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Abstract

This thesis develops a new approximation method for the transfer operator of a mo-
mentum–averaged Langevin equation. This transfer operator can be used to detect
metastable sets and thus occurs in classical molecular conformation dynamics. It
is shown to possess a generator-like analytic structure despite not forming a time–
semigroup. This is exploited to discretize the operator without the computationally
expensive time–integration and momentum–averaging steps of established methods.
The performance of the new method is evaluated both analytically and by numerical
examples.

Zusammenfassung

Diese Arbeit entwickelt ein neues Approximationsverfahren für den Transferopera-
tor einer impulsgemittelten Langevin–Gleichung. Dieser Transferoperator kann zum
Auffinden metastabilier Mengen verwendet werden, weshalb er in der klassischen
molekularen Konformationsdynamik vorkommt. Ihm wird eine generator–artige an-
alytische Struktur nachgewiesen, obwohl er keine Zeit-Halbgruppe bildet. Dies wird
benutzt um den Operator ohne die rechnerisch aufwendigen Zeitintegrations- und Im-
pulsmittelungsschritte etablierter Methoden zu diskretisieren. Die Leistung der neuen
Methode wird analytisch und anhand von numerischen Beispielen bewertet.
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Introduction

Motivation. Transitions between metastable states of dynamical processes are an
often–observed and important phenomenon in a great number of chemical disciplines,
most prominently in the field of molecular conformation dynamics. While the micro-
scopic state of a bonded molecule is described by its configuration, i.e. the atoms’
positions relative to each other, a conformation is the molecule’s global state or shape
that is largely conserved under small-scale atom vibrations.

The macroscopic properties that a molecular system exhibits are often greatly influ-
enced by the conformation it currently resides in. An example for a small molecule is
1,2-dichloroethylene, whose boiling point changes from 333.5 ◦K for the cis isomer to
320.7 ◦K for the trans isomer [32]. This phenomenon can be explained by the differing
polarity of the two isomers, resulting from the conformational alignment of the two
chlorine atoms. In molecular biochemistry, the most prominent example for a system
undergoing conformational transitions is the multi–step folding process of polypep-
tide chains into their biologically functional protein form. The knowledge about the
intermediate steps (the folding pathway), the transition rates between them and the sta-
bility of the end product is of use in countless applications in the biological, chemical
and pharmaceutical sciences [18, 83, 23, 52, 49], and motivates the development of
efficient and robust computational methods for analyzing metastable processes.

Rare event dynamics. Classical molecular dynamics can be modeled as a Hamilto-
nian mechanical system, i.e. an ordinary differential equation describing the change
of the molecule’s configuration and of its momenta. However, it is physically sound1

(and computationally useful) to consider a stochastically perturbed Hamiltonian model.
A common model is the Langevin dynamics, modeled by a stochastic differential equa-
tion. The evolution of the configuration can then be viewed as a randomly perturbed
path on the potential energy surface (PES). Metastable conformations then correspond
to the (main) minima of the PES, and conformational changes correspond to the over-
coming of potential energy barriers.

To illustrate this, consider a butane molecule, whose three conformations can be de-
scribed by the dihedral angle around the central carbon-carbon bond (Figure 0.1). For

1Stochastic perturbations can mimic collisions of the molecule of interest with solvent particles without
having to explicitly model them. This can serve to equilibrate the system’s internal energy around a
given target temperature. This procedure is known as thermostated molecular dynamics.
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Figure 0.1.: Left: The potential energy landscape of n-butane, projected onto the cen-
tral dihedral angle. The metastable conformations can be seen as the sub-
sets of the configuration space around the minima. Right: The molecular
configuration at the minima of the conformations A and B, distinguished
by the central dihedral angle. The molecular data was obtained from [27,
Chapter 5.2], [4].

a transition from the central trans conformation B to the gauche transformation A, an
energy barrier ∆V ≈ 12.35mJ/mol has to be overcome. As a first quantifier of the
overall metastability of a conformation, the escape rate k can be calculated by the Van’t
Hoff-Arrehius law [29] to

k = ν exp(−β∆V) ,

where β = 1/(kBT) is the inverse temperature, with kB Boltzmann’s constant, and ν is
a constant prefactor. The escape rate decays exponentially in the height of the energy
barrier ∆V.

Conformational changes across high energy barriers can therefore be considered as
rare events. In big molecules like proteins, the major transitions take place on time
scales typically ranging from micro- to milliseconds, while the basic frequencies, such
as bond vibrations, are in the order of femtoseconds. A direct numerical simulation of
these events by integrating the Langevin equations of motion would thus have to span
9 to 12 orders of magnitude relative to the basic time scale, a task infeasible for all but
the most specialized [68] of today’s high-performance computers.

It is therefore highly desirable to avoid microscopic simulations, and still obtain an
adequate insight into a system’s large–scale and long–time behavior. Thus, beyond es-
tablished model–reduction techniques2, much effort has recently been put into build-

2For example, using averaging techniques from the Mori–Zwanzig formalism to eliminate the fastest
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ing reduced-order models on the level of the conformations [7, 8, 33, 53, 58, 63, 78].
However, to effectively build those Markov state models, the conformations and their
transition rates have to be known beforehand. As identifying them by analyzing a
long-time microscopic numerical simulation would run counter to the reduced–order
modeling idea, alternative methods have to be used.

Transfer operator–based metastability analysis. In their seminal works, Deufl-
hard, Dellnitz and coworkers [13, 62, 12] exploited that metastable structures in dy-
namical systems can be identified via the eigenfunctions of the system’s transfer op-
erator Pt. This time-parametrized family of linear operators is the push–forward for
densities under the dynamics.

To compute its eigenfunctions, Pt is commonly discretized by a stochastic matrix,
whose elements contain the transition probabilities from some subset of state space
to another. The transition probabilities in turn are computed using many relatively
short numerical trajectories that were sampled over the domain of the flow. While
it seems that we have only replaced the long–time simulation by multiple short–time
simulations, the transfer operator approach is advantageous. It offers a systematic
and robust way to map the flow on the whole state space, as opposed to only the
high–probability regions visited by a single long trajectory. Moreover, the number of
sampling points can be often kept low [77, 39], and their numerical integration is easy
to parallelize.

For molecular Langevin systems, a state consists of both position and momentum
parts. Yet, metastable conformations are a feature of position space only. One way
to model molecular dynamics on position space only is via the Smoluchowski dynam-
ics3 [69, 40]. It is comparable to the Langevin dynamics only in a high–friction and
time–rescaled limit (the Kramers–Smoluchowski limit), which makes it initially unclear
whether it accurately models conformation dynamics, in particular the transition rates.
Schütte [61] thus introduced the spatial dynamics (or Langevin dynamics with randomized
momenta), and with it the spatial transfer operator St which propagates positional densi-
ties in a physically justifiable manner. It can be seen as a momentum-averaged version
of the full transfer operator. Unfortunately, when computing the spatial transition
probabilities in order to discretize St, the momentum averaging has to be performed
explicitly, which increases computational cost.

Simulation-free and generator-based methods. Analyzing the transfer operator
instead of long–time trajectories can be seen as stepping away from single–system
dynamics and towards solving the underlying density transport equations. Lately,
techniques have been proposed that complete this step, by working directly with the

degrees of freedom [19] or considering course-grained molecular models [51].
3It is also known as overdamped Langevin dynamics, Brownian dynamics or Kramer’s equation.
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transport equations [25, 39, 78], albeit only for a special class of dynamical systems. If
the system exhibits the Markov property and other regularity conditions, the system’s
density transport can be described by an abstract Cauchy problem of the form ∂t f =

L f . The operator L is called the infinitesimal generator, and is a linear partial differential
operator. L is deeply connected to the transfer operator (it can be seen as the formal
time derivative of Pt), and their eigenfunctions coincide.

This last property can again be exploited for metastability analysis. Analyzing the
generator is advantageous, as its discretization requires no numerical trajectory inte-
gration. Also, spectral collocation methods can be used for the discretization, which
converge with spectral accuracy under further regularity assumptions.

Unfortunately, Schütte’s spatially projected dynamics does not exhibit the Markov
property; its transport equations cannot even be set up in a momentum–free form.
Clearly, the generator approach is not applicable here.

This thesis. The main goal of this thesis is to extend the efficient generator-based
methods to spatial dynamics in order to

1. avoid numerical trajectory integration,

2. eliminate explicit momentum averaging.

The central idea is that, formally, (higher) time-derivatives of the spatial transfer op-
erator can still be defined. We hypothesized that these pseudogenerators contain the
relevant information about the density transport to perform metastability analysis.

In the present work, this hypothesis is thoroughly tested and both analytically and nu-
merically confirmed. We develop a Taylor–like approximation scheme that accurately
restores the eigenfunctions and the spectrum of the spatial transfer operator St for
small lag times t. We give asymptotic error estimates and validate them numerically.

We show that the pseudogenerators up to order 3 exhibit a very simple and regular
structure that is accessible for collocation methods. This structure is largely retained
under the projection onto one–dimensional reaction coordinates. This represents a po-
tential tool for further model reduction and is an important step towards the applica-
tion to chemically relevant high–dimensional systems.

Moreover, we found a surprising and previously unknown connection to the generator
of the aforementioned Smoluchowski dynamics. This connection is independent of the
damping. This provides new insights into the approximation quality of Smoluchowski
dynamics to spatially projected Langevin dynamics in the low–damping setting.

While we demonstrate the efficacy of pseudogenerator–based methods for identifying
spatial metastable sets and their short–time degree of metastability, the conformation-
ally important long–time transition rates could not yet be reconstructed. There are,
however, advancements in that regard: for increasing lag times spatial dynamics is
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observed to converge to a Markov process. We discuss first results on the analysis of
this limiting process.

Outline. This thesis is organized as follows:

Chapter 1 introduces the dynamical systems used for modeling molecular dynamics,
with a special focus on different coordinate descriptions for molecular degrees of
freedom.

Chapter 2 provides the operator theoretical framework of density dynamics. The (spa-
tial) transfer operators are introduced, as well as the density transport equa-
tions and infinitesimal generators. Finally, we describe established numerical
discretization schemes, including the collocation method.

Chapter 3 introduces the concept of pseudogenerators of spatial transfer operators.
After the definition and the derivation of some basic properties, we derive an
explicit coordinate expression for the first three pseudogenerators. We draw the
connection to Smoluchowski dynamics and interpret our findings. Also the pro-
jection of pseudogenerators onto one-dimensional reaction coordinates is pre-
sented.

Chapter 4 presents the development of pseudogenerator-based approximation schemes
for the spatial transfer operator and discusses their asymptotic error estimates.
The chapter concludes with numerical examples that demonstrate the usefulness
of the approximation schemes for short–time metastability analysis.

Chapter 5 evaluates the approximation quality for the reconstruction methods for ex-
tended time scales. Also, the long–term limit of the spatial dynamics is explored.

Chapter 6 contains the conclusions and discusses possible future work.

Two appendices are given:

Appendix A presents the proof of self–adjointness of the spatial transfer operator,
as well as a formal derivation of Smoluchowski dynamics from high–friction
Langevin dynamics.

Appendix B contains technical vector–analytic proofs regarding the coordinate ex-
pression of pseudogenerators. Also, for the special case of a one–dimensional
position space, we present code for a computer–assisted automated derivation of
the first three pseudogenerators.

Contributions. A large part of the work presented in this thesis has been developed
in cooperation with coworkers, and is already published [6, 5]. Of the main Chapters 3,
4 and 5, the results from Sections 3.1, 3.2 (and the attached Appendix B), 4.1, 4.2 and
5.2 can be attributed primarily to the author.
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1. Classical molecular dynamics

1.1. Representation of molecules

When speaking of a molecule, we mean a collection of n atomic particles in R3, whose
movement is governed by laws derived from classical Hamiltonian mechanics. The
particles may be individual atoms, atomic groups according to a united-atom model
[43] or even whole chemical functional groups that stem from coarse-grained molecu-
lar mechanics [51]. In any case we see these particles as zero-dimensional point masses
and simply call them atoms from now on. The mass of the i-th atom is denoted by mi.

Cartesian coordinates. The most straight-forward description of a molecular con-
figuration is as a point q = (q1, . . . , qn)ᵀ ∈ Q = R3n, with qi ∈ Qi = R3 the position
of the i-th atom. Note that we do not impose any explicit bounds on the positions. We
refer to Q as the Cartesian position space.

Generalized coordinates. We will, however, define our various dynamical systems
on more general coordinate spaces. They are motivated by internal coordinate repre-
sentation, which is frequently used in computational chemistry. A more comprehen-
sive description can be found in molecular simulation and computational chemistry
literature, for example [27, 11].

In internal, intrinsic or inner coordinates, the atoms’ positions are described relative to
one another via the use of bond lengths, valence angles and torsion angles, accordingly
also called the BAT-representation.

• The bond lengths rij ∈ R+ are the euclidean distances between two bonded
atoms qi and qj.

• Given three atoms qi, qj, qk bonded in sequence, the valence angle ϕijk ∈ [0, π)

describes the angle between the two bond vectors (qi − qj) and (qk − qj).

• Given four atoms qi, qj, qk, ql bonded in sequence, the torsion (or dihedral) angle
ψijkl ∈ [0, 2π) is the angle between the two bond vectors (qi − qj) and (ql − qk)

projected into the plane orthogonal to (qk − qj).

A geometric illustration of the internal coordinates can be seen in Figure 1.1.
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Figure 1.1.: Illustration of the degrees of freedom of inner coordinates: bond lengths,
valence angles and torsion angles.

It can easily be seen that at most 3n− 6 internal coordinates are necessary to provide a
complete description of a molecule’s internal configuration. Also, it is clear that from
a given set of Cartesian coordinates, the BAT-representation can be computed1 and
the conversion is smooth, i.e. a C∞ map. However the reverse is not true; there is
no single set of Cartesian coordinates corresponding to a set of internal coordinates,
as the latter retains no information about the absolute position and orientation of the
overall molecule in three-dimensional space.

Meaningful molecular dynamics in internal coordinates still can be performed, albeit
due to the “lack of information”, certain restrictions have to be imposed on the orig-
inal Cartesian molecular system. For example, Koltai in [39] worked with molecular
systems in inner coordinates with zero translational and rotational momentum, and
encoded this restriction in a transformed mass matrix. A systematic approach would
lead to discussing molecular dynamics under holomorphic constraints [2], thus lead-
ing into the field of classical mechanics on Riemannian manifolds [1].

Alternatively, one could to complement the internal coordinates with information
about the overall position and orientation, in such a way that the conversion to Carte-
sian coordinates is possible and smooth, for example by means of the center of mass
and the mass variance, or with the global positions of certain “reference atoms”.

Thus, with internal coordinates in mind, but not restricted to them, we broaden our
notion of what a valid representation of a molecule looks like. For d ∈N+ let Q ⊂ Rd

be a Lipschitz domain with respect to the Euclidean norm. We call Q the generalized
position space, and any point q ∈ Q a (generalized) position coordinate.

Remark. We still work under the assumption that the generalized coordinates are
somehow derived from Cartesian coordinates, and thus still speak of a “molecular
system”. Also, for the important special case of Q being the pre–image of Q under a
diffeomorphism Φ, i.e. Q = Φ(Q), we will see in Section 1.2.3 how to explicitly derive

1For the specific maps to convert Cartesian to inner coordinates, see [11].
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1.2. Dynamical models

the coordinate expressions for our dynamical models in generalized coordinates.

1.2. Dynamical models

So far, we only had a static description of the molecular system. In order to make the
molecule move, we need to introduce time-dependency of the positions, and with it
the useful concepts of velocity, momentum and generally what is known as molecular
dynamics.

1.2.1. General Itô dynamics

Broadly speaking, we will be studying continuous time stochastic dynamical systems
on a phase space X ⊂ Rd. They are described by time–parametrized random variables
xt , t ≥ 0 that take values in X . For most of the systems relevant for us, the evolution
of xt over time is governed by a stochastic differential equation (SDE) of the form

dxt

dt
= b(xt) + σ(xt)wt , (1.1)

Here b : X → Rd will be called the drift coefficient and σ : X → Rd×d the diffusion
coefficient or -matrix, and we assume b and σ to be Lipschitz-continuous. The symbol wt

denotes a Rd-valued, zero-mean uncorrelated Gaussian “white noise” process, that can
be formally seen as the (generalized) derivative of the standard Brownian motion Bs.
Under these conditions, the SDE is called Itô diffusion equation.

As a stochastic differential equation, (1.1) has to be interpreted in the context of Itô
integrals, which are thoroughly covered in [50]. As a short primer, the solution of (1.1)
is the stochastic process

xt = x0 +
∫ t

0
b(xs) ds +

∫ t

0
σ(xs) dBs ,

where the stochastic part is induced by the underlined Itô integral with respect to the
Brownian motion process Bs.

We will begin to discuss molecular dynamics in a purely stochastic context very soon,
but still briefly require the notion of a deterministic dynamical system. It arises as a
special case from (1.1), when setting

dxt

dt
= b(xt) , (1.2)

and the solving stochastic process {xt}t≥0 can be interpreted as a deterministic trajec-
tory in X . We will use this “overloaded” notation in the following without further
comment.
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Chapter 1. Classical molecular dynamics

1.2.2. Hamilton dynamics

Potential energy. Molecular dynamics is now induced by quantum-mechanical in-
teractions between the atoms. These position-dependent forces are combined into
the force field F : Q → Rd, which in our case is the negative gradient of a potential
V : Q → R:

F(q) = −∇V(q) .

The potential energy terms often can be expressed as functions in internal coordinates
or in the atoms’ distances [11, Section 2.2]. However, as we work in generalized and
not necessarily internal coordinates, we do not want to dictate the specific shape of
V, but only demand that V is at least twice continuously differentiable, polynomially
growing at infinity and bounded from below. We will impose further restrictions on V
if the need arises.

Equations of motion. The most basic law to describe the movement of the dynami-
cal system is now given by the (deterministic) ordinary differential equation

M(qt) ·
d2

dt2 qt = F(qt) , (1.3)

where M : Q → Rd×d is the mass matrix, from now on assumed to be symmetric and
positive-definite. Introducing pt := M(qt)q̇t ∈ Rd as the system’s momenta, and the
Hamiltonian

H(q, p) := V(q) +
1
2

pᵀM−1(q)p , (1.4)

equation (1.3) can be written as

dqt

dt
= ∇pH(qt, pt) ,

dpt

dt
= −∇qH(qt, pt) .

(1.5)

This defines a dynamical system on Ω := Q×P (called the (generalized) phase space),
with P := Rd the (generalized) momentum space. In (1.4), V is also called potential energy
and Ekin(q, p) := 1

2 pᵀM−1(q)p is called kinetic energy, giving the Hamiltonian H(q, p)
the interpretation of the total energy.

Coordinate transformations. We now discuss the special case where generalized
coordinates are the result of a coordinate transformation from Cartesian coordinates:
q := Φ−1q, with Φ : Q → Q a C3-diffeomorphism. The purpose of these detailed
formulations is to retain the connection to the original atomic description, which in
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1.2. Dynamical models

particular provides the atoms’ masses, while the potential energy is often given as a
function in generalized coordinates.

To write the Hamilton ODE (1.3) in the new generalized coordinate system, the Carte-
sian potential V and mass matrix M have to be converted accordingly. By the principle
of objectivity, we demand the potential and kinetic energy to be independent under
coordinate transformation. The new potential V(q) := V

(
Φ(q)

)
obviously fulfills that

requirement.

The mass matrix in Cartesian coordinates consists of the physical masses of the atoms,

M :=




M1
. . .

Mn


 , where Mi :=




mi
mi

mi


 .

For Ekin to be independent under coordinate transformation, we demand

pᵀt M−1(qt)pt
!
= pᵀ

t M−1pt . (1.6)

We have q̇t = d
dt Φ(qt) = ∇Φ(qt) · q̇t, and thus the right hand side of (1.6) can be

written as

= pᵀt M−1(qt)
(
∇Φ(qt)

ᵀM∇Φ(qt)
)

M−1(qt)pt .

By setting M(q) := ∇Φ(q)ᵀM∇Φ(q), the two sides coincide and we have an expres-
sion for the generalized mass matrix. Clearly M(q) is symmetric and positive definite,
if mi > 0 for all i.

In addition, this defines a momentum conversion map, analogous to the position con-
version map Φ−1:

pt = Mq̇t = M · d
dt

Φ(qt)

= M∇Φ
(
Φ−1(qt)

)
M−1(Φ−1(qt)

)
pt .

Multiplying from left by ∇Φ
(
Φ−1(qt)

)ᵀ gives

∇Φ
(
Φ−1(qt)

)ᵀpt = ∇Φ
(
Φ−1(qt)

)ᵀM∇Φ
(
Φ−1(qt)

)
︸ ︷︷ ︸

=M
(

Φ−1(qt)
)

M−1(Φ−1(qt)
)

pt

= pt .

Thus, a given set (q, p) of Cartesian coordinates can be converted to generalized coor-
dinates via

Ψ : (q, p) 7→
(
Φ−1(q),∇Φ

(
Φ−1(q)

)ᵀp
)
=: (q, p) . (1.7)

In a differential geometric interpretation, this is the pullback between Q and Q (inter-
preted as manifolds). Note that as Φ is a C3-diffeomorphism, Ψ ∈ C2(Ω, Ω).
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Chapter 1. Classical molecular dynamics

1.2.3. Langevin dynamics

Hamiltonian dynamics describe the motion of a molecule in vacuum, without any
external influence. Of more physical interest, however, are systems which are stochas-
tically coupled to their surroundings, physically motivated by the presence of a heat
bath or implicit solvent not modeled explicitly. A prominent way of doing this is via a
stochastic perturbation of (1.5), known as the Langevin equations of motion [41, 66, 74].
In generalized coordinates, the system is described by the following SDE:

d
dt

qt = ∇pH(qt, pt)

d
dt

pt = −∇qH(qt, pt)− γ(qt)∇pH(qt, pt) + σ(qt)wt .
(1.8)

Here, γ : Q → Rd×d is called the friction or damping matrix, σ : Q → Rd×d is called
the noise matrix, and wt is a white noise process on P . We demand γ and σ to be
symmetric positive definite with uniformly bounded inverse.

In (1.8), γ mimics the drag of (not explicitly modeled) solvent atoms on the molecule’s
degrees of freedom q, thus decreasing its acceleration. Likewise, the term σwt stands
for random collisions with said solvent, causing random Brownian fluctuations in the
momentum variable p.

The interplay of γ and σ is what determines the stochastic system’s average internal
energy. Setting β := 1/(kBT), with kB the Boltzmann constant, in order for the system
to remain at constant temperature T, γ and σ have to fulfill

2γ(q) = βσ(q)σ(q)ᵀ for all q ∈ Q . (1.9)

Equation (1.9) is called the fluctuation-dissipation relation, and we demand γ and σ to
fulfill it for all our systems.

Equation (1.8) is an Itô SDE on Ω and can be brought to the general form (1.1) by
setting xt := (qt, pt) and

b(qt, pt) =

( ∇pH(qt, qt)

−∇qH(qt, pt)− γ(qt)∇pH(qt, pt)

)
, Σ(qt, pt) =

(
0 0
0 σ(qt)

)
, (1.10)

where 0 in Σ is the d-dimensional zero matrix.

As mentioned in the introduction, the Langevin system can be formally derived from
a larger deterministic Hamiltonian system that explicitly models the solvent degrees
of freedom. This is done via averaging and homogenization techniques, also known as
the Mori-Zwanzig formalism (see e.g. [55]). However, we omit a rigorous derivation
of (1.8) and settle for the intuitive friction/noise interpretation instead.
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1.2. Dynamical models

Coordinate transformation. In Cartesian coordinates, the Langevin SDE reads

d
dt

qt = M−1pt

d
dt

pt = −∇qV(qt)− γM−1pt + σwt ,
(1.11)

where now γ,σ > 0 are real numbers fulfilling 2γ = βσ2, and wt is a white noise
process on R3n.

