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1. Introduction

In the downlink (DL) of a wireless cellular system with full cooperation, the intercell in-
terference at each mobile device (MD) can be known and handled by a central processor.
However, this requires perfect channel state information (CSI) about all channels in the
system. Measuring all these channels can occupy all air time in large systems, which leaves
no time for data transmission [1]. The assumption of full cooperation is therefore unrealis-
tic. Cooperation is always limited in realistic systems. The measurement of all interference
channels and a coordination of all beamformers simply cannot be implemented [2,3] and
some part of the interference has to be regarded as noise. In the main part of this thesis, the
base stations do not cooperate or coordinate their beamforming. The interference channels
are not measured and all interference has to be regarded as noise. Handling the properties
and effects of this interference, which has to be regarded as noise, is the focus of this work.

Even if the not measured interference channels stay constant, the intercell interference
variance at a mobile device can change unpredictably whenever a base station (BS) in the
network changes its transmit processing. A base station does not know the actual intercell
interference or the supported rates of the mobile devices it serves. Therefore, base stations
use assumed intercell interference variances for the beamforming optimization and link rate
adaptation. The mismatch between assumed intercell interference and actual intercell inter-
ference leads to the intercell interference blindness problem [4,5]. When the actual intercell
interference is larger than the assumed one, the channel is worse than assumed and the mo-
bile device cannot decode the data. The transmission fails and the achieved rate becomes
zero. When the actual intercell interference is smaller than the assumed one, the mobile
device can only communicate with the assumed data rate and some resources are wasted.

Intercell interference is the dominant effect limiting the performance of cellular networks.
It is assumed, that this limitation can be overcome by letting base stations cooperate (See [6—
15] and references therein). The benefits of cooperative multi-point (CoMP) techniques sound
very promising and a strong research focus is set on how cooperation should be organized.
But, very little is known about the drawbacks of cooperation. It is still an open topic,
whether cellular systems will benefit from cooperation, if all implementation issues are taken
into account. If only the backhaul is limited, cooperation can still show a great gain [16].
But in field trials, the performance of cooperative techniques is even worse compared to
traditional uncoordinated methods [17,18].

The term CoMP covers any transmission technique, which allows more than one link per
user. This includes, e.g., soft handover, where a mobile device is connected continuously to
multiple base stations and is dynamically served over the strongest link. But, it also includes
network multiple-input multiple-output (network MIMO, joint transmission CoMP), where
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the whole network can be seen as a single broadcast channel with distributed transmit
antennas [10,19]. Usually, cooperation aims at mitigating intercell interference.

The intercell interference problem in cellular MIMO networks is so complex and severe,
that a combination of multiple different techniques is necessary for its mitigation [20]. Con-
ventional approaches for handling the intercell interference are frequency reuse, cell splitting,
and averaging [21]. With frequency reuse, orthogonal frequency bands are assigned to adja-
cent base stations to separate the transmissions within these cells. The smaller the fraction
of the frequency band at each base station is, the less base stations in the near vicinity
use the same frequency band and the distance to the next base station utilizing the same
frequency band increases. But, a smaller frequency band per cell dramatically reduces the
network capacity. The idea of frequency reuse was generalized to cooperative scheduling in
such a way, that all base stations can use the whole frequency band, but, transmissions which
could notably disturb each other are assigned different frequency bands or time slots [22,23].
The use of directive antennas at a base station, which concentrate the transmit power onto
the served region, is called sectoring. This not only increases the wanted signal power at
the mobile devices in the own cell, it also reduces the not wanted power at mobile devices in
other cells. Sectoring is a very effective method, with the drawback of being inflexible with
respect to cell load. Distributing the antennas over the cell also concentrates the power in
the served region by reducing the distance between the transmit and receive antennas [24].
Interference averaging can be done with spread spectrum techniques or frequency hopping.
The idea is to distribute the generated interference as uniformly as possible over the available
frequency band. This requires that the load of the network is rather small to limit the total
amount of intercell interference.

Intercell interference aware receiver structures can also be used to improve the system
performance by means of multiuser detection [25,26]. This requires in general some channel
state information about interfering channels at the receiver. Linear minimum mean square
error receivers can suppress some intercell interference depending on the number of receive
antennas. The optimal performance of the maximum likelihood multiuser detection can
be approached with non-linear receiver structures like a decision feedback equalizer, which
successively decodes the detectable data streams to eliminate the intercell interference.

1.1 Contributions and Overview

The thesis is structured as follows.

e Chapter 2: Upper Bound for Interference Coordination

For the downlink of a cellular system, a loose upper bound for the possible network
sum utility is introduced and formulated in this chapter. It is assumed that each base
station has only channel state information about a restricted subset of mobile devices.
The amount of available channel state information is linked to the signaling efficiency
in Section 2.2 and the information is prone to an outdating error, which is described in
Section 2.3. In Section 2.4, the upper bound is formulated by comparing the investi-
gated system with a system in which the known or measured interference channels do
not exist. The remaining intercell interference has to be regarded as noise. With this
step, the network sum utility maximization decomposes into individual cell sum utility
maximizations, which can be solved with known methods.
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The upper bound does not show how much cooperation is optimal, it only states that
there is a limit to beneficial cooperation. As one possible approach to interference co-
ordination, the interference temperatures technique is combined with the limited set of
measured interference channels, the corresponding efficiency, and outdating error of the
channel state information in Section 2.5. A heuristic for the selection of the interference
temperatures is motivated, which allows to utilize this technique in a full cellular network.
It can be seen that it is advisable to measure only a very limited number of interference
channels, if any at all. There will be a vast amount of interference over not measured
interference channels. Especially in systems where the complete available bandwidth is
used by every base station. This advises to take a closer look at the interference over the
not measured interference channels as it is done in the following chapters.

Chapter 3: Sum Rate Maximization with Conic Constraints

Almost all of the optimizations in this work are based on a weighted sum rate maxi-
mization. All interference robustness methods for all different utilized fairness utilities
need a weighted sum rate maximization in their core. The problem of the interference
temperatures method from Chapter 2 is a weighted sum rate maximization with multiple
linear constraints. The covariance shaping method for intercell interference robustness
relies on a weighted sum rate maximization with a conic constraint and the loosened
covariance shaping idea is the same with an additional linear constraint.

In Section 3.3, linear and linear conic constraints for the weighted sum rate maximiza-
tion with respect to the transmit covariance matrices in the downlink are analyzed. The
existing minimax uplink-downlink duality in [27] is adapted in Section 3.4 to allow mul-
tiple linear conic constraint. A very efficient projected gradient algorithm for solving
the uplink saddle-point problem based on the work in [28] is presented and described
in detail in Section 3.5 along with the required orthogonal projection of the gradients
onto the tangent cone of the constraint set and the projection of the updates onto the
constraint set itself. With an analysis of the convergence behavior, it can be shown that
the presented algorithm has superior performance not only for the previously untouched
problem with conic constraints, but also for multiple linear constraints.

Chapter 4: Intercell Interference Robustness Methods

The intercell interference blindness problem addressed in [4], which arises in all cellular
systems for the part of the intercell interference, which has to be regarded as noise, is
discussed in detail in Section 4.1. The characteristics of the associated intercell interfer-
ence variance are analyzed in Section 4.2 and used to derive a simple single cell system
model, where the intercell interference variances are drawn from a gamma distribution,
in Section 4.3.

The target is to make the system robust against random changes of the intercell inter-
ference variance. A baseline approach is to accept the intercell interference mismatch
and transmit at lower rates with the conservative gambling method described by Ivrlac¢
et al. in [4] and described in Section 4.4. A common back-off factor § is introduced to
lower the risk of a failed transmission. The BSs serve the MDs with modest rates. This
is extended by Shirani-Mehr et al. in [29] and described in Section 4.5 to conservative
gambling with individual backoff factors. The system can be strengthened against un-
predictable changes in the intercell interference variance with the expected rate method
introduced and described in Section 4.6 [30]. This method takes the actual performance
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measure, the expectation of the rate with respect to the instationary intercell interference,
as cost function for the optimization of the transmit covariance matrices and transmitted
rate.

It is assumed in the genie method that the intercell interference at each mobile device is
simply known [4] (Section 4.8). The base stations calculate the transmit covariance matri-
ces and generated intercell interference iteratively until the resulting intercell interference
converges. A possibility to make the intercell interference variance available at the base
stations is to measure it with additional piloting. If the measurements are limited to a
single additional pilot, the method is called the second pilot, which is introduced and de-
scribed in Section 4.7 [31]. Dotzler et al. proposed the covariance shaping method in [32],
where the uncertainty in the intercell interference is eliminated by imposing a shaping
constraint on the sum transmit covariance. Then, the intercell interference variances will
not change, even, if the other base stations update their beamforming. Although the in-
tercell interference blindness problem is solved, the shaping constraint reduces the region
of achievable data rates. The expected rate method and covariance shaping outperform
conservative gambling notably and can be combined to the loosened covariance shaping
method introduced and described in Section 4.10. Loosened covariance shaping finds the
best compromise between stabilizing the intercell interference variance at mobile devices
in other cells and optimizing the expected rates of the own mobile devices.

Hybrid Automatic Repeat reQuest (HARQ) can also be used to treat the intercell interfer-
ence blindness problem [29]. The intercell interference blindness problem is relaxed such,
that a transmission will be completed successfully, if the data can be decoded with the
combination of several retransmissions. The incorporation of HARQ with soft combining
into the optimization of the transmit covariance matrices and transmitted rate with the
expected rate method is discussed in Section 4.11 [33]. Simulation results show that the
expected rate method can be improved greatly with HARQ.

e Chapter 5: Intercell Interference Robustness in Fairness Optimizations

The implementation of the previously presented intercell interference robustness methods
is presented and discussed for different fairness utilities in this chapter. Round robin,
maximum sum rate, log fairness, proportional fairness, and max-min fairness are ana-
lyzed. In Section 5.2, the fairness utilities are handled by a time slot scheduler combined
with a weighted sum rate maximization in each slot. The selection of transmit covariance
matrices, which optimize the utility in each single time slot, is discussed in Section 5.3.
Detailed algorithms are presented for tackling the considered problems and simulation re-
sults show that the performance under fairness utilities greatly increases with the intercell
interference robustness methods.

1.2 Notation

Scalars are denoted by lower case italic and capital italic letters, whereas vectors and matrices
are denoted by lower case bold italic letters and capital bold italic letters, respectively. Sets
are denoted by calligraphic letters. The most frequently used operators, functions, and
symbols are listed in Table 1.1. The complete list of used symbols and functions can be
found in Appendix A3.
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Operator / Symbol

Description

Re(e), Im(e)
E[e], var(e)

()7, (o)7, (¢)"

real part, imaginary part

expectation, variance

complex conjugate, transposition, conjugate transposition

ith entry of vector @

entry on the ith row and jth column of matrix X

set {x1, ..., zn}

evaluated at x

absolute value of a scalar, determinant of a matrix, cardinality
of a set

Euclidean norm of a vector, Frobenius norm of a matrix
trace of a matrix

eigenvalue decomposition

element-wise max(e,0) for scalars, set all negative eigenvalues
to zero for matrices

orthogonal projection onto constraint set

(o), projection onto tangent cone of constraint set
(o)L orthogonal subspace
a—b a converges to b
a<+b a is set to b
a~b a has the same distribution as b
A>-B A — B is positive-definite
A*>B A — B is positive-semidefinite
P(e) probability mass function
fx(o) probability density function of X
Fx (o) cumulative distribution function of X
L(e) Lagrangian function
Ule) monotonic utility function
0 all zeros matrix of appropriate size
1 identity matrix of appropriate size
e; 1th column of the identity matrix of appropriate size
N set of natural numbers including zero
R, R, RT set of all / non-negative / positive rational numbers
C set of complex numbers

Table 1.1: Most frequently used operators, functions, and symbols






2. Upper Bound for Interference Coordination

In [2], Lozano et al. describe a fundamental limit to any type of cooperation by pointing out
that the cluster of base stations, which cooperate, cannot be infinitely large and all cellular
systems are interference limited. An upper bound for network MIMO is derived in [34],
where the broadcast channel of the network MIMO downlink is compared to interference
free, parallel point-to-point channels, which have a common sum power constraint. The
high rates achieved with this upper bound advise to take a closer look at cooperation.
But, the drawbacks of cooperation have been neglected in this study. For network MIMO,
all channels in a cluster of cooperating base stations have to be measured. The complete
channel state information has to be communicated to a central processor and the selected
beamforming vectors have to be communicated back to the base stations. The data streams
for all mobile devices have to be present at all base stations of a coordinated cluster. The
upper bound for clustered network MIMO in [1,35] and the investigations in [36,37] take
the cost of measuring the additional channels for network MIMO into account. In contrast
to the optimistic upper bound, the optimal cluster size is identified as a single site even for
scenarios with low user mobility and poses the question whether network MIMO should be
used at all.

In this thesis, cooperation is restricted to interference coordination, where each mobile
device is only served by one base station. Each base station needs to know the channels to
the mobile devices it serves and, additionally, to some mobile devices in other cells to perform
interference mitigation. Compared to network MIMO, the amount of channel measurements
and communicated information in the backhaul is substantially smaller with interference
coordination.

In the first part of this chapter, parts of this can also be found in [3,38], no assumptions are
made on how the interference coordination is realized. For the upper bound, it is possible, but
not necessary, that there are ideal high speed links between the base stations. The methods
are applicable in heterogeneous and homogeneous systems with macro, micro, pico and femto
cells. The base stations can employ any known cooperative technique, which is covered by
interference coordination, like interference alignment [39-41], where the base stations try to
spare subspaces of the received signals from interference, or the interference temperatures
technique, where each base station limits the interference it causes at mobile devices to
a given value [42-44]. Interference pricing is an iterative technique for finding a balance
between the signal power at the served mobile devices and the interference caused at other
mobile devices [45]. Interference leakage power based optimizations try to maximize the ratio
between the received power at the served mobile devices and the caused interference power at
other mobile devices [46]. There are many other approaches for interference coordination like

7



8 2. Upper Bound for Interference Coordination

Max-SINR [47,48] and MMSE algorithms [49]. The possible degrees of freedom of a system
with interference coordination are derived in [40] with interference alignment in systems
without background interference. But, the gain of interference alignment will disappear or
even turn into losses, if it is applied in a large scale system with interference from base
stations outside of the cooperation cluster [50-54].

In a network with interference coordination, the base stations face the conflicting goals
of serving their associated mobile devices optimally and minimizing the interference they
cause. An adaptive, beamforming based interference mitigation can only be performed for
known interference channels, whereas the intercell interference over unknown channels has to
be regarded as noise. The maximum achievable rates are limited by the signaling efficiency
due to acquisition and outdating of channel state information as described in Section 2.2
and 2.3 [3,55]. Resources have to be spent to measure the channels and the measurements
might be perturbed by pilot contamination (See Appendix A2) [56,57]. On the one hand,
an increased number of measured interference channels allows more cooperation, which can
lead to higher rates. On the other hand, the signaling efficiency reduces, which deteriorates
the rates. An interference channel should only be measured, if the resulting gain through
cooperation outperforms the loss through the decreased efficiency. In the presence of intercell
interference, the upper bound behaves similarly [58].

The upper bound for interference coordination is formulated by setting the known inter-
ference channels simply to zero (See Section 2.4). The upper bound is found in a system,
where the measured interference channels do not exist. There is no intercell interference
over these channels, although the base stations do not perform any intercell interference
mitigation. The base stations can meet both of their goals, because they do not produce
any intercell interference over known interference channels and still have all their degrees
of freedom to serve the associated mobile devices. The intercell interference decreases and
the possible rates increase. Of course, the channels cannot simply disappear, therefore, the
upper bound cannot be reached [3]. As the intercell interference over measured channels is
set to zero and the intercell interference over not measured channels has to be regarded as
noise, the network decomposes into independent broadcast channels and well known tech-
niques for single cell MIMO downlink systems, like the weighted sum rate maximization from
Chapter 3, can be used to optimize the transmit covariance matrices.

It will be shown in Section 2.4.1 that even this loose upper bound strongly limits the
possible gain of cooperation for scenarios with modest and high user mobility. The number
of interference channels, which should be measured to perform interference mitigation is
rather small to keep the overhead small and the signaling efficiency high. In other words,
there is a rather strict limit to beneficial cooperation. In scenarios with low user mobility,
the upper bound leaves quite substantial room for improvement through cooperation. But,
the upper bound is not achievable, because the cost of nulling the intercell interference over
known interference channels is neglected. To get some insight into the tightness of the upper
bound, the framework is applied to interference coordination with interference temperatures
in the second part of this chapter (See Section 2.5 [38,59]). The interference temperature
technique is analyzed, where the transmission efficiency is reduced according to the number
of measured interference channels.

The performance of the interference temperatures technique is investigated under the
maximum sum rate and proportional-fair resource distribution in the scenario with slow
moving mobile devices. The limit to beneficial cooperation is similar in both systems, but,
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due to different effects. The sum rate is improved because mobile devices close to the site,
which are already in a good situation, receive significantly less interference from collocated
base stations. In a fair utility, the mobile devices at the cell edge, which suffer the most
from intercell interference and, therefore, benefit the most from cooperation, have a stronger
influence.

2.1 System Model

The downlink of a cellular network with 19 three faced sites and, therefore, 57 base stations
is considered. Each base station serves the mobile devices of the hexagonal shaped cell it
covers in the same frequency band (reuse 1). The wrap-around method is used to treat all
cells equally. The 57 base stations are copied, including their beamforming, and placed six
times around the central cluster. Each mobile device only sees the 57 base stations, which
are closest by Euclidean distance. In Figure 2.1, the cellular layout can be seen, where the
central cluster is inked slightly darker than the wrap-around clusters. The placement and
orientation of the base stations is indicated by small arrows.

26 47 50 53 41 14

9 27 48
(RN 2
e DSOS D DE S

3 6 24 36
RRedoSaSats
SR

B0 050 00¢
Ot D DE o8
33

30 45

Figure 2.1. Cellular cluster with wrap-around

A mobile device in the set I of all mobile devices is specified by the tuple (b, k) € K,
where b € B identifies the base station in the set B = {1,...,57} of all base stations and
k € Kj the mobile device in the set K, = {1,..., K} of all mobile devices in the cell of
base station b. In this chapter, each base station has N antennas and serves K = |IC;| single
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antenna mobile devices, respectively. The vectors h;, , € CV contain the channel coefficients

between the antennas of base station b and mobile device (b, k).

The achievable, normalized rate of mobile device (b, k), within the capacity region of the
MIMO broadcast channel with dirty paper coding, can be expressed as

hily 1 Qb b b i ) 2.1)

2 . H R
O T O + Zk>k h’b,b,ka,khbJLk

Ooi = Y hiy Qihy s (2.2)
beB\b

Thk = glOgQ (1 +

where Q. € CV*¥ is the transmit covariance matrix for mobile device (b, k) and Y, Qpr =
Q, € CV*V is the sum transmit covariance matrix of base station b. All base stations have
to satisfy the transmit power constraint tr(Qp) < P. The signaling overhead reduces the
rates through the pre-log efficiency &, which is described in Section 2.2.

Y i<k h}){,b7ka,khb7b7k is the variance of the intracell interference with dirty paper coding.

Only the signals from base station b to mobile devices with an index k > k contribute to the
intracell interference at mobile device (b, k). The signals to mobile devices with an index k <
k can be considered as known interference at the transmitter. Costa showed that interference,
which is known to the transmitter, does not reduce the rate of the transmission [60].

Obx is the variance of the received intercell interference, and o, = 07 + 02,5 + Obg is
the sum of the variance of the thermal noise 0727, the channel state information outdating,
and the background interference. The outdating agdvbvk depends on the assumed block fading
block length Tioq and the fading scenario and is approximated with Gaussian noise over
the serving channel and the measured interference channels as derived in Section 2.3 [3].

Cooperation with a base station far away by distance will surely not improve the per-
formance, as the produced interference rarely harms the rates. The Gaussian background
interference 6, is included in the system, which originates from the base stations further
away than the 57 closest base stations. If the wrap-around method is not used and the
system is extended to an unlimited number of base stations, this background interference
will be the mean sum interference at a mobile device at the central site, from base station
58 to infinity. This background interference variance converges due to the pathloss and a
fixed transmit power. With this background interference, the system is again subject to an
interference limitation. The system is assumed to be operated in the interference limited
region, where an increase in transmit power would not lead to an increase in the sum rate.

With the monotonic increasing utility function U(ryy), the cooperative network sum
utility maximization with general interference coordination can be formulated as

- v <P : 2.
s = g, By 3 Ulros) 0 (@) S PV €5 03

Different utilities U (o), like maximum sum rate, proportional fairness and max-min fairness
are discussed and described in Chapter 5. The transmit covariance matrices of all base
stations in the central cluster are optimized jointly, but a mobile device is only served by
the associated base station.
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2.2 Signaling Overhead and Efficiency Upper Bound

To perform adaptive signal processing, instantaneous knowledge of channel state information
is required. For a non-cooperative sum rate maximization in each cell, knowledge of the
channels from each base station to its own mobile devices is sufficient. If the base stations
want to cooperate, additional information about interference channels has to be known.

In [61] it was shown, that there will be always less training symbols in a time division
duplex system than in a frequency division duplex system, if further implementation issues
are neglected. Therefore, the efficiency of the time division duplex system is higher and
such a system will be assumed in the rest of the chapter. In time division duplex systems,
the reciprocity of the propagation channels is exploited. In the first step, the channels are
measured in the uplink and the gained information is then utilized in the downlink. The
mobile devices are split into equally sized subsets .. The mobile devices within a subset
use pilot sequences, which are orthogonal to each other [58]. But, these pilot sequences are
reused in all other subsets. The pilot length has to be at least as large as the number of
users in a subset Thuey > K + L = |K.|. Each base station can measure the channels to
its own K mobile devices and L interference channels, additionally. Here, the effect of pilot
contamination is neglected, but can be included as described in Appendix A2.

Here, the pilot length Ty is taken as the dominant overhead, any other overhead is
neglected. With the block length Tiiock; Taata = Thiock — Tpilot time slots remain for data
transmission [55,62]. Data transmission is done during Tyat.. Unlike in [56,57], interference,
noise, quantization, and feedback errors during the pilot phase are ignored and the minimal
pilot length T}y = K + L is optimal. The efficiency of this signaling scheme is

_ Tdata _ Tblock - (K + L)
Thlock Thlock

3 : (2.4)

The optimal L is a tradeoff between the reduced efficiency and the possible gain through ad-
ditional cooperation. This effect is include by the outdating of the channel state information
as explained in the next section.

Except for the outdating, all channel measurements are assumed to be perfect. The
design of the pilot sequences and the selection of the L interference channels, which should
be known to each base station, respectively, are formidable tasks. The conflict arises, that
the optimal assignment of the mobile devices to the subsets K. can be different from the
point of view of each single base station. In this chapter, it is assumed that all these problems
are solved optimally. Each base station measures the L interference channels, which have the
largest impact on the network sum rate, respectively. Two approaches for distributing the
pilot sequences are described in Appendix A2. Because of all these idealistic assumptions,
the efficiency has to be regarded as a loose upper bound.

2.3 Outdating of the Channel Measurements

Due to outdating, the measured channel differs from the actual channel at a different time
and frequency instance. By modeling the time and frequency variation as a first-order
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Markov process [63, Chapter 16], the normalized error variance can be found as

E {1y = it D]
E {1Ag,,13]

ﬁl;bk is the measured channel at a reference time t, and frequency fy, h;, (¢, f) is the
outdated channel at a slightly different time ¢ty + ¢ and frequency fy + f, and p(t, f) is the
correlation coefficient between the two channels.

According to Jakes [64, Chapter 1.5], the correlation can be approximated as

J0(27Tth)
1+ (27T0'Dsf)2’

where Jo(e) is the Bessel function of the first kind and zeroth order, fp is the maximum
Doppler frequency, and opg is the root mean square delay spread.

The channel state information outdating at mobile device (b, k) is approximated with
Gaussian noise over the serving channel and the measured interference channels [3]. With a
signal variance per transmit antenna of P/N, the channel state information outdating vari-
ance is the sum of the power over the measured channels scaled down with the measurement
error:

oe(t. f) = Pt f)- (2.5)

p(t, f) =

(2.6)

5 P -
2
Tod bk = ethbkhbbk+U Z hbbk bk (2.7)
bEC}, k\b
where Cp, is the set containing all base stations, which measured the channel to mobile
device (b, k).

As an upper bound approximation, the minimum mean error variance,

, E

0'6:

Thtock’ (28)
is calculated, which is the minimum sum error £ during a block divided by the block length.
The block length, the total amount of transmit symbols, is a virtual area in the time-
frequency domain and the sum error is the integral over the error in this area. The beam-
forming is based on only one channel estimation per block. To minimize the sum error, the
reference must lie in the center of the block length area. For a given block length this error
minimizing area is enclosed by the curve p(Thiock) = p(f, f ), where p(Thock) is the smallest,
occuring correlation for the given block length. Respectively, the block length and minimum
sum error can be calculated as

fo f(t)
Toiock = 4/ /1dfdt, (2.9)
0 0
to f(1)
E= 4/ /ag(t,f) df dt. (2.10)
0 O

In Figure 2.2 the block length area is shown, where £, and fg denote the maximum time and
frequency distance to the reference, respectively.
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Figure 2.2. Block length in the frequency-time domain

In the simulations, ﬁ,; »r 18 generated from the channel model. The channel used in the
simulations as measured channel is set to

h’B,b,k‘ =+/1- 5-gh5,b,k‘ (211)

This can be seen as the mean channel during the block fading block. With equation (2.11),
the norm of the generated channel is preserved in the sum of the average norm of the fading
channel and the measurement error variance. If the channel is not assumed to be measured,
the generated channel will be used directly in the simulations. Pilot contamination and
other errors during the channel measurements are neglected. Except for the outdating, the
channel measurements are assumed to be perfect.

2.4 Upper Bound Formulation

As described in Section 2.2, only the L interference channels per base station with the
strongest influence on the network sum rate are known. The intercell interference (2.2) can
be split into the interference over the measured interference channels and the interference
over the unknown interference channels [3]:

_ H . H e
Ovi = Z iy Qihip s + E hiyr Qihisk (2.12)
bECy \b beB\Cop
H
- Z by Qihipr + Ootindpr (2.13)
N "
beCp,k\b known known statistics

The first term in (2.12) is the sum of the interference over all measured and, therefore,
known interference channels. The set Cp 5, contains all base stations, which know the channel
to mobile device (b, k). The second term in (2.12) is the sum interference over the unknown
interference channels of the central cluster. This is also depicted in Figure 2.3. BS, serves
MDy,;, while BS; and BS; disturb it. BS; has measured the channel to MDy, , and is therefore
in the set Cp ;. The channel between BS; and MDj, ;, remains unknown.
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BS,

%

unknown
Cok

MDyy «————— BS;

BSI;

Figure 2.3. Different types of intercell interference

Oblind,bk = D 4en\cy s h?b Qi . is the sum intercell interference over the unknown chan-

nels. In this chapter, it is assumed that the variances Opjingpr are known, but the influence
of the transmit covariance matrices transmitting over these unknown interference channels
cannot be taken into account in the optimization. The upper bound described in this chap-
ter can be formulated for all intercell interference robustness methods from the following
chapter, which discuss the problem of predicting Opjing . As the cooperation is limited to
a subset of base stations and the rest of the interference is regarded as noise, the system
is interference limited. The power of the interference over the not measured interference
channels scales with the transmit power limit [2,65,66].

The jointly optimized sum utility Ucoop is always smaller than the upper bound Uypper,
which is calculated in a system, where all measured interference channels do not exist (See
Figure 2.4). Based on (2.13) and (2.3), the upper bound is formulated with L measured

BS, known MDy unknown BS;
Figure 2.4. Upper bound system
interference channels per base station as
Ucoop < Upper = a U(7upper s.t. t < PVbeB, 2.14
p = Yupp Qb,kr{%l(b?li)elc Z (Pupper,b.k) r(Qy) < (2.14)
(b,k)eK
with
Tupper,b,k = Tb.k hi,  x=0 VheCy 1 \b (2.15)
hyly 1 Qo b i
=¢log, [ 1+ —_— . 2.16
2 UE,k + Oblind,pk + Dok h};{,b7ka,1;hb,b,k ( )

This is clearly a non-achievable upper bound as the cost for attenuating the interference is
neglected. In contrast to interference coordination techniques like [39-42,67], all degrees of
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freedom are still left at each base station for serving the associated mobile devices in the
system, where the measured interference channels do not exist.

As the transmit covariance matrices in Gpiingpr cannot be optimized without further
channel measurements and are assumed to be known, problem (2.14) breaks down into
independent broadcast channels at each base station and can be solved distributively with
known techniques, respectively:

Uspper = 3 max D Ulruppersk), st tr(Qy) < Py (2.17)
b

Qo V(bk)EK
b,k b (bR)EK,

There exist transmit covariance matrices, which would result in a higher sum utility. But,
these transmit covariance matrices cannot be found without further measurements. With the
given channel state information, Uypper is a loose upper bound, which is always maximized
with the maximum transmit power.

In (2.13), Ziyecb,k\b h}jb?le}hi),b,k is the sum of the intercell interference over the measured
channels, which is zero in the upper bound system. A residual part due to outdating is taken
into account with the afore described 02, ;. Therefore, the measured interference channels
are not completely set to zero. The outdating error variance is the sum over the scaled down
norms of the measured channels as described in Section 2.3. The first term in (2.7) is the
error due to the outdating of the serving channel and the second term is the error due to
the outdating of the nulled interference channels.

2.4.1 Simulations

The spatial channel model of the 3GPP MIMO urban macro cell with a distance of 500 m
between the two closest sites and a center frequency of 2 GHz is utilized [68]. The applied
parameters for the simulations can be seen in Table 2.1. The following results are obtained
with Monte Carlo simulations. Every base station has N = 4 transmit antennas and trans-
mits with P = 14 W. The antennas are assumed as hypothetical isotropic radiators with a
spacing of half a wavelength (0.5)\) between the antennas of the same array. In every cell,
K = 10 mobile devices are placed uniformly distributed and suffer from a thermal noise
variance of 07 = 1.4-107" W at their receive antenna, respectively.

