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Abstract

In this thesis, a reduced basis framework for the pricing of European and Ameri-
can options is developed. The underlying problems are described by parametrized
time-dependent variational (in-)equalities. Corresponding reduced problem formula-
tions are introduced, a posteriori error estimates are derived, and the construction
of suitable reduced spaces is worked out. The efficiency of the resulting method is
demonstrated in the context of calibrating to market data and by comparing it with
existing methods used in practice.

Zusammenfassung

In dieser Arbeit wird eine Reduzierte-Basis-Methode für die Bewertung von eu-
ropäischen und amerikanischen Optionen entwickelt. Die zugrunde liegenden Pro-
bleme werden durch parametrisierte zeitabhängige Variationsungleichungen beschrie-
ben. Dazugehörige reduzierte Problemformulierungen werden eingeführt, a posterio-
ri Fehlerabschätzungen werden hergeleitet und geeignete reduzierte Räume werden
konstruiert. Die Effizienz der resultierenden Methode wird demonstriert anhand der
Kalibrierung an Marktdaten und durch den Vergleich mit verbreiteten Methoden aus
der Praxis.
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1 Introduction

Modeling financial processes is one of the most dynamically developing branches of
science today. In particular, this relates to the option pricing theory, which has been
consistently gaining attention from the engineers and the mathematicians since the
70’s when the Black-Scholes formula was derived.

One of the central objectives of this branch of research is the evaluation of the
fair price of an option. Options are derivative contracts, which means that their
price derivation is based on the price of another economical resource. They allow
their owner to sell or to buy the underlying asset (e.g., stocks) for a specified price
before or at some time in the future. The options are categorized into different types,
depending on the function they perform. The most popular types are European and
American options. The latter one, in fact, remains the most complex to value. From
the mathematical point of view, these financial products can be described by means of
probabilistic methods as well as by deterministic ones, including parametrized partial
differential equations (PDEs), where the parameter reflects the properties of the
model. One of the simplest and widely know models, which attempts to evaluate the
theoretical value of an option, is the Black-Scholes model [BS73]. Although this model
is widely used in the option pricing theory, it presents major limitations, such as, e.g.,
an assumption of a constant volatility. To overcome these limitations, a variety of
other models, like, e.g., the constant elasticity of variance (CEV) or the Heston
models, have been developed, which mimic the market behavior more realistically.
These models are inherently more complex than the Black-Scholes model. Evidently,
to deal with the complexity of these models, it becomes imperative to develop suitable
numerical approximation techniques. While the finite elements method (FEM), finite
differences (FD), or finite volumes (FV) are the canonic numerical methods for PDEs,
their application to financial modeling, [AP05b; HRS+13; Sey09], is still considered
relatively new in comparison to the standard Monte Carlo methods, (binomial) tree
methods or semi-analytic formulae. Often, more simple, but less realistic models are
favored in practical applications due to the low computational cost. Consequently, the
development and utilization of methods for efficient evaluation of option prices, yet
in complex models, is of current interest in research, which is one of the motivations
for the present work.

The objective of this thesis is to develop a parametric model order reduction frame-
work, based on the reduced basis method (RBM) for an efficient and accurate com-
putation of the solution of option pricing models. Focus is particularly laid on the
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1 Introduction

American options which we model as parabolic variational inequalities, discussed in
more detail below. The basic idea is to construct the reduced-order model, which
can approximate the original high fidelity problem (i.e., the detailed problem) for
different variations of the parameter values. The reduced-order model is constructed
based on an appropriate low-dimensional approximation solution space by exploiting
the parameter dependency of the problem.

The RBM is not a new method, and its beginning can be traced back to the
pioneering works of Almroth, Noor, Peters [ASB78; Noo81; NP80] and others for
structural engineering applications. More recent developments in RB methods can be
found in [GMN+07; GP05; PRV+02; VPR+03] and the references therein. Over the
years since, a strong mathematical theory has been developed for the RB methods
with a particular focus on sharp and reliable a posteriori error bounds, and the
utilization of the standard POD and greedy procedures for the basis construction,
see, e.g., [Gre05; Haa13; HO08b; Rov03; VPR+03].

The distinctive difference of the RBM to other reduced-order modeling (ROM)
techniques lies in the fact that the method seeks to exploit the physical properties
of the system by studying the parametric nature of the problem. That is, the re-
duced space which is used for an approximation, is chosen such that it represents all
possible variations of the model with respect to the parameter. The efficiency of the
method is gained by the so-called offline-online decomposition of the computational
routine. In short, this splitting separates the parameter-independent computations
from the parameter dependent ones. The first phase is computationally expensive,
but performed only once, while the latter one is computationally cheap and can be
executed multiple times for different instances of an input parameter. This is a sig-
nificant feature of the method, which allows to perform computations in a real-time
and/or multi-query context.

The significant interest of the method has been also in its realization in the wide
range of applications, including, e.g., the Stokes problem, linear elasticity and contact
problems [BAF16; GV11; MQR08; Rov03; RV07; Ver03]. So far only little attention
has been paid to the applications in finance. The recent works include, e.g., [FCG06;
PGB15; Pir12; SS08; SS14; SSS14], which are primarily focused on exploiting POD
techniques. The first studies with the RBM, where the attention was on the choice
of the basis functions, include the work [CLP11] for jump-diffusion models. Sub-
sequently, in [Pir11] it has been extended to the basket options. In [Pir12] it was
shown to be a variant of the POD. In the recent paper [MU14] the application of the
reduced basis method to more complex models, e.g., with parameter functions as an
initial condition, has been investigated. The method also formed the basis of several
textbooks and tutorials, [Haa11; Haa16; HRS16; PR06; QMN16] as well as software
libraries, e.g., [DHK+12; RBm13].

We point out that previously mentioned studies considered only the linear case of
European options, even though the most frequently traded are American options. By
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their early exercise property these derivative securities are formulated as an optimal
stopping problems, which are, in turn, described by parabolic variational inequali-
ties (PVI). The subject of variational inequalities (VI) has a well developed theory
and wide range of applications, especially for obstacle and contact problems. For
example, for American options, the pay-off functional acts as an obstacle. To im-
pose the contact condition one uses an inequality constraint. This, however, adds
an additional non-linearity that has to be resolved. We refer to [BL82; DL72; IK08;
KS00; Lio72; LS67] for the general theory of stationary and instationary variational
inequalities. For the numerical treatment a wide range of literature is available, see,
e.g., [BHR78; Glo08; GLT81; KO88]. An extensive survey for the treatment of the
finite-dimensional variational inequalities is given in [FP03].

We note that the contact condition can be enforced by means of the Lagrange
multiplier method, which transforms the original variational inequality into a mixed
problem in saddle point form. It can be treated by active set methods, such as the
primal-dual active set strategy (PDAS) [HIK02]. For an overview of discretization
schemes for such type of problems, we refer to [Woh11].

Employing the reduced basis method to stationary variational inequalities has been
initiated by the works [HSW11; HSW12], where the main theoretical results for the
reduced problem were discussed together with the derivation of a posteriori error
estimates. The interest in such problems has increased, which led to further research
in [GU14; GU15; ZBV16]. Despite the interesting mathematical nature of the prob-
lem, the non-linearity of the model is reflected in the difficulty of the construction
of the reduced bases. On one hand, one has to guarantee the inf-sup stability of
the constructed pair of the reduced spaces. One can follow the standard approach
of enrichment by supremizers. This, for example, has been used extensively for the
treatment of the pressure term in the Stokes problem or for non-coercive problems,
see, e.g., [GV11; NMR15; Rov03; RV07; VPR+03]. On the other hand, one has to en-
force the positivity of the reduced Lagrange multiplier and thereby the approximation
of the space of Lagrange multipliers becomes more involved.

The inequality constraints also complicate the derivation of a posteriori error es-
timates. Specifically, the estimation of the inequality residual is not straightfor-
ward and requires a careful treatment. This is also reflected in only partial offline-
online decomposition of the a posteriori error estimates. This question was addressed
in [ZBV16] for the elliptic variational inequalities and in [BKG+15] in the context
of optimal control problems with variational inequalities. In this work the authors
consider the problem in the so-called primal formulation, which is obtained by intro-
ducing an additional “slack” variable. For this formulation they derive simpler error
estimates, which are computable in an offline-online fashion. The extension of the
RBM to the parabolic case is studied in the works [BAF16; BHS+15; GU14; GU15;
HSW13]. In [GU14; GU15] the parabolic variational inequalities in the space-time
framework has been discussed. There the authors provide a well-posedness result
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1 Introduction

and derive a posteriori error estimates for the problem with a relaxed coercivity
assumption.

The research in this thesis focuses on two objectives. The first is to construct the
generalized reduced basis framework for the parabolic variational inequalities which
arise in option pricing. Here we extend an earlier developed methodology for the ellip-
tic variational inequalities, summarized in the aforementioned work [HSW12] to the
parabolic case. In particular, we deal with the well-posedness of the reduced problem,
the construction of the reduced basis spaces, and a posteriori error estimates. We
remark, that in contrast to the space-time parabolic variational inequalities [GU14;
GU15], we follow the standard time-stepping approach, where the reduction is per-
formed for the spatial coordinate. For the derivation of a posteriori error estimates
we utilize techniques used for elliptic variational inequalities [HSW12] together with
the estimates for parabolic problems, see, e.g., [GP05; GRV12]. Most of these re-
sults for coercive problems were reported in [BHS+15]. In addition to it, to cover a
larger class of models, an extension to weakly coercive problems, i.e., where only the
G̊arding inequality is satisfied, is presented.

In contrast to the elliptic case, the construction of the reduced spaces for parabolic
variational inequalities is more complex because of the time dependence. For the
construction of the primal space we still can follow the standard POD-Greedy algo-
rithm, [Haa13; HO08b]. However, for the dual reduced space this is not applicable
because of the non-negativity constraint. Instead we consider the new combination
of the POD-Angle-Greedy procedure, which has been first introduced in [HSW13]
and generalized in [BHS+15]. It unifies the known POD-Greedy algorithm for the
primal space and the Angle-Greedy algorithm for the Lagrange multiplier space. An
alternative approach based on the non-negative matrix factorization (NNMF) [LS99]
was described in [BAF16], where it has been compared to the SVD procedure. In this
thesis we also provide a numerical comparison of the performance of both approaches,
the NNMF and the POD-Angle-Greedy algorithm.

The second objective of the thesis is the application and the empirical investigation
of the RBM to problems in finance. In particular, we consider the problem of cali-
bration on option prices, which requires the solution of a least-squares minimization
problem. This is one of the typical applications of the RBM, where many query eval-
uations of the high-fidelity solutions are required. While, a lot of research has been
carried out on the application of model reduction techniques in calibration on option
prices, most of them deal with the linear case of European options, [Pir09; SS14].
We present a unified model reduction approach, which covers not only the European,
but also the more complex case of the American options. In this part of the work, we
investigate the capacity of the RBM and compare it to alternative model reduction
approaches, which are popular in financial practice. The numerical findings highlight
the potential of the RBM in application to problems in finance, allowing to achieve
a computational saving for complex problems. A substantial part of the thesis is
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also allocated to the discussion of the Heston option pricing model. This includes
the modeling details, boundary conditions and influence of the parameters. We re-
mark, that this model is favorable in calibration on option prices, see, e.g., [AGG10;
GGM+12; MPS14; SST04], due to its ability to replicate market behavior better than
some other models.

The content of this thesis is organized as follows. In Chapter 2 we give a brief
overview of the option pricing theory and terminology used throughout this thesis.
In particular, we consider the derivation of the Black-Scholes and Heston models.
We focus on the Heston model, where we provide a detailed summary of the model
setting for different types and styles of options.

Next we introduce the reduced basis methodology in Chapter 3. First we derive
the abstract parametrized weak and discrete weak formulations, which constitute the
parametrized linear parabolic PDE. The conditions for the existence and uniqueness
of the continuous and discrete solutions for the Heston and the Black-Scholes models
are discussed. We recall the main characteristics of the RBM for linear parabolic
problems, which include the a posteriori error estimates, well-posedness of the re-
duced problem, offline-online decomposition of the computational routine, and the
construction of the reduced spaces. Finally, we present numerical results for the ap-
plication of the RBM to price European options in the Heston model. Some of these
experiments have been published already in a similar form in [BHS+15].

In Chapter 4 we extend the RBM methodology to the case of American options,
which are mathematically modeled as parabolic variational inequalities. We discuss
the well-posedness of the weak and discrete weak formulations. By means of Lagrange
multipliers, we study the problem in a saddle-point form. We derive the RBM based
on the discrete formulation. We focus especially on the derivation of a posteriori error
estimates and the construction of suitable reduced basis spaces. Finally, we test the
theoretical findings with suitable numerical experiments, the results of which have
appeared in our earlier work [BHS+15].

In Chapter 5 we apply the RBM to a realistic market problem. We consider the
calibration problem on option prices, where we compare the RBM method to some
existing model reduction methods, which include the de-Americanization method and
the calibration using closed-form solutions. We use synthetic and real market data
sets to demonstrate the performance of different model reduction methods.

We complete this work with concluding remarks and perspectives on future work,
which are given in Chapter 6.
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2 Models in Option Pricing

2.1 Introduction

With this introductory chapter, we provide basic definitions and an overview of the
theory of option pricing with some standard mathematical models. For a more de-
tailed introduction; see, e.g., [AP05b; HRS+13; Hul03; Jam03; LL96; Sey09; WDH93;
Wil01].

The central question in the option pricing theory is: given a value of an option at
its expiration day, τ = T , how to define a fair price of an option today, τ = 0? To
answer this question, many models and techniques were developed, among them the
famous Black-Scholes model, which was derived by Fischer Black and Myron Scholes
in 1973 [BS73]. Despite being the most popular, the model also has some limitations.
One of the main ones is the assumption of a constant volatility, which, in most of the
situations, is not fulfilled by market behavior. In 1993 another model was proposed
by Steven Heston [Hes93], which assumes a stochastic nature of the volatility and is
based on the dynamics of both, the stock price and the volatility.

In this Chapter we provide a mathematical description of both models, specify ap-
propriate boundary conditions and present their closed-form solutions. In particular,
in Section 2.2–Section 2.3, we briefly outline the definition of options and stock price
processes. In Section 2.4, we discuss the derivation of the Black-Scholes equation and
present the Black-Scholes formula for pricing European options. The limitations of
the model are considered in Section 2.5. These shortcomings give raise to an intro-
duction of an alternative stochastic volatility model, presented in Section 2.6. We
discuss, in great details, several choices of the boundary conditions in Section 2.6.2
for European and in Section 2.6.4 for American options in the Heston model.

2.2 Options

Initially, we recall some basic definitions of financial instruments.
Derivative securities, or shortly derivatives, are contracts, whose value depends on

an underlying asset and an investor’s decision. An underlying asset or just underlying
can be stocks, bonds, currencies etc. We denote the price of an asset by S = {Sτ :
τ ≥ 0}, where τ is time.

An option is a derivative contract which permits its owner a right, but not an
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2 Models in Option Pricing

obligation, to buy (a call option) or to sell (a put option), an underlying asset at
a prespecified fixed strike price K ≥ 0 before or at a certain time T ≥ 0, called
maturity. An option is issued by a writer, usually a bank, to a holder, who purchases
an option.

There are two common types of options, the European and the American ones.
European options can be exercised only at maturity. These options are the simplest
ones and are also called plain vanilla options. By contrast, American options, which
belong already to the category of complex options, allow an owner to exercise an
option at any time prior to the maturity date. In turn, these options are also the
most prevalent in the market. For American options we need to know not only the
value of an option, but also when it is best to exercise it, which is a hard task.

There are other types of options, e.g., path-dependent options, the value of which
depends not only on the value of an asset price at maturity, but also on the history
of an asset price.

At an expiration day T , the value of an option is known and called a pay-off. The
pay-offs for call and put options are defined as

H(S) =
{

(S −K)+, call,
(K − S)+, put,

(2.2.1)

with (·)+ := max(·, 0).
Provided a pay-off of an option and a price of an underlying S0, the task of “option

pricing” is to determine a fair price of an option today, i.e., at τ = 0. Later in the
chapter, a mathematical interpretation of this problem is given. Graphically, the
prices of the call and put options for different S0 can be presented as in Figure 2.1.

For a call (put), an option is said to be in the money, if S > K (S < K); out of
the money, if S < K (S > K); and at the money, if S = K, for all τ < T . Different
types and combinations of options can be considered, which include more involved
strategies and lead to more complicated pay-offs, e.g., digital options, straddles,
strangles, butterfly spreads, see, e.g., [Jam03; WDH93; Wil01].

In general, as we will see later, the value of an option P depends on the maturity
time T , strike K, and some set of parameters µ, which are determined by the model
used to price an option.

In this thesis, we focus on two option pricing models: the constant volatility Black-
Scholes model, and its extension, the stochastic volatility Heston model.

2.3 Stock Price Process

The stock price process is modeled by a Brownian motion. This concept was already
introduced in early works on option pricing, in the beginning of the 20th century. L.
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2.3 Stock Price Process

Figure 2.1: The values of a European put (left) and call (right) options at τ = 0 and
their corresponding pay-offs.

Bachelier was the first to use a stochastic process (a Brownian motion) to model stock
options. The work was a part of his dissertation “Théorie de la spéculation” [Bac00].

The price process of an asset is described by a stochastic process on the time
horizon 0 ≤ τ ≤ T . In general, we are not interested in the asset price itself, but in
the return of an asset price, which describes the relative measure of the change in the
price, dS/S. Mathematically, it is represented by the following stochastic differential
equation (SDE):

dS

S
= µdτ + σdW. (2.3.1)

The return of an asset (2.3.1) is composed of two terms, the deterministic part µdτ ,
and the stochastic part σdW . The deterministic contribution represents a return
on money invested in a risk-free bank, where µ is called a drift, an average rate of
growth of the asset price. The remaining term σdW is a stochastic contribution,
which models a random change in the price due to to some unexpected external
events. It is driven by a Wiener process (or a standard Brownian motion) W and a
volatility σ, which measures a range of fluctuations of the returns. We discuss the
notion of volatility in more details in Section 2.5.1. For simplicity, we assume, that
both σ and µ are constants. For a rigorous mathematical interpretation of (2.3.1)
and an introduction to stochastic calculus, see, e.g., [KS91; LL96].

A Wiener process (or a standard Brownian motion) is a real-valued continuous
stochastic process W = {Wτ : τ ≥ 0}, with the following properties:

(i.) W0 = 0,

(ii.) Wτ has independent increments, i.e., for all 0 ≤ τ1 < τ2 ≤ τ3 < τ4, Wτ2 −Wτ1

and Wτ4 −Wτ3 are independent stochastic variables,

9



2 Models in Option Pricing

(iii.) Wτ−Ws is normally distributed, i.e., for 0 ≤ s < τ , Wτ−Ws ∼ N (0, τ−s) with
mean E[Wτ −Ws] = 0 and variance Var[Wτ −Ws] = E[(Wτ −Ws)2] = τ − s.

(iv.) Wτ has continuous trajectories almost surely.

The SDE (2.3.1) admits the unique solution

Sτ = S0e
(µ−σ2/2)τ+σW . (2.3.2)

The above solution is a log-normally distributed random variable, which follows a
geometric Brownian motion (the exponential of a Brownian motion).

We note that the random term in (2.3.1) plays a crucial role in the modeling of
the asset price. Indeed, if we eliminate the term by setting σ = 0, then the price of
an asset Sτ = S0e

µτ is fully deterministic, which is not true in real markets.
The SDE (2.3.1) is a particular case of a more general SDE (Itô process),

dX = a(X, τ)dτ + b(X, τ)dW, X0 = Z, (2.3.3)

where a : R×R→ R is a drift coefficient and b : R×R→ R is a diffusion coefficient.
The solution X = {Xτ : τ ≥ 0} of (2.3.3) is called a diffusion. The result of existence
and uniqueness of such a solution, under particular regularity assumptions on a(X, τ)
and b(X, τ), can be found in [LL96, Theorem 3.5.3].

Next we present the Itô formula, which is one of the most fundamental tools in
stochastic calculus.

Lemma 2.3.1 (Itô formula). Let X = {Xτ : τ ≥ 0} follow the Itô process (2.3.3),
and let f(τ, x) ∈ C2([0,∞)× R). Then for Y := f(τ,X) the following holds

dY =
(
∂f

∂x
a+ ∂f

∂τ
+ 1

2
∂2f

∂x2 b
2
)
dτ + ∂f

∂x
b dW. (2.3.4)

The proof of this result can be found in, e.g., [KS91, Section 3.3.A].
The equation (2.3.3), driven by a Wiener process, serves as a basis for a very

large class of financial models, called diffusion models, which includes also the Black-
Scholes model, which is discussed in the next section.

2.4 Black-Scholes Model
The Black-Scholes model is based on the following set of assumptions:

(i) The stock price follows a geometric Brownian motion (2.3.1) with constant
parameters µ and σ.
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(ii) Short selling of securities is permitted, i.e., the seller may sell the assets, which
he may not own.

(iii) The underlying is not paying dividends.

(iv) Security trading is continuous and there are no transaction costs associated
with a portfolio.

(v) There are no arbitrage possibilities, meaning no opportunity to make a riskless
profit. This is a very crucial assumption for nearly all pricing models. In
practice, only very small arbitrage opportunities are observed in the prices.

(vi) The risk-free interest rate r is constant for all maturities, i.e., an interest rate
of risk-free investment or loan is known and constant.

Some of these assumptions can be relaxed, e.g., allowing r and σ to vary over time,
or adding dividends. This leads to more complex models.

There are numerous derivations of the Black-Scholes partial differential equation.
We present here the approach from, e.g., [Hul03; Top05; Wil01]. Consider the dy-
namics of the stock price (2.3.1),

dS = µSdτ + σSdW. (2.4.1)

Let P = P (S, τ) to be the price of an option, e.g., a call option. Using Itô’s for-
mula (2.3.4), we write

dP =
(
∂P

∂S
µS + ∂P

∂τ
+ 1

2σ
2S2∂

2P

∂S2

)
dτ + ∂P

∂S
σSdW. (2.4.2)

Both SDEs (2.4.1) and (2.4.2) are driven by the random term dW . Our goal is
to express a value of an option P in a fully deterministic manner. For this, we
construct another variable (portfolio) Π. The portfolio Π is represented as a ’correct’
combination of S and P terms

Π = ∆1P + ∆2S. (2.4.3)

As we will see below, choosing appropriately ∆1 and ∆2 will allow us to eliminate
the randomness in the model and to present it in a deterministic manner.

Incorporating (2.4.1) and (2.4.2), the change of the portfolio dΠ in a time interval
dt can be written

dΠ = ∆1

(
∂P

∂S
µS + ∂P

∂τ
+ 1

2σ
2S2∂

2P

∂S2

)
dτ+∆2µSdτ+

(
∆1

∂P

∂S
σS + ∆2σS

)
dW.

(2.4.4)
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By setting ∆1 and ∆2 as follows, we eliminate the random term dW in (2.4.4):

∆1 := −1, ∆2 := ∂P

∂S
. (2.4.5)

Then (2.4.4) reduces to

dΠ = −
(
∂P

∂τ
+ 1

2σ
2S2∂

2P

∂S2

)
dτ. (2.4.6)

The portfolio earns a risk-free interest rate r for a short period of time (i.e., an amount
Π, invested in riskless asset, growths exponentially with the constant interest rate)

dΠ = rΠdτ. (2.4.7)

From (2.4.3), (2.4.6) and (2.4.7), we obtain

−
(
∂P

∂τ
+ 1

2σ
2S2∂

2P

∂S2

)
dτ = r

(
−P + ∂P

∂S
S

)
dτ, (2.4.8)

and finally
∂P

∂τ
+ 1

2σ
2S2∂

2P

∂S2 + rS
∂P

∂S
− rP = 0. (2.4.9)

Equation (2.4.9) is the Black-Scholes or Black-Scholes-Merton partial differential
equation. A linear partial differential operator of elliptic type associated with it
is

LBSP := 1
2σ

2S2∂
2P

∂S2 + rS
∂P

∂S
− rP. (2.4.10)

Note that the assumption (iii), in general, can be weakened. Then assuming that
the asset pays out a dividend q, the Black-Scholes operator can be rewritten as
following, [AP05b, Section 2.3],

LBSP := 1
2σ

2S2∂
2P

∂S2 + (r − q)S∂P
∂S
− rP. (2.4.11)

In the compact form the Black-Scholes equation can be expressed as

∂P

∂τ
+ LBSP = 0. (2.4.12)

To specify a particular type of a derivative, appropriate terminal and boundary con-
ditions should be established. For the European call we have

P (T ) = H(S) = (S −K)+, (2.4.13a)
lim
S→∞

P (τ, S) = S, P (τ, 0) = 0. (2.4.13b)
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2.4 Black-Scholes Model

And for the European put,

P (T ) = H(S) = (K − S)+, (2.4.14a)
lim
S→∞

P (τ, S) = 0, P (τ, 0) = Ke−r(T−τ). (2.4.14b)

We provide a short interpretation of these conditions. For a call option, when S →∞,
it is more likely that we exercise the option and its value will tend to the value of
an asset. When S → 0, the option becomes worthless and falls to zero. For a put
option, when S →∞, the option is unlikely to be exercised and its value becomes 0.
For S → 0 the value of an option is a present value of amount K received at time T .

2.4.1 Put-Call Parity

European put and call options with the same strikes K and maturities T can be
related to each other via a put-call parity relation (2.4.15)

PC +Ke−r(T−τ) = PP + S. (2.4.15)

It means, that given the price of the European call PC , the price of the European
put PP can be directly deduced from it and vice versa, see e.g., [Hul03; Wil01]. This
relation is often used in practice, making it sufficient to compute only one type of an
option.

2.4.2 Black-Scholes Formula

Assuming constant coefficients σ and r in the Black-Scholes equation (2.4.12), an
exact explicit formula for evaluating European options can be derived, [BS73]. Let
N(·) be a cumulative distribution function (CDF) of a standard normal distribution,

N(x) = 1√
2π

∫ x

−∞
e−

1
2 z

2
dz. (2.4.16)

Then the price for the European call in the Black-Scholes model is given by

P (τ, S) = SN(d1)−Ke−r(T−τ)N(d2), (2.4.17)

where

d1 =
log( SK ) + (r + σ2

2 )(T − τ)
σ
√
T − τ

, d2 = d1 − σ
√
T − τ . (2.4.18)

Similarly, due to a put-call parity (2.4.15), the European put option can be expressed

P (τ, S) = −SN(−d1) +Ke−r(T−τ)N(−d2). (2.4.19)
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2.4.3 American Options
We extend our considerations to American type of options. In particular, we start
our discussion with American puts. Despite the fact that these options are more
complex than European ones, due to the inequality constraints and no closed-form
formula for the solution, they are more frequently used in the market.

