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Earth Rotation

The rotation of the Earth varies continuously. Its rotation axis changes its orientation with respect
to both a space-fixed and an Earth-fixed reference system, and the angular velocity of the rotation
fluctuates with time. The knowledge and therewith the continuous observation of Earth rotation vari-
ations is important for various reasons. It is fundamental for the realisation of time systems, the
accurate determination of reference frames, and precise navigation by providing the link between an
Earth-fixed and a space-fixed coordinate system. Moreover, time series of Earth rotation parameters
are of great interest for various disciplines of geosciences and astronomy since their changes are re-
lated to gravitational and geodynamic processes in the Earth system. In this way, Earth rotation
monitoring contributes significantly to the understanding of the dynamics of the Earth system and
the interactions between its individual components, e.g. the exchange of angular momentum between
atmosphere, ocean, and solid Earth, or the coupling mechanism between the Earth’s core and man-
tle. Today the metrological basis for this highly interdisciplinary research is provided by precise space
geodetic techniques such as Very Long Baseline Interferometry (VLBI), Satellite/Lunar Laser Ranging
(SLR/LLR), Global Navigation Satellite Systems (GNSS), and ring laser gyroscopes.

1 Reference Systems

Generally speaking the rotation of the Earth can be interpreted as a change of the orientation of an
Earth-fixed reference system H relative to a space-fixed reference system I.

The rotation vector of the Earth ω changes its orientation and its absolute value with respect to either
system. Independent from the coordinate system, the rotation vector is the vector that provides the
direction of the instantaneous rotation axis. Its absolute value equals the instantaneous angular velocity
of Earth rotation. The temporal variations of the Earth rotation vector in the space-fixed reference
system are known as precession and nutation. Both are caused by lunisolar gravitational torques which
can be described as functions of time by series expansions with high accuracy. The effects of precession
and nutation are known since centuries from astronomical observations. The change of the direction
of the Earth rotation vector with respect to an Earth-fixed reference system is referred to as polar
motion and was not observed before the end of the 19th century. Different to precession and nutation,
polar motion and the variation of the Earth’s angular velocity are not well predictable since they are
affected by a multitude of irregular geodynamic processes.

According to a fundamental theorem of rotational dynamics, the temporal derivative of the rotation
vector of a rotating body is equal with regard to a body-fixed and a space-fixed reference system. The
temporal derivative dx

dt
of an arbitrary vector x with respect to a body-fixed system and its temporal

derivative Dx
Dt

with respect to a space-fixed system are related by

Dx

Dt
=
dx

dt
+ ω × x . (1)

If the Earth rotation vector ω is introduced instead of x, the equation turns into

Dω

Dt
=
dω

dt
+ ω × ω =

dω

dt
. (2)

The equality of the derivatives means that the derivative of both the orientation of the rotation vector
and its absolute value is identical in the two systems. Consequently the variations of the orientation of
the Earth rotation axis in the space-fixed and in the Earth-fixed reference system are not independent
from each other. The relation between the coordinates of the Earth rotation vector with regard to
a space-fixed or Earth-fixed system and the temporal derivatives of the orientation parameters are
expressed by Euler’s kinematical equations (Moritz and Mueller 1987).
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Let eHi and eIi (i = 1, 2, 3) be the orthonormal base vectors of the two above-mentioned reference
systems. The orientation of the Earth-fixed system with respect to the space-fixed system can then
be written as

eHi = R eIi , (3)

where R means a time-dependent rotation matrix which is customarily composed of four parts
(Richter 1995; McCarthy and Capitaine 2002):

R = W S N P . (4)

The matrices P and N stand for precession and nutation respectively. The matrix S = R3(θ) is a spin
at the so-called Earth rotation angle θ around the axis of the Celestial Intermediate Pole. W accounts
for the components x and y of polar motion.

The transition from the space-fixed system I to the Earth-fixed system H is depicted as follows:

I Z E F H- - - -

P N S W

space-fixed
system

mean
celestial

equator system

true
celestial

equator system
terrestrial

equator system
Earth-fixed

system

Today’s fundamental astronomical space-fixed reference system is the International Celestial Reference
System (ICRS) which has been established by the International Astronomical Union (IAU) in 1997
(Feissel and Mignard 1998). The ICRS is a kinematically non-rotating coordinate system of high
precision. Its origin is defined to be at the barycenter of the solar system. The ICRS which replaced
the previous Fundamental Catalogue FK5 (Fricke et al. 1988) is realised in the radio frequency
domain by the International Celestial Reference Frame (ICRF). The ICRF is described by equatorial
coordinates of extragalactic and compact radio sources which are estimated from VLBI observations
(Ma et al. 1998). At optical wavelengths the ICRS is realised by the Hipparcos catalogue. In 1998
the ICRF contained coordinates of 608 radio sources, up to now 109 additional sources have been
added by two extensions ICRF-Ext.1 and ICRF-Ext.2 (Fey et al. 2004; Gontier et al. 2006). 212
very compact sources are used in order to define the axes of the reference frame (so-called defining
sources). Presently the ICRF sources are observed with an accuracy of about 0.1 mas. VLBI is not
capable of realising a geocentric ICRS, since it is a purely geometrical observation technique which
does not provide any relation to the Earth’s center of mass. A Geocentric Celestial Reference Frame
(GCRF) can be computed by combining VLBI and satellite observations or by referencing VLBI
stations in a satellite-based geocentric reference frame (Seitz 2009). If the origin of the ICRS is
shifted from the barycenter of the solar system into the Earth’s center of mass (under consideration of
relativistic effects), the system experiences slight accelerations due to the motion of the Earth around
the Sun. Strictly speaking, such a Geocentric Celestial Reference System (GCRS) is no longer an
inertial system. Commonly it is referred to as quasi-inertial system.

As a consequence of its rotation the Earth is flattened at the poles. Since Sun and Moon are generally
located above or underneath the equatorial plane, a gravitational torque forces the equatorial plane
towards the ecliptic (Torge 2001). Due to Earth rotation, this external force results in the precession
of the Earth axis around the pole of the ecliptic, around which the rotation axis revolves on a cone
with an apex angle of 23.5◦ . The vernal equinox that marks the intersection point of equatorial plane,
ecliptic plane, and the celestial sphere performs a clockwise motion with a rate of approximately 50.3′′

per year along the ecliptic. In about 25800 years, one so-called Platonic Year, the vernal equinox
performs one complete revolution around the celestial sphere. The precession matrix P describes the
transition from the quasi-inertial GCRS into the mean celestial equator system Z (Capitaine et al.
2002; Rothacher 2002).
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Precession is superposed by the lunisolar nutation, which causes variations of the Earth rotation
axis in the mean celestial equator system. Lunisolar nutation is a consequence of the periodically
changing positions of Moon and Sun relative to the Earth. It is composed of various oscillations with
different amplitudes and periods between few days and 18.6 years with respect to the space-fixed
system (Mathews et al. 2002). The most prominent fraction of nutation is caused by the inclination
of the lunar orbit by about 5◦ with respect to the ecliptic (Torge 2001). The orbital node, i.e. the
intersection line of the lunar orbital plane and the ecliptic, moves with a period of 18.6 years along the
ecliptic. As a consequence, the normal vector of the lunar orbital plane revolves along a cone around
the ecliptic normal vector. The torque exerted by the Moon on the flattened Earth varies with the
same period: It is maximum when the node of the lunar orbit coincides with the intersection line of
equatorial plane and ecliptic and the Moon reaches its maximum declination of +28.5◦ or −28.5◦ .
Further nutation terms are caused by the motion of Moon and Sun between northern and southern
hemisphere. They feature periods of half a month and half a year, respectively (Torge 2001). With
an apex angle of less than 10′′ nutation is significantly smaller than precession. The nutation matrix N
describes the transformation between the mean celestial equator system and the true celestial equator
system E .

The pole of the true celestial equator system is also known as Celestial Intermediate Pole (CIP).
According to resolution B1.7 adopted by the IAU in the year 2000 the CIP supersedes the previously
used Celestial Ephemeris Pole (CEP) since 1 January 2003 (Capitaine 2002; McCarthy and Petit

2004). In pursuance of this IAU resolution, the CIP is defined as the axis with respect to which
the Earth rotation angle is defined. The location of the CIP in the Earth-fixed reference system is
provided by the International Earth Rotation and Reference Systems Service (IERS) on the basis of
space geodetic observations and underlying models. The CIP is defined in a way that it performs
motions with periods longer than two days with respect to the space-fixed reference system. In the
Earth-fixed system, retrograde motions of the CIP with frequencies between 0.5 and 1.5 cycles per
sidereal day are allocated to nutation, whereas all other motions are interpreted as polar motion.
The change of the concept from the CEP to the CIP required the introduction of the revised model
for precession and nutation IAU 2000A (Souchay et al. 1999; Mathews et al. 2002) according to
resolution B1.6 of the IAU in the year 2000 (McCarthy and Petit 2004). A comprehensive overview
on the IAU 2000 resolutions and their implications is given by Kaplan (2005).

If the Earth would be solid and external torques were neglected, its instantaneous rotation axis would
be directed towards the CIP. But in reality there is a small deflection between the CIP and the
instantaneous rotation axis which is known as Oppolzer motion (Schödlbauer 2000; Capitaine

2004). As a consequence of precession and nutation, the Earth rotation axis changes its direction
with respect to the space-fixed reference system as a function of time. Associated variations of right
ascension and declination of fixed stars must be taken into account in astronomical observations from
the Earth surface. The (true) latitude of a station, i.e. the angle between the true equatorial plane
and the zenith of the station, is unaffected by precession and nutation. Matrices P and N can be
modelled and predicted on the basis of lunar and solar ephemerides with high accuracy (Lieske

et al. 1977; Wahr 1981; Seidelmann 1992). Small corrections to the current model (Celestial Pole
Offsets) are routinely published by the IERS on its internet site (http://www.iers.org). They account
for model imperfections as well as for unpredictable geophysical signals such as the Free Core Nutation
or the quasi-annual oscillation of the S1 thermal tide (Dehant et al. 1999; Vondrak et al. 2005).
Together with the precession-nutation model IAU 2000A, the celestial pole offsets allow for a precise
computation of the location of the CIP in the space-fixed GCRF as illustrated in Figure 8 (coordinates
X and Y ).

