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Abstract. The non-linear gyroscopic model DyMEG 
has been developed at DGFI in order to study the 
interactions between geophysically and 
gravitationally induced polar motion and the Earth's 
free oscillations, particularly with regard to the 
Chandler wobble. The model is based on a triaxial 
ellipsoid of inertia and dispenses with any explicit 
information concerning amplitude, phase, and period 
of the Chandler oscillation. The characteristics of the 
Earth’s free polar motion is reproduced by the model 
from rheological and geometrical parameters. 
Therefore, the traditional analytical solution is not 
applicable and the Liouville equation is solved 
numerically as an initial value problem. The gyro is 
forced by consistent atmospheric and oceanic angular 
momentum. Mass redistributions are able to take 
influence on the free rotation via rotational 
deformations. In order to assess the dependence of 
the numerical results on the initial values and 
rheological or geometrical input parameters like the 
Love numbers and the Earth’s principal moments of 
inertia, a sensitivity analysis has been performed. The 
study reveals that the most critical parameter in the 
model is the pole tide Love number k2 whereas the 
dependence of the solution on the other mentioned 
parameters is marginal. 
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1  Introduction 
 

The non-linear gyroscopic model DyMEG (Dynamic 
Model for Earth Rotation and Gravity) has been 
developed at DGFI in order to study the dynamics of 
the Earth system based on the interactions between 
its individual components. Among the latter are the 
atmosphere, the oceans, and the solid Earth as well as 
extraterrestrial bodies like sun and moon. 

Mass redistributions outside and inside the Earth 
which are due to geophysical processes and 
gravitational influences of celestial bodies affect the 
Earth's rotation on sub-daily to secular time scales 
and manifest in polar motion and length-of-day 
variations (LOD). The effects of these excitations 
are superposed by free oscillations of the Earth such 
as, e.g. the Chandler wobble. 

DyMEG is based on the balance of angular 
momentum in the Earth system. The characteristics 
of Earth rotation is generated based on rheological 
and geometrical parameters. As no explicit 
information about amplitude, phase, and period of 
the Earth's free polar motion is provided, the 
Liouville differential equation has to be solved 
numerically, e.g. by means of a Runge-Kutta-
Fehlberg method (Seitz and Kutterer, 2002; Seitz et 
al., 2003). In the present investigation, the sensitivity 
of the solution is discussed with respect to numerical 
parameters which are entered into the model. In 
particular, the effects of the pole tide Love number 
k2, the initial values for the numerical solution and 
the modification of the initial tensor of inertia of the 
basic Earth model are discussed. 

 
2  Configuration of DyMEG 

 
2.1  Liouville Differential equation 

 
In a geocentric reference frame which rotates 
uniformly and performs one revolution per sidereal 
day about its z-axis, the Earth’s reaction on mass 
redistributions can be described by the Liouville 
differential equation: 

 

    LhωIωhωI 
dt

d
.               (1) 

 
The rotation axis z of the reference frame which is 
also known as nutation frame (Moritz and Mueller, 
1987) is oriented approximately towards the direction 
of the maximum moment of inertia C. In Eq. (1), the 
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Earth rotation vector is given by 

 1 2 3( ) 1t m (t),m (t), m (t)  ω , where the small 

dimensionless quantities mi (i = 1,2,3) denote 
deviations from the uniform rotation of the nutation 
frame with the angular velocity . 

Geophysical and gravitational forces yield 
changes of the instantaneous distribution of masses 
in individual system components. They are reflected 
in changes of the Earth’s tensor of inertia I(t) and 
relative angular momentum h(t) which is due to the 
motion of mass elements with respect to the rotating 
reference frame. The vector L(t) on the right hand 
side of Eq. (1) denotes torques which are due to 
direct gravitational forces of Sun and Moon.  

