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GEOTOP� Introduction

� Introduct�on
The determination of global dynamic ocean topography (DOT) is of funda-
mental importance for ocean and climate research. The idea to derive it from 
the combination of satellite altimetry and precise geoid models is already 
discussed in the famous Williamstown Report [Kaula, 1970]. Since then this 
idea has been a strong argument for the development of more and more so-
phisticated satellite altimetry and more and more refined geoid models.

The concept has been analyzed in depth in a fundamental paper by [Wunsch 
and Gaposchkin, 1980]. The realisation of this concept was one of the ba-
sic motivations which led to the development and realization of the current 
gravity field satellite missions CHAMP, GRACE and GOCE.

For the preparation of the GRACE and GOCE missions, a number of ocea-
nographic simulation studies have been carried out [Ganachaud et al., 1997, 
Le Grand and Minster, 1999, Le Provost et al., 1999, Le Grand, 2001, Schröter 
et al., 2002]. They investigated the complete processing chain from the com-
bination of geoid and altimetric sea surface height via the assimilation into 
circulation models to the determination of oceanic transports, based on vari-
ous assumptions for the geoid accuracy and spatial resolution. The studies 
demonstrated that the new satellite geoid models will allow the determina-
tion of geostrophic surface velocities with an accuracy of a few cm/s. GOCE 
with its expected high spatial resolution should allow the recovery of details 
down the spatial scales of about 100 km. 

In order to be of relevance for ocean modelling the combination of altimetry 
and geoid model must be achieved with highest possible precision and spa-
tial resolution. In principle the basic relationship is very simple, it is

  ζ = h – N  (1)

where ζ is assumed to be  the steady-state DOT, h is the altimetric height 
above an adopted reference ellipsoid and corrected for all short time vari-
able effects such as tides and N are the geoid heights referred to the same 
reference ellipsoid. However, thereby the problem rises that the geoid model 
is usually provided as a truncated spherical harmonic series, i.e. in a band-
limited global spectral representation on a sphere, while altimetric meas-
urements are given as point values, or more accurately as weighted mean 
values over the footprint of the radar signal, along the ground track of the 
spacecraft. Their sample rate is very high along the track and rather coarse 
in cross track direction. 

For the determination of DOT the two representations have to be made spec-
trally consistent, i.e. both the geoid model and altimetry signals have to cov-
er the same spectral range. Since altimetry measurements contain informa-
tion with higher spatial resolution than is included in the geoid model, these 
short scale features are to be removed by filtering.

In constructing a geoid model, one truncates its spectrum at a certain maxi-
mum degree L. For all degrees less or equal to L one has the coefficients of the 
model together with their error (commission error). The signal for degrees 
greater than L is not modelled, but its expected average size is identified as 
omitted signal (omission error). Different models exist for the omission er-
ror and it can be large depending on the cut-off degree L. The scales that are 
suppressed by filtering become “omission” and must be taken in account 
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in the total error budget.   Previous research, [Losch et al., 2002], has shown 
that a portion of the omission error can leak into the commission error of 
the filtered signal, if several systems of base functions are involved. Why is 
this consistency so important? Geoid heights truncated at L are missing the 
signal part above L; it has been omitted. Subtracting such geoid heights from 
the altimetric sea surface heights means that a part missing in the geoid sig-
nal is not removed from the altimetric heights. It causes a non-random error 
that would be mis-interpreted as a part of the DOT.

Furthermore the DOT determined in this way needs to be spectrally consist-
ent with the ocean circulation model (OCM) into which the dynamic ocean 
topography is to be assimilated. While the former aspect is discussed, e.g. 
in [Ganachaud et al., 1997, Losch and Schröter, 2004, Wunsch and Gapo-
schkin, 1980, Wunsch and Stammer, 1998], the latter question has not been 
addressed so far in the literature. 

What does spectral consistency mean? It depends, because the combination 
of geoid model and altimetry can be done employing various spectral repre-
sentations, such as along profiles (1D-Fourier model), in boxes (2D-Fourier 
model), on the sphere and globally (SH-analysis), using principal compo-
nent analysis over ocean basins, wavelets, a.s.o.  The outcome may therefore 
depend on the chosen representation. 

Now one may argue, why not simply apply the same filters to the geoid 
model and to altimetry (either 1D, 2D or on a sphere). This may look like 
a reasonable idea at first sight, but one should realize that each filter has to 
meet certain mathematical conditions, e.g. to be periodic for 1D-FFT, and if 
these conditions are not met certain distortions will enter the data. 

An obvious difficulty in this respect is the fact that the geoid models are 
given globally while altimetry profiles are limited to the oceans. As coastal 
areas are of particular importance for the understanding of ocean dynamics, 
any processing of DOT should try to avoid mathematical distortions to enter 
there. 

A concise definition of the posed problem is as follows: how to optimally 
combine a global data set which possesses a certain (low) spectral resolution 
with a regional (or not-global) data set with much higher spectral resolu-
tion? 

� Alt�metry data pre-process�ng
During the past few decades, satellite altimetry has been developed to a 
powerful technique to precisely observe the ocean surface and to monitor 
the sea level variations. State-of-the-art altimeter systems allow deriving sea 
surface heights with a precision of a few centimetres.

However, every mission has inherent sampling problems: first the lifetime 
of satellites is usually designed for a period of 3 – 5 years such that data 
from a single mission is not sufficient to provide a representative long-term 
mean on the ocean surface (the 13 years lifetime of TOPEX is an exception). 
Second, due to orbit dynamics the ground track configuration must solve the 
trade-off between high spatial and high temporal resolution. For example, 
with a ten day repeat cycle TOPEX priority was on a high temporal reso-
lution and de-aliasing of ocean tides – at the cost of an equatorial ground 
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track spacing of more than 300 km. Finally, the pulse limited radar altimeter 
systems are essentially observing profiles and leave large diamond shaped 
areas unobserved. All this strongly suggests a combination of consecutive 
altimeter missions or of missions with different, complementary sampling 
characteristics.

Such a combination requires three pre-processing steps: upgrading, harmo-
nization and cross-calibration. DGFI has access to all data from ERS-1, ERS-
2, TOPEX/Poseidon, ENVISAT, GFO, Jason-1, and other missions. All data is 
administrated in a mission independent format with parameter values split 
into individual files. This allows an easy replacement of single record param-
eters without the need to change the complete data base. This way, upgrad-
ing of new orbits (for the ESA missions), time tag corrections (for ERS-1/2) 
and improved correction models for the microwave radiometer (TOPEX) has 
been accomplished (compare Table 1). Harmonization implies to use as far 
as possible the same models for geophysical corrections to avoid that model 
differences are wrongly interpreted as apparent sea level variations. There-
fore, for all missions the inverted barometer correction was replaced by the 
dynamic atmospheric corrections (DAC) produced by CLS Space Oceanog-
raphy Division using the MOG2D model from LEGOS [Carrère and Lyard, 
2003]. Moreover, the ocean tide corrections for all missions were based on 
the FES2004 [Lyard et al., 2006] – a de-facto standard in satellite altimetry 
and gravity field modelling. Table 2.1 summarizes all efforts to upgrade and 
harmonize the altimeter data. Finally, a cross calibration was performed by 
a global crossover analysis based on nearly simultaneous single- and dual 
satellite crossover differences performed between all altimeter systems oper-
ating contemporaneously. This crossover analysis captures not only relative 
range biases, but also systematic inconsistencies in the center-of-origin reali-
zation and geographically correlated errors. Through this cross calibration 
the radial errors of all satellites became available for the complete TOPEX 
lifetime. It is straightforward to estimate an empirical error covariance func-
tion using the complete history of radial errors. The error covariance func-
tion, derived from the time series of radial errors is valuable information for 
the error propagation discussed in section 6.2 below.  Details of this multi-
mission cross calibration are described in [Bosch and Savcenko, 2006]. 

Further enhancements of the altimeter data are possible. In deep ocean 
the ocean tides are assumed to be known to within 2 cm root-mean-square 
(RMS) uncertainty at wavelengths of 50 km [Shum et al. 2001]. However, 
over continental shelves and in polar oceans much larger deficiencies for 
ocean tides are well known – even for the most recent models like FES2004. 
Using the pre-processed altimeter data, DGFI performed a global empiri-
cal tide analysis and found significant residual ocean tide signals relative 
to FES2004 [Savcenko and Bosch, 2007, Bosch et al., 2008]. In shallow water 

Table 2.1 Altimeter mission data and replacements for upgrading and harmonization

Mission (Phase)  Cycles Period Source Replacements
TOPEX/Poseidon 001-481 1992/09/23-2005/10/08 MGDR-C AVISO Chambers SSB correction, FES2004
Jason1 001-135 2002/01/15-2005/09/14 GDR-B PODACC FES2004

ERS-1 (C & G)
 083-101 1992/04/14-1993/12/20 

OPR-V6 CERSAT DEOS orbits, FES2004, pole tide, 1.5ms time bias144-155 1995/03/24-1996/04/28
ERS-1 (D, E & F) 102-143 1993/12/25-1995/03/21 OPR-V3 CERSAT DEOS orbits, FES2004, pole tide, 1.5ms time bias
ERS-2 000-085 1995/04/29-2003/07/02 OPR-V6 CERSAT DEOS orbits, FES2004, pole tide, 1.3ms time bias
ENVISAT 009-040 2002/09/24-2005/09/19 GDR ESA/CNES FES2004
GFO 037-159 2000/01/07-2005/10/04 GDR NOAA FES2004
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areas the M2 and S2 constituents show numerous extended patterns with 
residuals taking amplitudes of up to 15 cm. Other major constituents and 
the non-linear shallow water tide M4 hit residual amplitudes up to 5 cm. 
The results have been used to set up a new global ocean tide model, EOT08a 
[Savcenko and Bosch, 2008]. The new tide model will be applied as soon as 
the evaluation is completed. 