As it was mentioned already in Chapter 2.2, American options can be exercised at
any time before their expiration date, which implies that the owner has more rights
compared to the European case, thereby making American options more valuable.
Hence, the price of an American put option is always larger than the price of an
equivalent European one,

PAO ≥ PEO. (2.4.20)
However, for an American call, one can prove that on non-dividend paying stocks,
American and European calls have the same price [Hul03]. In addition, the price of
an American put can not fall below its pay-off H(S) := (K − S)+,

P (τ, S) ≥ H(S). (2.4.21)

If, for instance, P (τ, S) would be less than the pay-off, P (τ, S) < H(S), this would
mean that one can purchase the asset and the option and immediately exercise it,
which would lead to an immediate profit with a zero initial investment. This case
then would contradict to a non-arbitrage argument, Section 2.2. Hence, the condi-
tion (2.4.21) is always true.

We can see that the condition (2.4.21) naturally decomposes the strip (τ, S) ∈
[0, T ] × R+ into two parts: the region where (2.4.21) becomes an equality, and the
part where only a strict inequality holds; see Figure 2.2. These regions are determined
by a so-called early-exercise curve1 and characterized by the following inequalities:

P (τ, S) > H(S), S > Sf (τ), τ ∈ [0, T ), (2.4.22)
P (τ, S) = H(S), S ≤ Sf (τ), τ ∈ [0, T ]. (2.4.23)

The curve Sf (τ) is changing over time and is not known a priori. A problem of
such kind is called a moving boundary problem (for a static case a free boundary
problem).

The curve Sf (τ) has also an economic meaning, telling us that there exist a partic-
ular time τ∗ (an optimal stopping time), when it is the best to exercise the option. It
is clear, that for S > Sf , exercising the put option would lead to an immediate loss
(K − S −P < 0). To eliminate the possible loss, it is rational to continue to hold an
option. In this way, the region S > Sf is called a continuation region. For the case,
S < Sf , the holder can create a profit and stops to hold the option by exercising it.
This region is called a stopping region.

1In some literature the name “critical stock price” is used, e.g., [JLL90].
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2.4 Black-Scholes Model

Figure 2.2: Schematic representation of an early exercise curve Sf with continuation
and stopping regions. Source: [Sey09].

Next we consider a problem in the PDE framework. The price of an American put
P satisfies the Black-Scholes equation in the continuation region

∂P

∂τ
+ LBSP = 0, S > Sf , τ ∈ [0, T ], (2.4.24)

with the terminal condition
P (T, S) = H(S). (2.4.25)

We prescribe a fixed and free boundary conditions for τ ∈ [0, T ]

lim
S→∞

P (τ, S) = 0, (2.4.26a)

∂P

∂S
(τ, Sf (τ)) = −1, (2.4.26b)

P (τ, Sf (τ)) = K − Sf (τ), (2.4.26c)
P (S, τ) = H(S), S < Sf (τ). (2.4.26d)

Then, the price of an American put option in the Black-Scholes model is a solution
of the free-boundary value problem (2.4.24)–(2.4.26). The difficulty of solving this
problem is associated with an unknown boundary Sf (τ). From a numerical point
of view, it is nicer to work with another formulation (2.4.27), where the unknown
boundary Sf (τ) does not show up explicitly. This is described below:
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2 Models in Option Pricing

Problem 2.4.1. The price of an American put option in the Black-Scholes model is
a solution of the following system of inequalities

∂P

∂τ
+ LBSP ≤ 0, (τ, S) ∈ [0, T )× R+, (2.4.27a)

P ≥ H(S), (τ, S) ∈ [0, T )× R+, (2.4.27b)(
∂P

∂τ
+ LBSP

)
(P −H(S)) = 0, (τ, S) ∈ [0, T )× R+, (2.4.27c)

P (T, S) = H(S), S ∈ R+. (2.4.27d)

The derivation of this result can be found in [BL82; JLL90]. The weak form of
the set of inequalities (2.4.27) results in a variational inequality problem, which is
studied in Chapter 4.

2.5 Limitations of the Black-Scholes Model
Despite its popularity, the Black-Scholes model has several limitations in capturing
real market behavior. The model makes a strong assumption that the stock returns
are normally distributed with a constant variance. In most of the situations, the
market violates this assumption, a clear evidence of it is the stock market crash in
1987.

Extensive research has been done to extend the Black-Scholes model to a model
with a non-constant volatility. As a result several models emerged, where the volatil-
ity can be either some deterministic function of time and stock price σ(τ, S), e.g., the
constant elasticity of variance (CEV) model, or a completely random variable, e.g.,
the Heston model. The first one belongs to the class of a so-called local volatility
models, while the second one is related to stochastic volatility models.

In the case of local volatility models, the local volatility function represents an
averaging over all possible instantaneous volatilities. These models are frequently
applied to price exotic options. In turn, stochastic volatility models are more complex
than the local volatility ones, however, they are more capable to replicate the realistic
dynamics of an underlying.

The early studies on stochastic volatility models include [Gar76; Hes93; HW87;
JS87; Sco97; SS91; Wig87]. The models in [HW87; JS87; Sco97; Wig87] did not
provide an analytical solution and used numerical techniques to evaluate an option
price. The analytical approach was considered in [SS91] with an assumption that
the stock price and volatility processes are uncorrelated. Later, Heston generalized
the approach to a model, where these two quantities are correlated with a non-
zero correlation parameter, and provided a semi-analytic formula, [Hes93]. This
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model became very popular and nowadays extensively used by both practitioners
and researchers.

2.5.1 Stochastic Volatility

We start by introducing a concept of volatility, which is used to measure standard
deviation of the trading price series. In practice, the volatility can not be observed
directly, but it can be measured statistically, for example, by taking a look on its
past history.

There are several notions of the volatility, such as actual, historical (realized),
implied and forward volatility, [Wil01]. The measure of the randomness in an asset
return at any time is defined by an actual volatility; and at some fixed period of
time in the past by a historical volatility. The forward volatility is associated with
the future time of the stock price movements. The implied volatility is defined from
option prices observed in the market. To calculate an implied volatility one needs to
insert all available data, S, T , K and r, in the option pricing model, e.g., the Black-
Scholes model, and to solve it with respect to the volatility parameter σ. Since implied
volatility is less fluctuating than the option prices, it is also common for traders to
work with implied volatilities itself instead of option prices, e.g., for calibration.

One of the features of the implied volatility is the so called volatility ’smile’ or
’skew’. It shows that the implied volatility as a function of K is not constant, as in
the Black-Scholes settings. Indeed, it generates a curve which has a shape of a smile.
This is one of the evidences how market behavior violates the Black-Scholes settings.

Another empirical evidence can be recalled from the stock market crash in October
1987. We present it here as it is described in [Gat06]. On Figure 2.3, the log returns
over 15 years of SPX (the Standard & Poor’s 500 index) are depicted. It can be seen
the stock price empirically exhibits a so-called volatility clustering, when large/small
price changes follow large/small price changes. This property is also known as a
mean reverting property of the volatility, [Gat06]. This is one of the characteristics,
which can not be described by a constant volatility.

In Figure 2.4, the frequency distribution of SPX daily log returns is plotted. The
distribution is fat-tailed and highly peaked compared to a normal distribution, which
is assumed for the behavior of the stock price in the Black-Scholes model. This can
be a characteristic of the combination of distributions with different variances.

This example serves as a good motivation to consider the volatility as a mean
reverting random variable. The Heston model, introduced in the next section, incor-
porates this feature of the volatility in the modeling of the option price.
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Figure 2.3: SPX daily log returns from 31.12.1984, to 31.12.2004. Source: [Gat06].

Figure 2.4: Frequency distribution of (77 years) SPX daily log returns compared with
the normal distribution. Source: [Gat06].
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2.6 Heston Stochastic Volatility Model
The Heston model [Hes93] is described by the following stock price and volatility
dynamics

dS = µSdτ +
√
νSdW 1, (2.6.1a)

dν = κ(γ − ν)dτ + ξ
√
νdW 2, (2.6.1b)

The dynamics of the stock price follows a geometric Brownian motion as for the Black-
Scholes model (2.4.1). The non-constant instantaneous variance ν := {νt : τ ≥ 0} is
driven by a mean-reverting square root process (known as Cox-Ingersoll-Ross (CIR)
process) with a long-run variance γ > 0, rate of mean reversion κ > 0 and a volatility
of variance (also called volatility of volatility) ξ > 0. The Wiener processes W 1 and
W 2 are correlated with the correlation parameter ρ ∈ [−1, 1].

For the Heston model, the so-called Feller condition is often assumed in the litera-
ture. It implies, that the variance process (2.6.1b) is strictly positive if the parameters
obey the following condition, see, e.g., [JKW+11],

2κγ > ξ2. (2.6.2)

It is uncommon and, in some cases, not desirable that the parameters violate this
condition. In most situations the parameters are chosen in such a way, that the Feller
condition is fulfilled.

2.6.1 Heston Partial Differential Equation
The derivation of the partial differential equation for the Heston model (2.6.1) is
similar to the derivation of the Black-Scholes model. In our presentation we closely
follow [Gat06]. Consider a portfolio of one option P , ∆1 units of stock S and ∆2
units of another asset U , such that,

Π = P + ∆1S + ∆2U. (2.6.3)

The change in the portfolio value in a time interval dτ is

dΠ = dP + ∆1dS + ∆2dU. (2.6.4)

Applying the multidimensional version of Itô’s formula [KS91, Theorem 3.6] to dP
and dU we obtain

dP = ∂P

∂τ
dτ+ ∂P

∂S
dS+ ∂P

∂ν
dν+ 1

2νS
2∂

2P

∂S2 dτ+ 1
2ξ

2ν
∂2P

∂ν2 dτ+ξνρS ∂2P

∂ν∂S
dτ, (2.6.5a)

dU = ∂U

∂τ
dτ+ ∂U

∂S
dS+ ∂U

∂ν
dν+ 1

2νS
2∂

2U

∂S2 dτ+ 1
2ξ

2ν
∂2U

∂ν2 dτ+ξνρS ∂2U

∂ν∂S
dτ. (2.6.5b)
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Incorporating (2.6.5) to (2.6.4), provides

dΠ = dP + ∆1dS + ∆2dU =
(
∂P

∂τ
+ 1

2νS
2∂

2P

∂S2 + 1
2ξ

2ν
∂2P

∂ν2 + ξνρS
∂2P

∂ν∂S

)
dτ

+ ∆2

(
∂U

∂τ
+ 1

2νS
2∂

2U

∂S2 + 1
2ξ

2ν
∂2U

∂ν2 + ξνρS
∂2U

∂ν∂S

)
dτ

+
(
∂P

∂S
+ ∆2

∂U

∂S
+ ∆1

)
dS +

(
∂P

∂ν
+ ∆2

∂U

∂ν

)
dν. (2.6.6)

The random terms dS and dν create a risk in the portfolio. To eliminate the risk,
we set

∆2 =
−∂P
∂ν
∂U
∂ν

, ∆1 = −∂P
∂S
−∆2

∂U

∂S
. (2.6.7)

Following the steps as for the Black-Scholes model in the preceding section, we require
a portfolio to earn a risk-free interest rate r: dΠ = rΠdτ . Then (2.6.6) reduces to

dΠ =
(
∂P

∂τ
+ 1

2νS
2∂

2P

∂S2 + 1
2ξ

2ν
∂2P

∂ν2 + ξνρS
∂2P

∂ν∂S

)
dτ

+ ∆2

(
∂U

∂τ
+ 1

2νS
2∂

2U

∂S2 + 1
2ξ

2ν
∂2U

∂ν2 + ξνρS
∂2U

∂ν∂S

)
dτ

= rΠdτ = r(P + ∆1S + ∆2U)dτ.

Grouping P and U terms, we obtain

∂P
∂τ + 1

2νS
2 ∂2P
∂S2 + 1

2ξ
2ν ∂

2P
∂ν2 + ξνρS ∂2P

∂ν∂S + rS ∂P∂S − rP
∂P
∂ν

(2.6.8)

=
∂U
∂τ + 1

2vS
2 ∂2U
∂S2 + 1

2ξ
2v ∂

2U
∂ν2 + ξνρS ∂2U

∂ν∂S + rS ∂U∂S − rU
∂U
∂ν

. (2.6.9)

The left-hand side is a function of P and the right-hand side is a function of U ,
which makes the equality possible only when both sides are equal to some function
f(τ, ν, S). We chose f = −κ(γ − ν) + λ(τ, ν, S) as in [Gat06], where λ(τ, ν, S) is a
price of volatility risk, such that λ(τ, ν, S) = λν, [Hes93]. Then the pricing PDE of
the Heston model has the following form

∂P

∂τ
+ 1

2vS
2∂

2P

∂S2 + ξνρS
∂2P

∂ν∂S
+ 1

2ξ
2v
∂2P

∂ν2 + rS
∂P

∂S
+ [κ(γ − ν)− λν] ∂P

∂ν
− rP = 0.

(2.6.10)
We can write κ(γ−ν)−λν = κγ−(κ+λ)ν = (κ+λ)( κ

κ+λγ−ν). Then by considering
κ′ = κ + λ, and γ′ = κ

κ+λγ, the parameter λ can be eliminated [Hes93; WAW01].
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Therefore, without loss of generality it suffices to set λ = 0 and consider only ξ, ρ, γ, κ
and r as model parameters.

We define a spatial differential operator corresponding to the Heston model as
follows

LHP := 1
2νS

2∂
2P

∂S2 + ξνρS
∂2P

∂ν∂S
+ 1

2ξ
2ν
∂2P

∂ν2 + rS
∂P

∂S
+ κ(γ − ν)∂P

∂ν
− rP. (2.6.11)

Then equation (2.6.10) can be written in the compact form

∂P

∂τ
+ LHP = 0. (2.6.12)

Analogously to the derivation of the Black-Scholes equation, a standard call or a
put type of an option in the Heston model is characterized by the terminal condi-
tion (2.4.13a) or (2.4.14a).

Remark 2.6.1. Assuming that the volatility is constant in the Heston model, we
have ξ = 0 and ν = γ, and the Heston PDE reduces to the Black-Scholes one with
ν = σ2 = γ. Thereby, the Heston model can be considered as an extension of the
standard Black-Scholes model.

2.6.2 European Options
For the parabolic PDE (2.6.10) to be solved with specified terminal conditions, we
need to impose appropriate boundary conditions. The Heston model has a complex
structure and there are several specifications of the boundary conditions in the lit-
erature for both European and American (Section 2.6.4) options. The choice may
depend on several aspects and we discuss several different settings, which exist in the
literature.

For the case of European call options the commonly used boundary conditions,
cf. [Hes93; HF10; WAW01], are given by

lim
S→∞

∂P

∂S
(τ, ν, S) = 1, (2.6.13a)

P (τ, ν, 0) = 0, (2.6.13b)
lim
ν→∞

P (τ, ν, S) = S, (2.6.13c)
∂P

∂τ
(τ, 0, S) + L̃HP (τ, 0, S) = 0, (2.6.13d)

with the operator L̃H defined as

L̃HP = rS
∂P

∂S
+ κγ

∂P

∂ν
− rP. (2.6.14)
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We interpret these conditions as follows: For a large stock price S, we have a Neu-
mann boundary condition (2.6.13a), which says that the option price grows linearly
w.r.t. S. When the stock is worthless, S = 0, it is natural to assume that the value
of the call is also worthless (2.6.13b). With increasing volatility ν, the option price
is also increasing, but it remains bounded by the stock price S (2.6.13c). One of
the main difficulties for the Heston model appears at the boundary ν = 0, where no
boundary conditions can be established and the degeneracy of the PDE occurs. We
assume that the equation is satisfied on the line ν = 0 (2.6.13d).

The boundary conditions described above are the ones proposed by Heston [Hes93].
However, this is not a unique way to prescribe boundary conditions for the European
call option. Other variations of the boundary conditions exist. In particular, in
[Gal08] the following boundary conditions are provided

lim
S→∞

∂P

∂S
(τ, ν, S) = 1, (2.6.15a)

P (τ, ν, 0) = 0, (2.6.15b)

lim
ν→∞

∂P

∂ν
(τ, ν, S) = 0, (2.6.15c)

∂P

∂τ
(τ, 0, S) + κγ

∂P

∂ν
(τ, 0, S) = 0. (2.6.15d)

The conditions (2.6.15a), (2.6.15b) and (2.6.15d) remain the same as in (2.6.13).
The condition (2.6.15d) is identical to (2.6.13d) with an additional assumption of
zero interest rate, r = 0. The only different condition is (2.6.15c), which tells that
for a large volatility, the option price tends to be constant.

An alternative setting is provided in [ZFV98],

lim
S→∞

P (τ, ν, S) = S,

(2.6.16a)
∂P

∂τ
(τ, ν, 0) + ξ2ν

2
∂2P

∂ν2 (τ, ν, 0) + κ(γ − ν)∂P
∂ν

(τ, ν, 0)− rP (τ, ν, 0) = 0,
(2.6.16b)

lim
ν→∞

(
∂P

∂τ
(τ, ν, S) + 1

2vS
2∂

2P

∂S2 (τ,∞, S) + rS
∂P

∂S
(τ,∞, S)− rP (τ,∞, S)

)
= 0,

(2.6.16c)
∂P

∂τ
(τ, 0, S) + rS

∂P

∂S
(τ, 0, S) + κγ

∂P

∂ν
(τ, 0, S)− rP (τ, 0, S) = 0.

(2.6.16d)

As we can see, the Heston PDE is satisfied at the boundaries, resulting in the bound-
ary conditions (2.6.16b)–(2.6.16d).
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In turn, for European put options, the following set of conditions has been studied
in [DF12],

lim
S→∞

∂P

∂S
(τ, ν, S) = 0, (2.6.17a)

P (τ, ν, 0) = Ke−r(T−τ), (2.6.17b)

lim
ν→∞

∂P

∂ν
(τ, ν, S) = 0, (2.6.17c)

∂P

∂τ
(τ, 0, S) = 0. (2.6.17d)

The interpretation of these conditions are similar to the American put options, which
will be discussed later.

2.6.3 Closed-Form Solution for European Options

One of the main advantages of the Heston model is an existence result of the closed-
form solution for European options. This is particularly important for calibration
purposes, when multiple evaluations of an option price need to be performed with a
small computational effort.

We present a representation formula of a closed-form solution for an European call
option presented in the original work by L. Heston using the method of characteristic
functions, for details of the derivation see [Hes93]. The solution is guessed in the
following form

PC(t, ν, S) = SF1 −Ke−rtF2, (2.6.18)

where t = T − τ is the time to maturity and Fj (j = 1, 2) are cumulative dis-
tribution functions (in the ln(K) variable). They satisfy the log-transformed PDE
(x = lnS) (2.6.10) and can be evaluated via characteristic functions as follows

Fj(t, ν, x; ln(K)) = 1
2 + 1

π

∫ ∞
0
<
[
e−φ ln(K)fj(t, ν, x;φ)

iφ

]
dφ, (2.6.19)

where fj are the characteristic functions of Fj , j = 1, 2, defined as

fj(t, ν, x;φ) = eCj(t;φ)+Dj(t;φ)ν+iφx, (2.6.20)

Cj(t;φ) = rφit+ κγ

ξ2

{
(bj − ρξφi+ dj)t− 2 ln

[
1− gjedjt

1− gj

]}
, (2.6.21)

Dj(t;φ) = bj − ρξφi+ dj
ξ2

[
1− edjt

1− gjedjt

]
, (2.6.22)
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with auxiliary quantities

gj = bj − ρξφi+ dj
bj − ρξφi− dj

, dj =
√

(ρξφi− bj)2 − ξ2(2ujφi− φ2), (2.6.23)

u1 = 1
2 , u2 = −1

2 , b1 = κ− ρξ, b2 = κ. (2.6.24)

Given the closed-form solution for the price of an European call we can use the
put-call parity (2.4.15) to determine the price of an European put with the same
strike and maturity.

We note that the integrals in (2.6.19) can not be computed directly and require an
appropriate quadrature scheme, hence the Heston’s solution is only semi-analytical.

2.6.4 American Put Options

We extend our considerations to American put options in the Heston model. Similar
arguments as for the Black-Scholes model, Problem 2.4.1, are used here.

Problem 2.6.1. The price of an American put option in the Heston model is a
solution of the following system of inequalities

∂P

∂τ
+ LHP ≤ 0, (τ, ν, S) ∈ [0, T )× R2

+ (2.6.25a)

P ≥ H(S), (τ, ν, S) ∈ [0, T )× R2
+ (2.6.25b)(

∂P

∂τ
+ LHP

)
(P −H(S)) = 0, (τ, ν, S) ∈ [0, T )× R2

+ (2.6.25c)

P (T, ν, S) = H(S), (ν, S) ∈ R2
+, (2.6.25d)

with appropriate boundary conditions.

Analogously to European call options, presented previously, several variations of
the boundary conditions are found in the literature. The boundary conditions which
are common in the literature, see, e.g., [CP99; KSW12], are

lim
S→∞

P (τ, ν, S) = lim
S→∞

H(S) = 0, (2.6.26a)

P (τ, ν, 0) = H(0), (2.6.26b)

lim
ν→∞

∂P

∂ν
(τ, ν, S) = 0, (2.6.26c)

P (τ, 0, S) = H(S). (2.6.26d)

They can be described as follows, see, e.g., [CP99]: when the stock price is S = 0, it
remains at zero, (2.6.1a), and an immediate exercise of the option is the best in this
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2.6 Heston Stochastic Volatility Model

case, which leads to a profit of K − S. For a large stock price, S → ∞, the option
is far out of the money and becomes worthless. For ν → ∞, it is expected that the
price of the option is insensitive to the change of the volatility. For ν falling to 0, the
asset becomes deterministic and an option is immediately exercised.

As before, the main difficulty and point of discussion appears for the boundary
ν = 0, due to the degeneracy of the Heston PDE. For this boundary, one may use a
homogeneous Neumann boundary condition, [CP99; DF12],

lim
S→∞

P (τ, ν, S) = 0, (2.6.27a)

P (τ, ν, 0) = H(0), (2.6.27b)

lim
ν→∞

∂P

∂ν
(τ, ν, S) = 0, (2.6.27c)

∂P

∂ν
(τ, 0, S) = 0. (2.6.27d)

In addition, Clarke et al., [CP99], propose to replace the condition (2.6.27a) with
the gradient condition (2.6.28), “which was found in practice to be a better approx-
imation at large volatilities”:

lim
S→∞

∂P

∂ν
(τ, ν, S) = 0. (2.6.28)

This modification was taken into account in subsequent research and as a result
the following set of conditions appears in [HH15; IT08; IT09; Oos03]:

lim
S→∞

∂P

∂ν
(τ, ν, S) = 0, (2.6.29a)

P (τ, ν, 0) = H(0), (2.6.29b)

lim
ν→∞

∂P

∂ν
(τ, ν, S) = 0. (2.6.29c)

For the boundary ν → 0, it is assumed that the Heston problem (2.6.25) is fulfilled
on ν = 0, 

∂P
∂τ + L̃HP ≤ 0, P ≥ H(S),(
∂P
∂τ + L̃HP

)
(P −H(S)) = 0,

(2.6.29d)

where the operator L̃H is defined in (2.6.14).
Note that in [Oos03], instead of the boundary condition (2.6.29d), the condition

(2.6.27d) is used.
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In [OO13] the same setting of the boundary conditions (2.6.29) is used, despite
a small modification. Instead of the first order derivative terms for ν, S → ∞, the
second derivative asymptotic boundary condition is employed (2.6.30)

lim
ν,S→∞

∂2P

∂S∂ν
(τ, ν, S) = 0. (2.6.30)

In [FLM+11], all boundary conditions are set up to be the value of the pay-off
function,

lim
ν,S→0
ν,S→∞

|P (τ, ν, S)−H(S)| = 0. (2.6.31)

In [ZFV98], for S → ∞ one uses P (τ, ν, S) = 0. The remaining boundary condi-
tions (ν, S → 0, ν → ∞) are obtained by taking an asymptotic limit in the Heston
PDE (2.6.16b)–(2.6.16d), similarly to the case of European options.

2.7 Log-Transformation and Localization of the Problem

The Black-Scholes (2.4.10) and Heston (2.6.11) operators have variable coefficients
in the stock price direction. For convenience of numerical simulation and for elim-
inating the degeneracy of the PDE when S = 0, a standard way is to perform a
log-transformation of a stock variable by introducing a new variable x := log (S/K).
In addition, a transformation of the time axis t := T − τ allows us to consider a
forward problem instead of a backward one.

Denote w(t, x) := P (T − t,Kex) to be an option’s price in the new variables. The
pay-off function for a call or put option transforms to χ(x) := H(Kex),

χ(x) =
{

(Kex −K)+, call,
(K −Kex)+, put.

(2.7.1)

Define L := Ls, s ∈ {BS,H} to be a spatial operator for the Black-Scholes (s = BS)
or Heston (s = H) models with respect to the log-transformation of the stock-price.
It corresponds to an operator Ls, s = {BS,H} in (2.4.10), (2.6.11), and is defined as
follows:

LBSw = 1
2σ

2∂
2w

∂x2 +
(
r − 1

2σ
2
)
∂w

∂x
− rw, (2.7.2)

LHw = 1
2ν
∂2w

∂x2 + ξνρ
∂2w

∂ν∂x
+ 1

2ξ
2ν
∂2w

∂ν2 + κ(γ − ν)∂w
∂ν

+
(
r − 1

2ν
)
∂w

∂x
− rw.

(2.7.3)
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2.7 Log-Transformation and Localization of the Problem

In a case of a dividend payment, similarly to (2.4.11), the log-transformed Black-
Scholes operator is defined as follows

LBSw = 1
2σ

2∂
2w

∂x2 + (r − 1
2σ

2 − q)∂w
∂x
− rw. (2.7.4)

Above operators are of diffusion-convection-reaction type. In a compact form the
Heston operator (2.7.3) can be re-written as

LHw = ∇ ·A∇w − b · ∇w − rw, (2.7.5a)

with ∇ :=
(
∂
∂ν ,

∂
∂x

)T
, diffusion matrix A and velocity vector b

A := 1
2ν
[
ξ2 ρξ
ρξ 1

]
, b :=

[
−κ(γ − ν) + 1

2ξ
2

−r + 1
2ν + 1

2ξρ

]
. (2.7.5b)

We introduce a spatial domain Ω∞ := (−∞,∞) for the Black-Scholes model and
Ω∞ := (0,∞)× (−∞,∞) for the Heston model.

With the use of these notations, we can reformulate the option pricing problems
for European and American options as follows.

