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Abstract9

Since 2002 the two GRACE satellites observe the time varying gravity signal10

mainly caused by the sum of mass variations within the Earth subsystems ocean,11

atmosphere, and continental hydrosphere. It is a challenging problem to sepa-12

rate the integral GRACE signal and to identify and quantify the mass variations13

of the individual subsystems. This work proves first by a closed loop simula-14

tion that such a decomposition is successful by means of empirical orthogonal15

functions (EOF) derived from geophysical models and a least-squares adjustment16

with a multivariate Gauss-Markov model with time coefficients parameterized.17

The geophysical models are used to synthesize GRACE observations which are18

subsequently separated leading to time coefficients coinciding with those of the19

predefined models. In a second step the separation is performed with real, un-20

filtered time series of five years of monthly GRACE gravity field models (with21

atmospheric and oceanic background models reconstructed) and a limited num-22

ber of EOFs. The reconstructed time coefficients are in good agreement with the23

original ones and exhibit high correlations (0.70 for ocean, 0.91 for atmosphere24
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and 0.93 for continental hydrosphere). Analysis of GRACE residuals and the cor-25

relation among the time coefficients substantiate a successful identification.26

Keywords: GRACE, Principal Component Analysis, Empirical Orthogonal27

Functions, Geophysical Models, Multivariate Gauss-Markov Model, Signal28

Separation29

1. Introduction30

Since March 2002 the twin Gravity Recovery and Climate Experiment (GRACE)31

satellites observe the time varying gravity signal (Tapley et al., 2004) caused by32

the sum of all mass variations within the Earth system with unprecedented pre-33

cision and resolution. These integral GRACE observations can be used for mon-34

itoring the variation of the global water masses. Within the global water cycle35

the mass variation of the continental hydrosphere is known to be the most un-36

certain component (see e.g. the 4th assessment report of IPCC (2007), Güntner37

et al. (2007)). Since standard GRACE products are reduced for atmospheric and38

oceanic effects by so called background models, the largest part of the remaining39

signal can be attributed to mass redistributions within the continental hydrosphere40

on sub-seasonal to seasonal time scales. However, the background models them-41

selves are subject to errors with the risk to be interpreted as additional hydrolog-42

ical signal. Consequently, it is therefore much more challenging to identify and43

quantify the mass variations of all individual subsystems, continental hydrosphere,44

oceans, and atmosphere in one single step (Cazenave et al. (1999), Andersen and45

Hinderer (2005)). Besides atmosphere, ocean and continental hydrosphere, effects46

from other Earth system components and sub-components have to be considered47

for a complete and realistic Earth system modelling, such as GIA or influences48
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of earthquakes. However, in this paper we neglect these effects and focus on the49

three main Earth system components.50

Of course, such a seperation is only possible by introducing prior information. In51

order to enable a separation of mass signals and to describe the mass variations of52

the individual components H, O, and A an appropriate functional model has to be53

selected. Additional information can be introduced, for example, if this model is54

as far as possible adapted to the input data. Moreover, the target functions should55

be represented by a series expansion with (1) a minimal number of terms and (2)56

a neglegible truncation error.57

In the following we use empirical orthogonal functions (EOF) derived by princi-58

pal component analysis (PCA) of geophysical models (Preisendorfer (1988)). Ex-59

panding the observations as a time series of these EOFs results in time-dependent60

expansion coefficients which are denoted as principal components (PC). The EOFs61

describe mutually orthogonal spatial patterns and the PC form mutually uncorre-62

lated time series. These spatial patterns and time series occur in matched pairs,63

which are generally referred to as modes. Further it can be shown that the trun-64

cated EOF expansion including the first I of altogether N modes with N > I65

means an optimal I−dimensional approximation of the signal under considera-66

tion in the sense that their mean squared difference is minimal (Jolliffe (2002),67