Time series analysis of altimeter data is important, as it allows identifying 
and quantifying the sea level variability. High sea level variability compli-
cates the reliable determination of the mean sea level and the estimation of 
a steady-state DOT. Moreover, the sea level variability must be known in 
order to design and apply filter which make the altimeter data consistent 
with the properties of the numerical model used to assimilate the sea level 
data. In order to facilitate the analysis of altimeter time series, the complete 
altimetry data base was re-organized. The sequential file structure (mission 
=> 1:n => cycle) is not well suited as repeated measurements at neighbour-
ing locations are distributed over all cycles. Therefore the data structure was 
reverted by defining small cells ( so called BINs) along the nominal ground 
track and assembling all observations to those BINs whose centres are clos-
est to the measurement locations (the locations of repeated observations do 
not exactly coincide).  The along-track extension of these BINs is only some 7 
km, such that the set of data within a BIN can be taken to estimate the mean, 
the variance, sea level trends or amplitudes and phases of seasonal periods 
or alias periods of tides. 

From such time series analyses a few important information can be derived: 
Figure 2.1 shows the standard deviations for estimating a linear drift of sea 
level anomalies (SLA), the differences between instantaneous sea surface 

Fig. 2.1 The RMS values of sea level anomalies (differences between instantaneous sea surface heights and the CLS01 mean 
sea surface) can be taken as a measure of sea level variability.
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heights and the CLS01 mean sea surface. These  standard deviations are a 
good measure for the sea level variability. Fig 2.1 clearly shows the Western 
boundary currents and the Antarctic Circumpolar Current as areas of high-
est variability. 

Figure 2.2 shows the seasonal variability. A time series of monthly mean val-
ues of the sea level anomalies were taken to perform a Principal Component 
Analysis(PCA). PCA identifies the most dominant pattern of sea level vari-
ability and shows by the principal components how these pattern change 
with time. Fig 2.2 shows the first two, most dominant modes. Together they 
capture about 22% of the total variability with a significant annual periodic-
ity indicated by the associated Principal Components (top panels).
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Fig. 2.2 The first two, most dominant modes of a Principal Component Analysis of the TOPEX sea level anomalies capture 
together about 22% of the total variance of global sea level variations. The associated Principal Components (upper panels) 
exhibit for both modes a pronounced annual periodicity. The very first mode (left) explains the dominant annual sea level os-

cillation between northern and southern hemisphere.
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� Geo�d status
The Earth’s gravitational potential is usually expressed [Heiskanen and 
Moritz, 1967] in terms of fully normalized spherical harmonic functions 

( , )lmY ϕ l  :
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where l is the degree of the spherical harmonic, m is the order, and ylm  is the 
corresponding spherical harmonic coefficient. G is the gravitational constant, 
M the mass of the Earth and R the mean radius of the Earth; the latitude and 
the longitude of the considered point are ϕ and λ.

The spherical harmonic functions are defined as
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with the fully normalized associated Legendre functions mlP  .

The series coefficients allow the determination of geoid heights, above an 
adopted reference ellipsoid, with:
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The signal power density is expressed in terms of degree variances cl, de-
fined as

Fig. 3.1 Geoid undulations computed with the gravity field model EGM08.
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or in terms of their square roots, the root-mean-square (RMS) value per de-
gree. It can be shown that on the Earth‘s surface the degree variances follow 
the rule of thumb, according to [Kaula, 1966]
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When a geopotential model is given, the set of the coefficients ylm up to a cer-
tain maximum degree L is available. The use of the coefficients to a maximum 
degree, L, causes an omission error (i.e. the effect of neglected higher degree 
coefficients) in the computed undulation, while the errors in the potential 
coefficients create a commission error in the computed geoid undulations.

Together with the finite set of harmonic coefficients there must be given their 
variance-covariance matrix with dimension equal to (L+1)2·(L+1)2. This cov-
ariance matrix is a full matrix, but with a block-diagonal predominance. It 
contains the error variance  σ2

lm of each coefficient ylm and all its error covari-
ances cov{ylm, ynk} with the others coefficients.

Disregarding the correlations, in a simplified scheme, for each degree l, we 
define the error degree variances as 

 

2
l

l lm
m l=−

ε = s∑
    (3.6)

In Fig.3.1 are shown the geoid undulations computed with the recently pub-
lishes ultra-high resolution gravity field model EGM08, [Pavlis et al., 2008]. 
The model is available up to degree and order 2160 (corresponding to a spa-
tial resolution of 5’x5’) and was generated by combining a satellite only grav-
ity field and surface gravity data.

In the following we consider these geopotential models:

1) EGM96. It is a model consisting of spherical harmonic coefficients 
complete to degree and order 360, computed by National Imagery and 
Mapping Agency, the NASA Goddard Space Flight Center and the 
Ohio State University. The model incorporates surface gravity data, 
satellite tracking data and satellite altimetric observations.

2) EIGEN-GRACE02s. It is a satellite only gravity model complete to 
degree and order 150 from GRACE, realised in 2005 by GFZ Potsdam, 
[Reigber et al., 2005]. 

3) GOCE. It is a geopotential model derived from a simulation study of 
the next satellite gravity mission GOCE. In this case the observable 
is the measurement of gravity gradient based on differential 
accelerometry. This concept allows high resolution determination of 
the gravity field with homogeneous accuracy. The expected degree 
resolution is about degree 200 to 250.

In Fig. 3.2 are shown the error degree variances of the EGM96, GRACE and 
(simulated) GOCE models compared with the signal power density of the 
Kaula rule (3.5). The points of intersection between the degree error curves 
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and the Kaula’s line define the resolution of the geopotential model.

In order to see how the error εl accumulates over the degree l, we define the 
cumulative commission error in a certain bandwidth as:
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Figure 3.2 RMS of the degree errors for the geopotential models: EGM96, EIGEN and 

GOCE together with the signal RMS from eq. (3.5).
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Figure 3.3: The cumulated commission error for geoid undulations computed from EIGEN and 
GOCE geopotential models.
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that, for the geoid undulation, becomes:
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In Fig. 3.3 are shown the cumulative geoid commission errors for EIGEN and 
GOCE models.

However we have to consider the second part of the error due to the limita-
tion in the harmonic expansion. The real field is composed by infinite terms, 
while the estimated model must to be finite and therefore it has a cut-off 
degree L.
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 Figure 3.4: Omission error for the geoid undulations as function of the cut-off degree L, computed using Kaula’s rule.
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Fig. 3.5 Omission error for a cut-off at degree 45, estimated from the ultra high resolution gravity field model EGM08
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We can write the eq. (3.3) as

  0 1
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We define as omission error the expected signal power that has not been 
modelled:
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line) for the geoid undulation.

Figure 3.7: Cumulative commission error (blue line) for the GOCE model, omission error (red line) 
and global error (green line) in terms of the geoid undulation.
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To compute this error we have to know the degree variances up to infinite 
degrees, but, because of the rapid decrease of the signal degree variances, we 
can use, for instance, Kaula’s rule (representing the expected signal size) up 
to l = 1000. Fig. 3.4 shows how the omission error varies when the degree L 
is varying in (3.9).

In Fig. 3.5 the spatial representation of the omission error is shown, com-
puted using the ultra high resolution gravity field model EGM08. In this case 
the cut-off is at harmonic degree 45.

Fig. 3.6 shows the cumulative commission error, eq. (3.7) for the GOCE geo-
potential model, and the omission error, eq. (3.9), in terms of geoid undu-
lations. We can observe that the omission error is dominant around up to 
degree L = 265. After this degree the cumulative commission error is greater 
than the omission component.

In Fig. 3.7 both the errors (commission and omission) are reported and their 
sum that represents the global error. With this simulation of the GOCE grav-
ity field, the minimum of the global error is at  L = 215.

So far the commission and omission errors are defined in the spectral do-
main, as functions of spherical harmonic degree. The same concepts can be 
defined in the spatial domain. We define the covariance function between 

Figure 3.8: Covariance functions of the geoid undulation (EIGEN model) computed for different maximum degrees.
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two points P and Q at spherical distance ψ as

  0
( ) (cos )

L

l l
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C c P
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ψ = ψ∑   (3.10)

where cl are the degree variances of the degree l and Pl are the Legendre 
polynomials.

The error degree variances are the spectral representation of the errors of 
the gravity field. In the spatial domain they define the error covariance func-
tions:
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The complete geoid error height covariance function between two points at a 
distance ψ is the sum of the commission and omission components 

 

( ) 2 2 2

1
( ) ( ) (cos )L

N l l
l L

C R C R c P
∞

ε
= +

ψ = ψ + ψ∑    (3.12)

Also in this case it is appropriate to use the Kaula’s rule to compute the omis-
sion error component.

