0 0 0 . . . 0 0


.

We therefore replace the constrained minimization problem

min
â∈VN

E [a],N (â) subject to ‖â‖L∞([0,2R]) + ‖â′‖L∞([0,2R]) ≤M,

by

min
~a∈RD(N)

1

mN
‖C~a− ~v‖2`2 subject to 2‖~a‖`∞ + ‖B~a‖`∞ ≤M , (5.39)

which has weaker constraints, but is amenable to numerical solution. The byproduct of the

time discretization and the reformulation of the constraint is that minimizers of problem

(5.39) may not be precisely the minimizers of the original one. This is the price to pay for

this simple numerical implementation of the L∞-constraints. Despite such a crude discrete

model, we still observe all the approximation properties proved in the previous sections

and the implementation results both simple and effective.

5.5.2 Varying N

In Figure 5.2 we show the reconstruction of a truncated Lennard-Jones type interaction

kernel obtained with different values of N . Table 5.1 reports the values of the different

parameters.

d L T M N D(N)

2 3 0.5 100 [10, 20, 40, 80] 2N

Table 5.1: Parameter values for Figure 5.2 and Figure 5.3.

It is clearly visible how the piecewise linear approximant (displayed in blue) gets closer

and closer to the potential to be recovered (in red), as predicted by the theoretical results

of the previous sections. What is however surprising is that the same behavior is witnessed

in Figure 5.3, where the algorithm is applied to an interaction kernel a not belonging to

the function space X (due to its singularity at the origin) with the same specifications

reported in Table 5.1. In particular, the algorithm performs an excellent approximation

despite the highly oscillatory nature of the function a and produce a natural numerical

homogenization when the discretization is not fine enough.

5.5.3 Numerical validation of the coercivity condition

We now turn our attention to the coercivity constant cT appearing in (5.16) and thoroughly

discussed in Section 5.3. In Figure 5.4 we see a comparison between the evolution of the
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Figure 5.2: Iterative reconstruction of a potential with different values of N . In red: the
unknown kernel. In blue: its reconstruction by minimization of E [a],N . From left-top to
right-bottom: reconstruction with N = 10, 20, 40, 80 agents. We notice that the uniform
convergence at 0 is slower in view of the quadratic polynomial weight r2 as in (5.14) and
because less information is actually gathered around 0.

value of the error functional E [a],N
∆ (âN ) and of the L2(R+, ρN )-error ‖a− âN‖2L2(R+,ρN ) for

different values of N .

In this experiment, the potential a to be retrieved is the truncated Lennard-Jones type

interaction kernel of Figure 5.2 and the parameters used in the algorithm are reported in

Table 5.2.

d L T M N D(N)

2 5 0.5 100 [3, 4, . . . , 12] 3N − 5

Table 5.2: Parameter values for Figure 5.4.

For every value of N , we have obtained the minimizer âN of problem (5.39) and we have

computed the errors E [a],N (âN ) and ‖a−âN‖2L2(R+,ρN ). The L2(R+, ρN )-error multiplied by

a factor 1/10 lies entirely below the curve of E [a],N (âN ), which let us empirically estimate

the value of cT around that value (see Figures 5.4 and 5.5).

5.5.4 Tuning the constraint M

Figure 5.6 shows what happens when we modify the value of M in problem (5.39). More

specifically, we generate µ0
N as explained in Section 5.5.1 once, and we simulate the system

starting from µ0
N until time T . With the data of this single evolution, we solve problem
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Figure 5.3: Iterative reconstruction of a potential with a singularity at the origin and highly
oscillatory behavior. In red: the unknown kernel. In blue: its reconstruction by minimiza-
tion of E [a],N . From left-top to right-bottom: reconstruction with N = 10, 20, 40, 80 agents.

(5.39) for several values of M and we denote with âM
∆
= âN,M

∆
= âN the minimizer obtained

with a specific value of M . On the left side of Figure 5.6 we show how the reconstruction âM
gets closer and closer to the true potential a (in white) as M increases, while on the right

side we illustrate how the original trajectories (again, in white) used for the inverse problem

are approximated better and better by those generated with the computed approximation

âM , if we let M grow. Table 5.3 reports the values of the parameters of these experiments.

d L T M N D(N)

First row 2 3 1 2.7× [10, 15, . . . , 40] 20 60

Second row 2 3 1 1.25× [10, 15, . . . , 40] 20 150

Table 5.3: Parameter values for Figure 5.6.

So far we have no a priori criteria to sieve those values of M , which enable a successful

reconstruction of a potential a ∈ X. However, the tuning a posteriori of the parameter

M > 0 turns out to be rather easy. In fact, for N fixed the minimizers âN,M have the

property that the map

M 7→ E [a],N (âN,M )

is monotonically decreasing as a function of the constraint parameter M and it becomes

constant for M ≥M∗, for a certain M∗ > 0 which, as shown empirically, does not depend

on N . This special value M∗ is indeed the “right” parameter for the L∞ bound. For such a

choice, we show that, if we let N grow, the minimizers âN approximates better and better

the unknown potential a. Figure 5.7 documents precisely this expected behavior.
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Figure 5.4: Plot in logarithmic scale of
E [a],N (âN ) and 1/10 · ‖a − âN‖2L2(R+,ρN ) for
different values of N . In this experiment, we
can estimate the constant cT with 1/10.
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Figure 5.5: Values in logarithmic scale of

E [a],N
∆ (âN,M ) for fixed N = 50 for different

values of M ∈ [0, 200].
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Figure 5.6: Different reconstructions of a potential for different values of M . On the left
column: the true kernel in white and its reconstructions for different M ; the brighter the
curve, the larger the M . On the right column: the true trajectories of the agents in white,
the trajectories associated to the reconstructed potentials with the same color.

5.5.5 Monte Carlo-like reconstructions for N fixed

We mimic now the mean-field reconstruction strategy, by multiple randomized draw of

N particles as initial conditions i.i. distributed according to µ0 for N fixed and relatively

small. Indeed, problem (5.39) can swiftly become computationally unfeasible when N is
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moderately large, also because the dimension of the approximating subspaces VN needs

to increase with N too. We consider, for a fixed N , several discrete initial data (µ0
N,θ)

Θ
θ=1

all independently drawn from the same distribution µ0 (in our case, the Lebsgue measure

Ld restricted to the cube [−L,L]d). For every θ = 1, . . . ,Θ, we simulate the system until

time T and, with the trajectories we obtained, we solve problem (5.39). At the end of this

procedure, we have a family of reconstructed potentials (âN,θ)
Θ
θ=1, all approximating the

same true kernel a. Empirically averaging these potentials, we obtain an approximation

âN (r) =
1

Θ

Θ∑
θ=1

âN,θ(r) for every r ∈ [0, 2R],

which we claim to be a better approximation to the true kernel a than any single snapshot.

To support this claim, we report in Figure 5.8 the outcome of an experiment whose data

can be found in Table 5.4.

d L T M N D(N) Θ

2 2 0.5 1000 50 150 5

Table 5.4: Parameter values for the experiment of Figure 5.8.
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Figure 5.7: Behavior of E [a],N (âN,M ) as a function of the constraint M for different N .
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Figure 5.8: Reconstruction of a obtained by averaging 5 solutions of the minimization of

E [a],N
∆ for N = 50. In red: the unknown kernel. In blue: the average of reconstructions.

In black: 95% confidence interval for the parameter estimates returned by the Matlab
function normfit. The figure on the right shows a zoom of the left figure.



CHAPTER 6

Mean-field sparse optimal control

The results obtained in Chapter 2 on the optimality of sparse controls were conditional

to the restriction on our ability to forecast the evolution of the dynamical system. When

this limitation is lifted, we gain the power to predict the reaction of such systems to

external stimuli, and hence to address the problem of finding the optimal control strategy

to steer the system to consensus. However, the optimal strategy may not be sparse at all,

and moreover, due to the curse of dimensionality, as the number of agents increases the

computational complexity of such strategies may blow up very fast.

To overcome these problems, in this chapter we shall introduce the notion of mean-field

sparse optimal control, which are sparse optimal strategies that behave well in the regime

N →∞. We shall first discuss under which conditions such controls exist and then provide

optimality conditions for their computation.

6.1 Mean-field optimal controls

Consider again the case of the controlled Cucker-Smale system (2.1) (which we rewrite for

convenience)
ẋi(t) = vi(t),

v̇i(t) =
1

N

N∑
j=1

a (‖xi(t)− xj(t)‖) (vj(t)− vi(t)) + ui(t),
i = 1, . . . , N. (6.1)

In Chapter 2, we identified the sparse feedback control strategy of Definition 2.4 to be

the “best” (in terms of maximizing the rate of convergence to the consensus region) par-

simonious control strategy if the policy maker is not allowed to forecast the evolution of

the system. However, when this restriction is removed, we can easily show with the fol-

lowing example that sparser and more economical control strategies steering the system
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to consensus exist.

Example 6.1. Consider an instance of the Cucker-Smale system (6.1) without control in

dimension d = 1 with N = 2 agents, where the interaction function a : R+ → R+ is of the

form

a(r) =

{
M if r ≤ R,
f(r) if r ≥ R,

for some given R > 0 and f : R+ → R+ positive continuous function satisfying

f(R) = M and

∫ +∞

R
f(r) dr = ε < +∞.

The constant M > 0 is to be properly chosen later on. Assume that the initial state

and consensus parameters of the two agents are (x0
1, v

0
1) = (−R/2, v0) and (x0

2, v
0
2) =

(R/2,−v0) respectively, for some v0 > ε/2.

Due to the nature of the situation, is fairly easy to check if condition (1.14) of Theorem

1.11 is satisfied or not. Indeed we have X(0) = R2/4 and V (0) = (v0)2, and, by the

particular form of a, after a change of variables the computation below follows∫ +∞

R
2

a(2r) dr =
1

2

∫ +∞

R
a(r) dr =

1

2

∫ +∞

R
f(r) dr =

ε

2
.

Therefore at time t = 0 we are not in the consensus region given by (1.14), since∫ +∞

√
X(0)

a(
√

4r) dr =
ε

2
< v0 =

√
V (0).

We now show that there exists a time T > 0 such that∫ +∞

√
X(T )

a(
√

4r) dr ≥
√
V (T ), (6.2)

i.e., the system enters the consensus region autonomously at time T .

To do so, we first compute a lower bound for the integral. Notice that, since we are

considering a Cucker-Smale system with mean consensus parameter v = 0, the speeds

|v1(t)| and |v2(t)| are decreasing. Therefore, we can estimate from above the time until

|x1(t)− x2(t)| ≤ R holds by T ∗
∆
= R/2v0 (since the agents are moving on the real line in

opposite directions). Hence X(t) ≤ X(0) = R2/4 for every t ∈ [0, T ∗], which yields the

following lower bound ∫ +∞

√
X(t)

a(
√

4r) dr ≥
∫ +∞

√
X(0)

a(
√

4r) dr =
ε

2

valid for any t ≤ T ∗.
We now compute an upper bound for the functional

√
V (t) for t ∈ [0, T ∗]. Notice that

a(
√

4X(t)) ≥ a(
√

4X(0)) = a(R) = M,
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hence by (1.23) we have
d

dt
V (t) ≤ −2MV (t)

which, by integration, implies that
√
V (t) ≤ v0e−Mt for every t ∈ [0, T ∗].

We now plug together the two bounds. In order for (6.2) to hold at some time T < T ∗,

simply choose

M = MT
∆
=

1

T
log

(
2v0

ε

)
.

For this choice of M , it follows∫ +∞

√
X(T )

a(
√

4r) dr ≥ ε

2
= v0e−MTT ≥

√
V (T ).

From Theorem 1.11 we can then conclude that any solution of the above system tends

autonomously to consensus.

The above example also shows that Cucker-Smale systems can converge to consensus even

if the hypothesis of Theorem 1.11 is not satisfied.

Suppose now, that we are looking for a control that drives the system in Example 6.1 to

consensus in a sufficiently large time frame [0, T ], but which also uses the least amount of

resources possible, i.e., a control u for which the quantity∫ T

0

N∑
i=1

‖ui(t)‖ dt (6.3)

is minimal. If we were to use the sparse control strategy, the above integral would be equal

to θT0, where θ is the `N1 −`d2 bound (2.2) and T0 is the time of entrance into the consensus

regions. Nonetheless, the control strategy that minimizes the cost (6.3) and steers the

system to consensus is clearly given by the zero control ui ≡ 0 for every i = 1, . . . , N , since

the above integral is then equal to 0 and we know that the system converges autonomously

to consensus. Ironically, notice that in this case the optimal strategy is also the sparsest,

since it is equal to 0 at every instant! However, it is clear that the knowledge that no

control is necessary follows from the ability to predict that the two agents will interact

with enough strength for a sufficiently long time T ∗.

This example also stresses the paramount role that the knowledge of the interaction kernel

a has in this analysis. The results collected in Chapter 5, therefore, justify an increased

predictive power on first- and second-order systems (see Section 5.1.5)

Remark 6.2. Notice that the knowledge of a is not vital when using the sparse control of

Definition 2.4: indeed, one can ignore the stopping criterion γ(B(x, x)) ≥ max1≤i≤N ‖v⊥i ‖
and exert ruthlessly the control until satisfied of the outcome.

As the above analysis shows, the ability to forecast the evolution of a system means that

we can calculate the effect that different control strategies u have on its evolution, and

consequently choose the optimal one. We therefore consider the optimal control problem

min
u∈Adm

JN (x1, . . . , xN , v1, . . . , vN , u) subject to system (6.1). (6.4)
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Notice that the optimization variable is only the control u = (u1, . . . , uN ) ∈ Adm, since

the trajectories (x1, . . . , xN , v1, . . . , vN ) : [0, T ]→ R2dN are fully determined by u and the

dynamics (6.1). The set of admissible controls Adm is a crucial design choice: it should

possess good compactness properties to let problem (6.4) be well-posed, and nonetheless

it must be sufficiently large to include all interesting control strategies.

The functional JN encodes the target that we want to reach with our control. For instance,

in Section 2.1 we were addressing the problem of forcing the alignment of the agents, which

can be obtained by minimizing the functional

JN (x1, . . . , xN , v1, . . . , vN , u) =

∫ T

0

1

N

N∑
i=1

∥∥∥∥∥∥vi(t)− 1

N

N∑
j=1

vj(t)

∥∥∥∥∥∥
2

+ λ‖ui(t)‖p`p

 dt,

(6.5)

in a proper set of admissible controls Adm. A minimizer of the functional (6.5) is a control u

for which the associated trajectory (x1(·), . . . , xN (·), v1(·), . . . , vN (·)) satisfies the property

that, at every instant, the distance between vi(t) and the average v(t) is as small as possible,

under the constraint of the dynamics (2.1) and the penalization of too high values of u

(measured by an `p-cost, in this case). The case p = 1 has the effect of enforcing sparsity

on the control u, see [49]. Notice the dependency of JN on the number of agents N in the

system and that the optimization is performed in the time frame [0, T ].

Remark 6.3. In this chapter we shall focus on the optimization in a finite time frame,

i.e., [0, T ] with T < +∞. This choice has only minimal impact on the applicability of

the results that follow (since, rephrasing John Maynard Keynes’ words, for T sufficiently

large we are all dead !) while enabling the access to the results in Chapter 4 on mean-field

approximation.

6.1.1 Mean-field limit equations with control

As seen in Chapter 4, whenever the number of agents N becomes too high, dealing with

system (6.1) becomes computationally unfeasible due to the curse of dimensionality. We

have already shown how, when no control is involved, one can simplify the multitude of

interactions of the other agents on any given individual by a single averaged effect. This

results in considering the evolution of the agent density distribution in the state space

µ(t, x, v), leading to the mean-field PDE

∂µ

∂t
(t) + v · ∇xµ(t) = −∇v ·

(
(G[a] ∗ µ(t))µ(t)

)
for t ∈ [0, T ],

where G[a](x, v)
∆
= (v,−a(‖x‖)v) for any (x, v) ∈ R2d, to stress the dependance on a.

The proper definition of a limit dynamics when an external control is added to the system

and it is supposed to have some sparsity features is currently still under debate. Indeed,

the concept of sparse control has to be handled with care when trying to generalize it at

the level of a mean-field dynamics, since the indistinguishability of agents is a fundamental

property of the mean-field setting, and it is in sharp contrast with controls acting sparsely

on specific agents.

The most immediate approach, very much in the spirit of Theorem 4.11, would be to
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assign to the finite dimensional control u an empirical vector valued measure curve

νN (t) =
1

N

N∑
i=1

uiδ(xi(t),vi(t)) for t ∈ [0, T ],

and consider a suitable limit ν for N →∞, leading to the PDE with control ν

∂µ

∂t
(t) + v · ∇xµ(t) = −∇v ·

(
(G[a] ∗ µ(t))µ(t) + ν(t)

)
for t ∈ [0, T ]. (6.6)

Unfortunately, despite the fact that ν is supposed to be the minimizer of a certain cost

functional (which may grant the necessary compactness to derive the limit νN → ν), the

design of a general cost functional with a proper meaning in the finite dimensional model,

like (6.5), and at the same time guaranteeing a good behavior of the measure ν remains a

challenging task: for instance, in the optimal control problems considered in [49, Section

5] the above limit procedure does not prevent ν to be singular with respect to µ, which

means that in the weak formulation of equation (6.6) the role of ν is essentially mute,

losing completely its steering purpose. Therefore, we consider in (6.6) only the absolutely

continuous part of ν with respect to µ, i.e., νa = uµ (provided it has one), which leads us

to an equation of the type

∂µ

∂t
(t) + v · ∇xµ(t) = −∇v ·

(
(G[a] ∗ µ(t) + u(t))µ(t)

)
for t ∈ [0, T ], (6.7)

where now u(t) is an L1(R2d, µ(t)) force field for a.e. t ∈ [0, T ]. However, such regularity

is in general not enough to establish existence and stability of solutions for equations of

the type (6.7), see [10], an issue that has to be taken into account when choosing the class

Adm. Notice that equation (6.7) is a particular instance of the Vlasov-type equation (4.9)

for the choice of the vector field

V (t, µ)(x, v) = (G[a] ∗ µ)(x, v) + u(t, x, v).

On top of system (6.1), we now have the functional JN too, whose form has to allow for

the possibility to perform the limit N → ∞. This may happen, for instance, when the

state variables appearing in JN can be manipulated to obtain a moment of the empirical

measure µN . In the specific case of the functional (6.5), we can indeed rewrite it as

JN (x1, . . . , xN ,v1, . . . , vN , u) =

=

∫ T

0

∫
R2d

(∥∥∥∥v − ∫
R2d

wdµN (t, y, w)

∥∥∥∥2

+ λ‖u(t, x, v)‖p`p

)
dµN (t, x, v)dt

= JN (µN , u),

thus making explicit its dependance on µN . In general, we shall assume that the functional

JN has the specific form

JN (µN , u)
∆
=

∫ T

0

{∫
R2d

`(x, v, µN (t))dµN (t, x, v) +

∫
R2d

ψ(u(t, x, v))dµN (t, x, v)

}
dt,
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where ` is the so-called Lagrangian part (or running cost) of JN and ψ is the control

cost. The functional (6.5), for instance, falls into this category. This means that the corre-

sponding limit functional J : P1(R2d)×Adm→ (−∞,+∞] of the sequence (JN )N∈N for

N →∞ is

J (µ, u)
∆
=

∫ T

0

{∫
R2d

`(x, v, µ(t))dµ(t, x, v) +

∫
R2d

ψ(u(t, x, v))dµ(t, x, v)

}
dt.

6.1.2 Finite and infinite dimensional optimal control problems

So far, we have identified two different kinds of optimal control problems. The discrete

one is the following, each instance of which is labeled by the number of agents N ∈ N.

Problem 1 (Discrete/finite dimensional optimal control problem). For T > 0 fixed, find

u∗N ∈ Adm minimizing the cost functional

JN (µN , u) =

∫ T

0

{∫
R2d

`(x, v, µN (t))dµN (t, x, v) +

∫
R2d

ψ(u(t, x, v))dµN (t, x, v)

}
dt,

where µN : [0, T ]→ P1(R2d) is given by

µN (t) =
1

N

N∑
i=1

δ(xi(t),vi(t)) for t ∈ [0, T ],

and (x(·), v(·)) : [0, T ]→ R2dN solves
ẋi(t) = vi(t),

v̇i(t) =
1

N

N∑
j=1

a (‖xi(t)− xj(t)‖) (vj(t)− vi(t)) + u(t, xi(t), vi(t)),
i = 1, . . . , N,

for the given initial datum (x(0), v(0)) = (x0, v0) ∈ R2dN .

In Section 6.1.1 we discussed how, when N →∞, a reasonable candidate for a “limit” of

the discrete problems above is the following continuous optimal control problem.

Problem 2 (Continuous/infinite dimensional optimal control problem). For T > 0 fixed,

find u∗ ∈ Adm minimizing the cost functional

J (µ, u) =

∫ T

0

{∫
R2d

`(x, v, µ(t))dµ(t, x, v) +

∫
R2d

ψ(u(t, x, v))dµ(t, x, v)

}
dt,

where µ : [0, T ]→ P1(R2d) solves

∂µ

∂t
(t) + v · ∇xµ(t) = −∇v ·

(
(G[a] ∗ µ(t) + u(t))µ(t)

)
,

for the given initial datum µ(0) = µ0 ∈ Pc(Rd).
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Our wish is to use the continuous optimal control Problem 2 as an approximation of the

discrete instances of Problem 1, in order to circumvent the curse of dimensionality. As

a consequence, we are not interested in all possible optima of Problem 2, but mainly on

those which arise as limits of optimal strategies of the discrete problems. We call this

subclass of the set of optima mean-field optimal controls.

Definition 6.4 (Mean-field optimal control for Problem 2). Let µ0 ∈ Pc(R2d) be given.

An optimal control u∗ for Problem 2 with initial datum µ0 is a mean-field optimal control

if there exists a sequence (u∗N )N∈N ⊂ Adm and a sequence (µ0
N )N∈N ⊂ Pc(Rd) such that

(i) the sequence of empirical measures (µ0
N )N∈N defined for every N ∈ N as

µ0
N

∆
=

1

N

N∑
i=1

δ(x0
i,N ,v

0
i,N ) for some (x0

i,N , v
0
i,N ) ∈ supp(µ0),

satisfies µ0
N ⇀ µ0 weakly∗ in the sense of measures;

(ii) for every N ∈ N, u∗N is a solution of Problem 1 with initial datum (x0
N , v

0
N ) =

(x0
1,N . . . . , x

0
N,N , v

0
1,N , . . . , v

0
N,N );

(iii) there exists a subsequence of (u∗N )N∈N converging weakly in L1([0, T ];Rd) to u∗.

Notice that (i) and (iii) imply that, under certain regularity hypotheses on the interaction

kernel a (like a ∈ X as in Chapter 5), the discrete system (6.1) admits equation (6.7) as

its mean-field limit by Theorem 4.11. This justifies the words mean-field to refer to this

class of controls.

The main question is then, under which hypotheses on the interaction kernel a, the La-

grangian `, the control cost ψ, and the set of admissible controls Adm, we can prove the

existence of a mean-field optimal control for Problem 2. A first solution was given in [106],

which identified the following class of functions as a valid candidate for Adm.

Definition 6.5. For a time horizon T > 0, and an exponent q ∈ [1,+∞) we fix a control

bound function b ∈ Lq([0, T ]). The class of admissible control functions Fb([0, T ]) is defined

as the set of Carathéodory functions u : [0, T ]× R2d → Rd satisfying

(i) u(t, ·) ∈W 1,∞
loc (R2d;Rd) for almost every t ∈ [0, T ],

(ii) ‖u(t, 0)‖+ LipRd(u(t, ·)) ≤ b(t) for almost every t ∈ [0, T ].