The transformation between E and the Earth-fixed system H is carried out on the basis of the so-called
Earth rotation parameters. The rotation matrix S describes the diurnal rotation around the z-axis of
the true celestial equator system. It is applied in order to transform between the true celestial equator
system and the terrestrial equator system F . Before 1 January 2003 the matrix S was related to the
Greenwich Apparent Sidereal Time (GAST), i.e. the apparent hour angle of Greenwich with respect
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to the true vernal equinox. GAST is related to the Greenwich Mean Sidereal Time (GMST), i.e. the
Greenwich hour angle of the mean vernal equinox, by the equation of equinoxes. From GMST universal
time UT1 can be accessed (Aoki et al. 1982). According to the IAU resolution B1.8 (2000) and its
supplement (IAU resolution B2, 2006), the vernal equinox as the direction of reference for the sidereal
rotation of the Earth is now replaced by the so-called Celestial Intermediate Origin (CIO) in the
space-fixed reference system (Capitaine 2002; McCarthy and Petit 2004; Capitaine 2008). The
CIO represents a non-rotating origin (Guinot 1979; Aoki and Kinoshita 1983) and is defined in
a way that the rotation vector of the celestial equator system with regard to a space-fixed reference
system has no component in the direction of the CIP. The motion of the CIO relative to the space-
fixed reference system has no component along the equator but a perpendicular one. Analogously a
Terrestrial Intermediate Origin (TIO) is defined: The rotation vector of the terrestrial equator system
with regard to an Earth-fixed reference system has no component in the direction of the CIP, and the
motion of the TIO relative to the Earth-fixed reference system has solely a component perpendicular
to the equator (Guinot 2002). In this concept GAST is replaced by the Earth rotation angle θ that
is defined as the angle measured along the equator of the CIP between the unit vectors directed
towards CIO and TIO. Since the direction of reference for UT1 moves uniformly along the equator,
UT1 and θ are linearly related. The implementation of the IAU resolution B1.8 (2000) allows for a
rigorous definition of the sidereal rotation of the Earth and for describing the rotation of the Earth
independently from its orbital motion (McCarthy and Petit 2004).

The last part of the rotation matrix R, the polar motion matrix W , describes the transformation from
the terrestrial equator system into the Earth-fixed system H. The z-axis of the terrestrial equator
system F is directed towards the CIP, while the z-axis of the terrestrial system is directed towards
the Conventional Terrestrial Pole (CTP). Today the defined CTP is the IERS Reference Pole, which
replaced the Conventional International Origin in the year 1967. The Conventional International
Origin is identical with the mean direction of the Earth rotation axis between 1900 and 1905. The IERS
Reference Pole differs from the Conventional International Origin by maximum ±0.03′′ and is realised
by coordinates of globally distributed geodetic markers by means of space geodetic observations.
Today’s conventional Earth-fixed system H is the International Terrestrial Reference System (ITRS).
Its origin is defined to be in the center of mass of the Earth including atmosphere and ocean, and the
z-axis of the right-hand system is directed towards the IERS Reference Pole. The orientation of the
x-axis of the ITRS was originally defined by the Bureau International de l’Heure (BIH) for the epoch
1984.0. From this time, the evolution of the orientation was ensured by a no-net-rotation condition with
regard to horizontal tectonic motions over the whole Earth (McCarthy and Petit 2004). The ITRS
is realised by the determination of three-dimensional positions and velocities of geodetic observatories
using space geodetic techniques. The most recent realisation of the ITRS is the ITRF2005 (Altamimi

et al. 2007).

Both the orientation of the rotation axis with respect to the CTP and the angular velocity of Earth
rotation are influenced by transient, episodic, and periodic exogenous and endogenous processes in
the Earth system. Therefore the rotation matrices S and W cannot be described or even predicted by
models with satisfying accuracy. The IERS publishes different sets of Earth Orientation Parameters
(EOP) in its circulars as well as on its internet site. Among the available parameters are the previously
mentioned celestial pole offsets, the pole coordinates xp and yp, and ∆UT = UT1 − UTC. The pole
coordinates xp and yp represent the misalignment between CIP and IERS Reference Pole, where the
orientation of the xp-axis is consistent with the x-axis of the ITRS, and the yp-axis is directed towards
90◦ western longitude. The parameters xp and yp allow for the transformation between the terrestrial
equator system F and the Earth-fixed system H. Due to polar motion, the (true) latitude and longitude
of a station on the Earth’s surface vary with time.

Except for a constant offset due to the consideration of leap seconds the coordinated universal time
UTC corresponds to the uniform Temps Atomique International TAI which is realised by a set of
worldwide distributed atomic clocks (BIPM 2007). Alternatively to the parameter ∆UT the expression
excess length-of-day (∆LOD) is common. ∆LOD is related to the absolute value of the Earth rotation
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vector in the terrestrial equator system and denotes the length of a solar day (length-of-day, LOD)
expressed in UTC or TAI reduced by 86400 seconds (Moritz and Mueller 1987):

∆LOD = LOD − 86400 s . (5)

∆LOD and ∆UT are related according to

∆LOD = − d

dt
∆UT · 86400 s , (6)

Figuratively speaking, the term ∆LOD expresses the variation of the Earth’s angular velocity due to
geophysical and gravitational influences as a variation of the effective time for one full revolution. In
former times ∆UT was observed by astronomical methods. Nowadays this parameter is unambiguously
determined by VLBI due to its connection to the quasi-inertial reference frame of extragalactic radio
sources. Global Navigation Satellite Systems (GNSS) allow for a precise observation of ∆LOD on
short time scales.

2 Polar motion

Figure 1 shows the Earth’s polar motion between 1962 and 2009 as observed by astrometric and space
geodetic observation techniques. The displayed values are taken from the well-known series EOP
05 C04 (Bizouard and Gambis 2009), in which the IERS publishes Earth orientation parameters
together with respective formal errors at daily intervals since 1962. Values in this series are provided
with respect to the precession-nutation model IAU 2000A and are consistent with the ITRF2005.
Today polar motion can be determined with an accuracy of better than 0.1 mas (IERS 2008).

A clear beat with a period of 6.3 years is obvious. It is caused by the superposition of a signal
component with annual period (approx. mean amplitude 0.09′′) and an oscillation with a period of
about 1.2 years (approx. mean amplitude 0.17′′). The resulting beat amplitude is up to 0.25′′ which
corresponds to approximately 9 m on the Earth’s surface.

While the annual oscillation can be explained by gravitational and geophysical effects within the Earth
system, the oscillation with a period of 1.2 years is a free rotational mode of the Earth. It has been
discovered by Chandler (1891, 1892) and is therefore known as Chandler oscillation. The Chandler
oscillation originates from a misalignment of the polar principal axis of inertia (figure axis) and the
rotation axis of the Earth (Schödlbauer 2000). This causes a tumbling motion of the flattened Earth
gyro, in which the rotation vector revolves on a cone around the figure axis. The Chandler oscillation
is a prograde polar motion, i.e. counter-clockwise when seen from the North pole. The existence of
such a free oscillation of the Earth has earlier been predicted by Euler (1765): From theoretical
computations for a solid body with the Earth’s dimension, he determined a period of 304 days (Euler
period) for one revolution. Since the Earth is deformable, the actual period is lengthened to about
432 days (Chandler period) (see Section 4.2.1).

Signal decomposition of observed polar motion by means of wavelet filtering (Seitz and Schmidt 2005)
allows for splitting the entire signal into its two main constituents, i.e. the Chandler oscillation and
the annual oscillation. The resulting time series (x-components) are shown in Figure 2 for a period of
150 years between 1860 and 2009. Since both signal components are almost circular, the y-components
look very similar. Displayed values for polar motion are taken from the long-term C01 series, in which
the IERS provides observations since 1846 in a temporal resolution of 0.1 years (1846-1889) and 0.05
years (1890 until 2009). During the first decades the observations were based on optical astrometry
and are comparatively inaccurate (standard deviations up to σ = 0.16′′). The top panel of Figure 2
shows the x-component of the time series C01 (after removal of a linear trend) together with the 3σ
error margin. The Chandler oscillation (middle) features much stronger amplitude variations than the
annual signal (bottom) which has been rather uniform during the last century (the first and the last
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Figure 1: Observations of polar motion from the EOP 05 C04 series of the IERS between 1962 and 2009.

years in the plot should not be interpreted due to boundary effects of the applied filter). Although
the accuracy of the elder astrometrical data is rather poor, the displayed amplitude variations are
significant since the signal exceeds some 100 mas.

The origin of the strong amplitude variations and therewith the causative mechanism for the evocation
of the Chandler oscillation has been under discussion since many years. As a consequence of the
anelasticity of the Earth mantle and the associated dissipation due to friction the Chandler oscillation
is a damped oscillation. But the observations indicate that the amplitude of the free polar motion is
excited by some mechanism which counteracts the damping. In numerous publications this matter has
extensively been discussed. It has been investigated if atmospheric or hydrologic mass redistributions
(Wahr 1983; Hameed and Currie 1989; Sidorenkov 1992; Furuya et al. 1996; Furuya et al.
1997) or processes in the Earth’s interior (Souriau and Cazenave 1985; Gross 1986; Hinderer

et al. 1987) are the hurriers of the oscillation. Since the Chandler oscillation is a resonance oscillation
of the Earth, potential excitation mechanisms require energy in a band close to the Chandler frequency
in order to excite the free polar motion and thus to counteract its damping. In recent years a number
of studies came to the conclusion that the Chandler oscillation is excited by the combined effect of
atmosphere and ocean (Gross 2000; Brzezinski and Nastula 2000; Seitz and Schmidt 2005).
However the individual contributions of these two subsystems could still not be fully assessed yet,
since all investigations are naturally dependent on imperfect model assumptions of atmospheric and
oceanic processes and their related mass transports. Furthermore also minor effects from continental
hydrosphere, cryosphere, and other subsystems must be taken into account in order to close the budget
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of polar motion excitation.