In Fig. 3.8 three examples of commission error covariance functions (for the 
EIGEN geopotential model) for different maximum degrees L are shown.

 We can observe that the length of correlation (i.e. the value of ψ for which 
C(ψ) has decreased to half of its value at ψ = 0) decreases with increasing 
maximum degree, while the variance (i.e. the value of the covariance func-
tion in the origin) increases, see Table 3.1.
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Figure 3.9: Covariance functions of the omission error for the geoid undulation computed for different maximum degrees
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Table 3.1: Variance, RMS and length of correlation computed considering the covariance 
function of the EIGEN model, with different maximum degree.

 variance (m2) RMS (m) length correlation (°)
 L = 70 4.88·10-6 0.0022 1.35
 L = 100 2.46·10-4 0.0157 0.90
 L = 150 0.0291 0.1707 0.65

 

Using the Kaula rule it is possible to compute the covariance function of the 
omission error. In Fig. 3.9 the omission error covariance functions are shown 
for different minimum degree L.  Table 3.2 shows how in this case the vari-
ance decreases with increasing L. This corresponds to the fact that knowing 
the model with high resolution (up to high degree L), the un-modelled signal 
becomes smaller.

Table 3.2: Variance, RMS and length of correlation of the omission error  
for different minimum degree. 

 variance (m2) RMS (m) length correlation (°)
L = 70 0.42 0.64 0.75
L = 150 0.09 0.30 0.45
L = 300 0.02 0.14 0.25

 In the omission error covariance function, harmonic degrees from L to 1000 
are contained. This approximately means that wavelengths corresponding 
to a spherical distance shorter than  ψ° = 360°/L are considered. This explains 
why the length of correlation decreases when L increases.

In all these considerations we assume a simplified situation, because we are 
consider the errors to be homogeneous and isotropic without taking into ac-
count the correlations between coefficients. 
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� F�lter�ng
The absolute sea surface topography ζ is the difference between the sea sur-
face height (SSH) h relative to a reference ellipsoid (measured by satellite 
altimetry) and the geoid height N referred to the same ellipsoid: 

   ζ = h ‒ N

The geoid undulation is given as an expansion into spherical harmonic func-
tions, (3.3).

The SSH h is derived from satellite altimetry. The measurements are given 
as point values profile-wise along foot-prints of the satellite tracks. By now a 
huge set of data from several altimetric missions is available, that constitutes 
the basis of the computation the SSH with high accuracy and precision.

The two components h and N have different resolutions. For the geoid the 
resolution is defined by the maximum degree L of the harmonic expansion 
(3.3). For the altimetric data the resolution is defined by the sample pattern 
in along-track and cross-track direction. We assume the geoid resolution al-
ways to be the limiting factor. For this reason we will remove all small scales 
from the altimetric data that are not resolved by the geoid. This synchroniza-
tion of resolution may be achieved by applying the same low-pass filter to 
the altimetric data and to geoid undulation. 

The concept of resolution is strictly related to the concept of mathematical 
representation of the data. For example, if we consider the geoid height and 
we use a spherical harmonic representation, it is easy to identify its different 
spectral components with the spherical harmonic degree and order. But for 
the sea surface height the spherical harmonic expansion is a priori not a suit-
able representation, because the data are confined to ocean areas.

The geoid undulation is a global quantity and it is naturally represented by 
spherical harmonic functions, that are also global, while the SSH is defined 
only in ocean areas and its spectral content is much higher. 

Here we will analyze three approaches to solve this spectral inconsistency. 

The first proposal is to expand the altimetric sea surface into the land areas. 
In this way the geoid and the sea surface have the same type of global spec-
tral representation and they can be processed into a compatible form. 

The second approach consists in the analysis in a local region, in which the 
data are considered disregarding their global characteristics. 

The third approach consists in an analysis of the data along the profiles of 
the altimetric tracks (see chapter 5).

To remove the short wavelengths from the SSH, a low pass filter is needed. 
In this article we will analyze various types of filters for the global as well as 
for the local approach. 

To check the accuracy of the proposed filters, we defined, for both approach-
es, a general procedure of simulation which is shown in Table 4.1. The dif-
ferences between estimate and simulated surface give an indication of the 
properties of the filtering procedure.

In the follow we use the EIGEN model [1] up to degree L=180 to simulate the 
SSH on the oceans and we consider the threshold of the filter corresponding 
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to  k0=60.

The results of the global and the local approach will be compared in a limited 
box. The chosen area (ϕ∈ [‒45°,‒65°], l∈ [40°W,20°E]) is compatible with the 
Atlantic sector of the Antarctic Circumpolar Current (ACC), see Fig. 4.1. We 
decided to consider this area because the ACC is an important feature of the 
deep ocean circulation; it transports and exchanges deep and intermediate 
water between the Atlantic, Indian and Pacific Ocean, and it contributes to 
the deep circulation in all basins. This current is a fundamental component 
in the models for the global climate of the Earth. 

Table 4.1: Scheme of the simulation to check the accuracy of the filtering.

1. Construction of a simulated SSH, with known spectral content, using geoid heights 
synthesized from a gravity model to a certain maximum degree L.

2. Application of a filter (with threshold ) on this surface function obtaining, if the filter 
works correctly, a filtered surface with spectral content, up to  k0 < L.

3. Comparison between this filtered surface with the same surface obtained by direct 
spherical harmonic synthesis, using the same a-priori model up to k0.
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Figure 4.1: The area selected for this study.

�.�  From ocean only to global
Starting from the altimetric data, available only over the oceans, we want to 
derive from these ocean data a global altimetric sea surface that can be made 
compatible with the geoid surface. 

The global altimetric sea surface will then be represented using spherical 
harmonic functions, (3.3). Then geoid and sea surface are given in the same 
type of spectral representation, i.e. spherical harmonics, and they can be 
processed (filtered) into a compatible form. 

This procedure was developed in [Wang, 2007], where the following ap-
proaches of expanding and filtering the sea surface heights are tested over 
all oceanic surfaces.



��

GEOTOP� From�ocean�only�to�global

In order to be able to expand altimetric data into a series of spherical har-
monics, all land areas (and ocean data gaps) have to be filled with data as 
well. 

We will illustrate different methods to achieve this. Then we analyze the 
performance of the different filters. 

The simplest way to achieve a global surface is to complement the altimetric 
sea surface data by zero values on land.  It is well known that the drawback 
will be very “unnatural” oscillations (Gibbs phenomenon) in the spherical 
harmonic representation along the borderline from altimetric data to zero 
values due to the sharp sea-to-land edge. 

In order to reduce the strong discontinuity along the coastlines we fill the 
land with another geoid, namely EGM96, again up to degree L=180. We call 
this reconstructed global surface S1 . Of course, also in this case, a discontinu-
ity along the coastlines is still present but much smaller.

It is necessary to reduce this discontinuity further, to make the input signal 
smooth enough for a spherical harmonic representation. The general idea 
is to generate a “transition zone” along the coastlines, on the land side in 
which a smooth transition to the ocean and land function will be attempted. 
Through interpolation there will be mixed data in the interpolation zone 
based on both ocean and land data. The global data set will then be divided 
into three parts (see Fig. 4.2): the geoid heights from EIGEN model on the 
ocean representing the altimetric surface (N180

ocean ), the geoid heights from 
EGM96 on land (N180

land ) and the interpolated data in the transition zone.

The transition zone is generated expanding the coastline polynomial towards 
the land direction. The size of the transition zone is arbitrarily fixed equal to 
1.25°, but other choices may be considered as well.
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Figure 4.2: The division of the Earth‘s surface: ocean (white), land (grey) and transition zone along the coastline (black).

The data on the ocean and on land will be used to interpolate the data in the 
transition zone and the values in the interpolation zone will be replaced by 
the predictions.
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To predict the values in the transition zone three methods will be tested:

- 2D polynomial interpolation;

- prediction by least squares collocation;

- iterative procedure.

After the prediction we have three surfaces that differ only in the transition 
area.

�D polynom�al �nterpolat�on

The prediction in the transition zone is made using a 2D cubic interpolator 
(standard Matlab routine), based on the Delauny triangulation of the data. 
With this method all the data points are connected with triangles in such 
way that all the data are located at the corners of each triangle. If the point 
to be predicted is inside a triangle, the values at the three corners are used to 
compute the prediction value. If it is not inside any triangle, it is linked to the 
nearest triangle and then linearly interpolated. 

We call the global surface reconstructed by polynomial interpolation S2 .

Interpolat�on by least squares collocat�on

An alternative method to perform the interpolation in the transition zone 
is the use of least squares collocation, [Moritz, 1980]. In this case, instead of 
simple polynomials, Legendre polynomials that are mathematically close to 
the global representation of the data in terms of associated spherical har-
monics are used.

For computational reasons, we consider for each interpolation point Q of the 
transition zone a window with size 10°×10° and we use for the prediction all 
data ( N180

ocean and N180
land ) inside this window.

