# Satellite Altimetry over Inland Water: A New Tool to Detect Geoid Errors! 

Christian Schwatke, Wolfgang Bosch and Tobias Koch

Deutsches Geodätisches Forschungsinstitut (DGFI), Munich, Germany

## Motivation

Nowadays satellite altimetry is not only used over open ocean but also over inland waters. Some applicaions as, for example, investigations on inundation zones require to consider physical heights which tell you where water will flow. This implies to reduce geometric ellipsoidal lake heights by an utmost precise geoid

Physical heights of a lake surface should exhibit a flat surface, as in general the water is in balance with gravity and the hydrodynamics of lakes can be neglected or is small compared to open ocean conditions

In this poster we investigate physical heights over a few rather large lakes by using different geoid models


## Lake Victoria

 Figure 3: Difference between both geoid models (left). Physical heights obtained by reducing altim
(Cycle 34) by (middle) EGM2008 geoid heights and (right) geoid heights from the hybrid model.


## Lake Tanganyika



Figure 7: Difference between both geoid models (left). Physical heights obtained by reducing altimetry derived ellipsoidal
(Cycle 37) and Jason-1 (Cycle 124) by (middle) EGM2008 geoid heights and (right) geoid heights from the hybrid model.
 Table 3: RMS (in cm) along each altimeter

## Conclusion

The usage of GOCOO2S in the hybrid model shows an improvement of the physical heights over inland water which become smoother
In general RMS values along each altimeter track and mission decrease significantly.
This is true for all lakes but Lake Baikal with very short unreliable altimeter tracks
For the hybrid geoid model improvements of the physical heights are also visible in the histograms due to the decreasing distribution.
The physical heights from the hybrid geoid model still indicate strong gradients. A computation of geost rophic currents would show unrealistic velocities, much larger than strong ocean currents.
The applied geophysical corrections show a mostly constant course and can't be made responsible for the residual roughness of the sea surface
Despite the improved hybrid model, deviations from a flat surface remain. These remaining variations of physical heights must be interpreted as geoid errors of EGM2008 for degrees greater than 220

## Geoid - Models

In this poster, two different geoid models were considered - EGM2008 up to degree 2190

A hybrid model which includes the
GOCOO2S from degree 0 to 220 and the
EGM2008 from degree 221 to 2190
GOCO02s is the most recent GOCE based gravity field filled with suggest improved accuracy in the spectral range up to degree 220
Differences between both models are shown in figure 2. Differences greater than 1 m can be found in areas such as the Amazon, Central Africa and Himalaya.


## Lake Michigan


(Cycle 37) and Jason-1 (Cycle 124) by (middlle) EGM2008 geoid heights and (right) geoid heights from the hybrid model
 geoid model (left) and hybrid geoid model (right)

## Lake Baikal



## References

Goiginger H., et al.: The combined satellite-only global gravity field model GOCOO2S. Presented at the 2011 General Assembly of the European Geosciences Union, Vienna, Austria, April 4-8, 2011 Pavlis N., et al.: An Earth Gravitational Model to degree 2160: EGM2008. Presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13-18, 2008

5th Coastal Altimetry Workshop and Ocean Surface Topography Science Team Meeting San Diego, USA, 2011-10-16/21