Monahan et al. (2009)). Truncated EOF expansions therefore provide a powerful68

tool for data compression or dimensionality reduction when it is desired to capture69

as much variance as possible in a lower-dimensional approximation.70

The general strategy for separating an integral mass signal into detail signals is71

based on a two stage procedure: First, for each of the three components H, O,72

and A a set of EOFs are derived by PCA of geophysical models. Then a least73
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squares adjustment is applied to estimate the expansion coefficients for all three74

sets of base functions using the total mass signal of GRACE as observations in a75

single step. The main intention of this paper is to introduce the mathematical pro-76

cedure and to illustrate the computational procedure for identifying mass signals77

in monthly GRACE gravity fields. The geophysical interpretation of the results is78

intentionally kept short in this contribution and will be highlighted in a follow-up79

article. The outline of this contribution is as follows: In Section 2 a presentation80

of the applied geophysical models is given including GRACE level 2 monthly81

gravity fields. Section 3 treats the mathematical modeling for the separation of82

individual mass signals from integral observations. Beginning with a simulation83

procedure in Section 4.1 we show within a closed loop application that a separa-84

tion of an integral signal into individual components can be successful. With this85

knowledge real GRACE gravity observations replace in Section 4.2 the simulated86

data. It is shown that the estimations give reasonable results for the geophysical87

models. Conclusions will be given in Section 5.88

2. Geophysical Data89

In our approach we use global geophysical models for continental hydro-90

sphere, oceans and atmosphere describing mass variations in their respective sub-91

system. For separating mass signals within the time variable gravity field of the92

Earth, GRACE monthly gravity fields are used. This input data shall be modeled93

as the sum of the main contributions of the system Earth, namely the continental94

hydrology, the oceans and the atmosphere. Furthermore these contributions are95

modeled as series expansions in terms of appropriate base functions derived from96

geophysical models briefly introduced in the following subsection.97
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2.1. Models for Continental Hydrology, Ocean and Atmosphere98

Among a large variety of state-of-the-art regional and global geophysical mod-99

els for each subsystem we processed and analyzed the global models WGHM100

(WaterGAP Global Hydrology Model) for continental hydrology (Döll et al., 2003)101

and OMCT (Ocean Model for Climate and Tides) for the ocean (Thomas, 2002) as102

well as the operational analysis data from ECMWF (European Centre for Medium103

Weather Forecasts) for atmosphere (Untch et al., 2006). From these models grid-104

ded data sets of surface mass variations were derived and introduced into our105

procedure described below.106

ECMWF delivers atmospheric surface pressure fields on a reduced Gaussian grid107

of approximately 0.5° spacing and for a temporal resolution of 6 h. OMCT is108

forced by ECMWF which ensures a consistent representation of dynamics and109

mass transports in the two subsystems atmosphere and ocean. Ocean bottom pres-110

sure fields from OMCT are made available for a regular 1.875° grid in monthly111

mean values. ECMWF and OMCT are routinely used for the dealiasing of the112

GRACE observations (Flechtner, 2003). For the continental hydrology we de-113

rived monthly mean values of total water storage from WGHM on a grid of 1°×114

1°. The latter model is forced by monthly grid point values of terrestrial surface115

climate and accounts for surface runoff, groundwater recharge and river discharge.116

For our approach – explained in the third section – we interpolate in a preparatory117

step the input data from the geophysical models for each subsystem onto a 1.8°×118

1.8° grid with a temporal spacing of one month. Thus, we generate time series119

of 60 monthly mean values of equivalent water heights beginning with January120

2003.121
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2.2. GRACE Gravity Fields122