Extending the base station number to 500, the background interference is computed.
At this point, the sum interference from base station 58 to infinity is converged with an
acceptable accuracy. All base stations use a scaled identity matrix as transmit covariance
for this analysis. The average background interference at the mobile devices in the cells of
the central site is found as 6,y = 3.34-107'2 W, which is much higher than the thermal
noise. The system is operated on purpose in the interference limited region.

The maximum average cell sum rate is taken as the cost function ) U(ros) =
Z(M)GK Ty and is plotted over the block length for different mobile device speeds in Fig-
ures 2.5 and 2.6. To make Oyjinap i available, the second pilot method from Section 4.7 is
used. The upper bound can also be found with any other interference robustness method or
utility presented in the Chapters 4 and 5. The optimizations are solved with the methods
presented in Chapter 3.

For the simulations, the L interference channels per base station are selected as follows.
The initial supported rates of each mobile device are computed with maximum ratio trans-
mission and scaled identity matrices as transmit covariances for the interference producing
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scenario urban macro-cell
center frequency 2 GHz

sectors 19-3 =57

inter site distance 500 m

users per sector K = |Gy

min distance to site 25 m

antenna configuration N x 1 MISO
antenna spacing 0.5\

user speed slow: 3km/h

fast: 30 km/h

root mean square delay spread opg = 0.5 us

transmit power P=14W
background interference Opg = 3.34-10712 W
thermal noise 0*72] =14-107BW

Table 2.1. Simulation parameters

base stations. In parallel, each base station selects the L mobile devices, which will have the
largest gain in rate, if the produced interference is nulled. This selection is suboptimal, but,
still upper bounding because of the omnisciently given selection.

The root mean square delay spread is fixed to opg = 0.5us. The maximum Doppler
frequency fp = fcov/c, with the center frequency fo and the speed of light ¢, directly
depends on the mobile device speed v. In Figure 2.5, a low mobility scenario with a common
mobile device device speed of v = 3km/h is shown for K = 10 mobile devices per cell and
N = 4 transmit antennas per base station. The different curves display the maximum cell
sum rate upper bound Rypper = Uynpper Per cell over the block length for different choices of
L. L = 0 stands for no cooperation, an increase in L represents an increase in cooperation.
All curves ascend in the beginning for longer block lengths, because the efficiency of the
system improves. At some point, each curve starts to descend, because the outdating of the
channel degrades the possible rates. For each channel model, we can find a L and a block
length which maximizes the sum network throughput. In the low mobility scenario, the
optimum lies in the range of 25 < L < 30 and 250 < Tipac < 350. The upper bound with
cooperation lies with almost 17 bits per channel usage (bpcu) much higher than the almost
11 bpcu without cooperation.

The upper bound reaches higher values for increasing L in the beginning, because more
and more interference is suppressed. Already L = 5 with 14 bpcu shows significant improve-
ments compared with no cooperation. But, increasing L above the value of L = 30 with the
optimal block length reduces the possible rates. The eliminated interference cannot com-
pensate the reduced efficiency due to the increased overhead. In average, 4 mobile devices
are served in every cell simultaneously. L = 24 could correspond to limiting the cooperation
to the mobile devices of the surrounding 6 cells.
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Figure 2.5. Upper bound for the cell sum rate in a low mobility scenario: v = 3km/h

The possible improvements through cooperation are substantial in this scenario, and are
investigated further in Section 2.5. For this upper bound, no restrictions are made to the
backbone network, which connects all base stations. Irrespective of the type of interference
coordination and the amount of exchanged information between the base stations, this upper
bound will hold, if each mobile device will only be served by its associated base station. The
upper bound does not show how much improvement is possible with cooperation. It gives a
loose limit to the possible improvement.

A high mobility scenario with a common mobile device device speed of v = 30km/h is
shown in Figure 2.6. The optimum rate can be achieved around L = 15 and Tjjoqc = 150.
The possible improvements through cooperation are much smaller than in the low mobility
scenario. The upper bound with L = 0 is close to 9 bpcu and with the best selection of L
around 11.5 bpcu. It is rather doubtful that a realistic cooperation can enhance the sum
rate achieved in such a scenario.

Only the costs for measuring the channels are taken into account, but not the costs for
mitigating the interference over these interference channels. Therefore, this upper bound
cannot be reached, especially for a large L. It can be seen, that the possible rates will
deteriorate if the number of measured channels grows beyond a limit. To get an idea about
a more realistic number of interference channels, which should be measured, the efficiency
upper bound and outdating of the measured channels is combined with the interference
temperatures technique in the next section.

2.5 Interference Temperatures with CSI Outdating

At the first glance, it seems that interference coordination demands from the base stations
to achieve two contradicting goals. On the one hand, the base stations try to serve their
own mobile devices with all their degrees of freedom. On the other hand, the base stations
try to spend their degrees of freedom to limit the interference they create at mobile devices
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Figure 2.6. Upper bound for the cell sum rate in a high mobility scenario: v = 30 km/h

in other cells. The previously described upper bound achieves both goals perfectly. The
measured interference channels are set to zero. No interference is caused over these channels
and not a single degree of freedom has to be spend for mitigating the interference. The base
station can still use all their degrees of freedom to serve their own mobile devices.

2.5.1 Lower Bounds for Interference Coordination

With interference coordination, the base stations pursue the higher goal of maximizing the
sum rate of the whole network. This will inherently maximize the sum rate of the cell. A
compromise between serving the associated mobile devices and limiting the intercell inter-
ference at other mobile devices has to be found. The optimal compromise will always be at
least as good as if only one of the goals is followed. For a given L, two lower bounds can be
defined by looking at the two extremes.

2.5.1.1 No Cooperation

Obviously, no cooperation is always an option. The base stations use all their degrees of
freedom to serve their own mobile devices egoistically. The first extreme can be found as
follows and is equal to problem (2.17), where no channels are set to zero, i.e., 1, (2.1) is
used instead of rupperp i (2.16). Opiindap i consists of the complete interference in the central
cluster and agdi,’k contains only the serving channels, but L has still an influence on the
efficiency &:

noco — , g0t < P3. 21
Uy =37 4 g i, 2 Vil st Q0 o
’ b
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2.5.1.2 Zero Forcing the Interference

The other extreme is to use the degrees of freedom to set the interference caused over
measured channels to zero. The number of complex degrees of freedom at a base station
are equal to the number of antennas N. If the number of measured interference channels
at a base station is smaller than the number of antennas, N — L degrees of freedom will
be left for serving the associated mobile devices. This can be implemented by transmitting
in the nullspace of the measured interference channels as described in [42]. The transmit
covariance matrices are decomposed:

Qv = ViQui Vi, (2.19)

where V;, € CV*¥~L is the nullspace of the measured interference channels. The lower bound
rates can be found by plugging (2.19) into the sum utility optimization (2.3) and optimizing
the remaining reduced transmit covariance matrices Qy € CV~1N=L distributively:

Ui = »_{  max > Ulracion), st tr(@) <Py, (2.20)
b Qy, 1 V(bk)EK, (k)X

Tafici,bk = Tbvk‘Qb,k:Vbe,kaH V(b,k)eK

hil,  ViQui Vi
= €log, |1+ bk Vo L . (2.21)
O T Obtind,b,x + Ziok hb,b,k%QbJ}% hip s

Obiind p,x has only of the interference over the not measured channels incorporated and Uidb’k
reflects the serving and the measured interference channels. If L is equal to or larger than
N, zero forcing of the interference will force the base station to shut down.

2.5.2 Interference Temperatures

It is not possible to set the interference channels to zero as described for the upper bound
and it is not advisable to ignore or zero force the interference as discussed for the lower
bounds. But, the base stations can limit the intercell interference they cause over the L
measured interference channels to a certain level, the interference temperatures [44].

Here, the interference temperature technique is combined with the outdating of the chan-
nel state information and the signaling efficiency according to the number of measured in-
terference channels as described in the first part of this chapter (See equation (2.1)).

The problem at each base station can be formulated as a sum utility optimization with
multiple linear constraints [44]:

max Z U (7o.x)
Qu,k V(bk)EK, (bE)eks

s.t. tr(Qb) S P
Oy < i V(b ) € Lo, (2.22)

where £, is the set of mobile devices, which are not associated to base station b, but the
channel between these mobile devices and base station b is known. 6, ;; = h?é ,;Qbhb i s
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the interference base station b causes at mobile device (l;, /%) and 7,37, is the corresponding
interference limit.

For network sum rate optimizations, this results in a weighted sum rate optimization
with multiple linear constraints and can be solved with the minimax duality from [69] as
shown in [70] (See Chapter 3).

2.5.3 Selection of ,; ;

The selection of the optimal interference constraint limits,

argmax Z { max Z U(rok),
{’Yb,é,fc v(b,k)eLy VbEB} b Qv V(b k)ER (b,k)EK,

s.t. tI‘(Qb) < P,

Opiic < Toiir V(b k) € Lb}, (2.23)

is a problem with non-polynomial worst-case complexity [43]. The minimal interference
constraint limit is zero and above the maximal interference 6 __ , ;. the value of the limit

makes no difference: v,;; € [0, 0 ocobi k} The maximal interference is found with the no

cooperation lower bound optimization, where the constraint does not exist.

In [44], all constraint limits are set equal to the thermal noise power Yook = 0,27,
V(@, /Af) € Ly, Vb € B. Dotzler et al. proposed to set all constraint limits to the same
value 7,51 = 7 € [0, Omax], V(b,k) € L,, Vb € B which is found with a line search [43].
Omax = MaXyep ()L, 9n0covb757,; is the maximum over all maximal interferences in the sys-
tem. Here, v,;; is set to a scaled version of the intercell interference plus noise, which

remains at the mobile device (ZA), l%) after the intercell interference over the measured chan-
nels is subtracted:

Vo b — & (eblind,f),fc + Uii;;) (2.24)

The optimal « is found with a line search.

The described selection of v, ; ;. requires that the base stations communicate. The base
stations, which measured the interference channel to a mobile device, need to know the inter-
cell interference, which remains at the regarded mobile device after the intercell interference
over the measured channels is subtracted. The cost of this communication is neglected in the
simulations. For the two extreme values of the scaling a > 0, the solution of the described
algorithm (2.23) converges to the solution with the lower bounds described in Section 2.5.1.1
and 2.5.1.2.

2.5.3.1 Vb = 0, V(i), ]27) e L,

If all interference constraint limits are set to zero, the constraints require that the base
stations transmit in the nullspace of the interference channels, as they do in the zero forcing
lower bound. For L > N all rates are zero.
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2.5.3.2 7,54 — 00, (b, k) € Ly

By setting the interference constraint limits to a very large value, the maximization with
multiple linear constraints is equal to the lower bound, where the intercell interference is
simply ignored.

2.5.4 Simulations

The same parameters are used as in Section 2.4.1 for the low mobility scenario. But, there
are only K = 4 mobile devices per cell served with the N = 4 transmit antennas per base
station. In Figure 2.7 the lower bounds are plotted over the blocklength Tj,, for the sum
rate maximization. For L = 0, the lower bound with zero forcing of the intercell interference
(LB ZF) and the lower bound without cooperation (LB NC) are equal. These curves are
also equal to the upper bound with L = 0. For increasing L, the LB NC decreases according
to the overhead efficiency. The LB ZF increases at first, but degrades at L = 3 dramatically
and hits zero for L > 4.

6
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Figure 2.7. Lower bounds for the cell sum rate
The influence of the common scaling « can be seen in Figure 2.8 for L = {1,...,6} under

the maximum sum rate utility. The block length is fixed to Tyocx = 200. The lower bound
with zero forcing of the interference is marked with an x at the left border of the plot for the
different selections of L and the lower bound which ignores the interference is marked with
an o at the right border of the plot. For each L, the curve converges to the corresponding
solution of the lower bounds for a — 0 and o — oo, respectively. For any L, the optimal
value for o can be found around o = 1, where the optimal « is larger for larger L. The
influence of choosing a correctly increased for increasing L. For L = 1, the gain of the best
a compared to the lower bounds is rather small, whereas the correct selection of o for L = 5
is crucial. Although the lower bounds decrease for increasing L, the optimal value increases.
But, the gain from L = 3 to L = 5 is very small. A further increase of L will result in worse
sum rates at the optimal «.
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Figure 2.8. Cell sum rate with interference temperatures over the selection of «

The same investigation is done under the proportional-fair utility in Figure 2.9. The
idea of this utility is to maximize the sum of the logarithms, here the natural logarithms,
of the rates of all mobile devices in a cell (See Chapter 5). To improve the readability
of the plot, it does not show the utility itself, but, a simple transformation thereof. The
expected value of the logarithms of the mobile device rates is used as exponent for the base
of the natural logarithm. It can be seen, that the utility improves in the beginning with
increasing cooperation. The optimal L and « are again around fife and one, respectively. The
proportional-fair utility finds a compromise between serving all users equally and maximizing
the cell sum rate. As this utility is much fairer than the sum rate utility, mobile devices at
the cell edge get served more often and have a greater influence on the utility. In contrast,
mobile devices with a strong channel are the most important mobile devices for the sum rate
utility. It can be seen in Appendix A1 that the situation of both mobile device classes can be
improved significantly with cooperation. The sum rate is improved because the collocated
base stations limit their interference to the mobile devices close to the site, while in a fairness
approach the mobile devices with weak SINR are protected. The results are still optimistic,
as many issues of an implementation are neglected. It is most likely that in a realistic system
the optimal value of L is smaller and the limit to the amount of beneficial cooperation is
stricter.

2.6 Conclusion

For the downlink of a cellular system with time division duplex, a loose upper bound for the
possible network sum utility is formulated in this chapter. The channel state information is
restricted to a subset of mobile devices and is prone to an outdating error. By nulling or
scaling the known interference variance and treating the unknown interference as noise, the
network sum utility maximization is transformed to a known problem, which can be solved.
Based on this upper bound on network sum utility, on minimum overhead, on minimum
outdating error, and on optimal channel state information measurement and selection, a
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Figure 2.9. Proportional fair utility with interference temperatures over the selection of «

limit to beneficial interference coordination is presented. As the interference coordination
is assumed to be optimal for the given channel state information, an increase in coopera-
tion always requires additional measurements of channel state information. The necessary
increase in the overhead and the associated lower efficiency of the system absorbs at some
point the gain of cooperation. An increase beyond this limit results in lower data rates due
to the large overhead.

The upper bound does not show how much cooperation is optimal, it only states that
there is a limit to beneficial cooperation. This limit is very small for high mobility scenarios
and large for low mobility scenarios, promoting the use of cooperation in the latter case.
The interference temperatures technique is combined with the limited set of measured in-
terference channels, the corresponding efficiency and outdating error of the channel state
information. This allows the use of the interference temperature methods in a large scale
system. The interference temperature algorithm is compared with two lower bounds, namely
no cooperation and zero forcing of the interference over the measured interference channels
and a heuristic is given for selecting the interference temperatures. It can be seen that the
gain of cooperation is rather small for the low mobility scenario with interference tempera-
tures. Therefore, there will be a vast amount of interference over not measured interference

channels. Especially in systems where the complete available bandwidth is used by every
base station and the cooperation is also limited by other effects besides the optimistic over-
head used in this analysis. This advises to take a closer look at the interference over the not

measured interference channels as it is done in the following chapters.






3. Sum Rate Maximization with Conic Constraints

Maximizing the weighted sum rate in the downlink of a MU-MIMO system with a single
transmit power constraint typically consists of two steps: a transformation of the downlink
problem to the dual uplink problem and solving the uplink problem, which can be rewritten
as a convex optimization problem. The dual transformation was introduced in [71] and [72]
in parallel.

Additionally to generic methods for convex optimizations, there are some methods specif-
ically tailored to the uplink problem. The uplink problem can be solved with iterative wa-
terfilling as described in [73]. A different approach for solving the problem is the steepest
ascend algorithm. Hunger et al. showed that an orthogonal projection of the gradient onto
the constraint set is required to find the steepest ascend direction [74]. With this projection,
the deepest ascend algorithm has a very fast convergence behavior. The polite water-filling
from Liu et al. is another possible approach for both, the dual transformation and solving the
uplink problem with very fast convergence behavior [75]. The references in [74] and [75] give
a broad overview of the existing algorithms for solving the weighted sum rate maximization.

Multiple linear constraints for the weighted sum rate maximization in the uplink were
already addressed in [76], where Yu et al. investigated individual transmit power constraints
for each user. However, multiple constraints in the downlink could not be handled by the
existing dual transformations. In [69], Yu introduced a minimax duality, where the uplink
problem is, on the one hand, a maximization of the weighted sum rate with respect to the
transmit covariance matrices and, on the other hand, a minimization of the weighted sum
rate with respect to the noise covariance matrix. With the minimax duality, constraints
on the sum transmit covariance matrix in the downlink are transformed to constraints on
the noise covariance matrix in the uplink. Yu et al. used this duality in [77] to tackle the
weighted sum rate maximization with per antenna power constraints in the downlink. To
solve the resulting minimax problem, Yu et al. updated the transmit and noise covariance
matrices simultaneously with an adopted Newton’s method. Feasibility of the covariance
matrices was assured with the interior-point method.

The weighted sum rate algorithm of Yu et al. was generalized by Huh et al. in [67] for gen-
eral linear constraints. They alternately solved the maximization of the transmit and noise
covariance matrices. The utility was minimized with respect to the noise covariance matrix
by a subgradient method, while the maximization with respect to the transmit covariance
matrices was done with the adopted Newton’s method.

In [70], Zhang et al. relaxed the multiple linear constraints to a single weighted sum
constraint. The resulting problem could than be transformed to an uplink problem with
the existing duality [71,72]. Zhang et al. claimed that the optimum could be reached by

25
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alternately maximizing the uplink problem with respect to the transmit covariance matrices
and minimizing the downlink problem with respect to the weights. The claim was proven by
showing that both, the original and the changed problem, have the same Lagrangian func-
tion. The Lagrangian multipliers of the original problem are the weights in the transformed
problem.

Designed for more general interference networks, Liu et al. proposed two algorithms based
on their polite water-filling to solve the weighted sum rate maximization with multiple linear
constraints [78]. The cost function has to be maximized with respect to the transmit covari-
ance matrices and minimized with respect to the Lagrangian multipliers of the constraints.
The first algorithm alternates between polite water-filling for the transmit covariance matri-
ces and a subgradient or an heuristic update algorithm for the Lagrangian multipliers. The
polite water-filling itself is an alternating algorithm, which rotates between updating the
transmit covariances in the uplink and downlink. The second algorithm includes the update
of the Lagrangian multipliers into the alternating process of the polite water-filling.

Dotzler et al. introduced in [27] a minimax duality with linear conic constraints, where the
uplink noise covariance itself is the Lagrangian multiplier for the constraints on the downlink
covariance. In [79], where parts of this chapter can be found, the minimax duality is extended
for multiple linear conic constraints. It is shown that the uplink problem can be solved with
the rather simple but efficient gradient-projection algorithm. The required projections are
discussed and an alternating and a joint update algorithm are proposed. Additionally, the
tangent cone projection of the gradients to find the steepest ascend or descend direction are
investigated. The proposed algorithms are tailored for conic constraints, which cannot be
handled by the previously existing methods. Nevertheless, the proposed algorithms are also
very efficient for optimizations with multiple linear constraints.

Next to per antenna power constraints, multiple linear constraints can be used as interfer-
ence temperatures, which limit the received interference at selected receivers to a given level
(See Section 2.5) [59,77]. In a cellular network with local optimizations of the transmission
strategy, a conic constraint, which shapes the sum transmit covariance of a transmitter to
a scaled identity matrix, can be useful to remove uncertainty in the interference variance at
disturbed users (See Section 4.9) [32]. By combining the shaping constraint with a linear
sum power constraint, a controlled uncertainty in the intercell interference variance at the
users can be introduced (See Section 4.10) [80]. An example for combining a conic and mul-
tiple linear constraints is the combination of the above mentioned shaping and interference
temperature constraints.

3.1 System Model

In this chapter, the system model is a single cell MU-MIMO broadcast channel (See Fig-
ure 3.1). The base station is equipped with N antennas and serves K mobile devices with
M antennas each. The sum transmit signal € = >, &) € CV contains the transmit signal
for all mobile devices. Each of these transmit signals is assumed to be zero-mean, complex
Gaussian with covariance matrix E [a:ka:l,ﬂ = Q. Transmit signals for different mobile
devices are assumed to be independent. The sum transmit covariance matrix is

Q = B [z2"] ZZE[CBMEE] :ZQ’“ € CNxN, (3.1)

k
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The matrix H}! € CM*Y contains the channel coefficients between the antennas of the
base station and user k. Compared to the single cell with random intercell interference
variance from Section 4.3, here the receivers have multiple antennas in general and there is
no virtual intercell interference variance. The intercell interference can be seen as a known
and fixed part of the noise n, € CM in this chapter. Without loss of generality, the noise at
different receive antennas is assumed to be independent and identically complex Gaussian
distributed with zero-mean and normalized variance E [nkng] = I. Any system with a
different noise covariance matrix or individual noise covariance matrices for each mobile
device can be transformed to a system with an identity matrix as noise covariance matrix
by an according substitution of the channel matrices. Perfect channel state information is
assumed.
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Figure 3.1. Downlink system model

The achievable, normalized rate of user k, within the capacity region of the MU-MIMO
downlink with dirty paper coding, can be expressed as [81]

Tdownlink _ lOg |I + H’? (Z/%Zk Qiﬂ) Hk|
’ T HE (S, Qi) H|

(3.2)

H (3., Q;) Hy, is the variance of the intracell interference with dirty paper coding [60].
In a system with single antenna receivers (M = 1), the rate simplifies to

downlink __ 1 + h’g (ZI}EI@ Q]%) hk

Ty, = log, : (3.3)
1+ hg (Zk>k Qk) hi
3.2 General Cost Function
The weighted sum rate maximization problem in the downlink reads as
max Y (Qi.x) subject to Q € C, (3.4)

Qr>=0Vk



28 3. Sum Rate Maximization with Conic Constraints

where the sum transmit covariance matrix has to lie in the constraint set C (See Section 3.3)
and all individual transmit covariance matrices have to be positive-semidefinite.
The weighted sum rate,

T+ H' (., Q1)

I+ H!! ; ) H
Ql K Z wy, rdownhnk Z wy, 10g2 ’ + k (Zka Qk) k‘ : (35)
k

consists of the weights wy, and downlink rates rio"ink of the mobile devices k € K, where
K is the set of all users. In a system with single antenna receivers (M = 1) this simplifies to

1+ Rk (3., Q) hu
downlink k k>k %k
E = . 3.6
V(Qui) = 2w Zwk TR (S Q) T 30

3.3 Constraints on the Transmit Covariance Matrix

The transmit covariance matrices Q) € CV*¥ are the optimization variables in the weighted
sum rate optimization and have to lie in a convex constraint set. This problem is analyzed
with the methods from [82]. Each transmit covariance matrix has to be positive-semidefinite,
as this is the nature of covariance matrices. For a bounded optimization, at least the trace
of the sum transmit covariance matrix Q € CN*V has to be limited with an additional
constraint. The goal of this section is to give an interpretation of linear and conic constraints.
At first, the positive-semidefiniteness property of covariance matrices is discussed. Additional
linear and conic constraints will be covered in the following.

3.3.1 Positive-Semidefinite

From Q = E [me} = (E [meDH, it can be seen that covariance matrices have to be Her-
mitian, they are equal to their own conjugate transpose. The lower and upper triangular
part of the covariance matrix depend on each other, which reduces the number of indepen-
dently selectable entries in the matrix. The entry of @ in the ith row and the jth column is
¢j =E [:L‘,(Eﬂ , where z; € C and z; € C are the ith and jth element of & € CV, respectively.
The entry in the jth row and the ith column is ¢;; = E [z]z;] and, therefore, the complex
conjugate of ¢;;. The diagonal elements ¢; = E [z;2]] = E[|2;]*] > 0 are all real valued
and non-negative. It is also straight forward to see that @ is not only Hermitian, but also
positive- semidefinite!:

hQh = h'E [z h = E [\h%ﬂ >0, YheC¥ < Q=o. (3.7)

Regarding A" as a channel vector between the N transmit antennas and a single receive
antenna, h'Qh is the variance of the received signal, which has to be real valued and
non-negative for all h € CV.

To get a better insight to the properties of covariance matrices and the different con-
straints in the following, the special case of a real valued two-by-two N = 2 covariance

IThe common definition of positive-semidefiniteness is used, where @ has to be Hermitian to guarantee
that R Qh,Vh € CV is real valued.
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matrix is investigated:

@ =gty T =[] 5

Real valued covariance matrices have to be symmetric. The independent entries of all real
valued symmetric matrices of size N x N define a vector space with dimension N (N +1)/2.
This is the number of entries in the lower or upper triangular part. A two-by-two real
valued symmetric matrix has three degrees of freedom. The two diagonal elements (q11, ¢o2)
and the off-diagonal element (g12). The corresponding vector space has three dimensions.
For real valued two-by-two covariance matrices, the positive-definiteness requirement can be
rewritten as

h'Q"h = hiqi1 + 2hihaqiz + h3ge2 > 0, Vhy, hy € R,
S @120, ¢2>0, ¢y < qige. (3.9)
This defines the positive-semidefinite cone for real valued two-by-two covariance matrices.

See Figure 3.2 (b) for a graphical representation. The diagonal entries have to be positive
and the off-diagonal element depends on the selection of the diagonal entries.
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Figure 3.2. Positive-semidefiniteness for two-by-two covariance matrices

A two-dimensional representation can be found by limiting the transmit covariance matrix
to a two-by-two diagonal matrix. E.g., for two independently operating transmit antennas,
the total transmit covariance matrix is diagonal and has the two real valued diagonal elements
as degrees of freedom. The corresponding vector space has two dimensions:

que— | . (3.10)

The diagonal elements of a positive-semidefinite covariance matrix have to be non-negative.
For the two-by-two diagonal covariance matrix, this is represented by the positive quadrant
in the two dimensional vector space (see Figure 3.2 (a)).



30 3. Sum Rate Maximization with Conic Constraints

3.3.2 Linear Constraints

Without any additional constraints, the entries of the optimal Q) converge to infinity. There-
fore, at least one constraint limiting the trace of the sum transmit covariance matrix is nec-
essary to have a bounded optimization. Treating the variance of a signal as its power, the
diagonal entries of the sum transmit covariance matrix stand for the power radiated from
each antenna, respectively. The sum of these entries represents the sum power radiated by
the transmitter.

A rank one linear constraints limits the transmitted power in the direction a* to the
value a:

E[la"z|’] = a"Qa =tr (QA) < q, (3.11)

with A = aa'’ € CV*V as rank one positive-semidefinite constraint matrix. A linear
constraint of higher rank limits the weighted sum of the transmitted power in multiple
directions a; to the value a:

ZE [la/'z|’] = ZalHQal =tr(QA) <a, (3.12)
l !

with A = Y, ajaf' € CV*¥ as positive-semidefinite constraint matrix. A linear constraint
defines a hyperplane in the vector space of the covariance matrix entries with the correspond-
ing entries of the constraint matrix as normal vector. All points in the vector space of the
covariance matrix entries fulfilling the linear constraint with equality lie on this hyperplane.
All points in the half-space on one side of the hyperplane are in the constraint set and all
points on the other side are not in the constraint set.

The necessary limitation for bounding the optimization can either be achieved by a
single linear constraint with a positive-definite constraint matrix. This constraint defines
a hyperplane limiting all diagonal entries in the vector space of the constraint set and will
always be active in the optimal point. E.g., the commonly utilized sum power constraint is
a full rank linear constraint with A = I and the sum transmit power a = P (See Figure 3.3),

max Y(Qi.x) subject to  tr (Q) < P. (3.13)
Q=0

The optimization can also be bounded by combining multiple linear constraints of lower
rank,

ghax, V(Q1.x) subject to  tr(QA;) <a;, VI, (3.14)

where the sum of all constraint matrices ), A; is of full rank. Then, the combination defines
multiple hyperplanes, which limit all the diagonal entries in the vector space of the covariance
matrix entries.

The per antenna power constraints are an example for rank one constraints. Each diag-
onal entry is limited to a certain power level (See Figure 3.4) [77]:

Jmax, V(Q1.x) subject to  tr (Qee)) < P, Vie{l,...N}, (3.15)
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Figure 3.3. Sum power constraint for two-by-two covariance matrices
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Figure 3.4. Per antenna power constraint for two-by-two covariance matrices

where e; is the [th unit vector. As the optimal point for a full rank covariance matrix is on
the boundary of the set, all per antenna power constraints will be active in this point. If the
per antenna power constraints are combined with a looser sum power constraint (P < ), )
or the covariance matrix is rank deficient, some per antenna constraints will be inactive.
Another example for rank one linear constraints are interference temperatures, where the
generated interference power at certain receive antennas are limited [59]. The interference
temperatures are typically combined with a general transmit power constraint:

. j <
Jhax, U (Q1.x) subject to  tr(Q) < P

tr (Qhhy') < a, V. (3.16)

h}! is the channel between the base station and the single receive antenna of the disturbed
user. If the interference power is limited to a; = 0, the optimization should be projected into
the kernel of this or these channels [42]. If the constraints, which demand zero interference,
span the whole vector space, the base station has to shut down.
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3.3.3 Linear Conic Constraints

A conic constraint describes an infinite cone by its apex and base as feasible region in the
vector space of the transmit covariance matrix entries. The positive-semidefinite cone is a
ready example for a conic constraint with the apex in the origin and the base opens the
cone towards any non-negative diagonal elements (See Figure 3.2). The utilized constraints
in this thesis are all based on the positive-semidefinite cone, although, they are referred to
as general conic constraints.

A shaping constraint, a linear conic constraint in the variable @, limits the transmitted

power in all directions to the power, which would be transmitted with the shaping matrix
C ¢ CNxN:

E [|[h"z|’] = h"Qh < R"Ch, VheC"
0<h?(C-Q)h, YhecCV
0=C-Q & Q-C=<0 < Q=CcC. (3.17)

Equation (3.17) states that —Q shifted by C' has to be positive-semidefinite or @ shifted
by —C has to be negative-semidefinite. For the shaping constraint, the positive-semidefinite
cone is turned towards negative diagonal entries of the covariance matrix and shifted by
the shaping matrix C. The shaping constraint needs to limit the transmit power, i.e., the
diagonal entries of the covariance matrix. Therefore, the apex has to be a point in the vector
space of the covariance matrix entries corresponding to non-negative diagonal entries and
the all zeros matrix should be in the feasible set. These conditions are fulfilled with any
positive-definite matrix C"

. ' <
Qfé%}% U (Q1.x) subject to Q <X C. (3.18)

In Figure 3.5, the shaping is demonstrated with the two-by-two covariance matrices. ciq,
Co9, and ¢y are the two diagonal and the off-diagonal entry of a two-by-two shaping matrix,
respectively.
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Figure 3.5. Shaping constraint for two-by-two covariance matrices
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The selection C'¢ = cI shapes the transmit covariance to a scaled identity matrix with
sum transmit power c/N:

P
. ] < —1I .
Qiré%%k U (Q1.x) subject to Q =< NI (3.19)

If the transmit covariance matrix is of full rank, than the constraint will always be active in
the optimal point.