Applying the coordinate transformation Ψ from (1.7) to (1.11) by setting (qt, pt) :=
Ψ(qt, pt), one then gets the following SDE for (qt, pt):

d
dt

qt = M−1(qt)pt

d
dt

pt = −∇q

(1
2

pᵀt M−1(qt)pt

)
−∇qV(qt)

−∇Φ(qt)
ᵀγ∇Φ(qt)M(q)pt +∇Φ(qt)σwt ,

(1.12)

were we already inserted the transformed potential V = V ◦Φ and mass matrix M =

∇ΦᵀM∇Φ.

With the Hamiltonian in generalized coordinates,

H(q, p) =
1
2

pᵀM−1(q)p + V(q) ,

and the new friction and noise coefficients

γ(q) := ∇Φ(qt)
ᵀγ∇Φ(qt), σ(q) := ∇Φ(qt)σ ,

(1.12) takes exactly the form of (1.8).

Due to Itôs formula [50, Theorem 4.2.1], the transformed Langevin equation again
is an Itô diffusion. Also, the new drag and noise coefficients γ, σ again satisfy the
fluctuation-dissipation relation.

Remark. An analogue of equation (1.8) for dynamics on Riemannian manifolds has
been derived by Hartmann in [5].

1.2.4. Smoluchowski dynamics

Smoluchowski dynamics, also called Brownian dynamics or overdamped Langevin dynamics,
is another Itô process that will play an important role throughout this thesis. It is
described by an SDE on Q only:

γ(qt)
d
dt

qt = −∇V(qt) + σ(qt)wt , (1.13)
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Chapter 1. Classical molecular dynamics

with γ, σ and wt having the same interpretations and properties as in (1.8).

Conceptually, the equation can be derived by rescaling the friction parameter γ 7→
ε−1γ for small ε, and simultaneously rescaling the time frame to compensate for the
now increasingly slow dynamics: t 7→ εt. The limit ε → 0, called the Smoluchowski-
Kramers or shortly Smoluchowski limit, then yields (1.13).

For a precise derivation of (1.13) on the SDE level, see [48]. We will come back to
discussing (and then interpreting) the Smoluchowski limit in Section 2.1.2 and Ap-
pendix A.2 in the context of density transport equations.
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2. Statistical mechanics and metastability

2.1. Density transport under Itô dynamics

As pointed out in the introduction, our task is metastability analysis. A rigorous
definition of metastability will follow soon, but for now, have in mind the following
intuition: for the general Itô process (1.1), a set A ⊂ X can be called metastable, if all
paths of the process xt starting in x0 ∈ A remain in A with high probability. We thus
have to track the time evolution of this uncountable number of systems (also called
an ensemble). This shift from single system dynamics to ensemble dynamics is what is
generally known as statistical mechanics, and will lead to the definition of our central
objects of interest, the transfer operators.

2.1.1. Transfer operators

Let f ∈ L1 (X )1 be a probability density function with respect to the Lebesgue mea-
sure m. We are now interested in the time evolution of f under the dynamics, or rather
that of an ensemble distributed according to f : Given that x0 ∼ f0 := f , what is ft

such that xt ∼ ft, assuming that x0 evolves under (1.1)?

For this, consider the stochastic transition function p : R≥0 ×X ×B(X )→ [0, 1],

p(t, x, B) = Prob [xt ∈ B | x0 = x] . (2.1)

We then have that xt ∼ ft with
∫

B
ft(x) dm(x) =

∫

X
f0(x)p(t, x, B) dm(x), ∀ B ∈ B(X ). (2.2)

Under mild conditions2, satisfied by the Langevin and the Smoluchowski equation, ft

is uniquely defined by (2.2). This in turn defines the transfer operator with respect to m
with lag time t via

P̄t f (x) := ft(x) (2.3)

1In the literature, Lp sometimes denotes the “pre-Lebesgue space”, i.e. the Lebesgue space before
equivalence class formation, and Lp usually denotes the actual Lebesgue space. Due to clash of
notation, however, we call the actual Lebesgue space Lp and use ‖ · ‖p to denote the standard p-norm.

2See the discussion about existence and uniqueness of solutions of the associated Fokker–Planck equa-
tion in Section 2.1.2.
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Chapter 2. Statistical mechanics and metastability

where P̄t : L1 (X ) → L1 (X ) and we extend the definition of P̄t from densities to
arbitrary L1 (X )-integrable functions using the linearity of (2.2) in f0.

In the deterministic case (1.2) with solution xt = Ξt(x0), Ξt : X → X the flow of the
ODE, P̄t is the well-known Perron–Frobenius operator [41]:

P̄t f (x) = f
(
Ξ−t(x)

)
·
∣∣∇xΞ−t(x)

∣∣ .

Invariant densities and the weighted transfer operator. Invariant densities will
play an important role, primarily as reference for other “sub-densities”. Let fX ∈
L1 (X ) be such that P̄t fX = fX for all t ≥ 0, and let u : X → R be such that u · fX ∈
L1 (X ). With the measure µX defined via dµX = fX dm, this means u ∈ L1

µX (X ). The
function u can be considered a “portion” of the invariant density fX .

The transport of u can again be expressed via a transfer operator. Applying (2.2) to
f0 := u0 fX allows us to track the evolution of ut:

∫

B
ut(x) dµX (x) =

∫

B
ut(x) fX (x) dm(x)

(∗)
=
∫

X
u0(x) fX (x)p(t, x, B) dm(x)

=
∫

X
u0(x)p(t, x, B) dµX (x),

(2.4)

where for (∗) the invariance of fX and (2.2) was used. Again, under suitable condi-
tions, including the non-singularity of µX , this uniquely defines ut. Written in operator
form,

Ptu0 := ut, (2.5)

where Pt : L1
µX (X ) → L1

µX (X ) is called the transfer operator with respect to µX or the
µX -weighted transfer operator. However, in the following we will more often use Pt

instead of P̄t, and thus usually omit the reference to µX . The definition of Pt of course
depends on the specific choice of fX , but the relevant systems possess exactly one
invariant density.

The conversion between P̄t and Pt is a simple reweighting:

Ptu =
P̄t(u fX )

fX
, P̄t f = Pt( f

/
fX
)

fX . (2.6)

Properties

We state some useful and defining properties of Pt. Because of (2.6), all of them
hold for P̄t as well, as has been show in [6]. Thus, working with Pt instead of P̄t is
only a matter of convenience, as this will simplify some calculations in Section 3.2.

24



2.1. Density transport under Itô dynamics

Additionally, “transporting portions of the invariant density” will fit our intuition in
metastability analysis.

It will however be necessary to distinguish between the transfer operators of the gen-
eral Itô diffusion, and the special cases of the Langevin and Smoluchowski dynamics.
They will be referred to as Pt, Pt

Lan and Pt
Smol, respectively. The corresponding transi-

tion functions are denoted p, pLan and pSmol. Of course, statements concerning Pt will
hold for Pt

Lan and Pt
Smol as well.

Domain and spectrum. While a stochastic interpretation makes sense only in the
preceding setting (i.e. on L1

µX (X )), the formal extension of Pt to the spaces Lk
µX (X ),

1 ≤ k ≤ ∞, is well defined for proper choices of µX :

Corollary 2.1.1 ([3, Corollary to Lemma 1]). Let Tt be a transfer operator associated with
a transition function having an invariant measure µ. Then Tt is a well-defined contraction on
Lk

µ for every 1 ≤ k ≤ ∞.

We will see in Section 2.1.2 that for Pt
Lan and Pt

Smol the existence of a unique invariant
measure is always ensured.

Due to being a contraction, Pt possesses a spectrum inside the complex unit circle,
on every Lk

µX (X ). Moreover, on the subspace
{

u ∈ L1
µX (X )

∣∣ u > 0
}

, Pt is norm-
preserving, i.e. Pt maps densities onto densities.

Semigroup properties. One of the most characteristic features of Pt is the semigroup
property (also called the Chapman-Kolmogorov property) [41, Corollary 11.8.1]:

(i) Pt
∣∣
t=0 f = f ,

(ii) Pt+s f = Ps(Pt f
)

for all s, t ≥ 0.

The second point follows from the identity

p(t + s, x, B) =
∫

Ω
p(t, x, y)p(s, y, B) dy, (2.7)

where p(t, x, y) is the Radon-Nikodym derivative [41, Definition 3.1.4] of p(t, y, B), i.e.
for y ∈ X , B ⊂ X ,

p(t, y, B) =
∫

B
p(s, y, x) dx .

Equation (2.7) is known as the Markov property, which holds for any autonomous Itô
diffusion process [50, Theorem 7.1.2]. Stochastic processes which satisfy (2.7) are called
Markov processes. In the deterministic case this simply reads Ξt+s(x) = Ξs(Ξt(x)

)
.
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Chapter 2. Statistical mechanics and metastability

Under the right regularity conditions3 on b, σ in (1.1), the transfer operator Pt satisfies
the stronger C0–semigroup4 property

(i’) limt→0 Pt f = f ,

(ii) Pt+s f = Ps(Pt f
)

for all s, t ≥ 0.

We assume from now on that for Langevin and Smoluchowski dynamics b and σ, i.e.
V, γ and σ in (1.8) and (1.13), satisfy these conditions.

Reversibility and self-adjointness. In general, the transfer operator of a general Itô
diffusion process is not self-adjoint on L2

µX (X ) [84, p. 41], i.e.

〈Pt f , g〉µX 6= 〈 f , Ptg〉µX with 〈 f , g〉µX =
∫

X
f g dµX .

In particular, the Langevin transfer operator Pt
Lan is not self-adjoint on L2

µΩ
(Ω), thus its

spectrum is not necessarily real. As we will see in Section 2.1.4, this makes interpreting
eigenvalues of Pt in the context of metastability analysis difficult. However, it has been
shown by Schütte and Sarich [64, Theorem 4.12] that the restriction of Pt

Lan to the space
spanned by its dominant eigenfunctions is self-adjoint, thus at least the dominant
eigenvalues of Pt

Lan are real.

The Smoluchowski transfer operator on the other hand is self adjoint on L2
µQ (Q), as

has been shown in [34, Proposition 2.2].

Geometric ergodicity. The notion of geometric ergodicity helps to understand the
long-time ensemble dynamics, to be precise the convergence of the stochastic transition
function towards the invariant measure:

Definition 2.1.2. Let xt, where t denotes either discrete or continuous time, be a
Markov process with transition function p(t, ·, ·) and unique invariant measure µX .
Then xt is called geometrically ergodic if for every state x ∈ X and time t

‖p(t, x, ·)− µX ‖TV ≤ M(x)ρt

holds for some M ∈ L1
µX (X ) and ρ < 1. Here, ‖ · ‖TV denotes the total variation norm

for signed measures.

Geometric ergodicity has been shown in [34, Proposition 6.3] for Langevin dynamics
in Cartesian coordinates. As its proof is a direct consequence of [45, Theorem 3.2] (see
also [46]), which can also be applied to Langevin dynamics in generalized coordinates,
we have

3The conditions have to ensure that the associated Fokker–Planck equation (2.12) with initial value f0
possesses a classical solution ft for which holds ft → f0 (t → 0). Pt is then the solution operator of
the equation and thus satisfies (i’). Also see [41, Definition 11.7.2].

4read: “continuous semigroup”
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2.1. Density transport under Itô dynamics

Proposition 2.1.3. Let xt denote the Langevin process in generalized coordinates. Fix some
lag time t > 0, and let zn := xnt be the sampled time process. In either of the following
cases, zn has the unique invariant measure µΩ and is geometrically ergodic.

(i) The state space Q is periodic and the potential V : Q → R is smooth.

(ii) The state space Q = Rd, the potential V : Q → R≥0 is smooth and V(q) is growing at
infinity as ‖q‖2l for some positive integer l.

We assume from now on that either condition (i) or (ii) of Proposition 2.1.3 is satisfied.
This means, in particular, that for a fixed t > 0 there is a function M ∈ L1

µΩ
(Ω) and a

constant ρ < 1 such that for every q ∈ Q and p ∈ P holds

‖pLan(nt, (q, p), ·)− µΩ‖TV ≤ M(q, p)ρn . (2.8)

2.1.2. Infinitesimal generators and the Fokker–Planck equation

The C0–semigroup property can be interpreted as “memorylessness” of P̄t. The crucial
identity P̄t =

(
P̄t/n)n

suggests that all information about the density transport is
contained in P̄τ for arbitrarily small τ.

This suggests to study the operator L̄ : D (L̄)→ Lk (X ) given by

L̄ f := lim
τ→0

P̄τ f − f
τ

, (2.9)

where D (L̄) ⊂ Lk (X ) is the linear subspace of Lk (X ) where the above limit exists. L̄
is called the infinitesimal generator (or short generator) of the semigroup P̄t. The power
of the generator lies in the fact that all the relevant information about P̄t for all times
t ≥ 0 is already encoded in L̄. This will be formalized below.

Definition (2.9) also appears when constructing a differential equation for the transport
of some density ft under the dynamics:

∂t ft(x) = lim
τ→0

ft+τ(x)− ft(x)
τ

= lim
τ→0

P̄τ ft(x)− ft(x)
τ

= L̄ ft(x). (2.10)

Thus, L̄ can be understood as the differential operator of the Cauchy problem

∂t ft = L̄ ft, ft
∣∣
t=0 = f0 . (2.11)

Under the right conditions on b, σ, (2.11) possesses a classical solution and Pt is its
solution operator [56, Theorem 4.1.4]. Further discussion on existence and uniqueness
of solutions for the general Itô case can also be found in literature on Brownian motion
and diffusion processes, see for example [48, 38].

27



Chapter 2. Statistical mechanics and metastability

Equation (2.11) is called the Fokker–Planck equation or Kolmogorov forward equation of
the diffusion process 1.1 and is a linear homogeneous partial differential equation. In
coordinates, it reads [41, Theorem 11.6.1]

∂t ft(x) =
1
2 ∑

i,j

∂2

∂xi∂xj

(
Σij(x) ft(x)

)
−∑

i

∂

∂xi

(
bi(x) ft(x)

)

︸ ︷︷ ︸
=L ft(x)

. (2.12)

Langevin Fokker–Planck equation. We are mostly interested in the Langevin ver-
sion of this equation, i.e.

∂t ft(q, p) = L̄Lan ft(q, p) ft
∣∣
t=0 = f0 . (2.13)

Grouping the terms on the right hand side of (1.8) according to

b(q, p) =
( ∇pH(q, p)
−∇qH(q, p)− γ(q)∇pH(q, p)

)
, Σ(q, p) =

(
0 0
0 σ(q)σ(q)ᵀ

)

and inserting them into (2.12), one can write

L̄Lan = L̄Ham + L̄OU (2.14)

with
L̄Ham f := ∇qHᵀ∇p f −∇pHᵀ∇q f ,

L̄OU f :=
1
2

σσᵀ : ∇2
p f + (γM−1 p)ᵀ∇p f + (γ : M−1) f .

(2.15)

Here, ∇ f denotes the gradient of f , assumed to be a column vector, and ∇2 f is the
Hessian of f . Moreover, we denote by ∇ᵀ f the divergence of f .

To express the results as compactly as possible, we also make use of the generalized
Frobenius product for tensors (also known as tensor contraction). Define for tensors
A ∈ R

n1×...×nd1 , B ∈ Rn1×...×nd2 and d1 ≤ d2

(A : B) :=
n1

∑
j1=1

. . .
nd1

∑
jd1

=1
A(j1, . . . , jd1) · B(j1, . . . , jd1 , : , . . . , : ) (2.16)

where arguments in A and B represent indices and a colon in the argument means all
values in the respective dimension. The result is a (d2 − d1)-tensor. For d2 ≤ d1, the
definition is analogous.

Equation (2.14) can be seen as application of the Lie-Trotter splitting method for evo-
lution equations [73]. The two components then have individual interpretations:
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2.1. Density transport under Itô dynamics

• L̄Ham is the generator of the deterministic Hamilton process

∂tqt = ∇pH(qt, pt), ∂t pt = −∇qH(qt, pt) ,

whose associated Fokker–Planck equation is known as the Liouville equation.

• L̄OU is the generator of an Ornstein-Uhlenbeck process [38] in p:

∂t pt = −γ(q)M−1(q)pt + σ(q)wt , (2.17)

in which q appears only as a parameter.

Weighted Langevin Fokker–Planck equation. As Pt, the transfer operator with re-
spect to the invariant measure µX , is also a C0-semigroup, all the statements about P̄t

from the beginning of this section hold for Pt as well. Thus, for the density transport
with respect to the invariant measure µX , i.e. ut = Ptu0, u0 ∈ Lk

µX (X ), the definition
of an infinitesimal generator L : D(L) → Lk

µX (X ) , D(L) ⊂ Lk
µX (X ) is completely

analogous. Define

Lu := lim
τ→0

Pτu− u
τ

, (2.18)

which again induces a Cauchy problem:

∂tut = Lut, ut
∣∣
t=0 = u0. (2.19)

We want to derive a coordinate expression for L for Langevin dynamics, analogous to
(2.15). For that, we will need to specify the invariant densities on the basis of which
the weighted transfer operator Pt is defined. Set

fΩ(q, p) := fQ(q) · fP (q, p), (2.20)

where

fQ(q) :=
1

ZQ
exp

(
− βV(q)

)
, fP (q, p) :=

1
ZP (q)

exp
(
− β

2
pᵀM−1(q)p

)
,

with the normalizing factors

ZP (q) :=
∫

P
exp

(
− β

2
pᵀM(q)−1 p

)
dp , ZQ :=

∫

Q
exp

(
− βV(q)

)
dq .

The existence of fQ and fΩ requires the integrability of exp(−βV), which follows from
the assumption that V is at most polynomially growing at infinity, see Section 1.2.2.

The densities fΩ and fQ, are then the unique invariant densities for the Langevin- and
Smoluchowski processes, respectively:

P̄t
Lan fΩ = fΩ , P̄t

Smol fQ = fQ ,
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Chapter 2. Statistical mechanics and metastability

and describe the Boltzmann (or Gibbs) distribution of the respective dynamics.

An explicit expression for LLan can now be derived by applying L̄Lan to ut fΩ:

∂t(ut fΩ) = L̄Lan(ut fΩ) = L̄Ham(ut fΩ) + L̄OU(ut fΩ) . (2.21)

Expanding the two summands and applying the product rule for gradients yields

L̄Ham(ut fΩ) = ∇qH · ∇p(ut fΩ)−∇pH · ∇q(ut fΩ)

= ∇qH ·
(
∇put fΩ + ut fΩ(−β∇pH)

)
−∇pH ·

(
∇qut fΩ + ut fΩ(−β∇qH)

)

=
(
∇qH · ∇put −∇pH · ∇qut

)
fΩ, (2.22)

and

L̄OU(ut fΩ) =
1
2

σσᵀ : ∇2
p(ut fΩ) + (γM−1 p)ᵀ∇p(ut fΩ) + (γ : M−1)(ut fΩ)

=
1
2

σσᵀ :
[(
∇2

put
)

fΩ + 2∇put(−βM−1 p)ᵀ fΩ

+ ut(−βM−1) fΩ + utβ
2(M−1 p)(M−1 p)ᵀ fΩ

]

+ (γM−1 p)ᵀ
(
∇put fΩ + ut(−βM−1 p) fΩ

)
+ (γ : M−1)ut fΩ ,

where we used the identities ∇p fΩ = (−βM−1 p) fΩ and ∇2
p fΩ = (−βM−1) fΩ +

β2(M−1 p)(M−1 p)ᵀ fΩ. With 2γ = βσσᵀ, this reduces to

L̄OU(ut fΩ) =
(1

2
σσᵀ : ∇2

put − (γM−1 p)ᵀ∇put

)
fΩ. (2.23)

As fΩ is independent of t, the left hand side of (2.21) reads

∂t(ut fΩ) = (∂tut) fΩ. (2.24)

Combining (2.22)-(2.24) finally gives the µΩ-weighted Fokker–Planck equation for Lan-
gevin dynamics:

∂tut = LLanut = LHamut + LOUut (2.25)

with

LHam := ∇qH · ∇p −∇pH · ∇q , LOU :=
1
2

σσᵀ : ∇2
p − (γM−1 p)∇p . (2.26)

Remark. The expression of the weighted Fokker–Planck equation strongly resembles
another type of transport equation; for ϕt : Ω → R, the Kolmogorov backward equation
reads

∂t ϕt = ALan ϕt = AHam ϕt + AOUϕt (2.27)

with

AHam := ∇pH · ∇q −∇qH · ∇p , AOU :=
1
2

σσᵀ : ∇2
p − (γM−1 p)∇p , (2.28)
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2.1. Density transport under Itô dynamics

i.e. it only differs from the forward equation in the sign of the Hamilton generator. It
can be derived from its general Itô process form [59, p. 83]

∂t ϕt(x) =
1
2 ∑

i,j
Σij(x)

∂2

∂xi∂xj
ϕt(x) + ∑

i
bi(x)

∂

∂xi
ft(x)

︸ ︷︷ ︸
=:A

.

Equation (2.27) governs the evolution of observables. For any ϕ0 : Ω → R and xt =

(qt, pt) the solution of the SDE (1.8), for the solution ϕt of (2.27) holds

ϕt(x) = E
[
ϕ0(xt)

∣∣ x0 = x
]

.

The solution operator of (2.27), the Koopman operator, can be interpreted as the dual of
the transfer operator [50, Section 7.3].

Weighted Smoluchowski Fokker–Planck equation. For Smoluchowski dynamics,
the associated Fokker–Planck equations can be compiled the same way as for Langevin
dynamics: Identify the Itô parameters b = b(q) and Σ = Σ(q) in (1.13) and insert them
in (2.12). The µQ-weighted Smoluchowski generator can then be cast as

LSmol = β−1∆̃−∇V · ∇̃ , (2.29)

where
∇̃u = γ−1∇u and ∆̃ =

1√
det γ

∇ ·
(√

det γ γ−1∇u
)

. (2.30)

The operator ∆̃ is known as the Laplace-Beltrami operator.

Equation (2.31) can also be derived by taking the high-friction limit in the Langevin
Fokker–Planck equation (2.25). To help the interested reader understand the deeper
connection the between density transport under Langevin and Smoluchowski dynam-
ics, we have formulated the derivation in Appendix A.2. The connection can be sum-
marized as follows:

Lemma 2.1.4. Let w be the solution of the µQ–weighted Smoluchowski transport equation

∂tw(·, t) = LSmolw(·, t) , (2.31)

and uε be the solution of the µQ–weighted Langevin transport equation (2.25) with damping
matrix γ/ε. Then ∥∥uε

(
·, t/ε

)
− w(·, t)

∥∥
2,µΩ
→ 0, (ε→ 0). (2.32)

Note that the solutions uε and w are compared to each other on different time scales.
We have thus no reason to expect that transition rates from the Smoluchowski process
approximate in any way the rates of the non–rescaled Langevin process. This will be
confirmed later in numerical experiments.
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Chapter 2. Statistical mechanics and metastability

2.1.3. The spectral mapping theorem

General semigroup theory provides more insight into the relationship between transfer
operators and their generators. Let M be a Banach space, Tt : M → M be a C0–
semigroup of operators and A be its infinitesimal generator.

Under additional assumptions, Tt can easily be computed from A:

Theorem 2.1.5 ([56], Corollary 1.4). Let A, Tt be as above, and A additionally be bounded.
Then

Tt = etA =
∞

∑
k=0

(tA)k

k!
.

The boundedness of A ensures the global existence of the right–hand series. It is in
this case equivalent to Tt being a uniformly continuous semigroup of bounded linear
operators, i.e. limt→0 ‖Tt − Id ‖ = 0.