For identifying mass signals within the time variable part of the Earth’s grav-123

ity field a time series from 2003 to 2007 of GRACE monthly coefficients from124

Helmholtz Centre Potsdam, GFZ (GRACE-RL04) of spherical harmonics (Flecht-125

ner et al., 2010) up to degree and order 100 are transformed via a spherical har-126

monic synthesis into values of gravity potential for a regular 1.8°× 1.8° grid at an127

initial GRACE altitude of 450 km. For reconstructing the total signal detectable128

from GRACE we added to the provided GRACE model (GSM) the background129

models for ocean and atmosphere (GAC) afore removed in the dealiasing proce-130

dure (Flechtner, 2003). A truncation of the GRACE fields is introduced as we131

do not rely on coefficients above degree and order 100 due to an increase of the132

signal-to-noise ratio. The time series of gravity fields contains 57 months within133

the same time span as for the geophysical models. The months January and June134

2003 and January 2004 are excluded where no gravity field models are provided135

in GFZ-RL04 due to GRACE data gaps (Schmidt R. et al., 2008). More details on136

the simulated data sets from GRACE are given in Subsection 3.2.137

3. Mathematical Modeling138

3.1. Procedure139

The flowchart shown in Fig. 1 illustrates the basic ideas of our approach. A140

large number of geophysical models can be used to calculate the contributions141

of the individual subsystems of the Earth system, e.g. hydrology, oceans and142

atmosphere, to the total gravitational field. Introducing a geophysical model My143

of a specific subsystem Y ∈ {H = continental hydrosphere, O = oceans, A =144

atmosphere, . . .} provides an output signal gy(x) (y ∈ {h, o, a, . . .}) in any point145
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P (x). We identify the signal gy(x) with the so-called equivalent water heights146

(EWH) which can be derived from the gravitational potential (Wahr et al., 1998).147

We expand gy in a series148

Figure 1: Flowchart of the first part of the applied procedure; GRACE observations are used to

estimate the unknown series coefficients

gy(x, t) =

Iy∑
i=1

cy,i(t)ϕy,i(x) (1)

in terms of base functions ϕy,i(x). Herein149

x = r [cosφ cosλ, cosφ sinλ, sinφ]′ (2)

means the geocentric position vector of any arbitrary observation point P = P (x)150

expressed by means of the spherical latitude φ, the spherical longitude λ, the radial151

distance r and additionally the time t. Examples for modeling a spatio-temporal152

signal are given by Schmidt M. et al. (2008a), Schmidt M. et al. (2008b) and Seitz153

et al. (2008).154

Inserting Eq. (1) into Newton’s integral155

Vy(xp, t) = Gρw

∫
Ωy

gy(xq, t)

lpq
dΩ (3)

(cf. Heiskanen and Moritz (1967)) yields156

Vy(xp, t) = Gρw

Iy∑
i=1

cy,i(t)

∫
Ωy

ϕy,i(xq)

lpq
dΩ

=

Iy∑
i=1

cy,i(t) ay,i(xp) ,

(4)
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with157

ay,i(xp) = Gρw

∫
Ωy

ϕy,i(xq)

lpq
dΩ . (5)

Herein xp is the position vector of any point P (xp) on the surface or in the outer158

space of the Earth and dΩ is the variable of integration as a spherical element with159

an expansion of 1.8°× 1.8°. Furthermore, in the Eqs. (3) to (5) G and ρw denote160

the gravitational constant and the density of water, respectively. The quantity161

lpq = |xp − xq| =
√
r2p +R2 − 2Rrp cosψpq (6)

means the distance between the attracted point P (xp) = P (θp, λp, rp) and the162

source point P (xq) = Pq(θq, λq, rq = R) at the surface of the Earth. The spherical163

distance ψpq between the two points is computable from the relation164

cosψpq = cos θp cos θq + sin θp sin θq cos(λq − λp) . (7)

Since Vy is the contribution of the subsystem Y related to the spatial domain Ωy,165

the total gravitational potential V can be written as166

V (x, t) = Vh(x, t) + Vo(x, t) + Va(x, t) + . . .

=

Ih∑
ih=1

ch,ih(t) ah,ih(x)+

+
Io∑

io=1

co,io(t) ao,io(x)+

+
Ia∑

ia=1

ca,ia(t) aa,ia(x) + . . .

(8)

or167

V (x, t) =
∑

y=h,o,a,...