The shaping constraint can be generalized to a linear conic constraint with apex C' by
adding a subspace Z to increase the opening of the cone:

3ZeZ: Q=C+7Z. (3.20)

This can be seen as a positive-semidefinite linear conic constraint in the two variables @ and
Z € Z. The optimization is done over the transmit covariance matrices and the matrix Z:

max Y(Q1.x) subject to Q X C + Z. (3.21)
Qr=0Vk
Zez

Any point in the subspace Z shifted by C' can be seen as an apex of a feasible positive-
semidefinite cone. The union of all these cones, which is again a cone, is the feasible region
of the constraint. The two extreme cases are Z = {0}, which gives the shaping constraint,
and Z = CV*V_ which makes the constraint obsolete. Note, the here reviewed linear conic
constraints are always the union of positive-semidefinite cones and, therefore, do not cover
all possible conic constraints.

A linear constraint tr (QA) < a is a conic constraint, where the infinite cone is a half-
space. The boundary of the halfspace is a hyperplane with the entries of the constraint
matrix A as normal vector. The apex C' of the conic constraint can be chosen as any
point on the hyperplane of the linear constraint tr (C A) = a. Combined with the subspace
Z={Z: tr(ZA) =0}, all points on the hyperplane of the linear constraint are apexes for
negative-semidefinite cones and the union is the feasible half-space of the linear constraint.
This can be seen for diagonal two-by-two covariance matrices with the sum power constraint
(See equation (3.13)) in Figure 3.6 (a). The sum of the diagonal elements of Z has to be
zero and the off-diagonal elements can have any value. The off-diagonal elements can be
neglected as the covariance matrix has to be diagonal. Keeping the trace of Z zero, the apex
C + Z is moved along ci; + co9 = P, which increases the feasible region C' by all points
fulﬁlhng q11 -+ q22 S P.

Multiple linear constraints can be combined to one conic constraint, as long as an apex
C can be found, which lies on all hyperplanes. The per antenna power constraints (See
equation (3.15)) can be combined in such a way with the selection

P 0 - 0
Cper ant — 0 P2 , (322)
. 0

grerant _ fgperant gy (gperantg Ty — 0 Wl e {1,... N}}. (3.23)
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The apex is the point CP®" 2" where all per antenna power constraints are active. The set
Zper ant regtricts all diagonal elements of ZP" 2™ to be zero, but all off-diagonal elements are
unrestricted. In Figure 3.6 (b), this is shown for the case of real valued two-by-two covariance
matrices. The apex C' + Z can be any point on the line with ¢q;; = ¢17 and ¢o9 = 99, which
extends the feasible region to the region already shown in Figure 3.4 (b).
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(a) Sum power constraint expressed as a linear (b) Boundary for real valued matrices with per
conic constraint for diagonal matrices antenna power constraints expressed as a linear
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Figure 3.6. Shaping constraint extended by the subspace Z for two-by-two covariance matrices

Multiple conic constraints can be formulated as
1Z, € 2, QC,+ Z;, VI, (324)

which can be used for example to combine a shaping constraint with a stricter sum power
constraint [59] or interference temperature constraints.

3.4 Uplink-Downlink Duality

The weighted sum rate optimization in the downlink (See equation (3.4)) is a non-convex
problem and, therefore, hard to solve. But, the downlink problem can be transformed into a
dual uplink problem, which is convex and can be solved with standard convex optimization
tools. The transmit covariance matrices for the downlink can then be found based on the
dual variables. Under a sum power constraint, the capacity region of the broadcast and the
multiple access channel are exactly the same [71,72]. Based on a minimax duality, Yu could
show, that the weighted sum rate of the downlink and dual uplink are the same for any linear
constraints [69]. This duality was extended to optimizations with linear conic constraints
by Dotzler et al. [27]. Wiegart et al. discuss the relevant cases of rank deficient channel and
constraint matrices [83], which are excluded in this work.

3.4.1 Uplink System Model

The dual uplink channel to the MU-MIMO broadcast channel is a MU-MIMO multiple access
channel (See Figure 3.7 (b)). The base station is equipped with N antennas and receives
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signals from K mobile devices with M antennas each. The transmit signals are assumed to
be zero-mean, complex Gaussian with covariance matrix E [éké}ﬂ = E}. Transmit signals
from different mobile devices are assumed to be independent. The channels in the dual
uplink are equal to the flipped channels in the downlink:

Fwnk (Hgownlink)H — H, € CN*M (3.25)

The noise v € CV is assumed to be zero-mean, complex Gaussian with covariance matrix

E [t = 2.

n
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Figure 3.7. Duality between broadcast channel and multiple access channel

In the dual multiple access channel, the rate of user £ with successive interference can-
cellation can be found with flipped channels as

uplink ‘Q T Zkgk HI%EI;H}:)
Tk = log,

(3.26)

243 HkEka’

>ier H'E Hy, is the covariance of the intracell interference with successive interference
cancellation. In an uplink system with single antenna transmitters (M = 1), the rate
simplifies to

|24 S i
2+ ql%hfchlfj‘

uplink
T = log,

(3.27)

where ¢ are the scalar transmit powers of the K mobile devices, respectively.
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3.4.2 Uplink Cost Function

The sum rate with MU-MIMO and successive interference cancellation in the uplink reads
as

link
(B, 12 g wrpt ™

24 i Hi S HY|
245 HiE HY|

= Z wy, log,
k

= Z axlogy |2+ H ZEHI'| —wilog, |02, (3.28)

k<k

with ap = (wg — wgyq) for £ = 1... K — 1 and ag = wg. Without loss of generality, it
can be assumed that the mobile devices are handled in the optimal decoding order, i.e., the
weights are sorted in non-increasing order wy > w1 and all oy are non-negative. The sum
rate is a convex function of the transmit covariance matrices =} and can be optimized with
standard convex optimization methods. In an uplink system with single antenna transmitters
(M = 1), the sum rate simplifies to

D(q1.x, Z wyry P = Z ay log, |2 + Z qph; h — wy log, |£2]. (3.29)
h<k

3.4.3 Duality with Linear Constraints
As shown in [69], the dual problem of the weighted sum rate optimization in the downlink
with a general linear constraint with positive-definite constraint matrix A > 0,

max  Y(Qi.x) subject to  tr (QA) < a, (3.30)

Qr=0Vk

is a weighted sum rate optimization in the uplink with a linear constraint on the sum
transmit covariance matrix and both achieve the same sum rate. The constraint matrix in
the downlink 2 = A becomes the noise covariance matrix in the uplink (See equation (3.26)):
max O(E.x, A) subject to  tr (&) < a. (3.31)
Zp=0 Vk
It can be seen that the constraint matrix has to be of full rank. Otherwise, the downlink
constraint would not limit all diagonal entries and parts of the uplink cost function would run
towards infinity. The duality with multiple linear constraints is similarly to the duality with
a single linear constraint. With multiple linear constraints, only the sum of all constraint
matrices has to be of full rank.

3.4.4 Duality with Linear Conic Constraints

The minimax duality with a conic constraint from [27] shows that the sum rate of

max Y (Q1.x) subject to Q X C + Z, (3.32)
Qi =0 Vk
Zez
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with the positive-defininte covariance matrix C > 0, is the same as the sum rate of the dual
saddle point problem,

min max P(E.k, 12), (3.33)
-0, Ncz+ =,-0VEk
tr(CN2)=P tr(Z)=P

where P € R, is any positive constant and Z+ is the orthogonal subspace to Z:
Zt={02:t1(NZ)=0,VZ € Z}. (3.34)

The inner maximization is concave with respect to the transmit covariance matrices and the
outer minimization is convex with respect to the noise covariance matrix.

In the following, this duality is is extended for multiple (L) conic constraints. Because
of strong duality! and the variables being selected from closed sets, the downlink problem,

max Y(Qi.x) subjectto Q < C;+ Z;, VI, (3.35)
Qr=0VEk
VARSFARY)

can be expressed by its Lagrangian dual,

min max Y(Qi.x)— tr (2 -C - 2)), 336
20Vl @, >0 vk (Qux) ; (£2/(Q I 1) (3.36)
VALYAR)

where £2; € CV*¥ is the Lagrangian multiplier of constraint {. The inner problem of (3.36)
is unbounded, unless §2; € Zi-, Vi, where

Z = {02, :t1(2,2)) = 0,YZ, € 2}, (3.37)

and can be rearranged as

min max  V(Qi.x)— Ztr (£2Q) + Ztr (£2,C)) . (3.38)
I I

0=<02ie2-vi Qrz0VEk

Due to the complementary slackness condition of all constraints,

D tr(2Q) =) tr(20) (3.39)

has to be fulfilled. A joint scaling of all dual variables does not change the solution. Without
loss of generality, both sides of equation (3.39) can be fixed to some value P. This relaxation
is equal to fulfilling all individual complementary slackness conditions in the optimal point.
Having equation (3.39) as constraint to the weighted sum rate maximization has the same
Lagrangian function with some arbitrary joint scaling. With this relaxation, the saddle point
problem reads as

min max Y (Qi.x), (3.40)
0=,z Vi Q>0 Vk
Yt C)=P tx(£2Q)=P

IThe strong duality for multiple constraints can be shown with the same methods presented in [27] for a
single constraint
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where 2 = >, §2; is the sum of all Lagrangian multipliers. The inner maximization is
a weighted sum rate maximization with a single linear constraint and, therefore, can be
replaced by its dual maximization in the uplink:

min max @ <ELK, Z nl) . (3.41)
l

0=02ie2- vl  ER=0Vk
Zl tr(£2,C;)=P tr(E)=P

The dual uplink noise covariance matrix {2 is equal to the sum of the Lagrangian multiplier
matrices of the downlink problem.

In this thesis, it is assumed that the constraint matrices C; and the joint channel matrix
[Hy, ..., Hg] are of full rank. The problem and treatment of rank deficient matrices is
described and handled in [27,83]. Expressing the linear interference temperatures as conic
constraints with the requirement of zero interference in a direction leads to a rank deficient
C;. For this case, convergence of the optimization cannot be guaranteed with this duality.
The problem has to be transformed into the kernel of the forbidden directions before the
duality is applied [42].

3.4.5 Recovery of the Downlink Transmit Covariance Matrices

The individual transmit covariance matrices in the downlink can be computed based on the
optimal solution to the dual problem:

-1 -1

Q+> HEZH'| -|02+) HEZH , (3.42)

k<k k<k

1

Q= (1 1n(2)

where p is the Lagrangian multiplier of the power constraint in the uplink and the uplink
noise covariance matrix £2 =, §2; is the sum of all Lagrangian multipliers of the downlink
constraints. If p is unknown, but the power constraint should be active, the correct scaling
can always be found such, that the sum of the traces fulfills the power constraint. In the
algorithms, this calculation is called MAC2BC(e), while the conversion from the downlink
covariance matrices to the uplink covariance matrices is called BC2MAC(e).

3.5 Alternating Projected Gradient Algorithm

Recall the optimization problem (3.41),

0=02e2t vl =,>-0 Yk
Zl tr(£2,C;)=P tr(E)=P

min max Z ay log, |2 + Z HkEkH]? — wy log, |12, (3.43)
k k<k

with L linear conic constraints. As shown in [74], the inner maximization of problem (3.43)
can be solved efficiently with the iterative scaled gradient algorithm with an orthogonal
projection onto the constraint set.

Here, it is proposed to solve the complete minimax problem with a joint or alternating
projected gradient algorithm [79,84]. The algorithm alternates between finding the optimal
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transmit covariances for a fixed noise covariance and vice versa as depicted in Algorithm 3.1.
In lines 6 to 14, the transmit covariance matrices are updated with steepest ascend steps until
convergence and, in lines 15 to 23, the noise covariance matrices are updated with steepest
descend steps until convergence is reached. The steepest ascend and descend steps for the
transmit and noise covariance matrices are discussed in the following sections for different
types of constraints. The algorithm switches between the two inner loops until a convergence
of the outer loop is reached. This kind of alternating structure, with different realizations of
the inner loops, corresponds to existing algorithms in the literature for optimizations with
multiple linear constraints [67,70].

Algorithm 3.1 Alternating gradient-projection algorithm—switch at convergence

Require: Accuracy ¢, constraints (C, Z;), VI

ICR S KI, VEk > initialize transmit covariances
2 $2. (ml)L > initial noise covariances (3.51)
Bdi+—1,d,+ 1,10 > initialize step-size
1 BV — B(Ek, 3, 02) > initial objective (3.28)
5. repeat
6: D V) B Zy Yk i 0
T repeat
8: Ef?}l) < TransCovStep (.d(l) ) > Algorithm 3.3
9: P eV S ) > evaluate objective (3.28)
10: cost_increase < o\ — "
11: 14 1+1 > inner iteration counter
12: until cost_increase < > break if convergence is reached
13: A E',Ez), VEk > new transmit covariance matrices
14: total_cost_increase < @Ei) — @EO)
15 OV o QO 2 VI, i 0
16: repeat
17: 2+« NoiseCovStep <.Q§Z ) > Algorithm 3.4
18: PV B(Ery, 3o, 020 > evaluate objective (3.28)
19: cost_decrease < ¢4 — @)
20: 1141 > inner iteration counter
21: until cost_decrease > —¢ > break if convergence is reached
22: 2 .Ql(z), Vi > new noise covariance matrices
23: total_cost_decrease + &%) — ¢
24: until total_cost_increase < ¢ and total_cost_decrease > —e
25: Q1.x < MAC2BC(E1.k, 1, Y, §2)) > downlink recovery (3.42)

It is also possible and much more efficient to alternate after each projected gradient step
between the transmit and noise covariance matrix updates as it is shown in Algorithm 3.2.
In each iteration of the algorithm, the transmit and noise covariance matrices are updated
with a steepest ascend/descend step. Line 6 describe the update of the transmit covariance
matrices according to Section 3.5.1. The description of the noise covariance matrix update
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in line 9 can be found in Section 3.5.2. Any other fixed number of steps into one direction
or the other before switching between the two tasks can also be implemented.

Algorithm 3.2 Joint gradient-projection algorithm—switch in every iteration

Require: Accuracy ¢, constraints (Cy, Z;), VI

1: (0) — WL VEk > initialize transmit covariances
2: .Qioz — (%I) > initial noise covariances (3.51)
3pdy+—1,dy1,7+0 > initialize step-size
1 oV — (L) 5, 02 > initial objective (3.28)
5: repeat

6: E'l(l}l) < TransCovStep (E’%) > Algorithm 3.3

7: QP(ZH) — @(._11;21), > .Q( )) > evaluate objective (3.28)

8 cost_increase + @'Y — @I(f )

9. U NoiseCovStep (Qﬁ;) > Algorithm 3.4
100 O (DS ) > evaluate objective (3.28)
11:  cost_decrease ¢ &L — T
12: 14 1+1 > iteration counter
13: until cost_increase < ¢ and cost_decrease > —¢
14: Q. +— MAC2BC(E1.k, 1, >, §2) > downlink recovery (3.42)

In line 1 of Algorithm 3.1 and 3.2, the transmit covariance matrices are initialized simply
and feasible with scaled identity matrices, which fulfill the joint trace limit. In line 2, the
noise covariance matrices are initialized. To find a feasible initialization, all £2; have to be
selected from the set Z;-, respectively. Jointly, they have to fulfill the trace constraint. Such
a selection is sketched out with an orthogonal projection (e), of scaled identity matrices.
The steps in (3.51) can be followed in general, but have to be adapted for the constraints at
hand. In the last line of the two algorithms, respectively, the primal optimization variables,
the downlink transmit covariances, are calculated based on (3.42).

3.5.1 Projected Gradient Update of the Transmit Covariance Matrices
Following (28, 74], the gradient with respect to the individual transmit covariance matrices
is

843<E?LKH 2:[!20
OET

G =
-1

H'( 2+ HEH!'| H. (3.44)

k>k k<k

which is always positive semidefinite. In each iteration (i) of the gradient update algorithm,
the gradient Gt ks Vk, is evaluated with the transmit covariance matrices = k , Vk, and noise

covariance matrices .Ql , VI, of this step. In general, the steepest ascend needs a projection
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of the gradient onto the tangent cone (o), :

A description of the orthogonal projection of the gradient onto the tangent cone of the
constraint set (), can be found in [28, Section 5.3.2.2]. Hunger shows that this projection
indeed yields the steepest ascent, but has a negligible effect on the convergence speed for
the optimization of the covariances. It can simply be replaced with the identity mapping.
With the update matrices G&)C, VEk, the unconstrained updates of the covariance matrices

EA',?H), Vk, for the next iteration (i + 1) are calculated as

S+l _ = i) (i
:]i+ ) — .:,,g) - SE )GE}C, (3.46)

which will be positive-semidefinite, if the tangent cone Pro jection is replaced with the identity
mapping or a simple scaling. The joint step-size s;’ for all transmit covariance matrix
updates is discussed in more detail in Section 3.5.3. The transmit covariance matrices = ,ﬁ’),
VEk, in step ¢ are in the constraint set. But, the unconstrained updates of the transmit

covariance matrices :,EZH Vk might not be in the constraint set. To find the steepest

+1
ascend update, which gives the transmit covariance matrices in the next iteration .:,gl ),

VEk, the joint projection of all unconstrained updates onto the constraints set has to be done:
=(i+1 (it

which is discussed in more detail in Section 3.5.4. The algorithm for a single gradient
update step of the transmit covariance matrices can be seen for the on demand step-size in
Algorithm 3.3.

Algorithm 3.3 TransCovStep
Projected gradient step of the transmit covariance matrices with diminishing and on demand
step-size reduction

Require: previous or initial =y, Vk, £2;, VI, cost_old, inverse step-size d, accuracy e

1. Gyy < (0P (E1.k, Zz 2)) (05y) ", Vk > gradient computation (3.44)
2 py— P(3 tr(Gig)) ™ > preconditioning (3.54)
3: repeat

40 sy < pody tiV? > set step-size (3.53)
5: B B+ 5¢:Gy, Vk > unconstr. update (3.46)
6: Bk — (:,'A'LK)L > joint projection (3.47)
7: cost new + B(Er.i, 3, 82) > evaluate objective (3.28)
8: cost_increase <— cost_new — cost_old

9: if cost_increase < —e then
10: dy < dy +1 > decrease step-size
11: end if

12: until cost_increase > —e
13: B < =, Vk > new covariances
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3.5.2 Projected Gradient Update of the Uplink Noise Covariance Matrices

The gradient update of the noise covariance matrix follows the same steps as the update of
the transmit covariance matrices except that it is a minimization instead of a maximization.
The gradient én of ? (5 k, Zl £2;) with respect to the noise covariance matrix, or each of
its summands, is

A 0P (ElzKa Zl Ql)

Gni = o02T
-1
(6773 —_ H w1 1 A
= 2 H: = H; — 2 = 4
2y | 2+ L WS H, n(2) G (3.48)

k<k

which is always negative-semidefinite. The gradient is the same for all summands of the noise
covariance matrix, which results in a slow convergence behavior for multiple constraints. The
gradient GY in iteration () is evaluated with the transmit covariance matrices = ,gz), vk,

and noise covariance matrices .Ql(i), Vi, of this step. The projection of the gradient onto the
tangent cone (o), reads as

G\, = (GH)A (3.49)

and is discussed for different types of constraints in Section 3.5.5. The projection onto the
tangent cone is optional, but can drastically increase the convergence speed. The uncon-
strained updates of the noise covariance matrix summands are

I = Q) — G, (3:50)

The joint step-size for the noise covariance matrix updates s{ follows the same rules as the
step-size for the transmit covariance updates as described in Section 3.5.3. The gradient is
subtracted from the previous value, because it is a minimization instead of the maximization
in equation (3.46). The steepest descend update of the noise covariance matrix summands,

i+1 A (i+1
|r)§:L ) = <Q§:L )>i’ (351)
is found with a joint orthogonal projection step, which is done with the generalized water-
spilling presented in Section 3.5.6 for different types of constraints. The algorithm for a
single gradient update step of the noise covariance matrices can be seen for the on demand
step-size in Algorithm 3.4.

3.5.3 Step-size

A detailed discussion of different step-size strategies for the gradient-projection algorithm can
be found in [28, Section 5.1.3]. Goldstein and Levitin showed, that the projected-gradient
algorithm converges with a constant step-size to a stationary point under certain condi-
tions [85,86]. These conditions are fulfilled for the optimization of the transmit covariance
matrices and, due to the similar structure, also for the optimization of the noise covariance
matrices [28, Section 5.1.3.1]. The joint update of all transmit covariance matrices is a con-
cave problem for fixed noise covariance matrices and the joint update of all noise covariance
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Algorithm 3.4 NoiseCovStep
Projected gradient step of the noise covariance matrices with diminishing and on demand
step-size reduction

Require: previous or initial Zy, Vk, §2;, VI, cost_old, inverse step-size d,, accuracy €

1. Gy (00 (B, 3, 2)) (092)" > gradient computation (3.48)
-1

2! pn P(Zl tr(ClGn)> > preconditioning (3.54)

30 GupL (G’n) > tangent cone projection (3.49)

A

4: repeat

B: Sy 4 pudy i/ > set step-size (3.53)

6 2, 2 —5,G,y, Vi > unconstr. update (3.50)

7 0, +— <Q1:L> > joint projection (3.51)
L ~

8: cost.new < @(E1.x, Y, 12) > evaluate objective (3.28)

9: cost_decrease < cost_new — cost_old

10: if cost_decrease > ¢ then

11: dy +—dy, +1 > decrease step-size

12: end if
13: until cost_decrease < ¢
14: §2, < $2;, Vi > new covariances

matrices is a convex problem with fixed transmit covariance matrices. For given gradient
matrices, the step-size, which gives the optimal result in the iteration at hand, can be found
with a line search at high computational cost [87]. The line search can be approximated
with the Armijo rule, which sets the normalized step-size into relation with the increase or
decrease of the utility [88]. A simple but slow approach is the diminishing step-size [89]:

o0
Zlgglo s =0, and Z s® = 0. (3.52)
i=0

The convergence of the projected-gradient algorithm for saddle point problems was inves-

tigated for constant step-sizes in [84]. A more efficient implementation with diminishing

step-sizes and on-demand step-size reduction was evaluated in [90] and is used in this work.
The utilized step-size consists of three factors for the transmit and noise covariance

matrices, respectively:

1

0 _ 0. 1L (i) — 00
s = e, sy =py e — - —. 3.53
! pt dt \/E b dn \/z ( )
The first factor is the preconditioning scalar,
; P ; P
Pl = (i) (3.54)

Tna(el) T ne (el

which normalizes the sum of the gradient traces to the chosen P and makes the gradient
almost independent of the selection of P.
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The second factor assures, that the utility is never changed for the worse. d; and d, are
initialized with one. The newly calculated transmit and noise covariance matrices with the
current step size are saved into temporary variables = ,?H), Vk and f)l(iﬂ), VI, respectively.
These will only be used as the covariance matrices for the next step, if the utility after the

update,

).

cost,newéiﬂ) =9 <

S 95”) , (3.55)
l

cost new!" ™) = @ <E$§1), Z fll(iﬂ)) ; (3.56)

is better than the utility before the update,

Cost,oldgiﬂ) = cost_new!) = & <E’§Z}(, Z -Ql(l) ) (3.57)
!
cost_old"H) = cost,newéiﬂ) = (El(?;l), Z -Ql(i)> ) (3.58)
!

respectively. The utility has to increase for the transmit covariance matrices and decrease
for the noise covariance matrices,

cost_increasel™ = cost_new!"™ — cost_old"™" > 0, (3.59)
cost_decreasel ™ = cost new"*V — cost_old" ! < 0. (3.60)

If the utility with the temporary covariance matrices is worse than with the covariance
matrices from the previous step, d; or d,, will be increased by one, to decrease d; ' or d;' and
the temporary transmit or noise covariance matrices will be calculated again. Based on the
newly calculated temporary covariance matrices, equation (3.59) or (3.60) is checked again.
This is repeated until the utility improves. This on-demand step-size reduction has a very
fast convergence behavior, but convergence cannot be assured in general. It can happen,
that the algorithm oscillates in the vicinity of the optimum. To guarantee convergence and
prevent the algorithm from oscillating, the third factor of the step-size is the diminishing step-
size i~'/2. The step-size selection can be seen in Algorithm 3.3 for the transmit covariance
matrices and in Algorithm 3.4 for the noise covariance matrices.

The original algorithm from Arrow et al. makes a joint step with a joint step-size for
the transmit and noise covariance matrices based on the covariance matrices from the pre-
vious iteration (i) [84]. Here, the algorithm alternates between an update of the transmit
covariance matrices and an update of the noise covariance matrices utilizing the updated
covariance matrices from the previous step with independent step-sizes, respectively. More
precisely, the old cost for the noise covariance matrix update in equation (3.58) and the
update of the noise covariance matrices are calculated with the already updated transmit
covariance matrices. In the simulations, this has shown a much faster convergence behavior.

3.5.4 Orthogonal Projection of the Transmit Covariance Matrices

The orthogonal projection (), onto the constraint set is done with the water-spilling al-
gorithm from [74]. A summary of the steps is given in this section to show the link to
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the orthogonal projection of the noise covariance matrices in Section 3.5.6. The goal of the
orthogonal projection onto the constraint set is to minimize the Fuclidean distance between
all the unconstrained updates of the transmit covariance matrices and the constraint set
simultaneously. The corresponding optimization is

Eux= argmin Y Hsk ~ &, (3.61)
=0V B F
Zktr(E’k):P

where || o||r is the Frobenius norm. The iteration index is dropped to increase the readability.
The Lagrangian function can be constructed with the dual variables S;, € CM*M vk, for
the positive semidefiniteness constraints and p for the joint trace constraint:

L(Evk, Stk p) = Ztr ((Ek - ék:) (Ek - ék:>H)
=) tr(5pSi) + (Z tr () — P) . (3.62)

k k

The dual variables Sj have to be positive-semidefinite and with an orthogonal eigenbasis
to Ey, Vk, respectively. The eigenvalues of S} are the Lagrangian multipliers of the non-
negative constraints for the eigenvalues of =Zj. Setting the derivative of the Lagrangian
function with respect to = to zero yields

=), = :'k + Sk — ul, VE, (363)
or equivalently

=, = (5 - ,uI>+, Vi, (3.64)

where the influence of S}, is replaced by the operation (), , which sets all negative eigenvalues
to zero. The Lagrangian multiplier i has the same value for all k. The left and the right
side of equation (3.64) have to have the same eigenbasis. From the eigen-decomposition
=, = UkAkU » with eigenbasis Uk and diagonal eigenvalue matrix Ak follows =, = UkAkUk
with diagonal eigenvalue matrix Ay. Therefore, equation (3.64) can be diagonalized as

Ay = (_/ik - u1)+7 (3.65)

Ao = (X,ﬂym - u)+- (3.66)

Here, Mg, Vm, and S\k,m, Vm, are the eigenvalues of =) and .é'k, respectively. The water
level p is found by plugging equation (3.66) into the trace constraint:

YouE) =Y ) =33 (X,m - u)+ ~-P (3.67)
k k k m

The joint set M of the indices of the positive eigenvalues of all =) has to be identified to
determine p. It can be found in an iterative search. The set is initializing with the set
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of indices of all eigenvalues and, in each iteration, the index corresponding to the smallest
eigenvalue My ,, is dropped, one at a time, until the termination criterion,

min_ Agm — > 0, (3.68)
(k,m)eM

holds. With the cardinality M of M, the water level can be computed as

E(k m)eM j\k:m - P
= ’ - ) 3.69
I 7 (3.69)

Finally, the orthogonal projected transmit covariance matrices after the gradient update
read as

=, = Ak(_/ik - MI)+U,?. (3.70)

As discussed before for the unconstrained update in equation (3.46), =, Yk, will be
the sum of the transmit covariance matrix from the step before plus a scaled version of
the positive-semidefinite gradient, if the tangent cone projection is neglected. The transmit
covariances from the step before have to fulfill the joint trace constraint. Adding positive-
semidefinite matrices can only increase the sum trace and therefore Y2, tr(£;) > P will hold.
From this follows, that the water spilling level p will be non-negative. With the projection
onto the tangent cone, the gradient matrices can be any Hermitian matrix. Eigenvalues of
=), might turn negative and ), tr(_ x) > P cannot be assured anymore. This could lead to
a negative water level p, which can still be found with the described algorithm. In contrast
to [28, Section 5.3.2.1], here the trace constraint has to be fulfilled with equality.

3.5.5 Tangent Cone Projection of the Noise Covariance Matrix Gradient

The steps in [28, Section 5.3.2.2] are followed to find the tangent cone projection. The
gradient is the same for all noise covariance matrices, although the constraints can be very
different. The tangent cone projection of the gradient can increase the convergence speed
dramatically. With the tangent cone projection, the gradient G, is projected for each noise
covariance matrix onto a feasible update direction G, ;:

J>0: Veel0,d: {99 Gy, .. 2~ eGn,L} €, (3.71)

where
C, = {'Ql:L 0482 ¢ ZZJ', Vl, Ztr(QlCl) = P} (372)
!

is the constraint set for the noise covariance matrices.

For inequality constraints, the tangent cone projection will be only different from the
identity mapping, if the constraint is active. This leads to a distinction of cases. The sum
trace constraint is an equality constraint and always active. The positive-semidefiniteness
constraints are inequality constraints and a distinction has to be made for each eigenvalue
between the case with a positive and a zero eigenvalue. For the subset constraints §2; € Z;*,
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VI, it depends on the subset. In [28, Section 5.3.2.3] it is shown, that the tangent cone
projection makes no difference for the transmit covariance matrices. The projected gradient
step of the noise covariance matrix with a scaled identity shaping constraint is an equivalent
problem and, therefore, the tangent cone projection makes no difference as well for this
problem. But, for linear constraints it makes a crucial difference.