Unfortunately, the Itô transfer operators Pt and P̄t are not uniformly continuous semi-
groups in general. Thus, for our intents and purposes, the principal connection be-
tween a semigroup of operators and their generator is given by the following, slightly
weaker, spectral mapping theorem:

Theorem 2.1.6 (Spectral mapping theorem [56]). LetM be a Banach space, Tt :M→M,
t ≥ 0, a C0 semigroup of bounded linear operators and let A be its infinitesimal generator. Then

etσp(A) ⊂ σp(Tt) ⊂ etσp(A) ∪ {0},
with σp denoting the point spectrum. The corresponding eigenfunctions are identical.

We can immediately deduce the following assertions.

Corollary 2.1.7. A function u is an invariant density of Pt for all t ≥ 0, if and only if Lu = 0.

Corollary 2.1.8. Since Pt is a contraction in Lk
µΩ

(Ω), the eigenvalues of L lie in the left
complex half-plane.

While the intuition “Pt = ∑∞
k=0

tk

k! Lk” is false in general, Pt can be approximated by a
truncated “Taylor series”, at least pointwise, in the space

VN (Ω) :=
{

u ∈ C2N (Ω)
∣∣ Lnu ∈ L2

µΩ
(Ω) ∀n = 0, . . . , N

}
. (2.33)

Think of VN (Ω) as an analog to the Sobolev space W2,2N(Ω), with Ln taking the role
of the differential operator Dα, |α| = n. We require u to be 2N-times continuously
differentiable, as this is the highest derivative occurring in LN , see (2.12).

The following convergence result also holds true if choosing Lk
µΩ

(Ω) instead of L2
µΩ

(Ω)

in the definition of VN (Ω), and correspondingly regarding the norm ‖ · ‖k,µΩ . How-
ever, we state it for L2

µΩ
(Ω) only, as this is the space we are ultimately operating

in.
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2.1. Density transport under Itô dynamics

Proposition 2.1.9 ([6, Proposition 2.5]). Let u ∈ VN+1 (Ω). Then

∥∥∥Ptu−
N

∑
n=0

tn

n!
Lnu

∥∥∥
2,µΩ

= O(tN+1) for t→ 0.

Proof. Let u ∈ VN+1 (Ω). Then, Ptu : t 7→ L1
µΩ

(Ω) is N + 1 times differentiable
in t because ∂kPt

∣∣
t=0u = Lk f , k ≤ N + 1 exist as per choice of u. A Taylor series

expansion for Banach space valued functions can for example be found in [82, Section
4.5]. Application to Ptu as a function in t yields

Ptu =
N

∑
n=0

tn

n!
Lnu +

( ∫ 1

0

1
N!

(1− s)N∂N+1
s Pstu ds

)
tN+1.

We estimate the remainder:
∥∥∥Ptu−

N

∑
n=0

tn

n!
Lnu

∥∥∥
2,µΩ

=
∥∥∥
∫ 1

0

1
N!

(1− s)N∂N+1
s Pstu ds

∥∥∥
2,µΩ

tN+1.

As we are interested in the limit t → 0 we can assume t < 1. In that case, st < s, and
therefore

≤ tN+1

N!
sup

s∈[0,1]

∥∥∂N+1
s Ps f

∥∥
2,µΩ

.

Ptu is the solution of the Fokker–Planck equation (2.19), and thus ∂sPsu = LPsu and,
by extension, ∂N+1

s Psu = LN+1Psu. It is easy to see from the definition of the gener-
ator (2.18) that the transfer operator and its generator commute, thus LPsu = PsLu.
Therefore,

tN+1

N!
sup

s∈[0,1]

∥∥∂N+1
s Psu

∥∥
2,µΩ

=
tN+1

N!
sup

s∈[0,1]

∥∥PsLN+1u
∥∥

2,µΩ

≤ tN+1

N!
sup

s∈[0,1]

∥∥Ps∥∥
2,µΩ︸ ︷︷ ︸

≤1

∥∥LN+1u
∥∥

2,µΩ
.

In the last line,
∥∥Ps

∥∥
2,µΩ
≤ 1 holds because Pt is a contraction (Corollary 2.1.1). As

LN+1u ∈ L2
µΩ

(Ω) by the choice of u ∈ VN+1 (Ω), ‖LN+1u‖ is finite and independent
of t. This completes the proof.

2.1.4. Metastability

Based on the stochastic transition function 2.1, we define by

pµX (t, A, B) := ProbµX [xt ∈ B | x0 ∈ A] (2.34)

33



Chapter 2. Statistical mechanics and metastability

the transition probability between two µX -measurable sets A, B ⊂ X , where ProbµX in-
dicates that x0 ∼ µX ; i.e. the initial condition is distributed according to µX . In the
case of our physically motivated systems, i.e. assuming the existence of a unique in-
variant measure µX with density fX , the transition probabilities can then be expressed
via the transfer operator Pt:

pµX (t, A, B) =
1

µX (A)

∫

B
PtχA dµX =

1
µX (A)

∫

X
PtχAχB dµX =

〈PtχA, χB〉µX
〈χA, χA〉µX

. (2.35)

Here, 〈·, ·〉µX is the standard scalar product on L2
µX (Ω) and χ is the indicator function.

A set A ⊂ X is now called metastable5, if pµX (t, A, A) ≈ 1. The value pµX (t, A, A) is
called the degree of metastability of A.

Equation (2.35) hints at the role of dominant eigenfunctions of Pt for metastability
analysis: If χA were an eigenfunction at eigenvalue λ ≈ 1, then

pµX (t, A, A) =
〈PtχA, χA〉2,µX

〈χA, χA〉µX
=

λ〈χA, χA〉µX
〈χA, χA〉µX

= λ ≈ 1 ,

so the degree of metastability of A would be high.

The precise connection is a little more subtle, however, as Pt is integral-preserving on
L1

µX (X ) for u ≥ 0, and so for all eigenfunctions v at eigenvalues λ 6= 1 must hold∫
X v dµX = 0. The result was first formalized in [13], and a reformulation for our

setting reads:

Proposition 2.1.10 ([13, Proposition 5.7]). Let v ∈ L1
µX (X ) be an eigenfunction of Pt

at eigenvalue λ, and let v be normed so that
∫
X |v| dµX = 1. Let A ⊂ X be a set with∫

A v dµX = 1
2 , and let B = X \ A. Then

pµX (t, A, A) + pµX (t, B, B) = 1 + λ.

We call
sµX (t, A, B) := pµX (t, A, A) + pµX (t, B, B) (2.36)

the combined degree of metastability of the decomposition A ∪ B = X , which is bounded
from above by 2 (indicating invariance of A and B).

2.2. Spatial dynamics

In order to analyze the behavior of molecular systems in regard of configurational
stability, we have to restrict our view to the dynamics on position space Q. For this

5In other works concerning conformational metastability analysis, such a set is be called almost invariant,
while the corresponding chemical conformation is called metastable. We do not make this distinction
and call both the set and structure metastable.
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2.2. Spatial dynamics

purpose, Schütte in [61] proposed a reduction of the classical Hamiltonian dynamics,
called Hamiltonian dynamics with randomized momenta, while Weber [78] proposed the
corresponding generalized version for a stochastic evolution. Following Schütte and
Weber, we formulate the extension to Langevin dynamics in generalized coordinates
and state the appropriate definition of metastability.

We will find that the dynamics can no longer be described by an Itô diffusion equation
of form (1.1). Thus, many of the properties and regularities derived in the preceding
sections no longer apply, as we will see shortly. Still, there are good reasons for
the introduction of this new dynamics, as the extraction of the relevant metastability
information from the full Langevin dynamics is neither fully possible nor practical:

1. The original and most evident justification for spatial dynamics came from its
creator Schütte [61], but is only partially applicable to our extended case.

The transfer operator for the deterministic Hamiltonian dynamics has uncount-
ably many invariant densities, corresponding to individual level sets of the Hamil-
tonian H. As a result, the spectrum of the operator lies on the unit circle, and
thus identification of metastable sets via subdominant eigenvalues in the style of
Proposition 2.1.10 is not possible.

However, this argumentation doesn’t (fully) hold for the stochastically perturbed
Langevin dynamics. While the spectrum of its transfer operator in general still
isn’t purely real, Schütte and Sarich show in [64, Theorem 4.12] that, at least for
small temperatures, Pt

Lan has a real dominant spectrum.
Theorem 2.2.1 ([64, Theorem 4.12]). Define on L2

µΩ
(Ω) the bilinear form

〈u, v〉R := 〈Ru, v〉µΩ ,

where R is the momentum reversion map R(q, p) = (q,−p). Let En be the subspace of
L2

µΩ
(Ω) spanned by the n dominant eigenfunctions of Pt

Lan.

Then, for small enough temperature, Pt
Lan is self-adjoint with respect to 〈u, v〉R, which

is a scalar product on En. Consequently, the dominant n eigenvalues of Pt
Lan must be

real-valued.

For the example systems considered in Section 4.2, Pt
Lan had a real dominant

spectrum whenever metastability in Q could be observed. This suggests that
the constraint to “small temperatures” is rather mild. Still, in other systems it
might pose a practical hurdle. Furthermore, the question of how to interpret the
non-dominant, potentially imaginary spectrum remains.

2. Conformations in the chemical sense are understood to correspond to the regions
of minima on the potential energy surface, i.e. are metastable sets in position
space Q only. However, the eigenfunctions of Pt

Lan reveal metastable sets on the
whole phase space Ω, whether they correspond to minima of V or not.
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Chapter 2. Statistical mechanics and metastability

As an example, consider the Cartesian Langevin system on Q = T1 (the one-
dimensional unit circle), P = R1, with zero potential V ≡ 0 and identity mass
matrix, i.e.

d2

dt2 qt = −γ
d
dt

qt + σwt.

The associated Fokker–Planck equation (with respect to the Lebesgue measure)
reads

∂t ft(q, p) =
(γ

β
∆p − p · ∇q + γp · ∇p + γ

)
ft(q, p), (2.37)

from which it can easily be seen that its infinitesimal generator has the eigen-
value −γ with eigenfunction g(q, p) = p · fΩ(q, p). For γ small enough, this
eigenpair is subdominant.

Now, sign analysis of g on Ω = Q×P reveals the two sets

A =
{
(q, p) ∈ Ω | p > 0

}
, B =

{
(q, p) ∈ Ω | p < 0

}
,

with degrees of metastability

pm(t, A, A) = pm(t, B, B) = e−γt,

which are high if γ is small. Numerical investigation even reveals a spectral gap
after the fifth eigenvalue (see Figure 2.1).

However, the system does not contain metastable configurations in the chemical
(and thus our) sense, as the potential energy surface is completely flat. Thus de-
ducing the existence of spatial metastable sets from the existence of a dominant
spectrum of the Langevin transfer operator is, in general, not possible.

5 10 15 20

10−1

100

e−γt

n

λ
n

Figure 2.1.: Dominant eigenvalues of a discretization of Pt
Lan for the zero potential sys-

tem for small γ. The first five eigenvalues appear to be isolated.
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2.2. Spatial dynamics

3. Finally, having to deal with the dynamics only onQ vastly reduces the numerical
effort. As we will see in Section 2.3, the classical numerical analysis methods
require a discretization of the respective phase space. As dim(Q) = dim(P) = d,
and for simplicity assuming a resolution of N in each (position and momentum)
dimension, the number of required discretization elements reduces from N2d

to Nd.

2.2.1. The spatial transfer operator

Consider an ensemble of molecules, modeled by (1.8) in thermodynamic equilibrium,
i.e. identically and independently distributed according to fΩ. To determine which
portion of the ensemble undergoes a certain configurational change, e.g. leaves some
set A ⊂ Q, we have to track the evolution of all paths (qt, pt) under Langevin dynamics
with position coordinate qt starting in q0 ∈ A. We therefore have q0 ∼ χ̃A fQ, where
χ̃A = χA/µQ(A) is the µQ–normed indicator function.

Due to the product structure (2.20) of fΩ, the initial momenta p0 are distributed ac-
cording to fP and so (q0, p0) ∼ χ̃A fΩ. This full phase space density now evolves
under the action of the Langevin transfer operator Pt

Lan, but as we are only interested
in the positional portion of the evolving density, we form the marginal distribution of
Pt

Lanχ̃A fΩ with respect to q.

The evolution of χ̃ can again be expressed in transfer operator form, defining the
spatial transfer operator

Stχ̃A(q) :=
1

fQ(q)

∫

P
P̄t

Lan
(
χ̃A(q) fΩ(q, p)

)
dp (2.38)

which can be recast in terms of the µQ-weighted transfer operator, using (2.6):

Stχ̃A(q) =
∫

P
Pt

Lan
(
χ̃A
)
(q, p) dµP . (2.39)

Note that the position q appears in µP as a parameter, as dµP (p) = fP (q, p)dm(p).

Due to Corollary 2.1.1 applied to the operator Pt
Lan and the invariant measure µΩ, the

spatial transfer operator St can formally be extended to Lk
µQ (Q) with µQ defined by

dµQ := fQdm. Intuitively, one can think of Stu with u ∈ Lk
µQ (Q) as transporting a

positional portion of the canonical density under the full phase space dynamics.

St induces a new stochastic dynamical process, called spatial dynamics or Langevin
dynamics with randomized momenta [61]. We will see below that this is no longer an Itô
process, and thus cannot be described by an SDE of form (1.1). Instead, we characterize
it purely by its stochastic transition function, which reads for measurable sets B ⊂ Q

pS(t, q, B) :=
1

fQ(q)

∫

P
pLan(t, (q, p), B×P) fΩ(q, p) dp . (2.40)
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Chapter 2. Statistical mechanics and metastability

The spatial transition probability then is for µQ–measurable A, B ⊂ Q defined by

pS,µQ(t, A, B) :=
1

µQ(A)

∫

A
pS(t, q, B) dµQ(q). (2.41)

Properties

In the following we state some important properties of the spatial transfer operator.
The central properties regarding self–adjointness, geometric ergodicity and the spec-
trum of St have been shown by Koltai in [6].

Semigroup property. The spatial transfer operator lacks the semi-group property
that fundamentally characterizes the Itô transfer operators: St+s 6= Ss ◦ St. With the
projection and extension operators

ΠQ : L1 (Ω)→ L1
µQ (Q) , (ΠQ f )(q) :=

1
fQ(q)

∫

P
f (q, p) dp

ΓΩ : L1
µQ (Q)→ L1 (Ω) , (ΓΩu)(q, p) := u(q) fΩ(q, p)

this can be seen easily, as

St+s = ΠQP̄t+s
LanΓΩ = ΠQP̄s

LanP̄t
LanΓΩ

Ss ◦ St = ΠQP̄s
LanΓΩΠQP̄t

LanΓΩ

and as ΓΩΠQ 6= id, the two expressions differ.

As a consequence, St cannot be the solution operator of an autonomous PDE, such as
the Fokker–Planck equation. This is equivalent to spatial dynamics not being induced
by an Itô diffusion process, and it thus has no infinitesimal generator in the sense
of (2.19).

Reversibility and self-adjointness. St is a self-adjoint operator on L2
µQ (Q), i.e.

〈Stu, v〉µQ = 〈u, Stv〉µQ (2.42)

for u, v ∈ L2
µQ (Q). This has been shown in [6] for the special case of Cartesian coor-

dinates with mass matrix M = I, but the proof has to be adapted only slightly to suit
our more general setting. It can be found in Appendix A.1.

Equivalent to the self-adjointness of St is the notion that the underlying dynamical pro-
cess is reversible. While for deterministic dynamics, this corresponds to the invertibility
of the flow Ξt, for stochastic spatial dynamics with transition probability pS,µQ(t, ·, ·)
(compare (2.34)), reversibility can be defined as

pS,µQ(t, A, B) = pS,µQ(t, B, A) .

38



2.2. Spatial dynamics

Geometric ergodicity. Geometric ergodicity of the spatial dynamics can easily be
reduced to geometric ergodicity of the Langevin dynamics. We repeat the short argu-
ment that was first stated in [6].

Proposition 2.2.2 ([6, Appendix B]). Under the prerequisites of Proposition 2.1.3 on the
configuration space Q and the potential V, spatial dynamics has the unique invariant measure
µQ and is geometrically ergodic.

Proof. Note that µQ = µΩ(· × P). With the description (2.40) for the spatial transition
function pS, we have

∥∥pS(nt, q, ·)− µQ
∥∥

TV =
∥∥∥ 1

fQ(q)

∫

P
pLan

(
nt, (q, p), · × P

)
fΩ(q, p) dp− µΩ(· × P)

∥∥∥
TV

=
∥∥∥ 1

fQ(q)

∫

P

[
pLan

(
nt, (q, p), · × P

)
− µΩ(· × P)

]
fΩ(q, p) dp

∥∥∥
TV

≤
∫

P
fΩ(q,p)
fQ(q)

∥∥pLan
(
nt, (q, p), · × P

)
− µΩ(· × P)

∥∥
TV dp

= (∗) .

By the supremum definition of the total variation norm, one sees that the norm of a
measure projected onto a subspace of the original phase space is not greater then the
norm of the unprojected measure:

‖µ‖TV = sup
π partition

of Ω

∑
A∈π

|µ(A)| ≥ sup
π partition

of Q

∑
A∈π

|µ(A×P)| = ‖µ(· × P)‖TV ,

as for all A ⊂ Q the sets A×P are contained in partitions of Ω. Thus we continue

(∗) ≤
∫

P
fΩ(q,p)
fQ(q)

∥∥pLan
(
nt, (q, p), ·

)
− µΩ(·)

∥∥
TV dp

≤ ρn
∫

P
fΩ(q,p)
fQ(q)

M(q, p) dp
︸ ︷︷ ︸

=:M̃(q)

.

In the last line M(q, p) and ρ are the ergodicity factor and constant for Langevin
dynamics, which exist due to Proposition (2.1.3), and M ∈ L1

µΩ
(Q×P) implies

M̃ ∈ L1
µQ (Q). Thus spatial dynamics is geometrically ergodic, with prefactor M̃ and

ergodicity constant ρ

Spectrum. Using the dynamical properties of reversibility and geometric ergodicity
of spatial dynamics, Koltai in [6] has shown some desirable spectral properties of the
associated spatial transfer operator.

Consider the following assumption for some transfer operator Pt:
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Assumption 2.2.3 ([35], Assumption S). The operator Pt : L2
µ (X ) → L2

µ (X ) is self-
adjoint and exhibits n eigenvalues

λn ≤ . . . ≤ λ2 < λ1 = 1,

counted according to their multiplicity. Furthermore, the spectrum σ(T) satisfies

σ(Pt) ⊂ [a, b] ∪ {λn, . . . , λ1}

for some constants a, b ∈ (−1, 1) satisfying a ≤ b < λn.

[34, Theorem 4.31], re-stated for our purposes gives

Theorem 2.2.4. Let P : L2
µ (X ) → L2

µ (X ) be a transfer operator associated with the re-
versible stochastic transition function p. Then P satisfies Assumption 2.2.3 if and only if p is
µ-irreducible and (µ-a.e.) geometrically ergodic. The latter two conditions on p are satisfied, in
particular, if p is geometrically ergodic.

Thus, we have

Corollary 2.2.5 ([6, Corollary B.7]). If the potential V satisfies either conditions in Propo-
sition 2.1.3, then the spatial transfer operator St : L2

µQ(Q) → L2
µQ(Q) is self-adjoint and

satisfies Assumption 2.2.3.

2.2.2. Spatial metastability

Considering St as an operator on L2
µQ(Q) and using the standard associated scalar

product 〈u, v〉µQ gives us access to the spatial transition probabilities on Q. For A ⊂ Q
we call

Γ(A) :=
{
(q, p) ∈ Ω | q ∈ A

}
(2.43)

the slice of phase space corresponding to A. It is easy to see that for the spatial
transition probability holds

pS,µQ(t, A, B) = pLan,µΩ

(
t, Γ(A), Γ(B)

)
.

The spatial transition probabilities between slices A and B can now again be expressed
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2.2. Spatial dynamics

in terms of St:

pS,µQ(t, A, B) = pLan,µΩ (t, Γ(A), Γ(B))

(2.35)
=
〈Pt

LanχΓ(A), χΓ(B)〉µQ
〈χΓ(A), χΓ(A)〉µQ

=
1

µΩ(Γ(A))

∫

Γ(B)

(
Pt

LanχΓ(A)

)
(q, p) dµΩ

=
1

µQ(A)

∫

B

∫

P

(
Pt

Lan(χAχP )
)
(q, p) fΩ(q, p) dp dq

=
1

µQ(A)

∫

B

(
StχA

)
(q) dµQ

=
〈StχA, χB〉µQ
〈χA, χA〉µQ

.

This defines our task for metastability analysis motivated by spatial conformation dy-
namics: find a disjoint decomposition

{
A1, . . . , An

}
of position space Q, so that

pS,µΩ

(
t, Aj, Aj

)
≈ 1, j = 1, . . . , n.

Connection to the spectrum of St. The connection between eigenvalues close to
one of arbitrary transfer operators and metastable sets was first formalized in [13] (see
Proposition 2.1.10) and applied to conformation dynamics in [14]. However, we will
primarily use a result from Huisinga and Schmidt [35], developed for the special class
of transfer operators satisfying Assumption 2.2.3.

For the n dominant eigenvalues λ1, . . . , λn of St let the corresponding set of µQ-
orthonormal eigenfunctions be denoted by {v1, . . . , vn}. We then have

Theorem 2.2.6 (Application of [35, Theorem 2]). Let {A1, . . . , An} be a measurable decom-
position ofQ and Π : L2

µQ(Q)→ L2
µQ(Q) be the orthogonal projection onto span(χA1 , . . . , χAn),

i.e.

Πv =
n

∑
j=1

〈v, χAj〉µQ
〈χAj , χAj〉µQ

χAj .

The combined degree of metastability of the decomposition can then be bounded from above by

pS,µQ (t, A1, A1) + . . . + pS,µQ (t, An, An) ≤ 1 + λ2 + . . . + λn,

while it is bounded from below by

1 + ρ2λ2 + . . . + ρnλn + c ≤ pS,µQ (t, A1, A1) + . . . + pS,µQ (t, An, An) .

Here, ρj = ‖Πvj‖2,µQ ∈ [0, 1] and c = a(1− ρ2 + . . . + 1− ρn) (a the left interval bound in
Assumption 2.2.3).
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We see that, the lower the projection error of Πvj, i.e. the more the eigenfunctions
resemble step functions over the sets A1, . . . , An, the better the bounds coincide. As a
first heuristics when aiming to construct a metastable decomposition, one can choose
A1, . . . , An in accordance to the the sign structure of v1, . . . , vn (i.e. we treat the eigen-
functions as approximate one-step functions of the form χA − χB).

Note that the focus of this work is the approximation and computation of the eigen-
functions and the spectrum of St, and not the extraction of the individual metastable
sets from the eigenfunctions. Sophisticated schemes, such as the spectral clustering-
based PCCA algorithm [15, 60], have been developed for this purpose, and they can in
principle be applied as a post-processing step to the eigenfunctions computed by our
methods.

2.3. Operator discretization methods

We have seen the connection between metastable sets and eigenfunctions of the trans-
fer operator and generator , for our purposes formalized by Theorem 2.2.6 and Theo-
rem 2.1.5. For numerical metastability analysis, the operators have to be discretized in
order to compute their eigenvectors. We present two established discretization strate-
gies, one for the transfer operator and one for the generator.

2.3.1. Transfer operator-based analysis

Assume Q satisfies the conditions in Proposition 2.1.3 and let, for this section only, Pt

denote

(i) either the transfer operator of some Itô diffusion of form (1.1) on Q (for example
Smoluchowski dynamics)

(ii) or the spatial transfer operator St.

In accordance with the notation from section 2.1.1, Pt denotes the weighted transfer
operator with respect to the unique invariant density fQ and the according invariant
measure µQ, which we assume to exist in case (i) above.