Vy(x, t) =
∑

y=h,o,a,...

Iy∑
iy=1

cy,iy(t) ay,iy(x) . (9)
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Figure 2: Flowchart of the second part of the applied procedure; the estimated parts V̂y(x, t) of

the gravitational potential related to the different subsystems Y are the results of the estimation

procedure and provide improvements w.r.t. the initial geophysical models My introduced in the

top row of Fig. 1.

In this equation the coefficients cy,iy(t) are the time-dependent unknown param-168

eters, which have to be determined from measurements of the gravitational po-169

tential V (x, t) itself or from functionals F(V )(x, t) of V (x, t) such as gravity170

anomalies. The estimations V̂y(x, t) of the gravitational potential parts Vy(x, t) of171

the subsystems Y are symbolized in Fig. 2.172

The principal component analysis (PCA) expands a spatio-temporal input sig-173

nal into a series in terms of orthonormal spatial base functions denoted as empir-174

ical orthogonal functions (EOF). The corresponding series coefficients, i.e. the175

principal components (PC), represent the temporal evolution of the input signal.176

The EOFs are derived from an eigenvector and eigenvalue decomposition of the177

empirical covariance matrix of the input signal; the PCs are the result of the trans-178

formation of the signal into the space spanned by the EOFs. In other words PCA179

identifies the geographical patterns (EOFs) together with their temporal evolution180

(PCs). Since the EOFs are related to the eigenvalues, the input signal can be sep-181

arated into dominant and non-dominant parts, also called modes (Preisendorfer,182

1988). As mentioned before we identify the input signal gy(x, t) with the EWHs183

related to the subsystem Y . With ϕy,iy(x) =: EOFy,iy(x) = EOFy,iy(θ, λ) we184

rewrite Eq. (1) as185

gy(θ, λ, t) =

Iy∑
iy=1

cy,iy(t)EOFy,iy(θ, λ) . (10)

Herein iy = 1, . . . , Iy is the counting index for the modes related to subsystem186
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Y ; the first mode (iy = 1) comprises the most dominant structures of the EWHs187

from the subsystem Y . In our approach for each of the three subsystems, i.e.188

continental hydrosphere, oceans and atmosphere an independent PCA was applied189

to the EWH given within the chosen observation interval. Incidentally since the190

two compartments, oceans and continents are non-overlapping the complete set191

of base functions for these two Earth system components establish an orthogonal192

basis on the sphere. But this statement is not valid for introducing the third system193

component atmosphere.194

3.2. Input Data195

In the following we apply our method to two kinds of input data, namely,196

1. simulated gravitational potential observations V (xp, tl) for GRACE calcu-197

lated from geophysical models and198

2. monthly solutions of the gravitational potential values from GRACE pro-199

cessing centers.200

For that purpose we define grid points P (θp, λp, rp) = P (θj, λk, rp) with latitude201

coordinates θj = θ0 + (j − 1)∆θ, j = 1, . . . , J and longitude coordinates λk =202

λ0 + (k − 1)∆λ, k = 1, . . . , K; ∆θ and ∆λ are the discretization intervals. For203

the radial distance rp we set rP = R + 450 km, i.e. the gravitational potential is204

calculated at a mean GRACE orbital height. For the time-dependency we chose205

analogously to the spatial part the temporal discretization tl = t0 + (l − 1)∆T206

with l = 1, . . . L, wherein ∆T is set to one month.207
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3.3. Parameter Estimation208

The observation equation for the simulated gravitational potential V (θj, λk, rp, tl)209

is obtained by considering the residuals e(θj, λk, rp, tl) in Eq. (9) as210

V (θj, λk, rp, tl) + e(θj, λk, rp, tl)

=
∑

y=h,o,a,...