Functions in Fb([0, T ]) are locally Lipschitz feedback controls with respect to the state

variables with uniform Lipschitz bound given by the Lq function b. This mild regularity

gifts the class Fb([0, T ]) with the following compactness result, which is a generalization

of the Dunford-Pettis Theorem for equi-integrable families of functions with values in a

reflexive and separable Banach spaces.

Proposition 6.6 ([106, Corollary 2.7]). Let p ∈ (1,+∞). Assume that (un)n∈N is a

sequence of functions in Fb([0, T ]) for a given b ∈ Lq(0, T ) with q ∈ [1,+∞). Then there

exist a subsequence (unk)k∈N and a function u ∈ Fb([0, T ]), such that

lim
k→∞

∫ T

0
〈φ(t), unk(t, ·)− u(t, ·)〉dt = 0, (6.8)
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for all φ ∈ Lq′([0, T ];H−1,p′(R2d,Rd)) such that supp(φ(t)) ⊆ B(0, r) for all t ∈ [0, T ], for

some r > 0. The symbol 〈·, ·〉 denotes the duality between W 1,p and its dual W−1,p′.

Combining the above weak compactness of Fb([0, T ]) with some regularity hypotheses

on a, ` and ψ, the following existence result for mean-field optimal controls is obtained.

Remarkably, it is proven by means of a simultaneous Γ-limit and mean-field limit for

N →∞ of the finite dimensional optimal control Problems 1 to the corresponding infinite

dimensional Problem 2.

Theorem 6.7 ([106, Theorem 5.1]). Suppose we are given maps a, `, and ψ satisfying

(i) a ∈ X in the sense of Chapter 5;

(ii) the Lagrangian ` : R2d × P1(R2d) → R+ is continuous with respect to the product

topology generated by the Euclidean distance on R2d and the Wasserstein distance

W1 on P1(R2d);

(iii) the control cost ψ : Rd → [0,+∞) is a nonnegative convex function satisfying the

property: there exist C ≥ 0 and q ∈ [1,+∞) such that for all R > 0 it holds

LipB(0,R)(ψ) ≤ CRq−1. (6.9)

Choose q ∈ [1,+∞) so that (6.9) holds and let b ∈ Lq([0, T ]). Then, for every N ∈ N and

for every initial datum (x0
N , v

0
N ), the finite dimensional optimal control Problem 1 with

Adm = Fb([0, T ]) admits a solution u∗N ∈ Fb([0, T ]).

Moreover, suppose there exists a compactly supported µ0 ∈ P1(R2d) such that, by setting

µ0
N

∆
=

1

N

N∑
i=1

δ(x0
i,N ,v

0
i,N ),

then the limit limN→∞W1(µ0
N , µ

0) = 0 holds. Then there exists a subsequence (u∗Nk)k∈N of

the sequence of finite dimensional optimal controls (u∗N )N∈N and a function u∗ ∈ Fb([0, T ])

such that u∗Nk converges to u∗ in the sense of (6.8) and u∗ is a solution of Problem 2 with

initial datum µ0.

Hence, u∗ is a mean-field optimal control for Problem 2.

Unfortunately, it is not clear how the choice of the control cost ψ(·) = λ‖ · ‖`1 enforces

sparsity on the mean-field optimal control u∗: being the weak limit of controls u∗N with very

few nonzero entries, see [49], we may expect that supp(u∗(t, ·)) is a “small set” too. Indeed,

such concept of sparsity was successfully used in [157] to implement sparse stabilizers for

a consensus problem. This interpretation of sparsity appears also in the framework of the

control of more classical PDEs, see [65, 161, 167].

6.2 Sparsity and mean-field optimal controls

An alternative solution for a proper definition of sparse mean-field controls was proposed

in [103]. Inspired by the multiscale approach explored independently in [69] and [76] to
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describe a mixed granular-diffuse dynamics of a crowd, let us now add to the usual Cucker-

Smale system (1.6) m new agents freely interacting with the original N individuals. We

assume that these new agents are far fewer than the original population (m � N) but

have a great influence: for this reason they shall be called “leaders”, opposed to the N

“followers”. Denoting by (y, w) the space-velocity variables of these new individuals and

by

ρm(t)
∆
=

1

m

m∑
k=1

δ(yk(t),wk(t)) for every t ∈ [0, T ]

the additional empirical measure supported on the trajectories (y(·), w(·)), then the pro-

posed dynamics is given by
ẏk(t) = wk(t),

ẇk(t) = (G[a] ∗ µN )(yk(t), wk(t)) + (G[a] ∗ ρm)(yk(t), wk(t)),
k = 1, . . . ,m,

ẋi(t) = vi(t),

v̇i(t) = (G[a] ∗ µN )(xi(t), vi(t)) + (G[a] ∗ ρm)(xi(t), vi(t)),
i = 1, . . . , N.

The above system is similar to a standard multiagent dynamics for N + m individuals,

with the sole difference that the actions of leaders and followers have different weights on

a single individual, 1/m and 1/N , respectively. Intuitively, since leaders are much more

influential than followers, a parsimonious and effective control strategy should act only on

them and neglect the followers. If we now add controls on the m leaders, we obtain
ẏk(t) = wk(t),

ẇk(t) = (G[a] ∗ µN )(yk(t), wk(t)) + (G[a] ∗ ρm)(yk(t), wk(t)) + uk(t),
k = 1, . . . ,m,

ẋi(t) = vi(t),

v̇i(t) = (G[a] ∗ µN )(xi(t), vi(t)) + (G[a] ∗ ρm)(xi(t), vi(t)),
i = 1, . . . , N,

(6.10)

where, as in (6.1), the functions uk : [0, T ]→ Rd are measurable controls for k = 1, . . . ,m.

This is the right time to stress how the sparsity of the control strategy u = (u1, . . . , um) :

[0, T ] → Rdm is now encoded directly in the model (6.10), since, instead of trying to

influence the entire population of N +m agents, the control simply focuses on the portion

of m leaders. In this setting, it makes sense to choose the set Adm as L1([0, T ];U), where

U is a fixed nonempty compact subset of Rdm, so that the Dunford-Pettis Theorem is

available as a compactness result to establish the well-posedness of the control problems.

As in Section 6.1.2, we shall be interested in controls u which minimize functionals of the

form

JN (y, w, µN , u)
∆
=

∫ T

0

{∫
R2d

`(y(t), w(t), x, v, µN (t))dµN (t, x, v)+

+

∫
R2d

ψ(u(t, y, w))dνm(t, y, w)

}
dt.
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Sadly, the introduction of the population of leaders has made the typographic representa-

tion of system (6.10) and of the new functional JN too much cumbersome and complicated

to handle. In order to overcome this shortcoming, as well as the narrowness of its repre-

sentation power, we now make the drastic choice to do like in Section 4.2 and rewrite the

controlled dynamics (6.10) as a first order system of the form{
ẏk(t) = (K ∗ µN (t))(yk(t)) + fk(y(t)) +Bku(t), k = 1, . . . ,m,

ẋi(t) = (K ∗ µN (t))(xi(t)) + g(y(t))(xi(t)), i = 1, . . . , N,

to be coupled with the functional

JN (y, µN , u) =

∫ T

0

{
L(y(t), µN (t)) + γ(u(t))

}
dt.

We already noticed in Chapter 4 how systems like (6.10) are basically first order, hence

it is not restrictive to pass from the 2d-dimensional phase coordinates (x, v) and (y, w) to

the more compact d-dimensional variables x and y. Consequently, the empirical measures

µN and ρm are now defined over the atoms (x1, . . . , xN ) and (y1, . . . , ym), respectively.

Remark 6.8. The new notation allows to consider different kernels of interaction between

followers and leaders, and more in general different kernels from G[a]. It also makes possible

the inclusion of self-propulsion/friction terms, like

S(x, v)
∆
= (α− β‖v‖2)v.

where α and β are nonnegative parameters. This term, introduced in [137], balances the

self-propulsion of individuals given by αv and the Rayleigh-type friction −β‖v‖2v, pre-

scribing the speed of each agent ‖v‖ to approach the asymptotic value
√
α/β (if other

effects are ignored), which can be seen as a characteristic limit speed for the dynamics.

S is commonly encountered in the modeling of bacteria and groups of animals, see for

instance [60, 97], and we shall use it to model pedestrian dynamics in Chapter 7.

The role of the control u on the state variables of the k-th leader is mediated by a matrix

Bk; this is necessary in order to cope with the dimensionality mismatch in the dynamics

(6.10) between the phase coordinates (2d) and the controls (only d). To avoid confusion,

we denote by D the dimensionality of the control and we assume that it takes values in a

convex compact subset U of RD. As usual, the number d is reserved for the dimensionality

of the agents, hence the matrices Bk are constant d × D matrices which project the D-

dimensional control onto the d-dimensional state space.

Remark 6.9. We recover system (6.10) from the above formulation of the dynamics by

noticing that xi(t) stands for (xi(t), vi(t)), yk(t) stands for (yk(t), wk(t)), and choosing for

any (y, w) ∈ Rdm × Rdm and (x, v) ∈ R2d the functions

K(x, v) =

(
0

G[a](x, v)

)
, fk(y, w) =

(
wk

(G[a] ∗ ρm)(yk, wk)

)
,

g(y, w)(x, v) =

(
v

(G[a] ∗ ρm)(x, v)

)
.



6.2 Sparsity and mean-field optimal controls 197

Notice that ρm is by definition a function of (y, w).

Henceforth, we assume that the following regularity properties hold.

Hypotheses (H)

(K) The function K ∈ C2(Rd;Rd) is odd and sublinear, i.e., K(−x) = −K(x) holds for

all x ∈ Rd and there exists CK > 0 such that for all x ∈ Rd we have

‖K(x)‖ < CK(1 + ‖x‖).

(L) The function L : Rdm × P1(Rd)→ R is

L(y, µ)
∆
=

∫
Rd
`
(
y, x,

∫
ωµ
)
dµ(x),

with ` ∈ C2(Rdm × Rd × Rd;R), ω ∈ C2(Rd;Rd) and where
∫
ωµ is intended in the

sense of (4.2).

(G) The function g ∈ C2(Rdm; C2(Rd;Rd)) satisfies for all x ∈ Rd and all y ∈ Rdm

g(y)(x) · x ≤ G1‖x‖2 +G2 max
1≤l≤m

‖yl‖2 +G3,

where the constants G1, G2 and G3 are independent on x and y.

(F) For each k = 1, . . . ,m, the function fk ∈ C2(Rdm;Rd) satisfies for all y ∈ Rdm

fk(y) · yk ≤ F1 max
1≤l≤m

‖yl‖2 + F2,

where the constants F1 and F2 are independent on y and k.

(U) The set U ⊂ RD is compact and convex.

(γ) The function γ : U → R is strictly convex.

Under the above hypotheses, we study the existence of mean-field optimal controls for the

following infinite dimensional optimal control problem.

Problem 3. For T > 0 fixed, find u∗ ∈ L1([0, T ];U) minimizing the cost functional

J (y, µ, u) =

∫ T

0

{
L(y(t), µ(t)) + γ(u(t))

}
dt, (6.11)

where (y, µ) : [0, T ]→ Rdm × P1(Rd) solves ẏk(t) = (K ∗ µ(t))(yk(t)) + fk(y(t)) +Bku(t), k = 1, . . . ,m,

∂µ

∂t
(t) = −∇x ·

(
(K ∗ µ(t) + g(y(t)))µ(t)

)
,

(6.12)

for the given initial datum (y(0), µ(0)) = (y0, µ0) ∈ Rdm × Pc(Rd).
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Notice that we have kept the number of leaders m finite, while letting the number of

followers N grow to ∞: with this choice, the control strategy turns out to be sparse by

default (since m� N).

Figure 6.1: Three discrete leaders influencing a continuous density of followers. More details
about this control setting in Chapter 7.

As done in [106] to prove Theorem 6.7, we shall provide a Γ-convergence result that

links the above Problem 3 with the following family of finite dimensional optimal control

problems, each labeled with the number of followers N ∈ N. This, as a byproduct, will

prove the existence of mean-fields optimal controls for Problem 3.

Problem 4. For T > 0 fixed, find u∗ ∈ L1([0, T ];U) minimizing the cost functional

JN (y, µN , u) =

∫ T

0

{
L(y(t), µN (t)) + γ(u(t))

}
dt, (6.13)

where

µN (t) =
1

N

N∑
i=1

δxi(t),

and (y, x) : [0, T ]→ Rdm × RdN solves
ẏk(t) =

1

N

N∑
j=1

K(yk(t)− xj(t)) + fk(y(t)) +Bku(t), k = 1, . . . ,m,

ẋi(t) =
1

N

N∑
j=1

K(xi(t)− xj(t)) + g(y(t))(xi(t)), i = 1, . . . , N,

(6.14)

for the given initial datum (y(0), x(0)) = (y0, x0) ∈ Rdm × RdN .

For the sake of completeness, we state again the notion of mean-field optimal control

adapted to Problem 3.
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Definition 6.10 (Mean-field optimal control for Problem 3). Let (y0, µ0) ∈ Rdm×Pc(Rd)
be given. An optimal control u∗ for Problem 3 with initial datum (y0, µ0) is a mean-

field optimal control if there exists a sequence (u∗N )N∈N ⊂ L1([0, T ];U) and a sequence

(µ0
N )N∈N ⊂ Pc(Rd) such that

(i) the sequence of empirical measures (µ0
N )N∈N defined for every N ∈ N as

µ0
N (x)

∆
=

1

N

N∑
i=1

δx0
i,N
, for some x0

i,N ∈ supp(µ0)

satisfies µ0
N ⇀ µ0 weakly∗ in the sense of measures;

(ii) for everyN ∈ N, u∗N is a solution of Problem 4 with initial datum (y0, x0
1,N , . . . , x

0
N,N );

(iii) there exists a subsequence of (u∗N )N∈N converging weakly in L1([0, T ];U) to u∗.

6.3 Γ-convergence of optimal control problems

In this section we shall first study the coupled ODE-PDE dynamics (6.12) and then state

existence and uniqueness results of solutions, together with continuous dependence on the

initial data (y0, µ0). The proofs follow closely in the footsteps of similar results collected

in Chapter 4, to which we remand for the basic ideas (see also [12, 103, 155, 156]).

6.3.1 Coupled ODE-PDE systems with nonlocal interaction

In what follows, we shall consider the space X ∆
= Rdm×P1(Rd) endowed with the following

mixed distance

‖(y, µ)− (y′, µ′)‖X
∆
= ‖y − y′‖+W1(µ, µ′), (6.15)

where ‖y − y′‖ ∆
=
∑m

k=1 ‖yk − y′k‖`d2 .

We can formally define the concept of solution of the controlled ODE-PDE system (6.12).

Definition 6.11. Let u ∈ L1([0, T ];U) and (y0, µ0) ∈ X , with µ0 of bounded support, be

given. We say that a map (y, µ) : [0, T ]→ X is a solution of system (6.12) with control u

if

(i) (y(0), µ(0)) = (y0, µ0);

(ii) (y(·), µ(·)) is continuous in time with respect to the metric (6.15) in X ;

(iii) y(·) is a Carathéodory solution of the following controlled ODE problem

ẏk(t) = (K ∗ µ(t))(yk(t)) + fk(y(t)) +Bku(t), k = 1, . . . ,m,

for all t ∈ [0, T ];

(iv) µ(·) is a solution of (4.9) for the time-varying vector field (depending on y(·))

V (t, µ)(x) = (K ∗ µ)(x) + g(y(t))(x), for all (t, x, µ) ∈ [0, T ]× Rd × P1(Rd).
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We now derive the existence of solutions of (6.12) as limits for N → ∞ of the system

of ODEs (6.14) following the strategy adopted in Theorem 4.11. The next result is a

straightforward generalization of Proposition 4.5.

Proposition 6.12. Fix N ∈ N and the control u ∈ L1([0, T ];U). Let (y, xN ) : [0, T ] →
Rdm × RdN be the corresponding solution of (6.14), with xN (·) = (x1,N (·), . . . , xN,N (·)).
Then, the pair (y, µN ) : [0, T ]→ X , with µN (·) being the empirical measure

µN (t) =
1

N

N∑
i=1

δxi,N (t), for every t ∈ [0, T ],

is a solution of (6.12) with control u.

We are then ready to prove the controlled counterpart of Theorem 4.11.

Proposition 6.13. Let y0 ∈ Rdm, µ0 ∈ Pc(Rd), and µ0
N (·) be as in Definition 6.10–

(i). Let (uN )N∈N ⊆ L1([0, T ];U) be a sequence of controls such that uN ⇀ u, for some

u ∈ L1([0, T ];U).

Then, the sequence of solutions (yN , µN )N∈N ⊂ Lip([0, T ];X ) of (6.14) with initial data

(y0, µ0
N ) and control uN converges to a solution (y, µ) ∈ Lip([0, T ];X ) of (6.12) with

initial data (y0, µ0) and control u. Moreover, there exists ρT > 0, depending only on

y0, supp(µ0),K, g, fk, Bk,U , and T , such that for every N ∈ N, for every k = 1, . . . ,m and

for every t ∈ [0, T ] it holds

‖yk,N (t)‖, ‖yk(t)‖ ≤ ρT and supp(µN (t)), supp(µ(t)) ⊆ B(0, ρT ).

Proof. First of all notice that, for every N ∈ N, system (6.14) admits a unique solution

(yN , xN ) : [0, T ]→ Rdm ×RdN by the set of hypotheses (H) and analogous considerations

to those made in the proof of Proposition 4.9.

We start by fixing N ∈ N and estimating the growth in time of ‖yk,N (·)‖2 + ‖xi,N (·)‖2 for

k = 1, . . . ,m and i = 1, . . . N . Let

Σ
∆
= {1, . . . ,m} × {1, . . . , N}.

By using the same estimation techniques of (4.14), from the hypotheses (H) and the

compactness of U , for any (k, i) ∈ Σ it follows

1

2

d

dt

(
‖yk,N‖2 + ‖xi,N‖2

)
= ẏk,N · yk,N + ẋi,N · xi,N

= ((K ∗ µN )(yk,N ) + fk(y) +Bku) · yk,N+

+ ((K ∗ µN )(xi) + g(y)(xi,N )) · xi,N
≤ ‖(K ∗ µN )(yk,N )‖ ‖yk,N‖+ fk(yN ) · yk,N + ‖Bku‖‖yk,N‖+

+ ‖(K ∗ µN )(xi,N )‖‖xi,N‖+ g(yN )(xi,N ) · xi,N
≤ C1 max

(l,j)∈Σ

{
‖yl,N‖2 + ‖xj,N‖2

}
+ C2,

with C1
∆
= 4CK + F1 + G2 + M1 and C2

∆
= CK + F2 + G3 + M1. We now denote for all
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t ∈ [0, T ]

ξ(k,i)(t)
∆
= ‖yk,N (t)‖2 + ‖xi,N (t)‖2 and ζ(t)

∆
= max

(l,j)∈Σ
{ξ(l,j)(t)}.

Notice that, being (yN (·), xN (·)) ∈W 1,∞([0, T ];Rdm×RdN ), then ζ(·) ∈W 1,∞([0, T ];R+).

This implies that ζ(·) is a.e. differentiable, hence again by Stampacchia’s Lemma, for a.e.

t ∈ [0, T ] there exists (l, j) ∈ Σ such that

ζ̇(t) =
d

dt

(
‖yl,N (t)‖2 + ‖xj,N (t)‖2

)
,

which let us infer the inequality

ζ̇(t) ≤ 2C1ζ(t) + 2C2.

We can, therefore, apply Gronwall’s Lemma A.1, which together with Definition 6.10–(i)

implies that

ζ(t) ≤ (ζ(0) + 2C2t)e
2C1t ≤ (C0 + 2C2t)e

2C1t, (6.16)

for some uniform constant C0 only depending on y0 and supp(µ0). It then follows that the

trajectories (yN (·), µN (·)) are bounded uniformly in N in a ball B(0, ρT ) ⊂ Rd, for

ρT
∆
=
√
C0 + 2C2T e

C1T ,

which does not depend neither on t nor on N . This in turn implies that the trajectories

(yN (·), µN (·)) are uniformly Lipschitz continuous in N , as can be easily verified by com-

puting ‖ẏk,N (·)‖ and ‖ẋi,N (·)‖ and noticing that all the functions involved are bounded

by the hypotheses (H) and the fact that we are inside B(0, ρT ). Therefore

‖ẏk,N (t)‖ ≤ ρ′T , ‖ẋi,N (t)‖ ≤ ρ′T (6.17)

holds for every t ∈ [0, T ] where the constant ρ′T does not depend neither on t nor on N .

By an application of the Ascoli-Arzelà theorem for functions on [0, T ] and values in the

complete metric space X , there exists a subsequence, again denoted by (yN , µN )N∈N con-

verging uniformly to a limit (y, µ) : [0, T ] → X , whose trajectories are also contained in

B(0, ρT ). Due to the equi-Lipschitz continuity of (yN (·), µN (·)) and the continuity of the

Wasserstein distance, we obtain that for all t1, t2 ∈ [0, T ] and for some LT > 0 it holds

‖(y(t2), µ(t2))− (y(t1), µ(t1))‖X = lim
N→∞

‖(yN (t2), µN (t2))− (yN (t1), µN (t1))‖X

≤ LT |t2 − t1|.

Hence, the limit trajectory (y(·), µ(·)) belongs to Lip([0, T ];X ) as well. It is now necessary

to show that the limit (y(·), µ(·)) is a solution of (6.12). We first verify that y(·) is a solution

of the ODE part. To this end, we observe that the limit (yN (·), µN (·))→ (y(·), µ(·)) in X
specifies into

yN → y uniformly in [0, T ], (6.18)
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ẏN ⇀ ẏ in L1([0, T ];R2d), (6.19)

lim
N→∞

W1(µN (t), µ(t)) = 0 uniformly with respect to t ∈ [0, T ]. (6.20)

As a consequence of (6.18), (6.19), (6.20), hypothesis (K), and Lemma 4.10, we have that

for all k = 1, . . . ,m

(K ∗ µN )(yk,N )→ (K ∗ µ)(yk),

fk(yN )→ fk(y),
uniformly in [0, T ] as N → +∞. (6.21)

To prove that y(·) is actually the Carathéodory solution of (6.14), we have only to show

that for all k = 1, . . . ,m one has

ẏk(t) = (K ∗ µ(t))(yk(t)) + fk(y(t)) +Bku(t), for all t ∈ [0, T ].

This is clearly equivalent to the following: for every η ∈ Rd and every t ∈ [0, T ] it holds

η ·
∫ t

0
ẏk(s) ds = η ·

∫ t

0

(
(K ∗ µ(s))(yk(s)) + fk(y(s)) +Bku(s))

)
ds, (6.22)

which follows from (6.21) and from the weak L1-convergence of ẏk,N to ẏk and of uN to u

for N →∞.

The proof of the fact that µ(·) is a solution of (6.12) follows along the same lines of the

one of Theorem 4.11 by noticing that the functions gN = g(yN ) converge uniformly to

g = g(y) on [0, T ]×B(0, ρT ) and satisfy the hypotheses (i)–(iii) of Proposition 4.9.

This, together with (6.22), proves that (y(·), µ(·)) is a solution of (6.14) with initial da-

tum (y0, µ0) and control u. Similarly to Remark 4.18, we can show that the sequence

(yN , µN )N∈N actually converges to (y, µ) without passing to a subsequence as soon as we

show the continuous dependance on the initial data.

Corollary 6.14. Let y0 ∈ Rdm, µ0 ∈ Pc(Rd), and u ∈ L1([0, T ];U). Then, there exists a

solution of (6.12) with control u and initial datum (y0, µ0).