Problem 2.7.1. The price of the European call/put option in the Black-Scholes or
Heston model is a solution of the following problem

∂w

∂t
− Lsw = 0, in (0, T ]× Ω∞, (2.7.6a)

w0(x) = χ(x), in Ω∞, (2.7.6b)

with s ∈ {BS,H} and subject to the corresponding boundary conditions.

Problem 2.7.2. The price of the American put option in the Black-Scholes or Heston
model is a solution of the system of inequalities

∂w

∂t
− Lsw ≥ 0, in (0, T ]× Ω∞, (2.7.7a)

w ≥ χ, in (0, T ]× Ω∞, (2.7.7b)(
∂w

∂t
− Lsw

)
(w − χ) = 0, in (0, T ]× Ω∞, (2.7.7c)

w0(x) = χ(x), in Ω∞, (2.7.7d)

with s ∈ {BS,H} and subject to the corresponding boundary conditions.
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In order to perform a numerical simulation, we localize the problem to a bounded
domain Ω. It is defined as Ω := (xmin, xmax) ⊂ R for the Black-Scholes model and
Ω := (νmin, νmax) × (xmin, xmax) ⊂ R2 for the Heston model, with xmin < 0 < xmax
and 0 < νmin < νmax.

If not stated otherwise, we assume that the Feller condition (2.6.2) is satisfied,
such that the variance process is strictly positive. Taking νmin > 0 allows us to avoid
the degeneracy of the Heston PDE at ν = 0 and preserve the matrix A in (2.7.5b)
to be uniformly positive definite.

Next, we impose boundary conditions on the truncated boundaries of the domain
Ω. The boundary conditions (2.4.13b), (2.4.14b) for European call and put options
in the Black-Scholes model transforms accordingly with respect to the new variable.

The truncated boundary conditions for the European call option in the Heston
model follows from (2.6.13) and are prescribed as in [WAW01]:

Γ1 : ν = νmin w(t, νmin, x) = KexN(d1)−Ke−rtN(d2), (2.7.8a)
Γ2 : ν = νmax w(t, νmax, x) = Kex, (2.7.8b)
Γ3 : x = xmin w(t, ν, xmin) = λw(t, νmax, xmin) + (1− λ)w(t, νmin, xmin),

(2.7.8c)

λ = ν − νmin
νmax − νmin

,

Γ4 : x = xmax
∂w

∂x
(t, ν, xmax) := A∇w · n = 1

2νKe
x. (2.7.8d)

The boundary condition at ν = νmin, νmin > 0 and ν = νmax are derived from the
solution of the Black-Scholes equation (2.4.17), see [WAW01] and Remark (2.6.1).
The cumulative distribution function N(·) is defined in (2.4.16). The quantities d1,2
are defined in (2.4.18) with σ =

√
ν, ν = γ and γ = νmin and γ = νmax respectively.

Alternatively, instead of a Neumann condition on Γ4 := {x = xmax}, one may
impose a Dirichlet boundary condition as a linear interpolation between the values
ν = νmin and ν = νmax,

Γ4 : x = xmax w(t, ν, xmax) = λw(t, νmax, xmax) + (1− λ)w(t, νmin, xmax),

(2.7.9)

λ = ν − νmin
νmax − νmin

.

For European put options in the Heston model, the truncated boundary conditions
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follows from (2.6.17)

∂w

∂ν
(t, νmin, x) = 0, on Γ1, (2.7.10a)

∂w

∂ν
(t, νmax, x) = 0, on Γ2, (2.7.10b)

w(t, ν, xmin) = Ke−rt, on Γ3, (2.7.10c)
w(t, ν, xmax) = 0, on Γ4. (2.7.10d)

For an American put in the Black-Scholes model we set

w(t, x) = χ(x), on Γ3 ∪ Γ4. (2.7.11)

The boundary conditions (2.6.26) for an American put in the Heston model on the
truncated domain are replaced by

w(t, ν, x) = χ(x), on Γ1 ∪ Γ3 ∪ Γ4, (2.7.12)
∂w

∂ν
(t, νmax, x) = 0, on Γ2. (2.7.13)

The alternative set of conditions (2.6.27) transforms into

w(t, ν, x) = χ(x), on Γ3 ∪ Γ4, (2.7.14a)
∂w

∂ν
(t, νmin, x) = 0, on Γ1, (2.7.14b)

∂w

∂ν
(t, νmax, x) = 0, on Γ2. (2.7.14c)
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3 RBM for Parametrized Linear Parabolic
Equations

3.1 Introduction
In this chapter we consider an application of the reduced basis methods to Euro-
pean options or, generally speaking, to parametrized linear parabolic problems. The
methodology was extensively studied in the literature, cf. [BMP+12; GP05; Gre05;
Haa16; HO08b; HRS16; Roz05; VPR+03] and the references therein.

The reduced basis method is a model order reduction technique, which tries to
exploit the parameter-dependence of the problem and is based on an approximation
by low-dimensional spaces. These spaces are constructed by greedy procedures from a
set of snapshots, i.e., solutions computed at different parameter values. For parabolic
problems, an adapted version of the greedy strategy, the POD-Greedy procedure, is
used, [Haa13; HO08b]. The efficiency of the method is then established with a so
called offline-online decomposition of the computation routine.

We refer to some recent contributions of the reduced basis method in the con-
text of option pricing. In [CLP11] a tailored RB approach is used to price options
with diffusion and jump-diffusion models, which later was generalized to basket op-
tions [Pir11] and, in fact, was shown to be a variant of the Proper Orthogonal Decom-
position method (POD) [Pir12]. In [MU14] the reduced basis method in a space-time
framework was applied to price European options in the Heston model with param-
eter functions as initial condition. The reduced basis method for basket options in
the Black-Scholes and Heston model in combination with sparse grids was explored
in [PGB15].

In this chapter we recall the theoretical framework of the RBM for linear parabolic
equations with an adaptation to the pricing of European options. In particular, we
discuss the POD-Greedy procedure for the reduced basis construction as well as a
posteriori error estimates. Several numerical tests at the end of the chapter provide
a verification of the described approach.

The content of this chapter is structured as follows: In Section 3.2 we present the
strong formulation of the model problem to price European options. In Section 3.3
we provide the weak and discrete weak formulations of the problem. In Section 3.4,
we outline the main aspects of the reduced basis methodology for linear parabolic
equations. In particular, we discuss a derivation of a posteriori error bounds (see
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Section 3.4.2) and an algorithm for the construction of reduced basis spaces (see
Section 3.4.3). An offline-online computational procedure, in a general framework as
well as for particular examples of the Black-Scholes and Heston models, is summarized
in Section 3.4.4. Numerical results, given in Section 3.5, illustrate the performance
of the method for pricing European options in the Heston model.

3.2 Model Problem: European Options
Recall the problem formulation to price European options, introduced in Chapter 2.
We present the problem in the context of a general framework, which can cover a
larger class of applications, not necessarily in finance.

Let Ω ⊂ Rd, d = 1, 2, be an open bounded domain with Lipschitz continuous
boundary ∂Ω. Consider a second order linear differential operator

Lw := ∇ · (K∇w)− b · ∇w − c0w, (3.2.1)

where K : Ω→ Rd×d, b : Ω→ Rd, c0 : Ω→ R. We impose the following assumptions
on the coefficients,

(A1) there exist constants 0 < k1 ≤ k2, such that k1|ξ|2 ≤ K(x)ξ · ξ ≤ k2|ξ|2, for all
ξ ∈ Rd, a.e. x ∈ Ω.

(A2) K := (κi,j)di,j=1, b := (bj)dj=1, with κij , bj , c0 ∈ L∞(Ω).

The first condition is often referred as ellipticity of the differential operator ∇·(K∇w)
with ellipticity constant k1.

Define the space-time cylinder QT := (0, T ]×Ω, T > 0 and the space-time surfaces
ΣD := (0, T ] × ΓD, ΣN := (0, T ] × ΓN, where ΓD and ΓN denote the Dirichlet and
Neumann portions of the boundary ∂Ω, ∂Ω := ΓD ∪ ΓN, ΓD ∩ ΓN = ∅, respectively.

We are dealing with the following initial and boundary value problem: Given
w0 : Ω→ R, g : ΣD → R and h : ΣN → R, find w : QT → R, satisfying

∂w

∂t
− Lw = 0, in QT, (3.2.2a)

w(0) = w0, on Ω, (3.2.2b)
w = g, on ΣD, (3.2.2c)

∂w

∂nL
= h, on ΣN, (3.2.2d)

where ∂w
∂nL

is a conormal derivative of w w.r.t. L, ∂w
∂nL

:= K∇w · n. Note that we
consider only a time independent linear operator L.

Such model covers a very large class of problems, e.g., convection-diffusion-reaction
processes with also non-homogeneous right-hand side, where the term −∇ · (K∇w)
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describes the diffusion (with K being a diffusion/conductivity matrix), the term b·∇w
models the transport or convection process (with b being a velocity/convective field)
and c0w represents the reaction term (with a reaction rate c0).

In particular, for the Black-Scholes and Heston models, recall the following settings
from Section 2. The domain Ω is defined in (3.2.3a) and (3.2.3b) respectively.

Ω :={x ∈ R : −∞ ≤ xmin ≤ x ≤ xmax <∞}, (3.2.3a)
Ω :={(ν, x) ∈ R2 : 0 < νmin ≤ ν ≤ νmax <∞, −∞ < xmin ≤ x ≤ xmax <∞}.

(3.2.3b)

The initial value w0 is defined as the value of the pay-off functional w0 = χ(x), χ(x) :=
(K − Kex)+ or χ(x) := (Kex − K)+, for a call or put option respectively, (2.7.1).
The spatial operator L is defined in (2.7.4) and (2.7.5) for the Black-Scholes and
Heston models respectively. The boundary data h and g together with the boundary
portions ΓD, ΓN of ∂Ω are specified in Section 2.7.

3.3 Detailed Problem Formulation
In this section we present a variational formulation of (3.2.2), state a well-posedness
result and discuss the discretization of the weak problem.

3.3.1 Mathematical Preliminaries
To recast the problem (3.2.2) in a weak form, we recall the notion of Bochner spaces,
which are used to study time-dependent PDEs, see, e.g., [LM72a; LM72b; Zei90].

In the context of parabolic problems, a standard way to consider a space-time
function u as a vector-valued function u : [0, T ]→ X, defined on a time interval [0, T ],
0 < T < ∞ with values in some Banach or Hilbert space X. Consider a Gelfand
triple (or an “evolution triple”) of Hilbert spaces X ↪→ H ↪→ X ′, see, e.g., [Zei90,
Section 23.4], with X ′ being the dual space of X. Denote by (·, ·)X the scalar product
on X with the corresponding norm ‖ · ‖X . Define 〈·, ·〉X′×X to be a duality pairing
of X with X ′. For example, a standard choice for linear parabolic PDEs is

H := L2(Ω), H1
0 (Ω) ⊂ X ⊂ H1(Ω).

Denote by L2(0, T ;X) the space of all measurable functions u : [0, T ]→ X, for which

‖u‖L2(0,T ;X) :=
(∫ T

0
‖u‖2Xdt

)1/2

<∞.

We define the Sobolev space W (0, T ;X) as follows:

W (0, T ;X) :=
{
u ∈ L2(0, T ;X) : u′ = du

dt
∈ L2(0, T ;X ′)

}
,
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3 RBM for Parametrized Linear Parabolic Equations

where the time derivative du
dt is understood as a generalized derivative on (0, T ), such

that
〈u′(t), v〉X′×X = d

dt
(u(t), v)H , ∀v ∈ X. (3.3.1)

The space W (0, T ;X) is endowed with the norm

‖u‖W (0,T ;X) := ‖u‖L2(0,T ;X) +
∥∥u′∥∥L2(0,T ;X′) .

An alternative notation is

W (0, T ;X) = L2(0, T ;X) ∩H1(0, T ;X ′). (3.3.2)

3.3.2 Variational Formulation
Introduce the following spaces

X = H1(Ω), V = H1
ΓD(Ω) := {v ∈ X : v|ΓD = 0} . (3.3.3)

If not stated otherwise, we equipped these spaces with the following norms, ‖ · ‖X =
‖ · ‖H1(Ω) and ‖ · ‖V = | · |H1(Ω), where the former is the full H1-norm and the latter is
the corresponding seminorm. We set H := L2(Ω), and assume that w0 ∈ H and the
Dirichlet boundary data g ∈ L2(0, T ;H1/2(ΓD)) ∩ H1/4(0, T ;L2(ΓD)). Introduce a
linear continuous extension operator R, which extends a non-homogeneous Dirichlet
boundary conditions to the interior of the domain,

R : L2(0, T ;H1/2(ΓD)) ∩H1/4(0, T ;L2(ΓD))→W (0, T ;X). (3.3.4)

Such operator can be defined, e.g., as the solution of the heat equation (∂Ω ⊂ C2),
[LM72b, Chapter 4, Section 15.5]. Define the Dirichlet lift function uL ∈W (0, T ;X)
as uL = Rg. For all v ∈ V we now define f(t) via the functional

〈f(t), v〉V ′×V =
∫

ΓN
h(t)vdΓN −

d

dt
(uL(t), v)H − a(uL(t), v). (3.3.5)

Assuming that h ∈ L2(0, T, L2(ΓN)) and provided uL ∈ W (0, T ;X), we have f ∈
L2(0, T ;V ′). Next, we define a bilinear form a : V × V → R, as

a(u, v) =
∫

Ω
(K∇u · ∇v + b · ∇uv + c0uv) dΩ. (3.3.6)

We say that a bilinear form a(·, ·) is (strongly) coercive and continuous, if there exist
0 < αa ≤ γa <∞, such that

|a(u, v)| ≤ γa‖u‖V ‖v‖V ∀u, v ∈ V, (continuity) (3.3.7a)
a(v, v) ≥ αa‖v‖2V ∀v ∈ V. (coercivity) (3.3.7b)
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3.3 Detailed Problem Formulation

We also introduce a weaker condition than a strong coercivity, referred to as the
G̊arding inequality. We say, that the bilinear form satisfies the G̊arding inequality if
there exist αa > 0 and 0 ≤ λa <∞, such that

a(v, v) ≥ αa‖v‖2V − λa‖v‖2L2(Ω) ∀v ∈ V. (G̊arding inequality) (3.3.7c)

Obviously, if the bilinear form is coercive, then it satisfies the G̊arding inequality.
We define u(t) := w(t) − uL(t), t ∈ (0, T ), with u(0) = u0 := w(0) − uL(0). Then

we consider the following weak formulation of (3.2.2) with the homogeneous Dirichlet
boundary conditions: Given u0 ∈ H, f ∈ L2(0, T ;V ′), find u ∈W (0, T ;V ), such that
for a.e. t ∈ (0, T ) it holds

d

dt
(u(t), v)H + a(u(t), v) = 〈f(t), v〉V ′×V , ∀v ∈ V, (3.3.8a)

u(0) = u0. (3.3.8b)

The well-posedness of the problem (3.3.8) is a well-know result; see e.g., [DL00,
Chapter XVIII, §3], [QV94, Theorem 11.1.1, Remark 11.1.1] and is summarized in
the following theorem.

Theorem 3.3.1. Let V,H are given and form a Gelfand triple. Assume a bilinear
form a(·, ·) is continuous and satisfies a G̊arding inequality on V , (3.3.7). Then,
given f ∈ L2(0, T ;V ′) and u0 ∈ H, there exist a unique solution u ∈ W (0, T ;V )
of (3.3.8).

Remark 3.3.1. Note that under the assumptions (A1)–(A2), the bilinear form a(·, ·)
(3.3.6) is always continuous and satisfies a G̊arding inequality, see, e.g., [QV94].
However a coercivity condition does not follow directly and requires additional inves-
tigations of the coefficients. In some cases, e.g., if

c0(x)− 1
2∇ · b(x) ≥ µ0 > 0 in Ω b · n ≥ 0 on ΓN, (3.3.9)

then we can conclude that the bilinear form is coercive on V with ‖ · ‖V = | · |H1, see
e.g., [QV94].

3.3.3 Parametrized Problem

We consider option pricing models which involve a set of different parameters. It
is convenient to reformulate the problem (3.3.8) as a parametrized PDE. Denote by
µ = (µ1, . . . , µp) an input parameter vector, collecting all parameters of the model,
and by P ⊂ Rp, a p-dimensional parameter set. Then for any µ ∈ P we consider
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3 RBM for Parametrized Linear Parabolic Equations

the following parametrized form of the problem (3.3.8): Given f(µ) ∈ L2(0, T ;V ′),
u0(µ) ∈ H, find u(µ) ∈W (0, T ;V ) such that for a.e. t ∈ (0, T ) it holds

d

dt
(u(t; µ), v)H + a(u(t; µ), v; µ) = 〈f(t; µ), v〉V ′×V , ∀v ∈ V, (3.3.10a)

u(0) = u0(µ). (3.3.10b)

For the well-posedness of the parametrized problem, we need to require that the
parameter dependent bilinear form a(·, ·; µ) remains continuous and coercive (or at
least satisfies the G̊arding inequality) for all values of the parameter µ ∈ P, i.e., there
exist positive constants 0 < αa ≤ αa(µ), 0 < γa(µ) ≤ γa <∞, 0 ≤ λa(µ) ≤ λa <∞,
such that

|a(u, v; µ)| ≤ γa(µ)‖u‖V ‖v‖V ∀u, v ∈ V, (3.3.11)
a(v, v; µ) ≥ αa(µ)‖v‖2V − λa(µ)‖v‖2L2(Ω) ∀v ∈ V. (3.3.12)

For all µ ∈ P the coercivity and continuity constants are, respectively, defined as

γa(µ) = sup
u∈V

sup
v∈V

a(u, v; µ)
‖u‖V ‖v‖V

, αa(µ) = inf
u∈V

a(u, u; µ) + λa(µ)‖u‖2L2(Ω)
‖u‖2V

. (3.3.13)

We note that the optimal choice of αa(µ) still depends on an admissible choice of
λa(µ), which should fulfill

λa(µ) > − inf
u∈L2(Ω)

a(u, u; µ)
‖u‖2L2(Ω)

.

Due to the strict inequality, which can not be relaxed, there is still some freedom in
the choice of λa(µ).

To simplify the presentation, in some cases we omit the parameter vector µ in the
notation of the parameter dependent quantities.

Parametrized form of the Black-Scholes and Heston models

Recall that in the case of the Black-Scholes model, µ = (σ, q, r) ∈ P ⊂ R3 with σ > 0,
q, r ≥ 0 (see Section 2.4), and in the Heston model, µ = (ξ, ρ, γ, κ, r) ∈ P ⊂ R5, with
ξ, γ, κ > 0, r ≥ 0, ρ ∈ (−1, 1) (see Section 2.6).

We define the bilinear form a(·, ·; µ) := as(·, ·; µ), s = {BS,H}, for the Black-
Scholes (3.3.14a) and Heston (3.3.14b) models. Note that a(·, ·,µ) is given by (3.3.6),
where K = 1

2σ
2, b = (1

2σ
2 + q− r), and c0 = r for the Black-Scholes and K = A and
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3.3 Detailed Problem Formulation

c0 = r for the Heston models:

aBS(u, v; µ) :=
∫

Ω

(1
2σ

2∇u · ∇v +
(1

2σ
2 + q − r

)
∇uv + ruv

)
dΩ, (3.3.14a)

aH(u, v; µ) :=
∫

Ω
(A∇u · ∇v + b · ∇uv + ruv) dΩ, (3.3.14b)

where

A := 1
2ν
[
ξ2 ρξ
ρξ 1

]
, b :=

[
−κ(γ − ν) + 1

2ξ
2

−r + 1
2ν + 1

2ξρ

]
, (3.3.15)

Note, we have ν ≥ νmin > 0, ρ ∈ (−1, 1) and, hence, A is uniformly positive definite
on Ω.

It follows, from the admissible values of the parameters, that for both models the
assumptions (A1) and (A2) are fulfilled. Hence, the bilinear forms (3.3.14) are con-
tinuous and satisfy the G̊arding inequality, and the existence of a unique solution for
the Black-Scholes and Heston models is guaranteed, see Theorem 3.3.1, Remark 3.3.1.

Moreover, for r > 0, aBS(·, ·) is also coercive, see Remark 3.3.1. However, the same
is not true for aH(·, ·). In fact, if the coefficients of the Heston model are such that
r > 1

2κ and, if (2.7.8d) is applied, also 1
2ξρ− r > 0, then the bilinear form aH(·, ·) is

coercive, Remark 3.3.1, see also [WAW01, Theorem 3.1].

3.3.4 Discretization

We introduce a high-fidelity approximation of (3.3.10). Upon the discrete problem
we will later build our reduced basis approximation. In this context, the discrete
problem is often referred as the “detailed” or “truth” one, and the original model
problem (3.2.2) as the “exact” one.

Let XN ⊂ X and VN ⊂ V be finite-dimensional subspaces of X and V respectively,
endowed with the basis

XN = span{φi, i = 1, . . . ,NX}, VN = XN ∩ V = span{φi, i = 1, . . . ,NV },

of the dimension dim(VN ) = NV = N and dim(XN ) = NX . The dimensions N ,NX
are assumed to be large enough, such that the error between the exact and discrete
solution is negligible. The discrete spaces inherit the inner products and norms of
the exact spaces, i.e., (·, ·)XN = (·, ·)X , ‖ · ‖XN = ‖ · ‖X , and analogously for VN .

For the temporal discretization, we apply a θ-scheme, with θ = 1 for the implicit
Euler, θ = 0 for the explicit Euler and θ = 1/2 for the Crank-Nicolson schemes.
Since, for 1/2 ≤ θ ≤ 1 the scheme is unconditionally stable, see, e.g., [QV94], for
further discussion we restrict ourselves to this choice of the parameter θ.
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3 RBM for Parametrized Linear Parabolic Equations

We divide the interval [0, T ] into I subintervals of equal length ∆t := T/I and
tk := k∆t, 0 < k ≤ I. For notational convenience, we introduce the following sets of
indices

I ≡ {0, . . . , I − 1}, I0 ≡ I ∪ {I} (3.3.16)
The exact solution u(t; µ) is then approximated by uk+1

N (µ) := uN (tk+1; µ) ∈ VN ,

uk+1
N (µ) =

N∑
j=1

uk+1
N ,j (µ)φj , uk+1

N ,j (µ) ∈ R, k ∈ I.

Denote by gkN (µ) the nodal interpolation of the Dirichlet data gk(µ), µ ∈ P, k ∈ I0,
i.e., gkN (µ) = IN (gk(µ)), where IN is the nodal interpolation operator. Denote by
XD
N ⊂ XN the space of basis functions associated with the nodes on the Dirichlet

boundary ΓD. Then we introduce a discrete linear continuous extension operator
RN : XD

N → XN , and a discrete lift function ukLN (µ) = RN (gkN (µ)) ∈ XN . Further-
more, for all µ ∈ P, k ∈ I, we define the linear functional

fk+θ(v; µ) =
∫

ΓN

(
θhk+1(µ) + (1− θ)hk(µ)

)
vdΓN

− 1
∆t

(
uk+1
LN (µ)− ukLN (µ), v

)
L2(Ω)

− a
(
θuk+1

LN (µ) + (1− θ)ukLN (µ), v; µ
)
. (3.3.17)

Problem 3.3.1 (Detailed problem). Given µ ∈ P, θ ∈ [1/2, 1], find uk+1
N (µ) ∈ VN ,

k ∈ I, such that for all v ∈ VN holds
1

∆t
(
uk+1
N (µ)− ukN (µ), v

)
L2(Ω)

+ a
(
θuk+1
N (µ) + (1− θ)ukN (µ), v; µ

)
= fk+θ(v; µ),

(3.3.18a)(
u0
N (µ)− u0(µ), v

)
V

= 0, ∀v ∈ VN . (3.3.18b)

Note that it is also possible to replace the Galerkin projection of the initial condi-
tion (3.3.18b) by an interpolation, for instance u0

N (µ) = INu0(µ). This introduces
an additional interpolation error in the detailed solution, but does not affect the
following arguments.

Due to conformity of the spaces VN ⊂ V , the bilinear form remains continuous
and coercive (or satisfies the G̊arding inequality) on VN , with discrete constants,

γNa (µ) = sup
u∈VN

sup
v∈VN

a(u, v; µ)
‖u‖V ‖v‖V

, αNa (µ) = inf
u∈VN

a(u, u; µ) + λNa (µ)‖u‖2L2(Ω)
‖u‖2V

.

(3.3.19)

Note that for all µ ∈ P, αNa (µ) ≥ αa(µ) > 0 and γNa (µ) ≤ γa(µ) < ∞. Then for a
small enough time step ∆t < 1/(θλNa (µ)), by a generalized Lax-Milgram argument,
the detailed problem (3.3.18) admits a unique solution, [AP05b; QV94].
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3.4 Reduced Basis Approximation

3.4 Reduced Basis Approximation
In this section we outline the RBM methodology for linear parabolic PDEs. In par-
ticular, we consider the application to European option pricing, as introduced before.
We discuss the main properties of the reduced system, construction of the reduced
bases, a posteriori error estimates, and offline-online computational procedures.

3.4.1 Formulation

Consider a finite set of parameters PN = {µ1, . . . ,µN} ⊂ P, with µi 6= µj , ∀i 6= j,
N ∈ N. For selected parameters we compute high-fidelity solutions, by solving the
detailed problem (3.3.18), and form a set of snapshots SuN = {ukN (µ1), . . . , ukN (µS)},
k ∈ I0, S ∈ N. The reduced basis ΨN = {ψ1, . . . , ψN} ⊂ SuN is composed of linearly
independent functions, which are suitably constructed from the set SN . Different
algorithms can be used for the construction of the basis. The standard approach for
linear parabolic problems is a POD-Greedy algorithm, presented in Section 3.4.3.

We approximate the high-dimensional space VN by a low-dimensional reduced basis
space VN , dim(VN ) := N � N := dim(VN ), which is defined as

VN := span{ψ1, . . . , ψN} ⊂ VN . (3.4.1)

The computation of a reduced solution is obtained as a Galerkin projection on VN ,
i.e., for all µ ∈ P and k ∈ I

uk+1
N (µ) :=

N∑
j=1

uk+1
N,j (µ)ψj , (3.4.2)

with a reduced basis coefficient vector uk+1
N :=

(
uk+1
N,j (µ)

)N
j=1
∈ RN . Then the

reduced problem reads as follows.