Iy∑
iy=1

cy,iy(tl) ay,iy(θj, λk, rp) .
(11)

In this equation the coefficient sets cy,iy(tl) for y ∈ {h, o, a} and iy = 1, . . . , Iy211

are the unknown parameters of the hydrology, ocean and the atmosphere model212

parts. Since the simulated input signal of N = J · K observations given glob-213

ally at L discrete times, we solve for altogether u = Ih + Io + Ia unknowns at214

each time moment tl with l = 1, . . . , L. On the right-hand side of the observa-215

tion equation (11) a modification of the EOFs into the transformed base func-216

tions ay,iy(θj, λk, rp) is performed according to Eq. (5). Whereas, as mentioned217

before, the EOFs establish an orthogonal basis, the transformed base functions218

ay,iy(θj, λk, rp), however, do not fulfill this favorable property because of the inte-219

gration. Next, we collect all N gravitational potential observations V (θj, λk, rp, tl) =220

V (xp, tl) with p = 1, . . . , N for specific time moments tl with l ∈ {1, . . . , L} in221

an N × 1 observation vector yl and define the u× 1 vector222

cl = [ ch,1(tl), . . . , ch,Ih(tl), co,1(tl), . . . ,

. . . , co,Io(tl), ca,1(tl), . . . , ca,Ia(tl) ]
′

=
[
c′h,l, c

′
o,l, c

′
a,l

]′
,

(12)

wherein ch,l, co,l and ca,l are Ih × 1, Io × 1 and Ia × 1 vectors of the unknown223

series coefficients ch,ih(tl), co,io(tl) and ca,ia(tl), respectively. Furthermore, we224

11



introduce with ay,iy(θj, λk, rp) = ay,iy(xp) the N × u matrix225

A =


ah,1(x1) . . . ao,1(x1) . . . aa,1(x1) . . .

ah,1(x2) . . . ao,1(x2) . . . aa,1(x2) . . .
... . . . ... . . . ... . . .

ah,1(xN) . . . ao,1(xN) . . . aa,1(xN) . . .


= [Ah Ao Aa ] .

(13)

226

The function ao,1(x) of the first mode for the subsystem ocean as one element of227

the A-Matrix is depicted in Fig. 6. According to Eq. (13) the N × u matrix A228

consists of the N × Ih submatrix Ah, the N × Io submatrix Ao and the N × Ia229

matrixAa. Next we define the N × L observation matrix230

Y = [y1 . . . yL ] , (14)

wherein231

yl = [ y(x1, tl), y(x2, tl), . . . , y(xN , tl) ]
′

(15)

means theN×1 vector of the givenN gravitational potential observations V (xp, tl)232

at time tl as well as the u× L matrix233

C = [ c1 . . . cL ] (16)

of the unknown parameters. Introducing theN×N given weight matrix P and the234

L×L unknown covariance matrix Σ we formulate the multivariate Gauss-Markov235

model (Koch, 1999):236

AC = E(Y ) = Y +E with D(vecY ) = Σ⊗ P−1 (17)
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Herein E(·) and D(·) mean the expectation and the covariance matrix of a matrix237

or vector, respectively, ’vec’ is an operator which orders the columns of a matrix238

one below the other as a vector. The symbol ’⊗’ denotes the Kronecker product239

between the covariance matrix and the weight matrix. The N × L matrix E240

contains the residuals e(xp, tl). Since the matrix A is of full column rank, the241

least squares adjustment yields the estimation242

Ĉ = (A′ P A)−1 A′ P Y (18)

of the unknown parameter matrix C. The corresponding covariance matrix reads243

D(vecĈ) = Σ⊗ (A′ P A)−1 . (19)

The matrix Ê of the residuals between the observations and the recovery of the244

gravitational potential is given as245

Ê = A Ĉ− Y . (20)

Finally, an estimation of the covariance matrix Σ is obtained from246

Σ̂ =
Ê

′
P Ê

N − u
. (21)

