

Regional Gravity field modeling as multi-resolution representation estimated from the combination of heterogeneous data sets

Verena Lieb¹, Klaus Börger², Wolfgang Bosch¹, Johannes Bouman¹, Kirsten Buße¹, Denise Dettmering¹, Barbara Görres³, Martin Fuchs¹, Christoph Haberkorn¹, Wilhelm F. Kersten³, Sabine Kirsch¹, Gerhard Ressler¹, Michael G. Schmidt¹, Christian Schwatke¹, and Florian Seitz¹

(1) DGFI German Geodetic Research Institute, Munich, Germany, Centre of Geodetic Earth System Research (CGE)

(2) German Space Situational Awareness Centre (GSSAC), Uedem, Germany

(3) Bundeswehr Geoinformation Centre (BGIC), Euskirchen, Germany

Motivation

Approach

CGE

Observations

4

CGE

Combination of data sets

\succ Estimation of unknown scaling coefficients d_{I}

... by using an extended Gauß-Markov model and VCE (rigorous combination at one level j).

AGU 2014, San Francisco, 12/18/2014 Verena Lieb: RegGRAV

MRR

L = 255

i = 8

L = 511 i = 9

L = 1023 i = 10

L = 2047 J = 11

10°

11°

8°

9°

-50 ... +50 mGal

 \rightarrow Computation of detail signals G_i from different observations related on their maximum spectral content at the specific frequency band of G_i.

 G_{11}

Multi-Resolution Representation:

and a number of detail signals G_i

 $F_J = F_{j'} + \sum_{j=j'+1}^{\circ} G_j$

Computing a target signal F_J from a smoothed version F_i

 G_{10}

G₉

Relative weighting

Observation	j = 8 (L = 255)	j = 9 (L = 511)	j = 10 (L = 1023)	j = 11 (L = 2047)
GOCE V _{xx}	1	10-1	10 ⁻³	10 ⁻⁵
GOCE V_{xy}	10-4	10 ⁻⁵	10-7	10-9
GOCE V _{xz}	1 0 ⁻¹	10 ⁻²	10-4	10 ⁻⁶
GOCE V _{yy}	1	10-1	10 ⁻³	10 ⁻⁵
GOCE V _{yz}	10 ⁻⁴	10 ⁻⁵	10 ⁻⁷	10 ⁻⁹
GOCE V _{zz}	1	10-1	10 ⁻³	10 ⁻⁵
ERS-1e	1	1	10-2	10 ⁻³
ERS-1f	1	1	10-2	10 ⁻³
Jason 1 GM	1	1	10 ⁻¹	10 ⁻³
Envisat EM	1	1	10 ⁻¹	10 ⁻³
Cryosat RADS	1	1	10 ⁻²	10 ⁻³
Airb. North Sea	10-1	1	1	1
Airb. Baltic Sea	10-1	1	10 ⁻¹	10 ⁻²
Terrestrial Data	10 ⁻¹	1	1	1
Bathymetry	10-2	10-1	1	10-1
Prior information GOCO03s d/o 127	10 ⁻³	10 ⁻⁴	10 ⁻⁴	10 ⁻⁵

Relative weighting

Observation	j = 8 (L = 255)	j = 9 (L = 511)	j = 10 (L = 1023)	j = 11 (L = 2047)
GOCE V _{xx}	1	10-1	10 ⁻³	10 ⁻⁵
GOCE V_{xy}	10 ⁻⁴	10 ⁻⁵	10-7	10 ⁻⁹ Criteria
GOCE V _{xz}	10 ⁻¹	10 ⁻²	10-4	10^{-6} • • • high sensitivity
GOCE V _{yy}	1	10-1	10 ⁻³	10 ⁻⁵
GOCE V _{yz}	10 ⁻⁴	10 ⁻⁵	10-7	10 ⁻⁹
GOCE V _{zz}	1	10-1	10 ⁻³	10 ⁻⁵
ERS-1e	1	1	10 ⁻²	10 ⁻³
ERS-1f	1	1	10 ⁻²	10 ⁻³
Jason 1 GM	1	1	10 ⁻¹	10 ⁻³
Envisat EM	1	1	10 ⁻¹	10 ⁻³
Cryosat RADS	1	1	10 ⁻²	10 ⁻³
Airb. North Sea	10-1	1	1	1
Airb. Baltic Sea	10-1	10 ⁻¹	10 ⁻¹	10 ⁻²
Terrestrial Data	10-1	1	1	1
Bathymetry	10-2	10-1	10-1	10 ⁻¹
Prior information GOCO03s d/o 127	10 ⁻³	10 ⁻⁴	10-4	10 ⁻⁵