Problem 3.4.1 (Reduced problem). Given µ ∈ P, θ ∈ [1/2, 1], find uk+1
N (µ) ∈ VN ,

k ∈ I, such that for all vN ∈ VN it holds

1
∆t

(
uk+1
N (µ)− ukN (µ), vN

)
L2(Ω)

+ a
(
θuk+1

N (µ) + (1− θ)ukN (µ), vN ; µ
)

= fk+θ(vN ; µ). (3.4.3a)

The initial value is chosen as the orthogonal projection of u0
N (µ) on VN , i.e., for all

vN ∈ VN (
u0
N − u0

N , vN
)
V

= 0. (3.4.3b)
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3 RBM for Parametrized Linear Parabolic Equations

By the construction procedure, VN ⊂ VN , and under the continuity and coercivity
(or G̊arding inequality) assumptions on the bilinear form a(·, ·; µ), for all µ ∈ P,
the well-posedness of the reduced problem (3.4.3) is inherited from that of the high-
fidelity one (3.3.18).

The next property is the reproduction of the solutions, which is a consistency
property of the reduced basis scheme.

Proposition 3.4.1 (Reproduction of the solutions). If for some µ ∈ P and all k ∈ I
uk+1
N (µ) ∈ VN with u0

N (µ) ∈ VN , then ukN (µ) = ukN (µ) for all k ∈ I0.

Proof. We prove this property by induction. For k = 0, u0
N ∈ VN and for u0

N ∈ VN
we have by (3.4.3b), that

(
u0
N − u0

N , vN
)
V = 0 for all vN ∈ VN . Set vN = u0

N − u0
N ,

then (
u0
N − u0

N , u
0
N − u0

N

)
V

= 0,

which holds only for u0
N = u0

N . For the next induction step, we assume that ukN = ukN .
We chose vN = vN ∈ VN ⊂ VN and obtain

1
∆t(u

k+1
N (µ)− ukN (µ), vN )L2(Ω) + a(θuk+1

N (µ) + (1− θ)ukN (µ), vN ; µ) = fk+θ(vN ; µ),

which implies that uk+1
N ∈ VN solves the reduced problem (3.4.3). Due to the unique-

ness of the solution, we obtain ukN = ukN , ∀k ∈ I.

3.4.2 A Posteriori Error Estimates

We now turn to the a posteriori error estimation for the reduced basis approximation.
Define for all µ ∈ P and k ∈ I0 the following error quantities

eku(µ) := ukN (µ)− ukN (µ), (3.4.4a)

euN (µ) :=
(
eku(µ)

)
k∈I0

. (3.4.4b)

For all µ ∈ P, θ ∈ [1/2, 1], k ∈ I and v ∈ VN , define the residual associated with the
reduced basis approximation

rk+θ(v; µ) := 1
∆t(u

k+1
N (µ)−ukN (µ), v)L2(Ω) +a(θuk+1

N + (1− θ)ukN , v; µ)−fk+θ(v; µ),
(3.4.5)

with the norm

‖rk+θ(µ)‖V ′ := sup
v∈VN

|rk+θ(v; µ)|
‖v‖V

. (3.4.6)
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From the Riesz representation theorem there exist r̂k(µ) ∈ VN , such that for all
µ ∈ P and k ∈ I

(r̂k+θ(µ), v)V = rk+θ(v; µ), ∀v ∈ VN , (3.4.7)
‖r̂k+θ(µ)‖V = ‖rk+θ(µ)‖V ′ . (3.4.8)

Let a(·, ·; µ) be a (strongly) coercive bilinear form and for v = (vk+1)k∈I and
θ = [1/2, 1] we define the following discrete spatio-temporal norm

|||v|||µ :=
(
‖vI‖2L2(Ω) + αNa (µ)∆t

I−1∑
k=0
‖vk+θ‖2V

)1/2

, (3.4.9)

where
vk+θ = θvk+1 + (1− θ)vk.

Recall Young’s inequality, i.e., for ε, a, b ∈ R, the following holds

ab ≤ a2

2ε2 + ε2b2

2 . (3.4.10)

The following classical relation will be useful for the derivation of the error bounds,

(a− b, a)L2(Ω) = 1
2‖a‖

2
L2(Ω) −

1
2‖b‖

2
L2(Ω) + 1

2‖a− b‖
2
L2(Ω), ∀a, b ∈ L2(Ω). (3.4.11)

Then we obtain the following result for the error bound, introduced first in [GP05]
and generalized in [HO08b].

Theorem 3.4.2 (A posteriori error estimates). For all µ ∈ P, k ∈ I, θ ∈ [1/2, 1],
we have the following error bound for the primal error

|||euN (µ)|||µ ≤ ∆u
N (µ) :=

(
‖e0
u(µ)‖2L2(Ω) + ∆t

αNa (µ)

I−1∑
k=0
‖rk+θ(µ)‖2V ′

)1/2

. (3.4.12)

Proof. The proof is a modification of [Gre05, Proposition 11, Section 4.8] for θ = 1
and [Gre05, Proposition 19, Appendix B] for θ = 1/2.

Using the Problem 3.3.1, (3.4.5), we obtain(
ek+1
u − eku, v

)
L2(Ω)

+ ∆t a(ek+θ
u , v) = ∆t rk+θ(v), ∀v ∈ VN , (3.4.13)

where ek+θ
u := θek+1

u + (1− θ)eku. Then choosing the test function v = ek+θ
u and using

the coercivity assumption of a(·, ·), we obtain(
ek+1
u − eku, ek+θ

u

)
L2(Ω)

+ αNa ∆t‖ek+θ
u ‖2V ≤ ∆t rk+θ(ek+θ

u ). (3.4.14)
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Using (3.4.11), the first term on the left-hand side can be estimated as

(
ek+1
u − eku, ek+θ

u

)
L2(Ω)

= θ

2
(
‖ek+1
u ‖2L2(Ω) − ‖e

k
u‖2L2(Ω) + ‖ek+1

u − eku‖2L2(Ω)

)
+ (θ − 1)

2
(
‖eku‖2L2(Ω) − ‖e

k+1
u ‖2L2(Ω) + ‖eku − ek+1

u ‖2L2(Ω)

)
= 1

2‖e
k+1
u ‖2L2(Ω) −

1
2‖e

k
u‖2L2(Ω) + (2θ − 1)

2 ‖ek+1
u − eku‖2L2(Ω).

Then (3.4.14) can be written as

1
2‖e

k+1
u ‖2L2(Ω) −

1
2‖e

k
u‖2L2(Ω) + αNa ∆t ‖ek+θ

u ‖2V

= ∆t rk+θ(ek+1
u ) + (1− 2θ)

2 ‖ek+1
u − eku‖2L2(Ω). (3.4.15)

Taking into account that (1 − 2θ) ≤ 0, for θ ∈ [1/2, 1], and applying Young’s
inequality, with ε2 = αNa (µ), the right-hand side of (3.4.15) can be bounded as

∆t rk+θ(ek+θ
u ) + (1− 2θ)

2 ‖ek+1
u − eku‖2L2(Ω) ≤ ∆t‖rk+θ‖V ′ ‖ek+θ

u ‖V

≤ ∆t
2αNa

‖rk+θ‖2V ′ +
∆t αNa

2 ‖ek+θ
u ‖2V .

Combining the last estimate with (3.4.15), we obtain

1
2‖e

k+1
u ‖2L2(Ω) + αNa

2 ∆t‖ek+θ
u ‖2V ≤

∆t
2αNa

‖rk+θ‖2V ′ +
1
2‖e

k
u‖2L2(Ω).

Making a summation from k = 0, . . . , I − 1, and multiplying by 2, we obtain a
telescopic sum, which leads to

‖eIu‖2L2(Ω) + αNa ∆t
I−1∑
k=0
‖ek+θ
u ‖2V ≤

∆t
αNa

I−1∑
k=0
‖rk+θ‖2V ′ + ‖e0

u‖2L2(Ω).

Taking the square root on both sides of the last inequality, we obtain the necessary
result.

For all µ ∈ P, denote αLB
a (µ) a lower bound of the discrete coercivity constant

αNa (µ). If for all µ ∈ P this bound is computable, with the computational cost
independent of N , then we can substitute αNa (µ) with αLB

a (µ) in ∆u
N and obtain an

efficient computation of an a posteriori error bound in an offline-online fashion, with
the online cost independent of N .

42



3.4 Reduced Basis Approximation

In the case, when the bilinear form a(·, ·; µ) is not coercive, but satisfies the G̊arding
inequality and ∆t is sufficiently small, i.e., ∆t < 1/(2λNa (µ)), we can obtain a similar
result. In particular, for the special case of an implicit Euler scheme, θ = 1, the error
bound is given as follows

|||euN (µ)|||µ ≤ ∆u
N (µ),

∆u
N (µ) :=

(
‖e0
u(µ)‖2L2(Ω) + ∆t

αNa (µ)

I−1∑
k=0

(
1− 2λNa (µ)∆t

)k
‖rk+1(µ)‖2V ′

)1/2

,

(3.4.16)
where rk+1 is defined as in (3.4.5) with θ = 1, and the discrete spatio-temporal norm
is defined as

|||v|||2µ :=
(
1− 2λNa (µ)∆t

)I
‖vI‖2L2(Ω) + αNa (µ)∆t

I−1∑
k=0

(
1− 2λNa (µ)∆t

)k
‖vk+1‖2V .

(3.4.17)
The derivation of this result is equivalent to the one, presented for the variational
inequalities in Chapter 4, and hence, for compactness of the presentation we omit it
here. Note, when the bilinear form a(·, ·; µ) is coercive for all µ ∈ P, then λNa (µ) = 0,
and we recover the case (3.4.12).

3.4.3 Reduced Basis Construction

The reduced basis generation procedure remains one of the main components of the
construction of the reduced basis approximation spaces, which influences the approx-
imation quality and efficiency of the method. In the context of the parametrized
PDEs, the most common are the POD (Proper Orthogonal Decomposition) method
and the greedy strategies.

The POD method is used to reduce the dimensionality of the given data set (e.g.,
set of snapshots) by decomposing it onto a set of orthonormal basis vectors, called
POD modes, retaining the essential information of the data. Different notions of the
method can be found, e.g., Principal Component Analysis (PCA), Karhunen-Loève
expansion or Hotelling transformation.

The greedy procedure is an iterative method which, at each iteration step, selects
the worst resolved parameter and constructs the corresponding new basis vector. The
selection procedure is based on a suitable error criterion, which can be either a true
projection error (a strong greedy algorithm) or an a posteriori error bound (a weak
greedy algorithm). The computation of the true error involves the evaluation of the
expensive high-fidelity solutions and results in a high computational cost. Hence,
the availability of efficiently computable a-posteriori error bounds becomes crucial
for preserving the efficiency of the method.
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3 RBM for Parametrized Linear Parabolic Equations

Both greedy and POD algorithms have some distinctive properties. While the POD
method is optimal in a least square sense, i.e., it minimizes the L2-projection error,
the greedy approach minimizes a maximal projection error. In terms of efficiency,
a weak greedy method is much less computationally costly than a POD method,
however it always requires a computable error bound.

In the context of parabolic PDEs, the application of only greedy or POD proce-
dures may not be sufficient for an efficient basis construction procedure. Due to the
inclusion of a time dimension, the POD method requires the computation of a large
snapshot matrix for all time steps, which can result in a high computational cost. By
contrast, a greedy loop for both parameter and time, e.g., [GP05; Gre05], may not
capture all important information associated with a time trajectory. The common
procedure is to use a combined strategy: a greedy search in a parameter space and a
POD method in the temporal direction. This results in a combined algorithm, called
POD-Greedy [Haa13; HO08b]. Additionally, under certain conditions the algorithm
admits an exponential convergence rate, see [Haa13].

POD-Greedy Algorithm

Given a set of snapshots v1, . . . , vn ∈ VN , the POD basis of rank l > 0 is the set of
orthonormal basis functions φ1, . . . , φl which solve the minimization problem

PODl({vi}ni=1) := arg min
φ1,...,φl

n∑
i=1

ωi‖vi −
l∑

j=1
(vi, φj)V φj‖2V , (3.4.18)

subject to (φi, φj)V = δi,j , i, j = 1, . . . , l,

where ωi are some positive weights, e.g., ωi = 1.
The POD-Greedy procedure is presented in Algorithm 3.1 and can be described as

follows: Find the worst resolved parameter using a greedy loop with some error mea-
sure EN (µ) (Step 3), compute the corresponding snapshot trajectory {ukN (µ), k ∈
I0} (Step 6), project the whole trajectory onto the current reduced basis space, and,
using POD with respect to time, compress the projection error into the first m POD
modes (Step 7). We restrict our attention to a single POD mode, i.e., m = 1.

In the algorithm, ΠVN
denotes the orthogonal projection on VN with respect to

the inner product (·, ·)V . The selection of the parameter in Step 3 requires an error
measure EN (µ), which can be chosen as, e.g., the projection error (3.4.19a), the L2-
error (3.4.19b), the space-time error (3.4.19c), or the error bound (3.4.19d). Note
that for the case of EN (µ) = Eproj

u (µ), Algorithm 3.1 does not involve any reduced
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3.4 Reduced Basis Approximation

Algorithm 3.1 POD-Greedy Algorithm
Input: Maximum number of iterations Nmax > 0, training sample set Ptrain ⊂ P,

target tolerance εtol
Output: RB basis ΨN , RB space VN

1: compute initial basis Ψ0, V0 = span{Ψ0}
2: for N = 1, . . . , Nmax do
3: [εtrain

N ,µN ] = arg maxµ∈Ptrain EN−1(µ)
4: if εtrain

N < εtol then return
5: end if
6: compute {ukN (µN )}k∈I0
7: ψN = POD1

({
ukN (µN )−ΠVN−1

(
ukN (µN )

)}
k∈I0

)
8: ΨN = ΨN−1 ∪ {ψN}, VN = span{ΨN}
9: end for

basis simulation procedure.

Eproj
u (µ) :=

(
∆t

I∑
k=0
‖ukN (µ)−ΠVN

(ukN (µ))‖2V

)1/2

, (3.4.19a)

Etrue
u (µ) :=

(
∆t

I∑
k=0
‖eku(µ)‖2V

)1/2

=
(

∆t
I∑

k=0
‖ukN (µ)− ukN (µ)‖2V

)1/2

, (3.4.19b)

Eµ
u (µ) := |||euN (µ)|||µ = |||(ukN (µ)− ukN (µ))k∈I0 |||µ, (3.4.19c)

Eapost
u (µ) := ∆u

N (µ), (3.4.19d)

where ∆u
N (µ) is defined in (3.4.12) or in (3.4.16).

Remark 3.4.1. Different choices of an initial basis Ψ0 can be used. One may con-
sider, e.g., Ψ0 as an orthonormalization of a detailed solution uk

′
N (µ′) for arbitrary

chosen µ′ ∈ Ptrain and k′ ∈ I0. Alternatively, taking the orthonormalization of the
set of all different initial data u0

N (µ) for varying µ ∈ Ptrain can give already a good
initial reduced basis, [HO08b].

The POD-Greedy algorithm produces also an error sequence

εtrain
N := max

µ∈Ptrain
EN (µ), N = 1, . . . , Nmax,

often referred as the “training” error. In general, this error may not be a reliable
quality measure of the reduced basis approximation, due to the possible over fitting
effect, i.e., when maxµ∈P EN (µ) � εtrain

N . Such situations can happen, e.g., when
the training set Ptrain is not sufficiently large. To exclude these possibilities, one
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3 RBM for Parametrized Linear Parabolic Equations

may evaluate the error εtest
N := maxP∈Ptest EN (µ) on an independent finite test set

Ptest ⊂ P (e.g., set of randomly distributed parameter values) with |Ptest| � |Ptrain|.
We point out that he basis generation procedure is a computationally expensive

routine and belongs to the offline computational phase, which we describe in the next
section.

3.4.4 Offline-Online Computational Procedure
The efficiency of the reduced basis method relies on the assumption of affine pa-
rameter dependence of bilinear and linear forms. If the assumption is fulfilled, the
computational procedure can be split into so-called offline and online routines. This
decomposition brings a significant computational speed-up for solving the reduced
system and allows to perform simulations in a real-time and multi-query context.

An affine parameter dependence (or parameter-separability) of bilinear and linear
forms implies that for every µ ∈ P there exist functions Θa

q : P → R, for q = 1, . . . , Qa
and Θf,k

q : P → R, for q = 1, . . . , Qf , k ∈ I, such that

a(u, v; µ) =
Qa∑
q=1

Θa
q(µ)aq(u, v), fk(v; µ) =

Qf∑
q=1

Θf,k
q (µ)fkq (v), (3.4.20)

where the bilinear and linear forms aq : V ×V → R, fkq : V → R, k ∈ I are parameter
independent. In addition, we assume a parameter separability of the initial condition,

u0(µ) =
Qu∑
q=1

Θu
q (µ)u0q, (3.4.21)

with Θu
q : P → R, q = 1, . . . , Qu. Obviously, for all µ ∈ P the discrete initial

condition u0
N (µ) will enjoy the same property (3.4.21) with parameter independent

components u0
N ,q.

For the functional fk+θ(v; µ), defined in (3.3.17), the affine parameter dependence
is inherited from the affine separability of hk(µ) and ukLN (µ), µ ∈ P, k ∈ I0. Assume,
that there exist Θn,k

q ,Θm,k
q : P → R, such that both functions can be represented as

hk(µ) =
Qn∑
q=1

Θn,k
q (µ)hkq , ukLN (µ) =

Qm∑
q=1

Θm,k
q (µ)`kq . (3.4.22)

Remark 3.4.2. In fact, an affine decomposition of the lift function ukLN (µ) de-
pends on affine decomposition of the Dirichlet data gkN (µ), k ∈ I0. Indeed, assuming
that gkN admits an affine decomposition, gkN (µ) = ∑Qg

q=1 Θg,k
q (µ)gkN ,q, and incorpo-

rating linearity of an extension operator RN , we obtain that ukLN (µ) = RN g
k
N (µ) =∑Qg

q=1 Θg,k
g (µ)RN gkN ,q, where `kq := RN (gkN ,q).
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3.4 Reduced Basis Approximation

Define the following quantities

nkq (v) : = (hkq , v)L2(ΓN), q = 1, . . . , Qn, (3.4.23a)
mk
q (v) : = (`kq , v)L2(Ω), q = 1, . . . , Qm, (3.4.23b)

skq,q′(v) : = aq′(`kq , v)L2(Ω), q = 1, . . . , Qn, q′ = 1, . . . , Qa. (3.4.23c)

Then the functional fk+θ(v; µ), k ∈ I, in (3.3.17), admits the following affine repre-
sentation

fk+θ(v; µ) =
Qn∑
q=1

{
θΘn,k+1

q (µ)nk+1
q (v) + (1− θ)Θn,k

q (µ)nkq (v)
}

− 1
∆t

Qm∑
q=1

{
Θm,k+1
q (µ)mk+1

q (v)−Θm,k
q (µ)mk

q (v)
}

−
Qa∑
q′=1

Θa
q′(µ)

Qm∑
q=1

{
θΘm,k+1

q (µ)sk+1
q,q′ (v) + (1− θ)Θm,k

q (µ)skq,q′(v)
}
. (3.4.24)

Recall, that for every µ ∈ P, k ∈ I, the reduced solution can be expanded as
uk+1
N (µ) := ∑N

j=1 u
k+1
N,j (µ)ψj ∈ VN , with VN = span{ΨN}, where ΨN = {ψ1, . . . , ψN}

is an orthonormal basis, constructed by, e.g., Algorithm 3.1. Denote the reduced
basis coefficient vector by ukN := (ukN,1, . . . , ukN,N )T ∈ RN . Choosing a test function
vN = ψi, 1 ≤ i ≤ N , in (3.4.3), and invoking the parameter-separability of the
bilinear and linear forms, the reduced Problem 3.4.1 can be written in the following
algebraic form( 1

∆tMN + θAN (µ)
)

uk+1
N (µ) =

( 1
∆tMN + (θ − 1)AN (µ)

)
ukN (µ) + fk+θ

N (µ),

(3.4.25)

with the initial condition MV
Nu0

N (µ) = U0
N (µ), where the reduced quantities AN ∈

RN×N , MN ∈ RN×N , MV
N ∈ RN×N , U0

N ∈ RN are the defined as follows

AN (µ) :=
Qa∑
q=1

Θa
q(µ)AN,q, MN :=

(
(ψj , ψi)L2(Ω)

)N
i,j=1

, (3.4.26)

U0
N (µ) :=

Qu∑
q=1

Θu
q (µ)u0

N,q, MV
N := ((ψj , ψi)V )Ni,j=1 , (3.4.27)

with

AN,q := (aq(ψj , ψi))Ni,j=1 ∈ RN×N , u0
N,q :=

(
(u0
N ,q, ψi)V

)N
i=1
∈ RN . (3.4.28a)
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3 RBM for Parametrized Linear Parabolic Equations

The reduced vector fk+θ
N (µ) :=

(
fk+θ(ψi; µ)

)N
i=1
∈ RN , according to (3.4.24), in-

volves the computation of the following reduced quantities

nkN,q : =
(
nkq (ψi)

)N
i=1

, q = 1, . . . , Qn, (3.4.28b)

mk
N,q : =

(
mk
q (ψi)

)N
i=1

, q = 1, . . . , Qm, (3.4.28c)

skN,q,q′ : =
(
skq,q′(ψi)

)N
i=1

, q = 1, . . . , Qm, q′ = 1, . . . , Qa. (3.4.28d)

Due to the inclusion VN ⊂ VN , the reduced basis functions {ψj}Nj=1 ⊂ VN can
be expanded in a detailed basis {φi}Ni=1 ⊂ VN of the high-fidelity problem, i.e.,
ψj = ∑N

i=1 ψi,jφi. Define the coefficient matrix

ΨN := (ψi,j)N ,Ni,j=1 ∈ RN×N , (3.4.29)

and introduce the following high-fidelity matrices and vectors

M : =
(
(φj , φi)L2(Ω)

)N
i,j=1

, Aq := (aq(φj , φi))Ni,j=1 , MV := ((φj , φi)V )Ni,j=1

M̃ : =
(
(φj , φi)L2(Ω)

)N ,NX

i,j=1
, Ãq := (aq(φj , φi))N ,NX

i,j=1 ,

nkq : =
(
nkq (φi)

)N
i=1

, mk
q :=

(
mk
q (φi)

)N
i=1

, skq,q′ :=
(
skq,q′(φi)

)N
i=1

.

Denote the coefficient vector of the parameter independent lift functions `kq , (3.4.22),
uL

k
q := (`kq,1, . . . , `kq,NX

)T ∈ RNX . Then we can express mk
q , skq,q′ as mk

q = M̃uL
k
q and

skq,q′ = Ãq′uL
k
q .

The reduced matrices and vectors can be expressed via high-fidelity ones as follows

MN = ΨT
NMΨN , AN,q = ΨT

NAqΨN , MV
N = ΨT

NMV ΨN , (3.4.30a)
nkN,q = ΨT

Nnkq , mk
N,q = ΨT

NM̃uL
k
q , skN,q,q′ = ΨT

NÃq′uL
k
q , (3.4.30b)

and u0
N,q = ΨT

NMV u0
q , where u0

q denotes the coefficient vector of u0
N ,q.

The offline-online procedure is set up as follows: In the offline stage, we compute
snapshots SuN = {ukN (µ1), . . . , ukN (µN )}, k ∈ I0, and construct a reduced basis ΨN =
{ψ1, . . . , ψN} ⊂ SuN , as well as compute all parameter independent quantities (3.4.30).
Then for every new instance parameter µ ∈ P, we perform an online routine. Namely,
we assemble all precomputed quantities into the reduced ones, e.g., AN (µ), fk+θ

N (µ),
and solve the reduced problem (3.4.25).

An offline routine involves a calculation of computationally expensive matrices and
vectors corresponding to a high-fidelity problem of dimension NX . However, it needs
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3.4 Reduced Basis Approximation

to be performed only once. By contrast, an online stage is executed multiple times
for different values of the parameter µ ∈ P, yet with the cheaper computational cost,
which is independent of NX .

We remark, that an offline-online procedure applies also to the calculation of the
error estimates, which are used either for the construction of the reduced basis spaces
offline or for the certification of the method in an online routine. For both situations
an efficient evaluations of the error bounds is significant. We provide the description
of this procedure in the next chapter in the context of variational inequalities and
omit it here for to avoid redundancy.

We comment on the computational complexity of both routines. Computation of
N snapshots in the offline stage requires O(NI(NX)p) operations, where I is the
number of time-steps and p is some number, determined by the solver used for the
detailed problem (p ≤ 3). The cost of construction of all parameter independent
matrices and vectors is O((Qa + 1)N2N + QnNN + QmN(NX) + QmQaN(NX)).
As we can see, the total offline cost is dominated by the snapshots computation cost
O(NI(NX)p). In the online routine, given µ ∈ P, we assign all parameter dependent
matrices and vectors with the cost O((Qa+1)N2 + IN(Qn+Qm+QaQn)) and solve
a dense reduced system with complexity O(IN3). We can see, that the total cost
of the online computational procedure, which involves the dimension of the reduced
system N and a number of time steps I, is independent of the detailed dimension
NX � N .

Empirical Interpolation Method

Computational efficiency of the reduced basis method strongly depends on the affine
parameter dependence of the problem. For non-affine problems, the efficiency of the
method may be highly deteriorated. To recover a parameter separability in this case,
one may employ a so-called empirical interpolation method (EIM), first introduced
in [BMN+04] and later extended for non-affine and nonlinear parabolic problems,
e.g., [DHO12; GMN+07; Gre05]. A similar approach, called discrete empirical in-
terpolation method (DEIM), which is based on the POD method, was introduced
in [CS09; CS10].

In this section we outline the main idea of the EIM method and refer to [MNP+09]
for more details and a theoretical study. Assume that the function g : Ω × P → R,
g(µ) ∈ C0(Ω), µ ∈ P does not admit an affine decomposition with respect to the
parameter µ. The idea of EIM relies on an assumption of sufficient regularity of the
parameter induced manifold Mg,

Mg := {g(µ) : µ ∈ P}.

which makes it then possible to approximate g(z; µ), µ ∈ P, z ∈ Ω by a linear combi-
nation of snapshots g(·,µ1), . . . , g(·,µM ) at well-chosen parameters µ1, . . . ,µM ∈ P.
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3 RBM for Parametrized Linear Parabolic Equations

Define the approximation space XM as

XM := span{g(·; µ1), . . . , g(·; µM )} = span{q1, . . . , qM}.

Then for all µ ∈ P and z ∈ Ω we look for an approximation gM (z; µ) ∈ XM of
g(z; µ), which is defined as

gM (z; µ) = IMg(z; µ) =
M∑
j=1

cj(µ)qj(z), z ∈ Ω. (3.4.31)

The approximation is performed via an interpolation operator IM , which is ex-
act in M interpolation points ζ1, . . . , ζM ∈ Ω (often referred to as “magic points”
[MNP+09]), i.e.,

IMg(ζi; µ) = g(ζi; µ), i = 1, . . . ,M. (3.4.32)

Let TM = {ζ1, . . . , ζM} be a set of interpolation points. Then for µ ∈ P, to find an
interpolant IMg(z; µ) we have to determine the coefficients cj(µ) ∈ R by solving the
following linear system

M∑
j=1

cj(µ)qj(ζi) = g(ζi; µ), i = 1, . . . ,M. (3.4.33)

The last system (3.4.33) can be written in a matrix form

QMcM (µ) = gM (µ), ∀µ ∈ P, (3.4.34)

where QM := (qj(ζi))Mi,j=1 ∈ RM×M , cM (µ) := (cj(µ))Mj=1 ∈ RM and gM (µ) :=
(g(ζi; µ))Mi=1 ∈ RM .