Ulam’s method. Let Un denote some n-dimensional subspace of L2
µQ (Q), with or-

thogonal basis {ϕ1, . . . , ϕn}. The orthogonal projection onto Un is called the Galerkin
projection, denoted by Πn : L2

µQ (Q)→ Un, and given by

Πnu :=
n

∑
i=1

ci ϕi , with ci =
〈u, ϕi〉µQ
〈ϕi, ϕi〉µQ

. (2.44)

42



2.3. Operator discretization methods

This lets us define the projected transfer operator Pt
n := ΠnPt. Restricted to Un, Pt

n can be
represented by a matrix6, with entries

(
Pt

n)i,j =
〈Pt ϕi, ϕj〉µQ
〈ϕi, ϕi〉µQ

. (2.45)

Ulam [75] suggested to use indicator functions over a partition of Q as basis for Un.
This was also the first approach used in numerical transfer operator based metasta-
bility analysis [13, 15], as the resulting propagator matrix (2.45) has a nice stochas-
tic interpretation. Let D = {D1, . . . ,Dn} denote a disjoint decomposition of Q into
µQ-measurable sets with positive finite measure and Un := span

(
χD1 , . . . , χDn

)
. The

matrix representation of Pt
n then has entries

(
Pt

n)i,j =
〈PtχDi , χDj〉µQ
〈χDi , χDi〉µQ

=
1

µQ(Di)

∫

Dj

PtχDi dµQ ,

which can be seen as the transition probabilities of the underlying system,

= pµQ(t,Di,Dj) = ProbµQ
[
xt ∈ Dj

∣∣ x0 ∈ Di
]

. (2.46)

Pt
n is a (row) stochastic matrix [24], i.e.

1.
(

Pt
n
)

i,j ≥ 0 , 2. ∑
j

(
Pt

n
)

i,j = 1 ,

which by the Perron–Frobenius Theorem implies that all its eigenvalues satisfy |λ| ≤ 1
and λ = 1 is a single eigenvalue of Pt

n with eigenvector v = (1, . . . , 1)ᵀ.

We now solve the projected eigenvalue problem on Un instead of L2
µQ (Q), i.e. solve

Pt
nu = λu for u ∈ Un. Under which conditions (λ, u) then converges to an eigenpair of

Pt has been investigated for example in [61].

Monte Carlo integration. The interpretation of the entries of Pt
n as transition prob-

abilities is key to the algorithmic strategy for numerically computing them. Equation
(2.46) can be interpreted as the portion of the canonical ensemble which, after time t,
ends up in Dj after starting from Di. Thus sampling the canonical ensemble on Di and
counting the transitions to Dj should give an approximation to (Pt

n)i,j, with an error
depending on the number of sampling points.

This intuitive strategy can be made precise under the notion of Monte Carlo quadra-
ture, for a thorough introduction see [36]. With the density fDi :=

χDi
µQ(Di)

fQ, i.e. the
restriction of the canonical density fQ to Di, we can write

(2.46) = E
[
χDj(qt) | q0 ∼ fDi

]
=: JM .

6For the sake of notational simplicity, we denote both the operator on Un and the matrix in Rn×n by Pt
n.
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Chapter 2. Statistical mechanics and metastability

By the law of large numbers, this conditional expectation can be approximated by

≈ 1
M

M

∑
m=1

χDj

(
qt(q

(m)
0 )

)
=: ĴM, (2.47)

where the qt(q
(m)
0 ) are independent realizations of the underlying stochastic process

at time t, starting at different q(m)
0 ∼ fDi . The approximation error is typically given

in terms of the standard deviation E
[
(JM − ĴM)2]1/2 which can be shown to be of

order O(1/
√

M), independent of the system’s dimension [22].

Stochastic trajectories. For Itô processes on Q, the realizations q(m)
t can be com-

puted by numerically integrating the associated SDE (1.1), using stochastic symplectic
integrators such as the Störmer-Verlet method with Langevin thermostat [28].

For spatial dynamics, however, a small intermediate step is necessary, as it is not de-
scribed by an SDE but we rather rely on the momentum-averaged Langevin transition
function (2.34) to describe it. We have

pS,µQ(t,Di,Dj) = pLan,µQ(t,Di ×P ,Dj ×P)

which can be approximated as in (2.47) by

≈ 1
M

M

∑
m=1

χDj

(
πqxt(x(m)

0 )
)

,

where πq is the restriction to the q-component and

xt
(
x(m)

0 )
)
=
(

qt
(
q(m)

0 , p(m)
0

)
, pt
(
q(m)

0 , p(m)
0

))

are independent realizations of the full phase space Langevin process at time t, starting
at randomly drawn q(m)

0 ∼ fDi , p(m)
0 ∼ fP (q

(m)
0 , ·). It is helpful to split the above sum

into individual Monte Carlo quadrature sums over Di and P :

pS,µQ(t,Di,Dj) =
1

M1

M1

∑
m1=1

1
M2

M2

∑
m2=1

χDj

(
πqxt(q

(m1)
0 , p(m1,m2)

0 )
)

,

so for every sample q(m1)
0 ∼ fDi we draw M2 samples p(m1,m2)

0 ∼ fP (q
(m1)
0 , ·). Thus,

although spatial density dynamics takes place in position space Q, the momentum
averaging requires the sampling of P as well.

The curse of dimensionality. In the case whereQ is bounded or periodic, a straight-
forward choice for the decomposition of Q is a regular rectangular grid. Consider for
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2.3. Operator discretization methods

simplicity Q = [0, 1]d, the d-dimensional unit cube, and some dynamical system on it
with periodic boundary conditions. Dividing each edge of Q into n intervals of the
same length 1/n yields a decomposition of Q into a total of nd congruent hypercubes
(“boxes”), denoted by Di, i = 1, . . . , nd.

Using the approximation space Und =
{
D1, . . . ,Dnd

}
, it is a standard result from Finite

elements theory that the approximation error for L1-integrable Lipschitz-continuous
functions f : Q → R can be estimated by ‖ f −Πnd f ‖ = O(n−1). Thus, to achieve a
given approximation error ε, in the order of ε−d boxes are needed.

This exponential growth in the number of ansatz functions, known as the curse of
dimensionality, quickly represents prohibitive computational costs, and makes this box-
based Galerkin discretization infeasible in dimensions as low as d = 4.

Related approaches

There are of course other options in choosing the ansatz space Un, and standard ap-
proximation spaces as well as specifically tailored ansatz functions have been consid-
ered in transfer operator analysis, some of which are presented below.

• In [37], Junge and Koltai used a hierarchical Haar basis to combat the curse of
dimensionality. They reduced the number of basis functions required to achieve
a given Galerkin discretization error ε from O(ε−d) for basis functions based on
a regular grid of boxes, to O

(
(log2 ε−1)2d−2ε−1) for their sparse-grid basis.

• Weber [77] diverted from the point of view of each point in configuration space
lying inside of exactly one metastable set, and instead characterized their affili-
ation to conformations by membership functions, one for each conformation. The
Galerkin projection onto the space spanned by these membership functions leads
to a meshfree algorithm, which also aims to break the curse of dimensionality.

• In the core set approach, Schütte and coworkers [63, 65] use a Galerkin projection
onto so-called commitor functions. For setsD1, . . . ,Dn ⊂ Q, the commitor function
ci is defined by the probability of hitting Di next if starting in q, i.e. with the
hitting time τq(Di) = inf{t ≥ 0 | q0 = q ∧ qt ∈ Di},

ci(q) = Prob
[
τq(Di) < τq(D1) ∧ . . . ∧ τq(Di) < τq(Dn)

]
.

In case of a full partition Q =
⋃

iDi, we again have ci = χDi . However the
idea is to choose the Di to cover only regions in phase space of high interest
for conformation dynamics7. The resulting transition matrix can be interpreted

7Typical choices for the Di are the (assumed) metastable sets themselves or “milestones” along the
transition paths. The information about the location of these sets has to be supplied, for example by
preceding computations or chemical intuition.
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Chapter 2. Statistical mechanics and metastability

as a Markov jump process on n states which approximates the original high-
dimensional (spatial) molecular dynamics. This model reduction technique has
been implemented in form of the software package EMMA [67].

All these transfer operator-based discretization methods have in common that they
implement the underlying dynamical system by computing numerical trajectories to
approximate transition probabilities between certain subsets of phase space. While by
meshfree approaches, the number of these sets may be kept low, the cost for accurately
approximating the individual transition probabilities is still dependent on the system
dimension.

Thus, the integration of these trajectories typically is the computationally most expen-
sive step in operator-based Ulam-like methods. It is this step we are aiming to avoid
by looking directly at the infinitesimal generator instead.

2.3.2. Generator-based analysis

According to the spectral mapping theorem 2.1.5, the spectra of transfer operator semi-
groups Pt and their corresponding infinitesimal generator L are equivalent in the con-
text of metastability analysis: given the dominant eigenvalues {λ1, . . . , λn} of LLan,
the dominant eigenvalues of Pt can be computed to {etλ1 , . . . , etλn}. The respective
eigenvectors are the same.

Froyland et. al. [25] used this equivalence to perform metastability analysis com-
pletely without the costly numerical simulations that the Galerkin discretization for
the transfer operator is based on. They did so by discretizing the generator instead,
using spectral collocation methods.

Spectral collocation

Collocation is a well-known interpolation-based technique for the numerical solution
of ordinary and partial differential equations. For our abridged notion of this method,
we refer directly to [25]; for a more general introduction, see, for example, [71].

Consider a set of—not necessarily orthogonal—basis functions {ϕ1, . . . , ϕn} on Q,
spanning the approximation space Un, and call some Qn := {q1, . . . , qn} ⊂ Q the
set of collocation nodes. Now let U be some function space and In : U → Un be the
interpolation operator corresponding to Un. For f ∈ U , In f thus denotes the function
in Un for which holds

In f (qi) = f (qi), i = 1, . . . , n .

In order to guarantee existence and uniqueness of the interpolant In f , the collocation
nodes have to be chosen in accordance with the basis functions. We present two
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2.3. Operator discretization methods

popular choices of pairs (Un,Qn), suitable for the two different assumptions on our
phase space Q from Proposition 2.1.3:

1. For Q periodic, first consider Q = T1, the one-dimensional unit circle. Define
for n odd the finite dimensional approximation space Un of trigonometric poly-
nomials with basis of Fourier modes

{
ϕk
}
− n−1

2 ≤k≤ n−1
2

, ϕk(q) = e2iπkq, (2.48)

as well as the corresponding collocation nodes Qn := {0, 1/n, . . . , (n − 1)/n}.
These basis functions possess inherent periodic boundary conditions.

For systems on differing periodic intervals [a, b], a shifted-and-stretched Fourier
basis can be used, together with correspondingly shifted nodes. Multidimen-
sional periodic phase spaces then can be discretized using a corresponding prod-
uct basis.

2. For the unbounded state space Q = Rd, a grid-based ansatz space does not
seem appropriate at first. However, as the potential V grows at least quadratic
at infinity (due to the requirement in Proposition 2.1.3), the canonical density
fQ decreases as O(e−β‖q‖2

) for ‖q‖ → ∞. Thus, we can always find a bounded
region Q̂ ⊂ Q that the canonical ensemble concentrates in, i.e. µQ(Q̂) ≈ 1.
Placing the collocation nodes on a grid that covers Q̂ then captures the essential
dynamics.

Again we start with a one-dimensional case. For Q̂ = [−1, 1] we place the
collocation nodes on the Chebyshev grid Qn :=

{
− cos

(
2πk/(n − 1)

)
, k =

0, . . . , n− 1
}

and use Chebyshev polynomials as basis functions:

{
ϕk
}

0≤k≤n−1 , ϕk(q) = cos
(
k arccos(q)

)
. (2.49)

For any other interval [a, b], grid and basis functions can be shifted and stretched
as in the periodic case. Multidimensional Q̂ are covered by tensor products of
polynomials.

We can then write the interpolant In f as a linear combination of the ϕi:

In f (q) =
n

∑
i=1

ci ϕi(q) ,

where the ci solve the linear system

f (qj) =
n

∑
i=1

ci ϕi(qj) , j = 1, . . . , n .
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Operator approximation For an operator A : U → U , we define the discretized
operator An : Un → Un by

An : Un → Un, An f := In A f . (2.50)

The operator An has a matrix representation (which again is also denoted by An):

An =
(

Aϕi(qj)
)

ij ,

Suppose now that U = L2
µQ (Q) and A = L, the generator of some Itô diffusion,

i.e. a second-order differential operator. The entries
(

Lϕi(qj)
)

ij are now computed by
analytically applying the differential operator to the basis functions and evaluating at
the collocation nodes.

We are interested in parts of the spectrum and the associated eigenspaces of L. So
instead of solving Lv = λv on L2

µ (Q), we solve Lnv = λv on Un. In matrix form, using
the weight matrix8 Wn =

(
ϕi(qj)

)
ij, this becomes a generalized eigenvalue problem

on Cn:
Anc = λWnc or (Ln − λWn)c = 0, (2.51)

where ∑n
k=1 ck ϕk then is the approximated eigenfunction of L at eigenvalue λ in Laplace

space.

Convergence of the spectrum. [25, Theorem 4.9] states that the eigenvalues λ and
eigenfunctions v of L can be approximated by the corresponding eigenfunctions and
eigenvalues of InL with spectral accuracy, provided that the v are C∞ smooth.

In Cartesian coordinates, the eigenfunctions of the transfer operator of the Smolu-
chowski and spatial dynamics Pt

Smol and St have been shown to be C∞ under the
assumption that the potential V : Rd → R is C∞ and all its derivatives of order greater
or equal two are bounded.

The proof was first performed by Koltai in [6], and the author suspects that it can
be directly transferred to generalized coordinates. However, since the proof was not
performed rigorously, we restrain from claiming spectral convergence.

Applicability to spatial dynamics. Of course, this discretization method relies on
the existence of an infinitesimal generator for the respective dynamics. Unfortunately,
spatial dynamics does not possess a generator in the sense that its density flow can
be described by a PDE. Spectral collocation for the generator is thus not applicable to
spatial dynamics.

8In the literature, this matrix is commonly called mass matrix. To not confuse it with the system mass
matrix, we adapt our notation.
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2.3. Operator discretization methods

An alternative generator discretization. Weber [78] argued that under certain con-
ditions9, the spatial transfer operator St “almost” behaves like a semigroup of opera-
tors, so the existence of a generator-like object LS can be assumed. Weber went on and
constructed a Galerkin-like discretization of LS.

Let P̂t be the Ulam discretization of Pt on the disjoint decompositionD = {D1, . . . ,Dn}
of Q, and define

L̂i,j :=
d
dt
(

P̂t)
i,j .

Using Gauß’ theorem, one sees that the entries of L̂ can be computed by a surface
integral of the form

L̂i,j =
∮

∂DiDj

z(q) fDi(q) dS (2.52)

where ∂DiDj is the common edge between Di and Dj (if it exists), and z(q) can be
interpreted as the average (with respect to the momenta) flow rate of the system. (2.52)
can be approximated by Monte Carlo quadrature, effectively counting transitions of
sampled trajectories over the respective edges.

By using a (meshfree) Voronoi tessellation for the the decomposition D, Weber de-
veloped an adaptive algorithm, whose complexity depends the number of metastable
sets instead of the system dimension. However, again numerical trajectory simulation
lies at the heart of this method, which is what we are aiming to avoid.

9These conditions will be explored in Section 5.2.
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3. The generating structure of
spatial dynamics

3.1. Pseudogenerators: definition and properties

We have seen in the previous section that the generator approach offers great benefits
in form of numerical complexity reduction, but that it is unfortunately not applicable
to spatial dynamics. Thus, in this chapter, we describe the discovery of a generator-
like object for spatial dynamics and its numerical exploitation. The main idea is that
formally, the time-derivatives of the spatial transfer operator St can still be defined, in
analogy to (2.9). We will see in Chapter 4) how the resulting operators can play roles
similar to the infinitesimal generator in the context of metastability analysis.

We first define time derivatives for general time-parametrized operators:

Definition 3.1.1. Let X be a Banach space, Tt : X → X , t > 0 be a time-parametrized
family of bounded linear operators. We define the operator ∂tTt : D

(
∂tTt)→ X

∂tTtu = lim
h→0

Tt+hu− Ttu
h

and refer to it as the time-derivative of Tt. D
(
∂tTt) here is the subspace of X where the

above limit exists. Iteratively, we define by ∂n
t Tt := ∂t

(
∂n−1

t Tt) the n-th time-derivative
on D

(
∂n

t Tt). Finally,
Gn := ∂n

t Tt∣∣
t=0

is called the n-th pseudogenerator of Tt.

As explained in Section 2.1.2, the generator of a semigroup induces the associated
Fokker–Planck equation (2.19). As Tt does not necessarily have a Fokker–Planck equa-
tion (it is not necessarily a semigroup), we refer to the Gn as pseudogenerators instead.

For Tt = Pt, the transfer operator of an Itô process, the pseudogenerators are simply
powers of the infinitesimal generator:

Lemma 3.1.2. On D(Ln), the n-th pseudogenerator Gn of Pt takes the form

Gn = Ln,

with L the infinitesimal generator of the respective dynamics.
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Proof. G1 = L follows directly from the definition of the generator (2.9).

By repeated application of the Fokker–Planck equation (2.19) and using the commuta-
tivity of Pt and L, we have

∂n
t Ptu = LnPtu .

Evaluating at t = 0 now gives the result.

To investigate pseudogenerators for the spatial transfer operator, we will first specify
its domain. Let

W k,n (Q) :=
{

u ∈ C2n(Q) | Lm
Lanu ∈ L1

µΩ
(Ω) ∧ Lm

Lanu ∈ Lk
µΩ

(Ω) ∀ 0 ≤ m ≤ n
}

. (3.1)

Note that, while similar in notation, W k,n (Q) is not the usual Sobolev space. Also
note that u is defined on Q, but Ln

Lanu is defined on Ω, and thus integrability over Ω
is required. The requirement is motivated in the following Proposition :

Proposition 3.1.3. OnW k,n (Q), the n-th pseudogenerator Gn of the spatial transfer operator
St takes the form

Gnu =
∫

P
(LLan)

nu dµP .

Proof. For this proof, let ut denote the time-evolution of an L1
µQ (Q)-function under

the full Langevin dynamics starting at u0 := u, i.e. ut = Pt
Lanu and ∂tut = LLanut .

Then

∂tStu = ∂t

∫

P
Pt

Lanu dµP .

As u ∈ L1
µΩ

(Ω), and Pt
Lan is a contraction, Pt

Lanu is absolutely integrable. So

∂tStu =
∫

P
∂tPt

Lanu dµP =
∫

P
LLanut dµP =

∫

P
LLanPt

Lanu dµP .

As LLan and Pt
Lan commute and LLanu ∈ L1

µΩ
(Ω), the iteration of this argument yields

∂n
t Stu

∣∣
t=0 =

( ∫

P
(LLan)

nut dµP
)∣∣∣

t=0
.

By the same argument as above, Ln
Lanut is absolutely integrable, and limit and integra-

tion can be swapped:

∂n
t Stu

∣∣
t=0 =

∫

P

(
(LLan)

nut
)∣∣

t=0 dµP =
∫

P
(LLan)

nu dµP .

From now on, when speaking of pseudogenerators, we always mean pseudogenerators
of St. Note that, in general, Gn is not simply a power of G1, as

∫

P
(LLan)

nu dµP 6=
( ∫

P
LLan dµP

)n
u .
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3.2. A coordinate expression for pseudogenerators

In this section, we derive explicit expressions for the first couple of pseudogenerators.
The derivation will be based on the representation from Proposition 3.1.3, and per-
forming the rigorous vector-analytic calculations therein. Due to the length of said
calculations, most proofs of this section are relegated to Appendix B, Section B.1.

We begin with the main result, which expresses G2 as a partial differential operator:

Theorem 3.2.1. Let St be the spatial transfer operator for the Langevin dynamical process in
generalized coordinates onW k,2 (Q). The first three pseudogenerators of St take the form

0. G0 = I ,

1. G1 = 0 ,

2. G2u =
1
β

1√
det M

∇ᵀ
q

(√
det MM−1∇qu

)
−∇qVᵀM−1∇qu .

Proof. See Appendix B.1.

Remark. The proof of the one-dimensional formulation of Theorem 3.2.1 is easily
automatable using a computer algebra system such as Wolfram Mathematica [81].
Program code is provided in Appendix B, Section B.2.

In the important special case of Cartesian coordinates, the term ∇q M−1(q) vanishes,
and we can slightly extend the technique of this proof to derive G3:

Corollary 3.2.2. Consider the spatial transfer operator for the Langevin dynamical process in
Cartesian coordinates onW k,3 (Q). Its first pseudogenerators take the form

0. G0 = I

1. G1 = 0

2. G2u =
1
β
∇ᵀ

q
(

M−1∇qu
)
−∇qVᵀM−1∇qu

3. G3u = −γ
[ 1

β
∇ᵀ

q
((

M−1)2∇qu
)
−∇qVᵀ(M−1)2∇qu

]

Proof. See Appendix B, Section B.1.

Remarks.

1. For the special case M = I, Corollary 3.2.2 has been proven in [6, Proposition 4.4].

2. The subsequent pseudogenerators (G4, G5, . . .) do, in general, not display an anal-
ogous structure. This can be seen by an automated derivation of G4 for the
one-dimensional case (see Appendix B, Section B.2).
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Chapter 3. The generating structure of spatial dynamics

Connection to Smoluchowski dynamics. Upon inspecting G2 in Theorem 3.2.1,
one discovers an interesting connection:

Corollary 3.2.3. In the setting of Theorem 3.2.1,

G2 = LSmol(M) ,

where LSmol(M) is the infinitesimal generator of Smoluchowski dynamics with damping ma-
trix M (i.e. the former mass matrix).

Proof. As stated in section A.2, the Smoluchowski infinitesimal generator reads

LSmolu = β−1∆̃u−∇V · ∇̃

= β−1 1√
det γ

∇ ·
(√

det γγ−1∇u
)
−∇V · γ−1∇u.

Replacing γ by the mass matrix M gives the result.

For Cartesian coordinates we additionally have

Corollary 3.2.4. In the setting of Corollary 3.2.2,

G3 = −γLSmol
(

M2)

where LSmol
(

M2) is the infinitesimal generators of Smoluchowski dynamics with damping
matrix M2.

The emergence of Smoluchowski dynamics in the second time derivative of spatial
dynamics came as a surprise, and, to the best knowledge of the author, cannot be
explained fully by established theory. Recall that Smoluchowski dynamics normally
arises from the limit of infinite damping and subsequent time rescaling (see Lemma
2.1.4 and Appendix A.2), and no such procedure is applied for deriving spatial dy-
namics. Moreover, in the emerging Smoluchowski generator, the original mass matrix
takes the place of a damping matrix, which so far has not been interpreted yet.

To the author’s knowledge, the connection between spatial dynamics and Smolu-
chowski dynamics was previously unknown.

3.3. Application of Dyson’s formula

We derived the connection between pseudogenerators and the Smoluchowski dynam-
ics by technical, purely vector-analytical calculations. A dynamical and physical un-
derstanding of this connection is thus still lacking. Further, expressing the pseudogen-
erators in a closed form without having to manually conduct the complicated vector-
arithmetical calculations would be highly desirable.
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While, until now, a closed form for the pseudogenerators could not be derived yet, the
most successful approach to explaining the generating structure of St and the role of
G2 was the application of the Mori-Zwanzig theory to our problem. The idea was first
presented by Koltai in [5], and is expanded in the following.

Central to this approach is the concept of spatial density dynamics as a projection of
the phase space density dynamics. Define the projection operator Π : Lk

µΩ
(Ω) →

Lk
µQ (Q) as

Πu(q, p) := E
[
u(q, p)

∣∣ q ] =

∫
P u(q, p) dµP∫

P dµP
=
∫

P
u(q, p) dµP . (3.2)

Moreover, let Π⊥ = Id−Π denote the complimentary projection on Lk
µQ (Q). The

spatial transfer operator and its pseudogenerators can then be expressed as

St = ΠPt
Lan , Gk = ΠLk

Lan . (3.3)

Combined with Theorem 3.2.1, this leads to

Lemma 3.3.1. Let u ∈ W k,2 (Q) (i.e. u is a function independent of p). Then the following
holds:

(a) Π
(
u · χ(p)

)
= u, and Π⊥

(
u · χ(p)

)
= 0 ,

(b) ΠLLan = 0 ,

(c) ΠLLanΠ⊥LLan = LSmol
(

M
)

,
where LSmol

(
M
)

is the Smoluchowski generator with damping matrix M.