The tensor of inertia I(t) is composed of two 
additive components I0 and I(t), where I0 is the 
invariant tensor of inertia of the basic Earth model. 
With respect to the principal axes of inertia of the 
model body, I0 is given by  
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where A and B are the equatorial principal moments 
of inertia (C>B>A). I(t) contains perturbations of I0  

due to mass redistributions. The principal axes of 
inertia and the axes of the nutation frame do not 
coincide as the axis of the maximum equatorial 
moment of inertia A points approximately towards 
345° longitude  (Marchenko and Schwintzer, 2003). 
This divergence is taken into account by means of a 
rotation. The dependence of the numerical solution 
on the choice of the values for A, B, and C as well as 
of the orientation of the principal axes of inertia is 
assessed in this paper. 
 
2.2  Free rotation of the gyroscopic model 

 
Within the present study, the interactions between 
forced and free oscillations of the Earth shall be 
investigated. Therefore, the traditional analytical 
approach is not applicable as the Earth’s free polar 
motion is produced by the gyroscopic model from 
rheological and geometrical parameters (Seitz et al, 
2003). 

The free rotation of the Earth is lengthened from 
the Euler period of 304 days (which would be the 
period if the Earth was rigid) to the observed 
Chandler period of about 434 days due to the 
influence of rotational deformations (pole tides). This 
back-coupling mechanism of rotational variations 

causes perturbations in the second degree spherical 
harmonic geopotential coefficients C21 and S21 
(McCarthy, 2003) which are directly linked to  I(t): 
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Here, a denotes the Earth’s mean equatorial radius, 
M is the total mass of the Earth and G is the 
gravitational constant. The effects on the centrifugal 
potential due to the rheological characteristics of the 
model body are described by the complex pole tide 
Love number k2 which comprehends the effects of 
mantle anelasticity and ocean pole tides. Both period 
and damping of the Chandler oscillation strongly 
depend on the value of k2. Its influence on the 
numerical result is discussed within this study.  

In the following, a simple Earth model is 
employed. It consists of an anelastic mantle and a  
spherical liquid core which are assumed to be fully 
decoupled. For investigations on polar motion, this 
simplification is justified on time scales which are 
longer than one day (Brzezinski, 2001). Therefore, 
the principal moments of inertia A, B, and C in Eq. 
(2) are replaced by Am, Bm, and Cm which are 
attributed to the mantle alone (Sasao et al., 1980). 

Initial values mi (t=t0) for the first time step are 
deduced from the geodetically observed time series 
C04 of the IERS. The transformation between the 
C04-values which record the coordinates of the 
celestial ephemeries pole (CEP) w.r.t. to the IERS 
reference pole and mi was described by Gross (1992). 

 
2.3 Atmospheric and Oceanic excitation 

 
DyMEG is forced by atmospheric and oceanic 
angular momentum variations. The indirect effect 
due to load deformations is computed via Green’s 
functions. 

For atmospheric and oceanic forcing, two 
independent consistent model combinations are 
considered in this study. 

First, atmospheric data based on the reanalyses of 
the National Centers of Environmental  Prediction 
(NCEP) (Kalnay et al., 1996) were applied in 
combination with the ocean model ECCO (Stammer 
et al., 2003). The combination NCEP-ECCO is a 
consistent representation of dynamics and mass 
redistributions in the subsystems atmosphere and 
ocean as NCEP forcing fields are used for the 
computation of ocean dynamics in ECCO. The 



simulations cover a range of 23 years between 1980 
and 2002. 

Second, the atmospheric ECHAM3-T21 GCM 
(Roeckner et al., 1992) which is driven by observed 
sea surface temperature (SST) fields was used in 
combination with the ocean model OMCT for 
circulation and tides (Thomas et al., 2001) which is 
driven by ECHAM3. Both models as well as their 
linkage are described in detail in Seitz et al. (2003). 
The simulations cover a range of 22 years between 
1973 and 1994. 

As NCEP is based on atmospheric observations, 
the combination NCEP-ECCO is expected to sync 
better with reality than ECHAM3-OMCT. The latter 
models are completely free and apart from the initial 
SST-boundary conditions, dynamics of atmosphere 
and oceans are solely based on model physics. 
However, it has been shown that resulting polar 
motion time series from DyMEG are in good 
agreement with the observations (Seitz et al., 2003). 