3.5.5.1 Tangent Cone Projection with Multiple Linear Constraints

For linear constraints,

r(QA) < a, (3.73)

the subset Zlh“ and corresponding orthogonal subset ZlL I can be found as (See Section 3.3.3)
Zin = {Z™ . (2" A) =0}, (3.74)

ZH (i o = A Yy €RE) (3.75)

02I" = w; A; has to be a scaled version of the positive-semidefinite constraint matrix A; with
the scaling variable w; € Rj. From

2 =04, and ™Y — Gy =wA =0 (3.76)
follows
Gh=gA and w = wl(i) —eq; > 0. (3.77)

To lie on the tangent cone, the update direction has to be a scaled versions of the constraint
matrix A;. The update scalar g; can be positive, if wl(z) is positive. But, it has to be

non-positive, if wl(i) is zero. All updates have to fulfill jointly the sum trace constraint,
Ztr (Clhn(ﬂlhn’(i) - €Gn,z)> = Z tr <Clhn.(lllin’(i)) — ez gtr (C/"A)) =P (3.78)
! l !

The previous noise covariance matrices .thn’(i) have to fulfill the sum trace constraint and, as
described in Section 3.3.3, C}™ is any matrix that fulfills @; = tr(A;C}™). Therefore, (3.78)
becomes

Zgzaz = 0. (3.79)
l

The projection of the gradient onto the tangent cone is done by minimizing the distance
between the gradient for all summands G, and the update for each summand g, A;:

gL = argmin Y [gA - Gullf, (3.80)
Sigam=0
91>0, VIEL
where £ = {l e{l, ..., L}: wl(i) = O} is the set of indices belonging to the wl(i), which are

zero. Solving (3.80) yields
g = (tr (AGy) —vay),, Ve L and tr(AG,) —va, V¢ L. (3.81)
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Note, setting £2;, = w;A; in the objective (3.43) and taking the derivation directly with
respect to w; also leads to

a¢ (EI:K7 Zl Ql)

a = Oon
-1
— tr Alzﬂ 2+ HEH'| -4 Y1 -
— In(2) — kTR R In(2)
— tr (A,Gn). (3.82)

g1 is always non-positive. Therefore, v is also always non-positive. Plugging (3.81) into the
sum constraint ), g;a; = 0 gives

Z (al tr(AG l/al Lt Z atr(AG Val) =0 (3.83)
el 1¢L

Z (a tr(AG,) — va}) =0, (3.84)

lel

where £ is the set of all indices belonging to non-zero g;. With this, the water level v can
be found as

_ Zleﬁ a tr (AlGn)
Zleﬁ al2

The set £ can be found by initializing it with the set of all indices. One after another, the
index belonging to the smallest ga; ' with [ € £ is dropped, until either

(3.85)

min § —va; >0 or LNL=0. (3.86)
lefnL

Now, the gradient matrices projected onto the tangent cone can be calculated by plug-
ging (3.85) into (3.81) and (3.77):
Gn,l = (tI‘ (AlGn> - VCLZ)+AZ, Vi € [‘, and Gn,l = (tl" (AlGn) - l/al) Al, ) ¢ E (387)

See Algorithm 3.5 for a pseudo code of the described steps.

3.5.6 Orthogonal Projection of the Uplink Noise Covariance Matrices

As already described in Section 3.5.4 for the transmit covariance matrices, the orthogonal
projection onto the constraint set has to minimize the Euclidean distance between all the
unconstrained update steps and the constraint set simultaneously:

~ 112
min E HQZ — Ql
] F

2,70, ;€2 Vi
Zl tr(.QlCl):P

: (3.88)

but with different constraints compared to the optimization in equation (3.61). With the
positive-semidefinite matrices S; € CV*V_ VI, for the positive semidefiniteness constraints,
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Algorithm 3.5 Tangent cone projection with multiple linear constraints

Require: gradients g, = tr(A;G,), VI, constraint values q;, VI, scaling variables wl(i), Vi

L: ﬁ:{le{l, R wli):()}

2 L={1,..., L} > initialize index set
3 v= (s ai) (e alz)_l > find initial water level (3.85)
4: while min, s g —va; <0 or LNL+#0do > check for (3.86)
5: L+ L \ argmin,_ s f]lal_l > drop smallest glal_l
6: v=(Ccsai) Xz al?)_l > find water level (3.85)
7: end while

8 Gy = (tr (AGy) —vay) Ay, VIE L

9: Gy = (tr (AGn) —vay) Ay, VI ¢ L > projected gradient matrices (3.87)

T, € CV*N V], for the subspace constraints, and p for the joint trace constraint, the La-
grangian function is

c=3 e ((-a)(2-a))

=)t (28) = > tr (2T) + (Z tr (£2,C)) — P) . (3.89)

The derivative of the Lagrangian function with respect to 2 is

oL A
— =8, -9, -5-T . :
anT 1 1 Sl 1 + ,uCl (3 90)
Setting the derivative to zero yields
2, =02+ 8 +T,— uC,. (3.91)

The complementary slackness conditions for the subspace constraints tr(§2,7;) = 0, VI, have
to hold. As £2; has to be element of the set Zi, T} has to be from the orthogonal subspace
Z;, which is the subspace defined for Z; in the downlink constraint. The projection depends
on the type of constraint. In the following, the orthogonal projection for a single shaping
constraint with scaled identity matrix and arbitrary positive-definite matrix, multiple linear
constraints, and the combination of linear and shaping constraints is discussed.

The noise covariance matrices from the previous iteration fulfill the trace constraint.
Without the tangent cone projection, the unconstrained updates f)l, VI, are calculated by
subtracting the negative-semidefinite gradient matrices. Therefore, the sum trace can only
increase leading to a positive u. If the tangent cone projection is used, the water level p
might turn negative.

3.5.6.1 Single Scaled Identity Shaping Constraint

For a single shaping constraint, Z%#P¢ contains only the all zero matrix. Therefore, Thape
is zero and equation (3.91) becomes

()shape _ (Qshape _ MCShape) , (392)
+
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where the influence of S§®h2P¢ is replaced by the operation (e) ., which sets all negative
eigenvalues to zero. In equation (3.92), the water level y and the eigenvectors of §2hape
depend on each other and can only be found iteratively for arbitrary C*hre,

If Cshape = C'd = (I is a scaled identity matrix,

fo (fzid - ,ucI>+, (3.93)

24 and 2' have to have the same eigenbasis U. Therefore, equation (3.93) can be
diagonalized:

Al — (/iid — NCI)+, (3.94)

where A and A are diagonal matrices with the eigenvalues X4, Vn, and A9, Vn of 2
and £29 as their diagonal elements, respectively. The water level u is found by plugging
equation (3.94) into the trace constraint:

ctr (2'9) = CZ (x\f - uc)Jr =P (3.95)

n

The water level is

id
ZnGNA;LC_P

o , (3.96)

,u:

with the set A of the indices of the positive eigenvalues of §2'¢ and its cardinality N. This
set can be found by initializing it with the set of the indices of all eigenvalues. One after
another the eigenvalue indices are removed, beginning with the index corresponding to the
smallest j\f and in non-decreasing order, until the termination criterion,

Hélj\r} A e >0, (3.97)

holds. The orthogonal projected noise covariance matrix is
24 = U (A - per) U, (3.98)
+

The required water-spilling (See Algorithm 3.6) is exactly the same as the water-spilling pre-
sented for the orthogonal projection of the transmit covariance matrices onto the constraint
set with a sum trace constraint as explained in Section 3.5.4 [74].

3.5.6.2 Positive-Definite Shaping Constraint

As discussed in the last section, the orthogonal projection with an arbitrary, positive-definite
shaping matrix requires an iterative algorithm to solve equation (3.92). But, an optimiza-
tion with arbitrary, positive-definite shaping matrix C*"*r¢ = C'/2C"Y/?*H can always be
transformed to an optimization with a scaled identity as shaping matrix [83]. With the
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Algorithm 3.6 Orthogonal projection with a single scaled identity constraint

Require: unconstrained update Qid, constraint scaling c, joint limit P

1. UM AMTIEHE  eig((29) > eigenvalue decomposition
2: N {n ef{l, ..., N}: \d> O}, N« |N| > initialize index set
. N1
SRR (Z%N Mde — P) (N02> > find initial water level (3.96)
4: while min,,_ Ad _ e < 0do > check for (3.97)
5: NN \ argmin,,_ ¢ 5\17?, N« N-1 > drop smallest eigenvalue
. N1
6: o (ZHEN Nde — P) <N02> > find water level (3.96)
7. end while R
8: 24 ¢y (Aid — ucI) Uit > new worst case noise (3.98)
+

substitutions Q = C~Y2QC~Y2H, Q, = C~12Q,,C~'/*" vk, and H, = C/2Hy, Vk, the
downlink optimization with a single shaping constraint,

1+ Hf (3., Qi) Hil

max wy, log subject to Q =< C®hape, (3.99)
Q1=0 Vk z,; T+ H (X5, Q1) H
can be written with the substituted values as
‘I+ﬂ;§1 (chzk Q;;) ﬂk‘ .
max Zwk log, subject to @Q < 1. (3.100)

Quzovk )I + HJI (Zk>k Qk> H,

The optimization in the uplink can now be done with a scaled identity as constraint matrix,
but with the substituted channels. The orthogonal projection of the uplink noise covariance
matrix can be done as described in the previous section. After the recovery of the transmit
covariance matrices Qk, VEk, in the downlink, the actual transmit covariance matrices Qy,
Vk, can be found by undoing the substitution.

3.5.6.3 Multiple Linear Constraints

As discussed in Section 3.5.5, thn = w;A; has to be a scaled version of the constraint matrix
A;. Tt follows, that T}™ € Z/™ has to fulfill tr(A;7}"") = 0. Equation (3.91) can be multiplied
from the left with A;:

A" = A"+ AS + AT - pACH,
wlAlQ = C:JlAlQ + Alslhn + AlTlhn - /LAlCllin. (3101)
Without loss of generality, it can be assumed that tr(A?) = 1 and tr(A4,;C/™) = q;, VI. Both

sides of equation (3.73) can be scaled arbitrarily without changing the constraint. Taking
the trace of equation (3.101) gives

w; = (I}l + tI‘(AlSllm) — pag. (3102)
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As .Ql““ = w;A; holds and A; has to be a positive semidefinite matrix, the dual variable Sl“n
has only to make sure that w; is positive:

wp; = (L:Jl — ,U,CLZ)JF. (3103)

This can also be found by using §2; = w;A;, VI, in the cost function directly. Equation (3.103)
can be transformed, by multiplying with A; again, to

Qllin = wlAl = (CZJ[ — /Lal)+Al. (3104)

If all constraints are linear constraints, the water level y is found by plugging all £2/" into

the sum trace constraint:

< Gyay — P
= e = P (3.105)

Dier a;
where the set £ of cardinality L contains the indices of all positive w;. To find ﬁ, it is
initialized with the indices of all w; and the index corresponding to the smallest d}lal_l is
dropped, one at a time, until

~

min Y >0 (3.106)
leL ap
holds. The updated noise covariance matrices are
thn = wlAl = ((,:Jl - }J,CLZ)+AZ, vi. (3107)

See Algorithm 3.7 for a pseudo code of the described steps.

Algorithm 3.7 Orthogonal projection with multiple linear constraints

Require: unconstrained updates w;, VI, constraint values a;, VI, joint limit P

L« {le{l, ..., L}: & >0} > initialize index set
20 p4— (e — P) (Xez alz)_l > find initial water level (3.105)
3: while min,_; &, — pa; <0 do > check for (3.106)
4: L+ L \ argmin;. s d)lal’l > drop smallest d)lal’l
5: p— (e oa —P) (Xez a%)_l > find water level (3.105)
6: end while

7w (d)l - uhnal) b A7) > new scaling variables (3.107)
8 2 > w Ay > new worst case noise (3.107)

3.5.6.4 Scaled Identity and Multiple Linear Constraints

The update equations for £2'4 and 2/ can directly be taken from equation (3.98) and (3.107)
for the shaping and the multiple linear constraints, respectively. But, the water level in the
equations has to be exchanged with a combined water level 1 derived from all constraints. To
find the combined water level, the combined trace constraint of the scaled identity constraint
and the multiple linear constraints is evaluated:

P=tr (24C) + ) w(2"C™). (3.108)
l
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Based on equation (3.95) and equation (3.104), this can be written as
_ {id 2 ~ 2
P—;O\nc—uc >++Z(wlal—ual)+, (3.109)
which can be generalized to

P =3 (G — ) . (3.110)

ft is from the union set of all eigenvalues j\f and scaling variables w; of the unconstrained
updates, v; is from the union set of all corresponding factors ¢ and a;, and t is from the
union set T of all corresponding indices n and [. The combined water level is

_ Zte’f’ €t¢t - P
Zte?’ %

T is the set of indices corresponding to positive entries of the union set of all eigenvalues A,
and scaling variables w; of the projected update matrices. This set is initialized with T < T
and the entry

[ (3.111)

argmin & (3.112)
teT o
is dropped, until
&
min =— — x>0 (3.113)
teT Pt

holds. See Algorithm 3.8 for the pseudo code.

Algorithm 3.8 Orthogonal projection with scaled identity and multiple linear constraints

Require: unconstrained updates 29, &y, Vi, constraint values ¢, a, VI, joint limit P

1: l:]id/iidlj H o eig(£2i) > eigenvalue decomposition
2: & N and ¢y ¢ Vte{l, ..., N}

3: §t<_d}t—N and ¢t<—at_N YVt € {N+1, ey N+L}

4 T {t e{l,..., N+L}: &> 0} > initialize joint index set
5. (Ztei‘ &y — P) (X7 ¢f)_1 > find initial water level (3.111)
6: while min,_+ & — u¢; < 0 do > check for (3.113)
7: T « 7:\ argmin, 4+ ftgbt_l > drop smallest ftgbt_l
8: o (Zte’f' &by — P) (X ier (b?)_l > find water level (3.111)
9: end while

10: wy (W —ayp) ., VI > new scaling variables (3.107)

11: 2+ U™ (/iid — ucI) U'dH 43w A, > new worst case noise (3.98) and (3.107)
+
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3.5.7 Convergence Behaviour

Comparing the performance of different algorithms requires a detailed analysis of their com-
plexity. In the vicinity of the optimum, the infeasible start Newtons method converges in
general with less iterations, while the gradient-projection algorithm gets with less iterations
into the vicinity of the optimum. The infeasible start Newtons method converges with less
iterations in total at a higher complexity per iteration compared to the gradient-projection
algorithm. It has been proven in [74], that the gradient-projection method is very efficient
for finding the optimal transmit covariances with fixed noise. As the problem is closely
related, it can be assumed that the optimal noise covariance matrices with fixed transmit
covariances can be found also very efficiently with the gradient-projection algorithm.

Most existing algorithms for the weighted sum rate maximization with multiple linear
constraints alternate between an optimization of the transmit covariance matrices until con-
vergence and an optimization of the worst case noise until convergence [67,70]. This is just
like Algorithm 3.1, but with different methods for finding the optimal transmit covariance
matrices and worst case noise covariance matrices, respectively. In the context of these
algorithms, an iteration step is a complete run of the outer loop of Algorithm 3.1. As Algo-
rithm 3.2 does not have inner loops, the required iterations of each optimization are counted
as the number of times a transmit covariance update step is done. Histograms of the itera-
tions required with Algorithm 3.2 and 3.1 are compared in the following. Figures 3.8 and 3.9
depict two linear constraints and scaled identity shaping, respectively.

In the setup, the base station has N = 4 antennas and serves K = 4 single antennas
users (M = 1) with sum power P = 10 W and arbitrary weights [wy, w, w3, wy] = [1,2, 3, 4].
The simulations are averaged over 10000 i.i.d. channel realizations, where each entry of the
channel vector hj has a zero-mean complex Gaussian distribution with variance one. The
first linear constraint is the sum power constraint. The second linear constraint forbids to
transmit anything in the direction of an additionally generated channel. The maximum
sum-rate was found by running Algorithm 3.2 with 1000 iterations, respectively.

The proof of convergence depends on the selected type of step-size as described in Sec-
tion 3.5.3 and [28, Section 5.1.3]. The on demand step-size reduction combined with a
diminishing step-size assures convergence but not necessarily to the optimal point. There-
fore, it has to be checked in the downlink, if all constraints are met after the algorithms
converged. In this case, the convergence can easily be checked with a change in the weighted
sum rate. The convergence to the optimal point can be checked by looking at the size of
the gradient. This requires that the gradient is projected onto the tangent cone. If the
norm of all projected gradients is smaller than €, the optimal point is found within the
given accuracy. Checking for convergence with this method is more accurate, but requires to
project the gradients onto the tangent cone in every step, which non-negligibly increases the
complexity. Additionally, the results can be compared to known results. The optimization
with a power constraint and one forbidden direction can be compared to results with the
transmit covariance matrices selected in the kernel of the forbidden direction as described
in Section 2.5.1.2. In the simulations, the algorithms always converged to the optimal rate
while fulfilling all constraints with the given accuracy.
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Figure 3.8. Relative frequency of the number of iterations required to find the maximum weighted
sum rate with two linear constraints (sum power and one forbidden direction). The algorithms are
stopped, if a sum-rate larger than (1 — ) times the maximum sum-rate was achieved and each
constraint was hurt by less than & (¢ = 1073).
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Figure 3.9. Relative frequency of the number of iterations required to find the maximum weighted
sum rate with the scaled identity constraint. The algorithms are stopped, if a sum-rate larger
than (1 — ¢) times the maximum sum-rate was achieved and the squared Frobenius norm of the
constraint error matrix was less than ¢ (¢ = 1073).

3.6 Conclusion

With an adaptation of the minimax uplink-downlink duality, it could be shown that the
weighted sum rate maximization with multiple linear and/or linear conic constraints can be
solved efficiently with an alternating gradient-projection algorithm. The required orthogonal
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projection of the gradients onto the tangent cone of the constraint set and the projection of
the updates onto the constraint set itself were derived and described in detail.

Switching after each gradient step between an update of the transmit covariance matri-
ces and the noise covariance matrices has a superior convergence behavior compared to an
optimization, which optimizes the transmit and noise covariance matrices until convergence
in turns.



4. Intercell Interference Robustness Methods

In state-of-the-art networks, orthogonal frequency bands are assigned to adjacent base sta-
tions to separate the transmissions within these cells. The smaller the fraction of the fre-
quency band, the frequency reuse, at each base station is, the less base stations in the near
vicinity have to use the same frequency band and the distance to the next base station
utilizing the same frequency band can be increased. A smaller frequency reuse reduces the
relative influence of the intercell interference compared to the thermal noise at the same
transmit power level. But, next generation mobile communication standards long to use
the full frequency band at each base station to increase the spectral efficiency. The rate
scales linearly with the bandwidth and a complete frequency reuse at each base station has
the highest efficiency. The problem of the strong intercell interference is supposed to be
encountered with cooperative beamforming in multiple antenna systems.

But, as it could be shown in Chapter 2, only parts of the intercell interference can be
mitigated with cooperative strategies. Since measuring all interference channels is unreal-
istic in a large scale system, the intercell interference is split into two parts—the intercell
interference over known channels and over unknown channels. The interference over the
known channels can be handled with cooperative strategies. For the unknown interference
channels, the interference can only be regarded as noise. What are the properties of this
interference which has to be regarded as noise?

In a network with interference coordination, the base stations are assumed to calculate
their beamforming in a distributed manner. In order to optimize the beamforming and
compute the possible achievable rates for the link rate adaptation, the base stations need
information about the intercell interference variances at each mobile device. The received
intercell interference variance at a mobile device depends on the interference channel vectors
and the sum transmit covariance matrices of the interfering base stations. Even if the
channels are assumed to stay constant, the intercell interference at each mobile device will
change the moment any base station changes its transmit covariance matrix and cannot
be known in advance. Therefore, the base stations compute their beamforming based on
an assumed intercell interference. The base stations are blind to the intercell interference
change and take the risk, that the actual intercell interference is larger than assumed and the
mobile device cannot decode the transmitted symbols or that the actual intercell interference
is smaller than assumed and valuable resources are wasted [4]. This so called “flash light
effect” was already addressed in [91] and is described in more detail in Section 4.1.

Uncertainty in the intercell interference has a variety of negative effects. The link rate
adaption can fail because the SINR during the transmission is unknown, which might lead
to unexpected outages. Some operations in higher layers, such as scheduling and resource

o7
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allocation, also depend on the SINR and cannot be performed optimally based on assumed
intercell interference values. Please note that such an uncertainty in the intercell interference
always exists in a realistic cellular system, while in an idealized network MIMO scenario with
fully centralized coordination, the problem of intercell interference blindness does not arise.
In state-of-the-art systems, the intercell interference instationarity is mitigated with hybrid
automatic repeat request (HARQ) with soft combining. In this chapter, beamforming strate-
gies handling the intercell interference blindness problem are discussed. The incorporation
of HARQ and its effects into these strategies is presented in [29,33] and Section 4.11.

Most optimizations in the literature ignore the intercell interference blindness problem
completely and just assume to know the intercell interference or utilize the expectation of the
intercell interference or an intercell interference realization from a previous step as the as-
sumed intercell interference. But, this results in a mismatch between the cost function of the
optimization and the actual performance measure and motivates to look at signal processing
strategies to fight the intercell interference blindness. In [4] the conservative gambling strat-
egy to counteract the intercell interference blindness and the resulting uncertainty about the
supported rates is presented, where the data is transmitted at reduced rates with a common
back-off factor 8. With this strategy, the risk of assuming a rate, which is not supported and
would lead to complete outage is reduced, but also the possibly achievable rates are reduced
(Section 4.4). Another approach presented in this paper is the stabilization method, which
simply requires the transmit vectors to stay constant for all time. Dropping the adaptive
beamforming removes the uncertainty in the intercell interference variance at the cost of
dramatically reduced possible rates. The conservative gambling method was extended by
Shirani-Mehr et al. in [29] to conservative gambling with individual back-off factors for each
mobile device.

The authors of [4] also define an upper bound for the possible rates in systems with
intercell interference instationarity. For the upper bound, the actual intercell interference is
assumed to be known and the transmit strategies at all base stations are iteratively updated
in parallel. As the problem is not convex, convergence to the optimal value cannot be
guaranteed. If the base stations synchronize the update of their beamforming, it will be
possible to measure the actual intercell interference with a second pilot, which removes
the uncertainty in the intercell interference but increases the overhead [3,31] (Section 4.7).
In [30] and recently also in [92], it was proposed to optimize the transmit covariances at
each base station based on the expected rate of the associated mobile devices. With this
approach, the system for which the transmit covariances are optimized and the system in
which the covariances are utilized become the same (See Section 4.6). By including the risks
of a changing intercell interference in the precoder selection, the base stations allocate more
resources to mobile devices which are critical for the utility to improve the expected rates.

A different method following the idea of the stabilization approach to handle the intercell
interference blindness problem was suggested in [32]. The sum covariance matrices of the
transmit symbols at each base station are forced to scaled identity matrices, which still
leaves room for an optimization of the individual transmit covariance matrices for the mobile
devices. This constraint completely removes the uncertainty in the intercell interference
variance and the SINR values of the served mobile devices can be known at the base stations.
But, the shaping constraint on the transmitter also reduces the achievable rates (Section 4.9).
A combination of the expected rate optimization with a less restrictive shaping constraint
was proposed in [80]. With a loosening factor, the strictness of the shaping constraint is
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adjusted and the benefits of the stabilization and the expected rate method are combined
(Section 4.10).

The problem of the intercell interference blindness is discussed in [31,93,94] for scenarios,
where only long term channel state information is available. In [95], Kalman prediction is
utilized to guess the intercell interference in the next time slot. Neely et al. [96] investigated
the intercell interference blindness from a networking point of view with generalized links
between different nodes but regardless of the transmit covariance selection. A subchannel
allocation strategy in OFDM, which stabilizes the intercell interference variances at mobile
devices was proposed in [5]. Similar problems to the intercell interference blindness were
investigated by Huh et al. in [97], where the uncertainty in the SINR is caused by non-
perfect channel state knowledge, and by Shirani-Mehr et al. in [98] for varying channels.
Huh addressed the problem in the asymptotic region, while Shirani-Mehr utilized an heuristic
robustness method.

The adaption of the covariance shaping method to linear precoding with unitary beam-
forming is discussed in [99] and tested with an LTE system simulator in [100]. In these
simulations, the benefits of unitary precoding as interference robustness method are neg-
ligible compared to conservative gambling combined with HARQ. This coincidences with
the results from Section 4.11, where the performance in the presence of HARQ can only
be improved with the expected rate method or loosened covariance shaping. Conservative
gambling with individual back-off factors in combination with HARQ was investigated by
Shirani-Mehr et al. in [29].

To perform the expected rate method, the cumulative distribution functions of the in-
tercell interference at each associated mobile device need to be available at the serving base
station. The cumulative distribution functions can be approximated with long term mea-
surements at the mobile devices. To reduce the feedback, a probability distribution can
be matched to the measurements at the mobile devices. Then, only the parameters of the
distribution function need to be transmitted to the base station (Section 4.2). It would also
be possible to have a rough estimate of the cumulative distribution function directly based
on the channel measurements. This would not require any additional measurements and
feedback for the cumulative distribution function. The actual intercell interference cannot
be known in advance in the regarded scenario, because the transmit covariances at all base
station change at the same time, while the channels are assumed to be constant for the
block of transmission [55,62]. The cumulative distribution functions of the intercell inter-
ference for this scenario are different from the cumulative distribution functions, where the
channels also change over time. Although the later scenario with changing channels is more
realistic, especially for cumulative distribution functions, which are approximated with long
term measurements, the scenario with fixed channels is assumed to reduce the simulation
complexity. The cost of acquiring the cumulative distribution functions is neglected in the
following.

For the description of the different methods handling the intercell interference blindness,
we assume a system without cooperation. The complete intercell interference is regarded as
noise and its variance is described with a random process with known parameters. Therefore,
the base stations do not influence each other anymore and we can limit ourselfs to a system
model with a single base station and random intercell interference variances at each mobile
device, respectively (Section 4.3).
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In this chapter, different methods are presented to make mobile communication systems
robust against the intercell interference blindness problem for a general utility function and
the weighted sum rate maximization as an example. The adaption to other utility functions
and their impact on the intercell interference blindness methods are presented in Chapter 5.
Parts of this chapter can be found in [30, 33,80, 101].

4.1 Intercell Interference Blindness Problem

Interference mitigation can only be performed for known interference channels. The inter-
ference over the unknown channels has to be regarded as noise and changes unpredictably
the moment any base station employs a newly calculated transmit strategy. This causes
the interference blindness problem. The actual intercell interference, SINR, and supported
rate are unknown after an update of the transmit covariance matrices. The achievable rates
cannot be optimized directly, merely the expectations of these rates.

Even in scenarios with cooperation among the base stations this type of interference
cannot be completely eliminated. Cooperation is always limited in realistic systems, because
the measurement of all interference channels and a coordination of all beamformers in the
network cannot be implemented [1-3] (See Section 2). This interference over the unmeasured
channels scales with the common transmit power at the base stations, such systems are
always interference limited. Without loss of generality, the base stations do not coordinate
their beamforming in the considered scenario. The channels between a mobile device and
the interfering base stations are not measured. All intercell interference is regarded as noise.

(a) Time slot one (b) Time slot two

Figure 4.1. Measured and actual system

The intercell interference blindness problem is visualized in Figure 4.1 [4]. Each red dot is
a site with three collocated base stations. The beams belonging to the same base station are
indicated by the same color and the same origin. It is assumed that the base stations do not
coordinate their beamforming and all interference channels remain unmeasured. In time slot
one (see Figure 4.1 (a)), the base station in the middle with the blue beam serves a mobile
device in the upper right corner of the associated cell. The encircled mobile device has a
very good possible SINR. All the other base stations point their beams in other directions
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and cause only a small amount of interference at this mobile device. The base station in
the center decides to serve this mobile device in the next time slot and selects a beam to
concentrate its power at this mobile device. At the same time, all other base stations updated
their transmit strategy and, unfortunately, point their beams at the encircled mobile device
in the second time slot (see Figure 4.1 (b)). The SINR of the encircled mobile device drops
dramatically and makes it unfavorable to serve this mobile device. From the point of view of
the mobile device, the system in the first and the second time slot are completely different,
the intercell interference, SINR and supported rate changed unpredictably.

The actual interference ngktual and the supported rate rgf,;“al at mobile device (b, k) during
the transmission cannot be known in advance. Even if all base stations would update their
beamforming at the same time, the intercell interference could not be known before the
base stations have choosen their transmit covariances. The base stations are blind to the
intercell interference change and stand the risk, that the intercell interference increases and
the mobile device cannot decode the transmitted symbols or that the intercell interference
decreases and valuable resources are wasted. An assumed intercell interference variance
fp5md and the corresponding assumed rate 755" have to be used for the optimization of
the transmit processing. The mismatch between the assumed intercell interference 9§f}§umed
and the true intercell interference ;5" is the intercell interference blindness problem and

can be formulated as

achieved __

bk =

assumed assumed actual
{ rpseimed, - for 5% > gactual (4.1)

assumed actual
0, for 6% < 055"

where the information outage probability is used as error probability [4,29,102,103].

After the optimization of the transmit covariance matrices, the base station assigns the
data rate ri5"™! with corresponding modulation and coding to user (b, k). If the assumed
rate is larger than the supported rate, mobile device (b, k) cannot decode the data and the
transmission fails. In other words, when the actual intercell interference is larger than the
assumed intercell interference, the channel is worse than assumed and the mobile device
cannot decode the signals successfully. If the assumed intercell interference is smaller than
the actual intercell interference, mobile device (b, k) can only communicate with the assumed
rate 53!, The achieved rate )¢ will not be equal to the supported rate rp5"* with

the actual intercell interference ngktual but to the assumed rate rgf,j“med based on the assumed

intercell interference ng,jumed. The same rate could be achieved with less power, if the actual
intercell interference is known. The over-assigned transmit power is not only wasted, but
produces more interference than necessary in adjacent cells.