Proof. (a) As
∫
P dµP = 1, the identities follow directly from the definition of Π.

(b) By Proposition 3.1.3, ΠLLan = G1, which is 0 by Theorem 3.2.1.

(c) The left hand side reads

ΠLLanΠ⊥LLanu = ΠL2
Lanu−ΠLLanΠLLanu

(b)
= ΠL2

Lanu.

By Proposition 3.1.3, this is the second pseudogenerator G2, which equals LSmol(M)

due to Corollary 3.2.3.

Let A and B be arbitrary operators for which the operator exponentials etA, etB exist
in a sensible way1. Then et(A+B) exists, and

et(A+B) = etA +
∫ t

0
eτABe(t−τ)(A+B) dτ. (3.4)

1For unbounded operators A, exp(A) can be defined by the so-called Yosida-approximation, which we
will introduce in Section 4.1.2.
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Chapter 3. The generating structure of spatial dynamics

This equation is called Dyson’s formula, in a formulation following [19].

We can formally write St = ΠetLLan , and thus

d
dt

St =
d
dt

ΠetLLan = ΠLLanetLLan .

Now, setting A := ΠLLan, B := Π⊥LLan, thus A + B = LLan, and applying (3.4) to
etLLan , we obtain

d
dt

St = ΠLLan

[
etΠLLan +

∫ t

0
eτΠLLan Π⊥LLane(t−τ)LLan dτ

]
.

Note that for etΠ⊥LLan to exist, we have to assume that the orthogonal dynamics is
well-defined, i.e. that Π⊥LLan again generates a semigroup of propagators, see [26] for
details. When applied to a function u = u(q), together with Lemma 3.3.1, one gets

d
dt

Stu = ΠLLan

∫ t

0
eτΠLLan Π⊥LLanSt−τu dτ.

This integral can be approximated via
∫ t

0 h(τ) dτ = th(0) +O(t2) (t→ 0):

d
dt

Stu = tΠLLanΠ⊥LLanStu +O(t2) ,

which is by Lemma 3.3.1

= tLSmolStu +O(t2).

We have thus derived an approximate differential equation for the density transport
under spatial dynamics in the sense of the Fokker–Planck equation:

Proposition 3.3.2. Let u0 ∈ W k,2 (Q), and consider the transport of u0 under spatial dynam-
ics, i.e. ut = Stu0. Then, with error O(t2) (t→ 0), ut follows the differential equation

∂tut = tLSmolut . (3.5)

Remark. In [26], an alternative formulation of Dyson’s formula (3.4) was used:

et(A+B) = etB +
∫ t

0
e(t−τ)(A+B)AeτB dτ. (3.6)

With this, in the same setting and definitions for A, B as above,

etLLan = etΠ⊥LLan +
∫ t

0
e(t−τ)LLan ΠLLaneτΠ⊥LLan dτ . (3.7)

and so now we get

d
dt

ΠetLLan = ΠLLan

[
etΠ⊥LLan +

∫ t

0
e(t−τ)LLan ΠLLaneτΠ⊥LLan dτ

]
,
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3.4. Pseudogenerators in reaction coordinates

Applying this to u = u(q) yields, due to Lemma 3.3.1,

d
dt

Stu = ΠLLan

∫ t

0
e(t−τ)LLan ΠLLanu dτ.

Again we approximate the integral, this time by the integrand’s end point:
∫ t

0 h(τ) dτ =

th(t) +O(t2) (t→ 0). This gives

d
dt

St = tΠLLanΠLLanu +O(t2)

= tLSmolu +O(t2).

Note that Stu no longer appears on the right hand side. We can thus integrate over t
and get

Stu = u +
t2

2
LSmolu +O(t3). (3.8)

We will re-encounter this approximation for St in Section 4.1.

3.4. Pseudogenerators in reaction coordinates

We introduced spatial dynamics as a projection onto a specific part of the Langevin
phase space, namely the position space. This procedure can be extended by averaging
over additional positional degrees of freedom, thus ultimately projecting onto a subset
of position space. We will see that the previously found generating structure will be
largely retained.

This approach is of particular interest in the molecular dynamical context. Given some
molecule in internal coordinates, i.e. bond lengths, valence- and dihedral angles, the
conformational behavior is often determined by only a few of these coordinates2, for
example certain collections of dihedral angles, acting as hinges in a protein backbone.
Physically relevant observables, even one-dimensional, are also used as reaction co-
ordinates, see for example [79], where the root mean square distance between the
functional groups of a receptor and its ligand described the relevant conformational
dynamics. We will discuss solely this case of one-dimensional reaction coordinates,
but the concept seems transferable to higher dimensions as well (see the remarks at
the end of this section). The results have been published in [5].

Let ξ : Q → Z ⊂ R be a smooth map with the property that for every z ∈ Z the level
sets

Mz = {q ∈ Q : ξ(q) = z} ⊂ Q
2The existence of these so-called essential degrees of freedom requires of course prior knowledge.
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Chapter 3. The generating structure of spatial dynamics

are smooth submanifolds of Q with codimension 1, i.e. hypersurfaces. ξ is then called
the essential or reaction coordinate. Assume that ξ is smooth enough for Mz to form
a foliation of Q. The Mz take the role of the slices Γ(q) (see (2.43)). The unessential
coordinates now are given implicitly, in that they parametrize the leavesMz for every
value z of ξ.

We now want to compute, for a given z, the average value of some quantity u ∈
L2

µQ (Q) over the leafMz, i.e. the expected value (with respect to µQ) of u conditional
on ξ(q) = z:

EµQ
[
u(q)

∣∣ ξ(q) = z
]
=
∫

Mz

u(q) dµz . (3.9)

To derive an expression for the probability measure µz on the leafMz, consider

∫

Q
u(q) dµQ(q) =

∫

Q
u(q) fQ(q) dq

(∗)
=
∫

Z

( ∫

Mz

u fQ|∇ξ|−1 dσz

)
dz . (3.10)

(∗) is the coarea formula [21, Sect. 3.2] and σz is the Riemannian volume element on
Mz. With the law of total expectation, one gets

∫

Z

( ∫

Mz

u dµz

)
dz = E

[
Eµz

[
u(q)

∣∣ ξ(q) = z
]]

= EµQ
[
u(q)]

=
∫

Q
u dµQ

=
∫

Z

( ∫

Mz

u fQ|∇ξ|−1 dσz

)
dz .

Thus we have

dµz =
1

NQ(z)
fQ|∇ξ|−1 dσz , with NQ(z) =

∫

Mz

fQ|∇ξ|−1 dσz , (3.11)

where NQ(z) is a normalization factor. This now allows us to define a projection
operator Πz : Lk

µQ (Q)→ Lk (Z):

(
Πzu

)
(z) =

1
NQ(z)

∫

Mz

u dµz , (3.12)

with which we can define the essential spatial transfer operator St
ess:

St
essw(z) :=

(
ΠzSt(w ◦ ξ)

)
(z) =

∫

Mz

∫

P
Pt

Lan
(
w ◦ ξ

)
(q, p) dµP dµz . (3.13)
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3.4. Pseudogenerators in reaction coordinates

Projected pseudogenerators

The according essential pseudogenerators are now defined analogous to Definition 3.1.1,

Gess
n := ∂n

t St
ess
∣∣
t=0 . (3.14)

From (3.13) in conjunction with Proposition 3.1.3, it follows directly that, for w = w(z)
and w ◦ ξ sufficiently smooth,

Gess
n w(z) =

(
ΠzGn(w ◦ ξ)

)
(z) , (3.15)

thus Gess
0 = I, Gess

1 = 0. Moreover, it has been shown by Hartmann in [5], that for
Cartesian coordinates, Gess

2 again admits the form of an infinitesimal generator for an
Itô diffusion. We extend this result to generalized coordinates in the following

Lemma 3.4.1. For sufficiently smooth functions w = w(z), the second essential pseudogener-
ator reads

Gess
2 = β−1a(z)

∂2

∂z2 + b(z)
∂

∂z
,

with the noise and drift coefficients

a(z) = Πz

[
∇ᵀξM−1∇ξ

]
,

b(z) = Πz

[ 1√
det M

β−1 tr
(
∇ξ : ∇

(√
det MM−1)+

√
det M(∇2ξ)M−1

)
−∇ᵀVM−1∇ξ

]
.

Proof. By Corollary 3.2.3, the second pseudogenerator is given by G2 = β−1∆̃−∇V · ∇̃,
with ∆̃ and ∇̃ defined in (2.30) with γ replaced by the mass matrix M. Applied to w ◦ ξ,
using the matrix calculus version of the chain rule, give

∆̃
(
w ◦ ξ

)
(q) =

1√
det M

∇ ·
(√

det MM−1∇w(ξ(q))
)

=
1√

det M
tr
[√

det M∇ᵀξ(q)M−1∇ξ(q)w′′(ξ(q))

+
(
∇ξ(q) : ∇

(√
det MM−1)+

(√
det M(∇2ξ(q))M−1))w′(ξ(q))

]
,

∇̃
(
w ◦ ξ

)
(q) = M−1∇w(ξ(q)) = M−1∇ξ(q)w′(ξ(q)) .

Application of Πz with Πzw′(ξ(q)) = w′(z) and Πzw′′(ξ(q)) = w′′(z) yields the asser-
tion.
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Chapter 3. The generating structure of spatial dynamics

Remarks.

1. The second essential pseudogenerator Gess
2 can be interpreted as the infinitesimal

generator of the diffusion

dz
dt

= b(z) +
√

2β−1σ(z)wt , (3.16)

with σ(z) =
√

a(z) and wt being a one-dimensional uncorrelated Gaussian white
noise process. For Cartesian coordinates and mass matrix M = I, equation
(3.16) has been derived by Legoll and Lelièvre [42] using first-order (Markovian)
optimal prediction.

2. In order to use Gess
2 in metastability analysis, it has to be discretized. Collocation

methods require the evaluation of Gess
2 ϕi(zj) for ansatz functions ϕi at colloca-

tions points zj (see Section 2.3.2), which in turn requires the evaluation of the
noise and drift-coefficients a(zj), b(zj) in Lemma 3.4.1. As this involves (poten-
tially high-dimensional) integrals that represent averages over the non-essential
degrees of freedom, this could be challenging.

3. Though we suspect Lemma 3.4.1 to be generalizable to reaction coordinates of
higher dimension, it is unclear whether the resulting projected second pseudo-
generator can again be interpreted as the infinitesimal generator of a diffusion
of form (3.16).
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4. Pseudogenerator–based metastability
analysis

4.1. Restoration of the spatial transfer operator

In this section we aim to reconstruct the spatial transfer operator St from its pseu-
dogenerators, with the final goal to numerically discretize this reconstruction instead
of St. For Cartesian coordinates, these reconstruction schemes have first been derived
in [6].

The premise for this approach to yield an efficient numerical strategy is of course
that the pseudogenerators (more precise: their discretization via collocation methods)
can be computed with reasonable numerical effort. If the system at hand is given in
Cartesian coordinates, this is indeed the case for its first three pseudogenerators (see
Corollary 3.2.2):

• The potential and force field V and ∇V have to be evaluable even for a simple
trajectory-based analysis. Thus, we assume that they are readily available and
can be evaluated at the collocation points with little numerical effort.

• As we aim for a collocation-like discretization, the complexity of computing the
derivatives ∇u and ∇2u depends on the ansatz space we operate on. If chosen
sensibly, both derivatives can be compiled analytically and evaluated cheaply.
Both Fourier– and Chebyshev ansatz functions—and the ansatz functions of the
corresponding product spaces—can be differentiated analytically.

Unfortunately, in generalized coordinates, the additional term ∇M−1 in G2 (see Theo-
rem 3.2.1) poses some challenges:

• Its computation represents real additional cost over simulation-based methods,
as it is not needed there.

• ∇M−1(q) is a tensor of order 3, which, when compiled naively, takes up signifi-
cant storage space in higher dimensions.

• In the case where the generalized Langevin dynamics is constructed from atom-
based Langevin dynamics via a diffeomorphism Φ (see Section 1.2.2), we have
M(q) = ∇Φ(q)ᵀM∇Φ(q). Thus, for the evaluation of ∇q M−1(q), the first and
second derivatives of Φ are required. As we assume Φ to be known analytically
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Chapter 4. Pseudogenerator–based metastability analysis

and consist only of simple geometric transformations1, this could be automated
using a symbolic computer algebra system or automated differentiation, but it is
unclear how this scales to higher dimensions. Again, ∇2Φ is a 3-tensor, and can
become unwieldy when stored explicitly.

Thus we expect that in generalized coordinates, the discretization of G2 can be com-
puted only for low-dimensional systems. However, as G2 = LSmol, the following pseu-
dogenerator based restoration methods are applicable whenever generator-based col-
location methods for the Smoluchowski dynamics are.

4.1.1. Taylor reconstruction

As the Gk correspond to time-derivatives of St for t = 0, a straight-forward idea for
approximating St is via an operator-valued Taylor-like sum.

We first prove the spatial analogue to Proposition 2.1.9:

Proposition 4.1.1. Let u ∈ W k,n (Q). Then,

∥∥∥Stu−
n

∑
l=0

tl

l!
Glu

∥∥∥
k,µQ

= O(tn+1), (t→ 0).

Proof. By definition of St and Lemma 3.1.3, we can write

∥∥∥Stu−
n

∑
l=0

tl

l!
Glu

∥∥∥
k,µQ

=
∥∥∥ 1

fQ

∫

P
Pt

Lan(u) dµP −
n

∑
l=0

( tl

l!
1
fQ

∫

P
Ll(u) dµP

)∥∥∥
k,µQ

≤ 1
fQ

∫

P

∥∥∥Pt
Lan(u)−

n

∑
l=0

tl

l!
Ll(u)

∥∥∥
k,µQ

dµP .

However, the integrand is of order O(tK+1) by Proposition 2.1.9.

We define onW k,n (Q) the n-th Taylor reconstruction of St:

Tt
nu :=

n

∑
l=0

tl

l!
Glu . (4.1)

As described in the last section, the Gn for n > 3 are not readily available, and G3 only
is available in the Cartesian case. Thus Tt

3 and Tt
2 respectively will be used primarily.

We then get quartic and cubic convergence for the density propagation:

1Remember that the generalized coordinates were originally motivated by internal coordinates, so imag-
ine Φ to describe the computation of bond lengths, valence– and dihedral angles from the atoms’
positions.
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4.1. Restoration of the spatial transfer operator

Corollary 4.1.2. Let u ∈ W k,3 (Q), St the spatial transfer operator for Langevin dynamics in
Cartesian coordinates and Tt

3 its third Taylor reconstruction. Then
∥∥Stu− Tt

3u
∥∥

k,µQ
= O(t4), (t→ 0).

Let u ∈ W k,2 (Q), St the spatial transfer operator for Langevin dynamics in generalized
coordinates, Tt

2 its second Taylor reconstruction. Then
∥∥Stu− Tt

2u
∥∥

k,µQ
= O(t3), (t→ 0).

In the special case of Cartesian coordinates with identity mass matrix, Tt
3 assumes a

particularly simple form:

Corollary 4.1.3. Let Tt
3 be the Taylor reconstruction for Langevin dynamics in Cartesian

coordinates with M = I. Then Tt
3 is defined onW k,2 (Q) and for u ∈ W k,2 (Q),

Tt
3 = id+

(
t2

2
− γ

t3

6

)(
1
β

∆−∇V · ∇
)

.

Proof. Using M = I in the equation for G2 and G3 in Corollary 3.2.2 gives G3 = −γG2.
As for Cartesian coordinates the Smoluchowski generator takes the form LSmol =

1
β ∆−

∇V · ∇, and G2 = LSmol, the Taylor reconstruction Tt
3 takes the asserted form.

We expect that Tt
2 and Tt

3 approximate St well (for t→ 0) and can be computed cheaply,
under the assumptions described at the beginning of this section. However, unlike St,
Tt

n is neither norm-preserving nor positive for densities with respect to fΩ, i.e.

‖Tt
nu‖1,µQ 6= ‖u‖1,µQ for u ≥ 0 .

Therefore, when transporting u, we lose the interpretation of
(
Tt

nu
)

fΩ as a physical
density2.

Moreover, for t sufficiently large, Tt
nu is not even a contraction on W1,2 (Q), as can be

seen easily for the Cartesian coordinate case. Here, with λ ∈ σ(G2), λ 6= 0,

∣∣ 1 +
t2

2
λ− γt3

6
λ

︸ ︷︷ ︸
∈σ(Tt)

∣∣ → ∞, (t→ ∞),

and so ‖Tt
n‖2,µQ → ∞, (t → ∞). We will see in the numerical experiments that

this quickly (i.e. already for small to moderate t) destroys the interpretation of the
eigenvalues of Tt

n as metastability quantifiers.

2While this limits the usefulness of Tt
n for pure density transport, it is actually irrelevant for the detection

of metastable sets, as the eigenfunctions of Tt
n are constant in t.
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Remark. In equation (3.8), a third–order approximation for the density transport
under St was given:

Stu = u +
t2

2
LSmolu

︸ ︷︷ ︸
Tt

2u

+O(t3).

As the operator on the right hand side is the second Taylor reconstruction Tt
2, this can

be seen as an alternative proof of its third–order approximation quality.

4.1.2. Exponential reconstruction

To avoid the structural disadvantages of Tt
n, an alternative approximation to St can be

defined, which we will call the exponential reconstruction Et. It will indeed be norm-
preserving and positive for densities, further contractive onW1,2 (Q). Let

Etu := exp
(

t2

2
G2

)
u . (4.2)

One has to be careful with notation, however. As a differential operator, G2 is un-
bounded on W k,2 (Q), and thus the above operator exponential cannot be defined by
an infinite series. However, considerations of e.g. Pazy [56] allow us to define Et over
a bounded operator approximating G2, the so-called Yosida approximation:

Gλ
2 := λG2(λI − G2)

−1 for λ ∈ R≥0 .

Lemma 4.1.4. Gλ
2 is a bounded linear operator onW1,2 (Q), and

lim
λ→∞

Gλ
2 = G2.

Proof. As G2 is the infinitesimal generator of the Smoluchowski dynamics, it fulfills
the assumptions of [56, Chapter 1, Theorem 3.1]. Thus, the convergence holds due to
[56, Chapter 1, Lemma 3.3].

The operator exponential in (4.2) is now defined as

exp
(

t2

2
G2

)
u := lim

λ→∞
exp

(
t2

2
Gλ

2

)
u.

The operator family Et now indeed maps densities (with respect to µQ) onto densities:

Proposition 4.1.5. Let u ∈ L1
µQ(Q), u ≥ 0. Then

Etu ≥ 0 and ‖Etu‖1,µQ = ‖u‖1,µQ for all t ≥ 0.

Moreover, for each t, Et is a contraction on Lk
µQ(Q).
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4.1. Restoration of the spatial transfer operator

Proof. The Smoluchowski transfer operator Pt
Smol possesses all of the described prop-

erties due to being the solution operator to the Smoluchowski Fokker–Planck equa-
tion (2.31).

Due to Corollary 3.2.3 and Lemma 4.1.4, Et simply is a time-scaled version of the
transfer operator of the Smoluchowski dynamics:

Et = Pt2/2
Smol.

As such, it inherits the desired properties from Pt
Smol.

The following statements describe the approximation quality of Et in the limit t → 0,
analogously to the Taylor reconstruction:

Lemma 4.1.6. Let u ∈ W k,N (Q). Then for t→ 0,

ε(t) :=
∥∥∥∥Etu−

N

∑
n=0

( t2

2 G2
)n

n!
u
∥∥∥∥

k,µQ

= O(t2N+1).

Proof. Etu, as the smoothly time-rescaled Smoluchowski transfer operator, is N + 1
times differentiable in t. Thus we can apply the Taylor expansion for Banach space
valued functions to Et (see [82, Section 4.5]):

Etu =
2N

∑
n=0

tn

n!
(∂n

s Es∣∣
s=0)u +

( ∫ 1

0

1
(2N)!

(1− s)2N∂2N+1
s Estu ds

)
t2N+1. (4.3)

It can be shown iteratively that the n-th derivative of Es is

∂n
s Es = Es

b n
2 c

∑
j=0

n! sn−2j

2j j! (n− 2j)!
Gn−j

2 ,

so with the operator An :=
b n

2 c
∑
j=0

n! sn−2j

2j j! (n− 2j)!
Gn−j

2 , we have ∂n
s Es = Es An.

Evaluation at s = 0 yields

∂n
s Es∣∣

s=0 =





0 , n odd ,
n!

2
n
2 ( n

2 )!
G

n
2
2 , n even ,

and so
2N

∑
n=0

tn

n!
(∂n

s Es∣∣
s=0)u =

N

∑
n=0

t2n

(2n)!

( (2n)!
2nn!

Gn
2

)
u =

N

∑
n=0

t2n

2nn!
Gn

2 u .
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Thus, the remainder is only the integral in (4.3):

∥∥∥∥Etu−
N

∑
n=0

( t2

2 G2
)n

n!
u
∥∥∥∥

2,µQ

=
∥∥∥t2N+1

∫ 1

0

1
(2N)!

(1− s)2N∂2N+1Estu ds
∥∥∥

2,µQ

≤ t2N+1

(2N)!
sup

s∈[0,1]

∥∥∂2N+1Esu
∥∥

2,µQ

=
t2N+1

(2N)!
sup

s∈[0,1]

∥∥(Es A2N+1)u
∥∥

2,µQ

≤ t2N+1

(2N)!
sup

s∈[0,1]

∥∥Es∥∥
2,µQ︸ ︷︷ ︸

≤1

‖A2N+1u‖2,µQ .

As u ∈ W k,N (Q), we have ‖A2N+1u‖2,µQ < ∞. This completes the proof.

Corollary 4.1.7. Let u ∈ W1,2 (Q). Then
∥∥Etu− Stu

∥∥
2,µQ

= O(t3) for t→ 0.

Proof.

∥∥Etu− Stu
∥∥

2,µQ
≤
∥∥∥Etu−

( 2

∑
n=0

tn

n!
Gn
)
u
∥∥∥

2,µQ
+
∥∥∥
( 2

∑
n=0

tn

n!
Gn
)
u− Stu

∥∥∥
2,µQ

=
∥∥∥Etu−

1

∑
n=0

( t2

2 G2
)n

n!
u
∥∥∥

2,µQ
+
∥∥∥
( 2

∑
n=0

tn

n!
Gn
)
u− Stu

∥∥∥
2,µQ

.

Both summands decline like O(t3) (t → 0), the first due to Lemma 4.1.6, the second
due to Theorem 4.1.1.

Remarks.

1. Et is exactly the solution operator of the (approximate) differential equation for
the spatial dynamics which we derived in Proposition 3.3.2: For u ∈ W k,2 (Ω),

∂t

(
exp

( t2

2
G2

)
u
)
= tG2 exp

( t2

2
G2

)
u,

so Etu solves (3.5).

2. In the Cartesian setting, where G3 takes a simple form similar to G2, an approxi-
mation order of O(t4) can be achieved by including G3 into Et, i.e. setting

Et
3 := exp

(
t2

2
G2 +

t3

6
G3

)
.
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4.1. Restoration of the spatial transfer operator

Et
3 again is a time-rescaled transfer operator of the Smoluchowski dynamics.

However, it is not contractive for all t, as σ(G3) ⊂ [0, ∞). This follows from
σ(LSmol) ⊂ (−∞, 0] and G3 = −γLSmol. We thus stick to the lower-order approx-
imation to retain the correct qualitative behavior for larger t.