Proof. Follows from Proposition 6.13 by taking any sequence of empirical measures µ0
N as

in Definition 6.10–(i), and the constant sequence uN = u for all N ∈ N.

We now prove the continuous dependence on the initial data, that also grants the unique-

ness of the solution for (6.12).

Proposition 6.15. Let the hypotheses (H) hold. Let u ∈ L1([0, T ];U) be given, and take

two solutions (y1(·), µ1(·)) and (y2(·), µ2(·)) of (6.12) with control u and with initial data

(y0
1, µ

0
1), (y0

2, µ
0
2) ∈ X , respectively, where µ0

1 and µ0
2 have both compact support. Then there

exists a constant CT > 0 such that

‖(y1(t), µ1(t))− (y2(t), µ2(t))‖X ≤ CT ‖(y0
1, µ

0
1)− (y0

2, µ
0
2)‖X for all t ∈ [0, T ].

Proof. We start by noticing that, by the definition of a solution, we infer the existence of a

ρT > 0 for which y1(t), y2(t) ∈ B(0, ρT ) ⊂ Rdm and supp(µ1(t)), supp(µ2(t)) ⊆ B(0, ρT ) ⊂
Rd hold for all t ∈ [0, T ].
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As a preliminary estimate, by hypothesis (K), Lemma 4.7 and Lemma 4.10 with the choice

r = R̂ = ρT , we infer the existence of a constant LKρT > 0 such that

‖(K ∗ µ1)(x)− (K ∗ µ2)(y)‖ ≤ LKρT (W1(µ1, µ2) + ‖x− y‖) . (6.23)

holds for every x, y ∈ Rd. Furthermore, if for the sake of brevity we denote by

G
∆
= sup
ξ∈B(0,ρT )⊂Rd,ς∈B(0,ρT )⊂Rdm

‖Dyg(ς)(ξ)‖,

F
∆
= max

1≤k≤m
LipB(0,ρT )(fk).

then the C2-regularity of g and fk for every k = 1, . . . ,m imply for every y1, y2 ∈ B(0, ρT )

‖g(y1)− g(y2)‖L∞(B(0,ρT )) ≤ G‖y1 − y2‖,
‖fk(y1)− fk(y2)‖ ≤ F‖y1 − y2‖.

(6.24)

We shall show the continuous dependence estimate by chaining the stability of the ODEs

ẏk(t) = (K ∗ µ(t))(yk(t)) + fk(y(t)) +Bku(t), k = 1, . . . ,m, (6.25)

with the one of the PDE

∂µ

∂t
(t) = −∇x ·

(
(K ∗ µ(t) + g(y(t)))µ(t)

)
, (6.26)

first addressing the dependence of (6.25). By integration we have

‖y1,k(t)− y2,k(t)‖ ≤ ‖y0
1,k − y0

2,k‖+

+

∫ t

0

(
‖(K ∗ µ1(s))(y1,k(s))− (K ∗ µ2(s))(y2,k(s))‖+

+ ‖fk(y1(s))− fk(y2(s))‖
)
ds.

(6.27)

For the left-hand side of (6.27) we have that (6.23), (6.24), and the uniform bound on

y1(·) and y2(·) yield

‖y1,k(t)− y2,k(t)‖ ≤ ‖y0
1,k − y0

2,k‖+

∫ t

0

(
LKρTW1(µ1(s), µ2(s))+

+ LKρT ‖y1,k(s)− y2,k(s))‖+ F‖y1(s)− y2(s)‖
)
ds (6.28)

We now consider (6.26). Theorem 4.16 for the choices R = ρT , K1 = K2 = K, g1 = g(y1)

and g2 = g(y2), together with the estimate (6.24), yields

W1(µ1(t), µ2(t)) ≤ αW1(µ0
1, µ

0
1)+

+ β

∫ t

0
(LK,ρT ,ρTW1(µ1(s), µ2(s)) +G‖y1(s)− y2(s)‖) ds.

(6.29)

for certain constants α, β > 0.
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We now consider the function

ε(t)
∆
= ‖(y1(t), µ1(t))− (y2(t), µ2(t))‖X for every t ∈ [0, T ].

Combining (6.28) for each k = 1, . . . ,m and (6.29), we obtain

ε(t) ≤ ‖y0
1 − y0

2‖+

∫ t

0

(
mLKρTW1(µ1(s), µ2(s)) + LKρT ‖y1(s)− y2(s))‖+

+mF‖y1(s)− y2(s)‖
)
ds+ αW1(µ0

1, µ
0
2)+

+ β

∫ t

0

(
LK,ρT ,ρTW1(µ1(s), µ2(s)) +G‖y1(s)− y2(s)‖

)
ds

≤ αε(0) +

∫ t

0

(
mLKρT +mF + β(LK,ρT ,ρT +G)

)
ε(s)ds.

Gronwall’s Lemma A.1 then implies

ε(t) ≤ αeT(mLKρT +mF+β(LK,ρT ,ρT +G))ε(0),

for any t ∈ [0, T ]. This concludes the proof.

Remark 6.16. We can argue as in Remark 4.18 to prove that the sequence (yN , µN )N∈N
converges to (y, µ) without passing to a subsequence.

Remark 6.17. Since equicompactly supported solutions are unique, given the initial

datum, by Proposition 6.15 and Proposition 6.13 we infer that the support of the unique

solution can be estimated as a function of the data, namely it is contained in B(0, ρT ),

where the constant ρT is depending only on y0, supp(µ0), K, g, fk, Bk, U , and T .

6.3.2 Existence and construction of solutions of Problem 3

In this section, we prove that Problem 3 admits a solution which is a mean-field optimal

control. The proof generalizes similar results in [103].

In view of the Definition 5.14 of Γ-convergence, let us fix as our domain X ∆
= L1([0, T ];U)

which, endowed with the weak L1-topology, is actually a metrizable space. Fix now an

initial datum (y0, µ0) ∈ X , with µ0 compactly supported, and choose a sequence µ0
N as in

Definition 6.10–(i). Consider the functional

J (u)
∆
= J (yu(·), µu(·), u)

on X introduced in (6.11), where the pair (yu(·), µu(·)) defines the unique solution of (6.12)

with initial datum (y0, µ0) and control u. Similarly, consider the functional

JN (u)
∆
= JN (yuN (·), µuN (·), u)

on X introduced in (6.13), where the pair (yuN (·), µuN (·)) defines the unique solution of

(6.12) with initial datum (y0, µ0
N ) and control u. As recalled in Proposition 6.12, such

solution coincides with a properly rewritten solution of the ODE system (6.14).
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We now pass to prove the Γ-convergence of the sequence of functionals (JN )N∈N on X to

the target functional J . Let us mention that Γ-convergence in optimal control problems

has been already considered, see for instance [45], but it has been only recently employed

in the context of mean-field limits in [103, 106].

Theorem 6.18. Let the functionals (6.11)–(6.13) and system (6.12) satisfy the set of hy-

potheses (H). Consider an initial datum (y0, µ0) ∈ Rdm×P1(Rd), and a sequence (µ0
N )N∈N,

where µ0
N is as in Definition 6.10–(i). Then the sequence of functionals (JN )N∈N on X

defined in (6.13) Γ-converges to the functional J defined in (6.11).

Proof. Let us start by showing the Γ − lim inf condition. Let us fix a weakly convergent

sequence of controls uN ⇀ u in X. We associate to each of these controls a sequence

of solutions (yN (·), µN (·)) of (6.12) uniformly convergent to a solution (y(·), µ(·)) with

control u and initial datum (y0, µ0). In view of the fact that solutions (yN (·), µN (·)) and

(y(·), µ(·)) will have uniformly bounded supports with respect to N and t ∈ [0, T ] and

by the uniform convergence of trajectories yN (·) → y(·) in [0, T ], as well as the uniform

convergence W1(µN (t), µ(t)) → 0 for t ∈ [0, T ], it follows from the continuity of L under

the hypotheses (H) that

lim
N→∞

∫ T

0
L(yN (t), µN (t)) =

∫ T

0
L(y(t), µ(t))dt. (6.30)

By the assumed weak convergence of (uN )N∈N to u ∈ X and Ioffe’s Theorem (see, for

instance, [11, Theorem 5.8]) we obtain the lower semicontinuity of γ

lim inf
N→∞

∫ T

0
γ(uN (t))dt ≥

∫ T

0
γ(u(t))dt. (6.31)

By combining (6.30) and (6.31), we immediately obtain the Γ− lim inf condition

lim inf
N→∞

JN (uN ) ≥ J (u).

We now prove the Γ− lim sup condition. We fix u ∈ X and consider the constant recovery

sequence uN = u for all N ∈ N. Similarly as above for the argument of the Γ − lim inf

condition, we can associate to each of these controls a sequence of solutions (yN (·), µN (·))
of (6.12) uniformly convergent to a solution (y(·), µ(·)) with control u and initial datum

(y0, µ0) and we can similarly conclude the limit (6.30). Additionally, since (uN )N∈N is a

constant sequence, we have

lim inf
N→∞

∫ T

0
γ(uN (t))dt =

∫ T

0
γ(u(t))dt. (6.32)

Hence, combining (6.30) and (6.32) we can easily infer

lim sup
N→∞

JN (uN ) = lim
N→∞

JN (u) = J (u).

This concludes the proof of the Γ-convergence of the functionals (JN )N∈N to J .

The following result shows that Problem 4 is automatically well-posed under our set of
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hypothesis.

Proposition 6.19 ([63, Theorem 23.11]). Under the hypotheses (H), Problem 4 admits

solutions.

We are now ready to show the existence of mean-field optimal controls for Problem 3.

Corollary 6.20. Let the hypotheses (H) hold. For every initial datum (y0, µ0) ∈ Rdm ×
Pc(Rd), there exists a mean-field optimal control u∗ for Problem 3.

Proof. For everyN ∈ N, consider an empirical measure µ0
N as in Definition 6.10–(i), and let

u∗N be an optimal control for Problem 4 with initial datum (y0, µ0
N ) (it exists by Proposition

6.19). Notice that the optimal controls u∗N belong to the space X = L1([0, T ];U), which is

a compact set with respect to the weak topology of L1 by the Dunford-Pettis Theorem.

Hence, the sequence (JN )N∈N is equicoercive, and (u∗N )N∈N admits a subsequence, which

we do not relabel, weakly convergent to some u∗ ∈ X.

We can associate to each of these controls u∗N and initial data (y0, µ0
N ) a solution (y∗N (·), µ∗N (·))

of (6.12). The sequence of solutions (y∗N (·), µ∗N (·)) is then uniformly convergent to a solu-

tion (y∗(·), µ∗(·)) of (6.12) with control u∗, by Proposition 6.13. In order to conclude that

u∗ is an optimal control for Problem 3 (and hence, by construction, that u∗ is a mean-field

optimal control) we need to show that it is actually a minimizer of J . To prove it we

use the fact that J is the Γ-limit of the sequence (JN )N∈N as proved in Theorem 6.18.

Let u ∈ X be an arbitrary control and let (uN )N∈N be a recovery sequence given by the

Γ− lim sup condition, so that

J (u) ≥ lim sup
N→∞

JN (uN ). (6.33)

By using the optimality of the controls in the sequence (u∗N )N∈N, we obtain

lim sup
N→∞

JN (uN ) ≥ lim sup
N→∞

JN (u∗N ) ≥ lim inf
N→∞

JN (u∗N ). (6.34)

Applying the Γ− lim inf condition yields

lim inf
N→∞

JN (u∗N ) ≥ J (u∗). (6.35)

By chaining the inequalities (6.33)–(6.34)–(6.35) we conclude that

J (u) ≥ J (u∗) for all u ∈ X,

i.e., that u∗ is an optimal control for Problem 3.

Remark 6.21. Observe that the previous result does not state uniqueness of the optimal

control for the infinite dimensional problem. Indeed, in general, we cannot ensure that all

solutions of Problem 3 are mean-field optimal controls.

Remark 6.22. Notice that the inequality (6.31) actually holds for several non-strictly



6.4 Mean-field Pontryagin Maximum Principle 207

convex functionals, like the `1–norm

γ(u) =
1

m

m∑
k=1

‖ui‖,

as shown in [103, 106]. The strict convexity shall actually be a necessary property to derive

the optimality conditions for mean-field optimal controls in the next section.

6.4 Mean-field Pontryagin Maximum Principle

In the context of mean-field games and optimal control problems with PDE constraints,

first-order optimality conditions have received enormous attention, see for instance [15,

43, 50, 163]. However, up to now no corresponding results have appeared in the literature

for optimal control problems with mixed ODE-PDE constraints of the kind of Problem 3.

This section is devoted to the proof of a Pontryagin Maximum Principle to characterize

mean-field optimal controls of such problems.

The Pontryagin Maximum Principle (PMP in what follows, see [159]) is used in Optimal

Control Theory to find the best possible control for steering a dynamical system from one

state to another. It is a generalization of the Euler-Lagrange equation of the Calculus of

Variations and, similarly to it, when satisfied along a trajectory, the PMP is a necessary

condition for an optimum.

To formulate the PMP, an adjoint variable p for every state variable x of the system is

introduced. The variables p are elements of the dual space S ′ of the state space S, and can

be interpreted as Langrange multipliers associated with the state equations of the system:

the state equations represent constraints of the minimization problem, and the adjoint

variables represent the marginal cost of violating those constraints. The evolution of state

and adjoint variables are deeply interwined: if u∗ is a control maximizing the Hamiltonian

H(x, p, u) of the system with respect to the control variable u, and x∗ : [0, T ] → S and

p∗ : [0, T ] → S ′ are the state and adjoint trajectories associated to u∗, then x∗ and p∗

satisfy 
ẋ∗(t) = ∇pH(x∗(t), p∗(t), u∗(t)),

ṗ∗(t) = −∇xH(x∗(t), p∗(t), u∗(t)),

u∗(t) ∈ arg max
u(t)∈U

H(x∗(t), p∗(t), u(t)).

The state equations are subject to an initial condition and are solved forwards in time.

The adjoint equations must satisfy, instead, a terminal condition and are solved backwards

in time, from the final time towards the beginning.

Whenever we deal with a finite dimensional state space S, the above formulation presents

no ambiguity. Since the dual of Rd is Rd itself then the state and adjoint variables are

both d-dimensional vectors, and the gradients ∇x and ∇p are intended in the usual sense.

However, when the dynamical system describes the evolution of a measure µ, things be-

come more problematic. The first issue is that the dual space of M(Rd) is C(Rd): does

it matter to preserve the duality between the space of state variables and that of adjoint
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variables, or it is more important to have them lie in the same space? Moreover, in which

sense we should compute ∇µH when µ is a measure? Is it only a formal symbol or has it

sense in some differential manifold?

We stress again that we are not interested in all possible optima of Problem 3, but mainly

on mean-field optimal controls, i.e., those which arise as limits of optimal strategies of the

discrete Problems 4. This already suggests us a possible strategy to provide an answer

to the questions raised above. Indeed, since Problem 4 is a standard finite dimensional

optimal control problem with m+N ODE constraints, a PMP for it is already available

(see, for instance, Theorem 6.28 below). Nothing prevents us to try to compute the limit

for N → ∞ of the equations of this PMP, and calling it extended PMP. Eventually, the

fact that Problem 3 is the Γ−limit of Problem 4 for N → ∞ will imply that mean-field

optimal controls of Problem 3 satisfy this extended PMP.

We can summarize our strategy, borrowing a leaf from the diagram in [50], as follows:

Discrete OC Problem

m ODEs + N ODEs

Continuous OC Problem

m ODEs + PDE

PMP

2m ODEs + 2N ODEs

Extended PMP

2m ODEs + PDE

N →∞

optimization

N →∞

optimization

We shall see that, under the set of hypotheses (H), the dashed line from the upper-right

to the bottom-right box is valid for all mean-field optimal controls. The result of this

procedure will be the following first-order condition.

Theorem 6.23. Fix an initial datum (y0, µ0) ∈ Rdm×Pc(Rd) and assume that the set of

hypotheses (H) holds. If u∗ is a mean-field optimal control for Problem 3 and (y∗(·), µ∗(·))
is the corresponding trajectory, then the triple (u∗, y∗, µ∗) satisfies the following extended

Pontryagin Maximum Principle:

There exists (q∗(·), ν∗(·)) ∈ Lip([0, T ];Rdm × P1(R2d)) such that

• there exists RT > 0, depending only on y0, supp(µ0), d, K, g, fk, Bk, U , and T ,

such that supp(ν∗(·)) ⊆ B(0, RT ) and it satisfies ν∗(t)(E × Rd) = µ∗(t)(E) for all

t ∈ [0, T ] and for every Borel set E ⊆ Rd;

• for every t ∈ [0, T ] it holds

ẏ∗k(t) = ∇qkHc(y
∗(t), q∗(t), ν∗(t), u∗(t)),

q̇∗k(t) = −∇ykHc(y
∗(t), q∗(t), ν∗(t), u∗(t)),

∂ν∗

∂t
(t) = −∇(x,r) ·

(
(J∇νHc(y

∗(t), q∗(t), ν∗(t), u∗(t)))ν∗(t)
)
,

u∗(t) = arg max
u(t)∈U

Hc(y
∗(t), q∗(t), ν∗(t), u(t))

(6.36)
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where J ∈ R2d×2d is the symplectic matrix

J
∆
=

(
0 Id

−Id 0

)
,

the Hamiltonian Hc : R2dm × Pc(R2d)× RD → R is defined as

Hc(y, q, ν, u)
∆
=

{
H(y, q, ν, u) if supp(ν) ⊆ B(0, RT ),

+∞ elsewhere;

and H : R2dm × Pc(R2d)× RD → R is defined as

H(y, q, ν, u)
∆
=

1

2

∫
R4d

(r − r′) ·K(x− x′)dν(x, r)dν(x′, r′)+

+

∫
R2d

r · g(y)(x)dν(x, r) +
m∑
k=1

∫
R2d

qk ·K(yk − x)dν(x, r)+

+
m∑
k=1

qk · (fk(y) +Bku)− L(y, π1#ν)− γ(u).

(6.37)

• the following initial conditions for system (6.36) hold at time 0: y∗(0) = y0 and

ν∗(0)(E × Rd) = µ0(E) for every Borel set E ⊆ Rd,

• the following terminal conditions for system (6.36) hold at time T : q∗(T ) = 0 and

ν∗(T )(Rd × E) = δ0(E) for every Borel set E ⊆ Rd.

The above result answers the questions raised at the beginning of the section: first, it

introduces a new measure ν∗ on R2d whose first marginal is the measure of followers µ∗.

The adjoint of µ∗ is given by the second marginal of ν∗, which is also an element of

P1(Rd), as µ∗ itself. The property of state variables and their adjoints to belong to the

same ambient space is thus preserved in the mean-field limit. Second, we point out the

difference between the usual notion of gradient in R2d with respect to the state and the

adjoint variables (x, r), denoted by ∇(x,r), and the Wasserstein gradient ∇ν of Hc, which,

as will be shown in Section 6.4.2, whenever ν has support contained in B(0, RT ) can be

computed explicitly as follows:

• For l = 1, . . . , d, it holds

∇νHc(y, q, ν, u)(x, r) · el =

∫
R2d

(r − r′) · (DK(x− x′)el) dν(x′, r′)+

+ r · (Dxg(y)(x)el)−
m∑
k=1

qk · (DK(yk − x)el)−

−∇ξ`(y, x,
∫
ωµ) · el −

(
∇ς`(y, x,

∫
ωµ)Dω(x)

)
· el.
(6.38)

These are the components of ∇νHc(y, q, ν, u)(x, r) in the xl coordinates. Notice that,

by the hypothesis (L), the functions ` ∈ C2(Rdm × Rd × Rd;R) and ω ∈ C2(Rd;Rd)
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appearing in (6.38) are related to the functional L in (6.11) via

L(y, µ) =

∫
Rd
`
(
y, x,

∫
ωµ
)
dµ(x),

where
∫
ωµ = ωµ(Rd) in the sense of (4.2), while ∇ξ` and ∇ς` denote the partial

derivatives of the function `(η, ξ, ς). The notations DK(x), Dxg(y)(x) and Dω(x)

stand for the Jacobian of the functions K, g(y) and ω evaluated at x.

• For l = d+ 1, . . . , 2d it holds

∇νHc(y, q, ν, u)(x, r) · el =

∫
R2d

K(x− x′) · el−d dν(x′, r′) + g(y)(x) · el−d. (6.39)

These are the components of ∇νHc(y, q, ν, u)(x, r) in the rl−d coordinates.

Remark 6.24. There are two main consequences of the fact that the control does not act

directly on the PDE component of (6.12). The first is that ∇νH(y, q, ν, u) actually does

not depend on u, since ν is not associated to the directly controlled part of the dynamics.

The second is that, for every (y(t), q(t), ν(t)) ∈ R2d×P1(R2d) with supp(ν(t)) ⊆ B(0, RT ),

the expression (6.37) immediately implies

u(t) ∈ arg max
u(t)∈U

Hc(y(t), q(t), ν(t), u(t)) ⇐⇒

⇐⇒ u(t) ∈ arg max
u(t)∈U

(
m∑
k=1

qk(t) ·Bku(t)− γ(u(t))

)
.

Then, the strict convexity of γ and the convexity and the compactness of U imply that u(t)

is uniquely determined by (y(t), q(t), ν(t)). This is the reason why we write the equality

symbol in u∗(t) = arg maxu∈U Hc(y
∗(t), q∗(t), ν∗(t), u(t)) in place of an inclusion.

Remark 6.25. System (6.36) shows that (y∗(·), q∗(·), ν∗(·)) is essentially an Hamiltonian

flow in the Wasserstein space of probability measures with respect to state and adjoint

variables with Hamiltonian H, in the sense of [12]. The definition of Hc is introduced

to simplify some technical details and does not alter the result. This fact is remarkably

consistent with the dynamics (6.12), since both are flows in a Wasserstein space.

Remark 6.26. The notion of solution for system (6.36) can be trivially obtained by a

slight modification of Definition 6.11. Indeed, the dynamics of ν∗ is a Vlasov-type equation

(4.9) for the choice of the vector field

V (t, ν)(x, r) = J∇νHc(y
∗(t), q∗(t), ν, u∗(t))(x, r) for every (x, r) ∈ R2d.

The extended PMP will be derived after reformulating the finite-dimensional PMP applied

to Problem 4 in terms of the empirical measure in the phase space R2d (to which the pairs

state-adjoint variables (xi, pi) belongs) defined as

νN (t)
∆
=

1

N

N∑
i=1

δ(xi(t),Npi(t)) for every t ∈ [0, T ].
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Notice that rescaling the adjoint variables pi by the number N of agents is needed in order

to observe a nontrivial dynamics in the limit (see also Remark 6.33); within this scaling,

the right-hand side of the finite-dimensional PMP is brought back to the form considered,

for instance, in [84], with a different Hamiltonian.

The following diagram recollects the strategy of the proof, making use of a more precise

notation and reporting the ingredients disseminated in the chapter which make the proof

possible.

Find u∗N subject to (6.14)

(y, µN ) variables

Find u∗ subject to (6.12)

(y, µ) variables

u∗N satisfies finite-

dimensional PMP

with HN (y, q, νN , uN )

u∗ satisfies extended PMP

with H(y, q, ν, u)

Section 6.3

Theorem 6.28

Section 6.4.3

Theorem 6.23

Remark 6.27. We briefly compare the hypotheses (H) with those of [15, 43], where opti-

mality conditions for similar optimal control problems are considered. In [15], which deals

with an SDE-constrained control problem, C1,1 functionals with respect to state variables

and the control are considered. Therefore our hypotheses are just slightly more restrictive.

On the other hand, the hypothesis (H) do not require differentiability of the Lagrangian.