If the system is optimized based on some assumed intercell interference, the mismatch
between the assumed and the actual intercell interference will lead to a mismatch between
the cost function and the performance measure. The system, for which the transmit covari-
ance matrices are optimized, is different to the system, where the transmit covariances are
employed. To counteract this problem and match the cost function and the performance
measure, the general objective is to maximize the expectation of the sum utility U(e) of the
whole system:

E achieved 1t <p 19
Qb,kil(l)l\gfi()lik)elc (b%;K U (rb:k ) S r (Qb) < ( )
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The variance ;5" of the actual intercell interference has to be regarded as a random
process. Even if the utility is a linear function, the rate is a non linear function of the
intercell interference. Therefore, the expectation of the rate cannot be simply exchanged
by the rate calculated with the expectation of the intercell interference. Different methods
solving (4.2) are presented in the following sections.

4.2 Intercell Interference Statistics

For some of the intercell interference robustness methods and the single cell system model,
the cumulative distribution functions of the intercell interference at each associated mobile
device need to be available at the serving base station. The cumulative distribution functions
can be approximated with long term measurements at the mobile devices. It could also be
possible to estimate a rough cumulative distribution function directly based on the channel
measurements. This would not require any additional measurements and feedback for the
cumulative distribution function.

The intercell interference can be modeled based on interference modeling research and
experiments, e.g. [104-106]. But, to include the effects of the different intercell interfer-
ence robustness techniques and utilities, we derive them from simulations in a system model
with many base stations. Although the base stations will not know and use the unmeasured
interference channels, they are calculated for the simulations. With the block fading assump-
tion, the intercell interference variance change depends only on the change of the transmit
covariances of the interfering base stations. These covariances are optimized without tak-
ing the interference they produce over the unknown channels into account. Therefore, the
statistics of the intercell interference variance can be found by looking at many independent
realizations of these covariances, while the channels are constant.

Looking at the system model from Chapter 2 and assuming that the sum transmit co-
variance matrix of base station b follows a Wishart distribution,

P
Q; ~ Wy <WIN, N) ) (4.3)
with N degrees of freedom and scale matrix %I ~, the intercell interference this base station
causes at mobile device (b, k) will follow a gamma distribution

P
eé,b,k = hgb,in)hé,b,k ~ T <N, mh?,b,khl;,b,k) (4.4)

with scale parameter %h?b kh&b,k and a shape parameter N. The correct calculation of the
distribution of the intercell interference is a difficult task, on the one hand the base stations
will always transmit with the full transmit power and, therefore, the covariances cannot
follow a Wishart distribution. On the other hand the sum of many gamma distributed
random variables with different scale parameters is an impasse.

Although the transmit covariances Q; result from the optimizations and the sum over
all the intercell interference over the unknown channels is taken, it can be shown with
simulations, that the intercell interference variance 0y, = > ;. B\Cy 1 eé,b, ;. can be approximated

quite good with a gamma distribution,

Ovr. ~ I (b ke, o k) (4.5)
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where the shape parameter ay, = (E[6y4])°(var[fy,])”" and the rate parameter by, =
E [0y1](var [f54]) " can be derived from the mean E [6,;] and variance var [6,] of the in-
tercell interference variance. Figure 4.2 compares the empirical distribution function of the
intercell interference with 1000 realizations of the covariance matrices and the approximated
cumulative distribution function with a gamma distribution, which takes the mean and vari-
ance from the samples. The simulations are done in a system without cooperation, the
expected rate method from Section 4.6 to assure intercell interference robustness and the
maximum sum rate as cost function.
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Figure 4.2. Cumulative distribution function of the intercell interference variance

In reality and in our simulations, the assumption of Wishart distributed transmit covari-
ance matrices is incorrect. Letting a base station always transmit with full transmit power
already violates the assumption of a Wishart distribution. The simulations operate on an
histogram of intercell interference realizations instead of the probability distribution. The
first round of intercell interference realizations is generated with scaled identities as trans-
mit covariances for the interfering base stations. New transmit covariances are found with
these intercell interference realizations and these new transmit covariances are used for the
calculation of new intercell interference realizations. Only with the second set of intercell in-
terference realizations the calculated expectation of the rates and the simulated expectation
become equal. The scaled identity matrices are always of full rank, while the second set of
covariances is not in general. A further iteration with the intercell interference realizations
and covariances does not change the results.

Since the applied cooperative technique, the robustness method, and the utility change
the selection of the covariance matrices, a different distribution of the intercell interference
variance has to be found for each transmit strategy combination. E.g. with regard to the
upper bound from Chapter 2, if some interference channels are measured and set to zero, the
statistics of the intercell interference will chance accordingly. Implementing the stabilization
or covariance shaping method removes the uncertainty in the intercell interference variance
and the cumulative distribution function becomes a step function. Even changing from the
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sum rate optimization to a fairness optimization will change the distribution of the intercell
interference variance. For each transmit strategy combination an individual distribution
approximation has to be made and individual a;j; and by have to be calculated for each
mobile device, respectively.

In the following, we assume that the intercell interference variance follows a gamma
distribution and that the mean and the variance of this distribution are known through a
combination of longterm and instantaneous measurements at the mobile devices, respectively.
In Figure 4.3, it can be seen that this approximation of the intercell interference variance
distribution has only a negligible error.

4.3 Single Cell System Model

For simplicity but without loss of generality, we limit ourself to a scenario with no cooperation
among the base stations an no measured interference channels in this chapter. All methods
and results can be transferred to any type of cooperative scenario with realistic assumptions
about the cooperation. In realistic scenarios, some interference channels remain unmeasured
and cannot be utilized for cooperation. The interference over these channels has to be
regarded as noise with a random variance.

In systems, where the intercell interference is regarded as noise, the supported rate of a
mobile device does not relate to the interfering base station. The supported rate depends only
on the transmit covariances of the serving base station. The network utility optimization,
where all rates of all mobile devices are jointly optimized with all transmit covariances in the
system, splits into individual cell sum utility optimizations at each base station, respectively:

max E [J (yachieved St tr <p L6
Qy, ;=0 V(b,k)EK, (blc)zelcb ( bk ) (Qb) = ( )

where only the rates of the mobile devices associated with the base station are optimized
regarding the transmit covariances belonging to the same base station. The optimizations
for the different intercell interference robustness methods and utilities mostly boil down
to weighted sum rate maximizations with additional constraints on the transmit covariance
matrices (See the following Sections and Chapter 5), which can be solved with the algorithms
presented in Chapter 3.

The intercell interference variance belonging to the interference over the unknown chan-
nels can be described as a random process, where the channels are technically fixed, but the
transmit covariance matrices at the interfering base stations need to be regarded as random.
Therefore and because the cell sum utility optimization splits into individual optimizations,
it is sufficient to look at the signal processing of a single cell. The modeling of the inter-
ference over the not measured interference channels as noise with a random variance and
the handling of this random process with the following methods does not only simplify the
system model, it is the only way to make any realistic interference coordination technique
applicable in a large scale cellular system.

The base station has N transmit antennas and serves K = |K| single-antenna mobile
devices, where a mobile device is specified by the index k. The vector h, € CV is the
channel between the antennas of the base station and mobile device k. The channel is
generated according to the 3GPP MIMO urban macro cell model with the same parameters
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described in Section 2.4.1. @ is the sum transmit covariance matrix of the base station,
which is the sum of the individual covariance matrices @y for the different mobile devices.
The rate of user k can be expressed as

hQihy ) (4.7)

i = log (1 * Zl%>k hIk{Qfghk + 0, + 0'727
where o7 is the variance of the thermal noise. ;. , hilQ.h; is the variance of the intracell
interference with dirty paper coding [60]. 6y is the intercell interference variance at mobile
device k. As described in Section 4.2, 6, can be approximated by a gamma distribution
O ~ I'(ag,by), where a; and by, are derived from the 3GPP MIMO urban macro cell model.
It is assumed that the statistics of the intercell interference measured in the past are available
to the base station. Please note that the intercell interference statistics strongly depend on
the selected transmit strategy and have to be adopted for the different methods, which
handle the intercell interference blindness problem.

The expected rate cost function of the single cell system can be formulated similarly
to (4.6) as

max E
Q-0 Vk

YU (rzchieved)] st tr (Q) < P. (4.8)

Perfect CSI is assumed, which means pilot contamination and other errors during the
channel measurements are neglected. Within the block-fading block length Tj,01, the chan-
nels stay constant while the intercell interference 6, and the transmit covariance matrices
Q);. can vary at each time slot.

4.4 Conservative Gambling

One method to deal with the intercell interference mismatch problem is conservative gam-
bling [4]. With the gambling method, the intercell interference variance mismatch is simply
accepted. In the first step of conservative gambling, the probability of a successful trans-
mission is assumed to be one and the expectation of the achieved rate is set to the assumed
rate. The optimization problem reads as

U (rp=mmed) st t <P. 4.9
QG 2 U ) st (@) -
To reduce the risk of an outage, a conservative link rate adaptation is used. This works well,
if the actual intercell interference 62°"#! does not differ too much from the assumed intercell
interference ggssumed;

achieved __

’ ’ (4.10)

transmitted __ assumed transmitted actual

ry =(1-p5)r} for pyransmitted < pp
O, for TZransmltted > Tlac,ctual'
The assumed rate depends on the selected assumed intercell interference variance §35swmed,
The assumed intercell interference variance 625'm°d can be the expected value of the intercell
interference, the intercell interference measured in the last time frame or some predefined
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value. To lower the risk of a failed transmission, a common backoff 3 is introduced and the
base stations serve the mobile devices with modest rates riravsmitted — (1 — g)passumed = The
transmit covariance matrices @ are optimized based on the assumed intercell interference
variance 07'md and the common backoff 3 is applied after the transmit covariance matrices
Q). are selected.

The backoff  provides a new degree of freedom in the system and should be chosen such
that the objective is maximized:

BP' = argmax E
0<B<1

Z U aChleVed)] ) (4.11)

The backoff § is a constant value during the operation of a base station and should be
optimized during a training phase or initialization of the base station by evaluating the
distribution of the intercell interference variances at the mobile devices. In the simulations,
[ is optimized in the end. After the transmit covariances and assumed rates for many
realizations are calculated, the optimal /3 is found with a line search.

The backoff reduces the risk of an outage, but it also reduces the possible rates. When
the actual intercell interference is smaller than the assumed intercell interference, the mobile
devices are only served with the transmitted rates based on the backoff and cannot benefit
from the extra resources. Besides, occasionally the conservative link rate adaptation fails
completely and some users are still in outage.

Algorithm 4.1 concludes the optimization with the gambling method, where the assumed
intercell interference variance is set to its expected value. The backoff factor 3°P' is given
and used to calculate the transmitted rates riransmitted ~Only the calculation of the optimum
transmit covariance matrices @y in line 2 depends on the utility function.

Algorithm 4.1 Conservative gambling

Require: [°P', E[factual] v

eassumed Y E[eactual]

compute transmit covariance matrices Qy according to (4.9) with

compute rissimed aecording to (4.7) with @y, and ggssumed
transmitted opt ) .assumed

T < (1= p%P)ry

compute richieved accordmg to (4.10)

eassumed
k

4.5 Conservative Gambling with Individual Backoff Factors

The mobile devices are situated in very different interference situations [42]. Some mobile
devices are very close to the base station, experience a strong serving channel and suffer
from strong interference from the few collocated base stations at the same site. Other mobile
devices sit in the center of the cell and see an interference floor with many comparably weak
interferers. The mobile devices at the cell edge have the weakest channels and are disturbed
by multiple strong interferers, some of those may even be as strong as the serving channel.
Using a common backoff factor 3 for all mobile devices, as it is done with the conservative
gambling method (Section 4.4), does not reflect the different interference situations of the
individual mobile devices.
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To account for the different situations, it is proposed to use an individual scaling factor for
each mobile device, respectively [29,30]. According to equation (4.10), the outage problem
can be written as

achieved { 7n]t%ransmltted — (1 Bk) assumed’ for 7altglransmltted < rzctual,
r - .
transmitted actual
0, for r} > pactual

(4.12)
with individual backoff factors. Selecting each S freely can also be seen as selecting each
piransmitted freely  In the first step, the transmit covariance matrices are selected based on
assumed intercell interference variances and the riransmitied are gelected in the second step
to maximize the sum utility with fixed transmit covariance matrices. The common backoff
factor is selected with a line search to maximize the mean expected rate of all mobile devices
(See equation (4.11)). The individual transmitted rate has to maximize the utility of the
corresponding achieved rate, respectively:

transmitted, opt achieved
T, = argmax E[U (r} )] (4.13)
T.transmitted>0
k: -

The individual transmitted rates can be optimized separately and the sum in the expectation
can be dropped, as a transmitted rate only influences the utility of the associated achieved
rate.

If the probability distribution of the intercell interference variance #2°"@ is known, as
assumed in the system model, the probability distribution of the supported rate r2<tual can
be derived for fixed transmit covariance matrices. Regarding (4.12), the expectation in (4.13)

can be formulated as

T,transmltted 00

E [U (Tzchieved)} U (T]tgransmitted) /0 frzctual(rk) di + U (0) / frzctual(’rk) di

ptransmitted
k

=U (T]iransmitted) Ia et (T’Zransmltted) 4+ U (O) (1 _F thual(TZransmltted))
— (U (r]tCransmitted) o U(O)) F thual (TZransmltted> + U (0) 7 (414)

where f, acmal(rk) is the probability density function of r#*ual and
Fracua(ry) = P (rpransmitted < pactual) (4.15)

is the probability, that the transmission is successful, or the cumulative distribution function
of the random actual rate evaluated at rfravsmitted  The optimal transmitted rate can be
calculated by setting the derivative of the objective in (4.14) with respect to the rate to zero.
The derivative can be found as

OFE U [ ( achleved)} aU ( transmltted)

ar]tcransmltted ar]tcransmitted dcmdl (

+ (U (TZransmltted)

transmltted)

)) actual ( transmltted) ) (416)

With given transmit covariance matrices, setting (4.16) to zero and solving it for the opti-
mal transmitted rate will have exactly one solution, if U (ry) and Fiacwa (1) are log-convex
functions. In this case, the solution can be found numerically with a bisection or New-
ton—Raphson method.
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The procedure of conservative gambling with individual backoff factors can be seen in
Algorithm 4.2. In contrast to Algorithm 4.1 the backoff is not an input variable. It is
computed inherently in line 3 for each mobile device, respectively. But, the distribution of
the intercell interference variance 62 has to be known, which is assumed here to be a
gamma distribution with the shaping and rate parameters a, and by, respectively.

Algorithm 4.2 Individual gambling

Require: ay, by Vk

eassumed — E[eactual] _ ak/bk

compute transmit covariance matrices Qy, according to (4.9) with ggssumed
compute rrasmitted according to (4.16) with Qy,

compute raChleved according to (4.12)

4.6 Expected Rate

The individual gambling makes it possible to choose the transmitted rate riransmitted for each
mobile device, which optimizes the performance measure according to the outage proba-
bility. But, the optimization of the transmit covariance matrices is still based on some
assumed intercell interference variance value §2%m¢d, In the conservative gambling descrip-
tion from [4], the intercell interference variance realization from a previous time slot is used.
Algorithm 4.1 in Section 4.4 has the expectation of the intercell interference variance as input
variable. With such a selection of the assumed intercell interference, the transmit covariance
matrices are not optimized for the system they are used in, which is clearly suboptimal.

The assumed rate is a function of the transmit covariance matrices and the assumed
intercell interference variance. The achieved rate is a function of the transmit covariance
matrices, the assumed intercell interference and the probability, that the transmission is
successful. Similarly to the optimization of the transmitted rate with individual gambling
from the previous section, the expected rate optimization can be formulated as

max
Q>0 VEk
0zssumed>0 Vk

ZU (T2Chieved)] st tr(Q) < P, (4.17)

where the optimization is not only over the transmit covariance matrices, but also over the
assumed intercell interference variance 92" [30]. Looking at

assumed assumed actual
achieved — Tk ) fOI‘ ek Z ek ) (4 18)
07 fOI' ezssumed < ezctual

Y

the expectation in (4.17) can be rewritten, similarly to (4.14), as

eassumed

E [U (TZChieved)] =U (rzssumed) / g fezmal(ék) dek + U (O)/ fgzctual(ek) d9k

assumed
0 02

= (U (1) — U(0)) Fypeona (650 + U (0). (4.19)

o0
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Here fgacwar () is the probability density function of gactual and Fezctual(ezssumed)

P (QZSS“mEd > 9}3““&1) is the probability, that the transmission is successful, or the cumula-
tive distribution function of the random intercell interference variance evaluated at gssumed,
As discussed in the single cell system model Section 4.3, it is assumed that these functions
describing the distribution of 2™ are known. This leads to the joint optimization

max B Z: (62=med) — U(0)) Fpperan (030 | st t1(Q) < P (4.20)
Qr=0Vk
ezssumed 20 Vk

By considering the expectation of the rates with respect to the intercell interference as
optimization problem, the cost function of the optimization and the performance measure
become the same. Note, that the utility depends only on the assumed intercell interference
variance 025"m°d and not on the actual intercell interference realization #2<tual,

In the case of only one mobile device associated with the base station, the optimal
transmit covariance matrix is independent of the distribution of the intercell interference
and has to optimize the utility alone. But, if there are multiple mobile devices associated
to the base station, the power distribution among the different transmit covariance matrices
depends on the assumed SINRs of the mobile devices, which takes the assumed intercell
interference variances into account. Similarly to individual gambling, the optimal assumed
intercell interference variances can be found by setting the derivative of equation (4.19) with
respect to 0759md to zero. The derivative is

a ElU [ ( achleved) } aU ( assumed) arassumed
assumed assumed assumed
06: ora 0

assume assumed, o
+ <U <rk dlakassumed7 0pt> - U(O)> fGZCtual <6k pt) (421)

and depends on the transmit covariance matrices. A joint optimization of the transmit
covariance matrices and the assumed interference is intractable. Therefore, an alternating
optimization is proposed, which optimizes the transmit covariance matrices @)} and assumed
interference variances #25"m°d in problem (4.20) in turns [30]. In every step, the cost func-
tion (4.20) will increase and, as it is bounded, it will converge to a locally optimal point.
For a fixed assumed intercell interference, the probability of a successful transmission
is fixed and a weighted utility optimization with respect to the transmit covariances re-
mains. For fixed transmit covariances, the assumed intercell interference can be optimized
with a root finding algorithm. The optimization of the assumed intercell interference has
to be done in the downlink. The weighted sum rate maximization is done with the uplink-
downlink duality as discussed in Chapter 3. Note, that the uplink-downlink transformation
depends on the selection of the assumed intercell interference as discussed in Section 3.1
and 3.4. Again, there will be only one maximum for fixed transmit covariance matrices,
if U (0k) and Fpacwa(0y) are log-convex functions. Algorithm 4.3 summarizes the expected
rate method. The individual assumed intercell interference variances are initially set to their
expectation, respectively. Then, the transmit covariance matrices and utility maximizing as-
sumed intercell interference variances are found iteratively in a loop, until some convergence
criterion is met. The achieved rate is calculated with (4.18). The mean achieved rate over
many intercell interference variance realizations converges to the same value as the expected

Feactual (0255111116(1, Opt)
k
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rate U (stsumed) Fezcmal(HZSS“med) with the used assumed intercell interference variances and
transmit covariance matrices.

Algorithm 4.3 Expected rate

Require: ay, b, VEk

. ezssumed — E[ezctual] — ak/bk

repeat
compute transmit covariance matrices Qy, according to (4.9) with fixed gassumed
compute #25tmed aecording to (4.21) with fixed Qy,
compute 755" according to (4.7) based on Q) and #asswmed

until the objective (4.17) converges

compute rihieved according to (4.18)

With the sum rate maximization as utility, the mean of the achieved cell sum rate, the
expected cell sum rate, and the supported cell sum rate are plotted in Figure 4.3 over the
iterations of Algorithm 4.3. At odd iteration steps the transmit beamforming is optimized
and at even iterations steps the optimal assumed intercell interference variance is calculated.
The low mobility, large scale cellular system model from Chapter 2 with four mobile devices
per cell, K = 4, four transmit antennas per base station, N = 4, no measured interference
channels, L = 0, a block length of Ti,ac = 120, and a common mobile device device speed
of v = 3km/h is utilized. The actually supported mean cell sum rate can only be reached, if
the actual intercell interference variance values are known. It can be seen that the expected
cell sum rate with the gamma distribution approximation and the actually achieved mean
cell sum rate calculated with (4.1) converge to almost the same value in only a few iterations.

The expected rate method optimizes the assumed rates based on an approximated distri-
bution of the intercell interference variance, but the actual intercell interference is based on
the transmit covariance matrices of the many other base stations in the system. The used
distribution of the intercell interference variance is derived from transmit covariance matrices
optimized with the expected rate method at a converged state. In contrast to the single cell
system model, the distribution of the intercell interference variance changes from iteration
to iteration, as the other base stations update their transmit covariance matrices. Therefore,
the mean achieved cell sum rate and the mean expected cell sum rate are not equal in the
first few iterations. There is a mismatch between the assumed intercell interference variance
distribution and the actual distribution. After a few iterations the distributions match and
both cell sum rates converge to almost the same value. The remaining error can be explained
with the finite resolution and imprecision of the cumulative distribution functions, which are
only approximated through Monte Carlo simulations.

Iteration one in Figure 4.3 can be seen as the conservative gambling from Section 4.4 with
backoff f = 0 and iteration two can be seen as the conservative gambling with individual
backoff factors. Compared to conservative gambling with an optimized beta, the achieved cell
sum rates with the expected rate method are still almost ten percent higher (See Figure 4.6).
The disadvantage of this method is that the statistics of the intercell interference have to
be known to the base station. With the expected rate method, the base stations allocate
more power to the mobile devices, which are critical for the utility. Therefore, the risk of
a sudden drop in the sum rate, if a strong interference at the critical mobile device occurs,
will be reduced.
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Figure 4.3. Convergence behavior of the cell sum rate with the expected rate mehtod

4.7 Second Pilot

The actual intercell interference variance is unknown when the base stations update their
transmit processing. However, the updated supported rates can be made available by the use
of a second pilot phase [30,31]. After the transmit covariances are optimized, based on the
measured channels, the base stations transmit a second pilot sequence with the calculated
beamforming vectors and the mobile devices can measure and feedback the intercell inter-
ference powers. Now, the mobile devices can be served with the supported rates, but the
increased overhead decreases the efficiency of the signaling. The discussion in this section
assumes a full cellular system as described in Chapter 2, while the problem formulation and
algorithm is based on the single cell system model without loss of generality.

The measurement of channel state information for coherent detection differs in time
division duplez (TDD) and frequency division duplex (FDD) [107,108]. With the second
pilot method, it is divided in both systems into two steps. In the first step, the channel
vectors and in the second step the intercell interference plus noise are measured. After the
first step, the base stations calculate their beamforming according to the measured channels.
A measured or assumed intercell interference plus noise variance at this stage can only
indicate roughly the supported rates of the mobile devices. The moment the beamforming is
applied, the intercell interference plus noise variance and assumed rates are outdated. This
effect distorts the transmit covariance matrix optimization and efficient coding can only be
applied with a reliable intercell interference plus noise variance and rate.

Therefore, all base stations send orthogonal pilots with the updated transmit covariance
matrices in the second step, the second pilot phase. The number of pilot symbols 75,4 can be
considerably lower compared to the first phase, because the mobile devices have to estimate
only a positive, real scalar instead of a complex vector. Now, the mobile devices can measure
the actual SINR. The SINR value is subsequently fed back to the associated base station.
The associated feedback resources Tsinr rp for the second step are less than for the first step.
Keeping the transmit covariance matrices unchanged, the base stations assign proper coding



72 4. Intercell Interference Robustness Methods

and modulation schemes and serve the mobile devices with interference aware rates during
the data transmission of length Ty.ia. Thioek is the block length defined by the periodicity
of channel measurements. In each block the channels are measured and the beamforming
is adapted. Under the assumption of block fading, the channels are approximated to be
constant during the block length with a coherence time larger or equal to Tioec. The efficiency
of such a scheme is Tyata/Thlock-

In [61], it was shown that the pilot length of an idealized time division duplex system
can be used as a lower bound for a frequency division duplex system. In time division
duplex systems, the reciprocity of the propagation channels is exploited. The uplink (UL)
and downlink occupy the same frequency band at orthogonal time slots. In the first step,
the channels are measured in the uplink and the gained information is then utilized in the
downlink. The mobile devices are split into equally sized subsets .. The mobile devices
within a subset use pilot sequences, which are orthogonal to each other. But, these pilot
sequences are reused in all other subsets. Each base station has to measure at least the
channels to its own K mobile devices. The pilot length is at least as large as the number
of users in a subset Typ piots > || > K. For interference coordination it is possible
to increase the number of users in a subset and the pilot length to measure additional
interference channels. In Figure 4.4 the signaling scheme of time division duplex with the
first and second step can be seen.

UL pilots SINR FB

DL 2nd pilot data

TUL pilots T2nd TSINR FB Tdata

Tblock

Figure 4.4. TDD signaling with second pilot

The signaling scheme for frequency division duplex can be seen in Figure 4.5. Uplink and
downlink are on orthogonal frequency bands and the downlink channel can only be measured
at the mobile device, respectively. Then, this information has to be returned to the base
station for the optimization of the transmit covariance matrices. In the first step, the base
stations are split into subclusters B.. The base stations within a subcluster use pilots, which
are orthogonal to each other, but these pilots are reused in all other subclusters. This is
organized in such a way, that each mobile device can measure C' = |B.| channel vectors.
The pilot length has to be at least as large as the number of transmit antennas in a cluster
Tor, pilots = INC. Now, each mobile device could return all these channels, but to keep time
division duplex and frequency division duplex comparable, it is assumed that only a limited
number of channels is fed back to every base station, respectively. Each mobile device feeds
back at least the channel, over which it will be served, to its serving base station. To allow for
interference coordination, it is possible that a mobile device feeds also back some interference
channels. This additional channel state information is distributed either directly over the
air to the interfering base station or via the serving base station and a backhaul network.
The limitation to a small number of channels to be fed back reduces the required feedback
symbols Tuan B, Which are usually the dominant part of this signaling scheme.
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UL channel FB SINR FB

DL | pilots 2nd pilot data

TDL pilots Tchan FB T2nd TSINR FB Tdata

Tblock

Figure 4.5. FDD signaling with second pilot

The optimization problem of the second pilot method reads the same as the optimization
of conservative gambling:

max U (=) st tr(Q) < P. (4.22)

Qr>-0VEk

Algorithm 4.4 shows the process of the second pilot method, which starts identically to
the conservative gambling method. But, instead of transmitting with reduced rates, the
supported rates are measured, or calculated in the simulations, and used for the transmission.
Therefore, the achieved rate is equal to the supported rate and there is no risk of an outage.

Algorithm 4.4 Second pilot
Require: E[§2cmal] vk

1 Qassumed — E[Qactual]

2: optimize transmit covariance matrices Qj according to (4.22) with gassumed

3: measure 02" with second pilot

4: compute rtransmltted ractual according to (4.7) with unchanged @), and gactual
5. rzchleved — Ttransmltted —_ ,rzctual

The additional second pilot enables the base station to serve the mobile devices with
intercell interference-aware rates. However, the increased overhead degrades the signalling
efficiency. When there are many interfering base stations, the orthogonal pilot sequences
used to distinguish the base stations require a very long pilot phase, which means a large
overhead, more communication delay and reduced efficiency. If the pilot sequences are
reused in other cells, pilot contamination will reduce the quality of the intercell interference
measurements. In this thesis, we do not try to find the exact costs of the second pilot and
leave this interesting task for further investigations. But, the second pilot method is used
as a reference for performance comparison. In the figures, the performance of this method
is plotted, where the negative effect of the second pilot is ignored.

4.8 Genie Assistance

The second pilot is a step towards the upper bound from [4], where the intercell interference
variance is simply known through a Genie assistance and not measured. To reach the upper
bound, the calculation of the transmit covariance matrices and the measurement of the
intercell interference in Algorithm 4.4 should be alternated until convergence is reached.
This is done in the loop in Algorithm 4.5, where also the system model from Chapter 2 is
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used. For the genie assisted algorithm, the intercell interference variance has to be computed
in each iteration and cannot be approximated with a random process. With simulations, it
can be shown that the improvement of the utility is negligible after the first iteration.

Algorithm 4.5 Genie assistance

Require:
1: Qb — %I
2: get ngktual through Genie assistance
3: repeat
4: optimize transmit covariance matrices Qy according to (4.22) with 92%“‘*1
5: get 675! through Genie assistance
6: until convergence is reached
7: compute 35" according to (4.7) with Qp and G55
8: Tg,schieved — Tac’;cual

4.9 Covariance Shaping

The uncertainty in the intercell interference can also be eliminated by fixing the transmit
covariance matrix as described for the stabilization approach in [4]. If all transmit covariance
matrices in the system are fixed, the intercell interference will not change during a block
fading block. The mobile devices can be served with interference aware rates, but dropping
the adaptive beamforming reduces the possible rates dramatically. The covariance shaping
method from Dotzler et al. in [32], is a generalization of the stabilization approach. The
robustness to the unpredictable intercell interference is increased by imposing a shaping
constraint to the sum transmit covariance, ), Q, = Q =< C. If the base station transmits
with the maximum power tr(Q) = tr(C) < P, the constraint will be fulfilled with equality.
In this case, the sum transmit covariance matrix is fixed to the matrix C. But, the individual
transmit covariance matrices for the mobile devices can be adapted to maximize the utility.
The mobile devices can be served with interference aware rates and adaptive beamforming.
In general, the optimization problem of (4.8) can be reformulated as:

max E
Qr=0Vk

YU (rzchieved)] st.Q = C, tr(Q) < P. (4.23)
k

With C' = %I and at least as many mobile devices as transmit antennas (assuming a full
rank joint channel matrix), the base station will always transmit with full power to increase
any sum utility tr(Q) = tr(C) = P and the shaping constraint has always to be fulfilled
with equality Q = %I. When the sum transmit covariance matrices of the interfering
base stations are fixed in such a way, the intercell interference variance 6, at mobile device
k is known to the base station after the initial measurements of the SINR. The intercell
interference variance becomes a fixed value and the expectation operator in the performance
measure (4.23) disappears as a result:

actual _ P
olax zk: U (rpe™)  st.Q = NI. (4.24)
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The downlink maximization problem (4.24) can be solved by transforming it to an uplink
minimax problem [32]. The uplink minimax optimization is a saddle point problem, which
can be solved with an alternating algorithm. The utility maximizing power allocation and the
utility minimizing noise realization are found in turns with a joint water spilling algorithm
similar to Algorithm 1 in [79] (Chapter 3). The top level Algorithm 4.6 of the covariance
shaping is rather simple. But, the optimization of the transmit covariances has become a
more complex optimization with the constraint.