The annual signal of polar motion originates similarly to a number of further significant higher and
lower frequencies from gravitational and internal geophysical excitations, causing mass redistributions
and mass motions within and between the Earth’s subsystems. An overview of important drivers
and the corresponding signatures in polar motion (amplitudes and periods) is given by Chao (1994)
and Gross (2007). As mentioned above there are also singular and non-periodic contributions from
transient and episodic geophysical effects, such as earthquakes (Chao and Gross 1987; Chao and
Gross 2005) or El Niño situations (Kosek et al. 2001). Forced variations of polar motion and the free
Chandler oscillation are closely linked. Variations of the Earth rotation vector induce a change of the
Earth’s centrifugal potential which leads to additional mass redistributions in the solid Earth and the
ocean (so-called rotational deformations). This back-coupling effect causes a motion of the principal
axis of inertia that affects the Chandler oscillation (see Section 4.2.1).

Figure 3 shows the polar motion curve in units of metres on the Earth surface in more detail for a
time interval of six months (Schreiber et al. 2004). The large circle results from the superposition
of signal components with comparatively long periods (especially the prograde Chandler and pro-
and retrograde annual oscillations), whereas the small circles with magnitude of approximately 0.01′′

are nearly diurnal retrograde polar motion components which are related to corresponding precession
and dominant nutation terms in the space-fixed reference system (Oppolzer terms). The pronounced
beat effect with a period of 13.7 days results from the superposition of oscillations that correspond
to precession (period 0.997 days in the Earth-fixed reference system) and the largest nutation term
(period 1.076 days in the Earth-fixed reference system). Variations of the beat amplitude are caused by
further signal components that correspond to other nutation terms with approximately diurnal period
in the Earth-fixed system (McClure 1973). In analogy to precession and nutation in the space-
fixed system, the retrograde nearly diurnal polar motion in the terrestrial system originates from
lunisolar gravitational torques on the equatorial bulge of the Earth. Earth rotation causes a daily
variation of the gravitational forces which results in the almost circular motion of the rotation pole
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Figure 2: Long-term observations of polar motion (x-component, linear trend removed) between 1860 and 2009
together with the 3σ error margin plotted in grey (top) and Chandler (middle) and annual (bottom) signal
component determined by wavelet filtering.
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Figure 3: Path of the rotation pole in the Earth-fixed reference system between January and June 2002 in metres
on the Earth surface (Figure taken from Schreiber et al. 2004).

in the direction opposite to the rotation. Nearly diurnal retrograde polar motion cannot be directly
assessed by observations of VLBI, SLR/LLR, and GNSS since these techniques are sensitive only to
the complete rotation matrix from the Earth-fixed to the space-fixed reference frame from which no
discrimination between celestial pole offsets and nearly diurnal retrograde polar motion is possible. An
inertial rotation sensor on the Earth’s surface is sensitive to the diurnal retrograde polar motion since
the angle between the axis of the instrument and the rotation axis of the Earth changes with a period
of one day. In this way, ring laser gyroscopes allow for the direct observation of the position of the
instantaneous rotation axis and therewith for the assessment of the diurnal polar motion (Schreiber

et al. 2004).

Beside the periodic and irregular fluctuations, polar motion is characterised by a secular trend at a
present rate of 3.3 mas/a into the direction of 76◦ -78◦ western longitude (Vondrak et al. 1995;
Schuh et al. 2001). Although its reason is not entirely understood yet, there is evidence that this
secular motion is caused by postglacial rebound and sea level variations (Milne and Mitrovica

1998).

3 Variations of length-of-day and ∆UT

The variation of the length of a solar day (∆LOD) can be determined from the observations of modern
space geodetic techniques with an accuracy of 20 µs (IERS 2008). As shown in Equation (6) ∆LOD
is directly related to ∆UT . While accurate short-term time series of ∆LOD, i.e. of the derivative of
∆UT , can be estimated with high temporal resolution from GNSS observations, mid- and long-term
stability of ∆LOD as well as ∆UT series can only be guaranteed by VLBI, providing the connection
to the quasi-inertial reference frame. All satellite-based techniques, such as GPS or Glonass, meet the
problem that Earth rotation cannot be distinguished from a uniform rotation of the satellite orbit
nodes (Ray 1996).

Figure 4 (top panel) displays the observed variations of length-of-day from the EOP 05 C04 of the
IERS for the period between 1962 and 2009. The curve is dominated by a secular signal in the order of
milliseconds that is superposed by significant variations with annual and semi-annual periods due to
mainly atmospheric effects and tidal signals with periods of several days. In contrast to polar motion,
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Figure 4: Variations of length-of-day (∆LOD) for the time frame between 1962 and 2009. (a) Observation time
series EOP 05 C04, (b) moving average over five years in comparison with three models for the influence of
core-mantle-interaction (dots: JBG; stars: PD1; diamonds: PD2; see text), (c) effect of solid Earth tides, (d)
annual and semi-annual signal component, (e) residual time series (a-b-c-d).

there is no free variation of length-of-day due to rotational deformations (Wahr 1985). The decadal
variability of ∆LOD is ascribed to the exchange of angular momentum between the Earth’s core and
mantle (Liao and Greiner-Mai 1999). This assumption is supported by strong correlations between
the decadal variations of ∆LOD with fluctuations of the Earth magnetic field (Schuh et al. 2003). Four
potential mechanisms of core-mantle-coupling (CMC) are presently under discussion: topographic,
electro-magnetic, viscoelastic, and gravitational coupling. Available models of topographic coupling
are rather inaccurate since the knowledge of the topography at the core-mantle boundary is insufficient.
But presumably this coupling mechanism does not provide enough energy in order to excite the strong
variations of ∆LOD (Ponsar et al. 2002). Holme (1998) showed that the electro-magnetic CMC
seems to be the most important excitation mechanism. It is based on variations of the geomagnetic
field due to dynamo processes, which exert a torque on conductive regions of the lower mantle via the
Lorentz force (Schuh et al. 2003). Viscoelastic and gravitational coupling are inferior. In the frame
of its Special Bureau for the Core (SBC) of the Global Geophysical Fluids Center (GGFC), the IERS
provides model time series that describe the effects of CMC on ∆LOD. In Figure 4 (b) the results
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of three different models are compared with a moving average of the observations over five years.
One of the model data sets (according to Jackson, Bloxham and Gubbins, JBG) has a temporal
resolution of one year (Jackson 1997), the other two models (according to Petrov and Dehant,
PD1 and PD2) are available for intervals of five years. All data sets are based on the Frozen Flux
Hypothesis (Jault et al. 1988). While JBG is a free model, PD1 and PD2 are based on observations
of the magnetic field. The comparison of the various models provided by the SBC reveals significant
differences. To a certain extent the data series correspond with the moving average (especially in the
case of PD2), but the temporal resolution is much to coarse in order to explain the decadal variations
of ∆LOD with sufficient accuracy and thus to exclude other causative processes.

Variations of ∆LOD on annual, seasonal, and shorter time scales are highly correlated with angular
momentum fluctuations within the atmosphere (mainly due to zonal winds) and, to a minor extent, due
to ocean currents. The two strongest signal components induced by those processes, i.e. the annual and
semi-annual oscillation, feature almost equal amplitudes of approximately 0.36 ms. In addition there
is a weak quasi-biennial oscillation (QBO) due to irregular variations of zonal winds and temperatures
in the tropical troposphere and stratosphere (Trenberth 1980). Its amplitude varies from cycle to
cycle. In general it is smaller than 0.1 ms (Höpfner 2001). The most important periods induced by
solid Earth tides are 9.13 days (amplitude 0.07 ms), 13.63 days (0.15 ms), 13.66 days (0.35 ms) and
27.55 days (0.19 ms) (Yoder et al. 1981; McCarthy and Petit 2004). In contrast to solid Earth
tides, the influence of ocean tides on ∆LOD is small (Lambeck 1980; Gross 1993), but not negligible
in high precision space geodesy.

The residual signal of ∆LOD (Figure 4 e), i.e. after reduction of the decadal signal, the annual and
semi-annual oscillations, and the tidal effects feature transient increases of the length-of-day during
1983 and (somewhat less pronounced) during 1997. These episodic signals can be explained by strong
El Niño events (Rosen et al. 1984; Chao 1989). Like polar motion, ∆LOD is characterised by a
secular change. Especially as a consequence of tidal friction the length of a solar day increases by 2.3
ms per century (Morrison and Stephenson 1998).

4 Physical model of Earth rotation

4.1 Balance of angular momentum in the Earth system

From a physical perspective, Earth rotation can be interpreted as the rotary motion of a multitude of
individual and interrelated mass elements about one common axis. This rotary motion is comparable
to that of a physical gyroscope. Therefore theoretical and numerical studies on temporal variations of
Earth rotation are based on equations of gyroscopic motion which follow from the balance of angular
momentum in the Earth system. With respect to an Earth-fixed, i.e. rotating, reference system, the
balance between the Earth’s angular momentum H and external torques L due to, e.g. lunisolar and
planetary gravitational forces, is described by the dynamic Euler Equation (Lambeck 1980):

d

dt
H + ω × H = L . (7)

In this equation ω denotes the rotation vector of the Earth with respect to the rotating reference
system. The angular momentum of a rotating rigid body equals the product of its tensor of inertia I

and the rotation vector ω:

H = I · ω . (8)

The symmetric tensor of inertia describes the mass distribution in the system (Lambeck 1980). In
the case of a rigid body it is invariant with respect to body-fixed axes.

I =

∫∫∫
ρ(x, y, z)




y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2



 dV , (9)
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where ρ(x, y, z) is the density at the three-dimensional position (x, y, z). In the case of a rotating
deformable body, the angular momentum H is split into two parts: One fraction corresponds to the
angular momentum of the rotating rigid body (Equation 8), but with the difference that the tensor
of inertia is now time-variable due to deformability. The second fraction can be viewed as angular
momentum h relative to the body rotation. It follows from the motion of mass elements with velocity
vrel relative to the rotating reference system, in which the rotation is described:

h =

∫∫∫
ρ(x, y, z) ·

(
r× vrel

)
dV , (10)

where r denotes a three-dimensional position vector. Consequently the angular momentum of a rotating
deformable body is (Schneider 1988)

H = I · ω + h , (11)

where the first summand is also referred to as mass term, the second one as motion term. Insertion of
Equation (11) into (7) yields

d

dt

(
I · ω + h

)
+ ω ×

(
I · ω + h

)
= L . (12)

In this form the equation is also known as Euler-Liouville or short Liouville Equation (Munk and
MacDonald 1960). In the context of Earth rotation studies, the term deformability does not only
refer to deformations of the Earth’s body but also to mass redistributions within and between the
various components of the Earth system. In particular atmospheric and oceanic transport processes
and related mass changes are very important on time scales from hours and days to several years.
While the time-variable mass distribution in the system influences the tensor of inertia I, motions of
mass elements with respect to the reference system cause relative angular momenta h. Consequently
all elements of the Liouville Equation are time-variable:

I = I(t), h = h(t), ω = ω(t), L = L(t) . (13)

Angular momentum is exchanged among the individual components of the Earth system via mass
transfer processes and torques. The occurrence of relative angular momenta is not necessarily linked
to the appearance of variations of the tensor of inertia. Certainly most of the relevant processes
influence both the mass and the motion term simultaneously. For instance, the atmospheric flow is
generally related to variations of atmospheric pressure, and ocean circulation is usually accompanied
by variations of ocean bottom pressure. But on the other hand mass motions are conceivable that do
not influence the mass distribution in the Earth system and consequently the tensor of inertia. This
is the case if one mass element is instantaneously replaced by a subsequent one (e.g. in a ringlike
ocean current) or if the Earth’s core experiences an acceleration with respect to the Earth’s mantle.
Vice versa vertical deformations of the Earth as a consequence of loading or the time-variable snow
coverage could be mentioned as examples of mass redistributions without a significant influence on
the motion term.