The authors of [43] deal, instead, with mean-field game-type optimality conditions to

model evacuation scenarios. They derive a first-order condition under the hypotheses of

continuous differentiability of the functionals with respect to the state variables together

with convexity and positivity assumptions. Furthermore, they deal specifically with an L2

control cost, while we allow γ to be strictly convex.

6.4.1 Mean-field of the finite-dimensional optimality conditions

We now introduce the adjoints of the state variables xi and yk, denoted by pi and qk,

respectively, and state the PMP for Problem 4.

Theorem 6.28 ([63, Theorem 22.2]). Let u∗N be a solution of Problem 4 with initial

datum (y(0), x(0)) = (y0, x0) ∈ Rdm×RdN , and denote with (y∗(·), x∗(·)) : [0, T ]→ Rdm×
RdN the corresponding trajectory. Then there exists a curve (y∗(·), q∗(·), x∗(·), p∗(·)) ∈
Lip([0, T ];Rdm × RdN ) solving the system

ẏ∗k(t) = ∇qkHN (y∗(t), q∗(t), x∗(t), p∗(t), u∗(t)),

q̇∗k(t) = −∇ykHN (y∗(t), q∗(t), x∗(t), p∗(t), u∗(t)),
k = 1, . . . ,m,

ẋ∗i (t) = ∇piHN (y∗(t), q∗(t), x∗(t), p∗(t), u∗(t)),

ṗ∗i (t) = −∇xiHN (y∗(t), q∗(t), x∗(t), p∗(t), u∗(t)),
i = 1, . . . , N,

u∗N (t) = arg max
u(t)∈U

HN (y∗(t), q∗(t), x∗(t), p∗(t), u(t)),

(6.40)
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for every t ∈ [0, T ] with initial and terminal data given by (y(0), x(0)) = (y0, x0) and

(q(T ), p(T )) = 0. The finite dimensional Hamiltonian HN : R2dm × R2dN → R is

HN (y, q, x, p, u)
∆
=

N∑
i=1

pi ·

 1

N

N∑
j=1

K(xi − xj) + g(y)(xi)

+

+

m∑
k=1

qk ·

 1

N

N∑
j=1

K(yk − xj) + fk(y) +Bku

− L(y, µN )− γ(u),

(6.41)

with µN =
∑N

i=1 δxi/N .

Remark 6.29. The general statement of the PMP contains both normal and abnormal

minimizers. In our case, the simpler formulation of the PMP is given by the fact that we

have normal minimizers only. This is a consequence of the fact that the final configuration

is free, see e.g. [63, Corollary 22.3].

Remark 6.30. The uniqueness of the maximizer of HN follows from the same motiva-

tions reported in Remark 6.24. Indeed, the form of the Hamiltonian implies that for each

(y(t), q(t), x(t), p(t)) ∈ R4d it holds

u(t) = arg max
u(t)∈U

HN (y(t), q(t), x(t), p(t), u(t)) ⇐⇒

⇐⇒ u(t) = arg max
u(t)∈U

(
m∑
k=1

qk(t) ·Bku(t)− γ(u(t))

)
.

In other terms, since the control acts on the y variables only, then we have a simpler

formulation for the maximization of the Hamiltonian HN .

We now want to embed solutions of the PMP for Problem 4 as solutions of the ex-

tended PMP for Problem 3. As a first step, we prove that pairs control-trajectories

(u∗N , (y
∗
N , q

∗
N , x

∗
N , p

∗
N )) satisfying system (6.40) have support uniformly bounded in time

and in the number of followers N ∈ N. To this end, for every N ∈ N we define the mapping

ΠN : R2dN → P1(R2d) as follows

ΠN : (x1, p1, . . . , xN , pN ) 7→ 1

N

N∑
i=1

δ(xi,Npi). (6.42)

We also introduce the auxiliary space Y ∆
= R2dm × P1(R2d), endowed with the distance

‖(y, q, ν)− (y′, q′, ν ′)‖Y
∆
= ‖y − y′‖+ ‖q − q′‖+W1(ν, ν ′). (6.43)

Proposition 6.31. Let y0 ∈ Rdm, µ0 ∈ Pc(Rd), and µ0
N be as in Definition 6.10–(i). Let

u∗N be a solution of Problem 4 with initial datum (y0, µ0
N ), and let (u∗N , (y

∗
N , q

∗
N , x

∗
N , p

∗
N ))

be a pair control-trajectory satisfying the PMP for Problem 4 with initial datum (y0, µ0
N )

and control u∗N given by Theorem 6.28.
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Then, by defining ν∗N (t)
∆
= ΠN (x∗N (t), p∗N (t), . . . , x∗N,N (t), p∗N,N (t)) for every t ∈ [0, T ], it

follows that the trajectories (y∗N , q
∗
N , ν

∗
N ) : [0, T ] → Y are equibounded and equi-Lipschitz

continuous.

Furthermore, there exists RT > 0, depending only on y0, supp(µ0), d, K, g, fk, Bk, U
and T , such that supp(ν∗N (·)) ⊆ B(0, RT ) for all N ∈ N. In particular, it holds

H(y∗N (t), q∗N (t), ν∗N (t), u∗N (t)) = Hc(y
∗
N (t), q∗N (t), ν∗N (t), u∗N (t)) for every t ∈ [0, T ].

Proof. As a first step, notice that the pair (y∗N (·), x∗N (·)) solves the system (6.14). It then

follows from (6.16) and (6.17) that there exist two positive constants ρT and ρ′T , not

depending on N such that it holds

‖y∗k,N (t)‖ ≤ ρT , ‖x∗i,N (t)‖ ≤ ρT , ‖ẏ∗k,N (t)‖ ≤ ρ′T , ‖ẋ∗i,N (t)‖ ≤ ρ′T , (6.44)

for all i = 1, . . . , N , for all k = 1, . . . ,m, and for a.e. t ∈ [0, T ]. It follows in particular that

there exists a uniform constant WT such that for all t ∈ [0, T ]∥∥∥∥∥ 1

N

N∑
i=1

ω(x∗i,N (t))

∥∥∥∥∥ ≤WT .

We now observe that, for any (y, q, x, p, u) ∈ R4d×L1([0, T ];U), by an explicit computation

follows

N∇xiHN (y, q, x, p, u) · el =

= N
ri
N
· 1

N

N∑
j=1

DK(xi − xj)el −N
N∑
j=1

rj
N
· 1

N
DK(xj − xi)el+

+N
ri
N
· ∇g(y)(xi)−N

m∑
k=1

qk ·
1

N
DK(yk − xi)el−

−N 1

N

(
∇ξ`

(
y, xi,

1
N

∑N
j=1 ω(xj)

)
· el+

+∇ς`
(
y, xi,

1
N

∑N
j=1 ω(xj)

)
Dω(xi) · el

)

=
1

N

N∑
j=1

(ri − rj) · (DK(xi − xj)el) + ri ·Dxg(y)(xi)−

−
m∑
k=1

qk · (DK(yk − xi)el)−∇ξ`
(
y, xi,

1
N

∑N
j=1 ω(xj)

)
· el−

−
(
∇ς`

(
y, xi,

1
N

∑N
j=1 ω(xj)

)
Dω(xi)

)
· el, (6.45)

for each i = 1, . . . , N and each l = 1, . . . , d (where we have used that DK is even and we

merged the first two terms).
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Therefore, since ṗ∗i,N (·) solves (6.40), by setting ṙ∗i,N (·) ∆
= Nṗ∗i,N (·), we get

−ṙ∗i,N (t) · el =
1

N

N∑
j=1

(r∗i,N (t)− r∗j,N (t)) · (DK(x∗i,N (t)− x∗j,N (t))el)+

+ r∗i,N (t) · (Dyg(y∗N (t))(x∗i,N (t))el)−
m∑
k=1

q∗k,N (t) · (DK(y∗k,N (t)− x∗i,N (t))el)−

−∇ξ`
(
y∗N (t), x∗i,N (t), 1

N

∑N
j=1 ω(x∗j,N (t))

)
· el−

−
(
∇ς`

(
y∗N (t), x∗i,N (t), 1

N

∑N
j=1 ω(x∗j,N (t))

)
Dω(x∗i,N (t))

)
· el,

for each i = 1, . . . , N , each l = 1, . . . , d, and for a.e. t ∈ [0, T ], where we have used the fact

that DK is even. We now denote with LT a uniform constant satisfying

‖DK‖L∞(B(0,ρT );Rd×d) ≤ LT , sup
|y|≤
√
mRT

‖Dyg(y)(·)‖L∞(B(0,ρT );Rd×d) ≤ LT ,

‖∇ξ`‖L∞(B(0,
√
mρT )×B(0,ρT )×B(0,WT );Rd) ≤ LT ,

‖∇ς`‖L∞(B(0,
√
mρT )×B(0,ρT )×B(0,WT );Rd) ≤ LT , ‖Dω‖L∞(B(0,ρT );Rd×d) ≤ LT ,

and we easily get the estimate

‖ṙ∗i,N (t)‖ ≤
√
dLT

2‖r∗i,N (t)‖+
1

N

N∑
j=1

‖r∗j,N (t)‖+
m∑
k=1

‖q∗k,N (t)‖+ 1 + LT

 (6.46)

for each i = 1, . . . , N and for a.e. t ∈ [0, T ]. An explicit computation of ∇ykHN and a

similar argument, possibly with another constant LT , show the estimate

‖q̇∗k,N (t)‖ ≤
√
dLT

(
1

N

N∑
i=1

‖r∗i,N (t)‖+ 2‖q∗k,N (t)‖+ LT

)
(6.47)

for each k = 1, . . . ,m and for a.e. t ∈ [0, T ]. We now set

εN (t)
∆
=

m∑
k=1

‖q∗k,N (t)‖+
1

N

N∑
i=1

‖r∗i,N (t)‖ for every t ∈ [0, T ],

and observe that it holds

|ε̇N (t)| ≤
m∑
k=1

‖q̇∗k,N (t)‖+
1

N

N∑
i=1

‖ṙ∗i,N (t)‖.

Therefore, (6.46) and (6.47) yield

|ε̇N (t)| ≤
√
dLT (4εN (t) + 1 + 2LT ) . (6.48)

Defining then the increasing functions ηN (t) through

ηN (t)
∆
= sup

τ∈[0,t]
εN (T − τ) for every t ∈ [0, T ],
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and observing that it holds ηN (0) = 0 for the boundary conditions in Theorem 6.28, from

(6.48) and Gronwall’s Lemma A.1 we obtain

ηN (τ) ≤
√
dLT τ(1 + 2LT )e(4

√
dLT )τ ,

and with this

εN (t) ≤ ηN (T ) ≤
√
dLTT (1 + 2LT )e(4

√
dLT )T ∆

= CT (6.49)

for all t ∈ [0, T ]. Plugging (6.49) into (6.48), again by Gronwall’s Lemma we get the

existence of a constant C ′T such that

|ε̇N (t)| ≤ C ′T (6.50)

for a.e. t ∈ [0, T ]. Since by definition of ν∗N (·) and standard properties of the Wasserstein

distance W1 it holds

W1(ν∗N (t+ τ), ν∗N (t)) ≤
√

2

(
1

N

N∑
i=1

‖x∗i,N (t+ τ)− x∗i,N (t)‖+

+
1

N

N∑
i=1

‖r∗i,N (t+ τ)− r∗i,N (t))‖

)
,

from the previous inequality, (6.44), (6.48), (6.49), and (6.50) we obtain that y∗N (·) and

q∗N (·) are equibounded, that there exist a constant denoted by RT for which supp(ν∗N (t)) ⊂
B(0, RT ) for all t ∈ [0, T ] and that (y∗N , q

∗
N , ν

∗
N ) : [0, T ] → Y is Lipschitz continuous with

Lipschitz constant uniform in N .

Proposition 6.32. Let N ∈ N and u∗N ∈ L1([0, T ];U) be an optimal control for Problem

4 with given initial datum (y0
N , x

0
N ) ∈ Rdm × RdN , and let (y∗N (·), q∗N (·), x∗N (·), p∗N (·)) ∈

Lip([0, T ],R2dm × R2dN ) denote the corresponding trajectory of the PMP.

Set ν∗N (t)
∆
= ΠN (x∗N (t), p∗N (t), . . . , x∗N,N (t), p∗N,N (t)) for every t ∈ [0, T ]. Then, the control

u∗N is optimal for Problem 3 and the pair control-trajectory (u∗N , (y
∗
N , q

∗
N , ν

∗
N )) satisfies the

extended PMP.

Proof. First observe that, by Proposition 6.31,

Hc(y
∗
N (t), q∗N (t), ν∗N (t), u∗N (t)) = H(y∗N (t), q∗N (t), ν∗N (t), u∗N (t))

holds for every t ∈ [0, T ]. Moreover, we have

u∗N (t) = arg max
u(t)∈U

HN (y∗N (t),q∗N (t), x∗N (t), p∗N (t), u(t)) ⇐⇒

⇐⇒ u∗N (t) = arg max
u(t)∈U

H(y∗N (t), q∗N (t), ν∗N (t), u(t)),

for every t ∈ [0, T ], due to the specific form of the Hamiltonian HN and H, see Remarks

6.24 and 6.30.



216 Mean-field sparse optimal control

We now prove that (for space reasons, we omit the time dependency){
ẏ∗k,N = ∇qkHN (y∗N , q

∗
N , x

∗
N , p

∗
N , u

∗
N ),

q̇∗k,N = −∇ykHN (y∗N , q
∗
N , x

∗
N , p

∗
N , u

∗
N ),

=⇒

{
ẏ∗k,N = ∇qkH(y∗N , q

∗
N , ν

∗
N , u

∗
N ),

q̇∗k,N = −∇ykH(y∗N , q
∗
N , ν

∗
N , u

∗
N ),

i.e., that if the (y, q) variables satisfy the PMP for Problem 4 then they satisfy the extended

PMP for Problem 3. It is sufficient to observe that x∗N and p∗N in HN can be substituted

by ν∗N as follows

HN (y∗N (t), q∗N (t), ν∗N (t), u∗N (t)) =

∫
R4d

r · (K ∗ π1#ν
∗
N (t))(x) dν∗N (t, x, r)+

+

∫
R2d

r · g(y∗N (t))(x) dν∗N (t, x, r)+

+
m∑
k=1

∫
R2d

q∗k,N (t) ·K(y∗k,N (t)− x) dν∗N (t, x, r)+

+
m∑
k=1

q∗k,N (t) · (fk(y∗k,N (t)) +Bku
∗
N (t))−

− L(y∗N (t), π1#ν
∗
N (t))− γ(u∗N (t)),

where we used the rescaled variable r = Np.

Comparing the above expression with that of H(y∗N (t), q∗N (t), ν∗N (t), u∗N (t)), one has that

their expressions coincide up to the first term. Since such first term is independent of yk
and qk, then ∇ykHN = ∇ykH and ∇qkHN = ∇qkH, hence the equations for ẏ∗k,N and q̇∗k,N
in the PMP for Problem 4 and in the extended PMP for Problem 3 coincide.

We now prove a similar result for the x∗i,N (·) and r∗i,N (·), with r∗i,N (·) = Np∗i,N (·). After

this change of variable, the third and the fourth equation in (6.40) become{
ẋ∗i,N (t) = N∇riHN (y∗N (t), q∗N (t), x∗N (t), p∗N (t), u∗N (t)),

ṙ∗i,N (t) = −N∇xiHN (y∗N (t), q∗N (t), x∗N (t), p∗N (t), u∗N (t)).

We want to prove that the following identity holds (again omitting the time dependency)

J(∇νHc(y
∗
N , q

∗
N , ν

∗
N , u

∗
N ))(x∗i,N , r

∗
i,N ) =

(
N∇riHN (y∗N , q

∗
N , x

∗
N , p

∗
N , u

∗
N )

−N∇xiHN (y∗N , q
∗
N , x

∗
N , p

∗
N , u

∗
N )

)
, (6.51)

i.e., that the Hamiltonian vector fields generated by H and HN coincide in each point of

the trajectory (x∗i,N (·), r∗i,N )(·). The presence of the constant N in the right-hand side is

due to the change of variables r = Np. By applying J−1 on both sides of (6.51), we need

to prove

∇νHc(y
∗
N , q

∗
N ,ν

∗
N , u

∗
N )(x∗i,N , r

∗
i,N ) · el =

= N∇xiHN (y∗N , q
∗
N , x

∗
N , p

∗
N , u

∗
N ) · el,

for l = 1, . . . , d, (6.52)

∇νHc(y
∗
N , q

∗
N ,ν

∗
N , u

∗
N )(x∗i,N , r

∗
i,N ) · el =

= N∇riHN (y∗N , q
∗
N , x

∗
N , p

∗
N , u

∗
N ) · el−d,

for l = d+ 1, . . . , 2d. (6.53)
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By writing explicitly the left hand sides of (6.52) and (6.53), by using the expressions

(6.38)–(6.39) and evaluating them in (x∗i,N , r
∗
i,N ), we have

∇νHc(y
∗
N , q

∗
N , ν

∗
N , u

∗
N )(x∗i,N , r

∗
i,N ) · el =

=
1

N

N∑
j=1

(r∗i,N − r∗j,N ) ·
(
DK(x∗i,N − x∗j,N )el

)
+ r∗i,N ·

(
Dxg(y∗N )(x∗i,N )el

)
−

−
m∑
k=1

q∗k,N ·
(
DK(y∗k,N − x∗i,N )el

)
−∇ξ`

(
y∗N , x

∗
i,N ,

1
N

∑N
j=1 ω(x∗j,N )

)
· el−

−
(
∇ς`

(
y∗N , x

∗
i,N ,

1
N

∑N
j=1 ω(x∗j,N )

)
Dω(x∗i,N )

)
· el,

for l = 1, . . . , d, so that (6.52) follows immediately from (6.45). Similarly, we have

∇νHc(y
∗
N , q

∗
N , ν

∗
N , u

∗
N )(x∗i,N , r

∗
i,N ) · el =

1

N

N∑
j=1

K(x∗i,N − x∗j,N ) · el−d + g(y∗N )(x∗i,N ) · el−d,

for l = d + 1, . . . , 2d, which coincides with the right hand side of (6.53) by an explicit

computation. After the identification ν∗N = ΠN (x∗1,N , p
∗
1,N , . . . , x

∗
N,N , p

∗
N,N ), the boundary

conditions of Problem 4 and Problem 3 coincide too, hence the result follows now by

(6.52)–(6.53) arguing, for instance, as in [106, Lemma 4.3].

Remark 6.33. It is interesting to observe that the process of rewriting a trajectory of

the PMP for Problem 4 in the empirical measure formulation depends on the number

N of followers, see the definition of ΠN in (6.42). This is a consequence of the fact that

the Hamiltonian of the PMP for Problem 4 actually depends on N . Indeed, consider

a population of followers composed of a unique agent with state and adjoint variables

(x1, p1), for which the first term of the Hamiltonian reads as p1 · g(y)(x1). Consider now

another population of followers composed of two agents (x1, p1) and (x2, p2) satisfying

x1 = x2 and p1 = p2, for which the first term of the Hamiltonian reads as 2p1 · g(y)(x1).

Clearly, in both cases the empirical measure in the state variables is µ1 = µ2 = δx1 , while

the definition of ΠN gives two different empirical measures for the cotangent bundle:

ν1 = δ(x1,p1) and ν2 = δ(x1,2p1)/2. This difference is needed to compensate the dependence

of the Hamiltonian of the PMP for Problem 4 on N .

6.4.2 The Wasserstein gradient

At the beginning of this section, we anticipated that the dynamics of ν∗(·) in (6.36) is

an Hamiltonian flow in the Wasserstein space of probability measures, in the sense of

[12]. This means that, for every t ∈ [0, T ], the vector field ∇νHc(ν
∗(t)) is an element

with minimal norm in the Fréchet subdifferential at the point ν∗(t) of the maximized

Hamiltonian Hc introduced in the statement of Theorem 6.23 (we drop for simplicity the

y, q and u dependency).

The proof of this fact shall follow the strategy adopted to obtain analogous results in [13,

Chapter 10], which however cannot be applied verbatim to our case due to the peculiar na-

ture of our operators. In order to use those techniques, we consider our functionals defined

on P2(R2d) instead than on P1(R2d). Since we have already proven in Proposition 6.31
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that, whenever we start from a compactly supported initial datum, the dynamics remains

compactly supported uniformly in time, this assumption does not alter our conclusions.

We start with some basic definitions and general results on functionals defined on P2(R2d):

the following one is motivated by Definition 10.3.1 and Remark 10.3.3 in [13].

Definition 6.34. Let ψ : P2(R2d) → (−∞,+∞] be a proper and lower semicontinuous

functional, and let

ν0 ∈ D(ψ)
∆
=
{
ν ∈ P2(R2d) : ψ(ν) < +∞

}
.

We say that w ∈ L2(R2d, ν0) belongs to the (Fréchet) subdifferential of ψ at ν0, in symbols

w ∈ ∂ψ(ν0) if and only if for any ν1 ∈ P2(R2d) it holds

ψ(ν1)− ψ(ν0) ≥ inf
ρ∈Γo(ν0,ν1)

∫
R4d

w(z0) · (z1 − z0)dρ(z0, z1) + o(W2(ν1, ν0)).

It can be seen [12] that whenever ∂ψ(ν0) is nonempty, it has an element with minimal

L2(R2d; ν0)-norm, which we call the Wasserstein gradient ∇νψ(ν0) of ψ at ν0.

Proposition 6.35 ([13, Theorem 10.3.10]). Fix the functional ψ : P2(R2d)→ (−∞,+∞].

Then, for every ν0 ∈ D(ψ), the metric slope

|∂ψ|(ν0)
∆
= lim sup

ν1→ν0

(ψ(ν1)− ψ(ν0))+

W2(ν1, ν0)

satisfies |∂ψ|(ν0) ≤ ‖w‖L2(R2d,ν0) for every w ∈ ∂ψ(ν0).

The following property shall be used to prove that the subdifferential of Hc is nonempty.

Definition 6.36. A proper, lower semicontinuous functional ψ : P2(Rn)→ (−∞,+∞] is

semiconvex along geodesics whenever, for every ν0, ν1 ∈ P2(Rn) and ρ ∈ Γo(ν0, ν1) there

exists C ∈ R for which for every s ∈ [0, 1] it holds

ψ(((1− s)π1 + sπ2)#ρ) ≤ (1− s)ψ(ν0) + sψ(ν1) + Cs(1− s)W2(ν0, ν1)2.

In what follows, we shall fix y, q ∈ Rdm and u ∈ L1([0, T ];U), omit the time dependency,

and write for the sake of compactness Hc(ν) in place of Hc(y, q, ν, u). Moreover, Ω shall

denote a convex, compact subset of R2d and z = (x, r) a variable in R2d.

Whenever supp(ν) ⊆ B(0, RT ), Hc(ν) can be rewritten as

Hc(ν) =
1

2

∫
R4d

F(z − z′)dν(z)ν(z′) +

∫
Rd
G(z)dν(z)−

∫
Rd
`(π1(z),

∫
ωπ1#ν)dν(z) +Q,

where we have denoted by

F(x, r)
∆
= r ·K(x) and G(x, r)

∆
= r · g(y)(x) +

m∑
k=1

qk ·K(yk − x),

and Q collects all the remaining terms not depending on ν. Notice that F is an even

function from hypothesis (K).
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In order to prove the semiconvexity of Hc, we shall establish the semiconvexity of the

following functionals for any ν satisfying supp(ν) ⊆ Ω:

Ĥ1
c(ν)

∆
=

1

2

∫
R4d

F̂(z − z′)dν(z)ν(z′) +

∫
Rd
Ĝ(z)dν(z),

Ĥ2
c(ν)

∆
=

∫
Rd

ˆ̀(z,
∫
ω̂ν)dν(z),

where F̂ , Ĝ, ˆ̀, and ω̂ are C2 functions. The desired result follows by noticing that Hc(ν) =

Ĥ1
c(ν) + Ĥ2

c(ν) for F̂ = F , Ĝ = G, ˆ̀= −` ◦ (π1, Id), ω̂ = ω ◦ π1 and Ω = B(0, RT ).