In order to solve the system (3.4.33), one should construct the basis functions
qj(z) ∈ XM and determine the set of interpolation points TM . In the standard EIM,
the construction of both ingredients is based on a greedy strategy. The summary of
the procedure is presented in Algorithm 3.2. In this case the matrix QM is lower
triangular with (QM )ij = 1 for i = j, and hence invertible, [BMN+04; GMN+07].
For every instance µ ∈ P, the system (3.4.34) is solved in an online computational
routine with the cost O(M2), generally with M being relatively small.

We comment on an approach, that is similar to EIM, which is referred to as DEIM
[CS09; CS10] (discrete empirical interpolation method). To avoid a confusion, DEIM
is not the discrete version of Algorithm 3.2 and has some differences compared to
EIM. In particular, the construction of the basis vectors is performed not via a greedy
iterative procedure, but using a POD method. The selection of the interpolation
points follows the same greedy routine as in Algorithm 3.2. In this case the interpo-
lation matrix QM is full and the cost of solving a system (3.4.34) in general scales
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Algorithm 3.2 EIM Algorithm
Input: maximum number of interpolation points Mmax > 0, training sample set
Ptrain ⊂ P, target tolerance εtol

Output: set of basis functions XM = {q1, . . . , qM}, and interpolation points TM =
{ζ1, . . . , ζM}

1: set µ1 = arg maxµ∈Ptrain ‖g(·; µ)‖L∞(Ω)
2: define ζ1 = arg maxz∈Ω |g(z; µ1)|
3: set q1 = g(z; µ1)/g(ζ1; µ1)
4: for m = 2, . . . ,Mmax do
5: [εm,µm] = arg maxµ∈Ptrain ‖g(·; µ)− Im−1g(·; µ)‖L∞(Ω)
6: if εm < εtol then return
7: end if
8: compute δ(z) = g(z; µm)− Im−1g(z; µm)
9: ζm = arg maxz∈Ω |δ(z)|

10: qm(z) = δ(z)/δ(ζm)
11: end for

to O(M3). However, due to the parameter independence of QM during the online
routine, the matrix QM can be factorized in the offline phase with the cost O(M3)
(by using, e.g., LU-decomposition), and then all subsequent online computations can
be performed with the O(M2) computation cost.

Offline-Online Decomposition for the Black-Scholes and Heston Models

In this subsection we comment on affine parameter dependence of the Black-Scholes
and Heston models. The bilinear form in the Black-Scholes model, a(·, ·; µ) =
aBS(·, ·; µ), defined in (3.3.14a), admits the affine decomposition

aBS(u, v; µ) =
3∑
q=1

Θa
q(µ)aBS

q (u, v),

with

Θa
1 = σ2

2 , aBS
1 (u, v) = (∇u,∇v)L2(Ω) , (3.4.35a)

Θa
2 = 1

2σ
2 + q − r, aBS

2 (u, v) = (∇u, v)L2(Ω) , (3.4.35b)

Θa
3 = r, aBS

3 (u, v) = (u, v)L2(Ω) . (3.4.35c)

For the Heston model a(·, ·; µ) = aH(·, ·; µ), defined in (3.3.14b), can be written as

aH(u, v; µ) =
6∑
q=1

Θa
q(µ)aH

q (u, v),
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with parameter functions

Θa
1 = 1

2ξ
2, Θa

2 = 1
2ξρ, Θa

3 = 1
2 , (3.4.36a)

Θa
4 = −κγ + 1

2ξ
2, Θa

5 = κ, Θa
6 = −r, (3.4.36b)

and bilinear forms

aH
1 (u, v) =

(
ν

[
1 0
0 0

]
∇u,∇v

)
L2(Ω)

, (3.4.36c)

aH
2 (u, v) =

(
ν

[
0 1
1 0

]
∇u,∇v

)
L2(Ω)

+
([

0
1

]
· ∇u, v

)
L2(Ω)

, (3.4.36d)

aH
3 (u, v) =

(
ν

[
0 0
0 1

]
∇u,∇v

)
L2(Ω)

+
(
ν

[
0
1

]
· ∇u, v

)
L2(Ω)

, (3.4.36e)

aH
4 (u, v) =

([
1
0

]
· ∇u, v

)
L2(Ω)

, (3.4.36f)

aH
5 (u, v) =

(
ν

[
1
0

]
· ∇u, v

)
L2(Ω)

, (3.4.36g)

aH
6 (u, v) =

([
0
1

]
· ∇u, v

)
L2(Ω)

− (u, v)L2(Ω) . (3.4.36h)

The affine decomposition of the linear form fk+θ(·; µ) for both Black-Scholes and
Heston models follows directly from the affine decomposition of the Dirichlet and
Neumann boundary data, defined in Section 2.7, see Remark 3.4.2. However, for
some cases, e.g., for the European call option in the Heston model with the boundary
conditions specified as in (2.7.8), the function gk+1

N (z,µ), z = (ν, x) ∈ Ω ⊂ R2 is not
affine w.r.t. the parameter r, see (2.7.8a), (2.4.16). Hence, the lift function uk+1

LN (µ)
is also not parameter separable and the cost of an online routine depends on the
dimension of the high-fidelity problem, NX .

To recover the online N -independence, the (D)EIM strategy can be employed. We
replace gk+1

N (z; µ) by an affine approximation gk+1
M (z; µ), z ∈ ΓD. The notable differ-

ence in this case, is the inclusion of the time variable. To apply the (D)EIM procedure,
described above, one of the possibilities could be to treat the time variable as an addi-
tional parameter instance µ̃ := (tk+1,µ), k ∈ I, residing in a time-parameter domain
P̃ := (0, T )× P, see, e.g., [DHO12; GMN+07; Gre05]. Then gM (z; µ̃) := gk+1

M (z; µ),
k ∈ I can be represented as

gM (z; µ̃) =
M∑
m=1

cm(µ̃)qm(z), z ∈ ΓD,
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satisfying M interpolation constraints

gM (ζi; µ̃) = gN (ζi; µ̃), ζi ∈ ΓD, i = 1, . . . ,M. (3.4.37)

The basis functions qm are constructed by, e.g., the POD algorithm from snapshots
{gN (µ̃1), . . . , gN (µ̃M )}, µ̃i ∈ P̃train. Then for every µ ∈ P, a system of interpolation
equations (3.4.37) is solved in the online computational phase, with the cost O(IM2),
which depends on the number of time steps I.

Using the linearity of the extension operator, we can recover an affine decomposi-
tion of the lift function uk+1

LN (µ), µ ∈ P, k ∈ I,

uk+1
LN (µ) = RN (gk+1

N (µ)) ≈
M∑
m=1

cm(tk+1,µ)qLm,

where qLm := RN (qm) ∈ XN .

3.5 Numerical Results
In this section we present numerical results of the application of the RBM to the
model problem of pricing European options in the Heston model, described in Sec-
tion 3.2. Due to the existence of the Black-Scholes analytic formula and its relatively
cheap evaluation, we do not perform numerical experiments for pricing European
options in this model.

We define the approximation spaces XN , VN to be the standard conforming piece-
wise linear finite element spaces. More precisely, consider a triangulation TN of Ω,
consisting of J simplices T jN , 1 ≤ j ≤ J , such that Ω = ∪TN∈TNTN , where Ω ∈ Rd,
d = 1, 2 is a polygonal domain. We use standard conforming nodal first order finite
element spaces, defined as

XN :={v ∈ X : v|T j
N
∈ P1(T jN ), 1 ≤ j ≤ J}, VN = XN ∩ V. (3.5.1)

We associate the basis function φi ∈ XN with its Lagrange node mi ∈ Ω, i.e.,
φi(mj) = δi,j , for i, j = 1, . . . ,NX , NX = N +ND, where a number N corresponds to
the interior nodes of Ω andND refers to the nodes on ΓD. For a time discretization, we
choose θ = 1/2 corresponding to the Crank-Nicolson method. The time domain [0, T ]
is discretized with a uniform mesh of step size ∆t := T/I. The spatial computational
domain Ω = (νmin, νmax)×(xmin, xmax) consist of NX = 49×97 = 4753 nodes. Recall,
that for the Heston model the model parameter vector is µ = (ξ, ρ, γ, κ, r) ∈ P.

We consider the European call and put options with the pay-off functions χ(x) :=
(K−Kex)+ and χ(x) := (Kex−K)+, respectively. The boundary conditions for the
call options are chosen as in (2.7.8), and for the put as in (2.7.10). The strike price
K can be considered as a scaling factor, and we set K = 1.
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To generate the snapshots and to build the reduced basis we use a finite subset
Ptrain ⊂ P, which is, if not specified, composed of equidistantly distributed points.
To validate and test the reduced model, we use a random test subset Ptest ⊂ P.

3.5.1 European Call Option in the Heston Model
We start our consideration with the pricing of the European call options in the Heston
model. We consider T = 1, I = 20, νmin = 0.0025, νmax = 0.5, xmin = −5, xmax = 5.
The parameter domain is chosen as follows

P ≡ [0.6, 0.9]× [0.21, 0.9]× [0.16, 0.25]× [3, 5]× [0.01, 0.2] ⊂ R5. (3.5.2)

To motivate the application of the reduced basis approach, first, we demonstrate the
variability of the solution in parameter and time. In Figure 3.1 the detailed solution
for a fixed parameter value µ? = (0.4, 0.55, 0.06, 2.5, 0.0198) is presented at the final
time t = T = 1 (left) and an evolution over time (right). The variation of the solution
with respect to different values of the parameter is depicted in Figure 3.2. While some
of the parameters are varying, the others are fixed and taking their values from the
reference parameter vector µ?.
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Figure 3.1: Left: The value of the European call option in the Heston model for
µ? = (0.4, 0.55, 0.06, 2.5, 0.0198) at t = T = 1. Right: A time evolution
of the option price for µ?, extracted at ν = 0.1683.

The next step is a computation of the snapshots for different µi ∈ Ptrain. We
apply the reduced basis approach for different dimensions of the parameter domain
P ⊂ Rd, d = 2, 3, 4, 5, in particular, we consider µ = (γ, κ) ∈ R2, µ = (γ, κ, r) ∈ R3,
µ = (ρ, γ, κ, r) ∈ R4 and µ = (ξ, ρ, γ, κ, r) ∈ R5. For each choice of µ, the remaining
parameter values are assumed to be fixed and taken from the default parameter
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Figure 3.2: Snapshots of the solution for different parameter values, extracted at the
fixed volatility ν = 0.1683 and maturity T = 1.
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vector µ? = (0.3, 0.21, 0.095, 2, 0.0198). Then the POD-Greedy Algorithm 3.1, with
Etrue
u (µ) (see (3.4.19b)) as a selection criterion, is used to construct the reduced basis

space VN .
In the first test, we consider µ = (κ, γ) and |Ptrain| = 152 = 225 equidistantly

distributed points. The first six orthonormal reduced basis vectors produced by the
POD-Greedy algorithm are presented in Figure 3.3.

Figure 3.3: First six vectors of the reduced basis {ψk}Nk=1 ⊂ ΨN , µ = (γ, κ).

To quantify the approximation quality of the reduced basis method, we inves-
tigate the error decay when increasing the dimension of the reduced system. For
each reduced model, we consider the “training” error, i.e., the error produced by the
basis construction algorithm: maxµ∈Ptrain

{
Etrue
u (µ)

}
over N . We can observe, as

expected, an exponential decay of the error, Figure 3.4 (left). To study the relia-
bility of the constructed reduced basis, we, in addition, compute the “testing” error
maxµ∈Ptest

{
Etrue
u (µ)

}
over an independent random test set |Ptest| = 400. We ob-

serve that the “training” and “testing” errors are almost the same, that suggests the
reliability of the constructed reduced basis space. The selected parameters produced
by the POD-Greedy algorithm are depicted in Figure 3.4 (right). By the “frequency
of the selection” of the parameters, we mean how often the same parameter is cho-
sen during the basis generation. Larger circles indicate training parameters which
are chosen more often during the POD-Greedy procedure. We can observe that the
selected parameters are distributed over a whole parameter domain, which indicates
that POD-Greedy tries to exploit all possible parameter variations.
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Figure 3.4: Left: Evolution of maxµ∈Ptrain / test

{
Etrue
u (µ)

}
for the European call op-

tion in the Heston model produced by Algorithm 3.1 with µ = (γ, κ),
|Ptrain| = 152 = 225, |Ptest| = 400. Right: Plot of the selected parame-
ters µ1, ...,µN ∈ Ptrain and their frequency of the selection.

The analogous results for other choices of µ = (γ, κ, r), µ = (ρ, γ, κ, r) and µ =
(ξ, ρ, γ, κ, r) are presented in Figure 3.5 and Figure 3.6, respectively. For these
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Figure 3.5: Left: Evolution of maxµ∈Ptrain / test

{
Etrue
L2 (µ)

}
for the European call op-

tion in the Heston model produced by Algorithm 3.1 with µ = (γ, κ, r),
|Ptrain| = 93 = 729, |Ptest| = 1024. Right: Plot of the selected parameters
µ1, ...,µN ∈ Ptrain and their frequency of the selection.

cases we observe similar performance of the reduced basis method. In particular, we
can see the exponentially decaying behavior of the error, however with much slower
convergence for the larger dimension of the parameter domain. This can be explained
by the increasingly complex parameter dependence of the model. Additionally, for the

57



3 RBM for Parametrized Linear Parabolic Equations

0 50 100 150 200

Nmax

10
-4

10
-3

10
-2

10
-1

10
0

10
1

train error

test error

0 100 200 300 400

Nmax

10
-3

10
-2

10
-1

10
0

10
1

10
2

train error

test error

Figure 3.6: Left: Evolution of maxµ∈Ptrain / test

{
Etrue
u (µ)

}
for the European call option

in the Heston model produced by Algorithm 3.1 with µ = (ρ, γ, κ, r),
|Ptrain| = 74 = 2401, |Ptest| = 3000 (left) and with µ = (ξ, ρ, γ, κ, r),
|Ptrain| = 65 = 7776, |Ptest| = 10000 (right).

last example, µ = (ξ, ρ, γ, κ, r), see Figure 3.6 (right), we can notice a larger deviation
between the “training” and “testing” errors. This observation can be justified by the
fact that, possibly, the size of the training set Ptrain is not sufficiently large. In this
situation, a larger training set is required. The problem, which may occur here, is
that we do not know a priori how large the training set should be. While too large
dimension of Ptrain results in a very expensive offline routine, too coarse Ptrain may
not be sufficient to capture the parameter dependence of the model, as we could
already observe experimentally. Different strategies can be proposed to overcome
this difficulty. One of them, is to consider the adaptive training set partitioning, see,
e.g., [HDO11; HO08a], where initially one starts with the coarse training set and
adaptively refines Ptrain within the iterations of the greedy loop. Such a procedure
has similarities to the adaptive finite element method.

3.5.2 European Put Options in the Heston Model
Due to the availability of closed-form solutions, in practice, it is sufficient to evaluate
only, e.g., put options and then, using the put-call parity relation, to obtain the cor-
responding call prices. However, for the numerical approximation of the underlying
PDE we are not aware of the error produced by the put-call parity relation. Several
sources, such as different boundary conditions, can cause an additional error. For
this reason, we consider an application of the reduced basis method to the European
put option as well. For comparative purposes with the American put options, studied
in the next chapter, we restrict ourselves to similar settings. Namely, we consider
T = 2, I = 250 and νmin = 10−5, νmax = 3, xmin = −5, xmax = 5. The parameter
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domain is set to

P ≡ [0.1, 0.9]× [−0.95, 0.95]× [0.01, 0.5]× [0.1, 5]× [0.0001, 0.8] ⊂ R5. (3.5.3)

The snapshot of the detailed solution for µ = (0.64, 0.21, 0.16, 0.1, 0.07) at maturity
T = 2 and its time evolution are depicted in Figure 3.7.
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Figure 3.7: The value of the European put option uIN (µ) in the Heston model at
T = 2 for µ = (0.64, 0.21, 0.16, 0.1, 0.07) (left). The time evolution of the
solution in the log-transformed variable x (middle) and in the original
stock price variable S = Kex (right) (zoomed).

Similarly to the European call options, we construct the reduced model for the
put options. In particular, we consider different variations of the parameter: µ =
(ξ, ρ, γ) ∈ P ⊂ R3 and µ = (ξ, ρ, γ, κ, r) ∈ P ⊂ R5. The remaining parameters are
set to the values of the reference parameter vector µ? = (0.2,−0.2, 0.16, 0.1, 0.07).
We apply the POD-Greedy algorithm with Etrue

u as the selection criterion. The
training errors, produced by the algorithm for different scenarios are depicted in
Figure 3.8. As previously, we observe that the convergence of the RBM becomes
slower with increasing the dimension of the parameter domain, which again confirms
a non-trivial parameter dependence of the model.

We close this chapter with the efficiency study of the method. In particular, we
consider the following measures of the computational times.

• t1: Computation time for the trajectory of a single detailed solution for a given
parameter value µ ∈ P. This includes the time t1,1 to assemble the detailed
system and the time t1,2 := t1 − t1,1 to solve the high-fidelity problem.

Online phase

• t2: Computation time to assemble the reduced system and to solve the reduced
problem for a given µ ∈ P.

• t1/t2: Asymptotic speed-up of the online routine while using the reduced basis
method.
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Figure 3.8: Left: Evolution of maxµ∈Ptrain

{
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u (µ)

}
for the European put option in

the Heston model produced by Algorithm 3.1 with µ = (ξ, ρ, γ), |Ptrain| =
73 = 343 (left) and with µ = (ξ, ρ, γ, κ, r), |Ptrain| = 45 = 1024 (right).

Offline phase

• t3: Computation time for the construction of the reduced bases using Algo-
rithm 3.1 with EN (µ) = Etrue

u (µ) as a selection criterion.

• t4: Computation time to construct the parameter independent reduced data.

• t5: Computation time for evaluation of the snapshots, i.e., the time for com-
puting the detailed solutions ukN (µ), for all µ ∈ Ptrain. This cost depends on
the size of Ptrain.

The measurements of the run-time performance corresponding to the previous two
examples of the European put options are summarized in Table 3.1.

Nmax |Ptrain| t1 t2 t3 t4 t5 t1/t2

µ = (ξ, ρ, γ) 100 343 33.11 0.0682 9140 0.084 4018 485.9
µ = (ξ, ρ, γ, κ, r) 100 1024 31.94 0.0613 27192 0.0835 12977 521

Table 3.1: Run-time measurements (in seconds) of the reduced basis method for dif-
ferent Nmax and for different model parameter settings.

We notice that the performance of the RBM in the online stage is very similar for
both scenarios and provides more than 400 times speed-up compared to the FEM.
However, due to the different dimensions of the parameter domain, the computational
effort of the offline routine differs significantly.
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Note that the time t1 includes not only the solution time for the detailed prob-
lem, but also the matrix assembly time t1,1, which is in the present case equal to
t1,1 = 26.21 seconds on average. Hence, the asymptotic speed-up for only solving the
problem is t1,2/t2 ≈ 101.17 for the first case and t1,2/t2 ≈ 93.47 for the second case.
In the multi-query context, using the affine-decomposition, if given, the assembly
time can be neglected for the computation of the asymptotic speed-up.
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Variational Inequalities

4.1 Introduction
In this chapter we extend the reduced basis methodology to more complex models,
in particular to ones used to price American options. Mathematically, this leads to
solving a variational problem with inequality constraints in a weak form, referred to
as a variational inequality problem.

In general, abstract variational inequalities provide a solid framework to study
many different kind of processes, e.g., in engineering, physics, and finance. The study
of abstract variational inequalities goes back to the works of A. Signorini [Sig59] and
G. Fichera [Fic63]. Since then extensive research has been done; for more details on
the theoretical study as well as different areas of application we refer to, e.g., [BL82;
DL72; KO88; KS00; LS67]. The numerical analysis of variational inequalities is very
broad and an overview can be found in some classical sources [Glo08; GLT81].

The goal of this chapter is to provide a general framework for accurately and
efficiently solving parameterized time dependent variational inequalities with the re-
duced basis method. This work involves an extension and combination of the reduced
basis methodology for the linear parabolic problems (Chapter 3) and stationary vari-
ational inequalities [HSW12]. The method is presented here in the context of option
pricing; however it can cover a large class of applications, as mentioned previously.
Much of the content of this chapter follows [BHS+15; HSW13].

As discussed previously, we consider the examples of pricing American options in
the Black-Scholes and Heston models (see Chapter 2). The numerical solution of these
problems can be accomplished with standard techniques, such as finite differences,
see, e.g., [HF10; IT08; IT09] or finite elements; see, e.g., [AP05b; FLM+11; HRS+13;
KSW12; WAW01; ZFV98].

For the development of the reduced basis method we reformulate the problem in
a saddle point form. We refer to, e.g., [BFB13; BHR78; Woh11] for the numerical
treatment of such type of problems.

The application of the reduced basis method for parabolic variational inequalities
considered in a space-time framework can be found in [GU14; GU15]. The works on
stationary variational inequalities include [HSW12] and [ZBV16], where in the latter
one the variational inequality is treated by a primal-dual approach.
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The chapter is organized as follows: In Section 4.2 we present the model formulation
to price American options. In Section 4.3 we pose the problem in a variational and
a discrete variational form and discuss the existence and uniqueness of the weak and
discrete solutions. In Section 4.4 we develop the reduced basis methodology for time
dependent variational inequalities. Here, we discuss the main properties, such as
well-posedness of the reduced system. In Section 4.5 we derive a posteriori estimates
for the reduced basis error. In particular, in Section 4.5.1 we state some preliminary
results needed for the further analysis and in Section 4.5.2 we present the a posteriori
error bounds. Finally, in Section 4.6 we present algorithms which can be used for the
construction of the reduced basis. Section 4.7 discusses the algorithmic aspects of the
method, namely, the practical and efficient implementation of the reduced problem
and a posteriori error bounds. We close the chapter with Section 4.8, where, using
numerous examples of pricing American options in the Black-Scholes and Heston
models, we provide an empirical illustration of the developed methodology.

4.2 Model Problem: American Put Options

We recall Problem 2.7.2 for pricing American put options restated in the log-trans-
formed variables. We follow the same setting as introduced in Section 3.2. Namely,
we consider an open bounded domain Ω ⊂ Rd, d = 1, 2, cf. (3.2.3), with Lipschitz
continuous boundary ∂Ω = ΓD ∩ ΓN and the space-time cylinder QT = (0, T ] × Ω,
T > 0 with space-time boundaries ΣD := (0, T ] × ΓD, ΣN := (0, T ] × ΓN. Then the
problem for finding the price w of an American put option can be written as

∂w

∂t
− Lw ≥ 0, in QT, (4.2.1a)

w ≥ χ, in QT, (4.2.1b)(
∂w

∂t
− Lw

)
(w − χ) = 0, in QT, (4.2.1c)

w(0) = w0, on Ω, (4.2.1d)

with the pay-off χ(x) := (Kex−K)+ and w0 = χ(x). The problem (4.2.1) is subject
to the corresponding Dirichlet and Neumann boundary conditions (see Section 2.7)
which are defined for the Black-Scholes model in (4.2.2a) and for the Heston model
in (4.2.2b), respectively.

w = g = χ, on ΣD, ΣN = ∅, (4.2.2a)

w = g = χ, on ΣD,
∂w

∂nL
= h = 0, on ΣN. (4.2.2b)
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4.3 Detailed Problem Formulation
4.3.1 Variational Formulation
To pose the problem (4.2.1) in a weak form, we make use of the separable Hilbert
spaces X, V and H, introduced in Section 3.3, i.e., X = H1(Ω), V = {v ∈ X : v|ΓD =
0} and H = L2(Ω), with ‖ · ‖X = ‖ · ‖H1(Ω) and ‖ · ‖V = | · |H1(Ω).

As before, in order to tackle non-homogeneous boundary conditions, we introduce
the Dirichlet lift function uL ∈W (0, T ;X), defined by an extension operator (3.3.4),
and set u(t) := w(t)− uL(t), t ∈ (0, T ), with u(0) = u0 := w(0)− uL(0). We denote
the modified pay-off functional by χ̃(t) := χ− uL(t) and introduce the closed convex
subset K(t) of V as

K(t) = {v ∈ V : v ≥ χ̃(t) in Ω}, a.e. t ∈ [0, T ], (4.3.1)

where the inequality is understood pointwise almost everywhere. We assume the
function χ̃(t) is such that K(t) 6= ∅ for almost all t ∈ [0, T ]. Define the linear
continuous operator A ∈ L(V ;V ′) induced by the bilinear form a : V × V → R, such
that a(u, v) = (Au, v) for all v, u ∈ V .

Consider the following variational formulation of the problem (4.2.1) with homoge-
neous Dirichlet boundary conditions: Given u0 ∈ K, find u ∈ W (0, T ;V ), such that
u(t) ∈ K(t) for almost all t ∈ [0, T ], and satisfies〈

d

dt
u(t), v − u(t)

〉
V ′×V

+ a(u(t), v − u(t)) ≥ 〈f(t), v − u(t)〉V ′×V , ∀v ∈ K(t),

(4.3.2a)
u(0) = u0, (4.3.2b)

where f ∈ L2(0, T ;V ′), and is defined in (3.3.5). To obtain a solution of (4.3.2), we
use a result on the existence of strong solutions according to [DL72; GLT81; Lio72].
For this result an additional assumption is needed, namely that f ′ ∈ L2(0, T ;V ′),
where f ′ = df

dt . In fact, assuming additionally u′L ∈ W (0, T ;X), and since there are
only homogeneous Neumann boundary conditions, the regularity f ′ ∈ L2(0, T ;V ′)
can be guaranteed in this context. Note additionally, that the result on strong so-
lutions will guarantee a higher regularity of the time derivative of u, such that the
duality pairing for the time derivative in (4.3.2) can be replaced by the L2-inner
product.

The following result establishes the existence and uniqueness of the solution of
(4.3.2); see e.g., [GLT81, Chapter 6, Theorem 2.1], [DL72, Chapter 1, Theorem
5.1], [Lio72, Chapter 2, Theorem 2.1].