In theoretical studies on Earth rotation, the quantities in the Liouville Equation are often related to a
rotating reference system, according to which the mass elements of a rotating rigid body are invariant
with respect to their position at all times. For a deformable Earth such a system can be defined by a
minimum condition (Schneider 1988). An example is the Tisserand System (Tisserand 1891), for
which the integral effect of the relative motions of mass elements with respect to the reference system
is minimised (h = 0). The application of the Tisserand System simplifies the Liouville Equation (12)
considerably. But on the other hand the definition of the Tisserand System is hypothetical, since
relative angular momenta (especially in the Earth’s interior) are not accessible from observations on
the Earth’s surface (Engels and Grafarend 1999).

Numerical investigations are commonly performed in a geocentric terrestrial reference system. Its rota-
tion axis is oriented towards the polar moment of inertia C of the Earth, its x-axis is directed towards
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the Greenwich meridian and its y-axis towards 90◦ E. The terrestrial system performs a uniform rota-
tion about its z-axis with angular velocity Ω = 2π/86164 s. Temporal variations of the instantaneous
Earth rotation vector ω(t) are viewed as small deviations of the uniform rotation. In coordinates of
the terrestrial system the Earth rotation vector is expressed as (Munk and MacDonald 1960):

ω(t) = Ω ·




m1(t)
m2(t)

1 +m3(t)



 , mi ≪ 1 . (14)

The dimensionless quantities mi(t) (i = 1, 2, 3) represent slight disturbances of the uniform rotation
(Munk and MacDonald 1960). The two components m1(t) und m2(t) describe the time-variable
orientation of the rotation axis with respect to the z-axis of the terrestrial system (polar motion).
Deviations of the Earth’s angular velocity with respect to Ω are associated with changes of the length-
of-day. They follow from the temporal variation of the absolute value of the Earth rotation vector
|ω(t)| (Lambeck 1980; Schneider 1988):

|ω(t)| = Ω

√
m1(t)2 +m2(t)2 + (1 +m3(t))

2 ≈ Ω (1 +m3(t)) . (15)

The error of ∆LOD due to this approximation is 10−16 s and therefore negligible.

The Earth’s tensor of inertia I(t) can be interpreted as the sum of two components I0 and ∆I(t)
(Lambeck 1980), where I0 is an approximate tensor. If the axes of the reference system coincide with
the principal axes of inertia, the approximate tensor has a diagonal structure:

I0 =




A 0 0
0 B 0
0 0 C



 , (16)

where A and B are the equatorial principal moments of inertia of the Earth (C > B > A). But the
axes of the principal moments of inertia differ from the axes of the previously described terrestrial
reference system by approximately 15◦ in the equatorial plane (Marchenko and Schwintzer 2003).
This divergence has to be taken into account by means of a rotation. Consequently I0 does not have
a diagonal structure with respect to the axes of the applied terrestrial system.

Due to mass redistributions in the Earth system, small time-dependent deviations ∆I(t) of the ap-
proximate tensor I0 arise (Moritz and Mueller 1987). With the tensor elements (so-called deviation
moments) cij(t) ≪ A,B,C (i, j = 1, 2, 3) the symmetric tensor ∆I(t) reads:

∆I(t) =




c11(t) c12(t) c13(t)

c22(t) c23(t)
sym. c33(t)



 . (17)

If deviations of the tensor cij(t), relative angular momenta h(t), and external torques L(t) are provided
from models or observations, the solution of the Liouville Equation for ω(t) allows for the forward
computation of Earth rotation variations. The relation between modelled values mi(t) and geodetic
observations will be discussed in Section 5.

Two different approaches, the angular momentum approach and the torque approach, are in principle
applicable for the set-up and solution of the Liouville Equation. Theoretically both approaches are
equivalent, but they differ conceptually with respect to their view of the Earth system. Accordingly, the
procedures of modelling effects of the Earth’s fluid components (e.g. atmosphere, ocean, continental
hydrosphere) on Earth rotation are different (de Viron et al. 2005).
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4.1.1 Angular momentum approach

The angular momentum approach is the classical approach for modelling Earth rotation. It has been
described in various publications (Munk and MacDonald 1960; Lambeck 1980; Barnes et al.
1983; Moritz and Mueller 1987). The rotating body for which the Liouville Equation is set up
comprehends the solid Earth, atmosphere, hydrosphere, and all other subsystems. In absence of ex-
ternal lunisolar and (much smaller) planetary torques, this system of mass elements is viewed to be
isolated, i.e. the right-hand side of Equation (12) is zero, and the total angular momentum of the
rotating body is conserved. Fractions of angular momentum can be transferred between the individual
system components by redistributions and motions of masses. Changes of the angular momentum
due to atmospheric, oceanic and other dynamic processes are associated with an opposite change of
angular momentum of the solid Earth which is accompanied by variations of the Earth rotation vector
ω(t).

In the angular momentum approach solely gravitational torques from external celestial bodies act on
the rotating Earth. If Sun, Moon, and planets are viewed as point masses, the gravitational torque
L(t) on the right-hand side of the Liouville Equation (12) can be written as (Moritz and Mueller

1987; Beutler 2005)

L(t) =
∑

j

3GMj

r5ej(t)




yj(t) zj(t) (C −B)
xj(t) zj(t) (A− C)
xj(t) yj(t) (B −A)



 . (18)

In this equation G is the gravitational constant, and index j stands for the respective celestial body
with the (point-)mass Mj ; its geocentric distance is denoted with rej(t); xj(t), yj(t), zj(t) are its
coordinates in the rotating reference system. In its Conventions the IERS recommends the use of the
solar, lunar, and planetary JPL Development Ephemeris DE405/LE405 (Standish 1998; McCarthy

and Petit 2004).

Each relocation of mass elements within the system leads to an instantaneous change of the tensor
of inertia ∆I(t). Deviation moments cij(t) for the solid Earth result from deformations of the Earth’s
body as reaction to a tide generating potential, rotational variations, and surface mass loads (Moritz

and Mueller 1987; Seitz et al. 2004) (see Section 4.2). Relative angular momenta h(t) are due to
the motion of individual mass elements relative to the terrestrial reference system.

The angular momentum approach corresponds to an abstract balance of angular momentum of all
subsystems. Their individual contributions to the angular momentum budget are linearly superposed:

I(t) = I0 + ∆I solid Earth(t) + ∆I atmosphere(t) + ∆I ocean(t) + ...

h(t) = h solid Earth(t) + h atmosphere(t) + h ocean(t) + ... .
(19)

Variations of the tensor of inertia can be computed from modelled or observation-based mass balances
of the Earth’s subsystems. Relative angular momenta are derived from fluxes from global atmosphere
and ocean circulation models.

4.1.2 Torque approach

In the torque approach the effects of the Earth’s fluid components atmosphere and ocean on the
balance of angular momentum are modelled as (quasi-)external torques (Wahr 1982). That is, the
integral effect of direct atmospheric and oceanic forces on the solid Earth appears in the vector L(t)
on the right-hand side of the Liouville Equation (12). Similar to the angular momentum approach,
variations of the tensor of inertia ∆I(t) are due to deformations of the solid Earth caused by tides,
surface mass loads, and rotational variations. Since atmosphere and ocean are viewed as external
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systems, their mass redistributions do not affect the tensor of inertia. Likewise there are no relative
angular momenta h(t) due to atmospheric and oceanic currents.

Torques between atmosphere/ocean and the solid Earth are assessed on the basis of global atmosphere
and ocean circulation models. The acting torque is composed of three parts: Pressure torque, gravi-
tational torque, and friction torque (de Viron et al. 2001). The pressure torque acts on the Earth’s
topography. It is derived from fields of surface and ocean bottom pressure, and the gradient of the
topography. The gravitational torque is a result of the interaction between the mass distributions
within atmosphere/ocean and the solid Earth. The friction torque results from the relative motion
of atmosphere and ocean currents with respect to the Earth surface. Since the friction drag of the
Earth’s surface is widely unknown it is particularly difficult to model (de Viron and Dehant 2003a).
In a study on the influence of the atmospheric torque on polar motion de Viron et al. (1999) demon-
strated that the time derivatives of the equatorial atmospheric angular momentum and the sum of the
atmospheric equatorial torques agree well in the spectral range of longer than one day. Furthermore
this study revealed that the magnitude of the equatorial components of pressure and gravitational
torque are almost equal (but with opposite signs), and that both contribute significantly stronger to
polar motion than the friction torque.

The effects of atmospheric and oceanic pressure torque, gravitational torque, and friction torque are
superposed to the previously described external gravitational torque exerted by Sun, Moon, and planets
(Equation 18). Therefore the total torque L(t) can be written as

L(t) = L pressure(t) + L gravitation(t) + L friction(t) + L external(t) . (20)

Since lunisolar and planetary torques have a discrete spectrum in narrow vicinity of the diurnal retro-
grade frequency, they can be modelled quite well via harmonic expansion. Atmospheric and nontidal
oceanic torques, however, have a continuous spectrum and are thus unpredictable. Consequently, the
modeling has to be performed in the time domain.