3. In contrast to the operator Tt, which is only defined on the domain of the associ-
ated pseudogenerators, the operator Et can be defined for every u ∈ Lk

µQ(Q). We
conjecture that Corollary 4.1.7 holds also for this class of functions, although our
proof is not extendable to this case—it uses the Taylor reconstruction to estimate
the error. More advanced techniques from semigroup theory are needed, hence
this will be subject of future studies.

4.1.3. Reconstruction of the spectrum

The previous section deals with the pointwise convergence of Tt
n and Et to St. For

conformation analysis, however, the approximation to the spectrum of St has to be
examined. We perform the following analysis exemplarily for Et, but it holds for Tt

2
analogously.

For some operator A, the set

σε(A) =
{

λ ∈ C
∣∣ ∥∥Au− λu

∥∥ ≤ ε for some u ∈ D(A)
}

(4.4)

is called the ε-pseudospectrum of A, the theory of which is covered extensively in [72].

From Corollary 4.1.7 (respectively Proposition 4.1.1 for Tt
2) it follows that if u is an

eigenfunction of Et at eigenvalue λE, then

∥∥Stu− λEu
∥∥

2,µQ
=
∥∥Stu− Etu

∥∥
2,µQ

= O(t3).

Likewise, for u an eigenfunction of St at eigenvalue λ,

∥∥Etu− λu
∥∥

2,µQ
=
∥∥Etu− Stu

∥∥
2,µQ

= O(t3) .

Thus we can always find a small ε(t) > 0 with ε(t) = O(t3) so that

σp(St) ⊂ σε(t)(Et) and σp(Et) ⊂ σε(t)(S
t) .

Since St is self-adjoint, thus normal, for each λ̃ ∈ σε(t)(St) there exists an eigen-
value λ ∈ σp(St) with |λ− λ̃| ≤ ε(t). Likewise, Et is self-adjoint as a time–rescaled
Smoluchowski transfer operator, so for each λ̃E ∈ σε(t)(Et) there exists λE ∈ σp(Tt)

with |λE − λ̃E| ≤ ε(t).

Together we have
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Chapter 4. Pseudogenerator–based metastability analysis

Proposition 4.1.8. Let Bε(A) denote the ε-neighborhood of a set A ⊂ R and σp(St), σp(Et)

denote the point spectra of the spatial transfer operator St and its exponential restoration Et.
Then

σp(St) ⊂ Bε(t)
(
σp(Et)

)
,

with ε(t) = O(t3).

Remarks.

1. In Corollary 4.1.8, it suffices to consider the absolute approximation error as

λ(t), λT(t), λE(t)→ 1 (t→ 0) .

2. The result can be extended to the n–th Taylor restoration Tt
n, thus giving an

approximation error of O(tn+1) for the spectrum, provided Tt
n is self-adjoint (or

at least normal). For Cartesian coordinates and n = 3, that is the case.

4.2. Numerical experiments

In this section we numerically demonstrate the pseudogenerator– and collocation–
based restoration methods from Section 4.1 by means of two academic examples. As
the theoretical results concerning pseudogenerators for Langevin dynamics in gener-
alized coordinates are relatively new, only Langevin systems in Cartesian coordinates
are considered. The experiments were first published in [6].

4.2.1. One-dimensional double-well potential

To accurately test the approximation quality of the third order Taylor approximation Tt
3

and the exponential approximation Et to St, we first analyze a simple one-dimensional
Cartesian Langevin system on the unit circle, which can be discretized to high resolu-
tion by the classical Ulam method. It has the 1–periodic double-well potential

V(q) = 1 + 3 cos(2πq) + 3 cos2(2πq)− cos3(2πq).

We consider the system with constant mass matrix M = 1, inverse temperature β = 1,
Langevin damping constant γ = 1 and corresponding noise constant σ =

√
2. As

even for this simple system neither eigenvalues nor -vectors can be computed analyt-
ically, we first compute a classic Ulam discretization (see Section 2.3.1) to St with a
large number of discretization boxes and sampling points, denoted by S̃t. Spectra and
eigenvectors of S̃t then serve as a reference point for the error analysis. A resolution
of 210 boxes and 104 sampling points produce sufficiently accurate spectral data, as a
further increase does not alter the results considerably.
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Figure 4.1.: The two wells of the periodic double well potential indicate two metastable

regions in configuration space. A trajectory qt of the according Langevin
dynamics with appropriate temperature shows the characteristic jumping
pattern between the wells.

As our goal is metastability analysis, we analyze the error in the portion of the sub-
dominant spectrum and the associated eigenvectors. Table 4.2 shows a distinct spectral
gap after the second eigenvalue of S̃t, so analyzing λ1, λ2 and v1, v2 should reveal the
main metastable sets.

1 2 3 4 5 6 7 8 9
10´2

10´1

100

n

λ
n

t “ 0.5
t “ 2.5

Figure 4.2.: The dominant eigenvalues of S̃t for different lag times t. A spectral gap
after λ2 is observable (more noticeable for larger lag times).

For the discretization G̃2 of the pseudogenerator G2, we use 33 Fourier ansatz functions
of form (2.48) and the same number of collocation points on a equidistant grid. The
Fourier modes possess inherent periodic boundary conditions that match the periodic
domain.
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Figure 4.3.: Eigenvalue errors for the Taylor and Exponential approximation for small
t. The error “bottoming out” on the left side of the plot is due to the fact
that computing the Ulam discretization S̃t to high accuracy for very small
values of t requires increasingly large numbers of sampling points, as the
box transitions get very rare.

Eigenvalue comparison

The absolute error in the subdominant eigenvalues is now measured by

εT(t) :=
∣∣λ2(S̃t)− λ2(T̃t

3)
∣∣ , εE(t) :=

∣∣λ2(S̃t)− λ2(Ẽt)
∣∣

where λ2(S̃t), λ2(T̃t
3), λ2(Ẽt) is the subdominant eigenvalue of S̃t, T̃t

3 and Ẽt, respec-
tively.

Figure 4.3 shows εT(t) and εE(t) for small lag times. The suspected convergence rate
εT(t) = O(t4) for t → 0 for the Taylor approximation is confirmed. Also, while
Corollary 4.1.8 depicted a rate of convergence of only O(t3) for εE(t), this rate seems
to be exceeded for this particular example system.

In Figure 4.4 the 8 largest eigenvalues for increasing lag times are shown. We see that
for small t (up to t ≈ 0.1), a qualitative agreement of the eigenvalues of S̃t, Ẽt and
T̃t

3 can be observed. However, for increasing t, the spectrum of T̃t
3 becomes negative,

while the spectrum of Ẽt at least shows the right qualitative behavior

sup{λ ∈ σp(Ẽt), λ 6= 1} → 0 , (t→ ∞) .

Added for comparison, the spectrum of the discretized Smoluchowski transfer oper-
ator P̃t

Smol, representing dynamics on a completely different time scale, inadequately
approximates the spectrum of S̃t.

Eigenvector comparison. Before considering the eigenvectors of Tt
3 and Et, note

that all but the first eigenvector of St (and S̃t) are in general time-dependent. In
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Figure 4.4.: The 8 dominant eigenvalues of the various discretized operators in depen-
dence of the lag time t.
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Figure 4.5.: Comparison of the second largest eigenvectors of S̃t and G̃2. We see that
for S̃t, the eigenvector is strongly time-dependent in the unweighted case.

contrast, the eigenvectors of any semi-group transfer operator coincide with those of
its infinitesimal generator for all times, see Theorem 2.1.5.

In our example, while the first eigenvector of S̃t remains constant (v1 ≡ 1), the second
eigenvector starts out as almost a step function, but gets more and more concentrated
in the potential wells for increased lag times and even repeatedly changes signs at
some positions (Figure 4.5 left). The eigenvectors of T̃t

3 and Ẽt (see Figure, however,
are time-invariant, and coincide with those of G2, by construction. For small lag times,
the second eigenvector w2 of G̃2 compares well to the second eigenvector v2 of S̃t

(Figure 4.5). For larger t, there is a clear difference.

As we understand St, Et and Tt
3 to be defined on L2

µQ(Q), their physical interpretation
is to transport functions with respect to fQ. It is therefore appropriate to weight their
eigenvectors with fQ, as this gives their representation with respect to the Lebesgue
measure. Weighted with fQ, the time-dependence of v2 becomes insignificant, as the
parts of Q where v2 and w2 differ are sets of small µQ-measure. Consequently, our
restoration provides a very good approximation of the fQ-weighted eigenvectors (see
Figures 4.6). It has to be investigated whether this phenomenon hints at some under-
lying regularity or is just a singular fluke.

The sign structure of w2 can now be used (see the comment after Theorem 2.2.6) to
identifies the following pair of presumably metastable sets:

A1 = {w2 ≥ 0} = (0, 0.5], A2 = {w2 < 0} = (0.5, 1].

It can be easily verified that A1, A2 form the maximally metastable decomposition of
the system, as they correspond to the areas between the two energy barriers of the
potential.
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Figure 4.6.: Comparison of the second largest eigenvectors of S̃t and G̃2, weighted with
fQ. The time-dependency for S̃t decreases significantly.

Transition probabilities. Theorem 2.2.6 now provides bounds for the transition prob-
abilities between those metastable sets. Recall that the combined degree of metastabil-
ity

s(t, A1, A2) = p(t, A1, A1) + p(t, A2, A2)

can be bounded from above and below by

1 + ρ2(St)λ2(St) + c(St) ≤ s(t, A1, A2) ≤ 1 + λ2(St) ,

where

• λ2(St) is the subdominant eigenvalue of St ,

• ρ2(St) = 〈v2(St), χA1 − χA2〉, with v2(St) the subdominant eigenvector of St ,

• c(St) = a(St)
(
1− ρ2(St)

)
with a(St) the lower bound of the spectrum of St.

We want to verify these bounds numerically and examine whether they can be ap-
proximated by the restored operator Et, i.e. whether the respective bounds based on
Et hold:

1 + ρ2(Et)λ2(Et) + c(Et)
?
≤ s(t, A1, A2)

?
≤ 1 + λ2(Et) ,

We first compute an estimate for s(t, A1, A2) by a simple Monte Carlo algorithm:

1. Randomly draw two sets of starting points, with density χA1 fQ/µQ(A1) and
χA2 fQ/µQ(A2) (i.e. sample fQ in A1 and A2).

2. Numerically integrate those samples to time t.

3. Count the portion of the endpoints that are located in A1 and A2, respectively.
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For sufficiently many samples, this provides an accurate estimate for p(t, A1, A1)

and p(t, A2, A2).

The left portion of Figure 4.8 confirms that the bounds hold when based on λ2(S̃t)

and v2(S̃t). They do, however, provide a significant margin of error, and diverge for
increasing lag time. The right portion of Figure 4.8 shows that only for small lag times
(again up to about t ≈ 0.1, s(t, A1, A2) is contained within the bounds based on the
restored eigenvalue λ2(Et) and its eigenvector v2(Et).

We can thus conclude that, while the sign structure of the eigenfunctions w2 of G2

correctly identifies the maximally metastable decomposition A1, A2, the eigenvalue
λ2(Et) of the exponential reconstruction contains information about the combined de-
gree of metastability (hence indirectly the transition rates between A1 and A2) only for
small t. The same conclusions can be drawn for the Taylor reconstruction Tt

3.

0 0.5 1

0

q

χA1fQ
A1

0 0.5 1

0

q

χA2fQ
A2

Figure 4.7.: The metastable sets with the corresponding portion of the canonical den-
sity fQ.
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Figure 4.8.: Metastability of the partition A1, A2 and comparison to the bounds of The-
orem 2.2.6, calculated based on the spectral information of S̃t (left) and
Ẽt (right).
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Figure 4.9.: The quad-well potential in the region [0, 1]2.

4.2.2. Two-dimensional quad-well potential

The discretization and restoration methods perform similarly on higher-dimensional
domains. Again using grid-based spectral collocation, we will demonstrate how to
reconstruct the spatial transfer operator for a periodic two-dimensional quad-well po-
tential of the form

V(q1, q2) = 1 + 3 cos(2πq1) + 3 cos2(2πq1)− cos3(2πq1)

+ 1 + 3 cos(2πq2) + 3 cos2(2πq2)− cos3(2πq2) + cos(2πq2 −
π

3
),

(4.5)

visualized in Figure 4.9.

This potential is of interest, as the four local minima of different depth form multiple
hierarchies of metastable sets. A similar (albeit non-periodic) potential was consid-
ered in [14]. The potential is periodic on the torus T2, so for discretization we use
(products of) Fourier modes. As for this example we do not perform rigorous error
analysis, a resolution of 31 per dimension is sufficient for both the Ulam and colloca-
tion discretizations, resulting in a total of 961 boxes and ansatz functions, respectively.
We use heat and damping parameters β = 1, γ = 1 and mass matrix M =

(
1 0
0 1

)

The spectrum of the (Ulam-approximated) spatial transfer operator shows a gap after
the fourth eigenvalue (Figure 4.10). We thus expect to identify three pairs of metastable
decompositions of Q, ultimately separating the four potential wells.

For the subdominant eigenvectors v2, v3, v4 of S̃t, we observe a similar behavior as
in the one-dimensional case: For longer lag times, the relevant eigenvectors become
more concentrated in the regions of the potential wells (Figure 4.11). Also, in regions
where fQ is small, sign structure fluctuations occur for larger lag times. While again
the subdominant eigenvectors w2, w3, w4 of G̃2 provide a good approximation for
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Figure 4.10.: The dominant eigenvalues of S̃t for short and intermediate lag times t.
There is a spectral gap after λ4.

small lag times, the dynamic behavior of v2, v3, v4 for larger lag times cannot be
reconstructed.

Transition probabilities. The sign structure of the eigenvectors w2, w3, w4 of G̃2

decomposes Q into three pairs of metastable sets, each with a different combined
degree of metastability (Figure 4.12). Clearly the decompositions correspond to the
potential wells, and are thus metastable in an intuitive sense.

The portion of fQ on the respective metastable sets now is

fAi =
χAi fQ

µQ(Ai)
, fBi =

χBi fQ
µQ(Bi)

, fCi =
χCi fQ

µQ(Ci)
, i = 1, 2.

We again deploy the sampling–based algorithm from Section 4.2.1 to estimate the com-
bined degrees of metastability s(t, A1, A2), s(t, B1, B2), s(t, C1, C2) and demonstrate
the bounds from Theorem 4.13. Again Ẽt provides accurate bounds only for short lag
times (Figure 4.13).
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Figure 4.11.: The three most significant eigenvectors of G̃2 (top row) and S̃t for different
lag times (second and third row), unweighted.
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Figure 4.12.: The three tiers of invariant sets, identified via G̃2. The artifacts on the left
border of B1/2, C1/2 can be attributed to the ill-conditioned sign structure
analysis.
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Figure 4.13.: Combined degrees of metastability of the identified pairs of sets and com-
parison to the bounds of Theorem 2.2.6 based on both St and Et.
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5. Long-time spatial dynamics

5.1. Extended pseudogenerator approximation

In Section 4.1 we discussed strategies for restoring the spatial transfer operator St for
small lag times and showed convergence results for t→ 0. The numerical experiments
in Section 4.2 confirmed that there is indeed a limit to how long the spectrum and
eigenfunctions of Tt

n and Et provide a reasonable approximation to St.

The damping constant γ seems to somewhat influence this limit. Figure 5.1 suggests
that the higher the damping constant, the closer the dominant eigenfunctions of Pt

Smol
and G2 match for a fixed lag time t. In this section, we repeat the ideas of Koltai from
[5] to explain this phenomenon.

100 101 102 103

10−1.5

10−1

γ

∥∥u2(St)− u2(G2)
∥∥

2

Figure 5.1.: L2-distance between approximations of the subdominant eigenfunctions of
St and G2 in the double-well system for fixed t = 0.5 and variable γ. Note
that we do not wish to imply any convergence rate yet.

Perturbation expansion For simplicity, assume that the system at hand is given
in Cartesian coordinates with identity mass matrix at inverse temperature β = 1.
Similar to the perturbation expansion used to derive Smoluchowski dynamics (see
Appendix A.2), we begin by looking at the Langevin dynamics with rescaled friction
and noise-coefficients. However, we do not use the scaling γ 7→ γ/ε, but set γ := ε−1

instead. The according infinitesimal generator can then be written as LLan = LHam +
1
ε LOU with

LHam = ∇qH · ∇p −∇pH · ∇q , LOU = ∆p − p · ∇p ,
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and the associated Smoluchowski generator reads LSmol = ∆q −∇qV · ∇q.

To counter the increasingly slow dynamics, we re-scale time t 7→ εt =: τ. Via

LLanu(εt, ·) = d
dt

u(εt, ·) = εu̇(εt, ·)

we see that density transport on the new time scale is governed by the new generator
Lε

Lan := ε−1LLan.

The connection between the eigenfunctions of LSmol and Lε
Lan is then given by

Theorem 5.1.1 ([64, Theorem 4.13]). Assume there is an isolated eigenvalue λε of Lε
Lan with

associated eigenfunction uε and assume that the asymptotic expansions

uε = u0 + εu1 + ε2u2 + . . .

λε = λ0 + ελ1 + ε2λ2 + . . .

hold. Then the eigenvalues and eigenfunctions of Lε
Lan can be approximated up to O(ε) by the

eigenvalues and eigenfunctions of LSmol: we have

LSmolu0 = λ0u0

uε = u0 + ε p∇qu0︸ ︷︷ ︸
=u1

+O(ε2) .

This explains the convergence of the rescaled Langevin- to the Smoluchowski eigen-
functions in the high friction limit. However, remember that we are interested in u0 as
an approximative eigenfunction of the spatial transfer operator St on the original time
scale. For this, we have to take a look at the system’s decay rates.

Decay rates. As metastability information is encoded in the dominant eigenfunc-
tions to non-zero eigenvalues, we restrict ourselves to that case, i.e. assume that
λε 6= 0 6= λ0 and λε, λ0 are dominant. LSmol is self-adjoint on L2

µQ (Q), and thus
its eigenfunctions are orthogonal. As χQ is an eigenfunction of LSmol at eigenvalue 0,
we have

〈χΩ, u0〉µΩ =
∫

Ω
χΩ(q, p)u0(q) dµΩ

=
∫

Q
χQ(q)u0(q) dµQ = 〈χQ, u0〉µQ = 0 .

Moreover, uε is also the eigenfunction of the Langevin transfer operator Pt
Lan (at eigen-

value eελεt). Pt
Lan is self-adjoint in the space spanned by the dominant eigenfunctions

(see the properties part in Section 2.1.1) and possesses the eigenfunction χΩ (at eigen-
value 1). Thus we also have 〈χΩ, uε〉µΩ = 0.
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5.1. Extended pseudogenerator approximation

Define the decay rate of Lε
Lan by

ηε := max
{

Re λε | 0 6= λε ∈ σ(Lε
Lan)

}
.

Under the assumption that Lε
Lan has a (real) dominant spectrum, ηε is simply its

second-largest eigenvalue. Both u0 and uε lie in the space orthogonal to χΩ, and
thus decay exponentially under the action of Pt

Lan. Let u ⊥ χΩ. Then
∥∥Pt

Lanu
∥∥ =

∥∥ exp(tLLan)u
∥∥ =

∥∥ exp(tεLε
Lan)u

∥∥
≤ exp(tεηε)‖u‖ = O(etεηε) for t→ 0 .

With this, we can now analyze the action of the spatial propagator St on the Smolu-
chowski eigenfunction u0:

Stu0(q) =
∫

P

(
Pt

Lanu0
)
(q, p) dµP

=
∫

P

(
Pt

Lan(uε − (uε − u0))
)
(q, p) dµP

uε is an eigenfunction of Pt
Lan and uε − u0 is orthogonal to χΩ. Moreover, uε − u0 =

εu1 + ε2u2 + . . . , and so Pt
Lan(uε − u0) decays with rate O(εetεηε).

= etελε

∫

P
uε(q, p) dµP +O(εetεηε)

= etελε

∫

P

(
u0(q) + εu1(q, p) +O(ε2)

)
dµP +O(εetεηε)

Using that u1 is antisymmetric with respect to p (see Theorem 5.1.1) finally yields

= etελε u0(q) +O(ε2etελε) +O(εetεηε) for ε→ 0

= etε(λ0+O(ε))u0(q) +O(ε2etε(λ0+O(ε))) +O(εetεηε) for ε→ 0 .

In order for u0 to represent a good approximative eigenfunction1 of St, the last two
summands must be small in comparison to the first one, i.e.2

|etελ0 | � |ε2etελ0 | , |etελ0 | � |εetεηε | .

The first condition is always fulfilled whenever ε is small. The second condition can
be recast as

t .
1

|λ0 − ηε|
ε−1| log ε| . (5.1)

This allows for the following interpretation:

1See the pseudospectrum discussion in Section 4.1.3.
2x & y here means “greater than up to some additive constant”.
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1. Lemma 2.1.4 allows the (positional) density transport under Langevin dynam-
ics to be approximated by Smoluchowski dynamics on a time scale t = ε−1τ =

O(ε−1) (ε→ 0). Our analysis suggests that with respect to metastability analysis,
this time scale can be stretched by a factor | log ε|.

2. The more dominant an eigenvalue, i.e. the smaller |λ0 − ηε|, the longer the time
scale is on which the Smoluchowski eigenfunction, and thus the eigenfunction of
the restored operators Et and Tt

3, approximates the corresponding eigenfunction
of the spatial transfer operator well. For the first subdominant eigenfunction,
where λε = ηε, and hence λ0 − ηε = O(ε), the estimate reads t . ε−2| log ε|.

Numerical validation. In order to validate the estimate (5.1) numerically, we per-
form the following experiment: Consider the Langevin system induced by the one-
dimensional periodic potential discussed in Section 4.2.1, with constant mass matrix
M = 1 at temperature β = 1.

For varying ε = γ−1, we compute the largest lag time t = tν(ε) such that the eigen-
functions uε = u2

ε at the subdominant eigenvalue λε = λ2
ε of St and Pt

Smol differ by less
than a given threshold ν, i.e. we compute

tν(ε) := inf
{

t > 0 : ‖u2
ε (S

t)− u2
ε (Pt

Smol)‖µQ > ν
}

.

Figure 5.2 shows ε 7→ tν(ε) for ν = 0.05, and for comparison, the graph of ε 7→
c1 log(ε)ε−2 + c2 (where we obtained the constants c1 and c2 by a least squares fit on
the given data). Clearly, on the chosen domain for tν, there is an excellent agreement
with the estimate.

Although these first estimates allow merely a slight quantitative extension of the time
scale on which the Smoluchowski dynamics approximates the spatial component of
the Langevin dynamics well, it suggests that the consideration of further structural
information from the perturbation expansion may allow for an extension of approxi-
mation time scales beyond the current, or inspire corrections terms to do so.

5.2. Almost Markovian behavior

For small t, the non-Markovianity of spatial dynamics is an important feature which
characterizes the density transport and thus the metastable behavior. We have seen
that an eigenvalue λ of St satisfies λ→ 1 as t→ 0 with a rate of O(exp (−κt2/2)) (for
some κ > 0), in contrast to the rate for semigroups of operators, which isO(exp (−κt)).

However, for increasing t, St exhibits a more regular, almost Markovian behavior [9,

82



5.2. Almost Markovian behavior
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Figure 5.2.: ε-dependence of the maximal lag time. The blue graph shows the largest
lag time such that ‖u1

ε (St) − u1
ε (Pt

Smol)‖L2
fQ
< 0.05. The black graph is

the prediction c1 log(ε)ε−2 + c2 with c1 ≈ −1.04 · 10−4, c2 ≈ 1.07 · 10−1

obtained from least-squares fitting. The eigenfunctions were computed by
an Ulam discretization of St and Pt

Smol with resolution 256.

70]. We explore how this could be exploited for efficient, trajectory-free metastability
analysis in this time region.

In this section, we will settle for less precise arguments than for the rest of the thesis,
and the justifications will mainly aim at the reader’s intuition. It can be seen as a
collection of ideas (partially published in [5]) justified by numerical experiments and
will conclude with some conjectures from current work in progress.