The following simple property is needed to prove semiconvexity of the above functionals.

Lemma 6.37. Let ν0, ν1 ∈ Pc(R2d) with support contained in Ω. Let ρ ∈ Γ(ν0, ν1) and

denote by

νs
∆
= ((1− s)π1 + sπ2)#ρ for every s ∈ [0, 1]. (6.54)

Then, it holds

supp(νs) ⊆ Ω for all s ∈ [0, 1].

Proof. We first notice, that for every ρ ∈ Γ(ν0, ν1) it holds

supp(ρ) ⊆ Ω× Ω. (6.55)

This follows from the identity

R4d\(Ω× Ω) = (R2d × (R2d\Ω)) ∪ ((R2d\Ω)× R2d)

and from the fact that both R2d×(R2d\Ω)) and (R2d\Ω)×R2d are ρ-null sets by hypothesis.

To prove the statement, it suffices to show that for all f ∈ C(R2d;R) satisfying f|Ω≡ 0 it

holds ∫
R2d

f dνs = 0, for every s ∈ [0, 1]. (6.56)

Indeed we have ∫
R2d

f dνs =

∫
R4d

f d((1− s)π1 + sπ2)#ρ(z0, z1)

=

∫
R4d

f((1− s)z0 + sz1) dρ(z0, z1)

=

∫
Ω×Ω

f((1− s)z0 + sz1) dρ(z0, z1),

since, by (6.55), supp(ρ) ⊆ Ω×Ω. From the convexity of Ω follows that (1−s)z0+sz1 ∈ Ω for

every s ∈ [0, 1], which, together with the assumption f|Ω≡ 0, yield (6.56), as desired.

In what follows, we shall make use of the following well-known result.

Remark 6.38. Let Ω be a convex, compact subset of R2d and let f ∈ C2(R2d;R). Then
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there exists CΩ,f ∈ R depending only on Ω and f such that

f((1− s)x0 + sx1) ≤ (1− s)f(x0) + sf(x1) + CΩ,fs(1− s)‖x0 − x1‖2, (6.57)

for every x0, x1 ∈ R2d and s ∈ [0, 1].

We now prove the semiconvexity of Ĥ1
c .

Lemma 6.39. Let ν0, ν1 ∈ Pc(R2d) and let ρ ∈ Γ(ν0, ν1). Then, there exists C ∈ R
independent of ν0 and ν1 for which

Ĥ1
c(((1− s)π1 + sπ2)#ρ) ≤ (1− s)Ĥ1

c(ν0) + sĤ1
c(ν1) + Cs(1− s)W2(ν0, ν1)2

holds for every s ∈ [0, 1].

Proof. We may assume supp(ν0), supp(ν1) ⊆ Ω for some convex and compact set Ω ⊂ R2d,

otherwise the inequality is trivial. Hence, from Lemma 6.37, it follows supp(νs) ⊆ Ω for

every s ∈ [0, 1]. But then, since F̂ and Ĝ are both C2, the result follows as in [13, Proposition

9.3.2, Proposition 9.3.5].

Corollary 6.40. Let ω̂ ∈ C2(R2d;Rd), ν0, ν1 ∈ Pc(R2d), ρ ∈ Γ(ν0, ν1) and define νs as in

(6.54) for s ∈ [0, 1]. If we set

ξs
∆
=

∫
R2d

ω̂dνs for every s ∈ [0, 1]. (6.58)

for every s ∈ [0, 1], then

‖ξs − (1− s)ξ0 − sξ1‖ ≤ Cs(1− s)W2(ν0, ν1)2 for every s ∈ [0, 1],

where C is independent of ν0 and ν1.

Proof. Follows from Lemma 6.39 applied first to the functions F̂ ≡ 0 and Ĝ = ω̂, and then

to F̂ ≡ 0 and Ĝ = −ω̂.

The semiconvexity of Ĥ2
c will be deduced as a corollary of the following estimate.

Lemma 6.41. Suppose that ˆ̀∈ C2(R2d×Rd;R), let z0, z1 ∈ Ω and set zs
∆
= (1−s)z0 +sz1

for all s ∈ [0, 1]. Furthermore, let ν0, ν1 ∈ Pc(R2d), ρ ∈ Γ(ν0, ν1) and define νs and ξs as

in (6.54) and (6.58) for s ∈ [0, 1]. Then, for all s ∈ [0, 1], it holds

ˆ̀(zs, ξs) ≤ (1− s)ˆ̀(z0, ξ0) + sˆ̀(z1, ξ1)+

+ CΩ,ˆ̀,ω̂s(1− s)W2(ν0, ν1)2 + CΩ,ˆ̀,ω̂s(1− s)‖z0 − z1‖2,

for some constant CΩ,ˆ̀,ω̂ depending only on Ω, ˆ̀ and ω̂.

Proof. Since Ω is convex, zs ∈ Ω for all s ∈ [0, 1]. Moreover, (1 − s)ξ0 + sξ1 ∈ Ω̂ for all

s ∈ [0, 1], for some convex and compact set Ω̂ ⊂ Rd. Notice that from (6.57) follows

ˆ̀(zs, (1− s)ξ0 + sξ1) ≤ (1− s)ˆ̀(z0, ξ0) + sˆ̀(z1, ξ1)+

+ C
Ω,Ω̂

s(1− s)
(
‖z0 − z1‖2 + ‖ξ0 − ξ1‖2

)
,

(6.59)



6.4 Mean-field Pontryagin Maximum Principle 221

and from the definition of ξs and Jensen’s inequality, we get

‖ξ0 − ξ1‖2 ≤ LipΩ(ω)W1(ν0, ν1)2 ≤ LipΩ(ω)W2(ν0, ν1)2. (6.60)

Moreover, for every s ∈ [0, 1] it holds

‖ˆ̀(zs, ξs)− ˆ̀(zs, (1− s)ξ0 + sξ1)‖ ≤ Lip
Ω×Ω̂
‖ξs − (1− s)ξ0 − sξ1‖

≤ Lip
Ω×Ω̂

s(1− s)CW2(ν0, ν1)2.
(6.61)

Hence, for every s ∈ [0, 1], using (6.59), (6.60) and (6.61), we get

ˆ̀(zs, ξs) = ˆ̀(zs, ξs)− ˆ̀(zs, (1− s)ξ0 + sξ1) + ˆ̀(zs, (1− s)ξ0 + sξ1)

≤ (1− s)ˆ̀(z0, ξ0) + sˆ̀(z1, ξ1) + CΩ,ˆ̀,ω̂s(1− s)W2(ν0, ν1)2+

+ CΩ,ˆ̀,ω̂s(1− s)‖z0 − z1‖2.

This concludes the proof.

Corollary 6.42. Let ν0, ν1 ∈ Pc(R2d) and ρ ∈ Γo(ν0, ν1). Then, there exists C ∈ R
independent of ν0 and ν1 for which

Ĥ2
c(((1− s)π1 + sπ2)#ρ) ≤ (1− s)Ĥ2

c(ν0) + sĤ2
c(ν1) + Cs(1− s)W2(ν0, ν1)2

holds for every s ∈ [0, 1].

Proof. Notice that, by Lemma 6.37, Ĥ2
c(νs) can be rewritten as

Ĥ2
c(νs) =

∫
Ω×Ω

ˆ̀(zs, ξs)dρ(z0, z1).

Furthermore, since ρ ∈ Γo(ν0, ν1) it holds∫
Ω×Ω
‖z0 − z1‖2dρ(z0, z1) =

∫
R4d

‖z0 − z1‖2dρ(z0, z1) =W2(ν0, ν1)2.

The statement then follows from Lemma 6.41.

Proposition 6.43. The functional Hc is semiconvex along geodesics.

Proof. Follows directly from Lemma 6.39 and Corollary 6.42, by noticing that Hc(ν) =

Ĥ1
c(ν) + Ĥ2

c(ν) for the choices F̂ = F , Ĝ = G, ˆ̀ = −` ◦ (π1, Id), ω̂ = ω ◦ π1 and Ω =

B(0, RT ).

We define the vector field ∇νL : R2d → R2d as

∇νL(z)
∆
=

(
∇ξ`(y, π1(z),

∫
ωπ1#ν) +∇ς`(y, π1(z),

∫
ωπ1#ν)Dω(π1(z))

0

)
for every z ∈ R2d. This notation is reminiscent of the fact that this vector field will

eventually turn out to be the 2-Wasserstein gradient of the functional L, as it will follow



222 Mean-field sparse optimal control

from Theorem 6.45 in the case F = G ≡ 0. We can thus define our candidate vector field

for the Wasserstein gradient ∇νHc(ν0) in the case that supp(ν0) ⊆ B(0, RT ):

w
∆
= (∇F) ∗ ν +∇G −∇νL. (6.62)

Notice that, by the set of hypotheses (H), w is a continuous function in z, and hence it is

well-defined ν-a.e.

Lemma 6.44. Let ν ∈ Pc(R2d). Then w defined by (6.62) belongs to Lp(R2d, ν) for every

p ∈ [1,+∞] and it satisfies∫
R4d

w(z0) · (z1 − z0)dρ(z0, z1) =

∫
R6d

(
∇F(z0 − z2) +∇G(z0)−

−∇νL(z0)
)
· (z1 − z0)dρ(z0, z1)dν(z2),

(6.63)

for every plan ρ ∈ Γ(ν, ν ′) such that ν ′ ∈ Pc(R2d).

Proof. Since w is continuous, the fact that w is Lp(R2d, ν)-integrable follows the fact that

ν has compact support. Equation (6.63) then follows by Fubini-Tonelli and from the fact

that ρ is compactly supported too by Remark 6.37.

Theorem 6.45. Let ν ∈ P2(R2d) be such that supp(ν) ⊆ B(0, RT ). Then ν ∈ D(|∂Hc|)
if and only if w as in (6.62) belongs to L2(R2d, ν). In this case, ‖w‖L2(R2d,ν) = |∂Hc|(ν),

i.e., w is an element with minimal norm in ∂Hc(ν).

Proof. We start by assuming that ν ∈ P2(R2d) satisfies |∂Hc|(ν) < +∞ and proving that

this implies that w belongs to L2(R2d, ν) and that ‖w‖L2(R2d,ν) ≤ |∂Hc|(ν). We compute the

directional derivative of Hc along a direction induced by the transport map Id+ ξ, where

ξ is a smooth function with compact support such that supp((Id+ sξ)#ν) ⊆ B(0, RT ) for

any sufficiently small s > 0. If we denote by

L1(s)
∆
= `(y, π1(z0) + s(π1 ◦ ξ)(z1),

∫
ωd(π1 ◦ (Id+ sξ))#ν),

L2(s)
∆
= `(y, π1(z0),

∫
ωd(π1 ◦ (Id+ sξ))#ν),

then the map

s 7→ F((z0 − z1) + s(ξ(z0)− ξ(z1)))−F(z0 − z1)

s
+

+
G(z0 + sξ(z0))− G(z0)

s
− L1(s)− L2(s)

s
− L2(s)− L2(0)

s
,

as s→ 0 converges to then the map

∇F(z0 − z1) · (ξ(z0)− ξ(z1)) + (∇G(z0)−∇νL(z0)) · ξ(z0).

Since ν has compact support and ∇F is odd, the dominated convergence theorem and the

identity (6.63) imply

+∞ > lim
s→0

Hc((Id+ sξ)#ν)−Hc(ν)

s
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=
1

2

∫
R4d

∇F(z0 − z1) · (ξ(z0)− ξ(z1))dν(z0)dν(z1)+

+

∫
R2d

(∇G(z0)−∇νL(z0)) · ξ(z0)dν(z0)

=

∫
R2d

w(z0) · ξ(z0)dν(z0).

From the last inequality, the assumption that |∂Hc|(ν) < +∞ and using the estimate

W2((Id+ sξ)#ν, ν) ≤ s‖ξ‖L2(R2d,ν),

we get ∫
R2d

w(z0) · ξ(z0)dν(z0) ≤ |∂Hc|(ν)‖ξ‖L2(R2d,ν),

and finally ∣∣∣∣∫
R2d

w(z0) · ξ(z0)dν(z0)

∣∣∣∣ ≤ |∂Hc|(ν)‖ξ‖L2(R2d,ν).

This proves that w ∈ L2(R2d, ν) and that ‖w‖L2(R2d,ν) ≤ |∂Hc|(ν).

We now prove that the vector w belongs to ∂Hc; this shall imply that w ∈ D(|∂Hc|) and

that it is a minimal selection in ∂Hc(ν), by the previous estimate and Proposition 6.35.

For proving the claim, we start by remarking that by Proposition 6.35, the vector w ∈
L2
ν(R2d). We further consider a test measure ν, a plan ρ ∈ Γo(ν, ν), and we compute the

directional derivative of Hc along the direction induced by ρ. Denoting by

L1(s)
∆
= `(y, (1− s)z0 + sz1,

∫
ωd((1− s)π1 + sπ2)#ρ),

L2(s)
∆
= `(y, z0,

∫
ωd((1− s)π1 + sπ2)#ρ),

for every s ∈ [0, 1], then the map

s 7→ F((1− s)(z0 − z0) + s(z1 − z1))−F(z0 − z0)

s
+

+
G((1− s)z0 + sz1)− G(z0)

s
− L1(s)− L2(s)

s
− L2(s)− L2(0)

s
,

as s→ 0 converges to

∇F(z0 − z0) · ((z1 − z0)− (z1 − z0)) + (∇G(z0)−∇νL(z0)) · (z1 − z0).

Hence, since ∇F is odd, we get from Proposition 6.43, the dominated convergence theorem

and the identity (6.63), the following inequality

Hc(ν)−Hc(ν) ≥ lim
s→0

Hc(((1− s)π1 + sπ2)#ρ)−Hc(ν)

s
+ o(W2(ν, ν))

=
1

2

∫
R8d

∇F(z0 − z0) · ((z1 − z0)− (z1 − z0)) dρ(z0, z1)dρ(z0, z1)
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+

∫
R4d

(∇G(z0)−∇νL(z0)) · (z1 − z0)dρ(z0, z1) + o(W2(ν, ν))

=

∫
R4d

w(z0) · (z1 − z0)dρ(z0, z1) + o(W2(ν, ν)).

This proves that w ∈ ∂Hc(ν).

6.4.3 Proof of Theorem 6.23

In this section, we prove Theorem 6.23. We first recall that we already shown in Corollary

6.20 that there exists a mean-field optimal control for Problem 3. We now want to prove

that all mean-field optimal controls are solutions of the extended PMP.

Let u∗ be a mean-field optimal control for Problem 3 with initial datum (y0, µ0). Fix µ0
N

as in Definition 6.10–(i), and consider a sequence (u∗N )N∈N of optimal controls of Problem

4 with initial datum (y0, µ0
N ), having a subsequence (which, for simplicity, we do not

relabel) weakly converging to u∗ in L1([0, T ];U). Denote by (y∗N (·), x∗N (·)) the trajectory

of (6.14) corresponding to the control u∗N and the initial datum (y0, µ0
N ) of Problem 4.

Compute the corresponding pair control-trajectory (u∗N , (y
∗
N , q

∗
N , x

∗
N , p

∗
N )) satisfying the

PMP for Problem 4, that exists due to Theorem 6.28. Set ν∗N (·) ∆
= ΠN (x∗N (·), p∗N (·)) and

r∗N (·) ∆
= Np∗N (·). By Proposition 6.31, the trajectories (y∗N (·), q∗N (·), ν∗N (·)) are equibounded

and equi-Lipschitz from [0, T ] to the space Y endowed with the distance (6.43), and the

empirical measure ν∗N (·) have equibounded support. Moreover, the pair (u∗N , (y
∗
N , q

∗
N , ν

∗
N ))

satisfies the extended PMP by Proposition 6.32.

By the Ascoli-Arzelà theorem, we have that there exists a subsequence, which we denote

again with (y∗N , q
∗
N , ν

∗
N ), that converges to (y∗, q∗, ν∗) : [0, T ]→ Y uniformly with respect

to t ∈ [0, T ]. Since by definition π1#ν
∗
N = µ∗N , by the convergence of µ∗N to µ∗ proven

in Proposition 6.13 we get π1#ν
∗ = µ∗. Observe that (y∗(·), q∗(·), ν∗(·)) is a Lipschitz

function with respect to time and ν∗(·) has support contained in B(0, RT ) for all t ∈ [0, T ].

Moreover, by the boundary conditions for each N , we have that y∗(0) = y0, π1#(ν∗(0)) =

µ0 and q∗(T ) = 0, π2#(ν∗(T )) = δ0.

Fix now t ∈ [0, T ]. To shorten notation, let E : Rdm × RD → R be the functional, strictly

concave with respect to u, defined as

E(q, u)
∆
=

m∑
k=1

qk ·Bku− γ(u) .

Recall that by (6.40) and by Remark 6.30, u∗N (t) satisfies

u∗N (t) = arg max
u(t)∈U

E(q∗N (t), u(t)) ,

since the maximum is uniquely determined by strict concavity. Since U is bounded, by

definition E(·, u) is continuous uniformly with respect to the variable u ∈ U . The conver-

gence of q∗N (t) to q∗(t) then implies that every accumulation point vt ∈ U of u∗N (t) must

satisfy

vt = arg max
u(t)∈U

E(q∗(t), u(t)) (6.64)
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and is therefore uniquely determined. This shows that the sequence (u∗N )N∈N is pointwise

converging in [0, T ] to the function v(t)
∆
= vt. Due to the boundedness of U , we further have

that u∗N → v in L1([0, T ];U). Since u∗N was already converging to u∗ weakly in L1([0, T ];U)

it must be u∗(t) = v(t) for a.e. t ∈ (0, T ), which together with (6.64) implies that

u∗N → u∗ strongly in L1([0, T ];U) (6.65)

and that

u∗(t) = arg max
u(t)∈U

E(q∗(t), u(t)),

for a.e. t ∈ [0, T ]. Due to the explicit expression of H(y, q, ν, u) in (6.37), this is equivalent

to say that

H(y∗(t), q∗(t), ν∗(t), u∗(t)) = max
u(t)∈U

H(y∗(t), q∗(t), ν∗(t), u(t))

for a.e. t ∈ [0, T ].

We finally prove that (y∗(·), q∗(·), ν∗(·)) satisfies the Hamiltonian system (6.36) with con-

trol u∗. Due to equi-Lipschitz continuity, we have that the derivatives (ẏ∗N , q̇
∗
N ), and ∂ν∗N/∂t

converge to (ẏ∗, q̇∗), and ∂ν∗/∂t weakly in L1([0, T ];R2dm) and in the sense of distribu-

tions, respectively. Observe now that by (6.38) and (6.39) the vector field ∇νHc(y, q, ν)(·, ·)
– which is independent of u, so we can omit u – is continuously depending on the variables

(y, q, ν). By the uniform convergence of (y∗N , q
∗
N , ν

∗
N ) and since supp(ν∗N (t)) ⊆ B(0, RT )

for all t ∈ [0, T ] we get that

∇νHc(y
∗
N (t), q∗N (t), ν∗N (t))(x, r)→ ∇νHc(y

∗(t), q∗(t), ν∗(t))(x, r)

uniformly with respect to t ∈ [0, T ] and (x, r) ∈ B(0, RT ). From this, using again the

narrow convergence of ν∗N (t) to ν∗(t) and since supp(ν∗N (t)) ⊆ B(0, RT ), we then get the

uniform bound

‖ (J∇νHc(y
∗
N (t), q∗N (t), ν∗N (t))) ν∗N (t)‖Mb(RD,RD) ≤ CT ,

for some constant CT independent of t ∈ [0, T ], as well as the narrow convergence

(J∇νHc(y
∗
N (t), q∗N (t), ν∗N (t))) ν∗N (t) ⇀ (J∇νHc(y

∗(t), q∗(t), ν∗(t))) ν∗(t)

for all t ∈ [0, T ]. Testing with functions φ ∈ C∞c ([0, T ]×R2d;R), the two properties above

are enough to show that

∇(x,r) · ((J∇νHc(y
∗
N (t), q∗N (t), ν∗N (t)))ν∗N (t)) ⇀ ∇(x,r) · ((J∇νHc(y

∗(t), q∗(t), ν∗(t)))ν∗(t))

in the sense of distributions, so that ν∗(·) solves the third equation in (6.36).

For all k = 1, . . . ,m, taking derivatives in the explicit expression in (6.37) and using

the definition of Hc, we have that ∇ykHc(y, q, ν, u) is actually independent of u and is

continuous with respect to the Euclidean convergence on (y, q) and the narrow convergence

on measures ν with compact support in a fixed ball B(0, RT ). Therefore, since (y∗N , q
∗
N , ν

∗
N )

converges to (y∗, q∗, ν∗) uniformly with respect to t ∈ [0, T ], and there is no dependence
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on u, for all k = 1, . . . ,m we have that

∇ykHc(y
∗
N (t), q∗N (t), ν∗N (t), u∗N (t))→ ∇ykHc(y

∗(t), q∗(t), ν∗(t), u∗(t))

in Rd uniformly with respect to t ∈ [0, T ]. It then follows that q∗(·) solves the second

equation in (6.36).

A similar argument, also using the strong L1 convergence of u∗N to u∗ proved in (6.65),

shows that

∇qkHc(y
∗
N (t), q∗N (t), ν∗N (t), u∗N (t))→ ∇qkHc(y

∗(t), q∗(t), ν∗(t), u∗(t))

in L1([0, T ];Rd) for all k = 1, . . . ,m, so that y∗(·) solves the first equation in (6.36). This

concludes the proof of Theorem 6.23.

6.4.4 An example

We now show the application of the extended Pontryagin Maximum Principle to the control

problem (6.10). For simplicity of notation, we study the d = 1 dimensional problem. Given

a positive function a ∈ C2(R+;R+) (like the Cucker-Smale kernel (1.7)), the mean-field

limit for N →∞ is given by (see Proposition 6.13)

ẏk = wk,

ẇk = (G[a] ∗ µ)(yk, wk) +
1

m

m∑
j=1

a(|yk − yj |)(wj − wk) + uk,
k = 1, . . . ,m,

∂µ

∂t
= −v · ∇xµ−∇v ·

G[a] ∗ µ+
1

m

m∑
j=1

a(|x− yj |)(wj − v)

µ

 ,
(6.66)

where µ = µ(x, v) is the density of followers and G[a](x, v) = −a(|x|)v. The time depen-

dency is omitted to keep the notation compact.

Notice that this is a particular case of system (6.12), where the state variables for the

leaders and the followers are

yk =

(
yk
wk

)
and x =

(
x

v

)
,

one sets

y = (y1, . . . ,ym) , K(x) =

(
0

G[a](x)

)
,

fk(y) =

 wk
1

m

m∑
j=1

a(|yk − yj |)(wj − wk)

 , g(y)(x) =

 v

1

m

m∑
j=1

a(|x− yj |)(wj − v)

 ,

and, for every k = 1, . . . ,m, Bk is the 2×m matrix defined as

Bk :

 u1
...

um

 ∈ Rm 7→
(

0

uk

)
∈ R2.



6.4 Mean-field Pontryagin Maximum Principle 227

Notice that since a(| · |) is a radial function, the function G[a], and thus K, is odd.