Using the prediction formula we can write for the interpolated value:
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where C is the isotropic, global covariance matrix of the geoid heights: 
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depending only on the spherical distance ψPQ ;  cl are the degree variances of 
an a-priori gravity model, namely
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and Pl  are the Legendre polynomials. D is the covariance matrix of the meas-
urement errors and, in this preliminary study, it is assumed D = 0.

Eq. (4.1) contains the inversion of a full matrix. The dimensions of this matrix 
depend on the number of points used in the prediction. As consequence, it 
is necessary to consider only a limited area around each point of prediction. 
If for each prediction we consider (r+1)(r+1) points, we must invert a full 
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matrix with size (r+1)2 (r+1)2. To determine the quantity r we can look at the 
behaviour of the covariance function involved in (4.1). In Fig.4.3 are shown 
the theoretical covariance functions computed using different minimum de-
grees.
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Figure 4.3: Normalized covariance functions computed using EGM96 with different minimum degrees.

If we consider a model starting from the minimum degree Lmin = 2, the length 
of correlation is 35°, while using Lmin = 10 we have a length of correlation of 
5°. This means that, if we use for the prediction a model starting from Lmin = 
2, we must consider at least an area 35° x 35° around each point of the transi-
tion zone. Then it is necessary to invert a full matrix (1296 x 1296) for each 
point of prediction (for a grid with sampling of 1°) and this could be numeri-
cally heavy. We decided to choose the minimum degree equal to 10 and the 
corresponding local grid will be composed of 11 x 11 points.

To make the data compatible with this hypothesis, the synthesized values on 
land and ocean are computed using the corresponding geo-potential model 
with the same minimum degree (Lmin =10). This is equivalent to assume that 
the a priori model is known up to this degree. This assumption could be rea-
sonable for the first simulations.

Summarizing, the interpolation procedure works locally, using a window of 
11 x 11 points moving over the complete area. We denote the obtained sur-
face using the prediction by least squares collocation S3.

Iterat�ve approach

The last of our methods is based on a different approach, namely an iterative 
procedure.

The idea is proposed in [Gruber, 2000]. We start using initially the geoid to 
degree and order 180 on land from the EGM96 model ( N180

land) and the EI-
GEN geoid to the same degree and order on ocean ( N180

ocean) simulating the 
altimetric surface, without considering the transition zone. 

Next we perform a global spherical harmonics analysis to get harmonic coef-
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ficients and then perform a synthesis to come back to the geoid. After this 
process, we get a new “mixed geoid” on the globe.  We keep the original 
EIGEN geoid to degree and order 180 on ocean, but on land we replace the 
EGM96 geoid by the derived “mixed geoid”. Then we repeat this process. 
Because this “mixed geoid” on land is also affected by data from ocean, it 
will assimilate the ocean and land data so that the edge between land and 
ocean will become smaller and smaller. In this case, there is not a transition 
zone like in the previous paragraphs.

We call the surface obtained with this approach S4 .

�.�.� F�lter�ng �n the global approach 

Summarizing we have now four global surfaces, see Table 4.2, that can be 
represented with a spherical harmonic expansion and then filtered up to the 
selected harmonic degree.

Table 4.2: Different considered global surfaces.

surface ocean transition zone land
S
1 EIGEN -- EGM96

S2 EIGEN polynomial interpolation EGM96
S3 EIGEN prediction by least squares collocation EGM96
S4 EIGEN -- mixed geoid 

(smooth transition)

The filtering process in the spectral domain is a multiplication of the spheri-
cal harmonic coefficients with a spectral weight Wl :

 2
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L l
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          (4.4)

The spherical harmonic coefficients are weighted by Wl, which can be calcu-
lated through 

 0

( ) (cos )sinl lW W P d
π

= a a a a∫
                       

           (4.5)

where W(a)  is an isotropic weighting function on the sphere that is only 
dependent on the spherical distance a. 

To filter the high frequencies (from k0+1 to L) of our surfaces we propose two 
filters: the direct cut-off and the “Gauss” shape filter.

 Direct	cut-off	filter. The direct cut-off filter up to k0 , or ideal low pass filter, 
consists in choosing as maximum degree L = k0 in (4.4). An ideal low-pass 
filter completely eliminates all spectral content above the cut-off degree. The 
coefficients below will pass unchanged. 

Starting from a global surface S, by spherical harmonic analysis, it is possible 
to compute the corresponding spherical harmonic coefficients ylm  up to a 
certain harmonic degree related to the grid size. 

To obtain the surface containing the frequencies up to  k0, we consider:
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that corresponds to spectral weights
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in (4.4).

Gauss	shape	filter. An alternative is to consider a Gauss filter. The Gauss 
filter corresponds to a Gaussian function
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with a similar shape in space and spectral domain, with the standard devia-
tion of the distribution s  related to the threshold of the filter. The Gauss filter 
corresponds to a cap with a certain spherical radius ar  in the space domain. 

The formula for the weighting function Wl  for the Gauss filter is defined in 
[Jekeli, 1981] and improved by [Wahr et al., 1998]. It can be computed by 
recursive formulas:
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where 

ln(2)
1 cos r

b =
− a  .

The radius  ar is empirically related to the degree k0 [Zenner, 2006]: 
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The maximum degree 60 corresponds roughly to ar = 250 km.

Also quite different from the ideal low-pass filter at degree and order 60, 
the Gauss filter will take, with low weight, coefficients up to degree and or-
der 120 [Zenner, 2006]. Each degree and order will be weighted correspond-
ingly.

�.�.� Results of the global approach

Following the scheme of Table 4.1, we compare the differences between the 
simulated (N60) and the filtered geoid undulation (Ñ60 ) over all oceanic sur-
faces and in the considered ocean box (ϕ∈ [‒45°,‒65°], l∈ [40°W,20°E]). 

Fig. 4.4 and Fig. 4.5 show the results for the four surfaces described in the 
previous section on the oceans, considering the direct cut-off filter (Fig. 4.4) 
and the Gauss filter (4.5).

In both cases the stronger deviations occur near the coastlines. The direct 
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cut-off filtering produces a clearer ringing effect as compared to the “Gauss” 
filter. 

The statistics of the differences over all the oceans are reported in Table 4.3.

Table 4.3: Statistics of the differences between simulated (N60) and filtered (Ñ60) geoid undulation on the oceans. The units 
are meters.

Mean st.dev. max min
S1   cut-off +0.0260 0.1173 2.8681 –1.3279
S2   cut-off +0.1320 0.1308 2.4232 –2.2833
S3   cut-off –0.0029 0.1684 3.1237 –1.3821
S4   cut-off 5.3·10-4 0.0865 2.3606 –1.2132
S1   Gauss 0.0023 0.0476 1.2994 –0.7129
S2   Gauss 0.0106 0.0684 1.0699 –1.1493
S3   Gauss –0.0025 0.0709 1.4202 –0.7000
S4   Gauss –6.6·10-5 0.0330 1.0444 –0.5798



��

GEOTOP� From�ocean�only�to�global

 
 

Figure 4.4-a: Differences between simulated (N60) and direct cut-off filtered (Ñ60) geoid undulations on the oceans. The sur-
face S1 is considered in the upper panel and S2 in the lower one. The units are meters.
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Figure 4.4-b: Differences between simulated (N60) and direct cut-off filtered ( Ñ60) geoid undulations on the oceans. The sur-
face S3 is considered in the upper panel and S4 in the lower one. The units are meters.
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Figure 4.5-a: Differences between simulated (N60) and “Gauss” filtered ( Ñ60) geoid undulations on the oceans. The surface S1 
is considered in the upper panel and S2 in the lower one. The units are meters.
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Figure 4.5-b: Differences between simulated (N60) and “Gauss” filtered (Ñ60) geoid undulations on the oceans. The surface S3 

is considered in the upper panel and S4 in the lower one. The units are meters.

As expected the results obtained with the Gauss filter are better than the 
results of the direct cut-off filtering. 

The filtering of the surface S3, corresponding to the prediction in the transi-
tion zone made by least squares collocation, shows biggest residuals when 
compared to the others surfaces. This could be due to the limited window 
used for the prediction. The data are well distributed around each prediction 
point, but obviously not sufficiently distant. This needs further investiga-
tions.

Another disappointing result is that the analysis using the surface S1 is more 
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accurate than the analysis using the surface S2. As is shown in [Wang, 2007] 
the simple polynomial interpolation in the transition zone is not able to re-
duce the discontinuities along the coastline and this can also introduce fur-
ther discontinuities instead of reducing it. 

The smoothing of the discontinuities along the coastline made by the itera-
tive procedure (surface S4) allows a filtering procedure with a global accu-
racy of only 3 cm.

The results are essentially the same as those obtained in [Wang, 2007].

The selected ocean box (ϕ∈ [‒45°,‒65°], l∈ [40°W,20°E]) is sufficiently far 
from the coastlines. Thus here the results are better for both filtering proce-
dures, as is shown in Fig. 4.6 and Fig. 4.7. In Fig. 4.6 (direct cut-off filtering) 
Gibbs effects are visible, while in Fig. 4.7 (Gauss filtering) they are success-
fully reduced. 

In Table 4.4 the statistics of these differences between simulated and filtered 
surfaces are shown considering only the points of the ocean box.

The iterative procedure (surface S4) gives definitely better results compared 
to the interpolation (surfaces S2 and S3), reaching high accuracy. 