 
3  Sensitivity Analysis 
 
3.1  Effect of the pole tide Love number k2 

 
In order to assess the influence of the pole tide Love 
number k2 on polar motion, several model runs were 
performed which differ with respect to the value of 
k2. As DyMEG accounts for the effects of 
equilibrium ocean pole tides and mantle 
anelasticity, the effective pole tide Love number k2 
is composed from three additive contributors:  

 
*

2 2 2 2
O Ak k k k      

 
Here, *

2k  denotes a Love number which would be 

appropriate for a purely elastic Earth neglecting the 
dynamic response of the oceans as well as the 
influence of mantle anelasticity. The latter effects are 
taken into account by adding the surcharges Ok2  

and 2
Ak , respectively (Smith and Dahlen, 1980). 

Dynamic effects of the core are neglected as core and 
mantle are decoupled. In DyMEG, the approximate 
values *

2k =0.3, 2
Ok =0.044, and 2

Ak =0.012+ 

0.0035i (Mathews et al., 2002; McCarthy, 2003) are 
introduced. As the anelastic response of the mantle 
on rotational variations is accompanied by energy 
dissipation, the supplement Ak2  is complex. As a 

consequence, the Chandler wobble is a damped 
oscillation which would diminish if it was not 
continuously excited.  

In the following, the dependence of the numerical 
solution on real and imaginary part of k2 was studied 
separately. First, )( 2k  was increased from 0.3100 

to 0.3800 in 36 equidistant steps while 
)( 2k =0.0035 was kept unchanged. DyMEG was 

forced by atmospheric and oceanic excitation 
(NCEP+ECCO) including loading and tidal 
deformations during 1980 and 2002.  In Fig. 1 the 
resulting time series for polar motion (x-component) 
are shown against the range of )( 2k . As both 

annual and Chandler wobble are almost circular, the 
y-component looks alike. 

Fig. 1: Resulting time series for polar motion (x-component) for 
NCEP+ECCO forcing. The model runs differ with respect to the 
real part of k2.  

 
As clearly visible, the real part of k2 takes influence 
on both the period and the amplitude of the Chandler 
oscillation and therefore causes a shift of the 
characteristic beat of free and forced oscillations. 
From spectral analyses of the time series by means of 
fourier transformation, the relation between )( 2k  

and the Chandler period was obtained (Fig. 2, solid 
black line). Maximum agreement between the 
observed Chandler period of 434 days and the model 
is reached for )( 2k =0.3520. Here, the correlation 

between the model time series for polar motion and 
C04 reaches 0.97. The relation between the Chandler 
period of the NCEP+ECCO forced model 
simulations and )( 2k  is obviously non-linear. 

In order to examine the reason for the non-linear 
relationship, the experiment was repeated without 
any forcing, i.e. only the effect of rotational 
deformations was regarded. Then DyMEG produces 
a damped oscillation with periods between 400 and 
455 days, respectively. The resulting relation 
between )( 2k  and  the Chandler period  (Fig. 2, 

dotted black line) is linear. Accordingly, the non-
linear behaviour in the  NCEP+ECCO case is due to 



Fig. 2: Relation between )( 2k  and the Chandler period as 

produced by DyMEG in case of forced and unforced conditions. 
Maximum correlation (scale on the right) is reached for 

)( 2k =0.3520. 

 
the interaction of free and forced polar motion. A 
similar relation between )( 2k  and the Chandler 

period was derived from ECHAM+OMCT forced 
model runs. Neither in NCEP+ECCO nor in 
ECHAM+OMCT there is increased excitation power 
in the Chandler frequency band.  Nevertheless, there 
is a significant impact on the Chandler period. 

A similar analysis was performed for the imaginary 
part of k2. The value of the real part was set to 
0.3520. The imaginary part )( 2k  was increased 

equidistantly from 0 (no damping) to 0.0060. A small 
value for )( 2k  causes an only slow decrease of the 

Chandler amplitude. Vice versa, a large value for 
)( 2k  leads to a strong diminution of the Chandler 

wobble after few years. Unforced results of DyMEG 
feature damped oscillations which have a constant 
period of 434 days but differ with respect to the 
damping. In general, damping is expressed in terms 
of a so-called quality factor Q. From the damped 
oscillations of the unforced results, the Q-factor was 
assessed by a least squares fit (Seitz et al., 2003). For 

)( 2k =0, the Q-factor goes to infinity, for 

)( 2k =0.0060 its value is 48 (Fig. 3). 