Algorithm 4.6 Covariance shaping

Require: 6l v
1: Optimize transmit covariance matrices Qj, according to (4.24) with gactual
2: Compute riransmitted — pactual aceording to (4.7) with @y and gactal

3 rzchieved — 7iransmitted — Tzctual

With the covariance shaping method, all base stations restrict their sum transmit co-
variance matrix to a scaled identity matrix. The uncertainty of the intercell interference
variance is eliminated, although the interference channel vectors remain unknown. During
Thioek, the intercell interference variances cannot change when the other base stations up-
date their transmit covariance matrices while fulfilling Q = %I . The intercell interference
is measured before the individual transmit covariance matrices are selected. But, due to
the shaping constraint, the intercell interference does not change during the update of these
matrices. The rates of disturbed mobile devices do not depend on the optimization of the
individual transmit covariance matrices. This motivates again the single cell system model
with a random intercell interference variance. Except for the initial SINR measurement,
there is no need of measuring the interference channels or any statistics about the intercell
interference variance. The cumulative distribution function of the random intercell interfer-
ence variance becomes a unit step function at the measured intercell interference variance.
The problem of interference awareness disappears at the cost of a restriction on the transmit
covariances, which reduces the region of achievable date rates.

The individual transmit covariance matrices always have rank one, as they serve single
antenna mobile devices. For @ with full rank N, the shaping constraints implies that each
eigenvalue should be smaller or equal to %. If the base station serves only K < N mobile
devices, Q will have rank K and only % of the transmit power is used. In these cases, %P is
assigned as the power limit for the covariance shaping method in order to be comparable to
the other methods. In the end, the base station uses the transmit power % . %P = P. This
also implies, that the constraint on the sum transmit covariance matrix is not fulfilled with
equality. The actual intercell interference remains unknown and the expectation operator
cannot be dropped. We assume, that the measurements of the SINR are done with the
full power sum transmit covariance matrix. Therefore, the maximum intercell interference
variance at the mobile devices is known. If the mobile devices are served based on these
worst case variances, then there is still no risk of an outage. But, some resources might be
wasted, as higher rates could be achieved when a small outage risk is accepted (Section 4.10).
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4.10 Loosened Covariance Shaping

By loosening the strict shaping constraint, a controlled instationarity of the intercell inter-
ference variance can be introduced. This instationarity can be handled by optimizing the
expected rate. With this approach, two different techniques dealing with the intercell inter-
ference awareness problem which try to solve the problem with completely different ideas,
covariance shaping and the expected rate method, can be combined and a tradeoff can be
found.

The combined local optimization reads as

max E
Q=0 Vk
gzssumed >0 Vk

Zk: U (rzchieved)] st Q < a%I, tr (Q) < P, (4.25)

where o > 1 loosens the shaping constraint. Note, that the statistics of the random intercell
interference variance 62°“@ depend on the shaping constraint. For a = 1, the shaping
constraint is strict and there is no uncertainty in the intercell interference. For a« > N the
constraint ), Qj > a%l is not binding and the statistics of the random intercell interference
are the same as for the expected rate optimization without any shaping constraint. With
the same discussion as in Section 4.6, problem (4.25) can be written as

P
max B[ (U (6) = U(0)) Fpernn (63 | st Q = ayl tr(Q) <P,
Q=0 Vk k
ezssumed >0 Vk

(4.26)

where the cumulative distribution function Fewa (07"%) evaluated at §™"™, i.e., the
probability that the transmission is successful for a chosen assumed intercell interference
variance, also depends on the loosening factor « all base stations in the system use.

Similarly to the expected rate method, the transmit covariances Q) and the assumed
intercell interference Gﬁf}jumed in problem (4.26) can be optimized with an alternating opti-
mization. For fixed transmit covariances, the derivation of problem (4.26) with respect to the
assumed intercell interference variance has to be set to zero, see (4.21). For fixed assumed
intercell interference, problem (4.26) is a weighted utility maximization with a loosened shap-
ing. This can be transformed to an uplink problem. The saddle point problem in the uplink
can be solved efficiently with a joint scaled gradient descent, which updates the transmit
powers ¢ and the uplink noise {2 in parallel. In each step, the updates have to be projected
orthogonally onto the constraint set [79] (See Chapter 3).

The complete algorithm, which optimizes the transmit covariances and the assumed
intercell interference variances, is listed in Algorithm 4.7. It is essentially the same as the
algorithm for the expected rate method, but the transmit covariance matrices are calculated
to fulfill the loosened shaping constraint. The algorithm converges, because the cost function
improves in every step and the cost function is limited. Convergence is typically reached
after three iterations.

For the simulations, the system model from Chapter 2 is used. Every base station has
N = 4 transmit antennas and serves K = 4 mobile devices. For each «, the distributions
of the intercell interference variances are approximated based on histograms with many dif-
ferent interfering transmit covariance matrix realizations. The performance of the presented
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Algorithm 4.7 Loosened covariance shaping

Require: ay, by Vk, loosening factor «

. stsumed — E[chtual] — ak/bk

repeat
Compute transmit covariance matrices @y, according to (4.26) with fixed ggssumed
Compute #ssumed aecording to (4.21) with Qg
Compute rissimed according to (4.7) with @y, and ggssumed

until the objective (4.17) converges

. Compute rahieved aecording to (4.18)

e g Wy

methods can be seen in Figure 4.6. The normalized average user rate is plotted over the
transmit power. The result labeled with “expected” has the rates optimized according to the
expected rate algorithm from Section 4.6 without any shaping constraint, while “shaping” is
the interference robustness method with the strict shaping constraint from Section 4.9. Both
methods yield substantial improvement compared to the conservative link rate adaption al-
gorithm (“gambling”) from Section 4.4 with completely different approaches. The loosened
covariance shaping presented in this section is labeled “loosened” with a loosening factor of
a = 2.4. This selection gave the best results at high SNR values. All curves saturate for
high power because of the intercell interference. The saturation starts around P = 1W. It
is assumed that all base stations transmit in the same frequency band, full frequency reuse.
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Figure 4.6. Average user rate over transmit power, sum rate maximization

The influence of the loosening on the performance at high SNR values can be seen in
Figure 4.7. o« = 1 and a = 4 are the extreme values, where the loosening converges to
the scaled identity and the expected rate algorithm, respectively. In low SNR scenarios
(Figure 4.8), the effect of the intercell interference vanishes. Therefore, the shaping constraint
has no benefit and an unrestricted optimization yields the best results.
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The influence of o on the cumulative distribution function of the intercell interference
variance is plotted in Figure 4.9 for a single mobile device with a single channel realization.
For a = 1, the cumulative distribution function is an unit step function at the mean intercell
interference as it is expected for the strict covariance shaping. The cumulative distribution
functions become flatter for increasing @ < 4. The possible intercell interference values
become less predictable.

4.11 Hybrid Automatic Repeat Request

All previously described methods can be combined with Hybrid Automatic Repeat re-
Quest (HARQ) to improve the robustness against the intercell interference blindness prob-
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Figure 4.9. Cumulative distribution function of the intercell interference variance

lem [29,33]. The idea of Automatic Repeat reQuest (ARQ) is a feedback from the receiver to
the transmitter with acknowledgment signals about the success of the decoding. In standard
ARQ), redundant bits are added to the original signal using error-detection coding. If the
receiver can decode the transmission, it will send an acknowledgment signal in the feed-
back channel. A receiver, which detects an erroneous message, will request an additional
transmission from the sender. Hybrid ARQ is the combination of ARQ with forward error
correction coding. Most errors can be corrected with the forward error correction and ad-
ditional transmissions will only be requested, if unrecoverable errors are detected. In this
work, it is still assumed that the link rate adaption is optimal for the assumed SINR and
that the forward error correction will correct all errors, if the transmission is coded for a
supported rate. The decoding will only fail, if the actual SINR is worse than the assumed
SINR. Retransmissions will only be requested, if the actual intercell interference variance is
larger than the assumed. The disadvantage of HARQ is the additional overhead and delay
caused by the acknowledgment signals and retransmissions.

In typical HARQ implementations, all received transmissions of an HAR(Q process are
stored at the receiver and decoded jointly with code combining. This procedure of soft
combining allows the receiver to recover data, which could not be decoded based on any single
transmission. Two of the most important combining methods— Chase Combining (CC) and
Incremental Redundancy (IR)—are analyzed in this Section [109-111]. Every retransmission
contains the same data bits as the first transmission in a Chase combining-HARQ process.
The received transmissions are superimposed with maximum ratio combining. This allows
the receiver to decode the data at an SINRs, which is the sum of the SINRs of the individual
transmissions [112]. In every transmission in an incremental redundancy-HARQ process,
different redundancy versions of the same data bits are transmitted. Every retransmission
reduces the initially transmitted rate until the rate matches the combined supported rate of
all transmissions [113].
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In [114], Mukherjee et al. discuss the problem of intercell interference blindness in LTE
and show that it can be mitigated with HARQ. They do not consider the optimization of
the transmit processing. In [110,111], the performance of HARQ with Chase Combining and
Incremental Redundancy is investigated for wireless standards with link level simulations.
Based on such simulations, an abstraction for system level simulations is proposed in [112],
where each retransmission is associated with an equivalent SINR gain. The authors of [109]
propose several HARQ combining schemes for receivers with multiple antennas in cellular
networks.

The maximum number of retransmissions in each HARQ process is set to T' — 1, in
order to respect rate or delay requirements. If the receiver cannot decode the data after T’
transmissions, the data will be discarded and the higher layer will be informed. The utility
achieved by mobile device k£ in an HARQ process is

: U (rassumed) if decoded within T transmissions
achieved) __ k ) )
U ) = { U(0), else. (4.27)

The intercell interference blindness problem in equation (4.1) is relaxed such, that a trans-
mission will be completed successfully, if the data can be decoded with the combination of
all T' transmissions. HARQ can be combined with all other methods handling the intercell
interference blindness problem. The retransmission process merely increases the probability
of a successful transmission at the cost of additional delay.

But, the achieved utility in an HARQ process has to be divided by the number of required
transmissions 7} of the process to get to the achieved utility per time slot, which is optimized
in the following. The according cost function is

achieved
PHARQ _ z: E U(Tk )
— hkﬂzctual e~
k

- ; 4.28
- (4.28)

where the expectation is taken over the HARQ processes with respect to the channel real-
izations hy and the intercell interference realizations #2<"8!. Based on the renewal-reward
theorem [113], the joint expectation can be split in individual expectations of the achieved
utility and the required time:

LpHARQ _ Z Ehkﬁthual |:U (TZCAhieved)}
k Ehkﬁzctual |:Tk::|

(4.29)

It is assumed that many HARQ processes can be completed during the coherence time
Thioek- It is also assumed that after the Ti,q transmissions of a time frame, all started
HARQ processes are completed. This cannot be true in general, but, it only introduces a
very small error if the maximum length of an HARQ process will be much smaller than the
coherence time, T < Tioek. Under this assumptions, the renewal-reward theorem can be
rewritten as the expectation over the block fading blocks of the renewal-reward theorems
within one block. With this assumptions, the maximization of the cost function can be done
per block:

(4.30)

achieved
max WHARQ — Z By |max Ey, [U (TkA )]
kek Ep, [Tk]
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All channels stay constant during the coherence time, while the transmit covariance matrices
at the interfering base stations vary randomly. Hereby, it is assumed that the HARQ pro-
cesses for other mobile devices do not introduce correlation to the interference. To support
this assumption, it can be argued that multiple HARQ processes are handled in parallel for
each mobile device and that the time between retransmissions of the same process varies
randomly [29].

4.11.1 Chase Combining

With Chase combining [115], the forward error correction and error detection is wrapped
in a repetition code. Every transmission in a Chase combining-HARQ process contains the
same bits. With maximum ratio combining at the receiver and if all interference and noise
is uncorrelated over different transmit blocks, the effective SINR after ¢ transmissions will
be equal to the sum of all individual SINRs of these ¢ transmission [116, Section 14-4].

The HARQ process will be completed successfully, if the sum of all actual SINR values

actual assumed

Vi ™ within this process is not smaller than the assumed SINR ~;

U<Tachieved, CC> _ {U(Tzssumed)7 for ,Yassumed < Zt ) ,Yactual (431)

k assume actua.
U(0), for pssumed > S| ypemal,

Depending on the assumed SINR and the SINR realizations, the number of required transmit
blocks for a Chase combining-HARQ process can be found as

( 1 for ,yassumed < ,yactual
) k
actual assumed actual actual
2, for Yex < Tk < Vea T Ve

TEC = ¢ (4.32)
T, for Zt ) ,yzcttual < ,yassumed < Zt 1 actual
\ T, fOI' Zt ) ,.Yactual < ,.ygssumed

The probability that the assumed SINR is not larger than the sum over ¢ consecutive
SINR values is defined as

nyZ?lt:ial (,yzssumed) _ ( assumed < Z actual) 7 (433)

where Eactuan (ypssumed) = () for any y@sswmed > (. With equation (4.33), the expectation
of (4.31) can be found as

B [UL%) = U (5= Fpegun (3) + U (0) (1 = Fgepyo (1= ) (4.34)

Ve Ve,
The probability that exactly ¢ transmissions are necessary is

F,yactual (fYZSSHmed) — F actual (fyzssumed). (435)
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Therefore, the expectation of (4.32) reads as

T

E [Tk:CC:| — Z t <F,yactual (’Y}?bbumed) - F,yac{:utall (’y;bbumed)> + T (]. - F actual (,yz,ssumed)>
t=1
T-1
=T~ ) Fpea( (rypssumed), (4.36)

t=1

The cost function per block fading block with Chase combining-HARQ) is

U (rzssumed> F actual (’yz’ssumed) ‘I— U (0) (1 - F actual (’yz’ssumed)>

k, Yk, 1

ooy
kek T Z ,\/zctual (’yz‘ssumed)

(4.37)

4.11.2 Incremental Redundancy

The data bits are encoded with error detection and a forward error correction code, which
adds many redundancy bits. Most of these bits are then punctured to reach the desired code
rate. In every transmission of an incremental redundancy-HARQ process different punctured
versions are transmitted. Therefore, the code rate changes with every retransmission and
the decoding profits from the improved coding gain. If the forward error correction code is
infinitely long, infinitely many retransmissions are acceptable, and each transmission contains
completely new information, the supported rate of the channel with instationary intercell
interference can be reached [29,114].

The incremental redundancy-HARQ process can be completed successfully in ¢ transmis-
sions, if the assumed rate is not larger than the sum of the individually possible rates within
these ¢ transmissions [113]:

4.38
k U(O), for T]a:ssumed > Zf . rzcttual' ( )

U<Tachieved, IR) _ {U’(T.zssumed)7 for T,Izzssumed < zz . T]z:cttual
Depending on the assumed rate and the actual realizations, the number of required trans-
mit blocks for an incremental redundancy-HARQ process can be found similarly to Chase
combining as

1’ for rzssumed S Tactual

)

2’ for Tzcltual < Tzssumed S T]%?icual + r]z:%ual

TR = (4.39)
actual assumed T actual

T, for Zt 1 Tt < Tk <> 1Tkt

actual assumed
T, for S TR <y .

\

Following the steps presented for Chase combining ((4.33)—(4.36)), the cost function per
block fading block with incremental redundancy-HARQ can be found as

lpIR B Z U (Tzssumed) F chu%1 (TZSSumed> + U (O) (1 — Fri?{}%l(rzssumed)>

- : (4.40)
e T Z zctual (rzssume )



4.11 Hybrid Automatic Repeat Request 83

where the probabilities, i.e. cumulative distribution functions, are not with respect to the
SINR but the rate itself:

t
assumed) __ assumed E actual
Frch?tal (Tk ) - P <Tk S /lnk,f > . (441)
i=1

In [29,114], the authors propose to increase the number of allowed transmissions 7" for
HARQ with Incremental Redundancy in LTE. They show that the upperbound rate with
known intercell interference values at each time slot, the rate with the Genie or second pilot
method, will be reached, if each incremental redundancy-HARQ process runs until successful
completion. The argument is as follows: if there is no limit to the number of retransmissions,
the supported rate in each time slot will be accumulated until it is larger than or equal to the
assumed rate. If the assumed rate is pushed towards infinity and the supported rate at each
time slot is bounded, the relative difference between the assumed rate and the accumulated
supported rate vanishes asymptotically. This is a loose upper bound, which can only be
achieved with an infinite delay and a entirely theoretical forward error correction code.

4.11.3 Cost Function Optimization

The optimization of the cost function (4.37) for Chase combining and (4.40) for incremental
redundancy proceeds similarly to the optimization of the cost function as discussed for the
expected rate method in Section 4.6. For fixed transmit covariance matrices, the optimal
yassumed iy (4.37) and the optimal r#ss'med in (4.40) can be found numerically in the downlink.
They are associated with an optimal intercell interference, respectively. But, in contrast to
the pure expected rate method, here, the weights in the weighted sum utility maximization
cannot be fixed for the optimization of the transmit covariance matrices. The transmit
covariance matrices are part of the SINR and the rate and, therefore, influence the probability
of a successful transmission. The Chase combining cost function for the sum rate utility
U(r) = r reads

F octunl (,yassumed)
z : Yie:r Nk d d
!pCC _ ) passumed _ E W, rassumed 4.49
T — E -1 F 1( assumed) k k'k ( )
kek t=1 L'ypctual (g ek

o1

The weighted sum rate maximization from Chapter 3 has to be adapted to solve this
problem. With the uplink-downlink duality, the cost function is transformed to the uplink.
The weights wy, do not change in this transformation. Algorithm 3.2 contains only updates
of the transmit covariance matrices with the sum rate maximization as utility and no further
constraints. The transmit covariances in the downlink are found with the primal recovery
in equation (3.42) based on the selection of the transmit covariance matrices in the uplink.
The transmit covariance matrices in the downlink influence the probability of a successful
transmission and, therefore, change the weights. To include this effect in the optimization
of the uplink transmit covariance matrices, the gradient in the projected gradient step Al-
gorithm 3.3 is found numerically with respect to the cost function change in the downlink.
Also the achieved cost function in each iteration is calculated in the downlink.

The complete alternating optimization, which finds the optimal transmit covariance ma-
trices and the optimal assumed SINR or rate in turns is depicted in Algorithm 4.8. As
single antenna mobile devices are assumed, the transmit covariance matrices simplify to



84 4. Intercell Interference Robustness Methods

transmit variances qi, Vk, in the uplink. The update of the downlink transmit covariance
matrices is described in lines 7-21. The BC2MAC downlink-uplink transformation is sim-
ilar to the primal recovery described in Section 3.4.5. In line 9, the numerical gradient
with respect to g is computed for all k£ with a very small e. Although, the downlink utility
VU(wig, Qri, 0355md) depends on the weights, downlink transmit covariance matrices, and
assumed intercell interferences, the influence of a single changed uplink transmit variance is
here denoted by ¥(gy) for notation convenience, while all other parameters are fixed. To get
to the actual utility with a changed ¢, the downlink covariance matrices have to be calcu-
lated with the uplink-downlink transformation (3.42). The assumed SINR and the assumed
rate have to be updated and depending on these assumed values, the weights have to be
computed as described in equation (4.42). The update of the assumed intercell interference,
SINR, and rate and the according weight is described in the lines 22 and 23. The algorithm
converges in less than five iterations of the outer loop.

Algorithm 4.8 Expected rate method with HARQ

Require: Intercell interference distribution parameters ay, by Vk, acceptable error

1: dy < 1 > initialize inverse step-size
2: Qp N—J}I, VEk > initialize DL transmit covariance matrices
3: find optimal ggssumed | ~assumed g gassumed > maximize (4.37) or (4.40)
4: compute wy, Yk, with ygssumed gp passumed 1y > (4.42)
5: cost_old <+ ¥ (w1.x, Qr.x, 0353med) > initial downlink objective (4.37) or (4.40)
6: repeat

7: Q1. < BO2MAC(Q.x, 0aspmed) > uplink transmit variances
8: repeat

9: Gek — (U(qe +€¢/2) =¥ (qe — €/2)) /€, Yk > numerical gradient computation
10: Py P/(O) 9e.k) > preconditioning (3.54)
11: repeat
12: Jk < Qi + pe/di gk, VE > unconstr. update (3.46)
13: Gk < (G1x) | > joint projection (3.47)
14: cost_new <— ¥(G.x) > evaluate objective (4.37) or (4.40)
15: cost_increase <— cost_new — cost_old

16: di + di + 1 > decrease step-size
17: until cost_increase > —¢

18: Qr < i, Vk

19: cost_old ¢— cost_new
20: until |cost_increase| < e
21: Q..x +— MAC2BC (qlzK, 9%?[5(1‘m6d) > downlink recovery (3.42)
22: find optimal ggssumed | yassumed gy passumed > maximize (4.37) or (4.40)
23: compute wy, Vk, with yassumed op passumed g > (4.42)
24: cost_old + ¥ (w1.x, Qr.x, O353med) > evaluate objective (4.37) or (4.40)

25: until objective (4.37) or (4.40) converges
26: return richieved /T > (4.31) and (4.32) or (4.38) and (4.39)
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4.11.4 Simulations

The system model from Chapter 2 is used for the simulations. Every base station has N =4
transmit antennas, serves K = 4 single antenna mobile devices, and T" = 4 transmissions
are allowed for each HARQ process. It is assumed that the acknowledgment or negative
acknowledgment feedback is delay-free and error-free. Instead of a probability distribution
for the intercell interference variance, SINR, or rate, a histogram of realizations is utilized
for the expected rate method in the optimizations. The normalized average mobile device
rate is plotted over the transmit power in Figure 4.10for the maximum sum rate utility. All
curves saturate for high power because of the intercell interference limitation. The satu-
ration starts already at 1 W as it is assumed that all base stations transmit in the same
frequency band. The “2nd pilot” rate is the upper bound, which can only be achieved,
if the intercell interference is known at the transmitter. The rates with the expected rate
method are denoted “expected” without ARQ), as “expected-CC” with Chase combining and
“expected-IR” with incremental redundancy. It can be seen that incremental redundancy
performs better than Chase combining and no ARQ. The covariance shaping method with
a scaled identity from [32] (Section 4.9) is plotted as “shaping” and the conservative gam-
bling algorithm from [4] (Section 4.4) with an optimized backoff factor as “gambling”. The
gambling algorithm can also be improved with HARQ. The according results are omitted to
improve the readability.
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Figure 4.10. Combination of the expected rate method with HARQ), average mobile device rate

4.12 Conclusion

The intercell interference blindness problem arises in all cellular systems for the part of the
intercell interference, which has to be regarded as noise. Even if all channels in the system are
constant, this part of the intercell interference variance at a mobile devices changes whenever
a base station in the system changes its transmit strategy. A simple single cell system model,
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where the intercell interference variances are drawn from a gamma distribution, could be
derived to simplify the analysis.

The intercell interference blindness problem can be tackled with many different ap-
proaches. The simplest approach and baseline for this work is to transmit at lower rates with
the conservative gambling method. It is possible to win knowledge about the actual intercell
interference variance by measuring it with a second pilot. This is an approach that gets
very close to the upper bound where knowledge about the intercell interference variance is
gained through an omniscient genie. Nevertheless, due to the increased signaling overhead,
the second pilot is not a desirable technique.

To make the system robust against unpredictable changes in the intercell interference
variance, the expected rate method takes the actual performance measure, the expectation
of the rate with respect to the instationary intercell interference, as cost function. The covari-
ance shaping method tackles the intercell interference blindness problem from a completely
different direction by stabilizing the intercell interference variances. These two approaches
notably outperform conservative gambling and can be combined to the loosened covariance
shaping method, which finds the best compromise between stabilizing the intercell interfer-
ence variance at mobile devices in other cells and optimizing the expected rates of the own
mobile devices.

HARQ with soft combining can also be used to mitigate the disadvantage of intercell
interference instationarity. This effect of HARQ could be included into the optimization
of the transmit covariance matrices leading to even better results with the expected rate
method.



5. Intercell Interference Robustness in Fairness
Optimizations

In the previous chapter, the intercell interference blindness problem has been addressed for a
general utility U or the sum rate (SR) maximization. Maximizing the sum throughput of the
system usually ends up with serving only the mobile devices with high SINR. Provider and
users of a cellular network are typically interested in a fair resource distribution. The focus
of this chapter is on the intercell interference blindness problem in fairness optimizations.

A contemporary overview of different fairness utilities in general and their treatment can
be found in [117, Chapter 5] and [118-122]. In [96], Neely et al. investigated the fairness
optimization problem with intercell interference robustness from a networking point of view
with generalized links between different nodes but regardless of the transmit covariance
selection. In the asymptotic region, the transmit covariance matrix selection with fairness
utilities was addressed by Huh et al. in [97] with fixed intercell interference variances but
varying channel coefficients. A similar problem, where the uncertainty in the SINR is caused
by non-perfect channel state knownledge, was approached by Shirani-Mehr et al. in [98] with
fairness scheduling and an heuristic approach for the robustness. The problem of intercell
interference blindness in systems with fairness scheduling in combination with HARQ was
investigated by Shirani-Mehr et al. in [29], where conservative gambling with individual back-
off factors was employed as intercell interference robustness method. Recently, the expected
rate method was used by Fritzsche et al. in [92] to solve the intercell interference blindness
problem with proportional fairness as utility. In the light of intercell interference blindness,
Ellenbeck et al. addressed the problem of selecting unitary precoding matrices in a system
with proportional-fair scheduling and HARQ [100]. Unitary precoding matrices can be seen
as a form of covariance shaping.

The fairness among the mobile devices can be realized with scheduling. With fairness
scheduling, the transmit covariance matrices are still selected to maximize a weighted sum
rate, but the scheduler changes the weights of the mobile devices from time slot to time
slot according to a fairness criterion. In Section 5.2, Round Robin (RR), Throughput-Fair
(TF) scheduling, and Proportional-Fair (PF) scheduling are implemented with a fairness
scheduler. With round robin, the mobile devices are served in turn. Each mobile device
gets the same number of time slots assigned. Under the throughput fairness criterion, the
mobile devices with the smallest historical throughput are scheduled, which leads to equal
throughput for each mobile device in the end. The goal of proportional fairness is to find a
balance point between the sum throughput maximization and equal throughput among all
mobile devices [123].

87
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Fairness beamforming does not rely by design on a scheduler. The idea is to find covari-
ance matrices, which serve the mobile devices inherently with rates that optimize the utility.
This is done by splitting the utility optimization into a weighted sum rate optimization and
an optimization of the weights [119]. In the optimal point, the weights are such that the
weighted sum rate optimization selects utility maximizing rates. As the rate region has to
be convexified with time sharing in general, multiple different transmit covariance matrix
selections at different time slots might be necessary to implement the optimal rates. But, the
transmit covariance matrices have to be switched very rarely compared to fairness schedul-
ing. In Section 5.3, maz-min fairness (MM), log fairness (LF), and proportional fairness
(PF) are discussed for fairness beamforming. The discussion is similarly to [97,124-126],
but for the intercell interference robustness methods from Chapter 4. Parts of this chapter
can be found in [101,127].

5.1 System Model

Without loss of generality, the MU-MISO single cell system model with an intercell in-
terference variance following a Gamma distribution from Section 4.3 is employed for the
introduction of the fairness algorithms. The simulations in Section 5.2.1 — 5.2.3 are done
with an MU-MIMO system model with four mobile devices and four transmit antennas and
without intercell interference to give better insights to the described algorithms. In the
simulations Section 5.4, the simulations are done with both, the single cell system model
from Section 4.3 and the full cellular system model from Section 2.1. With the single cell
system model, the behavior of the instationary intercell interference can be simulated with
low complexity.

For fairness scheduling as well as for fairness beamforming, it is assumed that there
are two different schedulers. The mobile device set scheduler and the transmit covariance
matrix scheduler. The mobile device set scheduler assigns a set of mobile devices I and
an utility function U(e) to a frame of resources. This frame of resources can be split into
many subframes of resources. The transmit covariance matrix scheduler is responsible for
selecting transmit covariance matrices for each of these subframes with the goal of optimizing
the imposed utility for the given mobile device set. With the block fading assumption, the
channel can be seen as constant during a resource block, which is defined by the coherence
time and frequency. The number of symbols, which can be transmitted during such a resource
block is denoted by Tick. For simplicity, the time and frequency dimensions are unified to
a single dimension, which is denoted as time in the following. For the discussion of the
algorithms, it is assumed that T}, is very large, which is valid in scenarios with low mobile
device mobility. With this assumption, a frame can be set to a single resource block and
the mobile device set scheduler updates its selection for each resource block. The resource
block is then split into many slots, which still consist of many symbols. Therefore, the
transmit covariance matrix scheduler works on many slots with equal channels. But, the
intercell interference variance can still change unpredictably from slot to slot. In systems
with shorter resource block lengths Ti,q, a frame has to consist of many resource blocks
and the transmit covariance matrix scheduler has to work with channels that change from
block to block.
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5.2 Fairness Scheduling

Fairness scheduling is implemented with the maximum weighted sum rate framework de-
scribed in Chapter 3. For fairness scheduling, the weights for the mobile devices are called
priority coefficients. The selection of the mobile device priority is based on a compromise
between the maximum possible sum rate and a fair resource distribution. Mobile devices
with a higher weight are preferred in the resource distribution compared to mobile devices
with smaller weights. By setting its weight to zero, a mobile devices is removed from the
active mobile device set. The transmit covariance matrices are still selected to maximize a
weighted sum rate, but the scheduler changes the weights of the mobile devices from slot to
slot according to a fairness criterion.

The general objective function of a fairness scheduler, which selects the set ) of mobile
devices that are scheduled by the base station in slot ¢ is [123]

s )
Tk .
kek® (Rk >

Here, r,(:) is the data rate potentially achievable by mobile device k in slot ¢ and

t—1
LS
T=1

is the historical average rate of mobile device k in the current block. The design parameter
K is the cardinality of ®. o and f8 are the factors that tune the fairness of the scheduler.