In [Albertella and Rummel, 2008] the effects of the extension of the sea sur-
face to the land areas are studied by means a one-dimensional example. Here 
it is shown that the introduced discontinuity produces errors localized near 
the discontinuity itself and that they quickly decrease with growing distance 
from this point. 

The results obtained with the surfaces S1 and S4 (that do not involve the 
transition zone) are the same for different grid samplings (like for example 
0.25°×0.25° instead of 1°×1°). 

For the surfaces S2 and S3, on the contrary, the situation is different. If we 
change the grid resolution from 0.25°×0.25° to 1°×1° (as it is necessary for S3 
for numerical computation reasons) we also have to enlarge the transition 
zone. In this way, the grid resolution and the transition zone become compa-
rable. Therefore for the surface S3, we considered a 1°×1° grid and a transi-
tion zone 5 units wide, that means a distance of about 5°.

Tables 4.3 and 4.4 report the results corresponding to these cases. If we con-
sider the same grid (1°×1°) and the same transition zone (~5°), also in the 
computation of surface S2 we obtain a clear deterioration of the results. As 
is emphasized in [Wang, 2007] the Matlab polynomial interpolator does not 
work correctly and it introduces new discontinuities along the coastlines, 
instead of reducing them. This behaviour is getting worse when the ratio 
between the prediction and data points increases.

 We can conclude that the global approach of filtering gives excellent results 
in case of the Gauss filtering when a global surface is created using the itera-
tive procedure. In any case it must be observed that the results are good only 
at sufficient distance from the coastal areas.  
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Figure 4.6: Differences between simulated (N60) and direct cut-off filtered ( Ñ60) geoid undulation in the box ( ϕ∈ [‒45°,‒
65°], l∈ [40°W,20°E]), considering the different global surfaces of Table 4.2. The units are meters.
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Figure 4.7: Differences between simulated (N60) and “Gauss” filtered (Ñ60 ) geoid undulation in the box  

( ϕ∈ [‒45°,‒65°], l∈ [40°W,20°E]), considering the different global surfaces of Table 4.2. The units are meters.

Table 4.4: Statistics of the differences between simulated (N60) and filtered (Ñ60) geoid undulation in the box  
( ϕ∈ [‒45°,‒65°], l∈ [40°W,20°E]). The units are meters.

mean st.dev. max min
S1   cut-off 9.7·10-5 0.0731 0.3515 -0.2746
S2   cut-off +0.0200 0.0712 0.3940 -0.2560
S3   cut-off -0.0040 0.0764 0.3300 -0.2908
S4   cut-off +0.0013 0.0665 0.3275 -0.2525
S1   Gauss -0.0011 7.9·10-4 8.6·10-4 -0.0028
S2   Gauss 0.0171 0.0020 0.0223 -0.0131
S3   Gauss -0.0040 0.0092 0.0175 -0.0303
S4   Gauss -5.6·10-4 1.4·10-4 -2.4·10-4 -9.4·10-4
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�.�  From global to local
An opposite point of view is to consider the issue of spectral compatibility as 
a local problem. In this case we consider an area on the ocean, in which we 
filter the SSH, using a local representation of the data. 

In a limited area, a common spectral representation is a 2D Fourier represen-
tation, not only because it is adaptable to a limited area, but also because of 
its simplicity of the filtering operation in the spectral domain. Obviously we 
are assuming implicitly that the data are periodically continued in the area 
around our box.

In this section the use of the least squares collocation to estimate the low 
spectral components is studied as well.

�.�.� Local �D Four�er analys�s

We consider the simulated SSH at the discrete points of the regular grid de-
fined in our test area (ϕ∈ [‒45°,‒65°], l∈ [40°W,20°E]). The sampling inter-
vals are dϕ= 0.5°, dl = 0.5° and M, N are the number of points along ϕ  and 
l-direction.

This function can be represented as a finite linear combination:
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Eq. (4.9) is the 2D Discrete Fourier Transform F of the discrete function f,  ui 
and vj represent the longitudinal and the latitudinal component of the fre-
quency and ϕk and ll are the sampling points. In the following, with a simpli-
fied notation we put (u,v)≡(ui,vj) and (ϕ,l)≡(ϕk, ll).

It is well known, any filtering by convolution in the spatial domain, corre-
sponds to a multiplication between the 2D Fourier Transform and the filter 
H in the spectral domain:

 ( , ) ( , ) ( , ) ( , ) ( , ) ( , )f f h F u v F u v H u vϕ l = ϕ l ⊗ ϕ l ⇔ = ⋅         (4.10)

To check the filtering procedure we follow the scheme of simulation de-
scribed in Table 4.1.

Again we apply first the ideal 2D low-pass filter (see Fig. 4.8 upper panel), 
that is defined for the cut-off frequency k0, as:
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The well known drawback of this filter function is a ringing effect which oc-
curs along the edges of the filtered real domain function. 

Better results can be achieved with a 2D Butterworth low-pass filter, (Fig. 4.8 
lower panel). The advantage is that the Butterworth filter has the same shape 
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in space and frequency domain and therefore the ringing effect is reduced. 
It is defined as:

2 2

1( , )

1
nH u v

u v
a b

=
    + +    
                   (4.11)

where the index n controls the smoothing of the transition from 1 to 0 (see 
Fig. 4.8 (c)).

 
Figure 4.8: Ideal low-pass filter (top) and Butterworth low-pass filter (down) in the frequency domain. (a) 3D view; (b) view 

of the filters from top; (c) cross sections.

The two quantities a and b, semi-axis of the filter, are related to the cut off 
degree k0 and to the dimensions of the box containing the data (Dϕ,  Dl):

  
0 0, cos

2 ma k b kDϕ Dl
= = ϕ

π π            
   (4.12)

where ϕm is the mean latitude of our test area: ϕm = - 55°.

This filter is anisotropic. The axis b depends on the latitude of the considered 
area and the shape of the spectrum depends on the geographical position. 

Fig. 4.9 shows the spectra of the same function N60 (geoid heights synthe-
sized up to degree 60) in a box with fixed dimensions (Dϕ=20° Dl=60°), but 
centred at different latitudes. One semi-axis is not varying, the second one is 
varying like cosϕm.

Starting from the simulated SSH (N180), containing all the frequencies up to 
degree 180, we want to recover only the components with low spectral con-
tent (N60).
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Figure 4.9: 2D Fourier spectra of the geoids heights (up degree 60) in different geographical positions. The longitude is constant 
Dl=[40°W,20°E] . The latitude is varying. The semi-axis b, the axis along the direction of the m index, varies as cosϕm .

Inspecting the shape of the Fourier spectra of the functions N180 and N60 (up-
per panel of Fig. 4.10) one observes that a simple low pass filter it is not 
adequate to reconstruct N60 with sufficient precision. In fact, the spectrum of 
N60 after the threshold corresponding to 60 (dashed line in the Fig. 4.10) does 
not drop to zero immediately but with a smoothed behaviour.  

The problem could be solved by adding to the filtered spectrum a compo-
nent computed using an a-priori model, for example the model EGM96. In 
this way the behaviour of the filtered function is made really close to the 
target function, (as is shown in the lower panel of Fig. 4.10).

The filtered function Ñ  is obtained as:

  
180 60

LP HPN h N h N= ⊗ + ⊗        (4.13)

where:

- hLP   is the 2D low-pass Butterworth filter, with threshold 60;

 
Figure 4.10: Sections of the spectra of N180 (a) and N60 (b) compared with the shape of the filter (dashed line). In the lower 
panel the scheme of the filtering procedure is shown: the low pass filter applied to N180 (c) is not adequate; it is necessary to add 

a component (d) computed using an a-priori model, in order to obtain an optimal result (e).



��

GEOTOP� From�global�to�local

- hHP   is the 2D high-pass Butterworth filter, with threshold 60;

- N180 is the geoid undulation synthesized up to 180 (which plays here 
the role of the SST);

-  N60 is the geoid undulation synthesized up to 60 (taken from an a 
priori model). 

First, the values of geoid undulations are generated on a spherical equian-
gular grid with coordinates ϕ∈ [‒75°,‒35°], l∈ [70°W,50°E].  Over these data 
a filter (Tukey window) is applied. The larger area is introduced in order to 
smooth the values along the boundaries, as is shown in Fig. 4.11.

The area in which the filter is evaluated corresponds only to the inner part:  
ϕ∈ [‒65°,‒45°], l∈ [40°W,20°E]. 

Following the scheme of Table 4.1 in each point of the grid the geoid undu-
lation is simulated using the EIGEN gravity model up to degree 180. Filter 
(4.13) is applied in the larger area and the resulting values  Ñ are compared 
in the inner area with the geoid undulations N60 synthesized (always using 
the EIGEN model) on the same grid up to degree 60.  

In Table 4.5 the statistics of the differences  d = Ñ ‒ N60 are reported. The pre-
cision of the filtering operation is around 3 cm.

Table 4.5: Statistics of  differences between (N60) and ( Ñ60), filtered using the 2D Butterworth filter. The units are metres.

n° points mean st.dev. max min
4800 0.0016 0.0274 0.0826 –0.962

 
Figure 4.11: Geoid undulations up to degree 180 after the application of the Tukey filter to smooth the transition on the 

boundaries of the test area.
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�.�.� Local least squares pred�ct�on (collocat�on approach)

An alternative approach of selection of the low part of the spectrum is the 
use of the method of least squares collocation. If the covariance function is 
known, starting from observations of some functional of the gravity field, 
collocation can be used to predict the same functional in a different set of 
points. 