Relative weighting

Observation	j = 8 (L = 255)	j = 9 (L = 511)	j = 10 (L = 1023)	j = 11 (L = 2047)
GOCE V _{xx}	1			O dia dia
GOCE V _{xy}	10-4			Criteria
GOCE V _{xz}	1 0 ⁻¹			• • • • high sensitivity
GOCE V _{yy}	1			 no correlations spatial distribution
GOCE V _{yz}	10 ⁻⁴			(prior information
GOCE V _{zz}	1			not sufficient)
ERS-1e		1	10 ⁻²	10 ⁻³
ERS-1f		1	10 ⁻²	10 ⁻³
Jason 1 GM		1	10 ⁻¹	10 ⁻³
Envisat EM		1	10 ⁻¹	10 ⁻³
Cryosat RADS		1	10 ⁻²	10 ⁻³
Airb. North Sea			1	1
Airb. Baltic Sea			10 ⁻¹	10-2
Terrestrial Data			1	1
Bathymetry				10-1
Prior information GOCO03s d/o 127	10 ⁻³	10-4	10-4	10 ⁻⁵

Coefficients

Summation of detail signals

Outlook & Summary

Outlook

- improving selection of input data
- choosing prior information with higher spectral content (e.g. topographic models)
- considering correlations between detail signals (e.g. introducing a filter matrix)
- improving outlier detection
- validation with real data
- further study areas
- ...

R

Summary	Rig. combination @ j = 11	MRR combination up to j = 11		
	+ less unknowns to estimate	 larger number of unknowns 		
	 relative weighting of obs. at highest level 	 relative weighting of obs. at each level spectral information in all frequency bands improved handling of data gaps 		
		stabilized solution		

> Exploiting the highest degree of information out of each data set.

Bundesamt für Kartographie und Geodäsie

The authors want to thank the BKG (Bundesamt für Kartographie und Geodäsie, Leipzig, Germany) for providing us the high-resolution terrestrial and airborne gravimetry data sets.

Appendix

Comparison with EGM2008

$$Dg_{11,final} = GOCO03s + \sum_{j=8}^{11} G_j$$

Difference Dg_{11, MRR} – **EGM2008** (j = 11, l = 2023, Blackman smoothed) ΔDg, mean +/- std: **0.86 +/- 5.80** mGal

- Largest differences at data gaps.
- Differences up to +/- 10 mGal in western parts (new data set?)
- and in the Baltic Sea (missing airborne data in EGM?).

Difference Dg_{11, rig} – EGM2008

ΔDg, mean +/- std: -3.93 +/- 6.01 mGal

- Larger differences (especially in western parts).
- Missing spectral information in mid and low frequency domains.

Software – Specifications

Software – Output

Coefficients

AGU 2014, San Francisco, 12/18/2014 Verena Lieb: RegGRAV

Analysis

$$\Delta \mathcal{F}(\mathbf{x}) = \sum_{q=1}^{N} d_{J,q} b_{J+1}(\mathbf{x}, \mathbf{x}_q) = \sum_{q=1}^{N} \sum_{l=0}^{L_J} \frac{2l+1}{4\pi} d_{J,q} \Phi_{J+1,l} \left(\frac{R}{r}\right)^{l+1} P_l(\cos\psi)$$

Observation equation for one observation:

Estimation of unknown scaling coefficients d_I

Introduction of additional observations μ_d

$$\boldsymbol{\mu}_d + \boldsymbol{e}_d = \boldsymbol{d}$$

with

 $D(\boldsymbol{\mu}_d) = \boldsymbol{\sigma}_d^2 \boldsymbol{P}_d^{-1}$

- *μ_d* ... prior information
- avoiding singularity problems
- rank deficiencies (in general number of grid points too large)

CGE

Modelling approach – Analysis

Extented Gauß-Markov model for several observation techniques:

k = 1 ... K various observation techniques

n_k number of observations from technik k

Note: the measurements y are treated as independent observations, i. e. without correlations.

- Soving the normal equations (by iteratively determined VCs) results in \hat{d}_{l} .
- Extracting the erroneous observations \mathbf{y} and applying the law of error propagation then results in the variance covariance matrix $D(\hat{d}_I)$.

Detail signal j = 11

G ₁₁	min max [mGal]	mean [mGal]	+/- std. [mGal]
Dg ₁₁	-23.86 39.74	0.06	3.58
σ_{11}	0.11 18.18	0.86	1.61

large standard deviations in areas of replaced "mean-coefficients"

-> outlier detection $|Dg_{11}| \leq 3\bar{\sigma}_{11}$