In general, the parameters a and [ can be set to any value between zero and one to design
a meaningful cost function. Here, only the values of o and  with the setup from [123] as
shown in Table 5.1 are investigated. The scheduler does not care about the channel quality
of the mobile devices and serves them in turn with round robin. For the sum rate utility, the
scheduler has to look only at the instantaneous possible rates and for throughput fairness,
the scheduler ignores the channel quality and serves the mobile devices with the smallest
historical throughput. Proportional fairness finds a compromise between maximizing the
sum rate and serving the mobile device with the smallest historical throughput. Typically,
only one mobile device is served per time slot and K is set to one. Here, multiple mobile
devices are allowed per time slot, K > 1, and the selected mobile devices are served with a
weighted rum rate maximization. Note, that this can change the utility.

After the scheduler selected the active mobile device set K®, the optimization of the
transmit covariance matrices can be derived from equation (5.1) for the different fairness
utilities with the selection of the coefficients «, 3, and the active mobile device set £ as
described in Table 5.2. The possible data rates 7“,(:) always have to be included in the objective
function for the selection of the transmit covariance matrices (aw = 1). The resulting weighted
sum rate maximization for all fairness utilities has the form

max E Z w,gt)r,(f) st. Q€eC, (5.3)
)

- ()
Q1 -0 VYEeK Nk
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-8
where the weights are w,(f) = (R,(f)> , Vk,t. Instead of selecting the active device set K,

the scheduler can also select the weights in such a way, that active mobile devices get the
weight assigned as described and the weight of not active mobile devices is set to zero. The
expectation operator in equation (5.3) takes the instationary intercell interference into ac-
count and the problem can be solved with the different strategies for intercell interference
robustness described in Chapter 4. The constraint set C describes in most cases the sum
power constraint, the covariance shaping constraint or a combination of both. It is also pos-
sible to use the constraint set for interference temperatures or per antenna power constraints.
Problem (5.1) and (5.3) can jointly be written for the sum rate maximization as

max E
Q1 =0 VkEK

Zr,(j)] st. QeC, (5.4)
ke

where all weights are set to one and all mobile devices are active all the time.

RR SR TF PF

o 1 1 1 1
a 0 1 0 1 3 0 0 1 1

0 0 1 1
P KO Ky kK K9S K

RR SR TF PF

Table 5.1. @ and B with single mobile device

per slot Table 5.2. «, 3, and K®) with multiple mobile

devices per slot

The general idea is shown in Algorithm 5.1, where the transmit covariance matrix opti-
mization is always done with respect to all mobile devices and the active mobile devices are

selected through non-zero weights. The weights assigned by the fairness scheduler w,(f) can

be wl(% . w%%k or wg% , according to which fairness criterion is adopted. After computing

the weights, the rates r,(f), Vk, are calculated by solving the maximum weighted sum rate
problem (5.3) with different intercell interference robustness methods. The time-varying
property of fairness scheduling is shown by the time counter ¢ and the update of the his-
torical average rate R,(Ct), Vk. Fairness scheduling can only realize fairness over many time
slots.

Algorithm 5.1 Fairness scheduling and intercell interference robustness

Require: assigned user set K, Thiock

L: R,(cl) +— 1Vk > initialize historical throughput
2: for t =1 to Ty do

3wy < Scheduler (Rg%) > select weights (5.6), (5.8), (5.10)
4: r?}( < RobustSR (wY)I() > find robust sum rate (5.3)
5: R,(fﬂ) — S 7’,(;), Yk > update historical throughput (5.2)
6: end for

If only a subset of mobile devices are in the active set, it might happen that less mobile
devices will be served than the base station has transmit antennas. In this case, the sum



5.2 Fairness Scheduling 91

transmit covariance matrix will be rank deficient in scenarios with single antenna receivers.
Covariance shaping, where the sum transmit covariance matrix is restricted to a scaled
identity matrix, cannot transmit with full power. Each eigenvalue is limited to a fraction
of the sum transmit power. If only a few eigenvalues are positive, the used power will
still be only a fraction of the total allowed power. To keep the covariance shaping method
comparable to the other methods, the scaling of the shaping matrix is increased such, that
the full transmit power can be used with the active mobile device set. Only the worst intercell
interference variance at the mobile devices can be known in this case. The actual intercell
interference will be smaller, which motivated the use of loosened covariance shaping.

5.2.1 Round Robin

With round robin, the scheduler assigns the same amount of resources to all mobile devices.
This resource fairness can be achieved by serving the mobile devices in turn. Typically,
only a single mobile device is served in each slot with round robin. Here, round robin is
relaxed in order to allow serving multiple mobile devices in each slot. In the simulations,
two mobile devices, rather than one, are served in each slot, so the multi-user diversity can
still be exploited. The two mobile devices are served in such a way, that the sum rate is
maximized. An example of this scheduling technique can be seen in Figure 5.1. Four mobile
devices are assigned to the block and exactly two mobile devices have non-zero rates at each
time instance. Mobile devices with a bad channel will always suffer, if they are paired with

a mobile device with a good channel.

7 T T [
Q Q Q —MD 1
RS N N
N N LEEREN \/ID 2
1 N
- 1 ~ ! N S
) 6 1 ® [ 0] ! Q P
a0 | \ 1 \ ! \ - o- MD 3
< 1 \ 1 \ 1 .
& ' . [ \ ' ' -x- MD 4
=} 57 1 \ 1 \ ! \ 7
\ ! \ 1 r
1 \ X
'—‘q-) ) 1 X 1 \ ‘A ! v '
v 00 1 ’ ! s !
) 1 A V00 1
- \ [ 1 ’ \ ! -
= ! / \ Y ' y I
n ] 1 \
< 1 s\ \ 7\
K /0 \ f ' \ 1 % \ 1
= * ' ' ¥ \ 1 . \ ! b
o ! oy \ f ' ! ! \ I !
37‘ 1 \ ! \ ' / \ 1 H
— f \ ] ! \ \ 1 I ' \ A
[B) ! \ ' 1 1 \ !
3, ] ' \ ! \ \ ! \ f 1
1 p 1 \ ] ! \ \ 1 1 | \ | ,
[75) 1 ! ! \ ! ! ' \ ! ! \ ! ' ]
+~ 271 ' ' 1 ! \ \ ! U \ ' 1
o= ' \ ' ] 1 i \ !
e} ! ! ' ! ! ! 1 ! vl !
1 1 ! v ! , | \ ! 1 ' 1
1 1 ! v ! | v ! ! \ ! 1
' 1 I , vVl
1 L 1 [Vl fi \ \ 1 % 1 1
| , \ a® \ { 1 \ X ,
\ ! 1 1 v
1 1 ! \ \ 1
\ ! ! \ ] L
O i Q ' X \ 4

Figure 5.1. Instantaneous mobile device rates with round robin

The objective function,

max
Q10 Vkek),

(t) B Z

kek ()

0

s.t.

Qed,

(5.5)
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is similar to that of the sum rate maximization (5.4), except that the active set ]Cga is
changing from slot to slot as shown in Table 5.3 for two active mobile devices per slot. This
can also be reached by plugging the weights,

RRE )0 else,
into optimization (5.3) and maximizing over the complete mobile device set K.

slot number (t) (1) (2) (3) (4) (5)
active MD set K0, {1, 2} {2, 3} {3, 4} {4, 1} {1, 2}

weight of MD 1, wgl))hl 1
weight of MD 2, wg%m 1
weight of MD 3, wl()fl)m 0
weight of MD 4, wgl)m 0

S = = O
_ = O O
_ o O =
S O = o=

Table 5.3. Active mobile device set with round robin K(Pf%{

5.2.2 Throughput Fairness

The throughput-fair scheduler always serves the mobile device(s) with the smallest historical
throughput. With a long enough block length T}, the rates of all mobile devices converge
to the same throughput with this strategy. To achieve this goal, mobile devices with a
poor channel quality are scheduled more often compared to mobile devices with strong
channels. Again, the original throughput-fair scheduler only serves a single mobile device
per slot and, here, multiple mobile devices are served in each slot to exploit the multi-user
diversity. The mobile devices, which are scheduled, are served according to the proportional-
fair optimization (see Section 5.2.3). In slot (), IC&?)F is the set of scheduled mobile devices
according to their relatively small historical throughput R,(:). With two active mobile devices
per slot, the set can be found as

ICSE)F = {k1 = argmin (R,@), ko = argmin (R,@) } (5.7)

kek kek\k1

The weights for the maximum weighted sum rate problem (5.3) are

1 (t)
0 else,
resulting in the objective function
1
max E —r st. QeC. (5.9)
Q10 Vkek ) Z RO*

kekhy k
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The example rates in Figure 5.2 and 5.3 are qualitative results to give an insight to
throughput fairness. Four mobile devices are assigned and two mobile devices are active
per slot. With single-user throughput fairness, only one mobile device is scheduled in each
slot and the rates of the mobile devices converge to exactly the same throughput. However,
with multiple mobile devices per slot, the mobile device with the weakest channel is always
paired with at least one other mobile device. Therefore, the mobile device with the worst
channel will always achieve a smaller throughput than the rest of the mobile devices. Serving
multiple mobile devices per slot violates the targeted fairness criterion. But, the multi-user
diversity increases the possible rates and makes the system more robust to the case that all
mobile devices are starving because one mobile device is not able to communicate at all.
Additionally, serving multiple mobile devices per slot increases the rank of the sum transmit
covariance matrix, which is important for optimizations with a shaping constraint.
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Figure 5.2. Instantaneous mobile device rates with throughput fairness

5.2.3 Proportional Fairness

The goal of proportional fairness is to find a balance between maximum system throughput
and equal throughput for all mobile devices. With the weights,

@ _ 1
wPF,k —_— W Vk, t’ (5.10)
k
the cost function is
L
o ax F Y. —ah st. QeC. (5.11)
kek®) ~ 'k

The whole set IC of the mobile devices is scheduled in all slots. In the end of T},oq, mobile
devices with poor channels will have a smaller throughput compared to the throughput they
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Figure 5.3. Time averaged mobile device rates with throughput fairness

would have with throughput fairness, but they are served more frequently than in the case
of the maximum sum rate optimization.

The performance of proportional fairness is shown in Figures 5.4 and 5.5. Several time
slots after the initialization, the system converges to the stable state where the mobile devices
in the cell are served with the optimum weights wy, = (rk)_l. The instantaneous and time
averaged mobile device rates converge to the same value. In general, the instantaneous
mobile device rates do not converge and may jump between different realizations. Time-
sharing between different covariance matrix realizations might be necessary to achieve the
goal of the proportional-fair scheduler.
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Figure 5.4. Instantaneous mobile device rates with proportional fairness
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Figure 5.5. Time averaged mobile device rates with proportional fairness

5.3 Fairness Beamforming

The goal of fairness beamforming is to achieve fairness in every time slot. But, the rate
region of the downlink will only be convex, if time sharing is employed. One has to alternate
between multiple different transmit covariance matrix settings to optimize the desired utility.
Therefore, fairness beamforming requires also multiple time slots in general. The algorithm
for finding the optimal points is an iterative algorithm, where the different required transmit
covariance matrices are the solution at different iterations. The evolution of the iterations
can be seen as virtual queue of a scheduler [98,128]. Fairness beamforming and fairness
scheduling achieve the same rates for the same utility. The general objective function,

max Y B[U(r)] st QE€C, (5.12)

Q=0 Vk

can be parameterized in such a way, that each rate r, € R{, Vk has to be smaller or equal
than the feasible rate ¢, € R [97,119]:

E U . < ¢ Vk C. 5.13
Tkzwg’l%ito% ; [U ()] S e <o Vk, Q€ (5.13)
The optimization is done with respect to the transmit covariance matrices, which find the
optimal ¢, Vk, in the set of all feasible rates, and with respect to the rates r;, Vk, which are
in the end set equal to ¢, Vk. With the Lagrangian multiplier A, € R for the constraints
rr < ¢k, problem (5.13) can be rearranged as

max > E[U(r)] = M(re — c)

rp>0 Vk

Qr>0VEk, QeC

= B — . 14
35 LB = e D o1

QeC
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The first maximization is solved by setting the derivations with respect to r, to zero, re-
spectively, while the second part is the maximum weighted sum rate problem discussed in
Chapter 3, which is always transformed into an uplink problem. As the rates in uplink and
downlink are equal, also the first maximization can be solved in the uplink. The solution can
be found by an alternating optimization of ry, Vk, and ¢, Vk as described in Section 5.3.3.
The expectation operator can be handled by the different methods for intercell interference
robustness described in Chapter 4. With the expected rate method, the assumed intercell
interference variance can be optimized together with 7, Vk, or in additional outer loop (See
Section 5.3.3).

5.3.1 Max-Min

With the maz-min (MM) criterion, the smallest weighted rate among the mobile devices is
maximized by setting the utility function in (5.13) to [129]:

wgry  for k = argmin (wyry),
Ury) = k (5.15)

0 else,

Z U(rg) = mkin (wgTk)- (5.16)

k

The objective function now becomes

N E [mkln(wkrk)] st. e < Vk, Qe€C. (5.17)
where the optimization leads to equal weighted rates wiry = wory = -+ = wWTk.

The idea of the weighted max-min optimization can be seen in Figure 5.6 for the two mo-
bile device case with equal weights w; = ws = 1 and an example rate region R. The function
min(ry,75) has the same value for all rate tuples (r1,75) on the contour line 32, U(ry,) = U,
where U is a constant. The solution to problem 5.17 can be found by moving the contour
line from a large enough U to smaller values along the bisecting line of the positive quadrant
until the contour line hits the border of the rate region from the upper right side. The
optimal point is denoted by 7},

The parameterized problem according to (5.14) is

U = rg%}v{k (E [mln WeTk } Z )\krk> +  max Z ALChi- (5.18)

Qi>-0 Vk
Qec

The minimization operator picks only the smallest weighted rate, which can be fulfilled by
multiple weighted rates. Therefore, the derivative of (5.18) with respect to ry is

o _ (OB [wery])(Org) " = N\ if k = argming (wery,), (5.19)
ory Ak else. '
Setting the derivative to zero gives the optimal A\, Vk,
A\ — (O [wer]) ()~ if k = argming (wgry,), (5.20)
0 else.
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Figure 5.6. Max-min fairness with two MDs with equal weights, U(r) = Y, U(ry) = min(ry, ra)

For the interference robustness methods, where the expectation operator is exchanged with
the identity mapping, the Lagrangian multipliers are

A\ = wy if k = argming (wgr), (5.21)
0 else.

For the expected rate method, the Lagrangian multiplier is

A = {F(stsumEd)wk if k = argming (wgry), (5.22)

0 else,

where F(625'med) is the probability, that all assumed intercell interference variances are not
smaller than the actual intercell interference variances. This is slightly different than the
previous definition in Section 4.6, which is used in the next section. Setting A\, to zero is a
rather extreme selection. In the optimal point, all A\; are positive. The convergence behavior
of the alternating optimization can be improved by gradually updating all A, with a gradient
method, which is explained in more detail in Section 5.3.3.

Throughput fairness from Section 5.2.2 and the max-min fairness are closely related and
aim for the same goal. Nevertheless, it is possible with max-min fairness to serve all mobile
devices at the same slot with the same weighted rate, while this is never possible with
scheduling. Additionally, the relaxation in the scheduling for multiple mobile devices in the
same time slot alters the utility and not all mobile devices get the same weighted rate in the
end.
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5.3.2 Log Fairness

For the log fairness (LF) criterion, the utility function becomes the logarithm of the weighted
rate added to a design factor v [119]:

D U(ry) = log(y + werk). (5.23)

The objective function of log fairness is

>0k, Q =0 Vk ZE log(y + wir)] st. <o vk, QEC. (5.24)
Tk Kk

The idea for solving problem (5.24) is depicted in Figure 5.7 for the two mobile device case
with equal weights w; = wy = 1, an example rate region R, and v = 1. The utility function
> Ulry) =log(1+7r1)+log(1l+rs) has the same value for all the rate tuples (r1,7;) on the
contour line 37, U(r,) = U. Again, the solution to problem (5.24) can be found by moving
the contour line down the bisection line until it touches the border of the rate region in the
optimal point 7] from the upper right side.

T2

T2

2R |

r1

0| é 2}% [t

(a) Contour lines (b) Graphical solution
Figure 5.7. Log fairness (y = 1) with two MDs with equal weights, U(r) = log(1 4 1) + log(1 +r2)

According to (5.14), the objective is rearranged as

Y = max <ZE [log(y + wirg)] — /\krk> + max Z)\kck (5.25)
k

>0 Vk Q>0 Vk
QeC

The second maximization of (5.25) is a maximum weighted sum rate problem as described
in detail in Chapter 3, where the Lagrangian multipliers )\, are used as weights. By plugging
the probability of successful decoding F'(fssumed) = p(@assumed < gactual) " (] _ pr(gasssumed)) —
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P(ggssumed ~ gactual) (See equation (4.19)) into equation (5.25), the first maximization can
be expressed as

mas 5™ RO log(y + were) + (1 — PO log() — Aeri (5.26)
TkZ

and simplified to
max F(pssmmed) Jog (1 + %TO — ATk (5.27)
'7

re >0 Vk B

Setting the derivative of (5.27) with respect to ry to zero,

ov Wi
— = % p(gpssemedy _ )\, =0 5.28
Ory v+ wery, (0 )= =0, (5.28)

allows to compute the optimal A\, Vk,
Wy,

A\ = F eassumed )
‘ (i )7 + Wk

(5.29)
For all intercell interference robustness methods, which use F(#3stmed) = 1 the optimal A,

Vk, can be computed as
Wy,

Ao = —k
Y+ Wik

(5.30)
For the expected rate method, the optimization of §35'med can be a part of the first maxi-
mization or it can be optimized in an outer loop.

The design parameter v influences the shape of the contour lines. In the extreme case of
v — — ming wyrk, the contour lines of log fairness become the contour lines of the max-min
optimization. In the other extreme case of v — oo, the contour lines become the contour
lines of the sum rate (SR) maximization, which are lines with a slope of minus one. The
contour lines of the three different criteria and the respective graphical solutions and optimal
points can be compared in Figure 5.8. A joint scaling of all A\, e.g. with ~, does not change
the second optimization,

YWk

Ap = ———. 5.31
Ty, (5:31)

Here it can be easily seen, that v — oo yields the maximum sum rate weights,

Wi y—+00
Ay = —p— = 5.32
v
and v = € — ming (wyry), € — 0, yields the max-min weights,
A\ = ew, : We__ o Jwy itk = argming (wgry), (5.33)
Y+ Wik 14 € (wkrk — mlnk(wkrk)) 0 else.

With v = 0, the Lagrangian multiplier in the iteration at hand is simply set to the rate
from the previous iteration. In the optimal point, the Lagrangian multiplier and the rate con-
verge jointly. Revisiting proportional-fair scheduling from Section 5.2.3, the instantaneous
rates converge to their average rate, respectively. In the optimal point, the instantaneous rate
is found with a weight that is one over the average rate, which is the rate from the previous
time slot. Therefore, log fairness with v = 0 is the same as proportional fairness [130].
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max log(1+7) + log(l_fi—-”}’g)

2R | 2R A\\"sr

min {ry, 7o}

max i+ 72

0| R 9R r 0| R R i
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Figure 5.8. Sum rate, log fairness (v = 1), and max-min with two MDs with equal weights

5.3.3 Fairness Beamforming Algorithm

The fairness beamforming optimization has to be embedded into the previously described
weighted sum rate algorithms for the different intercell interference robustness methods. The
optimal transmit covariance matrices in the downlink and the optimal weights, which assure
fairness in the weighted sum rate maximization, can either be found in an alternating opti-
mization or in a joint optimization. The alternating optimization finds the optimal transmit
covariance matrices in the downlink according to the algorithms presented in Chapter 3
and the optimal weights in turn. Each optimization is performed until convergence and the
alternation is done until everything converges.

The optimal weights can be found more efficiently in a joint optimization with the trans-
mit covariance matrices. To accomplish this, the optimization has to be done in the uplink.
The weights and rates in the uplink are the same as in the downlink. Therefore, the update
of the weights can also be done in the uplink without any adaption. The weighted sum rate
algorithm with multiple constraints 3.2 is extended in Algorithm 5.2 to include the update of
the weights, which assure fairness. In contrast to Algorithm 3.2, the utility is used as mea-
sure for convergence in Algorithm 5.2. This can directly be used as an implementation for
covariance shaping with fairness beamforming. Conservative gambling can be implemented
by dropping the optimization of the noise covariance matrices, i.e., setting the sum noise
covariance matrix to the identity matrix from the beginning on. The optimal back-off factor
[ is applied after the optimization of the transmit covariance matrices 4.1 and 4.2. The
optimal S has to be found for each utility individually.

As described in [97,125], the weights or Lagrangian multipliers are not directly updated
according to equation (5.20) or (5.29). The weights for the next iteration are found with a
gradient step:

AGFD = A0 _ D (O 4Dy (5.34)
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Algorithm 5.2 Fairness Beamforming

Require: Accuracy ¢, outage probabilities F'(§255umed) Yk constraints (Cy, Z;), Vi

1: "(0) MKI, VEk > initial transmit covariances
2: .Q% 2 — ( Tio I) > initial noise covariances (3.51)
1
3: )\(0 — 7, Vk > initial Lagrangian multipliers
(O LK ULRates (E’fo 1 D .Q(O)> > initial rates (3.27)

5: (O) «E [zk } > initial utility (5.16) or (5.23)
6: dy < 1, d, + 1, d)\ <— 1,740 > initialize step-size
7: repeat

8: T%Z}D — OptRates > according to (5.36) or (5.35)
D VR A (cff)k — 7",(;“)), vk > see (5.34)
10: Y < sort </\§HI;1)) > find non-increasing order of A
11: reorder /\(ZJrl F(ggssumed) " H, and ._,khLl Vk according to I70+Y)

12: ._,1@;21) — TransCovStep (E : > Algorithm 3.3
13: ET; < ULRates (._1@;21), > .Ql(Z ) > rates (3.27)
14 U™V B [Zk ( (+1) )} > evaluate utility (5.16) or (5.23)
15: cost_increase < U — Y

16: szl) < NoiseCovStep (leL) > Algorithm 3.4
17: STIK + ULRates (:1(1;(1), > Ql(iﬂ)) > rates (3.27)
18: Uit B [Zk ( ZH))} > evaluate utility (5.16) or (5.23)
19: cost_decrease + UL — (A]t(iﬂ)
20: 141+ 1 > iteration counter
21: until cost_increase < ¢ and cost_decrease > —e
22: Q1.x < MAC2BC(Z1.k, 1, Y, §2)) > downlink recovery (3.42)

The gradient of the Lagrangian function of equation (5.14) with respect to Ay is ¢ — g,
VEk. ¢, Vk, are the feasible rates according to the transmit covariance matrices in the recent
iteration and 7, Vk, are the rates maximizing problem (5.18) or (5.26) for fixed Ay and ¢,
respectively. With log fairness, the optimal r,(:H), VEk, is (See equation (5.29)) [97]

; F Qassumed
) Wy
k

The optimal r,(:H), Vk, under max-min fairness can be computed under the necessary con-

dition >, Ay =1 [97] as

TI(;‘+1) _ (Z wik) : ch. (5.36)

k k
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With the weighted sum rate maximization as utility, the optimal Ay is obviously equal to
the weights. The gradient has to be subtracted from the previous solution, because the dual
optimization with respect to g, Vk, is a minimization. sE\ZH) > (0 is the step-size, which
can be selected according to the methods described in Section 3.5.3. In Algorithm 5.2, an
on demand step size reduction of d;l like in Algorithm 3.3 is assumed. The optimal non-
increasing order of the weights A; has to be maintained (See Section 3.4.2). As soon as
the weights are updated, it might be necessary to update the order as well. The weights,

transmit covariance matrices, and channels have to be reordered to assure
M > X > > X (5.37)

in every iteration.

The probabilities of a successful transmission are already included in the cost func-
tion (5.14) with the expectation operator. For conservative gambling and covariance shaping,
the success probability is always one during the optimization. The expected rate method
or loosened covariance shaping additionally need to optimize the success probabilities, with
respect to the assumed intercell interference variance. It is possible to integrate the update
of the intercell interference into the optimization at hand, finding all variable in a single loop.
But, the assumed intercell interference has to be optimized in the downlink and changes the
uplink problem. Switching between the uplink and the downlink is computationally cost
intense. Therefore, the optimization of the assumed intercell interference variances is done
in an outer loop, as described in Algorithm 4.3 and 4.7. These algorithms typically converge
in very few iterations with respect to the assumed intercell interference, which reduces the
necessary uplink-downlink transformations drastically.

Compared to fairness scheduling, the computational complexity of fairness beamforming
is higher. But, fairness beamforming can assure a fair allocation in less time slots. In
general, the fair allocation can only be assured with time sharing and, therefore, the fairness
can only be assured over multiple time slots. This is also the reason, why the algorithm does
not converge necessarily. But, the time average of the utility converges to the optimal point.

5.4 Simulation Results

In the following simulations, the single cell system model with random intercell interference
variance from Section 4.3 is utilized. The base station serves K = 4 single-antenna mobile
devices with N = 4 transmit antennas. In each realization, Ty, = 50 time slots are
simulated, during which the channel stays constant while the actual intercell interference
variance 07 Vk can be different in each time slot. The transmit power limit of the base
station is P = 14 W and the noise variance at each mobile device is 02 = 1.4x10712W.
The channels are generated according to the same parameters as described in Section 2.4.1.

The random actual intercell interference variances 62 Vk . are generated with a gamma
distribution 6y ~ I'(ag,by), Yk, where a; and by, are derived from the used channel model
(see Section 4.3) [30]. The statistics are individually derived for each mobile device, utility,
and intercell interference robustness method and they are assumed to be known to the
base station. Perfect channel estimation is assumed and the measurement of the signal to
interference plus noise ratio in the piloting phase is also assumed to be perfect. The optimal
back-off factor 5 in conservative gambling is optimized individually for each utility function
and it has always a value between 0.12 and 0.2.
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The cumulative distribution function of the mobile device rates are compared for different
combinations of intercell interference robustness methods and fairness scheduling criteria.
The expected rate, conservative gambling and covariance shaping methods are combined with
round robin (RR), sum rate (SR) maximization, throughput-fair (TF), and proportional-fair
(PF) scheduling. The shown rates 7y, Vk, are the achievable rates averaged over the time
block Ty, and come from all the mobile devices over multiple realizations. Curves with a
flat slope have a wider range of rates. A steeper slope can be regarded as more fair.

The highest rates can be reached with the combination of sum rate maximization and the
expected rate method. In the outage region r < 1, covariance shaping has always a much
steeper slope than the other robustness methods. With covariance shaping, the intercell
interference is always known and no mobile device drops to a rate of zero. The outage rates
are in general very small for all utilities and robustness methods because the plots are done
without HARQ.

In the simulations, the round robin scheduler picks two mobile devices for each slot.
The expected rate method has a higher throughput with round robin and the sum rate
maximization than conservative gambling and covariance shaping (See Figure 5.9). With
the expected rate method and conservative gambling, the probability that the rate of a
mobile device drops to zero is around 25 % with round robin and approaches almost 50 %
under the sum rate maximization. In comparison, the curve of covariance shaping is very
steep in the outage region and there is zero probability that a mobile device rate is zero,
which is the most fair.

The probability is zero because the rate with the worst case intercell interference variance
is used and the mobile devices can always decode the data. The intercell interference variance
used for covariance shaping with round robin is only a worst case assumption, because the
transmit covariance matrix is rank deficient. Only two mobile devices a served, but the base
station has four antennas. This is also the reason, why covariance shaping performs badly
with round robin. The actual intercell interference variance is in most cases smaller than the
worst case intercell interference variance, but the data is always transmitted with the worst
case rate.

The same argument is true for throughput fairness, where also only two mobile devices are
scheduled per time slot. The expected rate method performs the best with the throughput-
fair scheduler. Since the mobile devices are scheduled to have the same throughput in the
end and the mobile devices with bad channels are served very frequently, the three curves in
Figure 5.10 have very steep slopes. All three methods have probabilities close to zero for an
mobile device rate of zero. But, the curves of throughput fairness have a probability of one
for rates smaller than two bits per channel usage because the mobile devices with smallest
throughput are scheduled all the time.

Under the proportional fairness criterion, all mobile devices in the cell are served all
the time. Covariance shaping outperforms the other methods in achieving higher rates in
Figure 5.11. Proportional fairness finds a balance between fairness and sum throughput. On
the one hand, the figures show that almost all mobile devices can always receive some data.
With all three methods the probability for an mobile device rate of zero is very small. On
the other hand, the probability for high rates is still relatively high.

Figure 5.12 illustrates the effect of parameter 7 in log-fair (LF) beamforming combined
with conservative gambling as robustness method. « can take any value in the open range
(— min(wgry),o0). A smaller v results in a fairer utility, while a larger alpha gives more
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Figure 5.10. CDF of achieved rates with throughput fairness
resources to the mobile devices with good channels. In the extreme case, v = — min(wgry),

the log fairness converges to max-min and in the other extreme case, v = oo, it converges
to the sum rate maximization. The selection v = 0 leads to the proportional-fair allocation,
which is also achieved with the proportional-fair scheduler [130].