We have

  
1( ) ( ( ) )T

Q PQ PP PN C C D N−= ψ ⋅ ψ + ⋅
       

    (4.14)

where P are the grid points where the geoid undulation NP is observed, Q are 
the points in which we want to compute it, C(ψPQ) is the covariance function 
of the geoid undulation (4.2) depending only on the distance between P and 
Q.

In [Brajovic, 2005] it is proposed the use of this method to separate the contri-
bution of the low (L) and high (H) degrees in the same function. The covari-
ance function (4.2) can be divided in two components:
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   (4.15)

Starting from a set of geoid heights NP, using (4.15) we can write
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  (4.16)

The estimated ÑL contains only the frequencies up to k0 and ÑH contains only 
the frequencies from k0+1 to Lmax; this is exactly a definition of a low (or high) 
pass filter.

In this first analysis the noise is not considered (D=0) and for computational 
reasons, we consider a sampling interval equal to 1°.

The estimate of the components containing only the frequencies up to k0=60 
is

 
60 1 180( ) ( ) ( ) ( )L T L H

i iN P C C C N P−= ⋅ + ⋅
         

(4.17)

where Pi are the points of our considered grid. 

The quantity Ñ60(Pi)   is compared with N60(Pi)
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Figure 4.12: Differences between simulated  N60(Pi) and filtered, by least squares collocation, Ñ60(Pi)  geoid undulations in 

the box ϕ∈ [‒65°,‒45°], l∈ [40°W,20°E] ; units are meters. The differences range from +60 to -40 centimetres.

In Fig. 4.12 we show the differences Ñ60(Pi) - N60(Pi) in our test area. We 
can observe something similar to a Gibbs effect with deterioration near the 
boundaries of the box. 

It is clear that, for data in a limited area, this filter is not able to select ad-
equately the frequencies up to k0.

�.�  Summary of the results
The detailed analysis of the filtering procedures is necessary to take into 
account the different resolution of the geoid and the altimetric sea surface 
height. To get altimetric data and geoid spectrally consistent by filtering the 
altimetric data, it is necessary to find a common representation.

We studied two different approaches. The first (global) consists of the exten-
sion of the altimetric sea surface height as to cover all the Earth‘s surface and 
then in the representation of the data with the spherical harmonic functions. 
The second (local) consists of the study of the data considering a limited area 
like an ocean box. Here it is possible to use the 2D-Fourier representation 
and to apply a suitable low-pass filter.

The local approach has an accuracy of 3 cm. These results are obtained with 
the application of an anisotropic 2DButterworth low-pass filter on the data 
in the limited ocean box.

The results are better using the global approach. In order to be able to expand 
altimetric data into a series of spherical harmonics, all land areas (and ocean 
data gaps) have to be filled with data as well. We showed that the best results 
are obtained using a Jekeli-Wahr filter over a complete surface obtained with 
the “iterative procedure”. In this case the accuracy of the filtering procedure 
is of 3 cm on all ocean surface and less than 1 mm over our ocean box.
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� The prof�le approach

�.�  Gr�dd�ng − an undes�rable f�lter�ng
Radar altimetry performs observations along profiles: The basic pulse rep-
etition frequency for the range measurements is about 1KHz. Onboard soft-
ware performs an averaging to 10Hz (TOPEX) or 20Hz (ESA missions) ob-
servations which are transmitted to the ground segment, where a further 
post-processing generates one second mean values for the altimeter range. 
The 1Hz range values are usually taken for any follow-on processing. 

According to their mean ground velocity altimeter satellites provide every 
6.5 – 7 km a one second mean value of the range measurements. This along-
track resolution is in contrast to the rather large spacing of neighbouring 
ground tracks. For TOPEX the equatorial distance of neighbouring ground 
tracks is more than 300 km; ESAs altimetry missions (ERS-2 and ENVISAT) 
have a ground track spacing of about 80 km. In both cases there are large 
unobserved diamond shaped areas in between the profiles.

Gridding is a process to estimate from irregular distributed data parameter 
values on the nodes of a regular equally spaced grid. For satellite altimetry 
this gridding is of particular difficulty: first, the interpolated values at grid 
nodes in the centre of any non-observed diamond shaped area will be a mean 
of all measurements available on the surrounding profiles. Second, the sur-
rounding profiles are observed at different times such that the interpolated 
value is also a temporal mean. Thus gridded data is already smoothed in 
space and time and the degree of smoothing depends on the distance to the 
observed profiles and on the actual observation times of the surrounding 
profiles (in general, the latter is not at all taken into account).

To circumvent this spatio-temporal fuzziness an approach has been devel-
oped to avoid any initial gridding, to stay as long as possible on the pro-
files and to perform necessary computations with the high resolution profile 
data. The procedure is further on called “profile approach”.

�.�  Str�p�ng pattern of GRACE − f�lter�ng requ�red 
GRACE gravity fields realize essential improvements over previous esti-
mates of the Earth gravity field and justify to recover the dynamic ocean 
topography (DOT) by subtracting geoid heights N from sea surface heights 
h , recall the basic equation

  ζ = h – N  (1)

However, even the latest GRACE satellite-only gravity fields (e.g. ITG03S) 
exhibit a meridional striping, an artifact of GRACE processing which does 
not represent geophysical signals. This is illustrated in Figure 5.1, top pan-
el. 

The cause of these striping pattern is not yet completely understood. There 
are some high frequent mass movements in the Earth system, like ocean tides 
or the variations in the Earth atmosphere. Their gravitational effect has to be 
reduced from the precise GRACE observations. However, for a fixed point 
on Earth GRACE samples these processes only very seldom, such that severe 
alias effects arise: The high frequent signal appears only with a rather long 
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alias period. For some of these effect the alias period is much longer than the 
period used for estimating gravity fields (typically a month). Any error in 
the modelling of the high frequency signal will consequently cause a (more 
or less) constant error in the gravity field. 

Another cause for the striping pattern may be the sensitivity of the GRACE  
K-band range rate observation, taken between the twin satellites. This type 
of observation provides extremely precise along-track information but has 
no sensitivity across-track. Finally, due to the decaying orbit there is also a 
changing ground track pattern.

ITG03 smoothed / 200km
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Figure 5.1 Geoid of ITG03S, one of the latest GRACE-only gravity field models. The top panel highlights the striping pattern 
by showing the geoid as an artificially relief, illuminated from the left. The bottom panel show the geoid after filtering the 

spectrum by a Gauss-type filter with 200 km filter radius.
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Anyway, in order to remove the artificial striping a smoothing has to be ap-
plied. The investigations described in the previous section 4 have shown that 
the Gauss-type filter seems to provide the most reasonable results. Therefore 
the Gauss-type filter of Jekeli-Wahr (JW) has been applied to remove the 
artifical striping (see Equation (4.6) and (4.7) of section 4.1.1). As the grav-
ity field models are provided by spherical harmonics (SH) the JW-filter can 
be applied in the spectral domain. In order to keep as much geoid signal as 
possible, but to filter strong enough to remove the striping pattern, a filter 
radius of  ar = 200 km (according to Equation (4.7) this correspond to degree 
k0 = 72) was found to be the most appropriate choice. The result of the filter-
ing is shown in Figure 5.1, bottom panel.

�.�  D�screpanc�es between �D- and �D-f�lter�ng
This filter operation, indicated by the notation 2DJW[•] should be consist-
ently applied to both quantities of Eqn 1, the sea surface heights h and the 
Geoid undulations N

 ζ = h – N = 2DJW[h – N] = 2DJW[h] – 2DJW[N]  (5.1)

The altimeter profiles, however, are only available in the spatial domain. A 
spectral representation of the sea surface heights is not available and difficult 
to construct as sea surface heights are not defined over land. Thus the equiv-
alent spatial representation of the JW filter should be applied to the altimeter 
profiles in order to consistently filter both quantities, geoid and sea surface. 
The JW-filter is an isotropic, two-dimensional filter and can be applied to 
data distributed only along the profiles. Thereby the two dimensional filter 
2DJW[•] reduces itself to a one dimensional filter, indicated in thefollowing 
by  1DJW[•] (c.f. Figure 5.2).

 
Fig. 5.2  The shape of the two dimensional Gauss-type filter (blue surface) and the effective filter if applied to one-dimensional 

profile data.
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However, the 1D filtering of the altimetry profiles is not equivalent to a 2D 
filtering of laminar distributed data. Considering e.g. any mean sea surface 
in a neighbourhood of a trench, then the 2D filtering along a profile follow-
ing this trench will raise the filtered sea surface heights due to the higher 
sea surface sidewards of the trench while the 1D filtering along the profile 
preserves the low sea surface heights along the grounding line of the trench. 
Figure 5.3 illustrates these conditions in detail.
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Fig. 5.3  Case study for the impact of 1D filtering of sea surface height profiles neighbouring a trench area. The left panel shows 
an ascending TOPEX-EM track close to the Kermadec and Tonga trenches North-East of New Zealand. The upper right panel 
shows the observed sea surface height profile (hi(Jason1), blue dotted line), the 1D filtered sea surface height profile (1D(hi), 
light blue solid line), and the geoid undulation 2DJW(NSH) (black solid line) computed from the spectrally smoothed GRACE-
only model ITG03S. The lower right panel shows in red the differences 1D(hi) - 2DJW(NSH), in green the filter correction, and 

in blue the final estimate of the DOT profile.