From the viewpoint of physical understanding, the torque approach is superior to the angular mo-
mentum approach. By modelling explicit interactions between atmosphere/ocean and the solid Earth
via particular forces, it is possible to tell which specific processes lead to a change of the angular
momentum budget and thus cause variations of Earth rotation. The torque approach is ideal for geo-
graphical studies since it allows for a direct identification of regions in which the interaction between
atmosphere, ocean, and the solid Earth is stronger than in others (de Viron and Dehant 2003b).
In this way, the approach provides valuable physical insights into dynamic interactions in the Earth
system.

The largest limitation for the torque approach is the lack of sufficiently accurate numerical models
for the computation of the torques due to atmospheric and oceanic pressure, gravitation, and friction.
While model errors are not so crucial in the case of the angular momentum approach (where the errors
smooth out due to the computation of one global value), the torque approach is highly sensitive to
errors (de Viron and Dehant 2003b). As stated above many of the parameters which are necessary
for the computation of torques are not well-known, e.g. the friction drag between air and Earth
surface or between water and ocean bottom. Furthermore the computation of the pressure torque
is unsatisfactory due to the comparatively coarse spatial resolution of available orography models
(de Viron et al. 1999; Stuck 2002).

Due to these data problems, atmospheric and oceanic angular momentum values presently appear to
be more reliable for the interpretation of geodetic observations of Earth rotation. Nevertheless the
torque approach is promising in the light of future model advancements.
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4.2 Solid Earth deformations

Mass redistributions and corresponding variations of the tensor of inertia are also caused by deforma-
tions of the solid Earth as a consequence of its reaction to the lunisolar and planetary tide generating
potential, variations of the centrifugal potential due to polar motion, and mass loads on the Earth
surface.

Theoretical considerations on the effects of solid Earth and ocean tides on Earth rotation are provided
together with elaborate instructions for numerical computations in the Conventions of the IERS (Mc-

Carthy and Petit 2004). For particulars it is referred to this publication and the references therein.
The following section will focus on the deformations induced by rotational variations and surface mass
loads.

4.2.1 Rotational deformations

Temporal variations of the rotation vector ω(t) lead to variations of the Earth’s centrifugal potential.
This causes deformations of the solid Earth and the ocean which are also known as rotational deforma-
tions. While vertical deformations due to variations of the angular velocity of the rotation are below
half a millimetre at the Earth surface (Wahr 1985) and therefore negligible, the effects due to polar
motion are up to 25 mm (Gipson and Ma 1998). These changes of the Earth’s geometry are accompa-
nied by variations of the tensor of inertia that are superposed to other deviations cij(t) (i, j = 1, 2, 3)
due to mass redistributions induced by gravity and other geophysical effects. The back-coupling from
polar motion to the tensor of inertia influences the Earth’s rotational dynamics significantly: It is
well-known that rotational deformations are responsible for the prolongation of the Euler period of
304 days (which is the period of the free oscillation of a rigid body with the Earth’s dimensions) to the
observed period of the free oscillation of about 432 days (Chandler period) (Moritz and Mueller

1987).

The effect of polar motion on the Earth’s centrifugal potential is referred to as pole tide. Parameters
m1(t) and m2(t) of the Earth rotation vector are related to temporal variations of the coefficients
∆C21(t) and ∆S21(t) of the spherical harmonic expansion of the geopotential (McCarthy and Petit

2004):

∆C21(t) = − Ω2a3

3GME
(ℜ(k2) ·m1(t) + ℑ(k2) ·m2(t)) ,

∆S21(t) = − Ω2a3

3GME
(ℜ(k2) ·m2(t) −ℑ(k2) ·m1(t)) ,

(21)

where a and ME stand for mean equatorial radius and total mass of the Earth. The effect of polar
motion on rotational deformations and therewith on the variation of the geopotential depends on the
Earth’s rheological properties. In Equation (21) the rheology is described by the complex pole tide
Love number k2 = ℜ(k2)+ iℑ(k2), where ℜ and ℑ stand for real part and imaginary part respectively.

The coefficients ∆C21(t) and ∆S21(t) are directly linked to the elements of c13(t) and c23(t) of the
tensor of inertia (Lambeck 1980):

∆C21(t) =
−c13(t)
a2ME

,

∆S21(t) =
−c23(t)
a2ME

.

(22)

If the Earth was a rigid body, i.e. if the tensor of inertia was invariant with respect to time and
there were no relative angular momenta, the Earth would rotate freely at the Euler period of 304
days as stated above. In an extensive study Smith and Dahlen (1981) discussed the consequences
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of deformability for the period of the free polar motion and derived an appropriate numerical value
of the pole tide Love number k2 in the light of mantle anelasticity and the dynamics of core and
ocean. In a first step Smith and Dahlen (1981) approximated the Earth as a purely elastic body
and neglected the dynamic response of core and ocean. The pole tide Love number was introduced
with the (preliminary) numerical value of k∗2 = 0.30088 which was computed from the hydrostatic
ellipsoidal Earth model 1066A (Gilbert and Dziewonski 1975). It was shown that the period of the
free rotation of a fully elastic Earth would amount to 447 days, i.e. 143 days longer than that of a
rigid body.

In order to refine the Earth’s reaction on rotational variations, the effects of the dynamic fluid core,
the equilibrium ocean pole tides, and the mantle anelasticity must be taken into account for the
computation of rotational deformations. In the following a simple Earth model will be discussed
which consists of an anelastic mantle and a spherical liquid core. Both are assumed to be completely
decoupled. Basic considerations on the application of such a model body for studies on Earth rotation
can be found in, e.g., Moritz and Mueller (1987) and Brzezinski (2001). It is similar to the models
introduced by Molodensky (1961) and Sasao et al. (1980), but in contrast to the latter studies, the
approach does not account for the exchange of angular momentum between core and mantle. While
the effects of core-mantle coupling on polar motion are significant mainly on subdaily time scales, there
are huge decadal variations of ∆LOD due to the interaction of core and mantle (see Section 3). As a
consequence of the decoupling, the principal moments of inertia A, B, and C which are the parameters
of the approximate tensor of inertia I0 (Equation 16) of the entire Earth have to be replaced by Am,
Bm, and Cm, which are attributed to the mantle alone. Since the core is assumed to be spherical, the
principal moments of inertia used for the computation are derived from Am = A−Ac, Bm = B −Ac,
and Cm = C − Ac, where Ac denotes the principal moment of inertia of the spherical core. Its value
is derived from (Sasao et al. 1980)

Ac = A
ξ

γ
, (23)

where ξ and γ are constants accounting for the rheology of mantle and core. The values provided by
Sasao et al. (1980) are ξ = 2.300×10−4 and γ = 1.970×10−3 . In a later study, Mathews et al. (1991)
computed ξ = 2.222×10−4 and γ = 1.965×10−3 from the Preliminary Reference Earth Model PREM
(Dziewonski and Anderson 1981). The non-participating of the core in the rotation shortens the
period of the free polar motion by approximately 50.5 days (Smith and Dahlen 1981). That is, the
period of the free rotation of a fully elastic Earth with liquid core would be around 396 days.

In order to account for the effects of ocean pole tides and mantle anelasticity, surcharges to the above
given value for the elastic pole tide Love number k∗2 are added (Smith and Dahlen 1981). The effective
pole tide Love number k2 becomes

k2 = k∗2 + ∆kO
2 + ∆kA

2 , (24)

where ∆kO
2 and ∆kA

2 denote the incremental corrections of the elastic pole tide Love number due
to ocean pole tides and the anelastic response of the Earth’s mantle. Following Smith and Dahlen

(1981) and a more recent study by Mathews et al. (2002) the appropriate addend for the contribution
of equilibrium ocean pole tides amounts to ∆kO

2 = 0.044. Thereby the period of the free oscillation is
lengthened by about 29.8 days (Smith and Dahlen 1981).

The reaction of the Earth’s mantle on variations of the centrifugal potential is not ideally elastic. Due
to friction, rotational deformations of the mantle are a dissipative process which is equivalent to an
attenuation of the free polar motion. That means, in absence of a counteracting excitation mechanism
the rotation axis of the Earth would dislocate towards its figure axis within a few decades (Moritz

and Mueller 1987). The effect of mantle anelasticity causes an extension of the period of the free
rotation by another 8.5 days (Wilson and Haubrich 1976). It is considered by the complex surcharge
∆kA

2 = 0.0125+0.0036i to the Love number k∗2 (Mathews et al. 2002; McCarthy and Petit 2004).
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Summing up the effects of ocean, core, and mantle, the value of the pole tide Love number is k2 =
0.35 + 0.0036i (McCarthy and Petit 2004). This value is appropriate for a deformable Earth with
a spherical liquid core, taking into account the effects of ocean pole tides and mantle anelasticity.
When k2 was applied in a numerical simulation with a dynamic Earth system model, the resulting
Chandler period was 431.9 days (Seitz et al. 2004) which coincides with geodetic observations. The
result of the simulation for the x-component of polar motion over a period of 100 years is displayed in
Figure 5. Since neither gravitational effects nor mass redistributions and motions in the Earth’s fluid
components have been considered in this experiment, the curve reflects the free polar motion under the
influence of mantle anelasticity or – mathematically speaking – under the influence of the imaginary
part of the pole tide Love number ℑ(k2). The curve is provided in normalised representation since the
choice of the initial values is arbitrary. The damping of the Chandler amplitude is obvious, and after
already 22 years the amplitude is reduced by half.
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1900 1920 1940 1960 1980 2000

Figure 5: Damped Chandler oscillation (x-component) derived from a simulation study with a dynamic Earth
system model over 100 years regarding ocean pole tides and mantle anelasticity (Seitz et al. 2004).

The damping function c(t) is the envelope of the oscillation

c(t) = c0 · e−δ(t−t0) , (25)

where c0 is the initial amplitude of the oscillation and δ is the damping coefficient. The damping
coefficient is derived from the proportion of two subsequent maxima of the oscillation ci(ti) and
ci+1(ti+1):

δ =
ln (ci/ci+1)

(ti+1 − ti)
. (26)

Usually the damping of the Chandler oscillation is expressed in terms of a quality factor Q. The
reciprocal valueQ−1 represents the specific dissipation, i.e. the loss of energy at the Chandler frequency
(Munk and MacDonald 1960). The specific dissipation is related to the damping coefficient:

Q−1 =
δ (ti+1 − ti)

π
. (27)

The numerical value of the quality factor that corresponds to the curve displayed in Figure 5 (k2 =
0.35 + 0.0036i) is Q = 82. In Table 1 values of period and quality factor of the Chandler oscillation
from various studies are provided. They were computed from geodetic observations and models using
different methods. Especially the quality factor is characterised by a high level of uncertainty.