Theorem 4.3.1. Let V,H be given and form the Gelfand triple. Assume that the
bilinear form a(·, ·) is continuous and satisfies the G̊arding inequality on V and f, f ′ ∈
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L2(0, T ;V ′), where f ′ = df
dt . Moreover, assume, u0 ∈ K(0), K(t) 6= ∅, t ∈ [0, T ], and

f(0) − Au0 ∈ H. Then the problem (4.3.2) admits a unique solution u, which, in
addition, satisfies: u ∈ L2(0, T ;V ), u′ ∈ L2(0, T ;V ) ∩ L∞(0, T ;H).

Parametrized Problem

To present a parametrized form of the problem (4.3.2), as before, we denote by µ ∈ P
an input parameter vector from a p-dimensional parameter space P ⊂ Rp. For any
µ ∈ P, we define a parametrized version of K(t):

K(t; µ) = {v ∈ V : v ≥ χ̃(t; µ) in Ω}, a. e. t ∈ [0, T ].

Then the parametrized version of the variational problem (4.3.2), reads as follows: For
a given µ ∈ P, u0(µ) ∈ K(µ), f(µ), f ′(µ) ∈ L2(0, T ;V ′), find u(µ) ∈ W (0, T ;V ) ∩
K(µ), such that for all v ∈ K(t; µ) holds〈
d

dt
u(t; µ), v − u(t; µ)

〉
V ′×V

+ a(u(t; µ), v − u(t; µ); µ) ≥ 〈f(t; µ), v − u(t; µ)〉V ′×V
(4.3.3a)

u(0) = u0(µ), (4.3.3b)

As before, to guarantee the well-posedness of the parametrized problem, we need to
require that the bilinear form remains continuous and coercive (or satisfies a G̊arding
inequality) for all µ ∈ P, with the coercivity constant αa(µ) (the G̊arding constant
λa(µ)) and the continuity γa(µ) constant, defined in (3.3.13).

4.3.2 Discretization

In this section we present an abstract framework for the discrete approximation of
the parabolic variational inequality (4.3.3). Upon this formulation we will build the
reduced basis approximation.

For the temporal discretization we consider a finite differences approach. In partic-
ular, we apply an implicit Euler scheme. Recall, that the interval [0, T ] is divided into
I subintervals of equal length ∆t := T/I and tk := k∆t, 0 < k ≤ I. We use sets of
indices I, I0, specified in (3.3.16). For all µ ∈ P, k ∈ I0, we denote the semi-discrete
solution uk+1(µ) := u(tk+1; µ) and introduce a semi-discretization of the convex sets

Kk+1(µ) = {v ∈ V : v ≥ χ̃k+1, in Ω}. (4.3.4)

Then we arrive in the following semi-discrete formulation of (4.3.3).

66



4.3 Detailed Problem Formulation

Problem 4.3.1 (Semi-discrete Problem). Given µ ∈ P and u0(µ) = u0(µ), find
uk+1(µ) ∈ Kk+1(µ), k ∈ I, such that for all v ∈ Kk+1(µ) holds

1
∆t

(
uk+1(µ)− uk(µ), v − uk+1(µ)

)
L2(Ω)

+ a(uk+1(µ), v − uk+1(µ); µ)

≥ fk+1(v − uk+1(µ); µ), (4.3.5)

with fk+1(·; µ) defined as in (3.3.17) for h ≡ 0 and θ = 1, i.e.,

fk+1(v; µ) = − 1
∆t

(
uk+1
LN (µ)− ukLN (µ), v

)
L2(Ω)

− a(uk+1
LN (µ), v; µ). (4.3.6)

The above scheme is unconditionally stable, [Glo08, Chapter 6, Section 3.2], and
often used in practice.

Alternatively, one may use a weighted θ-scheme, θ ∈ [0, 1]. Let ω ∈ {1, θ} and
recall an index

·k+θ = θ ·k+1 +(1− θ)·k, θ ∈ [0, 1]. (4.3.7)
Denote the semi-discrete convex cone by

Kk+ω(µ) = {v ∈ V : v ≥ χ̃k+ω, in Ω}. (4.3.8)

Then we consider an alternative semi-discrete problem.

Problem 4.3.2. Given µ ∈ P, ω ∈ {1, θ}, θ ∈ [0, 1], u0(µ) = u0(µ), find uk+ω(µ) ∈
Kk+ω(µ), k ∈ I, such that for all v ∈ Kk+ω(µ) holds

1
∆t

(
uk+1(µ)− uk(µ), v − uk+ω(µ)

)
L2(Ω)

+ a(uk+θ(µ), v − uk+ω(µ); µ)

≥ fk+θ(v − uk+ω(µ); µ), (4.3.9)

with fk+θ(·; µ) defined as in (3.3.17) for h ≡ 0 and θ ∈ [0, 1].

The index ω encodes at which time step the constraints are imposed. For ω = 1, we
impose the constraints at the k+1 time step, as in (4.3.8). For ω = θ, the constraints
are established at the k+θ time step. Obviously, for θ = ω = 1, we obtain the implicit
Euler scheme and (4.3.5) and (4.3.9) become equivalent formulations. However, other
situations may occur, for instance, (a) ω = 1, θ ∈ [0, 1] or (b) ω = θ = 1/2. In the first
case, according to [GLT81, Chapter 6, Section 3.2], the scheme is referred as “scheme
I” and there it is proven unconditional stability for θ = 1. For θ = 1

2 only a conditional
stability is shown. In the second case, according to [Glo08, Chapter III, Section
4] the scheme (4.3.5) is referred as a Crank-Nicolson scheme and unconditionally
stable. However, in this case uk+1 may not belong to Kk+1, and the scheme is not
recommended if the continuous solution is lacking regularity in time.

We restrict our attention to the case ω = 1, and θ ∈ [1/2, 1]. For the a posteriori
error analysis, we will only consider ω = θ = 1.
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4 RBM for Parametrized Parabolic Variational Inequalities

Saddle Point Formulation

It is well-known that stationary variational inequalities with a symmetric bilinear
form can equivalently be reformulated as constrained minimization problems. In
turn, using the method of Lagrange multipliers, these problems can be reformulated
as saddle point problems. This leads to search for the solution of the minimization
problem in a linear space, instead of a closed convex set.

In our setting we are dealing with the time dependent problems and, generally,
non symmetric bilinear forms, which means that the variational inequality cannot
be characterized as constrained minimization problem. However, we can still use the
notion of the saddle point problem.

Let W be a Hilbert space endowed with an inner product (·, ·)W and norm ‖ · ‖W
and let M ⊂W be a nonempty closed convex cone. Furthermore, define a parameter
independent, continuous bilinear form on W × V , b : W × V → R with continuity
constant γb, i.e.,

|b(η, v)| ≤ γb‖η‖W ‖v‖V . (4.3.10)

We say, that b(·, ·) is inf-sup stable on W × V , if there exist β0 > 0, such that

β := inf
η∈W

sup
v∈V

b(η, v)
‖v‖V ‖η‖W

≥ β0 > 0. (4.3.11)

The pair of spaces (V,W ) satisfying (4.3.11) are referred to as a “stable” pair.
For the particular case W = V ′, which we consider in our numerical experiments,

we define b(·, ·) to be a duality pairing b(η, v) := 〈η, v〉V ′×V , and the cone M to be a
“dual cone”, cf., e.g., [IM91], and expressed as

M :={η ∈W : b(η, v) ≥ 0, v ∈ V +}, (4.3.12)

where V + := {v ∈ V : v ≥ 0}.
For µ ∈ P and k ∈ I, we introduce the functional gk+1 ∈W ′,

gk+1(η; µ) := b(η, χ̃k+1) = b(η, χ)− b(η, uk+1
L (µ)).

We also assume, that the convex set Kk+1(µ), µ ∈ P, k ∈ I, can be expressed in
terms of the cone M , i.e,

Kk+1(µ) = {v ∈ V : b(η, v) ≥ gk+1(η; µ), η ∈M}. (4.3.13)

Then the problem (4.3.9) can be written in the following semi-discrete saddle point
form.
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4.3 Detailed Problem Formulation

Problem 4.3.3. For a given µ ∈ P, θ ∈ [1/2, 1], u0(µ) ∈ V find (uk+1(µ), λk+1(µ)) ∈
V ×M , k ∈ I, such that for all v ∈ V , η ∈M it holds

1
∆t

(
uk+1(µ)− uk(µ), v

)
L2(Ω)

+ a(uk+θ(µ), v; µ)− b(λk+1(µ), v) = fk+θ(v; µ),
(4.3.14a)

b(η − λk+1(µ), uk+1(µ)) ≥ gk+1(η − λk+1(µ); µ). (4.3.14b)

The following theorem establishes the well-posendess of Problem 4.3.3.

Theorem 4.3.2. Let for all µ ∈ P, k ∈ I, a(·, ·; µ) be continuous and satisfy
the G̊arding inquality on V , fk+1(µ) ∈ V ′, ∆t < 1/(θλa(µ)) and Kk+1(µ) ⊂ V ,
Kk+1(µ) 6= ∅. In addition, assume that b(·, ·) is inf-sup stable on W × V , that
is (4.3.11) holds. Then the following statements are true:

(i) there exist a unique solution (uk+1(µ), λk+1(µ)) ∈ V ×W of Problem 4.3.3,

(ii) the formulations (4.3.9) and (4.3.14) are equivalent, which means, if the pair
(uk+1(µ), λk+1(µ)) is a solution of Problem 4.3.3, then uk+1(µ) is a solution
of Problem 4.3.1 and vice versa.

Proof. The proof can be found in, e.g., [BHR78, Theorem 2.1], [Woh11, Lemma 2.1]
for the second statement.

We often refer to uk+1(µ) ∈ V as a primal solution and to the Lagrange multiplier
λk+1(µ) as a dual one; similarly for the spaces V and W .

Spatial Discretization

For the spatial discretization of the saddle-point problem (4.3.14), we consider con-
forming finite dimensional approximation spaces XN ⊂ X, VN ⊂ V and WN ⊂ W ,
given in terms of the basis functions φp and χq,

XN = span{φp, p = 1, . . . ,NX}, VN = XN ∩ V = span{φp, p = 1, . . . ,NV },
WN = span{χq, q = 1, . . . ,NW }.

The dimensions of the spaces are dim(XN ) = NX , dim(VN ) = NV and dim(WN ) =
NW , with NX , NV , NW being sufficiently large, such that the approximation error
is small enough. As before, these spaces inherit the inner products and norms of the
exact spaces, i.e., (·, ·)XN = (·, ·)X , ‖ · ‖XN = ‖ · ‖X and in similar manner for the
other spaces.
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4 RBM for Parametrized Parabolic Variational Inequalities

The discrete Lagrange multiplier cone MN ⊂WN is defined as follows

MN = span+{χq}
NW
q=1 :=

{
η ∈WN : η =

NW∑
q=1

αqχq, αq ≥ 0
}
. (4.3.15)

Remark 4.3.1. Note that we do not necessary require the conformity of the discrete
cone, MN ⊂ M . In particular, in our numerical simulations we use discontinuous
dual biorthogonal basis functions for the discretization of WN (see [Woh00; Woh01;
Woh11]). This results in MN 6⊂ M , i.e., with respect to the Lagrange multiplier the
method is not conforming.

For a given µ ∈ P and k ∈ I, the solution pair (uk+1(µ), λk+1(µ)) ∈ V ×M is then
approximated by (uk+1

N (µ), λk+1
N (µ)) ∈ VN ×MN , where

uk+1
N (µ) =

NV∑
p=1

uk+1
N ,p(µ)φp, λk+1

N (µ) =
NW∑
q=1

λk+1
N ,q (µ)χq.

For µ ∈ P, k ∈ I0 the Dirichlet lift function ukL(µ) ∈ X is approximated by the
discrete functions uk+1

LN (µ); see Section 3.3.4. Accordingly, for the modified pay-
off χ̃k ∈ V we consider an approximation χ̃kN (µ) = ∑NV

p=1 χ̃
k
N ,p(µ)φp. The initial

condition u0
N is chosen as u0

N (µ) = χ̃0
N (µ). Then we consider the following fully

discrete saddle point formulation of Problem 4.3.3.

Problem 4.3.4 (Detailed saddle point problem). For a given µ ∈ P, θ ∈ [1/2, 1],
u0
N (µ) ∈ VN , find uk+1

N (µ) ∈ VN , λk+1
N (µ)) ∈ MN , k ∈ I, such that for all v ∈ VN ,

η ∈MN it holds

1
∆t

(
uk+1
N (µ)− ukN (µ), v

)
L2(Ω)

+ a
(
uk+θ
N (µ), v; µ

)
− b(λk+1

N (µ), v) = fk+θ(v; µ),
(4.3.16a)

b(η − λk+1
N (µ), uk+1

N (µ)) ≥ gk+1(η − λk+1
N (µ); µ), (4.3.16b)

with

fk+θ(v; µ) = − 1
∆t

(
uk+1
LN (µ)− ukLN (µ), v

)
L2(Ω)

− a(uk+θ
LN (µ), v; µ). (4.3.17)

As previously, the continuity and coercivity properties of the bilinear forms (or
G̊arding inequality) are carried over to the discrete spaces. That is, a(·, ·; µ) is
continuous and coercive on VN (or satisfies the G̊arding inequality) with the corre-
sponding discrete continuity γNa (µ) and coercivity constants αNa (µ) (with λNa (µ)),
defined in (3.3.19), and b(·, ·) is continuous on WN × VN with continuity a constant
γNb (µ).
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4.4 Reduced Basis Approximation

Proposition 4.3.3. Let VN ⊂ V , WN ⊂ W and the conditions of Theorem 4.3.2
hold. Assume that b(·, ·) is inf-sup stable on WN ×VN : that is, there exists a constant
β0 independent of the mesh size, such that

βN := inf
η∈WN

sup
v∈VN

b(η, v)
‖v‖V ‖η‖W

≥ β0 > 0. (4.3.18)

Then for every µ ∈ P, k ∈ I, there exists a unique solution (uk+1
N (µ), λk+1

N (µ)) of
Problem 4.3.4.

Proof. The proof directly follows from Theorem 4.3.2. See also, e.g., [BHR78, Theo-
rem 4.4].

Upon Problem 4.3.4 we build the reduced basis method, described in the next
section. To guarantee the well-posedness of the detailed problem (4.3.16), we always
assume that VN andWN are chosen such that the discrete inf-sup condition is fulfilled.

4.4 Reduced Basis Approximation
In this section we present a reduced basis scheme for parabolic variational inequalities
and give an existence and uniqueness result together with other properties of the
reduced system.

4.4.1 Formulation

We consider a finite subset PN := {µ1, . . . ,µN} ⊂ P with µi 6= µj , ∀i 6= j, N ∈ N.
The primal and dual sets of snapshots are denoted by SuN := {ukN (µ1), . . . , ukN (µS)}
and SλN := {λkN (µ1), . . . , λkN (µS)}, k ∈ I0, S ∈ N. Using a suitable algorithm, we
construct the reduced primal ΨN and dual ΞN bases using SuN and SλN ,

ΨN := {ψ1, . . . , ψNV
} ⊂ VN , ΞN := {ξ1, . . . , ξNW

} ⊂WN .

Numerical algorithms to build these two sets will be discussed in Section 4.6. Then
the detailed primal and dual spaces are approximated by low-dimensional reduced
spaces VN ⊂ VN and WN ⊂WN , defined as

VN := span {ψi, 1 ≤ i ≤ NV } , WN := span {ξj , 1 ≤ j ≤ NW } .

The reduced basis approximation MN of the detailed cone MN is defined as

MN = span+{ξj}
NW
j=1 :=

{NW∑
j=1

αjξj , αj ≥ 0
}
. (4.4.1)
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4 RBM for Parametrized Parabolic Variational Inequalities

For the construction of the reduced space, we assume ξj ∈MN , and henceMN ⊆MN .
We define the reduced basis solution pair

(
uk+1
N (µ), λk+1

N (µ)
)
∈ VN ×MN , µ ∈ P,

k ∈ I, where

uk+1
N (µ) =

NV∑
p=1

uk+1
N,j (µ)ψp, λk+1

N (µ) =
NW∑
q=1

λk+1
N,q (µ)ξq. (4.4.2)

Then the reduced problem reads as follows.

Problem 4.4.1 (Reduced problem). Given µ ∈ P, θ ∈ [1/2, 1], find uk+1
N (µ) ∈ VN ,

λk+1
N (µ) ∈MN , k ∈ I, that for all vN ∈ VN , ηN ∈MN satisfy

1
∆t

(
uk+1
N − ukN , vN

)
L2(Ω)

+ a(uk+θ
N , vN ; µ)− b(λk+1

N , vN ) = fk+θ(vN ; µ), (4.4.3a)

b(ηN − λk+1
N , uk+1

N ) ≥ gk+1(ηN − λk+1
N ; µ). (4.4.3b)

The initial value u0
N is chosen as the orthogonal projection of u0

N on VN , i.e., (u0
N −

u0
N , vN )V = 0 for all vN ∈ VN .

4.4.2 Properties of the Reduced System
The well-posedness of the reduced saddle point problem (4.4.3) follows with identical
arguments as for the detailed one. In particular, the properties of coercivity (G̊arding
inequality) and continuity of a(·, ·; µ) on VN×VN and continuity of b(·, ·) on WN×VN
are directly inherited from the corresponding properties on the high-fidelity spaces
VN and WN .

However, the same argumentation is not applicable for the inf-sup stability of b(·, ·)
on WN ×VN . Hence, additional care should be taken for an appropriate construction
of VN , WN , that guarantee the existence of β0 > 0, such that

βN := inf
η∈WN

sup
v∈VN

b(η, v)
‖v‖V ‖η‖W

≥ β0 > 0. (4.4.4)

To verify the condition (4.4.4), let us first introduce the following operator T :
WN → VN , defined as

(Tη, v)V := b(η, v), ∀v ∈ VN . (4.4.5)

Note that for v ∈ VN , η ∈WN , b(η, v) = 〈Bη, v〉V ′×V , where B : W → V ′ is a linear
continuous operator. Then by the Riesz representation theorem, Tη is, in fact, a
Riesz representer of Bη ∈ V ′ and it holds

‖Tη‖V = ‖Bη‖V ′ = sup
v∈VN

〈Bη, v〉V ′×V
‖v‖V

= sup
v∈VN

b(η, v)
‖v‖V

. (4.4.6)
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4.4 Reduced Basis Approximation

The operator T is often referred to as the supremizer operator, since it is realizing
the supremum in (4.4.6).

From (4.4.6) and (4.3.18) we obtain the following characterization of βN for the
detailed problem,

βN = inf
η∈WN

‖Tη‖V
‖η‖W

. (4.4.7)

Then to form a stable pair of the reduced spaces VN , WN , a sufficient condition
could be an “inclusion of the supremizers” in the primal space. The supremizers are
the elements Tξi ∈ VN , where ξi ∈WN , 1 ≤ i ≤ NW , is a basis of WN .

In the context of the reduced basis method, this approach was first introduced
in [Rov03], and subsequently widely applied for, e.g., non-coercive or Stokes problems,
e.g., [GV11; NMR15; Rov03; RV07; VPR+03]. Note that inclusion of the supremizers
is not a unique way to obtain a stable pair of the reduced spaces. Alternatively, for
variational inequalities an enrichment of the primal space by a-priori or unconstrained
solutions can be considered, see for more details [HSW11; HSW12].

Let {ψ̃i}NS
i=1 denote a set of basis functions, which are built only from the set of

the primal snapshots SuN . Then we consider the following “enriched” primal reduced
space

VN := span{ψi}NV
i=1 = span{ψ̃i, T ξj}NS ,NW

i,j=1 ⊂ VN . (4.4.8)

The following lemma demonstrates that, with this choice, (VN ,WN ) satisfies the
stability condition (4.4.4).

Lemma 4.4.1. Let VN be given by (4.4.8), then b(·, ·) is inf-sup stable on WN ×
VN , (4.4.4), and hence the reduced problem admits a unique solution. Moreover,
there exist β0 > 0, such that the following inequalities holds

βN ≥ βN ≥ β0 > 0. (4.4.9)

Proof. The proof can be found in e.g., [HSW12; RV07]. For a self-contained pre-
sentation, we provide it here. Using the fact that VN ⊂ VN , the definition of the
supremizer operator (4.4.5), (4.4.6), and the enrichment of VN by supremizers (4.4.8),
we can derive that

βN = inf
η∈WN

sup
v∈VN

b(η, v)
‖v‖V ‖η‖W

≤ inf
η∈WN

sup
v∈VN

b(η, v)
‖v‖V ‖η‖W

= inf
η∈WN

b(η, Tη)
‖Tη‖V ‖η‖W

≤ inf
η∈WN

sup
v∈VN

b(η, v)
‖v‖V ‖η‖W

= βN .

As the next step, similar to the linear case in Chapter 3, Proposition 3.4.1, we
provide a consistency property of the reduced basis solution.
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4 RBM for Parametrized Parabolic Variational Inequalities

Proposition 4.4.2 (Reproduction of solutions). If for some µ ∈ P, θ ∈ [1/2, 1] and
all k ∈ I, uk+1

N (µ) ∈ VN , and λk+1
N (µ) ∈MN with u0

N (µ) ∈ VN , then

uk+1
N (µ) = uk+1

N (µ), λk+1
N (µ) = λk+1

N (µ), ∀k ∈ I.

Proof. We prove this property by induction. For k = 0, u0
N ∈ VN and for u0

N ∈ VN
we have (u0

N − u0
N , vN )V = 0, for all vN ∈ VN . Set vN = u0

N − u0
N , then

(u0
N − u0

N , u
0
N − u0

N )V = 0,

which is true only for u0
N = u0

N . For the induction step, we assume that ukN = ukN ,
λkN = λkN . Then, choosing v = vN ∈ VN ⊂ VN , η = ηN ∈ MN ⊂ MN , we directly
obtain

1
∆t

(
uk+1
N − ukN , vN

)
L2(Ω)

+ a(uk+θ
N , vN ; µ)− b(λk+1

N , vN ) = fk+θ(vN ; µ),

b(ηN − λk+1
N , uk+1

N ) ≥ gk+1(ηN − λk+1
N ; µ),

which implies that (uk+1
N , λk+1

N ) ∈ VN×MN solves the reduced problem (4.4.3). Using
the uniqueness of the solution, we obtain uk+1

N = uk+1
N and λk+1

N = λk+1
N , k ∈ I.

We comment on the regularity of the solution w.r.t. the parameter. In particu-
lar, the solution of the reduced problem is Lipschitz continuous, if the data is also
Lipschitz continuous, see, e.g., [HSW12].

4.5 A Posteriori Error Analysis
In this section we present an a posteriori error analysis of the reduced scheme (4.4.3).
For the derivation we restrict ourselves to the implicit Euler time discretization
scheme, i.e., θ = 1.

4.5.1 Preliminaries
Recall that for linear parabolic problems, the error associated with the reduced basis
approximation is controlled in terms of the equality residuals; see Section 3.4.2. By
contrast, for the current problem an additional error associated with the inequality
constraints should be also taken into account.

For every µ ∈ P, k ∈ I, we define the equality and inequality residuals associated
with the reduced basis approximation as

rk+1(v; µ) := 1
∆t(u

k+1
N (µ)− ukN (µ), v)L2(Ω) + a(uk+1

N (µ), v; µ)

− b(λk+1
N (µ), v)− fk+1(v; µ), ∀v ∈ VN , (4.5.1)

sk+1(η; µ) := b(η, uk+1
N (µ))− gk+1(η; µ). ∀η ∈MN . (4.5.2)

74



4.5 A Posteriori Error Analysis

Note that for every µ ∈ P, λk+1
N ∈MN and λk+1

N ∈MN , we have

b(λk+1
N , uk+1

N (µ))− gk+1(λk+1
N ; µ) = 0, (4.5.3a)

b(λk+1
N , uk+1

N (µ))− gk+1(λk+1
N ; µ) = 0. (4.5.3b)

These properties (4.5.3) are obtained by simply taking η = 0, η = 2λk+1
N (µ) in

(4.3.16b) and η = 0, η = 2λk+1
N (µ) in (4.4.3b).

We also introduce the primal and dual errors associated with the reduced basis
approximation as

eku(µ) := ukN (µ)− ukN (µ), euN (µ) :=
(
eku(µ)

)
k∈I0

, (4.5.4a)

ekλ(µ) : = λkN (µ)− λkN (µ), eλN (µ) :=
(
ek+1
λ (µ)

)
k∈I

. (4.5.4b)

Using the linearity of rk+1(v; µ) and (4.3.16), one has for all v ∈ VN that

rk+1(v; µ) = 1
∆t(e

k+1
u (µ)− eku(µ), v)L2(Ω) + a(ek+1

u (µ), v)− b(ek+1
λ (µ), v). (4.5.5)

For all k ∈ I, we define the Riesz representer r̂k+1(µ) ∈ VN of the equality residuals,
and by ŝk+1(µ) ∈WN the Riesz representer of the inequality residuals:

(v, r̂k+1(µ))V = rk+1(v; µ), ∀v ∈ VN , (4.5.6a)
(η, ŝk+1(µ))W = sk+1(η; µ), ∀η ∈WN . (4.5.6b)

In the error analysis, we make use of the following norm bound

‖v‖L2(Ω) ≤ CΩ‖v‖V , ∀v ∈ VN . (4.5.7)

If V = H1
0 (Ω) with ‖ · ‖V = | · |H1 , then (4.5.7) is the standard Friedrichs-Poincaré

inequality with the Friedrichs-Poincaré constant CΩ.
From now on we assume that ∆t < 1/(2λNa (µ)), and recall, from Chapter 3, the

discrete spatio-temporal norm (3.4.17)

|||v|||µ :=
((

1− 2λNa (µ)∆t
)I ‖vI‖2L2(Ω) + αNa (µ)∆t

I−1∑
k=0

(
1− 2λNa (µ)∆t

)k ‖vk+1‖2V

)1/2

,

(4.5.8)
where v =:

(
vk+1

)
k∈I
∈ VN .

Primal-Dual Error Relation

We recall the following result from [BHS+15], which establishes the connection be-
tween the primal and dual errors and is used later to derive the a posteriori error
bounds.
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Lemma 4.5.1 (Primal-dual error relation). For all µ ∈ P, k ∈ I, the dual error at
each time step tk+1, can be bounded by the primal error as

‖ek+1
λ (µ)‖W ≤

1
βN

(
CΩ

∆t ‖e
k+1
u (µ)− eku(µ)‖L2(Ω) + γNa (µ)‖ek+1

u (µ)‖V + ‖rk+1(µ)‖V ′

)
.

(4.5.9)

Proof. The inf-sup stability of b(·, ·) ensures that for all η ∈ WN there exist an
element v? ∈ VN , v? 6= 0 such that the following holds

βN ‖v?‖V ‖η‖W ≤ b(η, v?).