As seen since Chapter 1, a standard problem in the study of Cucker-Smale systems is to

find conditions to ensure flocking, i.e., alignment of the whole crowd towards the same

velocity. For this reason, it is interesting in our case to study the minimization of the

variance of the crowd, by choosing

L(y, µ) =

∫
R2d

(
2

m

m∑
k=1

|wk|2 + 2|v|2
)
dµ(x, v)−

∣∣∣∣∣ 1

m

m∑
k=1

wk +

∫
R2d

vdµ(x, v)

∣∣∣∣∣
2

=

∫
R2d

(
2

m

m∑
k=1

|wk|2 + 2|v|2 −

(
1

m

m∑
k=1

wk +

∫
v′dµ(x′, v′)

)
×

×

(
1

m

m∑
k=1

wk + v

))
dµ(x, v). (6.67)

(For simplicity of computation, we have considered the minimization of 4 times the vari-

ance.) The Lagrangian L falls into hypothesis (L) since, by choosing ω(x) = v and

`(y,x, ς) =
2

m

m∑
k=1

|wk|2 + 2|v|2 −

(
1

m

m∑
k=1

wk + ς

)
·

(
1

m

m∑
k=1

wk + v

)
,

it is of the form
∫
R2d `(y,x,

∫
ωµ)dµ(x). For the control constraints, we set U = [−1, 1]m

and we choose to penalize the L2-norm of the control, i.e., γ(u) = |u|2.

Remark 6.46. Other forms for the Lagrangian L can be of interest. For example, one

may want to drive the crowd to a given fixed velocity v̂. In this case, one can consider the

minimization of the functional

L̂(y, µ) =

∫
R2d

(
1

2m

m∑
k=1

|wk − v̂|2 +
1

2
|v − v̂|2

)
dµ(x, v),

that is again of the form
∫
R2d `(y,x,

∫
ωµ)dµ(x), with ` not depending on its third variable,

this time.

Since the set of hypotheses (H) are clearly satisfied by the above choice of the functionals,

we can apply the extended Pontryagin Maximum Principle to the optimal control problem

with cost functional (6.67) constrained by system (6.66). We introduce the dual variables

of yk and x, denoted by qk
∆
= (qk, zk) and r

∆
= (r, s), respectively. The Hamiltonian H in

(6.37) can be found by direct substitution:

H(y,q, ν, u) =
1

2

∫
R8

(s− s′)a(|x− x′|)(v′ − v)dν(x′, v′, r′, s′)dν(x, v, r, s)+

+

∫
R4

rv + s
1

m

m∑
j=1

a(|x− yj |)(wj − v)

 dν(x, v, r, s)+

+

m∑
k=1

(
qkwk + zk

∫
R4

a(|yk − x|)(v − wk)dν(x, v, r, s)

)
+
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+
m∑
k=1

(
zk

1

m

m∑
j=1

a(|yk − yj |)(wj − wk) + zkuk

)
−

−
∫
R2

`(y,x,
∫
ωµ) dµ(x)− |u|2.

The components of the vector field ∇νHc(y,q, ν, u
∗) can be computed at every point

(x, r) = (x, v, r, s) ∈ R4 and are given by

∇νHc · e1 =

∫
R4

(s− s′)Da(|x− x′|)(v′ − v)dν(x′, v′, r′, s′)+

+ s
1

m

m∑
j=1

Da(|x− yj |)(wj − v)−
m∑
k=1

zkDa(|yk − x|)(v − wk),

∇νHc · e2 = −
∫
R4

(s− s′)a(|x− x′|)dν(x′, v′, r′, s′) + r − s 1

m

m∑
j=1

a(|x− yj |)+

+

m∑
k=1

zk a(|yk − x|)− 3v +
2

m

m∑
k=1

wk +

∫
R2

vdµ(x, v),

∇νHc · e3 = v,

∇νHc · e4 = (G[a] ∗ µ)(x, v) +
1

m

m∑
j=1

a(|x− yj |)(wj − v).

In the above expressions, Da(| · |) reduces to the derivative of the function a(| · |). The

optimal control can be explicitly computed by (6.41) as follows

u∗k(y,q) =


zk
2

if zk ∈ [−2, 2],

sgn(zk) otherwise.

Since µ is the first marginal of ν, the PMP dynamics of the state and adjoint variables is

ẏk = wk,

ẇk = (G[a] ∗ µ)(yk, wk) +
1

m

m∑
k=1

a(|yk − yj |)(vj − vk) + u∗k(y,q),

q̇k =
1

m

∫
R4

s Da(|x− yk|)(wk − v)dν(x, v, r, s)−

− zk
∫
R4

Da(|yk − x|)(v − wk)dν(x, v, r, s)− 1

m

∑
j 6=k

zjDa(|yk − yj |)(wj − wk),

żk = −
∫
R4

(
1

m
s− zk

)
a(|x− yk|)dν(x, v, r, s)− qk +

∑
j 6=k

zj a(|yk − yj |)−

− 4

m
wk +

2

m2

m∑
j=1

wj +
2

m

∫
R2

v dµ(x, v),

∂ν

∂t
= −∇(x,v,r,s) · ((J∇νHc(y,q, ν, u

∗))ν) .

We remark that, as it happens for the standard PMP, the explicit computation of the third

and the fourth components gives the vector field determining the dynamics of µ (6.66).



CHAPTER 7

Invisible sparse control

We now employ the indirect sparse control strategy developed in Chapter 6 to address the

problem of the evacuation of a crowd of individuals from an unknown environment under

limited visibility. First, we present a discrete model for pedestrians in such situations,

where the alignment dynamics (typical of uncertain behavior) is coupled with a random

walk (modeling the need to explore the unknown area). We then introduce few controlled

unrecognizable leaders to improve the evacuation process. To treat situations where the

number of followers makes the discrete model numerically unfeasible, we obtain a mean-

field approximation of the discrete model by means of the grazing interaction limit, outlined

in Chapter 4. Numerical simulations show the efficiency of the control strategy in both

the discrete and the continuous setting, which is then implemented in a real experiment

with people.

7.1 Bottom-up and top-down control strategies

In this chapter we are concerned with the multiscale modeling and control of a human

crowd which leaves an unknown area when the visibility is limited. In such scenarios, we

claim that people exhibit two opposite tendencies: on one hand, since agents are assumed

to be not informed about the positions of the exits, they tend to spread out in order to

explore the environment efficiently; on the other hand they follow the group mates in the

hope that they have already found a way out (herding effect). We assume that agents are

selfish and do not intend to help the others: hence, they do not communicate with other

agents or share information directly with them.

Controlling these natural behaviors is not easy, especially in emergency or panic situations.

Typically, the emergency management actors (e.g., police, stewards) adopt a top-down

approach: they receive information about the current situation, update the evacuation

strategies, and finally inform people communicating directives. It is useful to stress here

that this approach can be very inefficient in large environments (where communications
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to people are difficult) and in panic situations (since “instinctive” behavior prevails over

the rational one). Let us also mention that in some cases people are simply not prone to

follow authority’s directives because they are opposing it (e.g., in public demonstrations).

For such reasons, we explore the possibility of controlling crowds adopting a bottom-up

approach. Control is obtained by means of special agents (the leaders) who are hidden in

the crowd, and are not recognized by the mass as special. From the modeling point of view,

this is translated by the fact that the individuals of the crowd (the followers) interact in

the same way with both the other crowd mates and the leaders.

This control technique, known in the literature as invisible or soft control, was first studied

in [73] in connection with a repulsion-alignment-attraction model: the authors show that

a little percentage of informed agents pointing towards a target is sufficient to steer the

whole population to it. Invisible control was successfully implemented in real experiments

involving animals, where leaders come in the form of disguised robots; see, e.g., [117],

treating the case of cockroaches and [44], which study the response of zebrafish. A Vicsek-

like model with a single invisible leader is considered in [118, 119].

7.2 Model guidelines

In order to deal with the curse of dimensionality, followers shall be described below both

at the microscopic level (i.e., when they are seen as discrete) and at the mesoscopic one

(when they are considered as a continuum). The general features of the model discussed

here are valid at any scale of observation.

The model for followers is characterized by an exploration phase and an evacuation phase.

This is achieved by a combination of repulsion, alignment, self-propulsion and random

(social) force, together with the introduction of an exit’s visibility area (modeling the fact

that exits can be seen only from specific locations). We also consider both metrical and

topological interactions so to avoid unnatural all-to-all interactions. A few leaders, not

recognized as such by the crowd and implementing the bottom-up control strategy, are

added to the model with a special, controlled dynamics.

First- vs. second-order model One can notice that walking people, animals and

robots are in general able to adjust their velocity almost instantaneously, reducing to

a negligible duration the acceleration/deceleration phase. For this reason, in principle a

second-order (inertia-based) framework does not appear to be the most natural setting

to describe their dynamics. However, as argued in Section 1.2, if we include in the model

the tendency of the agents to move together and to align with group mates, we implicitly

assume that agents can perceive the velocity of the others: this makes unavoidable the use

of a second-order model, where both position and velocity are state variables, but only

velocity is the consensus parameter (consensus here is intended in the sense of Definition

1.4). See [77, Section 4.2] for a general discussion on this point. In our model we adopt

a mixed approach, describing leaders by a first-order model (since they do not need to

align) and followers by a second-order one. In the latter case, the small inertia is obtained

by means of a fast relaxation towards the target velocity.

Metrical vs. topological interactions The interaction of one agent with group mates

is said to be metrical if it involves only mates within a predefined sensory region, regardless
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of the number of individuals which actually fall in it. Interaction is instead called topological

if it involves a predefined number of group mates regardless of their distance from the

considered agent. Again, in our model we adopt a mixed approach, assuming short-range

interactions to be metrical and long-range ones to be topological.

Isotropic vs. anisotropic interactions Living agents (people, animals) are generally

asymmetric, in the sense that they better perceive stimuli coming from their “front”, rather

than their “back”. For instance, in pedestrian models interactions are usually restricted to

the half-space in front of the person, since the human visual field is approximately 180◦.

Nevertheless, humans can easily see all around them simply turning the head. In the case

we are interested in, people have no idea of the location of their target, hence we expect

that they often look around to explore the environment and see the behavior of the others.

This is why we prefer to adhere to isotropic interactions.

Let us describe the specific social forces acting on the agents.

• Leaders

– Leaders are subject to an isotropic metrical short-range repulsion force directed

against all the others, translating the fact that they want to avoid collisions and

that a maximal density exists.

– Leaders are assumed to know the environment and the self-organizing features

of the crowd. They respond to an optimal force which is the result of an of-

fline optimization procedure, defined as to minimizing some cost functional (see

Section 7.5).

• Followers

– Similarly to leaders, followers respond to an isotropic metrical short-range re-

pulsion force directed against all the others.

– Followers tend to a desired velocity which corresponds to the velocity they would

have if they were alone in the domain. This term takes into account the fact

that the environment is unknown. Followers describe a random walk if the exit

is not visible (exploration phase) or a sharp motion toward the exit if the exit is

visible (evacuation phase). In addition, we include a self-propulsion term which

translates the tendency to reach a given characteristic speed (modulus of the

velocity), see Remark 6.8.

– If the exit is not visible, we also prescribe that followers adhere to a “stick-

to-your-neighbors” strategy, in the hope to stay with agents who already know

where to go. As already discussed in Chapter 1, the behavior to move coherently

with the other members of the group can be mathematically described by an

isotropic alignment force. Motivated by empirical evidences, such force will be

topological, so that agents will only align with their closest neighbors.

Concerning pedestrian modeling, virtually any kind of models have been investigated so

far: for a quick introduction, we refer the reader to the reviews [25, 123] and the books

[77, 132]. Some papers deal specifically with evacuation problems: a very good source of

references is the recent paper [1], where evacuation models both with and without top-

down optimal planning search are discussed. Evacuation problems were studied by means
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of lattice models [62, 113], social force models [152], cellular automata models [1, 179],

mesoscopic models [2], and macroscopic models [55]. Limited visibility issues were also

considered in [55, 62, 113].

7.3 The microscopic model

Formally, we consider N followers and m leaders in dimension d (even if, for practical

reasons, we shall pay particular attention to the case d = 2), and as in Section 6.2 we

assume that m � N . We denote by Ω ⊆ Rd the walking area and by xτ ∈ Ω the target

point (i.e., the exit). To define the target’s visibility area, we consider the set Σ, with

xτ ∈ Σ ⊂ Ω, and we assume that the target is completely visible from any point belonging

to Σ and completely invisible from any point belonging to Ω\Σ.

For every i = 1, . . . , N , let (xi(t), vi(t)) ∈ R2d denote position and velocity of the agents

belonging to the population of followers at time t ≥ 0 and, for every k = 1, . . . ,m, let

(yk(t), wk(t)) ∈ R2d denote position and velocity of the agents among the population of

leaders at time t ≥ 0.

Let us also define x
∆
= (x1, . . . , xN ) and y

∆
= (y1, . . . , ym). By BN (x; x,y) we denote the

minimal ball centered on x encompassing at least N agents among followers and leaders,

and by N ∗ the actual number of agents in BN (x; x,y). Note that N ∗ ≥ N .

Remark 7.1. The computation of BN (x; x,y) requires the knowledge of the positions of

all the agents, since all the distances ‖xi − x‖, i = 1, . . . , N , and ‖yk − x‖, k = 1, . . . ,m

must be evaluated in order to find the N closest agents to x. This motivates the explicit

dependency on the vectors of positions x and y.

The microscopic dynamics described by the two populations is given by the following set

of ODEs: for i = 1, . . . , N and k = 1, . . . ,m,

ẋi(t) = vi(t),

v̇i(t) = A(xi(t), vi(t)) +

N∑
j=1

Kf(xi(t), vi(t), xj(t), vj(t); x(t),y(t))+

+
m∑
l=1

Hf(xi(t), vi(t), yl(t), wl(t); x(t),y(t)),

ẏk(t) = wk(t) =

N∑
j=1

Kl(yk(t), xj(t)) +

m∑
l=1

Hl(yk(t), yl(t)) + uk(t).

(7.1)

We will consider the case where

• A is a self-propulsion term, given by the relaxation toward a random direction or

the relaxation toward a unit vector pointing to the target (the choice depends on the

position), plus a term which translates the tendency to reach a given characteristic

speed s ≥ 0 (the one described in Remark 6.8), i.e.,

A(x, v)
∆
= θ(x)Cz(z − v) + (1− θ(x))Cτ

(
xτ − x
‖xτ − x‖

− v
)

+ Cs(s
2 − ‖v‖2)v, (7.2)
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where θ : Rd → [0, 1] is the characteristic function of Ω\Σ, i.e., θ(x) = χΩ\Σ(x), the

vector z is a d-dimensional random vector with normal distribution N (0, σ2), and

Cz, Cτ , Cs are positive constants.

• The interactions follower-follower and follower-leader coincide and are equal to

Kf(x, v, y, w; x,y)
∆
= −Cf

rRγ,r(x, y) + θ(x)
Ca
N ∗

(w − v)χBN (x;x,y)(y),

Hf(x, v, y, w; x,y)
∆
= Kf(x, v, y, w; x,y),

(7.3)

for given positive constants Cf
r , Ca, r, and γ, where

Rγ,r(x, y)
∆
=

e
−‖y−x‖γ y − x

‖y − x‖
if y ∈ B(x, r)\{x},

1 otherwise,

models a (metrical) repulsive force, and the second term accounts for the (topolog-

ical) alignment force, which vanishes inside Σ. Notice that, once the summations

over the agents
∑

jK
f and

∑
lH

f are done, the topological alignment term models

the tendency of the followers to relax toward the average velocity of the N closest

agents. With the choice Kf = Hf the leaders are not recognized by the followers as

special. This feature opens a wide range of new applications, including the control

of crowds not prone to follow authority’s directives.

• The interactions leader-follower and leader-leader reduce to a mere (metrical) repul-

sion, i.e.,

Kl(x, y) = Hl(x, y)
∆
= Cl

rRζ,r(x, y),

where Cl
r > 0 and ζ > 0 are in general different from Cf

r and γ, respectively. Note

that here the repulsion force is interpreted as a velocity field, while for followers it

was an acceleration field.

• uk is the control variable belonging to the set of admissible control functions Adm.

Remark 7.2. The leader dynamics do not depend explicitly on the agents’ velocities.

This allows us to consider a first-order model for the leaders. However, a generalization to

fully second-order model is straightforward.

Remark 7.3. The behaviour of the leaders is entirely encapsulated in the control term

u but for a short-range repulsion force. The latter should be indeed interpreted as a force

due to the presence of the others, thereby non controllable.

7.4 Formal derivation of a Boltzmann-type equation

The main difference between the above model and system (6.10) is given by the scaling

of the force exerted on each agent: in system (7.1) we are not in the presence of the

mean-field scaling, and the reason lies in the fact that we want leaders and followers to

have the same weight in the followers’ dynamics (in (6.10) theses weights were 1/m and

1/N , respectively). To pass to the mean-field we have then to adopt the Boltzmann binary



234 Invisible sparse control

interaction approach followed by the grazing interaction limit, a procedure outlined in

Section 4.4.

7.4.1 Binary interactions for system (7.1)

We consider the evolution of the distribution of followers at time t ≥ 0, denoted by

f(t) ∈ Mb(R2d), together with the microscopic equations for the leaders (whose number

is small by design). As in (4.30), we denote by ρ[f ](t) the total mass of followers at time

t ≥ 0, i.e.,

ρ[f ](t)
∆
=

∫
R2d

f(t, x, y) dx dv,

We introduce, for symmetry reasons, the distribution of leaders g and its total mass

g(t, x, v)
∆
=

m∑
k=1

δ(yk(t),wk(t))(x, v) and ρ[g](t)
∆
=

∫
R2d

g(t, x, v) dx dv. (7.4)

We shall require both masses to be constant and equal to N and m, respectively. This

means that for every t ≥ 0 it holds

ρ[f ](t) = ρ[f ] = N and ρ[g](t) = ρ[g] = m.

Similarly to what we did in Section 4.4, we shall describe the evolution of f by means of

a Boltzmann-type equation obtained from binary interactions between f and itself and

between f and the mass of leaders g. The binary interactions will be such that the grazing

interaction limit recovers a Fokker-Planck-type equation corresponding to the dynamics of

followers in (7.1), to be coupled with the previously presented ODE dynamics for leaders

(see equation (7.14) below for the resulting system).

To derive the Boltzmann-like dynamics, we assume that, before interacting, each follower

has at his disposal the values x and y that he needs in order to compute its trajectory:

hence, in a binary interaction between two followers with state parameters (x, v) and

(x̂, v̂), the value of Kf(x, v, x̂, v̂; x,y) does not depend on x and y. In the case of Kf of the

form (7.3), this means that the ball BN (x; x,y) and the value of N ∗ have been already

computed before interacting.

Moreover, since we are considering the distributions f and g of followers and leaders, re-

spectively, the vectors x and y are derived from f and g by means of their first marginals,

indicated by π1#f and π1#g, respectively, which give the spatial variables of those dis-

tribution. Hence, since no confusion arises, we write Kf(x, v, x̂, v̂;π1#f, π1#g) in place of

Kf(x, v, x̂, v̂; x,y) to stress the dependency of this term on f and g.

We thus consider two followers with state parameter (x, v) and (x̂, v̂) respectively, and we

describe the evolution of their post-interaction velocities as{
v∗ = v + ηf [θ(x)Czξ + S(x, v) + ρ[f ]Kf(x, v, x̂, v̂;π1#f, π1#g)] ,

v̂∗ = v̂ + ηf [θ(x̂)Czξ + S(x̂, v̂) + ρ[f ]Kf(x̂, v̂, x, v;π1#f, π1#g)] ,
(7.5)

where ηf is the strength of interaction among followers, ξ is a random variables whose

entries are i.i.d. following a normal distribution with mean 0, variance ς2 (which shall be
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related to the variance σ2 of the random vector z in (7.2) as in (4.35)), taking values in a

set B, and S is defined as the deterministic part of the self-propulsion term (7.2),

S(x, v) = −θ(x)Czv + (1− θ(x))Cτ

(
xτ − x
‖xτ − x‖

− v
)

+ Cs(s
2 − ‖v‖2)v. (7.6)

As in Section 4.4.1, we need to assume that the change of variables (7.5) satisfies the

hypothesis (Inv) of being invertible.

We then consider the same follower as before with state parameters (x, v) and a leader

agent (x̃, ṽ); in this case the modified velocities satisfy{
v∗∗ = v + ηlρ[g]Hf(x, v, ỹ, w̃;π1#f, π1#g),

ṽ∗ = ṽ,
(7.7)

where ηl is the strength of the interaction between followers and leaders. Note that (7.7)

accounts only for the change of the followers’ velocities, since leaders are not evolving via

binary interactions. Again, we assume that (7.7) satisfies the hypothesis (Inv)

The time evolution of f is then given by a balance between bilinear gain and loss of space

and velocity terms according to the two binary interactions (7.5) and (7.7), quantitatively

described by the Boltzmann-type equation

∂f

∂t
(t) + v · ∇xf(t) = λfQ(f, f)(t) + λlQ(f, g)(t), (7.8)

where λf and λl stand for the interaction frequencies among followers and between follow-

ers and leaders, respectively. The Boltzmann-Povzner operators Q(f, f) and Q(f, g) are

defined as

Q(f, f)(t, x, v)
∆
= E

[∫
R4d

(
1

Jf
f(t, x∗, v∗)f(t, x̂∗, v̂∗)−f(t, x, v)f(t, x̂, v̂)

)
dx̂ dv̂

]
, (7.9)

Q(f, g)(t, x, v)
∆
= E

[∫
R4d

(
1

Jl
f(t, x∗∗, v∗∗)g(t, x̃∗, ṽ∗)−f(t, x, v)g(t, x̃, ṽ)

)
dx̃ dṽ

]
. (7.10)

In the expression above, the couples (x∗, v∗) and (x̂∗, v̂∗) are the pre-interaction states that

generates (x, v) and (x̂, v̂) via (7.5), and Jf is the Jacobian of the change of variables given

by (7.5) (well-defined by (Inv)). Similarly, (x∗∗, v∗∗) and (x̃∗, ṽ∗) are the pre-interaction

states that generates (x, v) and (x̃, ṽ) via (7.7), and Jl is the Jacobian of the change of

variables given by (7.7). As in (4.28), the expected value E is computed with respect to

ξ ∈ B.

Remark 7.4. If we would have opted for a description of agents as hard-sphere particles,

the arising Boltzmann equation (7.8) would be of Enskog-type, see [170]. The relationship

between the hard- and soft-sphere descriptions (i.e., where repulsive forces between point

masses are considered, instead) has been deeply discussed, for instance, in [14]. In our

model, the repulsive force Rγ,r is not singular at the origin for computational reasons,

therefore the parameters γ and r have to be chosen properly to avoid arbitrarily high

density concentrations.

Equation (7.8) is then to be coupled with the ODE dynamics of the leaders from system
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(7.1). The controlled ODE-PDE dynamics obtained in this way is
∂f

∂t
(t) + v · ∇xf(t) = λfQ(f, f)(t) + λlQ(f, g)(t),

ẏk(t) = wk(t) =

∫
R2d

Kl(yk(t), x)f(t, x, v) dx dv +
m∑
l=1

Hl(yk(t), yl(t)) + uk(t).
(7.11)

Since we are not limiting our study to the functions S, Kf, Hf, Kl and Hl introduced

in Section 7.3 (hence, allowing for the possibility of nonsmooth and singular kernels), we

say that (f, y1, w1, . . . , ym, wm) ∈Mb(R2d)×R2dm is admissible if the following quantities

exist and are finite:

(i)
∫
R2d S(x, v)f(x, v) dx dv,

(ii)
∫
R4d K

f(x, v, x̂, v̂;π1#f,y)f(x, v)f(x̂, v̂) dx dv dx̂ dv̂,

(iii)
∑m

l=1

∫
R2d H

f(x, v, yl, wl;π1#f,y)f(x, v) dx dv,

(iv)
∫
R2d K

l(yk, x)f(x, v) dx dv for every k = 1, . . . ,m,

(v)
∑m

l=1H
l(yk, yl) for every k = 1, . . . ,m.