If effects of gravitational and other geophysical processes are superposed, i.e. if torques, relative angular
momenta, and further deviations of the tensor of inertia are regarded in the Liouville Equation, an
interaction between forced and free oscillation occurs due to rotational deformations. While the impacts
on the Chandler frequency are negligible (Okubo 1982; Jochmann 2003), the Chandler amplitude is
strongly affected by the excitations (see Section 2).

4.2.2 Deformations due to surface loads

Various processes in the subsystems of the Earth, such as the motion of atmospheric high- and low-
pressure systems, ocean bottom pressure changes, or hydrologic variations over the continents due
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Table 1: Periods and quality factors Q (with 90% confidence interval) of the Chandler oscillation from different
studies.

Chandler period Q [Interval] Source

434.0 ± 2.5 d 100 [50, 400] Wilson and Haubrich (1976)
431.7 d 24 Lenhardt and Groten (1985)
433.3 ± 3.6 d 179 [47, > 1000] Wilson and Vicente (1990)
439.5 ± 1.2 d 72 [30, 500] Kuehne et al. (1996)
433.7 ± 1.8 d 49 [35, 100] Furuya and Chao (1996)
413 − 439 d Schuh et al. (2001)
434.1 d 69 Seitz and Kutterer (2005)

to flooding and snow, exert time-variable surface mass loads on the solid Earth. In this way they
cause deformations of the Earth’s body which are up to few centimetres in the vertical and several
millimetres in the horizontal (Rabbel and Zschau 1985; Sun et al. 1995). The change of the surface
geometry entails the redistribution of mass elements within the solid Earth which has a significant
effect on both the Earth’s gravity potential and its rotation. Consequently expedient information
about atmosphere loading (van Dam and Herring 1994), non-tidal ocean loading (van Dam et al.
1997), and continental water storage variations (van Dam et al. 2001; Schuh et al. 2004) is required
for an advanced interpretation and analysis of space geodetic observations (Rabbel and Schuh 1986;
Manabe et al. 1991; Haas et al. 1997; Boehm et al. 2009). The surface forces exerted by time variable
mass distributions are in contrast to gravitationally induced body forces. While the latter cause large-
scale and very regular deformations of the Earth that are well predictable, the effects of surface mass
loads are mostly restricted to few 100 km. Since they are irregular they are hardly predictable (van

Dam et al. 1997).

Vertical surface deformations of the solid Earth are usually computed following the theory of Farrell

(1972). Pressure variations p(λ,ϕ) (units of [Pa]) are related to time variable surface mass loads q(λ,ϕ)
(units of [kg/m2]) by

q(λ,ϕ) =
p(λ,ϕ)

g
, (28)

where g is the gravitational acceleration. The radial displacement dr(P ) of the Earth at a position
P (ϕP , λP ) caused by surface mass loads qQ at locations Q(ϕQ, λQ) on the Earth’s surface area σQ is
estimated by (Moritz and Mueller 1987)

dr(P ) =
a3

M

∫∫

σQ

qQ

∞∑

n=0

h′nPn(cosψPQ) dσQ . (29)

In this equation h′n denotes the degree n load Love number. The spherical distance between P and
the location Q(ϕQ, λQ) of an individual (point-)mass load is given by ψPQ which is the argument of
the degree n Legendre-Polynomial Pn(cos ψPQ). More compact Equation (29) can be written as

dr (P ) = a2

∫∫

σQ

qQG (ψPQ) dσQ , (30)

where the abbreviation

G (ψPQ) =
a

M

∞∑

n=0

h′nPn (cosψPQ) (31)
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is the Green’s function for the vertical displacement (Farrell 1972). Function G(ψPQ) acts as a
weighting operator which relates an individual surface mass load to the associated deformation of the
solid Earth according to the spherical distance. Figure 6 shows the Green’s function for continental
crust computed from load Love numbers based on the previously mentioned Earth model PREM
(Dziewonski and Anderson 1981; Scherneck 1990). The strong variability of the dotted curve
truncated at n = 350 reflects the truncation error.
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Figure 6: Green’s function G (ψPQ) for the Earth model PREM. Dotted: truncation of the spherical harmonic
expansion at degree n = 350, solid: infinite expansion.

Figure 7 shows the time-variable deformations of the solid Earth for a period of two weeks in February
1994 as caused by atmosphere loading, non-tidal ocean loading and water storage variations over the
continents (Seitz 2004). For the atmosphere and the ocean fields of surface mass loads qQ(ϕQ, λQ)
were computed from a consistent combination of atmosphere surface pressure variations from reanal-
ysis of the National Centers for Environmental Prediction/National Center for Atmospheric Research
(NCEP/NCAR) (Kalnay et al. 1996) and ocean bottom pressure variations from the constrained
version kf049f of the global ocean circulation model ECCO (Fukumori 2002). Outputs of both mod-
els are provided in daily intervals; spatial resolutions are 2.5◦ x 2.5◦ for NCEP/NCAR (globally) and
1◦ x 1◦ for ECCO (between 70◦ N/S; densification of the grid around the equator). Since atmosphere
pressure forcing is not taken into account by ECCO, an inverse barometric correction is applied to the
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Figure 7: Deformations of the solid Earth due to anomalies of atmospheric surface pressure, ocean bottom
pressure, and continental water storage (Seitz 2004).
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NCEP/NCAR fields, i.e. air pressure is set to zero over the ocean. Variations of continental hydrology
are taken from the Land Dynamics Model (LaD; version Euphrates) (Milly and Shmakin 2002). LaD
data comprehends monthly values of global water and groundwater storage as well as snow loads per
1◦ x 1◦ grid cell. While the deformations over the continents are up to two centimetres, the influence
of ocean bottom pressure variations on the surface geometry of the Earth is marginal.

In order to assess the effect of the deformations on Earth rotation, the vertical surface displacements
have to be transformed into variations of the tensor of inertia ∆I(t). Since this two-step procedure, i.e.
the computation of global load deformations and the subsequent transformation of the deformations
into deviations of the tensor of inertia (Dill 2002; Seitz et al. 2004), is laborious and time-consuming,
the indirect effect of mass redistributions on Earth rotation is commonly computed from changes of
the geopotential associated with the mass load and the surface deformation.

The variation ∆Udef of the Earth’s gravity potential U due to a surface deformation is proportional
to the perturbing potential u of the surface mass load. The proportionality factor is the potential Love
number k′ (Moritz and Mueller 1987):

∆Udef = k′u . (32)

In general, the gravity potential u of a loading (point-)mass m equals (Heiskanen and Moritz 1967)

u =
Gm

l
=
Gm

a

∞∑

n=0

(
a− dr

a

)n

Pn(cosψPQ) , (33)

or, since the vertical deformation dr is small compared to the Earth radius a:

u =
Gm

a

∞∑

n=0

Pn(cosψPQ) . (34)

According to Equation (32), the related change of the geopotential due to the induced surface defor-
mation is

δUdef =
Gm

a

∞∑

n=0

k′nPn(cosψPQ) . (35)

If the point mass m is substituted by the (global) surface mass load qQ, this equation turns into

δUdef = Ga

∫∫

σQ

qQ

∞∑

n=0

k′nPn(cosψPQ) dσQ , (36)

and the gravity potential u of the loading mass is

u = Ga

∫∫

σQ

qQ

∞∑

n=0

Pn(cosψPQ) dσQ . (37)

Following the derivation given by Moritz and Mueller (1987), Equation (37) can be written as

u = Ga

∞∑

n=0

4π

2n+ 1
qQn , (38)

where qQn is the Laplace surface harmonic of degree n of the function qQ, i.e.

qQ =

∞∑

n=0

qQn . (39)
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If accordingly the Laplace surface harmonic un of function u is introduced, the gravity potential of
degree n of the surface mass load can be written as

un = Ga
4π

2n+ 1
qQn . (40)

Since the variations of the tensor of inertia ∆I(t) are solely related to potential variations of degree
2 (Rochester and Smylie 1974; Chen et al. 2005; see also Equation 22), it is sufficient to evaluate
Equation (40) for n = 2. The temporal variation of δU2(t) due to the surface deformation is

δU2(t) = k′2Ga
4π

5
qQ2 (41)

with k′2 = −0.308 (Dong et al. 1996).

The relation between the spherical harmonic coefficients of degree 2 and the elements of the Earth
tensor of inertia is linear (Chen et al. 2005). Therefore tensor variations due to the indirect effect
∆Idef (t) are computed simply by multiplying the direct tensor variations by the load Love number k′2:

∆Idef (t) = k′2 · ∆Î(t) , (42)

where ∆Î(t) denotes the direct tensor variations due the mass redistributions within atmosphere,
ocean, and other subsystems, that are causative for the Earth’s surface deformations.

Given the above, the total (direct and indirect) effect of mass redistributions on the Earth’s tensor of
inertia is (Barnes et al. 1983)

∆I(t) = (1 + k′2) · ∆Î(t) . (43)

Thus, the direct effect is attenuated by about 30% due to the deformation of the solid Earth. Note
that this is only valid for mass redistributions that actually load the Earth’s surface. For processes
that are not accompanied by surface deformations (e.g. mass redistributions in the mantle) the load
Love number k′2 must be set to zero in this equation (Gross 2007).

4.3 Solution of the Euler-Liouville Equation

In order to compute variations of Earth rotation from angular momentum changes and torques, the
Liouville Equation (12) has to be solved for the unknown quantities mi(t) of the Earth rotation vector
ω(t). In general two different approaches, an analytical and a numerical approach, are applicable for
the solution of the coupled system of the three first order differential equations. Both methods will be
discussed in the following.