5.2.1. An extrapolation algorithm

Langevin dynamics, the underlying model of St, is a time-continuous ergodic Markov
process [45]. Due to ergodicity, we observe the convergence of any density to the
canonical density fΩ. Moreover, for sufficiently large damping, the relaxation of the
momentum coordinates is significantly faster than that of the position coordinates,
which can be seen by considering the associated Fokker–Planck equation (with respect
to the Lebesgue measure). For simplicity and a compact presentation, we consider a
system in Cartesian coordinates.

d
dt

ft = (L̄Ham + γL̄OU) f , with L̄OUg =
1
β

∆pg +∇p ·
(

gM−1 p
)

.
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Chapter 5. Long-time spatial dynamics

Thus, higher friction γ implies that the Ornstein–Uhlenbeck-part dominates the time
evolution. The solution of the Ornstein–Uhlenbeck Fokker–Planck equation is

g(p, t) =
∫

P
K(t, p, r)g(r, 0)dr, (5.2)

with the Green’s function

K(t, p, r) =
(

det(2πβ−1C(t))
)−1/2

exp
(
−β

2
(

p− re−γt)ᵀ C(t)−1 (p− re−γt)
)

.

and the covariance matrix

C(t) = M
(

id− e−2γM−1t
)

.

Observe that the time variable t appears in K always multiplied by γ. Thus, the larger
the damping γ, the more rapidly g(t, ·) tends towards the stationary solution3:

lim
t→∞

K(t, p, r) = fP (p) .

This suggests that we can find a relaxation lag time τr, such that for all t ≥ τr and for
all f : X → R

Pt
Lan f (q, p) ≈ ht(q) fΩ(q, p)

for some ht : Q → R.

We use this to argue in favor of “almost-Markovianity” of St. In the following let
t ≥ τr. For u : Q → R there is an ut : Q → R such that

P̄t
Lan
(
u(q) fΩ(q, p)

)
≈ ut(q) fΩ(q, p).

Using this and the semi-group property of P̄t
Lan, we get

S2tu(q) =
1

fQ(q)

∫

P
P̄2t

Lan
(
u(q) fΩ(q, p)

)
dp

≈ 1
fQ(q)

∫

P
P̄t

Lan
(
ut(q) fΩ(q, p)

)
dp

= Stut(q)

= St
( 1

fQ(q)

∫

P
ut(q) fΩ(q, p)dp

)

≈ St
( 1

fQ(q)

∫

P
P̄t

Lan
(
u(q) fΩ(q, p)

)
dp
)

= (St)2u(q).

3Remember that in Cartesian coordinates, fP does not depend on q.
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5.2. Almost Markovian behavior

Inductively, it follows that Snt ≈ (St)n for t ≥ τr, so in this sense, St is almost a
semigroup for big enough t. As the relaxation rate in (5.2) scales with 1/γ, we expect
the relaxation lag time to do the same.

Now assume that the relaxation lag time τr is small enough so that the pseudogenerator-
restored operators Tτr

n or Eτr are a reasonable approximation to Sτr . Then we have,
exemplary for Et,

S(kτr) ≈ (Sτr)k ≈ (Eτr)k.

We investigate this with a simple numerical experiment. Using the one-dimensional
periodic double-well potential (see Section 4.2.1) with M = 1, β = 1 and γ = 5, we
want to compute the second largest eigenvalue λ2(St) < λ1(St) = 1.

With damping γ = 5, a choice of τr = 1/γ = 0.2 seems reasonable, as by visual inspec-
tion, λ2(St) in this region begins to show exponential decay. Note that λ2(Et) does not
provide a good approximation for t significantly larger than τr, as the error asymp-
totics of Proposition 4.1.8 only hold for t → 0. However, Tτr

2 and Eτr still approximate
Sτr well enough:

|λ2(Sτr)− λ2(Tτr
2 )| ≈ 0.15 , |λ2(Sτr)− λ2(Eτr)| ≈ 0.12 .

Figure 5.3 compares λ2(St) with λ2
(
Sτr
)n, λ2

(
Tτr

2

)n and λ2
(
Eτr
)n for n = 1, . . . , 10.
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Figure 5.3.: The subdominant eigenvalue of St and its approximations via extrapola-
tion.

As an error estimate for the eigenvalues, we get, again exemplary for Et,
∣∣λ
(
Snτr

)
− λ

(
(Eτr)n)∣∣ ≤

∣∣λ
(
Snτr

)
− λ

(
(Sτr)n)∣∣+

∣∣λ
(
(Sτr)n)− λ

(
(Eτr)n)∣∣

≤
∣∣λ
(
Snτr

)
− λ

(
Sτr
)n∣∣+

∣∣λ
(
Sτr
)
− λ

(
Eτr
)∣∣n,

with using the binomial formula to obtain the second inequality. The first term on
the right hand side depends on the relaxation of the underlying process after lag time
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Chapter 5. Long-time spatial dynamics

τr, and (for fixed n) decreases with increasing τr. The second term depends on the
approximation error of Eτr on Sτr and increases with increasing τr. A balance between
these two error sources must thus be found. Typically, the relaxed lag time lies in the
approximation region of Et and Tt

3 only for high damping γ. This may or may not
correspond to the physical model at hand.

5.2.2. Towards a spatial Itô process.

For lag times t > τr, the almost-Markovianity described in Section 5.2, along with the
geometric ergodicity of the spatial process (Theorem 2.2.2) implies an exponential de-
cay of the subdominant eigenfunctions in time. This suggests that for t > τr, statistical
mechanics under spatial dynamics is approximately governed by an Itô process on Q,
at least on the subspace of L2

µQ (Q) spanned by the dominant eigenvalues.

Conjecture 5.2.1. Let En be the space spanned by the n dominant eigenfunctions of St. Then
there exists an Itô diffusion process on Q that is the long time limit of spatial dynamics on
En, in the following sense: let LLT be the generator of this dynamics, and Pt

LT := exp(−tLLT).
Then, for u ∈ En, ∥∥Stu− Pt

LTu
∥∥

∥∥Stu
∥∥ → 0 (t→ ∞)

in some suitable norm.

On En, the transport under this hypothetical transfer operator Pt
LT is determined by

the decay rates of the dominant eigenfunctions spanning En, i.e. the corresponding
eigenvalues of LLT. As these decay rates correspond to the decay rates of the dominant
eigenfunctions of St for large t, they can be found experimentally by least squares
fitting a µ-parametrized function e−tµ to the individual eigenvalues of St (or intuitively
by reading their slope in a logarithmic plot). This process is demonstrated in Figure
5.4 for the three subdominant eigenvalues of the two-dimensional quad-well potential
from Section 4.2.2.

The rate apparently depends on the friction parameter γ, and for γ � 1 can be ex-
plained by the Kramers–Smoluchowski limit. However, this relaxation is observed
across the whole friction regime. For small to moderate γ, the rate could not be con-
nected to a known diffusion process yet.
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Figure 5.4.: Left: the three subdominant eigenvalues of the quad–well system (for
small γ). The slope of the dotted lines illustrates the decay rate on the
respective eigenspace. Right: the decay rates in dependence of the friction
parameter γ.
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6. Conclusion and outlook

We investigated the transport of momentum–averaged probability densities under the
Langevin equation with the goal of metastability analysis. Even though this transport
cannot be expressed without explicit momentum averaging, we could show that the
associated transfer operator can (for t → 0) be approximated up to third order by a
t 7→ t2

2 scaled Smoluchowski transfer operator that involves no momentum averaging.

We have seen that this approximation to the spatial transfer operator can be discretized
efficiently by collocation methods. As the information about the underlying flow is
obtained directly from the transport equation, the discretization requires no numerical
trajectory integration of any kind. This represents a major conceptual advantage over
established Ulam–type discretization methods. We have proven error estimates for the
asymptotic regime t → 0 for both the transport of densities and for the spectrum of
the spatial transfer operator. These estimates could be confirmed numerically.

Our goal of a simulation–free approach to conformation analysis could therefore be
partially accomplished. The numerical experiments confirm that the eigenfunctions of
the restored spatial transfer operator can be used to identify metastable sets. However,
the chemically important long–time transition rates could not be restored yet, as they
lie beyond the regime of our convergence results. Still, we have shown that this regime
can be slightly expanded with respect to what classical results predict.

Future work. The main goal of future studies should be to show the applicabil-
ity of the pseudogenerator–based methods to biochemically relevant, possibly high–
dimensional systems.

This thesis already represents progress in that regard, as it expands the applicability
from systems in Cartesian coordinates (as considered in the original publication [6]) to
systems in generalized coordinates. However, there still are multiple issues that have
to be addressed:

• In order to build meaningful Markov State Models based on the metastable sets
discovered by transfer operator analysis, these sets’ long–time stable behavior
has to be estimated.

In Section 5.2, we argued in favor for the existence of a relaxation lag time τr,
after which the spatial dynamics exhibits almost Markovian behavior. This is
indicated by exponentially decaying subdominant eigenvalues. We thus hope
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Chapter 6. Conclusion and outlook

to discover a closed (i.e. momentum–independent) stochastic Itô process on po-
sition space that describes the long–time density transport of spatial dynamics.
Provided the generator of this process can be applied to the collocation basis
functions from Section 2.3.2 with reasonable numerical effort, this would again
allow the simulation–free treatment of long–time spatial dynamics.

• The Fourier mode and Chebyshev polynomial collocation bases considered in
this thesis both require a grid covering of configuration space, which is suscepti-
ble for the curse of dimensionality. For higher dimensions, we intend to employ
meshfree methods based on radial basis function [80, 20]. Recent results from
transition path theory [16, 17, 76] raise the hope that the essential density dy-
namics can be captured by placing collocation nodes along so–called transition
pathways, low–dimensional structures in configuration space along which the
majority of transitions occur.

• While the collocation basis is typically chosen to allow the analytical differentia-
tion of the basis elements1, the evaluation of the potential, the mass matrix and
the friction and noise matrices at the collocation points may prove costly in more
complex systems (see the discussion at the beginning of Section 2.2).

This problem intensifies when the projected pseudogenerator Gess
2 in essential

coordinates is considered (see Lemma 3.4.1). The projected drift– and diffusion–
coefficients a(z), b(z) involve averaging over non–essential degrees of freedom,
which, unlike the well–structured momentum averaging, appears infeasible to be
carried out analytically; sampling–based quadrature methods [10, 30, 44] seem
to be a natural choice here.

• It is still unclear how the emergence of the Smoluchowski generator in the second
derivative of the spatial transfer operator can be interpreted physically. Also,
the structure of pseudogenerators higher than three has not yet been exam-
ined. To avoid intransparent technical vector–analytic calculations, the analysis
should be performed in a coordinate–free manner. Understanding the struc-
ture of higher pseudogenerators would by Proposition 4.1.1 allow Taylor–based
restoration schemes of higher order. Ideally the higher pseudogenerators would
involve the friction parameter γ, to provide precise quantitative estimates of the
quantities of interest. For the interpretation, a continuation of the techniques
from the Mori–Zwanzig formalism (as initialized by using Dyson’s formula in
Section 3.3) seems promising.

1This also holds for typical choices of radial basis functions, such as Gaussians or Wendland functions.
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A. Auxiliary statements

A.1. Reversibility and self-adjointness of the spatial transfer
operator

Koltai in [6] showed that St is self-adjoint on L2
µQ(Q), for the Cartesian coordinate

space Q. While the procedure is largely analogous, we will adapt the proof to gener-
alized coordinates for completeness’ sake.

Self-adjointness of the transfer operator is equivalent with reversibility of the corre-
sponding dynamical process: the following result is from [34, Proposition 1.1], re-
stated for our purposes.

Proposition A.1.1. Fix t > 0. Let St : L2
µQ(Q) ⊂ L1

µQ (Q) → L2
µQ(Q) denote the transfer

operator of the spatial dynamics for lag time t. Let the associated (discrete time) Markov process
be denoted by qn, n ∈N. Then St is self-adjoint with respect to the scalar product 〈·, ·〉µQ , i.e.
〈Stu, v〉µQ = 〈u, Stv〉µQ for all u, v ∈ L2

µQ(Q), if and only if qn is reversible.

Reversibility in this case is equivalent with pS,µQ(t, A, B) = pS,µQ(t, B, A) for any mea-
surable A, B ⊂ Q. Here, pS,µQ(t, A, B) describes the transition probability of the spatial
process, with pS(t, q, B) its transition function (see (2.40). Indeed, one way to define
the reversed process is by setting pS,rev,µQ(t, A, B) := pS,µQ(t, B, A) for any measurable
A, B ⊂ Q. In order to show reversibility let us start with a property of the Langevin
process.1

Lemma A.1.2. Let pLan,rev denote the transition function of the reversed Langevin process,
and let A ⊂ Q×P be a measurable set which is symmetric in the momentum coordinate, i.e.

A =
{
(q,−p)

∣∣ (q, p) ∈ A
}

.

Then pLan
(
t, (q, p), A

)
= pLan,rev

(
t, (q,−p), A

)
for any q ∈ Q, p ∈ P .

Proof. Let xt ⊂ X be an Itô process described by (1.1), and x̄t := x−t its time-reversed
process. According to [31] (see also [47]), x̄t is again an Itô process and described by

∂t x̄t = b̄(x̄t) + σ(x̄t)wt,

1The property described in Lemma A.1.2 is also known as extended detailed balance condition, see [64,
Lemma 4.10].
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with b̄ taking the form

b̄(x) = −b(x) +
2

fX (x)
div

(
Σ(x) fX (x)

)
,

where Σ = 1
2 σσᵀ, fX is the unique canonical density (which we assume to exist), and

div is applied row wise.

Applied to the Langevin process in generalized coordinates (1.8), we get

b̄(q, p) =
( −∇pH(q, p)
∇qH(q, p) + γ(q)∇pH(q, p)

)
+

2
fΩ(q, p)

(
0

− 1
2β σ(q)σ(q)ᵀM−1(q)p fΩ(q, p)

)
,

which becomes, using the fluctuation-dissipation relation,

=

( −∇pH(q, p)
∇qH(q, p)− γ(q)∇pH(q, p)

)
.

The reversed Langevin process thus follows

∂tq̄t = −∇pH(q̄t, p̄t)

∂t p̄t = ∇qH(q̄t, p̄t)− γ(q̄t)∇pH(q̄t, p̄t) + σ(q̄t)wt .

On the other hand, applying the substitution p̃ = −p for the original Langevin process
in forward time, and using that wt and −wt are stochastically equivalent in the sense
that their distributions coincide, we obtain

∂tqt = −∇pH(qt, p̃t)

∂t p̃t = ∇qH(qt, p̃t)− γ(qt)∇pH(qt, p̃t) + σ(qt)wt .

Note that this is the same SDE as for the reversed process. Thus, the reversed process
starting at (q,−p) has the same distribution as (qt,−pt), where (qt, pt) is the forward
time process starting at (q, p).

In [6, Lemma B.3], a formula for the transition probabilities of the reversed spatial
process has been derived. Its derivation holds for generalized coordinates as well, so
it will not be restated.

Lemma A.1.3 ([6]Lemma B.3). It holds

pS,rev,µQ(t, A, B) =
1

µQ(A)

∫

A×P
fQ(q) fP (q, p)pt

Lan,rev
(
(q, p), B×P

)
d(q, p)

for any measurable A, B ⊂ Q.
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To complete the proof of the self–adjointness of St, we transform pS,µQ(t, A, B):

pS,µQ(t, A, B) =
1

µQ(A)

∫

A×P
fQ(q) fP (q, p)pt

Lan
(
(q, p), B×P

)
d(q, p)

=
(−1)d

µQ(A)

∫

A×−P
fQ(q) fP (q,− p̃)pt

Lan
(
(q,− p̃

)
, B×P) d(q, p̃)

=
1

µQ(A)

∫

A×P
fQ(q) fP (q,− p̃)pt

Lan
(
(q,− p̃), B×P

)
d(q, p̃) ,

where in the first line we used the integral substitution p̃ = −p, and in the second line
the symmetry of P , such that flipping the integration bounds only introduces change
of sign. From this and Lemma A.1.2, applied to the p-symmetric set B×P , we obtain

pS,µQ(t, A, B) =
1

µQ(A)

∫

A×P
fQ(q) fP (q, p̃)pLan,rev

(
t, (q, p̃), B×P

)
d(q, p̃) , (A.1)

by exploiting that fP (q,− p̃) = fP (q, p̃). (A.1) coincides with the right hand side of
Lemma A.1.3, which shows reversibility of the spatial process and thus self–adjointness
of the spatial transfer operator.

A.2. Derivation of the Smoluchowski transport equation

In this section we show how to derive the density transport equation for Smoluchowski
dynamics in generalized coordinates. We expand the main idea of Hartmann in [5].
The purpose of the detailed derivation of this standard result (see for example [48]) is
for the reader to become familiar with the connection between Langevin- and Smolu-
chowski dynamics, especially in which way the solution of the Smoluchowski Fokker–
Planck equation is a good approximation to the solution of the Langevin Fokker–
Planck equation. Also, we will re-encounter the technique used herein in Section 5.1.

The approach is also described in [54, 55] and is based on a technique known as
perturbation expansion: Given a small problem parameter ε (in our case the inverse
damping constant), formally expand the property of interest (in our case the solution
of the Langevin Fokker–Planck equation), and use the expansion to find a law for the
limit ε→ 0.

To begin, let us scale the original (in general position-dependent) drag and noise coef-
ficients according to

γ 7→ γ/ε , σ 7→ σ/
√

ε

where ε > 0 is assumed to be small. Clearly, the scaling preserves the fluctuation-
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dissipation relation. Then the re-scaled Langevin equation reads

d
dt

qt = ∇pH(qt, pt)

d
dt

pt = −∇qH(qt, pt)−
γ(qt)

ε
∇pH(qt, pt) +

σ(qt)√
ε

wt .
(A.2)

Let the associated µΩ-weighted Fokker–Planck equation be denoted by

∂tuε(q, p, t) = Lε
Lanuε(q, p, t) , uε(q, p, 0) = u0(q, p) . (A.3)

where, for this section only, we write the solution as uε(·, ·, t) instead of uε
t . Assume

that for this solution, there exists an asymptotic expansion in ε of the form

uε(q, p, τ + t) = uτ
0(q, p, t) + εuτ

1(q, p, t) + ε2uτ
2(q, p, t) + . . . . (A.4)

Applying to Lε
Lan the same decomposition as in (2.26) yields

Lε
Lan = LHam +

1
ε

LOU ,

where

LHam = ∇qH · ∇p −∇pH · ∇q , LOU =
1
2

σσᵀ : ∇2
p − (γM−1 p) · ∇p .

Inserting the expansion (A.4) into the backward equation and equating powers of ε,
we obtain a hierarchy of equations, the first three of which read

LOUuτ
0 = 0 (A.5)

LOUuτ
1 = ∂tuτ

0 − LHamuτ
0 (A.6)

LOUuτ
2 = ∂tuτ

1 − LHamuτ
1 . (A.7)

Note that LOU is a second-order differential operator in p with q appearing only as
a parameter. By the assumption that γ is symmetric positive definite with uniformly
bounded inverse, (A.5) implies that uτ

0 is constant in p. Using a closure argument
known as the centering condition, it follows that ∂tuτ

0 = 0.

Equation (A.7) reads

∂tuτ
1 = LHamuτ

1 + LOUuτ
2 .

Combined with (A.6) and ∂tuτ
0 = 0, we get

∂tuτ
1 = −LHamLOU

−1LHamuτ
0 + LOUuτ

2 . (A.8)
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Let $q be the solution to L∗OU$q = 0, with L∗OU being the formal L2 adjoint of LOU.
Multiplying (A.8) by $q and integrating gets us

∫

P
∂tuτ

1 $q dp = −
∫

P

(
LHamLOU

−1LHamuτ
0

)
$q dp. (A.9)

Now, taking the time-derivative of (A.6) and using ∂tuτ
0 = 0, we see that ∂tuτ

1 ∈
ker LOU:

LOU∂tuτ
1 = −LHam∂tuτ

0 = 0.

As γ(·) is symmetric positive definite with uniformly bounded inverse, ker LOU con-
sists only of constant functions (in p). Thus ∂tuτ

1 is independent of p, and (A.9) be-
comes

∂tuτ
1 = −

∫

P

(
LHamLOU

−1LHamuτ
0

)
$q(p)dp. (A.10)

We will see later that the right hand side, seen as an operator applied to uτ
0 , is the

familiar Smoluchowski generator, shortly denoted by LSmol. Thus

∂tuτ
1 = LSmoluτ

0

The evolution of the full density uε can then be described by

∂tuε(q, p, τ + t) = ∂tuτ
0(q)︸ ︷︷ ︸
=0

+ε ∂tuτ
1(q, p, t)︸ ︷︷ ︸

=LSmoluτ
0

+ε2∂tuτ
2(q, p, t) + . . .

= εLSmoluτ
0(q) + ε2∂tuτ

2(q, p, t) + . . . .

We observe that for ε → 0, the dynamic is increasingly slow-moving, and thus switch
to a faster time scale: τ + t→ (τ + t)/ε. The evolution of uε(q, p, (τ + t)/ε) for t ∈ O(ε)
is then described by the following approximative PDE:

d
dt

uε
(
q, p, (τ + t)/ε

)
= ∂σuε(q, p, σ)

∣∣∣
σ=(τ+t)/ε

· 1
ε

= LSmoluτ/ε
0 (q) + ε∂tuτ/ε

2

(
q, p, t/ε

)
+ . . . (A.11)

= LSmol

(
uτ/ε

0 (q) + εuτ/ε
1

(
q, p, t/ε

)
+ ε2uτ/ε

2

(
q, p, t/ε

)
+ . . .

)
+O(ε)
(A.12)

= LSmoluε
(
q, p, (τ + t)/ε

)
+O(ε). (A.13)

The step from (A.11) to (A.12) only holds for t ∈ O(ε), as uτ/ε
i (·, t/ε) ∈ O

(
(t/ε)i) (this

can be shown by Taylor expansion of uε
(
u, v, (τ + t)/ε

)
). Thus in the limit (ε → 0),

(A.13) only holds for t = 0, and we get an assertion about the evolution of uε(·, (τ +

t)/ε)
∣∣
t=0 = uε(·, τ/ε):
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Lemma A.2.1. Let w be the solution of the Smoluchowski transport equation

∂τw(·, τ) = LSmolw(·, τ) ,

and uε be the solution of the ε-rescaled Langevin transport equation (A.3). Then
∥∥uε
(
·, τ/ε

)
− w(·, τ)

∥∥
2,µΩ
→ 0, (ε→ 0). (A.14)

A coordinate expression for the backward Smoluchowski equation2 has been derived in
[5], where the same considerations were performed regarding the transport of observ-
ables instead of densities. However, as already pointed out (see 2.27), the weighted
Fokker–Planck equation and the Kolmogorov backward equation for Langevin dy-
namics are strongly connected3, and thus ultimately the expressions for the forward
Smoluchowski generator LSmol and backward Smoluchowski generator ASmol coincide.
It has been formally shown by Hartmann in [5], that

ASmol = β−1∆̃−∇V · ∇̃ , (A.15)

where
∇̃ = γ−1∇ and ∆̃ =

1√
det γ

∇ ·
(√

det γ γ−1∇
)

,

denote gradient and Laplace-Beltrami operator with respect to γ. Hence we have

LSmol = β−1∆̃−∇V · ∇̃ , (A.16)

Note that LSmol no longer depends on the mass matrix M.

2i.e. the backward Kolmogorov equation associated with the Smoluchowski dynamics.
3They differ only by a sign in front of LHam, which cancels out in (A.10).
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B.1. Vector analytic proofs

In this section the various results from Section 3.2 will be proven by vector-arithmetic
calculations.