�.�  The f�lter correct�on
In order to compensate these systematic differences between a 2D filtering of 
laminar data and the 1D filtering of profile data a filter correction has been 
developed in the following way: The identity

 2DJW[h] = 1DJW[h] + (2DJW[h] - 1DJW[h])  (5.2)

provides a relationship between 2D- and 1D-filtering and at the same time 
identifies the right hand term in round brackets as the necessary correction. 
This correction term can be approximated by a filter operations applied to a 
global continuous surface with a similar spatial resolution as the sea surface. 
A high resolution geoid, represented by a spherical harmonic series NSH, is 
such a proxy for the sea surface. It is first sampled along the altimeter pro-
files at those points Ni where altimeter measurements are available. Then, 
the geoid is filtered twice: once along the profiles using the 1D spatial repre-
sentation of the JW filter, giving 1DJW[Ni] and second by applying the same 
JW filter on the spherical harmonic representation NSH of the geoid, giving 
2DJW[NSH]. If the last quantity is evaluated at those points where altimeter 
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measurements are available, notated as 2DJW[NSH]i then the difference

2DJW[NSH]i  –  1DJW[Ni] (5.3)

defines the desired filter correction. Inserting Eqn (5.3) into Eqn (5.2) gives

2DJW[h] ≈ 1DJW[h] + (2DJW[NSH]i  –  1DJW[Ni]),  (5.4)

a recipe to approximate the desired 2D-filtering of sea surface heights by a 
1D-filtering performed along the profiles. 

Initially, the EIGEN-GL04c (a hybrid model, developed up to degree/order 
360 by combining GRACE and Laser observations with high resolution sur-
face gravity data) was used to derive the filter correction. With EGM08 [Pav-
lis et al. 2008] an ultra high resolution gravity field, developed up to degree 
and order 2160, became available. Formally, EGM08 resolves spatial struc-
tures of 5’ extension which corresponds to 9 km on the Earth surface. Thus 
the spatial resolution of EGM08 is rather consistent with the along-track res-
olution provided by the 1Hz altimeter data. Therefore the latest version of 
the filter correction is based on EGM08. Figure 5.4 shows the global pattern 
of the filter correction, computed for the ground tracks of a common cycle of 
Jason1 and TOPEX-EM (shifted ground tracks).

 Filter Correction for Jason1 079 and TP−EM 422
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Fig. 5.4 The filter correction compensating the systematic differences between 1D filtering along profiles and 2D filtering in 
the spectral domain. The correction was derived with the ultra-high resolution gravity field EGM08 and is shown for the com-

mon 10-day ground track pattern of Jason-1 and TOPEX-EM (with shifted ground tracks)
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�.�  The f�nal approach
The filter correction, Eqn. (5.3) and the recipe, Eqn (5.4), developed above 
can now be applied to Eqn (5.1) such that

ζ = 1DJW[h] – 2DJW[N]  + (2DJW[NSH]i  –  1DJW[Ni]) (5.5) 

completes the final strategy to estimate the DOT along altimeter profiles and 
to apply consistent filter oprations on both, sea surface heights and the geoid 
undulations.

The approach consist in following steps

1. decide on a filter radius ar keeping as much geoid information as 
possible, but large enough to remove the undesirable striping pattern

2. compute a filter correction according to Eqn (5.3) using a high 
resolution geoid as a global surface providing at the same a proxy for 
the high resolution sea surface

3. apply the 2D-filter on the spectrum of a satellite-only gravity field, 
compute and sample the geoid at altimeter measurement points 

4. apply the 1D-filter on the sea surface heights along the altimter 
profiles

5.  Compose everything according to Equation (5.5)

Figure 5.5 provides a “snapshot” of the DOT estimated with the altimeter 
profiles acquired during a 10-day period.approach. A yearly mean DOT, es-
timated by the profile approach is shown in section 6.1 below.

 Sea Surface Topography for Jason1/079 and TP−EM/422
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Fig. 5.5 Snapshot of DOT for a common 10-day cycle of TOPEX-EM and Jason-1, estimated with the “profile approach”. It 
is remarkable that already data from a 10-day period is able to recover the large scale pattern of the DOT that are to be ex-

pected from oceanographic results
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� Examples of DOT
In this section different DOT estimates are shown and compared with each 
other. Section 6.1 gives two examples of DOT estimates, resulting from this 
study. Section 6.2 shows external estimates of the DOT and section 6.3 per-
forms some comparisons

�.�  DOT est�mates of th�s study
Alberta’s DOT / Cut−off 
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Fig. 6.1 DOT estimate derived with the “global approach” described in section 4.1 Land areas are filled using the iterative 
procedure described in 4.1 and the mean sea surface CLS01 are considered on the oceans. A cut-off filter up to degree 60 is 

applied to the spherical harmonics coefficients derived from the “complete” surface. 
Alberta’s DOT / Gauss 
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Fig. 6.2 DOT estimate derived with the “global approach” described in section 4.1 Land areas are filled using the iterative 
procedure described in 4.1 and the mean sea surface CLS01 are considered on the oceans. A Gauss filter with radius of 250 

km is applied to the spherical harmonics coefficients derived from the “complete” surface. 
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 MDT TOPEX und Jason−1 for 2004
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Fig. 6.3 Mean DOT for year 2004, derived with the “profile approach” described in section 5. Data from the ground tracks 

of Jason1 and TOPEX-EM (shifted ground tracks) has been used.

�.�  Non-geodet�c est�mates of the DOT
MDT RIO
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Fig 6.4 DOT of Rio [2005]. Rio05 is computed over the 1993-1999 period, with a multi-variate analysis using hydrographic 
data, surface drifter velocities and altimetry. The guess used is based on both the CLS01 MSS - EIGEN-GRACE 03S geoid 
and the Levitus ‚98 climatology (referenced to 1500 dbar). Note, the colour scale is not centered to zero in order to make the 

DOT pattern comparable to the plots of the geodetic estimates (Fig. 6.1 and 6.2).



��

GEOTOP� Examples�of�DOT

 MDT Maximenko and Niiler
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Fig. 6.5 DOT of Maximenko & Niiler. Note, the colour scale is not centered to zero in order to make the DOT pattern com-

parable to the geodetic estimates (Fig. 6.1, 6.2, and 6.3)

�.�  Compar�sons
Differences cutoff to MN 
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 Fig. 6.6 Differences between the DOT shown in Fig. 6.1 and the DOT estimate of Maximenko & Niiler (Fig. 6.5). The 
lateral mean of the differences is shown in the panels on the right.
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Differences to MN 
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Fig. 6.7 Differences between the DOT shown in Fig. 6.2 and the DOT estimate of Maximenko & Niiler (Fig. 6.5). The lat-
eral mean of the differences is shown in the right panel.
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Fig. 6.8 Differences between the 2004 DOT shown in Fig. 6.3 and the DOT estimate of Maximenko & Niiler (Fig. 6.5). The 
lateral mean of the differences is shown in the right panel. Note, there is an offset of  about  +46 cm. Note also, the geodetic 

DOT is a mean for the year 2004 only while the averaging periods of the Maximenko & Niiler DOT is 1993-1999.
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Fig. 6.9 Differences between the 2004 DOT shown in Fig. 6.3 and the DOT estimate of Rio (Fig. 6.4) . The lateral mean 
of the differences is shown in the right panel. Note, there is an offsets of  about -115 cm. Note also, that the geodetic DOT is 

a mean for the year 2004 only while the averaging periods of Rio05 is 1993-1999.
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� Error propagat�on

�.�  Geo�d errors
The recent models of the geopotential gravity field are available together 
with the complete statistical information. If the complete variance-covari-
ance matrix is given, it is possible to derive not only the accuracy of each 
spherical harmonic coefficient (main diagonal of the matrix) but also all the 
correlations existing between the coefficients of the model.

In case of linear dependency, the law of covariance propagation is simple. 
Given a variable x, with its variance-covariance matrix Cxx known, the vari-
ance-covariance matrix of the variable y = Ax+b is given by

 
T

yy xxC AC A=                (7.1)

Our problem is to derive the full variance-covariance matrix CNN of the geoid 
undulations in a given area, starting from the knowledge of the full vari-
ance-covariance matrix CTT of a selected geopotential model. This is a linear 
problem and in matrix form it can be written as:

 N AT=                    (7.2)

Applying (7.1) we obtain:

 T
NN TTC AC A=          (7.3)

To build the matrix A it is necessary to establish the explicit relation between 
the spherical harmonic coefficients  Ylm  and the geoid undulations N(ϕi,lj) in 

the selected area ( [ ] [ ]min max min max, ; ,i jϕ ∈ ϕ ϕ l ∈ l l ):

 2
( , ) ( , )

L

i j m m i j
m

N R y Y
= =−

ϕ l = ϕ l∑ ∑


 
               (7.4)

The geopotential model is considered up to the maximum degree L = 60, 
that means 3717 coefficients are to be considered. The geoid undulations are 
computed in the selected ocean box =   [-45°, -65°; 40°W, 20° E]. For a sam-
pling equal to 1°, this corresponds to 1281 points.