Taking η := ek+1
λ ∈ WN , using (4.5.5), the Cauchy-Schwarz inequality, and the

continuity of a(·, ·), we obtain

βN ‖v?‖V ‖ek+1
λ ‖W ≤

1
∆t(e

k+1
u − eku, v?)L2(Ω) + a(ek+1

u , v?)− rk+1(v?)

≤ 1
∆t‖e

k+1
u − eku‖L2(Ω)‖v?‖L2(Ω) + γNa ‖ek+1

u ‖V ‖v?‖V + ‖rk+1‖V ′‖v?‖V . (4.5.10)

Applying the norm bound (4.5.7), we obtain the desired result.

Projectors

The derivation of the a posteriori error estimates for saddle point problems with
equality constraints, e.g., for the Stokes problem, [GRV12; GV11], includes the esti-
mate of the norms of residuals ‖rk‖V ′ and ‖sk‖W ′ . By contrast, in our setting, we
are dealing with inequality constraints. Hence, the quantity ‖sk‖W ′ = ‖ŝk‖W is not
a straightforward error estimator component. Estimating the norm of the residual
‖sk‖W ′ would lead to a penalization of both the positive and negative parts of sk.

Hence, to treat the inherent nonlinearity induced by the inequalities, we consider
a family1 of projectors on the cone M̃N ⊂WN , πk+1 : WN → M̃N , k ∈ I, where

M̃N := {η ∈WN : (η, η′)W ≥ 0, η′ ∈MN }. (4.5.11)

4.5.2 A Posteriori Error Estimators
For any µ ∈ P, k ∈ I, we define the following estimators:

δk+1
r (µ) :=‖rk+1(µ)‖V ′ = ‖r̂k+1(µ)‖V , (4.5.12a)
δk+1
s (µ) :=‖ŝk+1(µ)− πk+1(ŝk+1(µ))‖W , (4.5.12b)
δ̃k+1
s (µ) :=(λk+1

N (µ), πk+1(ŝk+1(µ)))W . (4.5.12c)
1 In fact, the projectors πk+1 can be chosen invariant with respect to time and the index k + 1 is

redundant in this case. However, for convenience of further analysis we preserve this index.
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4.5 A Posteriori Error Analysis

The next result, which is a generalization of Theorem 4.2 in [BHS+15] to a non-
coercive bilinear form a(·, ·; µ), establishes an error bound in terms of the estima-
tors (4.5.12).
Theorem 4.5.2. For all µ ∈ P, we obtain the following upper bound for the primal
error:

|||euN (µ)|||µ ≤ ∆u
N (µ) :=

(
‖e0
u‖2L2(Ω) +

I−1∑
k=0

(
1− 2λNa (µ)∆t

)k
dk+1(µ)

)1/2

, (4.5.13)

where

dk+1 = ∆t
αNa

(
δk+1
r + δk+1

s γNa
βN

)2

+
(
CΩδ

k+1
s

βN

)2

+ 2∆tδ
k+1
s δk+1

r

βN
+ 2∆tδ̃k+1

s .

Proof. Taking the test function v := ek+1
u in (4.5.5) and using the G̊arding inequality,

we obtain
1

∆t
(
ek+1
u − eku, ek+1

u

)
L2(Ω)

+ αNa ‖ek+1
u ‖2V − λNa ‖ek+1

u ‖2L2(Ω)

≤ rk+1(ek+1
u ) + b(ek+1

λ , ek+1
u ). (4.5.14)

Using (3.4.11), the first term of the inequality (4.5.14) can be expressed as(
ek+1
u − eku, ek+1

u

)
L2(Ω)

= 1
2‖e

k+1
u ‖2L2(Ω) −

1
2‖e

k
u‖2L2(Ω) + 1

2‖e
k+1
u − eku‖2L2(Ω). (4.5.15)

Using (4.5.3), (4.5.6b), the definition of sk+1(η) and πk+1 (4.5.11), and the fact that
b(λk+1

N , uk+1
N )−gk+1(λk+1

N ) ≥ 0 from (4.3.16b), we can estimate the term b(ek+1
λ , ek+1

u )
in (4.5.14):

b(ek+1
λ , ek+1

u ) = b(λk+1
N , uk+1

N )− b(λk+1
N , uk+1

N )− b(λk+1
N , uk+1

N ) + b(λk+1
N , uk+1

N )
≤ gk+1(λk+1

N )− sk+1(λk+1
N )− gk+1(λk+1

N )− gk+1(λk+1
N ) + gk+1(λk+1

N )
= −sk+1(λk+1

N ) = sk+1(ek+1
λ ) =

(
ek+1
λ , ŝk+1

)
W

= (ek+1
λ , ŝk+1 − πk+1(ŝk+1))W + (ek+1

λ , πk+1(ŝk+1))W
≤ ‖ek+1

λ ‖W ‖ŝk+1 − πk+1(ŝk+1)‖W + (λk+1
N , πk+1(ŝk+1))W

= δk+1
s ‖ek+1

λ ‖W + δ̃k+1
s .

This estimate combined with (4.5.15) and with the Cauchy-Schwarz inequality, ap-
plied to the first term on the right-hand side of (4.5.14), gives rise to:

1
2∆t‖e

k+1
u ‖2L2(Ω) + 1

2∆t‖e
k+1
u − eku‖2L2(Ω) + αNa ‖ek+1

u ‖2V − λNa ‖ek+1
u ‖2L2(Ω)

≤ 1
2∆t‖e

k
u‖2L2(Ω) + δk+1

r ‖ek+1
u ‖V + δk+1

s ‖ek+1
λ ‖W + δ̃k+1

s . (4.5.16)
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Using Lemma 4.5.1 and Young’s inequality (3.4.10) with ε = 1, we can bound the
dual error ‖ek+1

λ ‖W in (4.5.16) as

δk+1
s ‖ek+1

λ ‖W ≤
1

2∆t

(
CΩδ

k+1
s

βN

)2

+ 1
2∆t‖e

k+1
u − eku‖2L2(Ω)

+ δk+1
s

βN

(
γNa ‖ek+1

u ‖V + δk+1
r

)
.

With this estimate, (4.5.16) can be simplified to

1
2∆t‖e

k+1
u ‖2L2(Ω)+αNa ‖ek+1

u ‖2V −λNa ‖ek+1
u ‖2L2(Ω) ≤

1
2∆t‖e

k
u‖2L2(Ω)+

1
2∆t

(
CΩδ

k+1
s

βN

)2

+
(
δk+1
r + δk+1

s γNa
βN

)
‖ek+1
u ‖V + δk+1

s δk+1
r

βN
+ δ̃k+1

s . (4.5.17)

Applying Young’s inequality (3.4.10) with ε =
√
αNa to the third term on the

right-hand side of (4.5.17) gives:(
δk+1
r + δk+1

s γNa
βN

)
‖ek+1
u ‖V ≤

1
2αNa

(
δk+1
r + δk+1

s γNa
βN

)2

+ 1
2α
N
a ‖ek+1

u ‖2V .

Combining the last estimates, we can write (4.5.17) as

1
2∆t‖e

k+1
u ‖2L2(Ω) + 1

2α
N
a ‖ek+1

u ‖2V − λNa ‖ek+1
u ‖2L2(Ω)

≤ 1
2∆t‖e

k
u‖2L2(Ω) + 1

2αNa

(
δk+1
r + δk+1

s γNa
βN

)2

+ 1
2∆t

(
CΩδ

k+1
s

βN

)2

+ δk+1
s δk+1

r

βN
+ δ̃k+1

s .

Multiplying the last inequality by 2∆t(1− 2λNa ∆t)k, k ∈ I, we obtain
(
1− 2λNa ∆t

)k+1
‖ek+1
u ‖2L2(Ω) +

(
1− 2λNa ∆t

)k
∆tαNa ‖ek+1

u ‖2V

≤
(
1− 2λNa ∆t

)k
‖eku‖2L2(Ω) +

(
1− 2λNa ∆t

)k
dk+1,

where

dk+1 = ∆t
αNa

(
δk+1
r + δk+1

s γNa
βN

)2

+
(
CΩδ

k+1
s

βN

)2

+ 2∆tδ
k+1
s δk+1

r

βN
+ 2∆tδ̃k+1

s

Making a summation of the resulting inequalities from k = 0, . . . , I − 1, we obtain
a telescopic sum. Taking the square root provides us with the desired result.
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4.5 A Posteriori Error Analysis

If W = V ′, one may consider an equivalent choice for the family of projectors used
in the a posteriori error estimators. In particular, consider the family of projectors
Πk+1 : VN → V +

N on the cone V +
N = {v ∈ VN : 〈v, η〉V×V ′ ≥ 0, η ∈ MN }, k ∈ I.

Furthermore, introduce the following quantities:

δk+1
s (µ) :=‖sk+1(µ)−Πk+1(sk+1(µ))‖V , (4.5.18a)
δ̃k+1
s (µ) :=〈λk+1

N (µ),Πk+1(sk+1(µ))〉V ′×V . (4.5.18b)

In fact, for this specification, we obtain the same result for a posteriori error estima-
tors.

Proposition 4.5.3. For all µ ∈ P, k ∈ I, the error bounds from Theorem 4.5.2
holds true for the specification of δk+1

s (µ) and δ̃k+1
s (µ) in (4.5.18).

Proof. The proof directly follows from the proof of Theorem 4.5.2, without using the
Riesz representers of the residuals, by directly expressing sk+1(ek+1

λ ) as sk+1(ek+1
λ ) =

〈sk+1, ek+1
λ 〉W ′×W = 〈ek+1

λ , sk+1〉V ′×V .

Under an additional assumption we can further simplify the error bound, which is
stated in the following result.

Proposition 4.5.4. Under the conditions of Theorem 4.5.2, and additionally as-
suming that the projectors πk+1 satisfy the condition

(πk+1(ŝk+1), λk+1
N )W = 0, k ∈ I, (4.5.19)

we obtain that δ̃k+1
s = 0 and the error bounds simplifies accordingly.

Projectors satisfying (4.5.19) have been used in [BHS+15] in the context of the
RBM. We also refer to [Woh11; WW09] where such techniques are applied for finite
element based error estimators in contact mechanics and for obstacle problems.

If we assume that there exists computable (in an offine-online fashion) lower and
upper bounds of the discrete coercivity αNa (µ), continuity γNa (µ), and G̊arding λNa (µ)
constants, and a lower bound of the inf-sup stability constant βN , that is,

0 < αLB
a ≤ αNa (µ), γNa (µ) ≤ γUB

a , λNa (µ) ≤ λUB
a , βN ≥ βLB > 0, (4.5.20)

then, under the assumption ∆t < 1/(2λUB
a ), the computationally expensive, discrete

coercivity, continuity and inf-sup stability constants in the definition of an upper
bound ∆u

N can be replaced by their cheaper computable respective bounds. However,
we still will have only a partial offline-online decomposition of the error bounds, see
Section 4.7.4.
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4.6 Reduced Basis Spaces Construction

In this section, we present an overview of the different methods to build the re-
duced primal ΨN ⊂ VN and dual bases ΞN ⊂ MN . Since we are considering a
time-dependent variational inequality, special care should be taken to appropriately
construct the reduced cone MN as well as to tackle the additional time dimension.

For stationary variational inequalities, one could employ the standard greedy pro-
cedure to iteratively build ΨN and ΞN from the set of snapshots [HSW12; ZBV16].
However, for time dependent variational inequalities, applying a greedy iteration in
both parameter and time may result in a high computational cost. Alternatively,
a POD procedure, Section 3.4.3, which is standard for linear time-dependent prob-
lems, can not be unified with the construction of the dual space, due to the possible
disruption of the positivity of MN .

In this section we describe several strategies which can be applied for a suitable
reduced dual space construction. In particular, we consider the POD-Angle-Greedy
algorithm, the Non-Negative Matrix Factorization (NNMF) algorithm and the stan-
dard greedy procedure. For the primal space, since it does not involve any constraints,
we follow the POD-Greedy algorithm.

Let us also comment on time-dependent variational inequalities treated in a space-
time framework. For this case, there is no need for an additional temporal com-
pression, as the reduction approach is performed in both a time and space, and one
can employ the same greedy strategy as for the stationary variational inequalities,
see [GU14; GU15].

4.6.1 POD-Angle-Greedy Algorithm

The POD-Angle-Greedy algorithm, introduced in [BHS+15; HSW13], consists in
building iteratively and simultaneously the reduced primal and dual bases in a greedy
fashion. In particular, the construction of the primal reduced basis is performed by
the standard POD-Greedy Algorithm 3.1, while for the dual one we employ the
so-called Angle-Greedy procedure, presented in Algorithm 4.1, see also [BHS+15;
HSW13].

We comment on the idea behind the POD-Angle-Greedy algorithm. As in Sec-
tion 3.4.3, we consider a finite training set Ptrain ⊂ P. Given the initial (quite
arbitrary) choice of the reduced basis spaces, we initiate a greedy loop (Step 5). The
loop is repeated Nmax times or until the desired tolerance εtol is reached (Step 7).
Particularly, for given primal and dual spaces at the stage N − 1, we identify the
parameter vector µN in the training set Ptrain, that currently leads to the worst
reduced basis approximation (Step 6). For this parameter, new primal and dual ba-
sis vectors are generated. In particular, the selection of new primal reduced basis
vectors is based on the idea of the POD-Greedy procedure (Step 11), described in
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4.6 Reduced Basis Spaces Construction

Section 3.4.3. The dual reduced basis vectors are selected using an Angle-Greedy
criterion (Step 9–10). The idea is to maximize the volume of the resulting cone, i.e.,
we include the snapshot showing the largest deviation from the current reduced dual
space. That is, the vector λkN (µN ) that maximizes ]

(
λkN (µN ),WN−1

)
, where

](η, Y ) := arccos (‖ΠY η‖W /‖η‖W ) (4.6.1)

denotes the angle between the vector η ∈W and the linear space Y ⊂W , with ΠY η
being an orthogonal projection of η on Y .

Algorithm 4.1 POD-Angle-Greedy Algorithm
Input: Maximum number of iterations Nmax > 0, training sample set Ptrain ⊂ P,

target tolerance εtol
Output: RB bases ΨN , ΞN and RB spaces VN , WN

1: choose arbitrarily µ0 ∈ Ptrain and k′ ∈ I0
2: compute {ukN (µ0)}k∈I0 , {λk+1

N (µ)}k∈I
3: set ξ0 = λk

′
N (µ0)/‖λk′N (µ0)‖W , Ξ0 = {ξ0}, W0 = span{Ξ0}

4: set Ψ0 = orthonormalize
{
uk
′
N (µ0), T ξ0

}
, V0 = span{Ψ0}

5: for N = 1, . . . , Nmax do
6: [εtrain

N ,µN ] = arg maxµ∈Ptrain EN−1(µ)
7: if εtrain

N < εtol then return
8: end if
9: kN = arg maxk∈I

(
]
(
λk+1
N (µN ),WN−1

))
10: ξN = λkN

N (µN )/‖λkN
N (µN )‖W , ΞN = ΞN−1 ∪ {ξN}, WN = span{ΞN}

11: ψN = POD1

({
ukN (µN )−ΠVN−1

(
ukN (µN )

)}
k∈I0

)
12: ΨN = orthonormalize {ΨN−1 ∪ {ψN , T ξN}}, VN = span{ΨN}
13: end for

As it was pointed out in Section 4.4.2, to ensure the stability of the reduced basis
system (4.4.3), we need to guarantee that the reduced basis spaces VN ,WN form an
inf-sup stable pair. For this, we enrich the primal reduced basis by the “supremizers”
(Step 12). This results in |ΨN | ≤ 2Nmax and |ΞN | ≤ Nmax.

In practice, to have smaller and faster reduced models, one may skip the “suprem-
izer enrichment” procedure. However, in this case there is no proof of stability of the
system, see for more details, e.g., [HSW12].

The selection of the “worst” parameter in the greedy loop requires a measure
EN (µ) (Step 6). This error estimator can be chosen similarly as for the POD-
Greedy algorithm (Algorithm 3.1), i.e., a primal projection error or a true error, see
(3.4.19a), (3.4.19b), (3.4.19c) or an a posteriori error bound (4.5.13), Eapost

u (µ) :=
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∆u
N (µ). A combination of the primal and dual errors could be also utilized, e.g.,

EN (µ) = ωuE
true
u (µ) + ωλE

true
λ (µ), where ωu, ωλ ≥ 0 are some weights and

Etrue
λ (µ) :=

(
∆t

I−1∑
k=0
‖ek+1
λ (µ)‖2W

)1/2

=
(

∆t
I−1∑
k=0
‖λk+1

N (µ)− λk+1
N (µ)‖2W

)1/2

.

Remark 4.6.1. For the European option case, due to the absence of the Lagrange
multiplier, the system no longer has a saddle point structure. Hence, in Algorithm 4.1
we omit the supremizer enrichment in Step 12 and the Angle-Greedy routine in
Step 9–10. Then the algorithm reduces to the classical (strong) POD-Greedy al-
gorithm (Algorithm 3.1).

4.6.2 POD-NNMF

Instead of the “angle-greedy” strategy in Algorithm 4.1, one may employ alternative
algorithms which can preserve the positivity constraints for the dual space construc-
tion. One of the choices is the non-negative matrix factorization (NNMF) procedure.

NNMF is a matrix factorization algorithm, which uses non-negativity constraints.
It was introduced in the context of face recognition problems [LS99]. Since then
much research has been done for the theoretical study of the method as well as
for the extension to the different fields of application, e.g, for sound object extrac-
tion [Sma04], image processing, e.g., [LHZ+01; LS99]. In combination with the re-
duced basis method, NNMF was recently applied to contact problems [BAF16] and
compared to the SVD procedure.

Here we briefly describe the main idea behind the NNMF approach. We consider a
non-negative snapshot matrix X ∈ Rm×n, which consist of n data points in Rm. Given
a constant r < m, the non-negative matrix factorization algorithm is a procedure to
find a non-negative matrix Q ∈ Rm×r and another non-negative matrix H ∈ Rr×n,
that solve the problem:

minimize
Q∈Rm×r, H∈Rr×n

‖X−QH‖2F

subject to Q ≥ 0,H ≥ 0.
(4.6.2)

Here, ‖ · ‖F is the Frobenius norm, i.e., for X ∈ Rm×n, it is defined as ‖X‖F =(∑m
i=1

∑n
j=1 X2

ij

)1/2
. We can interpret QH as a compressed from of X, X ≈ QH.

The matrix Q is regarded as a basis matrix and H as an encoding matrix.
We remark that no closed form solutions exist for the minimization problem (4.6.2).

Hence, an appropriate numerical approximation should be utilized to solve it. In
addition, the objective functional is only convex with respect to Q or H, but not in
Q and H together. Hence, most iterative algorithms will converge to a local minima.
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Popular algorithms for NNMF are based on multiplicative update rules, where Q,H
are defined iteratively following the rule, see [LS00; LS99]:

Q← Q ◦ XHT

QHHT
, H← H ◦ QTX

QTQH . (4.6.3)

Here, “◦” denotes an element-wise multiplication (the Hadamard product) and “ ·· ”
denotes an element-wise division. Different choices of the multiplicative update rule
for Q and H lead to different variants of the NNMF algorithm, such as NNMF-
orthogonal [Cho08], NNMF-convolutive [Sma04], NNMF-local [LHZ+01] etc.

The NNMF algorithm also has a geometric interpretation. It can be seen as a
problem of finding a simplicial cone in the positive orthant, which contains the given
data points. In, e.g, [DS04; HSS14] such problem was studied as well as the geometric
conditions presented, under which the factorization is unique.

We incorporate the NNMF strategy for the reduced basis construction. In Algo-
rithm 4.2 one of the variations how to apply NNMF for the dual reduced basis is
presented.

Algorithm 4.2 POD-NNMF-Greedy Algorithm
Input: Maximum number of iterations Nmax > 0, training sample set Ptrain ⊂ P,

target tolerance εtol, initial bases Ψ0, Ξ0, V0 = span{Ψ0},W0 = span{Ξ0}
1: for N = 1, . . . , Nmax do
2: [εtrain

N ,µN ] = arg maxµ∈Ptrain EN−1(µ)
3: if εtrain

N < εtol then return
4: end if
5: compute {ukN (µi)}

I,N
k=0,i=1, {λk+1

N (µi)}
I,N
k,i=1

6: ΞN = NNMFN
({
λk+1
N (µi)

}I,N
k,i=1

)
, WN = span{ΞN}

7: ΨN = PODN

({
ukN (µi)

}I,N
k=0,i=1

)
8: ΨN = orthonormalize {ΨN , TΞN}, VN = span{ΨN}
9: end for

We use an “enrichment by supremizers” to obtain a stable pair of reduced ba-
sis spaces. Note that the algorithm requires given primal and dual initial bases,
which, e.g., can be chosen as in Algorithm 4.1, Steps 1–4. Note, the abbreviation
NNMFN

(
{λk+1
N (µi)}

I,N
k,i=1

)
implies the application of the NNMF procedure (4.6.2)

to the snapshot matrix, consisting of the coefficient vectors of λk+1
N (µ), µ ∈ P, k ∈ I.

That is, if λk(µ) :=
(
λkN ,i(µ)

)NW

i=1
denotes the coefficient vector of λkN (µ), the snap-

shot matrix X is defined as

X :=
[
λ1(µ1), . . . ,λI(µ1), . . . ,λ1(µN ), . . . ,λI(µN )

]
∈ RN×(IN), N ≤ Nmax.
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4.7 Implementation Aspects
In this section we present a method to solve the reduced problem (4.4.3). We describe
several steps of the efficient offline-online computation procedure for the reduced so-
lutions as well as the solver for the reduced system. We highlight the main ingredients
for the computation of the a posteriori error bounds and describe an offline- online
computational procedure.

4.7.1 Algebraic Saddle Point Formulation

We start by providing the algebraic formulation for the detailed and reduced prob-
lems.

Denote by uk+1(µ) ∈ RNV , λk+1(µ) ∈ RNW the coefficient vectors of the detailed
solutions uk+1

N (µ) ∈ VN and λk+1
N (µ) ∈ MN , k ∈ I, µ ∈ P. Introduce the following

high-fidelity matrices and vectors:

M :=
(
(φj , φi)L2(Ω)

)NV

i,j=1
, A(µ) := (a(φj , φi; µ))NV

i,j=1 , B := (b(χj , φi))NV ,NW
i,j=1 ,

fk+θ(µ) :=
(
fk+θ(φi; µ)

)NV

i=1
, gk+1(µ) :=

(
gk+1(χi; µ)

)NW

i=1
.

Note, if χj are the biorthogonal basis functions, the matrix B is a diagonal matrix or
an identity after suitable rescaling of the basis functions. For τ ∈ {θ, (1− θ)}, where
θ ∈ [1/2, 1], we denote

Sτ (µ) := 1
∆tM + τA(µ).

Then the algebraic form of the detailed saddle point problem (4.3.16) reads as follows.

Problem 4.7.1 (Algebraic detailed saddle point problem). For a given µ ∈ P,
θ ∈ [1/2, 1], to find a detailed pair of solutions (uk+1

N (µ), λk+1
N (µ)) ∈ VN ×MN with

the corresponding coefficient vectors (uk+1(µ),λk+1(µ)) ∈ RNV × RNW , k ∈ I, we
need to solve the system of inequalities

Sθ(µ)uk+1(µ)−Bλk+1(µ) = Sθ−1(µ)uk(µ) + fk+θ(µ), (4.7.1a)
λk+1(µ) ≥ 0, (4.7.1b)

BTuk+1(µ)− gk+1(µ) ≥ 0, (4.7.1c)(
λk+1(µ)

)T (
BTuk+1(µ)− gk+1(µ)

)
= 0. (4.7.1d)

The equivalent representation (4.7.1b)–(4.7.1d) of the variational inequality is often
referred to as a complementarity problem (CP) in the literature, see, e.g., [FP03].
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Similarly, for the reduced problem, denote by uk+1
N (µ) ∈ RNV , λk+1

N (µ) ∈ RNW

the coefficient vectors of the reduced solutions uk+1
N (µ) = ∑NV

j=1 uN,jψj ∈ VN and
λk+1
N (µ) = ∑NW

j=1 λN,jξj ∈ MN , k ∈ I, µ ∈ P. Define the following reduced basis
matrices and vectors

MN :=
(
(ψj , ψi)L2(Ω)

)NV

i,j=1
, AN (µ) := (a(ψj , ψi; µ))NV

i,j=1 , BN := (b(ξj , ψi))NV ,NW
i,j=1 ,

fk+θ
N (µ) :=

(
fk+θ(ψi; µ)

)NV

i=1
, gk+1

N (µ) :=
(
gk+1(ξi; µ)

)NW

i=1
.

As previously, for τ ∈ {θ, (1−θ)}, θ ∈ [1/2, 1], we introduce the reduced basis matrix

SτN (µ) := 1
∆tMN + τAN (µ).

Then, in the algebraic form the reduced basis saddle point problem (4.4.3) can be
stated as follows.
Problem 4.7.2 (Algebraic reduced saddle point problem). For a given µ ∈ P,
θ ∈ [1/2, 1], to find a reduced pair of solutions (uk+1

N (µ), λk+1
N (µ)) ∈ VN ×MN with

the corresponding coefficient vectors (uk+1
N (µ),λk+1

N (µ)) ∈ RN × RN , k ∈ I, is
equivalent to solve the following system of inequalities

SθN (µ)uk+1
N (µ)−BNλk+1

N (µ) = Sθ−1
N (µ)ukN (µ) + fk+θ

N (µ), (4.7.2a)
λk+1
N (µ) ≥ 0, (4.7.2b)

BT
Nuk+1

N (µ)− gk+1
N (µ) ≥ 0, (4.7.2c)(

λk+1
N (µ)

)T (
BT
Nuk+1

N (µ)− gk+1
N (µ)

)
= 0, (4.7.2d)

where u0
N (µ) ∈ RNV is obtained by solving

(
(u0
N (µ)− u0

N (µ), ψp)V
)NV

p=1 = 0 (see
Section 3.4.4).

4.7.2 Solution Algorithm
In this section we comment on the solution algorithm for the detailed and reduced
problems. The approach is based on the Primal-Dual-Active-Set strategy (PDAS),
see [HHW10; HIK02], and its adapted version for the reduced problem, see [BHS+15].
The PDAS algorithm is equivalent to a semi-smooth Newton method, which converges
locally superlinearly; see for more details [HIK02].

Detailed problem

For generic coefficient vectors U,Λ ∈ Rn, n > 0, we introduce a non-differentiable
complementarity function C, defined as follows, [FP03; HIK02],

C(U,Λ) := Λ−max (0,Λ + cU) , (4.7.3)
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4 RBM for Parametrized Parabolic Variational Inequalities

where the max operation is understood pointwise with some arbitrary c > 0. For
other choices of the NCP function C(·, ·); see [FP03].