To prove the main Theorem 3.2.1, the following lemma is needed:

Lemma B.1.1. Let A ∈ Rn,n be a symmetric, positive definite matrix. Then

(i)
∫

Rn
exp

(
− 1

2
xᵀAx

)
dx =

√
(2π)n

det A
,

(ii)
∫

Rn
xi exp

(
− 1

2
xᵀAx

)
dx = 0,

(iii)
∫

Rn
xixj exp

(
− 1

2
xᵀAx

)
dx =

√
(2π)n

det A
A−1

ij ,

(iv)
∫

Rn
xixjxk exp

(
− 1

2
xᵀAx

)
dx = 0.

Proof. (i) The formula for this standard Gaussian integral can for example be found
in [57].

(ii) It can easily be seen that the integrand is antisymmetrical with respect to xi, thus
the integral vanishes.

(iii) First note that we can write xixj = xᵀBx, with B ∈ Rn,n, Bkl =

{
1 if k = i ∧ l = j

0 otherwise
.

As A is s.p.d., there exists a factorization A = QᵀΛQ, Q ∈ Rn×n orthogonal and
Λ ∈ Rn×n diagonal. With the transformation

y := Λ
1
2 Qx, thus x = QᵀΛ−

1
2 y,
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we get
∫

Rn
xixj exp

(
− 1

2
xᵀAx

)
dx =

∫

Rn
xᵀBx exp

(
− 1

2
xᵀAx

)
dx

=
∫

Rn

(
QᵀΛ−

1
2 y
)ᵀB

(
QᵀΛ−

1
2 y
)

exp
(
− 1

2
yᵀy
)
·
∣∣det

(
Λ−

1
2 Q
)∣∣ dy

=
∫

Rn
yᵀ
(

Λ−
1
2 qiq

ᵀ
j Λ−

1
2

)

︸ ︷︷ ︸
=:R

y exp
(
− 1

2
yᵀy
)

dy ·
√

det A−1,

where qk is the k-th column of Q. Also it was used that det
(
Λ−

1
2 Q
)
=
√

det A−1

and that it is positive due to A being s.p.d.. Writing out the matrix–vector mul-
tiplication yᵀRy, the integral reduces to

∫

Rn
xixj exp

(
− 1

2
xᵀAx

)
dx =

n

∑
k,l=1

Rkl

∫

Rn
ykyl exp

(
− 1

2
yᵀy
)

dy ·
√

det A−1

=
n

∑
k=1

Rkk

∫

Rn
y2

k exp
(
− 1

2
yᵀy
)

dy ·
√

det A−1,

as the mixed integrals
∫

ykyl exp
(
− 1

2 yᵀy
)

dy vanish due to antisymmetry. With
the one-dimensional integrals

∫ ∞

−∞
exp

(
− 1

2
z2) dz =

√
2π =

∫ ∞

−∞
z2 exp

(
− 1

2
z2) dz ,

we finally get

∫

Rn
xixj exp

(
− 1

2
xᵀAx

)
dx =

( n

∑
k=1

Rkk

)√ (2π)n

det A
= A−1

ij

√
(2π)n

det A
,

as
n

∑
k=1

Rkk =
n

∑
k=1

Λ−1
k qikqjk =

(
QᵀΛ−1Q

)
ij
= (A−1)ij .

(iv) It can easily be seen that the integrand is antisymmetrical with respect to at least
one of the integration variables xi, xj, xk.
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Proof of Theorem 3.2.1.

Proof. Let u ∈ W k,2 (Q). By Proposition 3.1.3,

Gnu =
∫

P
(LLan)

nu dµP .

We can calculate Gn by calculating Lk
Lanu, n ∈ {1, 2} and taking the momentum inte-

gral afterwards. These two steps are done by hand in the following, i.e. by multivariate
vector– and matrix calculus.

By element-wise inspection, it can be seen that for vectors v, w and matrices A of
matching dimensions holds

vᵀAw = vwᵀ : A ,

with : the generalized Frobenius product defined in (2.16).

The following derivatives of H will also prove helpful for compiling the Lk
Lan:

• ∇pH(q, p) = M−1(q)p ,

• ∇qH(q, p) =
1
2

ppᵀ : ∇q M−1(q) +∇qV(q),

with the tensor ∇q M−1(q) =
(

∂qk

(
M−1(q)

)
ij

)
ijk

,

• ∇2
pH(q, p) = M−1(q) ,

• ∇p∇qH(q, p) = ∇q∇pH(q, p) = p : ∇q M−1(q) .

Here it was already used that M is symmetric.

We now show the three statements from Theorem 3.2.1:

0. G0 = I follows directly from L0
Lan = I.

1. We again use the operator splitting LLan = LHam + LOU (see (2.14)) with

LHam = ∇qHᵀ∇p −∇pHᵀ∇q , LOU =
1
2

σσᵀ : ∇2
p −

(
γpᵀM−1)∇p

and H(q, p) = 1
2 pᵀM−1(q)p + V(q).

As u is a function of q only, we have LOUu = 0 and ∇pu = 0, and thus

G1u(q) =
∫

P

(
LLanu

)
(q, p) dµP =

∫

P

(
LHamu)(q, p) fP (q, p) dp

=
∫

P
−∇pH(q, p)ᵀ∇qu(q) fP (q, p) dp

= −
∫

P
pᵀM−1(q)∇qu(q) fP (q, p) dp .

This integral is simply a linear combination of the integrals
∫
P pi fP (q, p) dp. As

fP (q, p) = 1
ZP (q)

exp
(
− β

2 pᵀM−1(q)p
)
, those integrals vanish due to Lemma B.1.1

and we get G1 = 0.
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2. For G2, we first calculate

L2
Lanu =

(
LHam + LOU)

2u

= L2
Hamu + LHam LOUu︸ ︷︷ ︸

=0

+LOU LOUu︸ ︷︷ ︸
=0

+LOULHamu

= LOULHamu + L2
Hamu .

The first summand is
(

LOULHamu
)
(q, p) = LOU

(
−∇pH(q, p)ᵀ∇qu(q)

)
= LOU

(
− pᵀM−1(q)∇qu(q)

)

= −1
2

σσᵀ : ∇2
p

(
pᵀM−1(q)∇qu(q)

)

+ γ
(

M(q)−1 p
)ᵀ
∇p

(
pᵀM−1(q)ᵀ∇qu(q)

)
.

The second p-derivative of the linear term vanishes, so all that remains is

= γpᵀ
(

M−1(q)
)2
∇qu(q).

The integral of this term with respect to µP will again vanish due to Lemma B.1.1.

The second summand of L2
Lanu(q) is

(
L2

Hamu
)
(q, p) = LHam

(
− pᵀM−1(q)∇qu(q)

)

= ∇qH(q, p)ᵀ ∇p

[
− pᵀM−1(q) ∇qu(q)

]

−∇pH(q, p)ᵀ ∇q

[
− pᵀM−1(q) ∇qu(q)

]
.

Using ∇q
(

pᵀM−1(q)
)
=
(

p : ∇q M−1(q)
)ᵀ and ∇q

(
vᵀ∇qu(q)

)
= ∇2

qu(q)v for
some v ∈ Rn, this becomes
(

L2
Hamu

)
(q, p) =

(
M−1(q)p

)ᵀ [(
p : ∇q M−1(q)

)ᵀ∇qu(q) +∇2
qu(q)M−1(q)p

]

−
(1

2
ppᵀ : ∇q M−1(q) +∇qV(q)

)ᵀ [
M−1(q) ∇qu(q)

]

= pᵀM−1(q)
(

p : ∇q M−1(q)
)ᵀ
∇qu(q)

+ pᵀM−1(q) ∇2
qu(q)M−1(q)p

− 1
2

(
ppᵀ : ∇q M−1(q)

)ᵀ
M−1(q)∇qu(q)

− ∇qV(q)ᵀ M−1(q)∇qu(q) .

To simplify the notation, define the 3-tensor N with Nijk(q) := ∂qj M
−1
i,k (q). It can

be seen as the gradient of the mass matrix M, transposed with respect to the
second and third tensor index. Note the identities
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B.1. Vector analytic proofs

• pᵀM−1(q)
(

p : ∇q M−1(q)
)ᵀ
∇qu(q) =

[(
ppᵀM−1(q)

)
: N(q)

]ᵀ
∇qu(q),

which follows from
(

p : ∇q M−1(q)
)ᵀ

=
(

p : N(q)
)

and wᵀ(v : B) = (vwᵀ) : B

for v, w ∈ Rn and B ∈ Rn×n×n.

• pᵀM−1(q)∇2
qu(q)M−1(q)p = M−1(q) :

(
ppᵀM−1(q)∇2

qu(q)
)
,

which follows from vᵀABv = A :
(
v(Bv)ᵀ

)
= A : (vvᵀB) for v ∈ Rn and

A, B ∈ Rn×n.

With this, L2
Hamu transforms to

L2
Hamu =

[[(
ppᵀM−1(q)

)
: N(q)

]ᵀ
− 1

2

(
ppᵀ : ∇q M−1(q)

)ᵀ
M−1(q)

]
∇qu(q)

+ M−1(q) :
(

ppᵀM−1(q)∇2
qu(q)−∇qV(q)∇qu(q)ᵀ

)
.

Now, integrating L2
Lanu with respect to µP gives

G2u(q) =
∫

P

(
L2

Lanu
)
(q, p) dµP =

∫

P

(
L2

Hamu
)
(q, p) dµP +

∫

P

(
LOULHamu

)
(q, p) dµP

︸ ︷︷ ︸
=0

=
∫

P

[[(
ppᵀM−1(q)

)
: N(q)

]ᵀ
− 1

2

(
ppᵀ : ∇q M−1(q)

)ᵀ
M−1(q)

]
∇qu(q) fP (q, p) dp

︸ ︷︷ ︸
:=(1)

+
∫

P

(
M−1(q) :

(
ppᵀM−1(q)∇2

qu(q)−∇qV(q)∇qu(q)ᵀ
))

fP (q, p) dp
︸ ︷︷ ︸

:=(2)

.

For the two integrals we will use that, with v a vector, A a matrix and B a 3-tensor
with matching dimensions,

∫
(Avvᵀ) : B dv =

( ∫
Avvᵀ dv

)
: B =

(
A
∫

vvᵀ dv
)

: B ,

i.e. the integrals of a linear combination of vivj is the linear combination of
integrals

∫
vivj dv. Here,

∫
vvᵀ dv is a matrix containing the component-wise

integrals.
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The two integrals then finally calculate to

(1) =

(( ∫

P
ppᵀ fP (q, p) dpM−1(q)

)
: N(q)

− 1
2

[( ∫

P
ppᵀ fP (q, p) dp

)
: ∇q M−1(q)

]
M−1(q)

)ᵀ

∇qu(q)

(∗)
=

1
β

[
I : N(q)− 1

2

(
M(q) : ∇q M−1(q)

)
M−1(q)

]ᵀ
∇qu(q)

(2) = M−1(q) :
[( ∫

P
ppᵀ fP (q, p) dp

)
M−1(q)∇2

qu(q)−∇qV(q)∇qu(q)ᵀ
]

(∗)
= M−1(q) :

[( 1
β

M(q)
)

M−1(q)∇2
qu(q)−∇qV(q)∇qu(q)ᵀ

]

= M−1(q) :
[ 1

β
∇2

qu(q)−∇qV(q)∇qu(q)ᵀ
]

For (∗) it was used that the matrix-valued integral
∫
P ppᵀ fP (q, p) dp computes

to 1
β M(q), due to Lemma B.1.1. The sum of (1) and (2) then yields the fully

expanded form of G2:

G2u(q) = M−1(q) :
[ 1

β
∇2

qu(q)−∇qV(q)∇qu(q)ᵀ
]

+
1
β

[
I : N(q)− 1

2

(
M(q) : ∇q M−1(q)

)
M−1(q)

]ᵀ
∇qu(q)

(B.1)

In a last step, we apply Jacobi’s formula to show that (B.1) matches the pro-
claimed form of G2 in Theorem 3.2.1. As there is no more p-dependence in (B.1),
we simplify the remaining expressions by omitting the q-arguments. With the
chain- and product rule for the divergence,

1
β

1√
det M

∇ᵀ
q

(√
det MM−1∇qu

)

=
1
β

1√
det M

[ 1
2
√

det M

(
∇q det M

)ᵀM−1∇qu +
√

det M∇ᵀ
q
(

M−1∇qu
)]

=
1

2β
(∇q det M)ᵀM−1∇qu +

1
β
∇ᵀ

q
(

M−1∇qu
)

. (∗)

With Jacobi’s formula (A some t-dependent matrix, t ∈ R)

∂t det A(t) = det A(t) tr
(

A−1(t)∂t A(t)
)

,

102



B.1. Vector analytic proofs

applied to ∂qi M, we get for the first summand of (∗)

1
2β

(∇q det M)ᵀM−1∇qu =
1

2β

n

∑
i=1

tr
(

M−1∂qi M
)
(M−1∇qu)i

= − 1
2β

((
M : ∇q M−1)M−1

)ᵀ
∇qu .

For the last equation the identity A(t)∂t A(t) = −∂t A(t)A−1(t) and the symmetry
of M were used.

By element–wise inspection, the second summand of (∗) can be written as

1
β
∇ᵀ

q
(

M−1∇qu
)
=

1
β

(
(I : N)ᵀ∇qu + M−1 : ∇2

qu
)

.

Thus, together we have

1
β

1√
det M

∇ᵀ
q

(√
det MM−1∇qu

)

= − 1
2β

((
M : ∇q M−1)M−1

)ᵀ
∇qu +

1
β

(
(I : N)ᵀ∇qu + M−1 : ∇2

qu
)

.

This matches (B.1) up to the summand

M−1 : (∇qV∇quᵀ) = ∇qVᵀM−1∇qu .

We thus obtain

G2u =
1
β

1√
det M

∇ᵀ
q

(√
det MM−1∇qu

)
−∇qVᵀM−1∇qu .

Proof of Corollary 3.2.2.

Proof. In Cartesian coordinates, M−1 is a constant diagonal matrix, and γ and σ are
constant scalars. The two parts of LLan in the decomposition LLan = LHam + LOU read

LHam = pᵀM−1∇q −∇qV(q)ᵀ∇p , LOU =
σ2

2
∆p −

(
γpᵀM−1)∇p .

0. & 1. follow directly from Theorem 3.2.1.

2. Using ∇q M−1(q) = 0 in Theorem 3.2.1, one sees that G2 takes the stated form.
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3. For G3, consider L3
Lanu. From the proof of Theorem 3.2.1, we have L2

Lan = L2
Ham +

LOULHam, thus

L3
Lan = L3

Ham + LHamLOULHam + LOUL2
Ham + L2

OULHam. (∗)

Again from the proof of Theorem 3.2.1, we use that with ∇q M−1(q) = 0,

L2
Hamu = pᵀM−1∇2

qu(q)M−1 p−∇qV(q)ᵀM−1∇qu(q)

LOULHamu = γpᵀ(M−1)2∇qu(q).

The first summand in (∗) extends to

L3
Hamu(q) = ∇qH(q, p)ᵀ∇pL2

Hamu(q)−∇pH(q, p)ᵀ∇qL2
Hamu(q)

= ∇qV(q)ᵀ
[
2M−1∇2

qu(q)M−1 p
]

− pᵀM−1∇q

[
pᵀM−1∇2

qu(q)M−1 p−∇qV(q)ᵀM−1∇qu(q)
]

This expression is antisymmetrical in p and will vanish after integration with
respect to µP , due to Lemma B.1.1.

Likewise, the fourth summand in (∗)

L2
OULHamu(q) = γpᵀM−1γ

(
M−1)2∇qu(q)

is antisymmetrical in p and will vanish after integration.

The second summand in (∗) is

LHamLOULHamu(q) = ∇qH(q, p)ᵀ∇p

[
γp
(

M−1)2∇qu(q)
]

−∇pH(q, p)ᵀ∇q

[
γp
(

M−1)2∇qu(q)
]

= γ∇qV(q)ᵀ
(

M−1)2∇qu(q)− γpᵀM−1∇2
qu(q)

(
M−1)2 p

= γ
(
∇qV(q)ᵀ

(
M−1)2∇qu(q)− pᵀ

(
M−1)2∇2

qu(q)M−1 p
)

.

In the last line we used pᵀABp = pᵀBAp for symmetrical matrices A, B.

Finally, the third summand in (∗) is

LOUL2
Hamu(q) =

σ2

2
∆p

[
pᵀM−1∇2

qu(q)M−1 p
]
− γpᵀM−1∇p

[
pᵀM−1∇2

qu(q)M−1 p
]

= σ2
(
∇ᵀ

q
[(

M−1)2∇qu(q)
])
− 2γpᵀ

(
M−1)2∇2

qu(q)M−1 p

= 2γ
[ 1

β
∇ᵀ

q
[(

M−1)2∇qu(q)
]
− pᵀ

(
M−1)2∇2

qu(q)M−1 p
]

.
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Summing up the non-vanishing terms gives

(
LHamLOULHam + LOUL2

Ham

)
u(q) = γ

( 2
β
∇ᵀ

q
[(

M−1)2∇qu(q)
]
− 3pᵀ

(
M−1)2∇2

qu(q)M−1 p

+∇qV(q)ᵀ
(

M−1)2∇qu(q)
)

,

in which p only occurs in the second summand. The third pseudogenerator thus
is

G3u(q) =
∫

P

(
L3

Lanu
)
(q, p) dµP

= γ
( 2

β
∇ᵀ

q
[(

M−1)2∇qu(q)
]
− 3

∫

P
pᵀ
(

M−1)2∇2
qu(q)M−1 p dµP

︸ ︷︷ ︸
(1)

+∇qV(q)ᵀ
(

M−1)2∇qu(q)
)

,

The integral calculates to, with Lemma B.1.1,

(1) =
[(

M−1)2∇2
qu(q)M−1] :

∫

P
ppᵀ dµP

=
[(

M−1)2∇2
qu(q)M−1] :

1
β

M

which is, as M, M−1 are diagonal matrices,

=
1
β
∇ᵀ

q

((
M−1)2∇qu(q)

)
.

Overall, we have

G3u = −γ
[ 1

β
∇ᵀ

q
((

M−1)2∇qu
)
−∇qVᵀ(M−1)2∇qu

]
.

B.2. Computer–assisted proofs

For one-dimensional systems, the vector-analytic proofs of the statements in Section
3.2 can be automated. The computer algebra system Wolfram Mathematica [81] allows
the declaration of a wide class of differential operators (for functions on R) and the
computation of improper integrals, which together allows the automated computation
of the pseudogenerators Gk by Proposition 3.1.3.
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Computation of the first and second pseudogenerator. First define the Boltzmann
density fP , the Hamiltonian H and declare the fluctuation-dissipation relation. V, M, γ

and β are hereby regarded as parameters of the system. The normalizing factor ZP (q)
has to be applied to fP separately (due to technical reasons).

1 fP [ q , p ] := Exp[−beta ∗(1/2∗p∗M[ q]ˆ−1∗p ) ]
2 ZP [ q ] := I n t e g r a t e [ fP [ q , p ] , {p , −Inf ini ty , I n f i n i t y } ,
3 Assumptions −> Re [ beta∗M[ q]ˆ−1] > 0]
4 H[ q , p ] := 1/2∗p∗M[ q]ˆ−1∗p + V[ q ]
5 sigma [ q ] := Sqrt [2∗gamma[ q]/ beta ]

The Hamilton-, Ornstein–Uhlenbeck and Langevin generator can then be defined as
follows:

1 Lham[ q , p ] := (D[H[ q , p ] , q ]∗D[ # , p ] −
2 D[H[ q , p ] , p ]∗D[ # , q ] ) &
3 Lou [ q , p ] := (1/2∗ sigma [ q ] ˆ 2∗D[ # , {p , 2} ] −
4 gamma[ q ]∗p∗M[ q]ˆ−1∗D[ # , p ] ) &
5 Llan [ q , p ] := (Lham[ q , p ] [ # ] + Lou [ q , p ] [ # ] ) &

Applying LLan to some density u and integrating with respect to fP then gives G1:

1 G1[ q ] := I n t e g r a t e [ Simplify [ Llan [ q , p ] [ u [ q ] ] ] ∗ fP [ q , p ] ,
2 {p , −Inf ini ty , I n f i n i t y } ,
3 Assumptions −> Re [ beta∗M[ q]ˆ−1] > 0
4 ] / ZP [ q ]

As expected, this computes to 0.

Applying LLan twice and integrating with respect to fP yields G2:

1 G2[ q ] := FullSimplify [
2 I n t e g r a t e [ Simplify [ Llan [ q , p ] [ Llan [ q , p ] [ u [ q ] ] ] ∗ fP [ q , p ] ] ,
3 {p , −Inf ini ty , I n f i n i t y } ,
4 Assumptions −> Re [ beta∗M[ q]ˆ−1] > 0
5 ] / ZP [ q ] ]

The output

Out =
−u′[q](M′[q]+2beta M[q]V′[q])+2M[q]u′′[q]

2beta M2

matches Theorem 3.2.1 from the main text.

Comparison to the Smoluchowski generator. Definition of the Laplace-Beltrami
operator ∆̃ and the associated gradient ∇̃ :
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B.2. Computer–assisted proofs

1 LapBel [ q ] := (1/ Sqrt [M[ q]ˆ−1]∗D[ Sqrt [M[ q]ˆ−1]∗M[ q ]∗D[ # , q ] , q ] ) &
2 GradBel [ q ] := D[ # , q ]∗M[ q ] &

As of Equation 2.31, the Smoluchowski generator reads

1 Lsmol [ q ] := ( LapBel [ q ] [ # ] / beta − V’ [ q ]∗GradBel [ q ] [ # ] ) &
2 FullSimplify [ Lsmol [ q ] [ u [ q ] ] ]

The output reads

Out =
−u′[q](M′[q]+2beta M[q]V′[q])+2M[q]u′′[q]

2beta M2

which matches G2 above.

Special case: Cartesian coordinates. For Cartesian coordinates, i.e. constant M, γ, σ,
define

1 fP [ q , p ] := Exp[−beta ∗(1/2∗p∗M̂ −1∗p ) ]
2 ZP [ q ] := I n t e g r a t e [ fP [ q , p ] , {p , −Inf in i ty , I n f i n i t y } ,
3 Assumptions −> Re [ beta∗Mˆ−1] > 0]
4 H[ q , p ] := 1/2∗p∗M̂ −1∗p + V[ q ]
5 sigma := Sqrt [2∗gamma/beta ]

and Lham, Lou, Llan as above. For the third pseudogenerator, we then get

1 G3[ q ] := FullSimplify [
2 I n t e g r a t e [ Simplify [
3 Llan [ q , p ] [ Llan [ q , p ] [ Llan [ q , p ] [ u [ q ] ] ] ] ∗ fP [ q , p ] ] ,
4 {p , −Inf in i ty , I n f i n i t y } ,
5 Assumptions −> Re [ beta∗Mˆ−1] > 0
6 ] / ZP [ q ] ]

and receive

Out =
gamma(beta u′[q]V′[q]−u′′[q])

beta M2

which matches Corollary 3.2.2.

Higher pseudogenerators do not retain this simple structure. For Cartesian coordi-
nates, G4 is computed by

1 G4[ q ] := FullSimplify [
2 I n t e g r a t e [ Simplify [
3 Llan [ q , p ] [ Llan [ q , p ] [ Llan [ q , p ] [ Llan [ q , p ] [ u [ q ] ] ] ] ] ∗ fP [ q , p ] ] ,
4 {p , −Inf ini ty , I n f i n i t y } ,
5 Assumptions −> Re [ beta∗Mˆ−1] > 0
6 ] / ZP [ q ] ]

107



Appendix B. Pseudogenerators: technical proofs

The output does not show any obvious structure:

Out = (beta2M3)−1(beta u′′[q](gamma2+3beta M V′[q]2−4M V′′[q])
−beta u′[q](beta V′[q](gamma2−M V′′[q])+M V(3)[q])
+3M(−2beta V′[q]u(3)[q]+u(4)[q])
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