This matrix allows for calculating the correlations between the observation vectors247

yl, i.e. it is a measure of the time-dependency.248

4. Results249

4.1. Simulated Gravitational Potential250

In order to check our method we compose simulated gravitational potential251

observations V (xp, tl) on grid points P (θp, λp, rp) = P (θj, λk, rp) as introduced252
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Figure 3: Eigenvalues of OMCT, the solid curve shows the total variance, i.e. the sum of the

eigenvalues, the vertical bars are the amounts of the eigenvalues. Note, the eigenvalues are al-

ways non-negative. A percentage of 98% of the total variance is achieved by the first Io = 37

eigenvalues.

in Section 2.2. The gravitational potential values are computed from the combi-253

nation of the three geophysical models WGHM, OMCT and ECMWF introduced254

in Section 2.1. Their single EWH contributions are added to one mass equivalent255

layer for each time step tl according to Eq. (9). In order to deal with more realis-256

tic input data we add white noise with a standard deviation of σ = 0.003 m2/s2;257

cf. Han et al. (2006). A spherical harmonic expansion until degree and order 100258

requires a sampling with discretaization intervals ∆θ = ∆λ = 1.8◦ as introduced259

at the end of Section 3.2. With θ0 = −88.2◦ and λ0 = 0◦ we obtain N = 19, 800260

observations at L = 60 discrete times t = tl for l = 1, . . . , L = 60 were chosen.261

For approximating each subsystem by a selected threshold of 98% of the total262

variance of the mass variations we obtain from Fig. 3 for the ocean model OMCT263

Io,max = 37 =: Io, for the hydrological model WGHM Ih,max = 22 =: Ih and264

for the atmosphere model ECMWF Ia,max = 35 =: Ia. Figures 4 and 5 show the265

results of the PCA of the ocean model OMCT for the first and the second mode.266

In series expansions the base functions are usually assumed to be dimensionless.267

Thus, the measurement unit of the input data is transferred into the PCs. The top268

panels depict the base function EOFo,i(x) with i = 1, 2. Figure 6 shows the269

transformed function ao,1(x) for the subsystem ocean at GRACE orbital height,270

i.e. the radial distance rp = R + 450km. Note that only mass variations in the271

oceans can be identified. Due to the integration according to Eq. (5) non-zero272

values appear all over the globe and are not restricted to the area of the oceans.273
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Figure 4: First mode of OMCT; the top panel shows EOFo,1(x), the bottom panel depicts the

corresponding PCs co,1(tl) in [m].

Figure 5: Second mode of OMCT; the top panel shows EOFo,2(x), the bottom panel depicts the

corresponding PCs co,2(tl) in [m].

The components ao,1(x) for x = xp with p = 1, . . . , N are introduced into the274

N × Io submatrix Ao defined in Eq. (13).275

Since the simulated input signal V (xp, tl) is given globally at L = 60 discrete276

times tl, we solve with u = Ih+Io+Ia = 94 for altogether u ·L = 94 ·60 = 5640277

unknowns for all 60 time epochs. For the parameter estimation according to the278

Eqs. (17) to (21) we choose with P = I the N × N unit matrix as weight ma-279

trix P . The estimations ĉy,1(tl) and the PCs cy,1(tl) of the PCA for y ∈ {h, o, a}280

are shown in Fig. 7. To be more specific, the green circles in each panel display281

the original time-dependent PCs from the PCA for each subsystem. The red cir-282

cles are the estimated coefficients ĉy,1(tl) from the adjustment according to Eq.283

(18). Since the first mode comprises the part of the input signal with the highest284

variance, it reflects for the subsystems hydrology and atmosphere the most dom-285

inating annual signal. High correlations between the original coefficients and the286

estimations are obtained for the subsystems hydrology (99.9 %) and atmosphere287

(99.8 %); the largest differences are detected for the oceanic part but the correla-288

tion still remains high with 94.9 %. As a showcase Fig. 8 depicts the correlations289

between the original coefficients – the PC – and the adjusted time series ĉo,1 for290

the subsystem ocean (OMCT) and all Io = 37 applied modes. A clear decrease291

Figure 6: Function ao,1(x) of the first mode for the subsystem ocean.
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Figure 7: Estimations ĉh,1(tl), ĉo,1(tl) and ĉa,1(tl) (red circles) of the first mode from simulation

procedure in [m]. The correlations w.r.t. the PCs ch,1(tl), co,1(tl) and ca,1(tl) of the PCAs (green

circles) are higher than 0.94.