 In order to assess the optimum damping for the 
NCEP+ECCO forced system, an annual oscillation 
with constant amplitude and a Chandler oscillation 
with a period of 434 days together with a rate were fit 
to the model result by means of least squares 
adjustment. The resulting Chandler rates from each 
model run were compared with the respective value 
derived from C04 for the time between 1980 and 
2002 (Fig. 3). Optimum agreement was achieved for 

)( 2k =0.0042 which corresponds to a quality factor 

of Q=69. The observed rate of the Chandler wobble 
between 1980 and 2002 is –1x10-3 as/a. 

For ECHAM+OMCT, maximum agreement was 
reached for )( 2k =0.0043 (Q=68) between 1975 

and 1994. Hence, the power of the respective 
excitation series seems slightly higher in this case. 
Anyhow the difference between both model runs is 
marginal. 

Summing up the above results, the pole tide Love 
number k2 which will be used in the further 
investigations with DyMEG is set to 0.3520+0.0042i. 

Fig. 3: Relation between the rate of the Chandler amplitude 

between 1980 and 2002 and 2( )k . Optimum agreement between 

C04 (dotted) and the model result is achieved for )( 2k =0.0042  

(Q=69). 

 
3.2 Effect of the initial values 
 
In DyMEG, the Liouville differential equation is 
solved by numerical integration. Hence, initial 
values mi(t=t0) for the first time step have to be 
provided. As mentioned above, the initial values are 
deduced from the C04 series of the IERS. In order 
to assess the effect of inaccurate initial values on 
the solution, each of the mi(t=t0) was independently 
varied by means of uniformly distributed random 
numbers between 3i around the respective C04 
value. Here, i denotes the standard deviation of 
each mi which was calculated from an interval of 30 
days around the starting date t=t0. Within this 
analysis, different starting dates were considered. 
The simulations were started in half-yearly steps 
between 1973 until 1994 for ECHAM+OMCT and 
from 1980 until 2001 for NCEP+ECCO. 

As a result, this investigation revealed that the 
modification of the initial values within the 3i-
interval for a single starting point does not have a 
large effect on the resulting time series. In general, 
the results of 30 model runs which were performed 
for each of the atmosphere-ocean combinations 



showed similar results. Deviations of the respective 
time series between each other are largest at the 
beginning of the simulations (due to the starting 
situation). But as convergence increases with time, 
DyMEG seems to reach a steady state. 

In contrast, the choice of the starting date seems 
to be more critical. Fig. 4 displays RMS values of 
the difference between the model result and the C04  
for polar motion (x-component) as well as the 
corresponding correlations against the respective 
starting date of the simulation. The model runs end 
at 31.12.1994 in the case of ECHAM+OMCT and 
1.3.2002 in the case of NCEP+ECCO. 

Fig. 4: RMS values of the difference between model results and 
C04 (black) and respective correlations (grey). The model runs 
differ with respect to the starting dates. 

 
In general, NCEP+ECCO feature results which are in 
better agreement with C04 than ECHAM+OMCT. 
Obviously, there are starting dates which lead to 
better results than others. For ECCO+NCEP, a start 
at 1.6.1986 is disadvantageous whereas the 
neighbouring starting dates lead to good results. For 
ECHAM+OMCT the correlations feature a clear 
oscillation which is not visible in the RMS values. 
This oscillation does not show up in the case of 
NCEP+ECCO. Accordingly, the amplitudes of polar 
motion seem to be less affected than phases or 
frequencies. During the last few years of the 
respective simulations, the correlations decrease as 
the considered parts of the polar motion series are 
rather short. Hence this effect seems to be an artefact. 
 