All different fairness scheduler are depicted in one plot with the expected rate method
in Figure 5.13. Tables 5.4 and 5.5 show the mean and median of the time averaged mobile
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Figure 5.12. CDF of conservative gambling and log fairness with different ~

device rates for all fairness scheduler and robustness method combinations. The third line
in the tables is the gain of the expected rate method compared to conservative gambling
and the fifth line is the gain of covariance shaping. The mean is optimized with the sum
rate maximization, while the median gives a better picture of the fairness among the mobile
device rates. The median can be found in the plots as the 50 % outage rate.
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The different cell sum utilities are compared for the different robustness approaches
in Table 5.6. The expectation operator in the utilities are approximated with the mean,
respectively. The maximum sum rate utility is K-times the mean achieved mobile device
rate (here four times) from Table 5.4. The max-min or throughput-fair utility is much smaller
than the rates in Tables 5.4 and 5.5. Although, the expected utility should always be larger
than zero, it might be zero in the simulations due to the limited scheduling slots, which can
also be seen in the figures with the cumulative distribution functions. As soon as one of
the mobile device rates in a cell drops to zero, the complete max-min utility drops to zero,
which cannot be seen in the mean or median. The proportional-fair utility is transformed,
it is used as exponent for the base of the natural logarithm, to improve the readability
of the table. Again, the expected rate method always outperforms conservative gambling.
Covariance shaping combined with proportional fairness has the best performance in the
complete picture.
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Figure 5.13. CDF of achieved rates with the expected rate method
scheduler sum rate round robin throughput-fair proportional-fair
gambling 1.269 0.837 0.373 0.741
expected 1.353 0.870 0.423 0.958
% gain 6.6 4.0 13.5 29.3
shaping 1.339 0.473 0.202 1.190
% gain 5.5 -43.5 -45.8 60.6

Table 5.4. Mean achieved mobile device rate in bits per channel usage
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scheduler sum rate round robin throughput-fair proportional-fair

gambling 0.205 0.410 0.281 0.377
expected 0.089 0.438 0.326 0.504
% gain -56.4 6.9 16.3 33.7
shaping 0.536 0.153 0.117 0.603
% gain 161 -62.7 -b8.4 59.9

Table 5.5. Median achieved mobile device rate in bits per channel usage

utility E [max > Tk} E [max mkin rk} exp (% E [max > log(rk)] )
k k

gambling 5.075 0.086 0.239
expected 5.412 0.100 0.315
% gain 6.6 15.9 31.7
shaping 5.357 0.035 0.384
% gain 5.5 -59.3 60.4

Table 5.6. Mean achieved cell sum utility

5.5 Conclusion

In this chapter, the implementation of the previously presented intercell interference ro-
bustness methods are discussed for different fairness utilities. In the first part, the fairness
utilities are approximated with a time slot scheduler. In the second part they are handled
with fairness beamforming. The time slot scheduler selects weights for a weighted sum rate
maximization in each slot, while fairness beamforming tries to find the utility maximizing
transmit covariance matrices in each time slot, respectively. Both approaches are strongly
related and lead to the same solution for the same utility. Throughput-fair scheduling and
max-min beamforming target the same utility, but the throughput-fair scheduler has to limit
the number of active mobile devices per slot and therefore deviates slightly from the util-
ity. Proportional-fair scheduling has the same utility as log-fair beamforming with o = 0.
Detailed algorithms are presented for implementing the considered problems.

The performance of the different utilities and robustness methods are compared with
plots of the cumulative distribution function of the mobile device rates. Additionally, the
expected utility and the mean and median of the mobile device rates are listed. It could be
seen that the transmit covariance matrices for max-min, round robin, and throughput-fair
scheduling can be rank deficient in many cases. If this is the case, the covariance shaping
method cannot use the complete transmit power and the intercell interference variance at
the mobile devices is only a worst case assumption. The performance of covariance shaping
suffers dramatically under these circumstances. In general, the performance under fairness
utilities greatly increases with the intercell interference robustness methods. Especially the
combination of covariance shaping with proportional fairness shows promising results.
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A1 Interference Visualization

The system utilized for simulations in a full cellular network can be seen in Figure Al.
There are 19 sites with 3 base stations each placed homogeneously in the network. Each
base station serves the mobile devices of the hexagonal shaped cell it covers. The wrap-
around method is used in order to have each cell experiencing interference from two rings of
sites around itself. The 57 base stations are copied, including their beamforming, and placed
six times around the central cluster. Each mobile device only sees the 57 base stations,
which are closest by Euclidean distance. In Figure A1, the central cluster is inked slightly
darker than the wrap-around clusters. The placement and orientation of the base stations
is indicated by small arrows. The numbers in the cells identify the cell and associated base
station uniquely. It can be seen, that the numbers are reused in the copied clusters.
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Figure Al. Cellular layout and cell numbering
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The simulations are based on the 3GPP MIMO urban macro cell channel model at a
center frequency of 2GHz. The distance between to neighboring sites is 500 m and the
minimum distance between a mobile device and a site is 25 m. Each base station is equipped
with N = 4 antennas and can serve multiple single antenna receivers at the same time. The
antennas are assumed as hypothetical isotropic radiators with a spacing of half a wavelength
(0.5X) between the antennas of the same array. The fading realizations of antennas of the
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same array are correlated in general. The channels can consist of line-of-sight and non-line-
of-sight paths with random angular spread and a delay spread of opg = 0.5 us. Orthogonal
frequency-division multiplexing is employed to acquire frequency-flat small-band channels.
The simulations are done in the downlink with a transmit power of P = 14 W and a thermal
noise variance of o7 = 1.4-107'* W at the receivers, which gives a transmit power over noise
power ratio of 140 dB. The blue colored region in the center of Figure A2 is the region, in
which a mobile device has in average the strongest channel to base station 1 according to the
channel model. The shape of the region is slightly different compared to the hexagonal layout.
In the simulations, the user association is based on the hexagonal layout nevertheless. This
can be justified with the hysteresis of the hand-over process between base station associations.

0 100 200 300 400
Figure A2. Cell boundaries

The dependency of the average channel quality on the position within the cell can be
seen in Figure A3. The SNR in the covered area is rather large on average, as can be seen in
Figure A3 (a). In this appendix, the SNR is calculated by multiplying the average channel
norm with the transmit power over receiver noise ratio. Mobile devices further away from
the base station experience a much smaller SNR than mobile devices close to the base station
due to the larger path-loss. The influence of the antenna pattern can also be seen. More
energy is directed into the cell than in other direction. This increases the SNR of the mobile
devices in the cell while reducing the interference caused in other cells.

The sum interference power of all base stations in the network over the thermal noise in
dB can be seen in Figure A3 (b) for the area of cell one. This sum interference is calculated
by summing up all the SNRs of the not serving base stations, which is the case in systems
with full frequency reuse. The interference is very strong in general. Mobile devices close to
the base station suffer from a very strong interference caused by the collocated base stations.
The interference is the smallest in the center of the cell and increases towards the far end of
the cell slightly.

The SINR and rate according to the combination of the previously described SNR and
sum interference power can be seen in Figure A3 (c¢) and A3 (d), respectively. Site vicinity
users have the best SINR and rate in general. The SINR and rate decrease dramatically
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over the covered area but much less than the SNR decreases solely due to path-loss. The
achievable rates at the far end of the cell are rather small.
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Figure A3. Position dependency of channel quality in cell one

A1.1 Mobile Device Classification

Based on the observations in the previous section, the mobile devices can be classified into
e cell center mobile devices,

e site edge mobile devices, and

e site vicinity mobile devices.

Different locations in the cell, which represent the different classes and are used in the
following simulations, are depicted in Figure A4 (a).

The remaining plots in Figure A4 show cumulative distribution functions of the SNR of
all base stations in the network to a mobile device positioned at the three different locations,
respectively. The here used SNR is calculated by multiplying the channel norm of the channel
between the base station and the mobile device with the transmit power to thermal noise
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power ratio. Therefore, this SNR is not necessarily the SNR of a serving base station but
any base station in the network. The curves associated with different base stations can be
distinguished with the numbers given in the legend of the plots. These numbers correspond
to the base station numbering in Figure A1. The SNRs of base station one and the six
surrounding base stations are colorized and marked, while the rest of the SNRs remain
unmarked.

The cumulative distribution functions for a mobile device located in the cell center can
be found in Figure A4 (b). The SNR of base station 1 is very strong and has a large gap
to the SNRs of the interfering base stations. The SNRs of the closest neighbors are almost
equally strong, there is no single strong interfering base station.
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Figure A4. Mobile device classification and SNR CDFs of all base stations
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The plot for the mobile device positioned at the site edge can be seen in Figure A4 (c).
The SNR of base station one is very strong, but the interfering base stations five and six,
which are located vis-a-vis of base station one, have a similar SNR. Therefore, these base
stations cause very strong interference. The gap to the rest of the interfering base stations
is small compared to the gap in the cell center location. The interference from the base
stations of the same site is negligible compared to the other interference.

A very different picture can be seen for the mobile device placed very close to the base
station (see Figure A4 (d)). The SNR of base station one is extremely strong and is only
followed by the also strong SNR of the two collocated base stations. These two base stations
will cause the largest potion of the interference at mobile devices located in this position.
The gap to the rest of the interference is extremely large.

A1.2 Frequency Reuse and Site Cooperation

The influence of frequency reuse with reuse factor three, one ring of neighboring base stations
transmits in a different frequency band, can be seen for the sum interference to noise ratio,
SINR, and rate in Figure A5 (a), (c), and (e), respectively. The rates are calculated with a
pre-log factor of a third, to include the effect of frequency reuse. The influence of network
MIMO site cooperation, where each site forms a cooperative cluster, is shown for the sum
interference to noise ratio, SINR, and rate in Figure A5 (b), (d), and (f), respectively. In
this scenario, the three base stations collocated at each site can be seen as a single base
station with three times the antennas and three times the transmit power, respectively. To
calculate the rates, the received power was scaled down by a third to respect the fact that
three times more mobile devices have to be served by the combined base station.

The sum intercell interference to noise ration is considerably smaller with both types
of interference mitigation compared to no interference mitigation in Figure A3 (b). Both
methods remove the interference from the collocated base stations completely. The inter-
ference is in general smaller with frequency reuse, as it removes the interference from all
neighboring base stations. Additionally, the intercell interference to noise ratio is almost
evenly distributed over the cell with frequency reuse. With site cooperation the sum inter-
ference to noise ratio increases towards the cell edge. The SINR is drastically larger with
both methods compared to no interference mitigation in Figure A3 (c). The SINR is more
evenly distributed over the cell with frequency reuse than with site cooperation.

Although the SINR is similar with both methods, there is a big difference in the rates.
The rates with frequency reuse are scaled down with a pre-log factor, while the SINR is
scaled down in the case of site cooperation. The rates with site cooperation are astonishingly
high, but neglect the cost for acquiring the additional channel state information. Frequency
reuse has no further implementation issue than splitting and separating the frequency bands
between the base stations. On closer inspection, it can also be seen that only the rates close
to the base station are high, while the rates towards the cell center and close to the cell edge
are rather small with site cooperation. Calculating the rates for site cooperation by simply
scaling down the transmit power can also be challenged. In both cases, the rates are higher
than with no interference mitigation in Figure A3 (d).
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A2 Pilot Contamination

In a cellular system, where pilot sequences are used to measure the channels, these pilot
sequences have to be reused by many devices. The interference caused by the simultaneous
transmission of the same pilot sequence from different antennas is called pilot contamina-
tion [56]. The different transmissions cannot be separated and a linear combination of the
different channels is measured. In a system with time division duplex, the channels are mea-
sured in the uplink. Mobile devices transmit pilot sequences and the base stations estimate
the channels. The gained information is then used by the base stations in the downlink to
optimize the transmit strategy. The transmission is optimized for the estimated channel
and, as this is a linear combination of a serving channel and multiple interference channels,
will produce more interference at mobile devices, which used the same pilot sequence.

In the following, it is assumed that all pilot sequences are transmitted in the same time
and frequency resources. The K mobile devices within a cell have to use orthogonal pilot
sequences, in order to have the associated base stations obtain meaningful estimates. A pilot
length of Ty = K+ L allows up to K + L orthogonal pilot sequences. Each base station can
measure the channels to its own K mobile devices and L interference channels, additionally.
Using all possible pilot sequences is always beneficial, as it allows to learn L interference
channels at each base station, respectively, and minimizes the pilot contamination.

With a common mobile device transmit power Pyp and the disjoint sets P, of all mobile
devices sharing the same pilot sequence with index p, the pilot contamination at base station
b for the received transmission from mobile device (b, k) can be found as

@pc,z';,b,k =PupTpitot Z th)j),,;, (A1)
(b,k)ePp\(b,k)
=Pup Thiot (Rh,i),p - Rh,B,b,k) ) (AQ)
where Ry = E [hl;’b’kh?b k] is the covariance matrix of channel hy,, and Ry;, =

Y. Ry ;;; is the sum of the covariance matrices of all channels from mobile devices
(b,k)ePy
using the pilot sequence with index p to base station b. As described in [107] and [131] for
the point-to-point and the broadcast channel, respectively, the measurement error due to
noise and interference during the piloting can be modeled as Gaussian noise for the data
transmission. With an MMSE estimator, the error covariance matrix due to contamination
is

_ -1\ 7!
Rpc,f),b,k = <Rh},757;€ + PMDjﬂPﬂOt (01271 + @pc,B,b,k) ) (A3)
o2 -
=R, i,x+ Rui —"I+RV)RV, A4
h,b,b,k h,b,b,k (PMDTpilot h,b,p h,b,b,k ( )

where o7 is the thermal noise.

Combined with the thermal noise, the channel state information outdating, and the
background interference, the noise at mobile device (b, k) described in Section 2.1 can be
extended to

P P
Opp =02+ 02 + 7 (Rocink) + > tr(Ryegpp) + Obs (A5)
Z)Gcb’k\b
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This still neglects the fact that the time division duplex measurements in the uplink and
used for the downlink will always contain a calibration error because the reciprocity is only
an idealized assumption.

In the following, different strategies for allocating pilot sequences to mobile devices with
respect to pilot contamination are discussed.

A2.1 Random Allocation

For the random pilot sequence allocation strategy, the pilot sequences are assigned to the
mobile devices based on their index. The base stations are randomly labeled with an index b
and the mobile devices associated to base station b are also randomly labeled with the index
k. The set of all mobile devices, which use the pilot sequence with index p is

Pt = {(b,k) : (k) e K,p= mod ((b— 1)K + k, Tyier) } , (A6)

where mod (a,b) = a —b[%]| + 1 is a slightly modified division algorithm. This assures
that all mobile devices within one cell use a different pilot sequence, as long as Tpie > K.
Therefore, each base station can acquire a contaminated estimate of the channels of the
associated mobile devices utilizing K of the pilot sequences. For each of the remaining
L pilot sequences, each base station can get an estimate of a linear combination of the
interference channels linking to mobile devices with the specific pilot sequence, respectively.

A2.2 Strongest Interferer Allocation

The upper bound in Section 2.4 reaches the highest rates, if the L known interference channels
at each base station are the channels over which the base stations would cause the strongest
decrease in rate, respectively. Finding these optimal interference channels is a problem, which
is very hard to tackle. Therefore, it is proposed to suboptimally choose the L interference
channels at each base station, which have the largest Euclidean norm, respectively.

To identify the channels a base station is supposed to measure, the set £, is created
for each base station, which contains the K mobile devices associated to the base station b
and the L mobile devices with the strongest interference channels linked to base station b,
respectively. The mobile devices in a set £, should use pilot sequences, which are orthog-
onal to each other. Otherwise, the base stations could not get meaningful estimates of the
channels. The goal is now to find the sets P,, which minimize the trace of the the sum of
all pilot contaminations, whereas each pilot sequence has to appear in each set Ly:

P} = i 35 (@000

{PrPro } beB (bb)es;

5.8, P, N Ly £ 0 Vp, b. (A7)

The different sets £, for the different base stations are overlapping. Therefore, it is not
always feasible to allocate the pilot sequences to the mobile devices in such a way, that in
every set L, the mobile devices use all different pilot sequences. To get an always feasible
optimization, the minimization (A7) is relaxed and different sets Pg’b’k of mobile devices using
the same pilot sequence are allowed for each channel estimation, respectively. Therefore,
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there are no unique sets P, any more and they have to be exchanged in equation (Al) with
Pg’b’k for each channel measurement.

bbk _ ] .
Pyt = argpmm tr (@pc,b’b’k)
P

s.t. P, N Ly # 0 Vb. (A8)

For each channel measurement, the optimization will generate a different pilot sequence
allocation. This is clearly not implementable, as the different pilot allocations may conflict
with each other. An mobile device may be assigned to multiple pilot sequences, which is not
possible.

A successive allocation algorithm is used to solve problem (A8) suboptimally. The pseu-
docode of the algorithm can be seen in Table A.3. The algorithm is initialized by setting
Pﬁ’b’k = {(b,k)}. In a random order, every set L; is visited and Pg’b’k N L; is checked. If the
sets have a non empty intersection, i.e., an mobile device in the set £ is already assigned to
the same pilot as mobile device (b, k), this set is skipped. Otherwise, all mobile devices in the
set L; are removed from the set £; because they have to use a different pilot sequence than
mobile device (b, k). In the remaining set £;\ £;, the mobile device with the weakest channel
linked to base station b is picked. If all mobile devices would be removed from previously
visited sets, the constraint Pg’b’k NL; # 0, Vb, might not be fulfilled.

Algorithm A.3 Strongest Interferer Allocation

Require:
1: for b € B do
2: for (b, k) € L; do
3: Pg’b’k «— {(bk)}
4: for b € B\ b do
5: if P2** N L; =0 then
6: Pg’b’k — Pg’b’k U argmin tr(R,;; ;)
(bk)eL;\L;
7: end if
8: end for
9: end for
10: end for

On the one hand, because the sets £, overlap, it is not always optimal to chose the mobile
devices with the weakest channel in the interfering sets. It might be better to chose a mobile
device with a stronger channel, which appears in multiple sets and, therefore, reduces the
number of mobile devices in the set Pfo”b’k . On the other hand, an implementable solution
would force to allocate the pilot sequences to the mobile devices without any conflicts and,
therefore, reduce the degrees of freedom. This approach is used to get an insight on the
benefit of an optimized pilot allocation, where each base station can measure the mobile
devices of its cell and the L strongest interferers.
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A3 List of Used Symbols

Symbol Element of Description
(o)aChieved achieved value
(o)acwal actual value during the transmission
(o assumed assumed value during the optimization
(.)CC Chase combining
(‘)co%} RS system with cooperation
(o)Hé Q hybrid automatic repeat request
(o)‘d scaled identity shaping constraint
(o)IR incremental redundancy
(®)1p log fairness
(o)hn linear constraint
(o), associated with update of Ay
(®)ynr max-min fairness
(o), associated with update of the noise covariance matrix
(®) 0co Ry system without cooperation
per ant .
(o) per antenna power constraint
(®)pp proportional fairness
(®)rr round robin
(o)Shape shaping constraint
(®)sr sum rate maximization
(), associated with update of the transmit covariance matrices
(®)pp throughput fairness
(o) ransmitted utilized value for the transmission
(‘)upper RS upper bound system, measured interference channels
disappear
(®),ici Ry all base stations transmit in the kernel of the measured
interference channels
0 all zeros matrix of appropriate size
0 empty set
o0 infinity
0 partial derivative
a, a; Ry downlink linear constraint value
al, al! CcN downlink linear constraint direction vector
A A CNxN downlink linear constraint matrix
b, l;, b, b B index of base station
(b, k), (b, k) K index of mobile device in set of all mobile devices
B N number of base stations
B set of base stations
B. B set of base stations with orthogonal pilots
BS, B serving base station b
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Symbol Element of Description
BS; B interfering base station b with measured channel
BS; B interfering base station b with not measured channel
3-108m/s speed of light in air (Chapter 2)
RS scaling factor of scaled identity matrix (Chapter 3)
Ck RS feasible rate of mobile device k
Cij C entry on the ith row and jth column of C
C R cardinality of B,
C, C CN*N downlink shaping constraint matrix
C constraint set for the downlink transmit covariance matrix
Co B set of base stations that measured the channel to mobile
device (b, k)
Cu constraint set for the uplink noise covariance matrices
C set of complex numbers
d N inverse projected gradient step-size
d differential operator
e {0, l}N Ith column of the identity matrix of appropriate size
E RS sum outdating error variance in each block
Ele] expectation
exp(e) ¢(®), where e is Euler’s number, base of the natural logarithm
f R frequency
f R frequency on the boundary of region with maximal
correlation for given number of symbols
fo RS reference frequency
fo RS maximum frequency distance to reference frequency
fe RS carrier frequency
fp RS maximum Doppler frequency
fx(z) probability density function of X at x
F(z), cumulative distribution function of X at x
FX ([L’)
aq R gradient of the uplink cost function with respect to the
Lagrangian multiplier of linear constraint [ projected onto
the tangent cone of the constraint set
i R associated unconstrained gradient
Gt e R gradient of the uplink cost function with respect to the
transmit variance of mobile device k£ (MU-SIMO)
G CN*N unconstrained gradient of the uplink cost function with
respect to the noise covariance matrix
G, CNxN gradient of the uplink cost function with respect to the
Lagrangian multiplier of constraint [ projected onto the
tangent cone of the constraint set
Gl CN*N associated unconstrained gradient
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Symbol Element of Description
G, CMxM gradient of the uplink cost function with respect to the
transmit covariance matrix of mobile device k projected onto
the tangent cone of the constraint set (MU-MIMO)
Gix CMxM associated unconstrained gradient (MU-MIMO)
hi R ith entry of AT
h* RIXN general, real valued MISO downlink channel
h;, CNx1 SIMO uplink channel of mobile device k
h}! CxN MISO downlink channel of mobile device k
Ry i cN channel between base station b and mobile device (b, k)
ﬁé,b,k CcHN associated channel estimate
H CMxN downlink channel of mobile device k
H]?ownlink
H,, CNxM uplink channel of mobile device k
H];lplink
H, CN*xM substituted uplink channel of mobile device k
1 N iteration counter
I identity matrix of appropriate size
Jo(e) first kind and zeroth order Bessel function
k, /%, ky, ko Ky, € index of mobile device associated with base station b or in
single cell network
(k,m) {(1,1),..., index of eigenvalue of all =,
(K, M)}
K N number of mobile devices per base station
K N number of mobile devices scheduled per time slot
K set of all mobile devices in the network
Ky K set of mobile devices associated with base station b
Ko K set of mobile devices with orthogonal pilots
KO K set of mobile devices scheduled in slot (t)
l {1, ..., L} index of constraint
L N number of measured interference channels per base station
(Chapter 2)
L N number of downlink constraints (Chapter 3 and 5)
L N number of positive w;
L, L(e) Lagrangian function
L set of indices associated with positive w;, w; that are zero
L set of indices associated with w; that are zero
Ly set of mobile devices to which base station b measured the
channel
m {1,..., M} index of eigenvalue of =y, E., Yk
M N number of antennas at each mobile device
M N number of positive eigenvalues of all =},
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Symbol Element of Description
MDy, K mobile device (b, k)
M set of indices associated with positive eigenvalues of all =},
modified division algorithm mod (a,b) =a —b[%| +1
mod (a, b)
n {1,...,N} index of eigenvalue of 2 (Chapter 3)
n N HARQ process index (Chapter 4)
ny cM downlink noise at mobile device k
N N number of antennas at each base station
N N number of positive eigenvalues of 2
N set of indices associated with positive eigenvalues of 2
N set of natural numbers including zero
P RS preconditioning factor of the projected gradient update
(Chapter 3)
P N index of pilot sequence (Appendix A2)
P RS sum transmit power
P Ry transmit power of antenna [
Pup RS mobile device transmit power
P(e) probability mass function
Py, Pg’b’k set of mobile devices using the same pilot sequence p
Qe RS SIMO uplink transmit variance of mobile device k
Qk RS unconstrained update of transmit variance
Q. RS temporary projected update of transmit variance
ij C entry on the ¢th row and jth column of Q
Q, Q, CNxN downlink sum transmit covariance matrix
Qr, Qv i CNxN downlink transmit covariance matrix for a mobile device
Qy, Qyr  CN-XN-L  transmit covariance matrices in kernel of measured
interference channels
Q, Q. CNxN substituted downlink transmit covariance matrices
Qs R2%2 diagonal downlink sum transmit covariance matrix
Qre R2x2 real valued downlink sum transmit covariance matrix
T, Tk, Thk RS rate of mobile device in bits per channel usage
Tk RS average rate in one block in bits per channel usage
pownlink RS downlink rate of mobile device k in bits per channel usage
r};phnk RS uplink rate of mobile device k in bits per channel usage
R rate vector in bits per channel usage
r* RS“K optimal rate vector
Ry, RS historical average rate in bits per channel
Ry ik CNxN covariance matrix of channel hy,
R, CNxN sum covariance matrix of channels from mobile devices with
pilot p to base station b
R, ivk CNxN contamination error covariance matrix of channel hy, ,
R rate region
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Symbol Element of Description
R set, of rational numbers
Ry set of non-negative rational numbers
R set of positive rational numbers
s RS projected gradient step-size
Sk CMxM Lagrangian multiplier for the positive-semidefinite constraint
on =y,
S, CN*N Lagrangian multiplier for the positive-semidefinite constraint
on 2
t R time (Capter 2)
t T index of union of all eigenvalues A\ and w; (Chapter 3)
t {1,...,7} HARQ transmission index (Chapter 4)
t, T {1,.., slot index (Chapter 5)
Thock }
t R time on the boundary of region with maximal correlation for
given number of symbols
to R reference time
to R maximum time distance to reference time
T N maximal number of transmissions in an HARQ process
Ty {1,...,T} actual number of transmissions required in an HARQ process
Tona N length of second pilot
Thlock N total number of symbols available in each block
Tehan FB N number of symbols for channel feedback in each block
Taata N number of symbols for data transmission in each block
Tpr, pilots N length of downlink pilot
Thitot N length of piloting sequence
TSINR FB N number of symbols for SINR feedback in each block
TUL pilots N length of uplink pilot
T CN*N_ Z,  Lagrangian multiplier for the subspace constraint on £2;
T set of indices unifying all eigenvalues 5\1,? and w;
T union of A" and £
U, Ule) monotonic utility function
U Ry specific utility value
U, CM*xM modal matrix of =y, =,
v RS common mobile device speed in km/h
v CcwN uplink sum receive signal
Vi CN*xN-L kernel of measured interference channels at base station b
wy, Ry weighted sum rate weight
W,(V,n) Wishart distribution of size p with n degrees of freedom and
shaping matrix V
Ti, T C 1th and jth element of x
T CcwN downlink sum transmit signal
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Symbol Element of Description
T CcN downlink transmit signal for mobile device k
Yk cM downlink receive signal at mobile device k
Z, 7, Z, Z downlink conic constraint apex shifting matrix
Z, Z downlink conic constraint subspace of feasible apex shifting
zt zZt orthogonal subspace to Z, Z;
a Ry scaling variable for interference temperatures (Chapter 2)
Q [1, 00[ loosened covariance shaping loosening factor (Chapter 4)
Qg RS difference weight in the weighted sum rate of summand &
a, B RS variables selecting type of fairness in fairness scheduling
(Chapter 5)
I6] 0,1] backoff factor for conservative gambling (Chapter 4)
Bk 0,1] backoff factor for mobile device k of conservative gambling
with individual backoff factors
¥ RS intercell interference limit / interference temperature
(Chapter 2)
Vi RS SINR of mobile device k (Chapter 4)
vy R variable selecting type of fairness with log fairness
(Chapter 5)
Vob i RS interference temperature for base station b at mobile device
(b, k)
I'(ag, by), gamma distribution with shape parameter ay, a;j and scale
I'(ap, box) parameter by, by
€ RS sufficient accuracy in the algorithms
€ RS feasible step size in the tangent cone projection (Chapter 3)
€ RS vanishing variable of a numerical gradient (Chapter 4)
€ RS vanishing variable used in log fairness (Chapter 5)
O, Ob Rf{ intercell interference variance
Ok Ry intercell interference variance summand at mobile device
(b, k) caused by base station b
Obe RS out-of-cluster intercell interference variance
Oblind.b i R(J{ intercell interference variance over not measured channels at
mobile device (b, k)
0 max Rf{ maximal intercell interference variance in the system
O,k CNxN pilot contamination of channel hg ;.
A RS wave length
Ak RS Lagrangian multiplier for the constraint r, < ¢
Neoms ka RS mth eigenvalues of =y, =
A, A RMxM diagonal matrix with eigenvalues of 5y, =
1 RS Lagrangian multiplier of the sum power/trace constraint
v R Lagrangian multiplier of sum constraint in tangent cone

projection
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Symbol Element of Description
v CcN uplink noise
£ RS signaling efficiency
ft RS union of all eigenvalues ;\;f and Lagrangian multipliers @,
& cM uplink transmit signal of mobile device k
=) CMxM uplink transmit covariance matrix of mobile device k
=, CMxM unconstrained update of transmit covariance matrix
=, CMxM temporary projected update of transmit covariance matrix
17 mobile device order in the weighted sum rate
p(t, f) R correlation coefficient between channel at (tg, fo) and
outdated channel at (to + ¢, fo + f)
p(e) boundary of region with maximal correlation for given
number of symbols
i RS sum noise variance at mobile device (b, k)
0Ds RS root mean square delay spread
o?(t,f) RS normalized channel state outdating error variance between
channel at (o, fo) and outdated channel at (to + t, fo + f)
o2 RS mean normalized channel state outdating error variance
o) Ry thermal noise variance
T2 bk Ry sum channel state information outdating error variance at
mobile device (b, k)
D, P(e) uplink cost function
wy RS Lagrangian multiplier of downlink linear constraint
) RS unconstrained update of the Lagrangian multiplier
0 CN*N_ zZL  uplink noise covariance matrix
2, CN*N_ Z&  Lagrangian multiplier of the /th downlink conic constraint
2 CN*N unconstrained update of Lagrangian multiplier
2, CNxN temporary projected update of Lagrangian multiplier
Py RS union of ¢ and all q;
U, U(e) downlink cost function

A4 List of Used Acronyms

Acronym Description
3GPP 3rd Generation Partnership Project telecommunications
associations collaboration
ARQ automatic repeat request
BC2MAC downlink-uplink transformation of the transmit covariance
matrices (Section 3.4.5)
BS base station
CC Chase combining

CDF

cumulative distribution function
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Acronym Description
CoMP cooperative multi-point
CSI channel state information
DL downlink
DS delay spread
FB feedback
FDD frequency division duplex
HARQ hybrid automatic repeat request
HARQ-CC hybrid automatic repeat request with Chase combining
HARQ-IR hybrid automatic repeat request with incremental redundancy
IR incremental redundancy
LB NC lower bound without cooperation
LB ZF lower bound with zero forcing of the intercell interference
LF log fairness
LTE Long-Term Evolution wireless communication standard
MAC2BC recovery of the downlink transmit covariance matrices
(Section 3.4.5)
Max-SINR maximal signal-to-interference-plus-noise-ratio as cost function
MD mobile device
MIMO multiple-input and multiple-output
MM max-min fairness
MMSE minimum mean square error
MU-MIMO multi-user multiple-input and multiple-output
NoiseCovStep projected gradient update of the noise covariance matrix
(Section 3.5.2)
OptRates select rates in fairness beamforming algorithm (Section 5.3.3)
PF proportional fairness
RobustSR intercell interference robust sum rate maximization (Chapter 4)
RR round robin
SINR signal-to-interference-plus-noise-ratio
SNR signal-to-noise-ratio
SR sum rate maximization
TDD time division duplex
TF throughput fairness
TransCovStep projected gradient update of the transmit covariance matrices
(Section 3.5.1)
UL uplink
ULRates calculate uplink rates (Section 3.4.1)
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