Consequently, we introduce our definition of solution for system (7.11).

Definition 7.5. Fix T > 0, δ > 0, and u : [0, T ]→ R2dm. By a δ-weak solution of system

(7.11) with control u and initial datum (f0, y0
1, . . . , y

0
m) ∈ Mb(R2d)× Rdm in the interval

[0, T ], we mean any (f, y1, . . . , ym) ∈ L2([0, T ];Mb(R2d))×W 1,∞([0, T ];Rdm) such that:

(i) f(0, x, v) = f0(x, v) for every (x, v) ∈ R2d;

(ii) the vector (f(t), y1(t), ẏ1(t), . . . , ym(t), ẏm(t)) is admissible for every t ∈ [0, T ];

(iii) there exists R > 0 depending only on (f0, y0
1, . . . , y

0
m), T , δ, u, θ, S, Kf, Hf, Kl,

and Hl, such that supp(f(t)) ⊆ B(0, R) for every t ∈ [0, T ];

(iv) ρ[f ](t) = N for every t ∈ [0, T ];

(v) f(·) satisfies the weak form of the equation (7.8), i.e., for every ϕ ∈ Tδ and every

t ∈ (0, T ] it holds

∂

∂t
〈f(t), ϕ〉+ 〈f(t), v · ∇xϕ〉 = λf 〈Q(f, f)(t), ϕ〉+ λl 〈Q(f, g)(t), ϕ〉 ,

where

〈Q(f, f)(t), ϕ〉=E
[∫

R4d

(ϕ(x, v∗)−ϕ(x, v)) f(t, x, v)f(t, x̂, v̂) dx dv dx̂ dv̂

]
,

〈Q(f, g)(t), ϕ〉=E
[∫

R4d

(ϕ(x, v∗∗)−ϕ(x, v)) f(t, x, v)g(t, x̃, ṽ) dx dv dx̃ dṽ

]
,

and where v∗ and v∗∗ are given by (7.5) and (7.7), respectively;
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(vi) for every k = 1, . . . ,m, yk(·) satisfies

ẏk(t) = wk(t) =

∫
R2d

Kl(yk(t), x)f(t, x, v) dx dv +
m∑
l=1

Hl(yk(t), yl(t)) + uk(t),

in the Carathéodory sense for every t ∈ [0, T ].

In what follows, we shall assume that a solution of (7.11) in the sense of Definition 7.5

exists (see also Remark 4.21), and we shall provide a mean-field approximation of the

Boltzmann-like equation (7.8) via the grazing interaction limit procedure.

7.4.2 Mean-field via grazing interaction limit

Similarly to Section 4.4.2, we pass to scale ηf, ηl, λf, λl and ς2 with respect to a common

parameter ε > 0 in such a way that we obtain for ε → 0 the Fokker-Planck operator

associated to the discrete dynamics of followers in system (7.1) given by

FP (t, x, v)
∆
= −∇v ·

(
G[f, g](t, x, v)f(t, x, v)

)
+

1

2
σ2(θ(x)Cz)

2∆vf(t, x, v),

where G[f, g](t, x, v)
∆
= S(x, v) +H[f ](t, x, v) +H[g](t, x, v), and

H[f ](t, x, v)
∆
=

∫
R2d

Kf(x, v, x̂, v̂;π1#f(t), π1#g(t))f(t, x̂, v̂) dx̂ dv̂,

H[g](t, x, v)
∆
=

∫
R2d

Hf(x, v, x̃, ṽ;π1#f(t), π1#g(t))g(t, x̃, ṽ) dx̃ dṽ.

Indeed, it can be seen by direct substitution that if (x, v) : [0, T ]→ R2dN is a solution of

the followers’ dynamics of system (7.1), then the curve f : [0, T ] → Mb(R2d) defined for

every t ∈ [0, T ] as f(t) =
∑N

i=1 δ(xi(t),vi(t)) satisfies

∂f

∂t
(t) + v · ∇xf(t) = FP (t, x, v)

for every t ≥ 0. More precisely, we set

ηf = ε, ηl = ε, λf =
1

ερ[f ]
, λl =

1

ερ[g]
, ς2 =

σ2

ε
, (7.12)

and we apply the machinery of Section 4.4.2 separately to the operators λfQ(f, f) and

λfQ(f, g) in order to pass to the mean-field. Remember that we assumed ρ[f ](t) = ρ[f ] =

N and ρ[g](t) = ρ[g] = m for every t ≥ 0.

Let us fix T > 0, δ > 0, ε > 0 a control u : [0, T ] → R2dm and an initial datum

(f0, y0
1, . . . , y

0
m) ∈ Mb(R2d) × Rdm. Consider a δ-weak solution (f(·), y1(·), . . . , ym(·)) of

system (7.11) with control u, initial datum (f0, y0
1, . . . , y

0
m) and define g as in (7.4). Let

the scale (7.12) holds for the chosen ε. Moreover, suppose that E
[
‖ξ‖2+δ

]
< +∞ and that

θ, S, Kf and Hf belong to Lploc for p = 2, 2 + δ.

Denote by Q(f, f)
∆
= Qε(f, f) the collisional operator (7.9) associated to the scaling (7.12)

for the chosen ε > 0. Since the binary interactions (7.5) correspond to (4.27) for the
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choices α(x, v) = θ(x)Cz, β(x, v) = S(x, v), and γ(x, v, x̂, v̂) = Kf(x, v, x̂, v̂, π1#f, π1#g),

then analogous computations to those employed to prove Theorem 4.23 lead to

λf〈Q(f, f), ϕ〉 →
〈
f,∇vϕ · (S +H[f ]) +

1

2
σ2(θCz)

2∆vϕ

〉
for ε → 0. On the other hand, the binary interactions (7.7) correspond to (4.27) for the

choices α = β ≡ 0 and γ(x, v, x̂, v̂) = Hf(x, v, x̂, v̂, π1#f, π1#g). Therefore, if we denote by

Q(f, g)
∆
= Qε(f, g) the collisional operator (7.10) associated to the scaling (7.12) for the

chosen ε > 0, the same strategy used for λf〈Q(f, f) implies this time that

λl〈Q(f, g), ϕ〉 → 〈f,∇vϕ · H[g]〉

for ε→ 0. Putting together the above limits, by Remark 4.22 we obtain the weak formu-

lation of a Fokker-Planck-type equation for the followers’ dynamics as ε→ 0:

∂

∂t
〈f(t), ϕ〉+ 〈f(t), v · ∇xϕ〉 =

〈
f(t),∇vϕ · G [f, g] (t) +

1

2
σ2(θCz)

2∆vϕ

〉
. (7.13)

Being ϕ compactly supported, equation (7.13) can be recast in strong form by means

of integration by parts. Coupling the resulting PDE with the microscopic ODEs for the

leaders we eventually obtain the system
∂

∂t
f(t) + v · ∇xf(t) = −∇v · (G [f, g] (t)f(t)) +

1

2
σ2(θCz)

2∆vf(t),

ẏk(t) = wk(t) =

∫
R2d

Kl(yk(t), x)f(t, x, v) dx dv +
m∑
l=1

Hl(yk(t), yl(t)) + uk(t).
(7.14)

Let us stress again that, assuming f(t) to be the empirical measure f(t) =
∑N

i=1 δ(xi(t),vi(t))

concentrated on the trajectories (x(·), v(·)) of the microscopic dynamic (7.1), we recover

again the original microscopic model.

We have thus obtained the following

Corollary 7.6. Fix T > 0, δ > 0 and u : [0, T ] → R2dm, and let, for every ε > 0,

(f ε(·), yε1(·), . . . , yεm(·)) be a δ-weak solution of (7.11) corresponding to the control u and

the initial condition (f0, y0
1, . . . , y

0
m), and where the quantities ηf, ηl, λf, λl, and ς2 are

rescaled with respect to ε according to (7.12). Suppose that

(i) E
[
‖ξ‖2+δ

]
is finite, and

(ii) the functions θ, S, Kf, and Hf are in Lploc for p = 2, 2 + δ.

Then, as ε → 0, the solutions (f ε(·), yε1(·), . . . , yεm(·)) converges pointwise, up to a sub-

sequence, to (f(·), y1(·), . . . , ym(·)), where f(·) satisfies the Fokker-Planck-type equation

(7.13) with initial datum (f0, y0
1, . . . , y

0
m), and for every k = 1, . . . ,m, yk(·) satisfies

ẏk(t) = wk(t) =

∫
R2d

Kl(yk(t), x)f(t, x, v) dx dv +

m∑
l=1

Hl(yk(t), yl(t)) + uk(t),

yk(0) = y0
k.
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Remark 7.7. The hypothesis of admissibility in Definition 7.5 makes sure that all the

integrals considered in the proof of Corollary 7.6 exist and are finite.

Remark 7.8. The choice of the functions θ, S,Kf and Hf made in (7.6) and (7.3) clearly

satisfy the hypotheses of Corollary 7.6 for any δ > 0. Hence, we expect the simulation

of system (7.11) with the scaling (7.12) to be a good approximation of the ones of the

original microscopic model (7.1) for sufficiently small values of ε.

7.5 Optimal control of the crowd

In this section we discuss how one can (optimally) control the crowd of followers by means

of “invisible” leaders, whose dynamics is given by control strategies minimizing certain

cost functionals.

7.5.1 Group splitting and influence of the leaders

It is well known that, in the case of alignment-dominated models, the invisibility of leaders

is not a limitation per se, but nothing is known about more complex models. In particular,

the coupling between random walk and alignment gives rise to interesting phenomena, see

[173]. Notice that, in order to fit real behavior (see also Section 7.7), the ratio between

random walk force and alignment force should be large enough to assure a complete

exploration of the domain, and small enough to catch the herding behavior. However,

this also narrows the choice of parameters.

To fix the ideas, we plot a typical outcome of the microsimulator when the crowd is far

away from the exit. At the initial time, agents are uniformly distributed in a square,

see Figure 7.1. We refer to this situation as Setting 0 (model parameters for this and

following simulations are reported in Table 7.1). With no leaders, the group splits in

several subgroups, each of them having a common direction of motion (local consensus

is reached in very short time), see Figure 7.1-left. With 5 leaders moving rightward, the

crowd reaches immediately a consensus and align with leaders, see Figure 7.1-center. If,

for some reason, leaders cease to be influential, the crowd tend to split again, see Figure

7.1-right.

Setting m N N Cf
r Cl

r Ca Cz Cτ Cs s2 r = ζ γ

0 0-5 150 10 2 1.5 2 0.25 – 1 0.5 0.4 1

1 0-3 150 10 2 1.5 3 0.2 1 1 0.5 0.4 1

2 0-2 100 10 2 1.5 3 0.2 1 1 0.5 0.4 1

3 0-6 30-70 10 1 0 – – 1 1 0.5 0.5 1

Table 7.1: Model parameters.

This makes clear how difficult it is to control the crowd in this scenario, since leaders have

to fight continuously against the natural tendency of the crowd to split in subgroups and

move randomly, even after that a consensus is reached, see [119].

A natural question is about the minimum number of leaders needed to lead the whole crowd
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Figure 7.1: Setting 0 (no exit is visible here). Microscopic dynamics. The crowd is initially
confined in the green dashed square. Leaders’ trajectories are in magenta, followers’ are
in blue. Final positions of followers are in red. Left: no leaders. Center: 5 leaders moving
rightward. Right: 5 leaders moving rightward, disappearing after a short time.

to consensus, i.e., to align all the agents along a desired direction. Numerical simulations

suggests that this number strongly depends on the initial conditions. Table 7.2 gives a

rough idea in the case of multiple runs with random initial data.

#leaders 1 2 3 4 5

consensus reached 0% 1% 27% 58% 100%

Table 7.2: Number of leaders versus percentage of runs where consensus is reached.

At mesoscopic level we consider the control of the Boltzmann-type dynamics (7.11), where

we account for small values of the scaling parameter ε, in order to be sufficiently close

to the Fokker-Planck-type model (7.14). In this case, the control through few microscopic

leaders has to face the tendencies of the continuous density to spread around the domain

and to locally align with the surrounding mass. Moreover, their action is weakened by the

type of interaction considered. Figure 7.2 shows the results corresponding to the kinetic

density in the Setting 0. Unlike the microscopic case, no splitting occurs where there is no

action of the leaders. Instead, the mass smears out around the domain, due to the diffusion

term.
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Figure 7.2: Setting 0 (no exit is visible here). Mesoscopic dynamics. The crowd density
is initially confined in the green dashed square shown in the left figure. Left: no lead-
ers. Center: 5 leaders moving rightward all the time. Right: 5 leaders moving rightward,
disappearing after a short time.
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7.5.2 Optimization problem

The functional to be minimized can be chosen in several ways. The effectiveness mostly

depends on the optimization method which is used afterwards. The most natural functional

is the evacuation time,

min {t > 0 : xi(t) /∈ Ω for all i = 1, . . . , N} , (7.15)

subject to (7.1) or (7.11) and with u ∈ Adm. Concerning the set of admissible controls

Adm, we only impose a box constraint of the form u(t) ∈ U for every t ∈ [0, T ], where

T > 0 is a sufficiently large time horizon and U is some compact subset of Rdm.

Another cost functional, more affordable by standard methods [6, 39], is

`(x,y, u) = ωf
N∑
i=1

‖xi − xτ‖2 + ωl
N∑
i=1

m∑
k=1

‖xi − yk‖2 + ωc
m∑
k=1

‖uk‖2, (7.16)

for some positive constants ωf, ωl, and ωc. The first term promotes the fact that followers

have to reach the exit while the second forces leaders to keep contact with the crowd. The

last term penalizes excessive velocities. This minimization is performed at every instant

(instantaneous control), or along a fixed time frame [ti, tf ]

min
u∈Adm

∫ tf

ti

`(x(t),y(t), u(t)) dt, subject to (7.1) or (7.11). (7.17)

With regards to the mesoscopic scale, both functionals (7.15) and (7.16) can be considered,

however at the continuous level the presence of few invisible leaders does not assure that the

whole mass of followers is evacuated. The major difficulty to reach a complete evacuation

of the continuous density is mainly due to the presence of the diffusion term and to the

invisible interaction with respect to the leaders. Therefore a more appropriate functional

is given by the mass evacuated at the final time T ,

min
u∈Adm

∫
Rd

∫
Ω\E

f(T, x, v) dx dv subject to (7.11), (7.18)

where E is a set containing the exit xτ and representing the zone in which agents can

be considered safe (one could think of xτ as the center of the rendezvous zone in case of

emergency and E as the rendezvous zone itself).

Remark 7.9. We will not require that leaders reach the exit, but only the followers.

Remark 7.10. We shall not address here the issue of the relationship between the micro-

scopic and the mesoscopic optimal control problems. We point out that we are not under

the hypotheses of Theorem 6.18 due to the lack of mean-field scaling and the presence of

discontinuous interaction terms in the dynamics. Despite that, since the current situation

bears several similarities with that of Chapter 6, we expect the optimal strategies of the

continuous problem to be a reasonable approximation of those of the discrete problem

whenever the number of followers is sufficiently high. Such intuition is partially corrobo-

rated by the numerical results we shall present in the next section, which show that some
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distinctive features are shared by the optimal strategies of both problems.

The optimization techniques we shall use to find numerically the minimizer of the above

functionals are:

• Model predictive control: a computationally efficient way to address the optimal

control problem (7.17) is by means of a relaxed approach known as model predictive

control (MPC) [142]. We consider a sampling of the dynamics (7.1) at every time

interval ∆t, and the following minimization problem over Nmpc time steps, starting

from the current time step n̄,

min
u∈Adm

n̄+Nmpc−1∑
n=n̄

`(x(n∆t),y(n∆t), u(n∆t)) (7.19)

generating an optimal sequence of controls {u(n̄∆t), . . . , u((n̄+Nmpc−1)∆t)}, from

which only the first term is taken to evolve the dynamics for a time ∆t, to recast

the minimization problem over an updated time frame n̄ ← n̄ + 1. Note that for

Nmpc = 2, the MPC approach recovers an instantaneous controller, whereas for

Nmpc = (tf − ti)/∆t it solves the full time frame problem (7.17). Such flexibility

is complemented with a robust behavior, as the optimization is re-initialized every

time step, allowing to address perturbations along the optimal trajectory.

• Modified compass search: when the cost functional is highly irregular and the

search of local minima is particularly difficult, it could be convenient to move to-

wards random methods as compass search (see [18] and references therein), genetic

algorithms, or particle swarm optimization. In the following we describe a compass

search method that works surprisingly well for our problem.

First of all, we consider only piecewise constant trajectories, introducing suitable

switching times for the leaders’ controls. More precisely, we assume that leaders

move at constant velocity for a given fixed time interval and, when the switching

time is reached, a new velocity vector is chosen. Therefore, the control variables are

the velocities at the switching times for each leader. Note that controlling directly the

velocities rather than the acceleration makes the optimization problem much simpler

because minimal control variations have an immediate impact on the dynamics.

Starting from an initial guess, at each iteration the optimization algorithm modifies

the current best control strategy found so far by means of small random variations

of the current values. Then, the cost functional is evaluated. If the variation is

advantageous (the cost decreases), the variation is kept, otherwise it is discarded.

The method stops when the strategy cannot be improved further. As initial guess for

the strategy, leaders move at constant speed along the direction joining the target

with their position at initial time t = 0.

7.6 Numerical tests

In what follows we present some numerical tests to validate our modeling setting at the

microscopic and mesoscopic level.



7.6 Numerical tests 243

The microscopic model (7.1) is discretized by means of the explicit Euler method with

a time step ∆t = 0.1. The evolution of the kinetic density in (7.14) is approximated by

means of binary interaction algorithms, which approximates the Boltzmann dynamics (7.8)

with a meshless Monte-Carlo method for small values of the parameter ε, as presented in

[7]. We choose ε = 0.02, ∆t = 0.01 and a sample of Ns = 10000 particles to reconstruct

the kinetic density. This type of approach is inspired by numerical methods for plasma

physics and it allows to solve the interaction dynamics with a reduced computational cost

compared with mesh-based methods, and an accuracy of O(N
−1/2
s ).

Concerning optimization, in the microscopic case we adopt either the compass search with

functional (7.15) or MPC with functional (7.17). In the mesoscopic case we adopt the

compass search with functional (7.18).

We consider three settings for pedestrians, without and with obstacles, hereafter referred

to as Setting 1, 2, and 3, respectively. In Setting 1 we set the compass search switching

times every 20 time steps, and in Setting 2 every 50, having fixed the maximal random

variation to 1 for each component of the velocity. In Setting 1, the inner optimization block

of the MPC procedure is performed via a direct formulation, by means of the fmincon

routine in Matlab, which solves the optimization problem via an SQP method.

7.6.1 Setting 1

To begin with, let us consider the case of a large room with no obstacles, see Figure 7.3.
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Figure 7.3: Setting 1. Left: initial positions of followers (circles) and leaders (squares).
Right: uniform density of followers and the microscopic leaders (squares).

The exit is a point located at xτ = (30, 10) which can be reached from any direction. We

set Σ =
{
x ∈ R2 : ‖x− xτ‖ < 4

}
. This simple setting helps elucidating the role and the

interplay of the different terms of our model. Followers are initially randomly distributed

in the domain [17, 29] × [6.5, 13.5] with velocity (0, 0). Leaders, if present, are located to

the left of the crowd. Parameters are reported in Table 7.1.

7.6.1.1 Microscopic model

Figure 7.4-first row shows the evolution of the agents computed by the microscopic model,

without leaders. Followers having a direct view of the exit immediately point towards it,

and some group mates close to them follow thanks to the alignment force. On the contrary,

farthest people split in several but cohesive groups with random direction and never reach

the exit.

Figure 7.4-second row shows the evolution of the agents with three leaders. The leaders’
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Figure 7.4: Setting 1. Microscopic dynamics. First row: no leaders. Second row: three
leaders, go-to-target strategy. Third row: three leaders, optimal strategy (computed with
the compass search method).

strategy is defined manually. More precisely, at any time the control is equal to the unit

vector pointing towards the exit from the current position. Hereafter we refer to this

strategy as “go-to-target”. Notice that the final leaders’ trajectories are not straight lines

because of the additional repulsive force. As it can be seen, the crowd behavior changes

completely since, this time, the whole crowd reaches the exit. However, followers form a

heavy congestion around the exit which delays notably the evacuation. This suggests that

the strategy of the leaders is not optimal and that it can be improved by an optimization

method. The shape of the congestion is circular: this is perfectly in line with the results

of other social force models as well as physical observation, which shows the formation of

an “arch” near the exits. The arch is correctly substituted here by a full circle due to the

absence of walls.

Figure 7.4-third row shows the evolution of the agents with three leaders and the optimal

strategy obtained by the compass search algorithm. Surprisingly enough, the optimizator

prescribes that leaders should divert some pedestrians from the right direction, in order to

not steer the whole crowd to the exit at the same time. In this way, congestion is avoided

and pedestrian flow through the exit is increased.

In this test we have also run the MPC optimization, including a box constraint of the type

u(t) ∈ U = [−1, 1]2m for every t ≥ 0. We choose ωf = 1, ωl = 1e − 5, and ωc = 1e − 5.

MPC results are consistent in the sense that for Nmpc = 2, the algorithm recovers a

controlled behavior similar to the application of the instantaneous controller (or go-to-

target strategy). Increasing the time frame up to Nmpc = 6 improves both congestion and
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evacuation times, but results still remain non competitive if compared to the whole time

frame optimization performed with a compass search.

In Figure 7.5 we compare the occupancy of the exit’s visibility zone as a function of

time for go-to-target strategy and optimal strategies (compass search, 2-step, and 6-step

MPC). We also show the decrease of the value function as a function of attempts (compass

search) and time (MPC). Evacuation times are compared in Table 7.3. It can be seen that

only the long-term optimization strategies are efficient, being able to moderate congestion

and clogging around the exit. This suggests a quite unethical but effective evacuation
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Figure 7.5: Setting 1. Optimization of the microscopic dynamics. Top-left: occupancy of
the exit’s visibility zone Σ as a function of time for optimal strategy (compass search) and
go-to-target strategy. Top-right: decrease of the value function (7.15) as a function of the
iterations of the compass search (for 50 and 150 followers). Bottom: MPC optimization.
occupancy of the exit’s visibility zone Σ as a function of time, CPU time of the optimization
call embedded in the MPC solver, and the evolution of the corresponding value (2-step
and 6-step).

no leaders go-to-target 2-MPC 6-MPC CS (IG)

N = 50 335 297 342 278 248 (318)

N = 150 ∞ 629 619 491 459 (554)

Table 7.3: Setting 1. Evacuation times (time steps). CS=compass search, IG=initial guess.

procedure, namely misleading some people to a false target and then leading them back

to the right one, when exit conditions are safer. Notice that, in real-life situations, most

of the injuries are actually caused by overcompression and suffocation rather than the
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present danger.

7.6.1.2 Mesoscopic model

We consider here the case of a continuous density of followers. Figure 7.6-first row shows

the evolution of the uncontrolled system of followers. Due to the diffusion term and the

topological alignment, large part of the mass spreads around the domain and is not able

to reach the target exit.

In Figure 7.6-second row we take into account the action of three leaders, driven by a

go-to-target strategy defined as in the microscopic case. It is clear that also in this case

the action of leaders is able to influence the system and promote the evacuation, but the

presence of the diffusive term causes the dispersion of part of the continuous density. The

result is that part of the mass is not able to evacuate, unlike the microscopic case.