Therefore the dimension of the matrix A is (1281 × 3717), the dimension of 
CNN is (1281 × 1281) and of CTT (3717 × 3717).

The matrix A is the matrix that, multiplied with the vector of the harmonic 
coefficients, gives us the geoid undulations in the selected area. Each row 
corresponds to a point of our box and each column corresponds to one of 
spherical harmonic coefficients. The definition of the matrix A is not unique, 
but depends on the order chosen of the spherical harmonic coefficients and 
of the point of the grid.

An example is:
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   (7.5)

We compute the full variance propagation considering three geopotential 
models:

• CHAMP: the model is derived from the data of the CHAMP mission, 
computed at the Technische Universität of München [Gerlach et al., 
2003, Földváry et al., 2005]. For this model the full variance-covariance 
matrix up to the degree 60 is available.

• GRACE: the static gravity field model ITG-Grace03s is computed at 
the University of Bonn [Mayer-Gürr et al., 2006, Mayer-Gürr, 2006]. 
In this case the full variance-covariance matrix up to degree 180 is 
available.

• GOCE:  the geopotential model computed in the HPF project, using 
simulated data of the next GOCE mission [Gruber et al., 2007]. In this 
case the full variance-covariance up degree 200 is available.

In our computation each model is considered only to the maximum degree 
60 and each matrix is ordered following the order established by the matrix 
A, like in (7.5).

Fig. 7.1 shows the full variance-covariance matrices CTT
CHAMP , CTT

GRACE, and 
CTT

GOCE of the CHAMP, GRACE and GOCE models, reduced up to the maxi-
mum degree 60 and order like in (7.5).

The main diagonal of each matrix contains the variances of all the coefficients. 
These variances can be reorganized obtaining the usual representation of the 
accuracy of the geopotential model. Fig. 7.2 shows the standard deviation of 
the coefficients of the CHAMP, GRACE and GOCE model, respectively.

Given the three matrices CTT
CHAMP , CTT

GRACE, CTT
GOCE  and the matrix A it is 

easy to perform the variance propagation to the geoid undulation in our 
ocean box applying eq. (7.3). 

In this way we obtain the three matrices CNN
CHAMP , CNN

GRACE, CNN
GOCE  shown 

in Fig. 7.3. The k-th row (and the k-th column) of each matrix represents the 
correlation between the k-th point with all the others points of the grid. The 
diagonal of each matrix represents the variances of the points of the grid. The 
standard deviations of the geoid undulations resulting from the propagation 
are shown in Fig. 7.4.

In all three cases the accuracy is higher for low latitudes and we can observe 
that, as expected, the order of magnitude of the results is completely differ-
ent. In this bandwidth (from 2 to 60) the GRACE model gives the best solu-
tion (~ 2·10-4 m), then there is the GOCE solution (~ 2·10-3 m) and finally the 
CHAMP solution (~ 10 cm).
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From the same matrices we can also compute the correlations between each 
point of the box and all the other points. The correlation between the central 
point of the grid P = [-55°, -10°] and all the other points are shown in the Fig. 7.5. 

The three considered models show completely different patterns. 

In the case of the CHAMP solution, the correlations have a clear central sym-
metry, which is probably related to the method used for the computation of 
the geopotential model:  the energy integral approach.

In the case of the GRACE solution there is a longitudinal symmetry, which 
is related to the design of the GRACE mission: two satellites following each 
other and flying in an almost polar orbit.

Finally, in the case of the GOCE solution it is possible to observe a strong 
anti-correlation in latitude direction and a moderate correlation in longitude 
direction. This particular shape of the correlation is probably related again 
to the geometry of the problem (gradiometer instead of accelerometers) and 
to the particular solution adopted for the computation of the geopotential 
model.

The behaviour of the correlations remains the same also when other points 
of the grid are considered, instead of the central point.

Figure 7.1 Full variance-covariance matrix of the geopotential model derived from CHAMP (top left), GRACE (top right) 
and GOCE (bottom) data. The harmonic coefficients are ordered by order, within each order they are sorted by degree with 

cosine and sine coefficients alternating.
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Figure 7.2 Standard deviation of the spherical harmonic coefficients of the geopotential model derived from CHAMP (top 
left), GRACE (top right) and GOCE (bottom)(direct solution) data. For the GRACE data we can observe a degradation to-

wards the sectorial terms.
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Figure 7.3 Full variance-covariance matrix of the geoid undulations in the ocean box = [-45°, -65°; 40°W, 20° E], obtained 
from the CHAMP (top left), GRACE (top right) and GOCE (bottom) models. The absolute values of the elements of the ma-

trix ([m2]) are represented in logarithmic scale. 
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Figure 7.4 Standard deviations of the geoid undulations in the ocean box = [-45°, -65°; 40°W, 20° E], obtained from the 
CHAMP, GRACE and GOCE models (respectively from top to bottom). The units are metres.

Figure 7.5 Correlations between the central point, P=[-55°, -10°] of the selected box,  and the other points of the grid, ob-
tained from the CHAMP, GRACE and GOCE models (respectively from top to bottom). The units are meter x meter.
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The knowledge of the full stochastic model of the geoid undulation, together 
with the variance-covariance information on the sea surface height, repre-
sents the complete statistical information of the absolute sea surface topog-
raphy. In this way we can apply rigorous error propagation without approxi-
mations. 

A further step will be the assimilation of the geodetic SST into an ocean mod-
el. The stochastic model of the ocean model will be combined with altimetry 
and geoid errors. Also in this case it is important to have a complete statisti-
cal knowledge of the data involved.

�.�  Autocovar�ance funct�on for alt�metry
For the sea surface heights a reliable error estimate is required as well. How-
ever, sea surface heights are not a result of a least squares estimation and 
therefore there is no corresponding variance-covariance matrix available. In-
stead sea surface heights are basically obtained by subtracting the altimeter 
range measurement, corrected for a considerable number of geophysical and 
environmental effects, from the satellite height which in turn has been deter-
mined by a dynamic, reduced dynamic or a kinematic orbit determination 
process. Consequently the error budget of the sea surface heights depends 
on many components, the precision of the range measurement, the accuracy 
of the models taken to correct the altimeter range, and the error of the radial 
component of the orbit. It is difficult to get a realistic overall error budget.

Altimetry itself provides a powerful tool that allows to estimate the overall 
accuracy of sea surface heights: The ground tracks, composed of ascending 
and descending passes, result in crossings, such that the sea surface height 
at those crossovers can be derived twice. This redundancy can be used to 
estimate the radial component of the altimetric errors. The difference be-
tween the two realizations of sea surface heights, called crossover differ-
ences, should vanish under the assumption, that there are no errors and no 
variations in sea level. In fact, even the crossover differences derived from 
measurements very close in time (thereby excluding any sea level variation), 
do not vanish and can be used to estimate by least squares the parameters of 
a model describing the radial error component. This process is called crosso-
ver analysis. Without describing more details it should be emphasized that 
the error estimate is a good indication of the overall error budget, as all error 
components are projected to the crossover differences.

In the context of this study, a rather ambitious crossover analysis has been 
performed. A discrete crossover analysis [Bosch, 2007] is used for the com-
mon estimation of relative range biases and radial errors of all contempora-
neous altimeter systems. The cross-calibration is performed globally for up 
to five altimeter satellites operating simultaneously (TOPEX, ERS-1, ERS-2, 
Jason1, ENVISAT, and GFO). The total set of single- and dual-satellite cross-
over differences, performed in all combinations and with a maximum time 
difference of three days, creates a strong network with high redundancy. It 
enables a reliable and dense sampling of the radial errors of all satellites. 
Details of this multi-mission crossover analysis are described in Bosch [2005] 
and Bosch and Savcenko [2007]. As a result of this analysis complete time 
series of radial errors of all satellites are obtained for the whole mission 
lifetime. It is then straightforward to estimate an empirical auto-covariance 
function for every satellite. This is shown in Figure 7.6
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Fig 7.6 Empirical auto-covariance function for altimeter missions cross-calibrated by a multi-mission crossover analysis. The 
figures on left give the square root of the variances.

From Figure 7.6 it is clearly visible that the altimeter systems have different 
accuracy. TOPEX, Jason1, and ERS-2 perform best and have a radial error of 
15 and 16 mm respectively. The accuracy of ENVISAT and GFO is degraded. 
For ENVISAT this is due to the so-called S-band anomaly which is not prop-
erly flagged in the mission data (meanwhile the S-band anomaly has been 
correctly edited). GFO suffers from the spare laser tracking and a poor orbit 
quality as the orbits are not yet based on one of the new GRACE gravity field 
models. The fact that the auto-covariance function increases again after ap-
proximately one revolution, is a clear indication that the radial error is still 
plagued by systematic, so called geographically correlated errors. 

The empirical auto-covariance function is considered as the most reliable er-
ror characterization of the altimeter data. Any follow on-process (gridding 
or direct assimilation into a numerical model) has to use this function for a 
rigorous error propagation. 
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