Figure 8: Correlations (in %) between the estimated coefficients ĉo,io(tl) and the original PCs

co,io(tl) for all Io = 37 modes for subsystem ocean within the simulation process.

of the correlations for higher modes appears as well as the amounts of the cor-292

responding eigenvalues are diminishing significantly (c.f. Fig 3). Comparable293

structures in the correlation plots (not shown here) for hydrology and atmosphere294

are detectable. However, the correlations are at a higher level for these both sub-295

systems.296

297

Further the u×u correlation matrix R of the unknown parameter vectors ĉl can298

be derived from the inverse of the normal equation matrix A′P A = A′A (cf.299

Eq. (18)). As can be seen from Fig. 9 there exist at least partly correlative struc-300

tures between the subsystems. Higher (anti-)correlations between the subsystems301

ocean and atmosphere might be caused by the fact that the ocean model OMCT is302

driven by atmospheric data from ECMWF (c.f. Section 2.1). Smaller correlations303

within one subsystem are accounted for the transformation of the EOFs into the304

functions ay,iy(x) according to Eq. (5).305

4.2. Real GRACE Solutions306

Since the results of the closed-loop simulation presented in the previous sub-307

section are very promising we now apply the developed procedure to real GRACE308

gravity solutions from GFZ. We choose the monthly solutions of EIGEN-GRACE309

RL04 for a total time span between February 2003 and December 2007 including310
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Figure 9: Correlation matrix R of the unknowns; the top block at the left is related to the hydrology

part, the center part to the oceans an the bottom right block to atmosphere.
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a few data gaps in 2003 and 2004. The model is evaluated up to degree and or-311

der 100 whereby no filtering was applied in a preprocessing step. For retrieving312

the entire mass signal detected from GRACE we use the sum of the RL04 GSM313

and the GAC models (c.f. Section 2.2). The spherical harmonic synthesis is per-314

formed at the orbital height r = R + 450 km in terms of geopotentials [m2/s2] as315

mentioned in Subsection 3.2.316

Within a mass signal separation of GRACE data we again require an approxi-317

mation rate of 98% of the total geophysical models consisting of the hydrological,318

the oceanic and the atmospheric part. For that purpose we apply again the chosen319

values Ih = 22, Io = 37 and Ia = 35 from Section 4.1 for the upper limits in the320

observation equation (11). Thus, we solve for altogether u = 94 unknowns for321

each time step tl with l = 1, . . . , L = 57.322

Results from the parameter estimation are depicted in Fig. 10 for the first mode.323

The green circles in each subplot display the original time-dependent coefficients,324

i.e. the PCs from the PCAs of each subsystem. The red circles are the estimated325

coefficients ĉy,iy(tl) from the parameter estimation (18). High correlations to the326

original coefficients exist for the subsystems hydrology (93.4 %) and atmosphere327

(91.0 %). However, the poor performance for the oceanic subsystem – the cor-328

relations are below 70 % – is still unsettled. An indication might be linked to329

the afore detected high (anti-)correlation to the subsystem atmosphere within the330

correlation matrix of the unknowns (cf. Fig. 9). The dominating annual signals331

for the subsystems hydrology and atmosphere are clearly detectable. However,332

the deviations between the original and the adjusted coefficients are rather high333

for the hydrological signal ĉh,1. The well known phase shift for the annual signal334

of the GRACE solution w.r.t. WGHM is clearly visible and amounts up to one335
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Figure 10: Time-dependent coefficients: original PCs (green circles) and the estimations ĉy,1(tl)

(red circles) for each subsystem of the first mode in [m].