In order to improve the go-to-target strategy, we rely on the compass search method to

minimize – differently from the microscopic case – the objective functional (7.18), i.e., the

total mass evacuated at final time. Figure 7.6-third row sketches the optimal strategy found

in this way: on one hand, the two external leaders go directly towards the exit, evacuating

part of the density; on the other hand the central leader moves slowly backward, misleading

part of the density and only later it moves forward towards the exit. The efficiency of the

leaders’ strategy is due in particular by the latter movement of the last leader, which is

able to gather the followers’ density left behind by the others, and to reduce the occupancy
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Figure 7.6: Setting 1. Mesoscopic dynamics. First row: no leaders. Second row: three lead-
ers, go-to-target strategy. Third row: three leaders, optimal strategy (compass search).
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of the exit’s visibility area by delaying the arrival of part of the mass.

In Figure 7.7 we summarize, for the three numerical experiments, the evacuated mass and

the occupancy of the exit’s visibility area Σ as functions of time. The occupancy of the

exit’s visibility area shows clearly the difference between the leaders’ action: for the go-to-

target strategy, the amount of mass occupying Σ concentrates quickly and the evacuation

is partially hindered by the clogging effect, as only 71.3% of the total mass is evacuated.

The optimal strategy (obtained after 30 iterations) is able to better distribute the mass

arrival in Σ, and an higher efficiency is reached, evacuating up to 85.2% of the total mass.
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Figure 7.7: Setting 1. Occupancy of the exit’s visibility zone Σ, dotted lines, and percentage
of evacuated mass, star lines, as function of time. Left: histograms for the case without
leaders (percentage of evacuated mass 41.2%). Center: histograms for leaders moving with
the go-to-target strategy (percentage of evacuated mass 71.3%). Right: histograms for
leaders with an optimal strategy (percentage of evacuated mass 85.2%).

Remark 7.11. In a realistic context it is impossible to know a priori the initial position

and velocity of a crowd, but they can be expressed as a joint probability density, obtained

from statistics on real data. Therefore from the simulation of the kinetic model (7.14),

one can estimate the evolution of these probabilities and testing the efficiency of specific

control strategies.

7.6.2 Setting 2

In this section we test the microscopic model (with compass search optimization) in a more

complicated setting, which has also some similarities with the one considered in Section

7.7. The crowd is initially confined in a rectangular room with three walls. In order to

evacuate, people must first leave the room and then search for the exit point. We assume

that walls are not visible, i.e., people can perceive them only by physical contact. This

corresponds to an evacuation in case of null visibility (except for the exit point which is

still visible from within Σ). Walls are handled as in [76] (see also [75] for an overview of

the techniques employed to handle obstacles in pedestrian simulations).

If no leaders are present, the crowd splits in several groups and most of the people hit

the wall, see Figure 7.8-first row. After some attempts, the crowd finds the way out, and

then it crashes into the right boundary of the domain. Finally, by chance people decide en

cascade to go upward. The crowd leaves the domain in 1162 time steps.

If instead we hide in the crowd two leaders who point fast towards the exit (Figure 7.8-

second row), the evacuation from the room is completed in very short time, but after
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that, the influence of the leaders vanishes. Unfortunately, this time people decide to go

downward after hitting the right boundary, and nobody leaves the domain. Slowing down

the two leaders helps keeping the leaders’ influence for longer time, although it is quite

difficult to find a good choice.

Compass search optimization finds (after 30 iterations) a nice strategy for the two leaders

which remarkably improves the evacuation time, see Figure 7.8-third row. One leader

behaves similarly to the previous case, while the other diverts the crowd pointing SE, then

comes back to wait for the crowd, and finally points NE towards the exit. This strategy

allows to bring everyone to the exit in 549 time steps, without bumping anyone against

the boundary, and avoiding congestion near the exit.
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Figure 7.8: Setting 2. Microscopic simulation. First row: no leaders. Second row: two
leaders and go-to-target strategy. Third row: two leaders and best strategy computed by
the compass search.

7.6.3 Setting 3

In the following test we propose a different use of the leaders. Rather than steering the

mass towards the exit, they can be employed to fluidify the evacuation near a door. In fact,

it is observed that when several panicky pedestrians reach a bottleneck at the same time

they block each other, coming to a deadlock. As a consequence, none of them can pass

through the bottleneck. We want to investigate the possibility of using leaders as small

smart obstacles, which alleviate the high friction among the bodies just moving randomly

near the exit.

We consider a large room with a single exit door located on the right wall, visible from

any point (Σ = R2). We nullify the repulsion force perceived by the leaders, see Table

7.1. Most important, in this test we assume that followers have nonzero size and hard
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Figure 7.9: Setting 3 (exit is visible from any point). Left: evacuation with no leaders.
Center: evacuation with 3 leaders. Right: percentage of evacuation failures as a function
of the number of leaders, for N = 30, 50, 70.

collisions are not possible. This is achieved assuming that they are circular-shaped with

diameter 0.25, and keeping frozen those pedestrians who aim at moving too close to another

pedestrian in one time step. The width of the exit is 0.45. Leaders stay near the exit at

any time and move with a random velocity, each component being uniformly distributed

in the interval [−1.3, 1.3]. We say that the evacuation succeeded if N − 10 followers leave

the room within 2000 time steps, otherwise we say that the evacuation failed. Average

quantities are computed running the simulation 200 times.

Figure 7.9 shows a typical outcome without (left) and with (center) leaders. Figure 7.9-

right shows the percentage of evacuation failures as a function of the number of leaders. It

is clearly visible that in this scenario the optimal number of leaders is 3, and this number is

independent form the number of evacuees. This is reasonable since leaders act at local level

near the exit and do not affect people queuing far from the exit. We noted that the leaders

initially act as a barrier for the incoming pedestrians and slow down the evacuation. Later

on, instead, they are quite efficient in breaking symmetries and avoiding deadlocks. As a

by-product, we confirmed once again the Braess’s paradox, which states that reducing the

freedom of choice (e.g., adding obstacles in front of the exit [78, 171]) one can actually

improve the overall dynamics.

7.7 Validation of the proposed crowd control technique

The crowd control technique investigated in the previous sections relies on the fact that

pedestrians actually exhibit herding behavior in special situations, so that the alignment

term in the model is meaningful. To confirm this, we have organized an experiment in-

volving volunteer pedestrians. It is not the first time that a real experiment with people

is performed; for instance, one can be found in [113].

The experiment took place on October 1, 2014 at Department of Mathematics of Sapienza

– University of Rome, Rome (Italy), at 1 p.m. Participants were chosen among first-year

students. Since courses started just two days before the date of the experiment and the

Department has a complex ring-shaped structure, we could safely assume that most of the

students were unfamiliar with the environment.
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7.7.1 The experiment

Students were informed to be part of a scientific experiment aiming at studying the behav-

ior of a group of people moving in a partially unknown environment. Their task was to leave

the classroom II and reach a certain target inside the Department. Students were asked

to accomplish their task as fast as possible, without running and without speaking with

others. Participation was completely voluntary and not remunerated (only a celebratory

T-shirt was given at the end).

76 students (39 girls, 37 boys) agreed to participate in the experiment. The students were

then divided randomly in two groups: group A (42 people) and group B (34 people).

The two groups performed the experiment independently one after the other. The target

was communicated to the students just before the beginning of the experiment. It was

the Istituto Nazionale di Alta Matematica (INdAM), which is located just upstairs with

respect to the classroom II. Due to the complex shape of the environment, there are many

paths joining classroom II and INdAM. The shortest path requires people to leave the

classroom, to go leftward in a not so frequented and unfamiliar area (even for experienced

students), and climb the stairs. The target can also be reached by going rightward and

climb other, more frequented, stairs. Figure 7.10-left shows the experiment setting, with

classroom II and its two exits.

Figure 7.10: Left: the two exits of classroom II. Just outside the classroom, people have
to decide whether to go right or left. Right: 10 students following the unaware leader in
group A.

In group B there were 5 incognito students (hereafter referred to as leaders, to make a

parallel with the model discussed in this chapter) of the same age of the others. Leaders

were previously informed about the goal of the experiment and the location of the target.

They were also trained in order to steer the crowd toward the target in minimal time.

Nobody recognized them as “special” before or during the experiment. Unexpectedly, also

in group A there was a girl who knew the target. Therefore, she acted as an unaware

leader.

It is important to stress that all the other students continued their usual activities and

participants were not officially recorded by the organizers. This choice was crucial to get

natural behavior and meaningful results, see [77, Section 3.4.3]. The price to pay is that we

had to extract participants’ trajectories by low-resolution videos taken by two observers.
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Moreover, the area outside classroom II was rather crowded, introducing a high level of

noise in the experiment. Finally, let us mention that some participants broke the rules of

the experiment speaking with others and running.

7.7.2 Results and conclusions from the experiment

In Figure 7.11 we show the history of left/right decisions taken by the students just outside

the two doors of the classroom. Group A used both exits of the classroom. The 8-people

0 5 10 15 20 25 30 35 40
time (s)

DOOR 1

DOOR 2

right

left

right

left

informed (unaware)

0 5 10 15 20 25 30 35 40
time (s)

DOOR 1

running

informed (aware)

Figure 7.11: Time instants corresponding to the students’ right/left decisions in front of
the door for group A (top) and B (bottom).

group which used door 2 was uncertain about the direction for a while. Then, once the

first two students decided to go rightward, the others decided simultaneously to follow

them. Similarly, the first student leaving from door 1 was uncertain for a few seconds,

then he moved rightward and triggered a clear domino effect. At t = 20s the unaware

leader moved to the left, inducing hesitation and mixed behavior in the followers. After

that, another domino effect arose.

Group B used only door 1. Invisible leaders were able to trigger a domino effect but this

time 4 people decided unilaterally not to follow them, although they were not informed

about the destination. At t = 20s, after the passage of the last leader, a girl passed through

the door and went leftward. Then, at t = 22s, she suddenly began to run toward the right.

She first induced hesitation, then triggered a new rightward domino effect.

Students have shown a tendency to go rightward, being that part of the Department more

familiar, but this tendency was greatly overcame by the wish to follow the group mates

in front, regardless of their right/left preferences. This fact was confirmed by the students

themselves after the experiment. Indeed, they admitted that they have been influenced by

the leaders because of their clear direction of motion. Interestingly, no more than 5 people

have been influenced by a single leader. This is compatible with the topological alignment

term used in our model. The small value of N here is due to the fact that the space in

front of the doors was rather crowded and the visibility was reduced.

It is also interesting to notice that only 4 students reached the target alone. This confirms
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the tendency not to remain isolated and to form clusters. Video recordings also show that

(bad or well) informed people behaved in a rather recognizable manner, walking faster,

overtaking the others and exhibiting a clear direction of motion. No follower has overtaken

other people.

The 5 incognito leaders adopted an effective but non optimal strategy, being too close to

each other, too much concentrated in the front line, and too fast (see Figure 7.8-second

row). This was due to the fact that organizers expected a clearer environment in front

of the doors and consequently a faster coming out of the people. A better distribution

in the crowd would lead to better results, although nothing can be done against a quite

noticeable bad informed person.



APPENDIX A

Gronwall’s estimates and

variations on the theme

Gronwall’s estimates are needed in virtually every chapter of the present thesis. Besides

the classical one, we need to develop a variation for piecewise continuous evolutions. Both

are reported below.

Lemma A.1 (Classical Gronwall’s Lemma). Let ρ, β and u be real valued functions and

furthermore assume that β is non-negative and continuous, u is continuous and ρ is non-

decreasing and integrable on [a, b]. Moreover, assume that we have

u(t) ≤ ρ(t) +

∫ t

a
β(s)u(s) ds, for all t ∈ [a, b].

Then we have

u(t) ≤ ρ(t)e
∫ t
a β(s) ds, for all t ∈ [a, b].

Lemma A.2 (Discrete Gronwall’s Lemma). Fix τ ∈ [0, T ] and let ρ, β1, β2, and u be real

functions on [0, T ] such that

(i) ρ is non-decreasing and bounded on [0, T ],

(ii) β1 is non-decreasing and continuous on [0, T ],

(iii) β2 is non-negative and continuous on [0, T ] and

(iv) u is non-negative and continuous on [0, T ].

Assume that for every t ∈ [0, T ] the following property holds: let n ∈ N0 such that nτ ≤
t < (n+ 1)τ and assume

u(t) ≤ (ρ(t)− ρ(nτ)) + (1 + β1(t)− β1(nτ))u(nτ) +

∫ t

nτ
β2(s)u(s) ds for all t ∈ [0, T ].
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Then it holds

u(t) ≤ u(0)eβ1(t)−β1(0)+
∫ t
0 β2(s) ds + (ρ(t)− ρ(0))eβ1(t)−β1(0)+

∫ t
0 β2(s) ds for all t ∈ [0, T ].

Proof. The proof uses n applications of the classical Gronwall’s Lemma for the intervals

[0, τ ], [τ, 2τ ], . . . , [(n− 1)τ, nτ ], [nτ, t]. The first application over [nτ, t] gives

u(t) ≤ [(ρ(t)− ρ(nτ)) + (1 + β1(t)− β1(nτ))u(nτ)] e
∫ t
nτ β2(s) ds.

The second application for the interval [(n− 1)τ, nτ ] gives

u(nτ) ≤ [(ρ(nτ)− ρ((n− 1)τ)) + (1 + β1(nτ)− β1((n− 1)τ))u((n− 1)τ)]×

× e
∫ nτ
(n−1)τ β2(s) ds

.

Plugging the last estimate into the first one we arrive at

u(t) ≤ (ρ(t)− ρ(nτ))e
∫ t
nτ β2(s) ds+

+ [1 + β1(t)− β1(nτ)] [ρ(nτ)− ρ((n− 1)τ)] e
∫ t
(n−1)τ β2(s) ds

+

+ [1 + β1(t)− β1(nτ)] [1 + β1(nτ)− β1((n− 1)τ)]u((n− 1)τ)e
∫ t
(n−1)τ β2(s) ds

.

Now, by induction on this iterated operations we obtain

u(t) ≤ (ρ(t)− ρ(nτ))e
∫ t
nτ β2(s) ds+

+ [1 + β1(t)− β1(nτ)]

n−1∑
i=0

[ρ((n− i)τ)− ρ((n− i− 1)τ)] e
∫ t
(n−i−1)τ β2(s) ds×

×
n∏

j=n−i+1

[1 + β1(jτ)− β1((j − 1)τ)] +

+ u(0)e
∫ t
0 β2(s) ds [1 + β1(t)− β1(nτ)]

n∏
j=1

[1 + β1(jτ)− β1((j − 1)τ)] .

It is a well-known fact that 1 + a ≤ ea for all a ≥ 0. Hence it follows

n∏
i=1

(1 + an) ≤ e
∑n
i=1 an for all a1, . . . , an ≥ 0.

If we use the above inequality we get

u(t) ≤ (ρ(t)− ρ(nτ))e
∫ t
nτ β2(s) ds+

+
n−1∑
i=0

[ρ((n− i)τ)− ρ((n− i− 1)τ)] e
∫ t
(n−i−1)τ β2(s) ds

eβ1(t)−β1((n−i)τ)+

+ u(0)e
∫ t
0 β2(s) dseβ1(t)−β1(0)

≤ u(0)eβ1(t)−β1(0)+
∫ t
0 β2(s) ds + (ρ(t)− ρ(0))eβ1(t)−β1(0)+

∫ t
0 β2(s) ds,

which is the desired statement.



APPENDIX B

Some facts about Carathéodory

solutions

For the reader’s convenience we briefly recall some general, well-known results about so-

lutions to Carathéodory differential equations.

We fix a domain Ω ⊂ Rn, a Carathéodory function g : [0, T ]×Ω→ Rn, and 0 < τ ≤ T . A

function y : [0, τ ]→ Ω is called a solution of the Carathéodory differential equation

ẏ(t) = g(t, y(t)) for t ∈ [0, τ ], (B.1)

if and only if y is absolutely continuous and (B.1) is satisfied a.e. in [0, τ ]. The following

existence result holds.

Theorem B.1. Fix T > 0 and y0 ∈ Rn. Suppose that there exists a compact subset Ω of

Rn such that y0 ∈ int(Ω) and there exists mΩ ∈ L1([0, T ]) for which it holds

‖g(t, y)‖ ≤ mΩ(t), (B.2)

for a.e. t ∈ [0, T ] and for all y ∈ Ω. Then there exists a τ > 0 and a solution y(·) of

(B.1) defined on the interval [0, τ ] which satisfies y(0) = y0. If there exists a function

` ∈ L1([0, T ]) such that the function g also satisfies the condition

g(t, y) · y ≤ `(t)(1 + ‖y‖2), (B.3)

for a.e. t ∈ [0, T ] and every y ∈ Ω, and it holds B(0, R) ⊆ Ω for

R >
(

(1 + ‖y0‖2)e
∫ T
0 `(t)dt − 1

)1/2
, (B.4)

then the local solution y(·) of (B.1) which satisfies y(0) = y0 can be extended to the whole
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interval [0, T ].

Proof. Since y0 ∈ int(Ω), we can consider a ball B(y0, r) ⊂ Ω for some r > 0. The classical

result [100, Chapter 1, Theorem 1] and (B.2) yield the existence of a local solution defined

on an interval [0, τ ] and taking values in B(y0, r).

If (B.3) holds, then we have

d

dt
‖y(t)‖2 = 2ẏ(t) · y(t) = 2g(t, y(t)) · y(t) ≤ 2`(t)(1 + ‖y(t)‖2),

for every t ∈ [0, τ ], hence, by direct integration we can conclude

‖y(t)‖ ≤
(

(1 + ‖y0‖2)e
∫ T
0 `(t)dt − 1

)1/2
for every t ∈ [0, τ ].

Choosing R as in (B.4), the graph of a solution y(·) cannot reach the boundary of [0, T ]×
B(0, R) unless τ = T , therefore the continuation of the local solution to a global one on

[0, T ] follows, for instance, from [100, Chapter 1, Theorem 4].

Remark B.2. The condition

‖g(t, y)‖ ≤ `(t)(1 + ‖y‖) (B.5)

is usually encountered in place of (B.3). However, the latter is weaker than (B.5) as the

following set of inequalities shows

g(t, x) · x ≤ ‖g(t, x)‖‖x‖
≤ `(t)(1 + ‖x‖)‖x‖
≤ `(t)(‖x‖+ ‖x‖2)

≤ 3

2
`(t)(1 + ‖x‖2).

Therefore, if (B.5) is satisfied with ` ∈ L1([0, T ]), then (B.3) holds with 3`/2 ∈ L1([0, T ]).

Gronwall’s Lemma A.1 easily gives us the following results on continuous dependence on

the initial data.

Theorem B.3. Let g1, g2 : [0, T ] × Rn → Rn be Carathéodory functions both satisfying

(B.3) for the same ` ∈ L1([0, T ]). For every r > 0 define

ρr,`,T
∆
=
(

(1 + r2)e
∫ T
0 `(t)dt − 1

)1/2
.

Assume in addition that there exists a function L ∈ L1([0, T ]) satisfying

‖gi(t, y1)− gi(t, y2)‖ ≤ L(t)‖y1 − y2‖

for every t ∈ [0, T ], every i = 1, 2, and every y1, y2 such that ‖yi‖ ≤ ρr,`,T , for i = 1, 2.
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Then, if for all i = 1, 2 we have{
ẏi(t) = gi(t, yi(t)) for every t ∈ (0, T ],

yi(0) = y0
i ,

with initial data satisfying ‖y0
1‖, ‖y0

2‖ ≤ r, it holds

‖y1(t)− y2(t)‖ ≤ e
∫ t
0 L(s)ds

(
‖y0

1 − y0
2‖+

∫ t

0
‖g1(s, ·)− g2(s, ·)‖L∞(B(0,ρr,`,T ))ds

)
(B.6)

for every t ∈ [0, T ].

Proof. By Theorem B.1, for every i = 1, 2 we may consider a solution yi : [0, T ] → Rd of

(B.1) with g = gi and initial datum y0
i . For every t ∈ [0, T ], we can bound ‖y1(t)− y2(t)‖

from above as follows:

‖y1(t)− y2(t)‖ ≤ ‖y0
1 − y0

2‖+

∫ t

0
‖ẏ1(s)− ẏ2(s)‖ds

= ‖y0
1 − y0

2‖+

+

∫ t

0
‖g1(s, y1(s))− g1(s, y2(s)) + g1(s, y2(s))− g2(s, y2(s))‖ds

≤ ‖y0
1 − y0

2‖+

∫ t

0
‖g1(s, ·)− g2(s, ·)‖L∞(B(0,ρr,`,T )) ds+

+

∫ t

0
L(s)‖y1(s)− y2(s)‖ds.

Since the function f(t) = ‖y1(0)−y2(0)‖+
∫ t

0 ‖g1(s, ·)−g2(s, ·)‖L∞(B(0,ρr,`,T )) ds is increas-

ing, an application of Gronwall’s Lemma A.1 gives (B.6), as desired.

Remark B.4. Fix y0 ∈ Rn and suppose that a function g satisfies the assumptions of

Theorems B.1 and B.3 for every T ≥ 0. Then, for every T ≥ 0, we have a unique solution

yT : [0, T ]→ Rn of (B.2) with initial condition y0. By uniqueness, this family of solutions

(yT )T≥0 satisfies

T1 ≤ T2 ⇒ yT1(t) = yT2(t), for every t ∈ [0, T1].

We can thus define y : R+ → Rn as y(t) = yt(t) for every t ≥ 0, and obtain by construction

a solution of (B.1) with initial datum y0.
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[33] M. Bongini, M. Fornasier, F. Frölich, and L. Hagverdi. Sparse control of force field

dynamics. In International Conference on NETwork Games, COntrol and OPti-

mization, October 2014.

[34] M. Bongini, M. Fornasier, M. Hansen, and M. Maggioni. Inferring interaction rules

from observations of evolutive systems I: The variational approach. Submitted, 2016.

[35] M. Bongini, M. Fornasier, M. Hansen, and M. Maggioni. Inferring interaction rules

from observations of evolutive systems II: The universal learning approach. In prepa-

ration, 2016.

[36] M. Bongini, M. Fornasier, O. Junge, and B. Scharf. Sparse control of alignment

models in high dimension. Netw. Heterog. Media, 10(3):647–697, 2015.

[37] M. Bongini, M. Fornasier, and D. Kalise. (Un)conditional consensus emergence

under perturbed and decentralized feedback controls. Discrete Contin. Dyn. Syst.,

35(9):4071–4094, 2015.

[38] M. Bongini, M. Fornasier, F. Rossi, and F. Solombrino. Mean-field Pontryagin

maximum principle. Submitted, 2015.

[39] A. Borz̀ı and S. Wongkaew. Modeling and control through leadership of a refined

flocking system. Math. Models Methods Appl. Sci., 25(2):255–282, 2015.

[40] J. Bouvrie and M. Maggioni. Geometric multiscale reduction for autonomous and

controlled nonlinear systems. In Proceedings of the 51st IEEE Conference on Deci-

sion and Control, pages 4320–4327, 2012.



262 BIBLIOGRAPHY

[41] W. Braun and K. Hepp. The Vlasov dynamics and its fluctuations in the 1/N limit

of interacting classical particles. Comm. Math. Phys., 56(2):101–113, 1977.

[42] A. Bressan and B. Piccoli. Introduction to the mathematical theory of control, vol-

ume 2 of AIMS Series on Applied Mathematics. American Institute of Mathematical

Sciences (AIMS), Springfield, MO, 2007.

[43] M. Burger, M. Di Francesco, P. Markowich, and M.-T. Wolfram. Mean field games

with nonlinear mobilities in pedestrian dynamics. Discrete Contin. Dyn. Syst. Ser.

B, 19:1311–1333, 2014.

[44] S. Butail, T. Bartolini, and M. Porfiri. Collective response of zebrafish shoals to a

free-swimming robotic fish. PLoS ONE, 8(10):e76123, 2013.

[45] G. Buttazzo and G. Dal Maso. Γ-convergence and optimal control problems. J.

Optim. Theory Appl., 38(3):385–407, 1982.
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