Less compact the Liouville Equation (12) can be written as

İ ω + I ω̇ + ḣ + ω × I ω + ω × h = L , (44)

where the dot denotes the derivative with respect to time. The individual terms read explicitly:

İ ω =




ċ11 ċ12 ċ13
ċ12 ċ22 ċ23
ċ13 ċ23 ċ33



 · Ω




m1

m2

1 +m3



 , (45)

I ω̇ =




A+ c11 c12 c13
c12 B + c22 c23
c13 c23 C + c33



 · Ω




ṁ1

ṁ2

ṁ3



 , (46)
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ḣ =




ḣ1

ḣ2

ḣ3



 , (47)

ω × I ω = Ω




m1

m2

1 +m3



 ×




A+ c11 c12 c13
c12 B + c22 c23
c13 c23 C + c33



 · Ω




m1

m2

1 +m3



 , (48)

ω × h = Ω




m1

m2

1 +m3



 ×




h1

h2

h3



 . (49)

The traditionally applied analytical approach has been described and discussed in various publications
(e.g. Munk and MacDonald 1960; Lambeck 1980; Wahr 1982; Barnes et al. 1983; Moritz and
Mueller 1987; Gross 2007). Therefore only its basic principle shall be sketched in the following. In
the numerical ansatz, the non-linear equation system is solved directly via numerical integration.

4.3.1 Linear analytical approach

In order to allow for a closed solution of the coupled system of differential equations (44), the following
simplifications are commonly introduced (Lambeck 1980):

• With adequate accuracy, the Earth can be viewed as a biaxial, i.e. rotationally symmetric,
body, so that the principal components A and B can be substituted by their average value
A′ = (A+B)/2. (Indeed the quotient of the difference between A and B and the absolute value
of either of them amounts to only 2.2 · 10−5, see Gross 2007).

• Terms that contain products of the small quantities mi(t), cij(t), and hi(t) or their derivatives
with respect to time are negligible (linearisation).

With these assumptions, the expansion of the expressions (45) to (49) results in

İ ω = Ω




ċ13
ċ23
ċ33



 , (50)

I ω̇ = Ω




A′ ṁ1

A′ ṁ2

C ṁ3



 , (51)

ω × I ω = Ω2




m2(C −A′) − c23

−m1(C −A′) + c13
0



 , (52)

ω × h = Ω




−h2

h1

0



 . (53)

Insertion into the Liouville Equation (44) yields

Ω




ċ13
ċ23
ċ33



+Ω




A′ ṁ1

A′ ṁ2

C ṁ3



+




ḣ1

ḣ2

ḣ3



+Ω2




m2(C −A′) − c23

−m1(C −A′) + c13
0



+Ω




−h2

h1

0



 =




L1

L2

0



 , (54)
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or component-by-component

ṁ1 ·
A′

Ω(C −A′)
+m2 =

1

Ω2(C −A′)
·
[
L1 + Ω2c23 − Ωċ13 + Ωh2 − ḣ1

]
=: Ψ2 , (55)

ṁ2 ·
A′

Ω(C −A′)
−m1 =

1

Ω2(C −A′)
·
[
L2 − Ω2c13 − Ωċ23 − Ωh1 − ḣ2

]
=: −Ψ1 , (56)

ṁ3 =
1

ΩC
·
[
−Ωċ33 − ḣ3

]
=: Ψ̇3 . (57)

The terms containing the time-variable equatorial components of the external torques L1(t) and L2(t)
as well as the quantities cij(t), hi(t), or their derivatives with respect to time are referred to as
excitation functions Ψi (i = 1, 2, 3) (Munk and MacDonald 1960). Note, that L3 = 0 due to A = B,
see Equation (18). Variations of the tensor elements c13(t), c23(t), and c33(t) describe the sum of all
direct effects of mass redistributions in the various system components and the effects of solid Earth
deformations due to tides, polar motion, and surface loads. For the principal moments of inertia A′

and C numerical values have to be introduced that account for the effect of core-mantle decoupling
as discussed in Section 4.2.1.

Due to the linearisation, only three of the six components of the tensor of inertia appear in the excita-
tion functions. Deviation moments c11(t), c22(t), and c12(t) are neglected in the analytical approach.
The axial component m3(t) of the Earth rotation vector ω(t) is decoupled from the horizontal com-
ponents. With adequate accuracy ∆LOD(t) can be calculated independently from polar motion (cf.
Equation 15). For the computation of polar motion, the first two differential equations are transformed
into a complex equation (Lambeck 1980). Defining m(t) = m1(t) + im2(t) and Ψ(t) = Ψ1(t) + iΨ2(t)
yields

i ·
(
ṁ

A′

Ω(C −A′)

)
+m = Ψ , (58)

where i =
√
−1.

For a rigid body and in absence of external torques Ψ equals zero. Then the solution of Equation (58)
is

m = m0eiσt , (59)

with the abbreviation σ = Ω
(C −A′)

A′
and the complex coordinate m0 = m(t0) as initial condition for

the epoch t0. The free polar motion of a rigid Earth would be a prograde and undamped oscillation
with amplitude

∣∣m0
∣∣ and frequency σ, which corresponds to a period of 304 days (Euler period).

The observed frequency of the free polar motion (Chandler frequency) differs from the Euler frequency
due to the deformability of the Earth’s body. As a consequence of mantle anelasticity, rotational
deformations are accompanied by a loss of energy due to friction (see Section 4.2.1). In order to
account for this effect, σ is substituted by the complex quantity σCW (Lambeck 1980):

σCW = σ0

(
1 +

i

2Q

)
. (60)

Here σ0 is the Chandler frequency and Q denotes the quality factor that describes the damping of the
Chandler amplitude due to dissipation. Both quantities are explicitly predetermined in the analytical
approach. Therefore the result is directly dependent on the choice of the numerical values of σ0 and Q
(Wilson and Haubrich 1976). Due to the assumption of rotational symmetry (A = B), the resulting
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free polar motion is circular. For a deformable Earth the solution of the Liouville Equation follows
from the convolution

m = eiσCW t

[
m0 − iσCW

∫ t

−∞

Ψ(τ)e−iσCW τdτ

]
. (61)

Alternative to the explicit computation of polar motion from the excitation functions Ψ1(t) and Ψ2(t),
an indirect method is commonly applied, in which the so-called geodetic excitation is derived by an
inverse convolution from the observed polar motion (Chao 1985; Brzezinski 1992). The comparison
between the gravitational and geophysical processes and the geodetic observations is then performed
on the basis of the excitation functions Ψ1(t) and Ψ2(t) without calculating m1(t) and m2(t). Since
the Chandler oscillation is a priori reduced from the observations in the course of the computation of
the geodetic excitation, the indirect method is just like the direct method dependent on the choice of
the parameters σ0 and Q.

4.3.2 Non-linear numerical approach

In the non-linear numerical approach the system of the three differential equations (44) is solved
numerically. In contrast to the analytical approach, the Chandler oscillation is not explicitly predeter-
mined with respect to its period σ0 and quality factor Q. Instead, the free polar motion is modelled
by considering the effect of the back-coupling mechanism of rotational deformations in ∆I(t). As de-
scribed in Section 4.2.1, frequency and damping of the Chandler oscillation are closely related to the
value of the complex Love-number k2 in this case (Seitz and Kutterer 2005).

No set-up of linearised excitation functions is required when the system of differential equations is
solved numerically. This is a major difference compared to the analytical approach: The tensor of
inertia I(t), the vector of angular momenta h(t), and the vector of the external torques L(t) are
directly introduced into the Liouville Equation. Therefore the temporal variations of the deviation
moments c11, c22, and c12 are also considered in the tensor of inertia, and the previously neglected
higher order terms are contained in the solution. As a consequence, the first two differential equations
are not decoupled from the third one, i.e. polar motion and ∆LOD(t) are solved simultaneously.

Furthermore the numerical approach allows for the introduction of a triaxial approximate tensor I0

(A 6= B 6= C). The free polar motion of such an unsymmetric gyro is no longer circular. But since
the discrepancy between A and B is small, the numerical eccentricity of the ellipse described by the
Earth rotation vector with respect to the Earth-fixed reference frame is only 0.10, if all gravitational
and geophysical excitations are neglected. Its semi-minor axis is oriented towards the direction of the
smallest principal moment of inertia A.

The Liouville Equation is reformulated as a coupled system of three ordinary differential equations of
the general form

ṁ(t) = f (t,mi(t)) , (62)

(i = 1, 2, 3) with

ṁ(t) =




ṁ1(t)
ṁ2(t)
ṁ3(t)



 , (63)

and

f(t,mi(t)) =




f1(t,m1(t),m2(t),m3(t))
f2(t,m1(t),m2(t),m3(t))
f3(t,m1(t),m2(t),m3(t))



 . (64)
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Function f(t,mi(t)) comprehends the tensor of inertia I(t), relative angular momenta h(t) and torques
L(t). Due to rotational deformations, the tensor of inertia includes deviations, which are dependent
on m1 and m2 (cf. Equations 21 and 22). Consequently derivatives of these parameters with respect
to time ṁi appear in both terms I ω̇ and İ ω of the Liouville Equation (44). In order to solve the
Liouville Equation for the unknown quantities mi, their derivatives are assembled on the left hand side
of the differential equation. Therefore the tensor of inertia İ is divided into two parts: One component,
İR, describes the effect of rotational deformations and depends on ṁi. The second component İG

comprehends the geophysically induced mass redistributions in the fluid system components and in the
solid Earth due to tidal deformations and load deformations. This second component İG is independent
of ṁi. Consequently the Liouville Equation can be written as

İR ω + I ω̇ = L − İG ω − ḣ − ω × h − ω × I ω . (65)

If the products of the mi with the (very small) derivatives ṁi are neglected, the term İR ω equals

İR ω =
Ω3a5

3G




ℜ(k2) · ṁ1 + ℑ(k2) · ṁ2

ℜ(k2) · ṁ2 −ℑ(k2) · ṁ1

0



 (66)

≈ Ω3a5

3G
ℜ(k2)




ṁ1

ṁ2

0



 . (67)

Since the real part of k2 is two orders of magnitude larger than its imaginary part, the products of
ℑ(k2) with ṁi are neglected, too. The left hand side of system (65) turns into

İR ω + I ω̇ =



 Ω3a5

3G
ℜ(k2)




1 0 0
0 1 0
0 0 0



 + Ω I








ṁ1

ṁ2

ṁ3



 (68)

=: F




ṁ1

ṁ2

ṁ3



 , (69)

and the Liouville Equation can be converted into

ṁ = F−1
(
L − İG ω − ḣ − ω × h − ω × I ω

)
. (70)

This coupled system of three first order differential equations is solved as an initial value problem. Just
as in the analytical approach, the tensor of inertia is composed of all contributions from direct mass
effects in the components of the Earth system and from the deformations of the solid Earth induced
by tides, polar motion and loading. The effect of core-mantle decoupling is regarded by the adoption
of appropriate values of the principal moments of inertia A, B, C; see Section 4.2.1.