3.3  Effect of variations in the initial tensor of 
inertia of the basic Earth ellipsoid 

 
The influence of the choice of I0 on the model results 
for polar motion was tested in two steps. 

First, the model results for a triaxial ellipsoid of 
inertia (AB) were contrasted to a simplified biaxial 
(A=B) solution. NCEP+ECCO forcing was applied in 
both cases. Although the difference between A and B 

is marginal, this study revealed that the Chandler 
period is shortened about two days if a rotationally 
symmetric basic ellipsoid of inertia is introduced into 
DyMEG. Vice versa, in order to lengthen the biaxial 
Chandler period to the value derived from the triaxial 
approach, the pole tide Love number has to be 
adopted (cf. 3.1). According to the results of this 
study, the appropriate value for )( 2k  was 0.3550 if 

a biaxial ellipsoid of inertia is applied. The results are 
compiled in Table 1. 

 
Table 1. Periods of the free Earth rotation as derived from 
DyMEG for a biaxial and triaxial basic ellipsoid of inertia in 

dependence of )( 2k  

 )( 2k =0.3520 )( 2k =0.3550 

A=B 432 434 
AB 434 436 

 
In a second step, the values for A, B, and C were 
changed as well as the direction of the principal axes 
of inertia with respect to the axes of the reference 
frame. Therefore, estimates for the Earth’s tensor of 
inertia were introduced which are based on the recent 
gravity field solutions JGM-3, EGM96, GRIM5-S1, 
and GRIM5-S1CH1 (Marchenko and Schwintzer, 
2003). In these solutions, the direction (A) of the 
principal axis of inertia for the equatorial moment A 
varies between 345.0709° and 345.0712°. In order to 
study the sensitivity of DyMEG with respect to (A), 
this angle was increased from 344.5° to 345.5° in 50 
equidistant steps. 

Both experiments, the variation of A, B, and C as 
well as the variation of (A) within these reasonable 
limits did not lead to significant changes of the 
resulting polar motion series. Therefore these 
parameters of the basic triaxial tensor of inertia I0 are 
considered uncritical. 

  
4  Conclusions 
 
The sensitivity of DyMEG with respect to several 
input parameters as well as the corresponding 
reliability of the numerical results was assessed within 
this paper. 

The results showed that the model time series 
strongly depend on the pole tide Love number k2 with 
respect to period and damping of the Chandler wobble. 
From various model runs, the value k2=0.3520+ 
0.0042i was found to yield optimum agreement 
between the model result for polar motion and the C04 
series of the IERS. While the value of the real part of 
k2 is in good agreement with recent studies, the value 



of the imaginary part slightly differs from the one 
given in McCarthy (2003). 

Note that the sensitivity of the model Chandler 
period with respect to the real part of k2 is very high. A 
change of this value by 1% results in a reaction of the 
period of about two days. Hence, the conclusion from 
the Chandler period to )( 2k  is relatively precise. 

While the variation of the triaxial initial tensor of 
inertia I0 as well as the modification of the initial 
values mi(t=t0) did not significantly influence the 
results, the system is sensitive to the starting date. The 
correlation between successive NCEP+ECCO forced 
model results and C04 showed only slight variations 
whereas the ECHAM+OMCT forced results strongly 
depend on the starting date. The dependency of the 
quality of the resulting time series on the starting date 
will be subject to further investigations. 

If the simulations are started at advantageous dates, 
the model results for polar motion are in good 
agreement with geodetic observations (Fig. 5). 

Fig. 5: Model results for DyMEG forced by NCEP+ECCO (top) 
and ECHAM+OMCT (bottom) in comparison with the geodetic 
observations C04 (middle). For better comparability, the model 
results are shifted ±1as. 

 
The correlation between the C04 values and the two 
displayed model runs is 95% and 97% respectively. 
As the annual signal of the ECHAM+OMCT result is 
too strong compared to the observations, the RMS of 
the difference to C04 is higher than for NCEP+ECCO 
(cf. Fig. 4). Both polar motion series feature an 
undamped beat between free and forced polar motion. 
Hence, the atmospheric and oceanic excitation series 
are able to maintain the Chandler amplitude. 
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