Figure 11: Time-dependent coefficients for the hydrological subsystem: original PCs (green cir-

cles) and estimations ĉh,6(tl) (red circles) of the sixth mode in [m].

month (Seitz et al., 2008). Furthermore the magnitude of the estimated coeffi-336

cients ĉh,1(tl) is around the half of the magnitude of the original coefficients, i.e.337

the PCs ch,1(tl).338

In general, our procedure based on PCAs is capable for detecting aperiodic339

and transient signals. The sixth mode of the hydrological subsystem (Fig. 11), for340

example, shows a clear interannual variation over the entire period in the GRACE341

signal. A very similar progression can be seen in the same mode of the hydro-342

logical model WGHM which involves a correlation coefficient of 0.73 between343

both curves. Fig. 12 depicts for the three subsytems the correlations between the344

estimated and the original coefficients for all applied modes. A decrease of this345

consistency for higher mode numbers is evident whereupon the contribution to the346

total variance of the mass signal becomes increasingly insignificant.347

Figure 13 shows the covariance matrix of the observations Σ̂ according to Eq.348

(21). Characteristic samples in terms of a checkerboard pattern are detectable.349

This might be ascribed to a residual annual signal and suggest temporal deficien-350

cies of the applied geophysical models. In addition a possible application is the351

reconstruction of the original signal of each subsytem H, O, and A from the esti-352

Figure 12: Correlations (in %) between the estimated coefficients ĉh,ih(tl), ĉo,io(tl) and ĉa,ia(tl)

and the original PCs ch,ih(tl), co,io(tl) and ca,ia(tl) for all applied modes of the three subsystems

within a mass signal separation of GRACE data.
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Figure 13: Covariance matrix Σ̂ of the observations

mated temporal coefficients ĉh,ih(tl), ĉo,io(tl) and ĉa,ia(tl) and the corresponding353

EOFs from the PCAs. However, a recalculation of the geophysical models based354

on all modes indicates high deviations relative to the original time series of the355

geophysical models. An interpretation is yet out of the scope of this contribution356

and will be presented in a follow-up paper.357
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5. Conclusion358

In this paper we presented an approach for the separation and identification359

of mass signals from different components of the Earth system with a focus on360

the methodology. In a first step we applied PCAs to given geophysical models361

in order to establish the systems of base functions. It was shown by a simulation362

that a separation of an integral signal into its individual components of the Earth363

system could be successful.364

Based on the findings of the simulation procedure we estimated the series coef-365

ficients of the same system of base functions from monthly GRACE solutions of366

the gravitational field. Correlations between the original and the estimated coeffi-367

cients are mostly high, but discrepancies between the geophysical models and the368

mass signal observed from GRACE are obvious, especially in the case of conti-369

nental hydrology. The residuals of the parameter estimation indicate deficiencies370

of the applied geophysical models with respect to their temporal evolution, but on371

the other hand they are able to describe physical processes well with respect to372

their spatial structures. This result suggests that GRACE can be especially useful373

for an improvement of the temporal behavior (i.e. of phases and magnitudes) of374

the spatial structures.375
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Döll P., F. Kaspar, and B. Lehner, 2003: A global hydrological model for deriving392

water availability indicators: model tuning and validation. J. Hydrology, 270,393

105-134.394

Flechtner F., 2003: AOD1B product description document. GRACE Project Doc-395

umentation, JPL 327-750, Rev. 1.0, JPL Pasadena, CA.396

Flechtner F., Ch. Dahle, K.H. Neumayer, R. König, and Ch. Förste, 2010: The397

Release 04 CHAMP and GRACE EIGEN Gravity Models. In: Flechtner et al.398

(eds.): System Earth via Geodetic-Geophysical Space Techniques. Adv. Tech-399

nologies in Earth Sciences, Springer Berlin, 41-58, doi 10.1007/978-3-642-400

10228-8-4.401
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