The introduction of initial values for the epoch t0

m0 =




m0

1

m0
2

m0
3



 (71)

allows for a unique computation of special solutions for the unknown functions mi = mi(t) by which
the initial conditions mi(t0) = m0

i are fulfilled. Respective values m0
i are deduced from observations of

polar motion and ∆LOD. For the correspondence between the geodetic observations and the quantities
mi(t), see Section 5.
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The efficiency of the numerical solution is naturally linked to the quality of both the applied initial
conditions and the integrator. Using the previously mentioned dynamic Earth system model (see
Section 4.2.1), Seitz and Kutterer (2005) studied the effect of inaccurate initial values on the
numerical solution. They concluded from 30 test runs that the variation of the initial values within
an interval of ±3σi (where σi is the standard deviation of the respective observation) is uncritical.
However, if the applied initial values differ substantially from the geodetic observations (e.g. if m0

i = 0
is assumed), the results are contaminated over many decades. In this case the model time series are
not interpretable before a steady state is reached, i.e. before the influence of the initial conditions falls
below the level of the model accuracy. Studies on the reliability of the solution from an algorithmic
point of view showed little dependence of the results on the choice of a specific solver: Seitz (2004)
applied various one-step and multi-step solvers as well as an extrapolation method in the dynamic
Earth system model and performed runs over more than two decades with identical initial values and
forcing conditions. It was shown that the RMS differences between all runs were in the order of 1 mas
for polar motion and 1-2 µs for ∆LOD. In contrast, the absolute accuracy of the model, i.e. the RMS
difference between the simulation and the geodetic observations was in the order of 30 mas for polar
motion and 120 µs for ∆LOD.

More details on the non-linear approach, numerical model results from the dynamic Earth system
model, and comparisons between modelled and observed time series for polar motion and ∆LOD can
be found in Seitz (2004) and Seitz and Schmidt (2005).

5 Relation between modelled and observed variations of Earth

rotation

The parametersmi(t) of the Earth rotation vector ω(t) in the Liouville Equation (12) are related to the
geodetically observed time series of polar motion [xp(t), yp(t)], ∆UT (t), and length-of-day variations
∆LOD(t). The time-variable angular misalignment between the instantaneous rotation vector ω(t) and
the z-axis of the terrestrial reference frame in x- and y-direction is described by the two components
m1(t) and m2(t) respectively (Equation 14). On the other hand, the coordinates xp and yp published
by the IERS represent the misalignment between the CIP and the IERS Reference Pole (i.e. the z-axis
of the ITRF).

Both coordinate systems differ with respect to the direction of the positive y-axis: The terrestrial
system, to which the rotation vector ω(t) refers to, is a right-hand system. The system used by the
IERS for the publication of the coordinates xp(t) and yp(t), however, is a left-hand system (yp-axis
directed towards 90◦ W, see Section 1). Therefore the coordinates [p1(t), p2(t)] are defined, in order to
describe the position of the CIP with respect to the IERS Reference Pole in a right-hand system:

p1(t) = xp(t) ,

p2(t) = −yp(t) .
(72)

The relation between [m1(t),m2(t)] and [p1(t), p2(t)] follows from the transformation between the true
celestial equator system and the Earth-fixed system. According to Section 1, the rotation matrix A(t)
that transforms between both systems accounts for the daily spin around the axis of the CIP and
polar motion:

A(t) = W (t) S(t) . (73)

The coordinates ω1(t), ω2(t), ω3(t) of the Earth rotation vector ω(t) in the terrestrial system are the
elements of the skew-symmetric matrix B(t):

B(t) =




0 ω3(t) −ω2(t)

−ω3(t) 0 ω1(t)
ω2(t) −ω1(t) 0



 = Ȧ(t)AT (t) . (74)
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Since matrix W (t), and accordingly matrix A(t) do not include the previously mentioned Oppolzer
motion, the Earth rotation vector ω(t) resulting from Equation (74) does not account for the subdaily
retrograde deflection between the instantaneous rotation axis and the direction to the CIP. In order to
include this effect, a vector that describes the departure between CIP and the instantaneous rotation
pole (IRP) would have to be added to the product Ȧ(t)AT (t) (see below).

For time scales longer than one day, the comparison of the coefficients of matrix B(t) with the result
of the product Ȧ(t)AT (t) leads to the relation between the elements of the Earth rotation vector ω(t)
and the coordinates p1(t) and p2(t). To the first order, this relation is (Brzezinski 1992; Gross 1992):

ω1(t) = Ω p1(t) + ṗ2(t) ,

ω2(t) = Ω p2(t) − ṗ1(t) ,
(75)

or with ω1(t) = Ω m1(t) and ω2(t) = Ω m2(t):

m1(t) = p1(t) + 1
Ω ṗ2(t) ,

m2(t) = p2(t) − 1
Ω ṗ1(t) .

(76)

The connection between modelled and observed polar motion is illustrated in Figure 8 following
Mendes Cerveira et al. (2009). The published polar motion values p(t) refer to the position of the
CIP in the ITRF, where p(t) = xp(t) − iyp(t) = p1(t) + ip2(t). As stated above, the model values
m(t) = m1(t)+ im2(t) represent polar motion of the IRP in the terrestrial frame, that differs from the
CIP by the effect of the Oppolzer motion (vector d in Figure 8) (Capitaine 2002; Mendes Cerveira

et al. 2009). For completeness, also the axes of the space-fixed reference frame (GCRF) are sketched.
The coordinates X(t) and Y (t) of the CIP in the GCRF are derived from the precession-nutation
(PN) model IAU 2000A and the published celestial pole offsets as described in Section 1.

The correspondence between the variation of the absolute value of the Earth rotation vector ω(t)
and the observed quantities ∆LOD(t) and ∆UT (t) results directly from the definition of ∆LOD(t),
meaning the time span of one full revolution of the Earth reduced by 86400 s (see Equation 5):

∆LOD(t) =
2π κ

|ω(t)| − 86400 s , (77)

where

κ =
Ω

2π
· 86400 s =

86400

86164
. (78)

The introduction of the absolute value of ω(t) (Equation 15) delivers (Schneider 1988)

∆LOD(t) =
2π κ

Ω(1 +m3(t))
− 86400 s = −m3(t) · 86400 s , (79)

and according to the relation between ∆LOD(t) and ∆UT (t) (Equation 6) (Gross 1992)

d

dt
∆UT (t) = m3(t) . (80)

Following the derivations in this section, physical model results and published values of Earth orien-
tation parameters from space-geodetic observation techniques can be uniquely related to each other.
In this way, physical models of Earth rotation can contribute significantly to the interpretation of the
observations in terms of geophysical processes in the Earth system. Studies of the Earth’s reaction
on gravitational and other geophysical excitations, e.g. processes and interactions within and between
atmosphere, hydrosphere, and solid Earth can be performed using theoretical forward models. As de-
scribed in Section 4, such models comprehend physical transfer functions, that relate gravitational and
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geophysical model data and/or observations to time series of geodetic parameters of rotation, gravity
field variations, and changes of the surface geometry of the Earth. In forward models, observations
of Earth rotation are used as a reference, in order to examine the quality of geophysical data sets
by balancing modelled angular momentum variations in the Earth’s subsystems with the observed
integral signal. Forward models have also been used for the prediction of geodetic parameters, e.g. in
the context of global change, when climate predictions are introduced as forcing (Winkelnkemper

et al. 2008).

Vice versa, observed time series of Earth orientation parameters can be used in order to support and
improve theoretical models via inverse methods. In this way, the geodetic observations can contribute
directly to an improved understanding of Earth system dynamics. Inverse methods have been developed
since many years in geodesy. They are directed towards the gain of knowledge from precise geodetic
observations about geophysical parameters (Marchenko and Schwintzer 2003), individual dynamic
processes, or interactions in the Earth system. While numerous recent studies deal with the assessment
of the Earth’s mass redistribution from an inversion of the time-variable gravity field from GRACE
(Chao 2005; Ramillien et al. 2005), time series of geometric surface deformations from GPS (Wu

et al. 2003), or combinations of both (Wu et al. 2002; Kusche and Schrama 2005), there are hardly
any approaches for the inversion of Earth rotation up to now. But due to the long observation records
of polar motion and ∆LOD, due to the high accuracy of the measurements, and due to the large
spectral range from hours to decades that is covered by the observations, the development of inverse
Earth rotation models is a highly promising challenge for the future.

CIP

IRP

m

PITRS / ITRF

d x

y

p

PGCRS / GCRF

X

Y

PN

Figure 8: Poles of reference with regard to the coordinate systems ITRS and GCRS (and their respective real-
isations ITRF/GCRF), and correspondence between model values m(t) and published polar motion values p(t)
(Mendes Cerveira et al. 2009).
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de l’académie des sciences de Berlin, 14: 154–193.

Farrell, W. (1972): Deformation of the Earth by
surface loads, Rev. Geophys. Space Phys., 10:
761–797.

Feissel, M. and F. Mignard (1998): The adoption
of ICRS on 1 January 1998: meaning and conse-
quences, Astron. Astrophys., 331: L33–L36.

Fey, A. L., C. Ma, E. F. Arias, P. Charlot,
M. Feissel-Vernier, A. M. G. C. S. Jacobs,
J. Li and D. S. MacMillan (2004): The sec-
ond extension of the International Celestial Ref-
erence Frame, The Astronomical Journal, 127:
3587–3608.

Fricke, W., H. Schwan and T. Lederle (1988):
Fifth Fundamental Catalogue, Part I., Techn.
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Höpfner, J. (2001): Interannual variations in length
of day and atmospheric angular momentum with
respect to ENSO cycles, Zeitschrift f. Vermes-
sungswesen, 126(1): 39–49.

IERS (2008): IERS Annual Report 2006 , Dick, W.
R. und B. Richter (Hrsg.), Verlag des Bunde-
samts für Kartographie und Geodäsie, Frankfurt
am Main.

Jackson, A. (1997): Time-Depency of geostrophic
core surface motions, Phys. Earth Planet. Int.,
103: 293–311.

Jault, D., C. Gire and J.-L. Le Mouël (1988):
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