Then we reformulate the system of inequality constrains (4.7.1b)–(4.7.1d) as a
non-linear system of equations or, as often referred to, a non-linear complementarity
problem (NCP). We require:

Sθ(µ)uk+1(µ)−Bλk+1(µ) = Sθ−1(µ)uk(µ) + fk+θ(µ), (4.7.4a)
C(gk+1(µ)−BTuk+1(µ),λk+1(µ)) = 0. (4.7.4b)

To solve (4.7.4), we employ a primal-dual active set strategy, [HIK02], which is de-
scribed in Algorithm 4.3.

Algorithm 4.3 Primal-Dual Active Set Strategy for the Detailed Problem
Input: Initial condition (u0,λ0), e.g., λ0 = 0, number of time steps I
Output: Detailed solution trajectory (uk+1,λk+1), for all k ∈ I

1: for k = 0, . . . , I − 1 do
2: set (uk+1,0,λk+1,0) = (uk,λk)
3: for m = 0, . . . do
4: update the active Am and inactive Im sets

Am := A(gk+1 −BTuk+1,m,λk+1,m),
Im := I(gk+1 −BTuk+1,m,λk+1,m)

5: if m ≥ 1 and Am = Am−1 and Im = Im−1 then
6: (uk+1,λk+1) = (uk+1,m,λk+1,m) and go to Step 9
7: end if
8: compute (uk+1,m+1,λk+1,m+1) by solving

Sθuk+1,m+1 −Bλk+1,m+1 = Sθ−1uk + fk+θ

BTuk+1,m+1 = gk+1, on Am
λk+1,m+1 = 0, on Im.

9: end for
10: end for

For generic coefficient vectors U,Λ ∈ Rn, n > 0, the functions A and I, which are
used to update the active and inactive sets, are defined as follows:

A(U,Λ) = {i : 1 ≤ i ≤ n, (Λ + cU)i ≥ 0} ,
I(U,Λ) = {i : 1 ≤ i ≤ n, (Λ + cU)i < 0} .
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Reduced Problem

Analogously, we can rewrite the system of reduced complementarity inequalities
(4.7.2) as a non-linear complementarity equation.

SθN (µ)uk+1
N (µ)−BNλk+1

N (µ) = Sθ−1
N ukN (µ) + fk+θ

N (µ), (4.7.5a)
C(gk+1

N (µ)−BT
Nuk+1

N (µ),λk+1
N (µ)) = 0. (4.7.5b)

To solve the reduced system (4.7.5), we adapt Algorithm 4.3 to the reduced system,
which comprises Algorithm 4.4.

Algorithm 4.4 Primal-Dual Active Set Strategy for the Reduced Problem
Input: Initial condition (u0

N ,λ
0
N ), e.g., λ0

N = 0, number of time steps I
Output: Reduced solution trajectory (uk+1

N ,λk+1
N ), for all k ∈ I

1: for k = 0, . . . , I − 1 do
2: set (uk+1,0

N ,λk+1,0
N ) = (ukN ,λkN )

3: for m = 0, . . . do
4: update the active Am and inactive Im sets

Am := A(gk+1
N −BT

Nuk+1,m
N ,λk+1,m

N ),
Im := I(gk+1

N −BT
Nuk+1,m

N ,λk+1,m
N )

5: if m ≥ 1 and Am = Am−1 and Im = Im−1 then
6: (uk+1

N ,λk+1
N ) = (uk+1,m

N ,λk+1,m
N ) and go to Step 9

7: end if
8: compute (uk+1,m+1

N ,λk+1,m+1
N ) by solving

SθNuk+1,m+1
N −BNλk+1,m+1

N = Sθ−1
N ukN + fk+θ

N

BT
Nuk+1,m+1

N = gk+1
N , on Am

λk+1,m+1
N = 0, on Im.

9: end for
10: end for

We comment on the difference between Algorithm 4.3 and Algorithm 4.4. As
mentioned before, by an appropriate choice of the dual basis, the matrix B in (4.7.1)
can be an identity matrix. Consequently, the algebraic detailed saddle point problem
in Step 8 in Algorithm 4.3 can be simplified to a system of linear equations on
the inactive set. By contrast, for the reduced problem the matrix BN is full and
not diagonal, which does not allow to perform similar simplification for solving the
algebraic reduced saddle point problem (Step 8 in Algorithm 4.4).
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4.7.3 Offline-Online Computational Procedure
In this section we comment on the efficient offline-online computational procedure for
solving the reduced saddle point problem. Since the steps are very similar to those
outlined in Section 3.4.4, to avoid redundancy, we provide only a brief explanation.

The same as before, we require an assumption of affine parameter dependence of
the parameter dependent bilinear and linear forms. That is, there exist Θa

q : P → R,
Θf,k
q : P → R, such that, for all v ∈ V , µ ∈ P,

a(u, v; µ) =
Qa∑
q=1

Θa
q(µ)aq(u, v), fk(v; µ) =

Qf∑
q=1

Θf,k
q (µ)fkq (v).

In addition, we assume an affine parameter dependence of the obstacle functional,
i.e, there exist Θg,k

q : P → R, such that for all η ∈W , µ ∈ P,

gk(η; µ) =
Qg∑
q=1

Θg,k
q (µ)gkq (η).

Note that the bilinear form b(·, ·) in (4.4.3) is parameter independent. The computa-
tion of the initial condition u0

N (µ) follows the same routine as in Section 3.4.4, and
we will omit its representation here.

Using these assumptions, the offline-online procedure for Problem 4.7.2 can be
summarized as follows. In the offline stage we compute all parameter independent
matrices and vectors,

MN :=
(
(ψj , ψi)L2(Ω)

)NV

i,j=1
∈ RNV ×NV , fkN,q :=

(
fkq (ψi)

)NV

i=1
∈ RNV ,

AN,q := (aq(ψj , ψi))NV
i,j=1 ∈ RNV ×NV , gkN,q :=

(
gkq (ξi)

)NW

i=1
∈ RNW ,

BN := (b(ξj , ψi))NV ,NW
i,j=1 ∈ RNV ×NW .

Then for a given µ ∈ P, we perform an online routine, where we assemble all pa-
rameter dependent matrices and vectors and solve the reduced problem (4.7.2) using,
e.g., Algorithm 4.4,

AN (µ) =
Qa∑
q=1

Θa
q(µ)AN,q, fkN (µ) =

Qf∑
q=1

Θf,k
q (µ)fkN,q, gkN (µ) =

Qg∑
q=1

Θg,k
q (µ)gkN,q.

Using the conformity of the reduced spaces, we can expand the reduced basis functions
ψj , ξj , with respect to the basis functions of VN and WN . That is, ψj = ∑NV

i=1 ψj,iφi,
ξj = ∑NW

i=1 ξj,iχi. Denote by ΨN and ΞN the transformation matrices for the primal
and dual bases respectively,

ΨN = (ψi,j)NV ,NV
i,j=1 ∈ RNV ×NV , ΞN = (ξi,j)NW ,NV

i,j=1 ∈ RNW×NW . (4.7.6)
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Then the reduced matrices and vectors, can be represented via the high-fidelity ones,

MN = ΨT
NMΨN , AN,g = ΨT

NAqΨN , BN = ΨT
NBΞN ,

fkN,q = ΨT
N fkN,q, gkN,q = ΞT

NgkN,q.

Note that for our computations we require an evaluation of fk+θ(µ) instead of
fk(µ). We refer to Section 3.4.4 where it has been discussed in detail.

Let us comment on the affine parameter dependence for the particular case of the
Black-Scholes or Heston models. For both models, as it was shown in Section 3.4.4,
the bilinear and linear forms admit an affine decomposition. An affine decompo-
sition of the linear forms fk(·; µ), gk(·; µ) depends on the affine decomposition of
the boundary data and an obstacle functional. Note that in the present case these
quantities are parameter-independent, cf. (4.2.2).

4.7.4 A Posteriori Estimates
In this section we comment on the computational procedure of the a posteriori er-
ror bounds presented in Section 4.5. We remark, that in contrast to the RBM for
linear problems, a posteriori error bounds for variational inequalities involve the
computation of the non-linear projection, which admits only a partial offline-online
decomposition.

Recall, that the discrete spaces VN and WN can be written in terms of their bases,

VN = span{φp, p = 1, . . . ,NV }, WN = span{χq, q = 1, . . . ,NW }.

As before, for all µ ∈ P, k ∈ I, let uk+1
N (µ), λk+1

N (µ) be the coefficient vectors of
uk+1
N (µ) and λk+1

N (µ) respectively.
Denote by η,η′ ∈ RNW and v,v′ ∈ RNV the coefficient vectors of η, η′ ∈ WN

and v, v′ ∈ VN , respectively. The computation of a posteriori quantities requires the
evaluation of the inner products on VN and WN , i.e.,

(v, v′)V = vTMV v′, (η, η′)W = ηTMWη′, (4.7.7)

with inner product matrices MV and MW ,

MV := ((φi, φj)V )NV
i,j=1, MW := ((χi, χj)W )NW

i,j=1. (4.7.8)

In some cases, the primal and dual inner product matrices can be related, see,
e.g., [HSW11, Appendix A.2], which is stated in the following proposition.

Proposition 4.7.1. If W = V ′ and taking the dual basis functions for WN we have
that MW = M−1

V . Moreover, if MV is an M -matrix, then for all η, η′ ∈ MN , one
obtains the additional property

(η, η′)W ≥ 0. (4.7.9)
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Proof. By taking the dual basis functions on the same mesh as primal ones, one has
NV = NW = N . Recall, that for η ∈ WN , by the Riesz representation theorem,
there exist an element η̂ ∈ VN , such that for all v ∈ VN , (η̂, v)V = η(v). Let η̂ be the
coefficient vector of η̂, then

(η̂, v)V = η̂TMV v = ηTv,

and hence η̂ = M−1
V η. Then for η, η′ ∈WN ,

ηTMWη′ = (η, η′)W = (η̂, η̂′)V = η̂TMV η̂′ = (M−1
V η)TMV (M−1

V η′) = ηTM−1
V η′.

If MV is an M -matrix, that is, the matrix with positive diagonal and negative off-
diagonal elements, then its inverse, M−1

V , has positive entries. Then choosing η, η′ ∈
MN , by the definition of MN , we have η,η′ ≥ 0 and (4.7.9) follows directly.

Remark 4.7.1. For some cases, e.g., for the finite element formulation of the
Laplace operator on a triangular mesh with “well-shaped” elements, one obtains an
M -matrix [Ber03]. “Well-shaped” means, that the sum of two angles, which are op-
posite to each interior edge, should be not more than 180◦.

Computation of the Equality Residual Norm

In this section we discuss the computational procedure for the a posteriori error
bounds. For simplicity of representation, in this section we restrict our consideration
to the case of the implicit Euler time-stepping scheme, i.e., θ = 1.

The computation of the error bounds involves the computation of the norm of the
equality residual δk+1

r := ‖rk+1(µ)‖V ′ , defined in (4.5.12a). We comment on the
procedure, which allows to perform this computation in the offline-online manner.

Using affine parameter dependence of the bilinear and linear forms, the resid-
ual (4.5.1) can be written as follows

rk+1(v; µ) := 1
∆t

NV∑
i=1

(uk+1
N,i (µ)− ukN,i(µ))(ψi, v)L2(Ω) +

Qa∑
q=1

NV∑
i=1

Θa
q (µ)uk+1

N,i (µ)aq(ψi, v)

−
NW∑
i=1

λk+1
N,i (µ)b(ξi, v)−

Qf∑
q=1

Θf,k+1
q (µ)fk+1

q (v), v ∈ VN .

Introduce the coefficient vector with Qr = NV +QaNV +NW +Qf components,

Θr,k+1(µ) :=
(

Θr,k+1
1 (µ), . . . ,Θr,k+1

Qr
(µ)
)T

:=
(

1
∆t (u

k+1
N − ukN )T , (uk+1

N )TΘa
1 , . . . , (uk+1

N )TΘa
Qa
,−(λk+1

N )T ,−Θf,k+1
1 , . . . ,−Θf,k+1

Qf

)T
.
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Following a similar ordering we define

(
rk+1

1 (·), . . . , rk+1
Qr

(·)
)T

:=
(
(ψ1, ·)L2(Ω), . . . , (ψNV

, ·)L2(Ω), . . .

a1(ψ1, ·), . . . , a1(ψNV
, ·), . . . , aQa(ψ1, ·), . . . , aQa(ψNV

, ·), . . .

b(ξ1, ·), . . . , b(ξNW
, ·), fk+1

1 (·), . . . , fk+1
Qf

(·)
)T
.

It follows, that the residual admits an affine decomposition, i.e.,

rk+1(v; µ) =
Qr∑
q=1

Θr,k+1
q rk+1

q (v).

Denote by r̂k+1
q the Riesz representer of rk+1

q , i.e, rk+1
q (v) = (v, r̂k+1

q )V , then we
obtain

(v, r̂k+1(µ))V = rk+1(v; µ) =
Qr∑
q=1

Θr,k+1
q (µ)rk+1

q (v) =
Qr∑
q=1

Θr,k+1
q (µ)(v, r̂k+1

q )V ,

(4.7.10)
hence, we recover the affine decomposition of the Riesz representer,

r̂k+1(µ) =
Qr∑
q=1

Θr,k+1
q (µ)r̂k+1

q .

Then the computation of the norm of the residual leads to the computation

‖rk+1(µ)‖2V ′ =
Qr∑
q=1

Qr∑
q′=1

Θr,k+1
q (µ)(r̂k+1

q , r̂k+1
q′ )V ,

or in matrix form

‖rk+1(µ)‖2V ′ = (Θr,k+1(µ))TGk+1
r Θr,k+1(µ), (4.7.11)

where Gk+1
r :=

(
(r̂k+1
q , r̂k+1

q′ )V
)Qr

q,q′=1
∈ RQr×Qr . Then an offline-online procedure

looks as follows: in the offline stage, for each k ∈ I, we compute the Gramian matrix
Gk
r with the costO(IQrN2

V +IQ2
rNV ). In the parameter dependent online routine, we

evaluate (4.7.11) for each time step k ∈ I, with the cost O(IQ2
r), which is independent

of NV .
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Computation of the Inequality Residual Norm

Next, we describe the computation of the quantities, associated with the inequality
residual. Depending on the choice of the projection πk+1 or Πk+1, k ∈ I, we require
the evaluation of δk+1

s , δ̃k+1
s , defined in (4.5.12) or (4.5.18), respectively.

We define πk+1 : WN → M̃N as in [BHS+15; HSW11; HSW12],

πk+1(η) = π(η) =
NW∑
i=1

πiχi, π = (πi)NW
i=1 := M−1

W [MWη]+, (4.7.12)

where [·]+ denotes the component-wise positive part of the vector. Additionally, to
ensure the validity of the assumption (4.5.19), we denote by λ̃k+1

N (µ) ∈ RNW , k ∈ I,
µ ∈ P, the coefficient vector of the reduced solution λk+1

N (µ) represented in the
detailed basis, and define the family of projections πk+1 as

πk+1(η) =
NW∑
i=1

πk+1
i χi, πk+1 = (πk+1

i )NW
i=1 := M−1

W

(
[MWη]+ ◦ I{λ̃k+1

N =0}

)
.

(4.7.13)

Here, “◦” denotes the Hadamard product and I{λ̃k+1
N =0} =

(
I{λ̃k+1

N,i =0}

)NW

i=1
is defined

as

I{λ̃k+1
N,i =0} =

{
0 if λ̃k+1

N,i 6= 0,
1 else,

(4.7.14)

where λ̃k+1
N,i denotes the i-th component of the vector λ̃k+1

N .
Taking into account that ŝk+1(µ) = M−1

W sk+1(µ), the error estimators δk+1
s (µ),

δ̃k+1
s (µ), as in (4.5.12), can be expressed as follows:

(δk+1
s (µ))2 =

(
ŝk+1(µ)−M−1

W [MW ŝk+1(µ)]+
)T MW

(
ŝk+1(µ)−M−1

W [MW ŝk+1(µ)]+
)

=
(
M−1

W sk+1(µ)−M−1
W [sk+1(µ)]+

)T MW

(
M−1

W sk+1(µ)−M−1
W [sk+1(µ)]+

)
=
(
sk+1(µ)− [sk+1(µ)]+

)T M−1
W

(
sk+1(µ)− [sk+1(µ)]+

)
.

δ̃k+1
s (µ) =

(
λ̃k+1
N (µ)

)T
MW

(
M−1

W [MW ŝk+1(µ)]+
)

=
(

λ̃k+1
N (µ)

)T
[sk+1(µ)]+.

With the choice of the projection (4.7.13), we directly arrive in the following,

(δk+1
s (µ))2 =

(
sk+1(µ)− [sk+1(µ)]+ ◦ I{λ̃k+1

N
=0}

)T
M−1

W

(
sk+1(µ)− [sk+1(µ)]+ ◦ I{λ̃k+1

N
=0}

)
.

δ̃k+1
s (µ) =

(
λ̃k+1
N (µ)

)T
[sk+1(µ)]+ ◦ I{λ̃k+1

N
=0} = 0.
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Both projections (4.7.12) and (4.7.13) are associated to a similar computational
cost, and numerically we did not observe significant differences in the quality of
the error estimator with either choice of the projection. Therefore, in the following
numerical experiments we focus on the case (4.7.12).

In the specific case W = V ′ we can base our error estimate on the alternative
derivation in Proposition 4.5.3. In this case, we define Πk+1 : VN → VN as follows:

Πk+1(v) = Π(v) =
NV∑
i=1

Πiφi, Π = (Πi)NV
i=1 := [v]+. (4.7.15)

Then we directly obtain the following expressions for the quantities (4.5.18):

(δk+1
s (µ))2 =

(
sk+1(µ)− [sk+1(µ)]+

)T
MV

(
sk+1(µ)− [sk+1(µ)]+

)
.

δ̃k+1
s (µ) =

(
λ̃k+1
N (µ)

)T
[sk+1(µ)]+.

Assuming that dual basis functions are employed, we have that MV = M−1
W ; see

Proposition 4.7.1. Comparing now the estimator quantities derived with the projec-
tions (4.7.12) and (4.7.15), we observe that in both cases we obtain an equivalent
result. This provides an approach with a simpler derivation in this specific setting.

In contrast to the offline-online decomposition of the equality residual norm, we
can observe that the computation of the inequality residual norm is not offline-online
decomposable. The online computation remain dependent on the dimension of a
high-fidelity problem NW . However, since the evaluation of the specific choice of πk+1

requires only a coordinate-wise application of the max function and a multiplication
with MV (no “solution” operation), the computational cost of this operation is very
low. Alternatively, one may treat inequality constraints by the primal-dual approach
by introducing an auxiliary dual (or slack) variable, see [ZBV16]. The advantage of
this transformation is the possibility of obtaining a fully offline-online decomposable
error bounds. However, this approach imposes additional restrictions and requires a
solution of a supplementary reduced basis problem.

4.8 Numerical Results
For our numerical simulation we chose X = H1(Ω), V = H1

ΓD
= {v ∈ X : v|ΓD = 0}

with ‖ ·‖V = | · |H1 , and W = V ′. The polygonal domain Ω ⊂ Rd, d = 1, 2, is resolved
by a triangulation TN , consisting of J simplices T jN , j = 1, . . . , J . The discrete spaces
are defined as in Chapter 3, that is,

XN := {v ∈ X : v|T j
N
∈ P1(T jN ), 1 ≤ j ≤ J}, VN = XN ∩ V.
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4 RBM for Parametrized Parabolic Variational Inequalities

We can represent XN = span{φp, p = 1, . . . ,N + ND} and VN = span{φp, p =
1, . . . ,N}, where φi are the nodal Lagrange basis functions and N stands for the
number of inner nodes and NX = N +ND for the number of all nodes.

For the discretization of the dual space W , we use discontinuous piecewise linear
biorthogonal basis functions, which are defined on the same mesh as the basis func-
tions of VN , [Woh00; Woh01; Woh11]. That is, WN := span{χq, q = 1, . . . ,N},
where χq satisfy a local biorthogonality relation:∫

T j
N

χqφp = δp,q

∫
T j
N

φp ≥ 0, p, q = 1, . . . ,N .

Recall, that the discrete cone MN ⊂WN is given as

MN = span+{χq}
NW
q=1 :=

{
η ∈WN : η =

NW∑
q=1

αqχq, αq ≥ 0
}
. (4.8.1)

We can observe that χq 6∈ M , i.e., MN 6⊂ M , and we obtain a non-conforming
approach with respect to the Lagrange multiplier; see Remark 4.3.1.

If not specified, we establish the following setting to perform the numerical sim-
ulations. The computational domain Ω is set to Ω = (xmin, xmax) = (−5, 5) for the
Black-Scholes model and to Ω = (νmin, νmax) × (xmin, xmax) = (10−5, 3) × (−5, 5)
for the Heston model. For the Black-Scholes model we set NX = 500 nodes and for
Heston NX = 49×97 = 4753 nodes. The time domain [0, T ] with T = 2 is discretized
with a uniform mesh with ∆t = 0.008 and I = 250. We consider the implicit Euler
discretization, i.e., θ = 1.

Recall the model parameter µ = (σ, q, r) ∈ P for the Black-Scholes model and
µ = (ξ, ρ, γ, κ, r) ∈ P for the Heston model. We consider the following specifications
of P for the Black-Scholes model:

P ≡ [0.2, 0.6]× [0.014, 0.06]× [0.001, 0.06] ⊂ R3, (4.8.2a)
P ≡ [0.2, 0.6]× [0, 0.02]× [0.001, 0.06] ⊂ R3, (4.8.2b)

and for the Heston model

P ≡ [0.1, 0.9]× [−0.95, 0.95]× [0.01, 0.5]× [0.1, 5]× [0.0001, 0.8] ⊂ R5. (4.8.2c)

Since the purpose of this section is to study the approximation qualities and the
properties of the reduced basis method for large variations of the parameters, we do
not restrict ourselves only to the financially meaningful ranges of the parameter and
allow, e.g., cases when the Feller condition (2.6.2) is not fulfilled.

To generate the basis we consider a finite set Ptrain composed of values, which are
equidistantly distributed in P. The size |Ptrain| will be specified in each particular
case. The strike K is set to K = 1.
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4.8 Numerical Results

4.8.1 Detailed Solution

Based on the discretization described above, the detailed solution of an American
option price in the Black-Scholes and Heston models are depicted in Figure 4.1 and
Figure 4.2 respectively.
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Figure 4.1: A time evolution of the American put option in the Black-Scholes model
ukN (µ) for µ? = (06, 0.014, 0.04) (left), and the corresponding Lagrange
multiplier λkN (µ) (middle). The price of the option in the original stock
price variable S, S = Kex, (right, zoomed in view).

Figure 4.2: The value of the American put option uIN (µ) and its pay-off (left) and the
corresponding Lagrange multiplier λIN (µ) (right) in the Heston model at
t = T = 2 and corresponding to µ? = (0.9, 0.21, 0.16, 3, 0.01).

To motivate the application of the reduced basis method, we demonstrate the vari-
ability of the solution with respect to the parameter µ ∈ P. In Figure 4.3, the
variation of the primal and dual solutions of the Black-Scholes model for different
parameter values is visualized. While one of the parameters is varying, the rest are
fixed and take the values of the reference parameter µ? = (0.6, 0.06, 0.06). We ob-
serve, that biggest alteration of the solution corresponds to the volatility parameter σ.
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4 RBM for Parametrized Parabolic Variational Inequalities

Analogously for the Heston model, the snapshots of the solution for different param-
eter values are presented in Figure 4.4. Overall, for both models we can observe that
the parameter dependence is significant and non-trivial.
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Figure 4.3: Snapshots of the primal solutions (top) and corresponding Lagrange mul-
tipliers (bottom) in the Black-Scholes model at T = 2 for different values
of σ, q, and r.

4.8.2 Reduced Basis Spaces Construction
Since the approximation quality of the reduced basis method depends on many fac-
tors, such as the smoothness of the parameter manifold and the complexity of the
underlying model, we first study the influence of the parameter complexity of each
model. We consider different dimensions of the parameter domain P. In particular,
we consider for the Black-Scholes model the following cases:

(B1) µ = σ ∈ P, P := [0.2, 0.6] ⊂ R1, cf. (4.8.2b);

(B2) µ = (σ, q, r) ∈ P, P := [0.2, 0.6]× [0.014, 0.06]× [0.001, 0.06] ⊂ R3, cf. (4.8.2a).

Accordingly, for the Heston model we choose:

(H1) µ = (γ, κ) ∈ P, P := [0.01, 0.5]× [0.1, 5] ⊂ R2, cf. (4.8.2c);

(H2) µ = (ξ, ρ, γ) ∈ P, P := [0.1, 0.9]× [−0.95, 0.95]× [0.01, 0.5] ⊂ R3, cf. (4.8.2c).

The remaining parameters we fix to the values of the reference parameter vector
µ? = (0.4, 0, 0.001) for the Black-Scholes model and µ? = (0.9, 0.21, 0.16, 0.1, 0.007)
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4.8 Numerical Results

Figure 4.4: Snapshots of the primal solutions (top) and corresponding Lagrange mul-
tipliers (bottom) in the Heston model for different values of ξ, ρ, and γ
at T = 2. The remaining parameters are set to r = 0.007, κ = 0.1.

for the Heston model. If not stated otherwise, we always follow the enrichment by
supremizers strategy to guarantee the stability of the reduced spaces. Recall, that in
this case we obtain NV ≤ 2Nmax and NW ≤ Nmax.

For the case (B1) of the Black-Scholes model, we consider |Ptrain| = 50 equidis-
tantly distributed points. For the construction of the reduced bases, we apply POD-
Angle-Greedy (Algorithm 4.1), with the true error EN (µ) = ωuE

true
u (µ)+ωλEtrue

λ (µ)
as the selection criterion, for some weights ωu, ωλ ∈ R+. The evolution of the error
produced by the algorithm using different weights for the error indicators is depicted
in Figure 4.5. We observe, that in all cases the error is decaying with growing value
of Nmax. Moreover, it can be seen, that despite the choice of the weights ωu, ωλ of
the error indicator, we obtain the same convergence order of the error.

Now, we consider the reduced basis performance for the Heston model. First, we
consider the case (H1). Using Ptrain with |Ptrain| = 64, we build the reduced bases
using Algorithm 4.1 with EN (µ) = Etrue

u (µ). The evolution of the error is presented
in Figure 4.6 (left). In addition, in the same figure (right) we plot the parameters
which were selected during the iterations of the algorithm. As before, the diameter
of the circles corresponds to the “frequency of the selection” of the parameters.

Next, we consider the remaining case (B2) for the Black-Scholes model and the
case (H2) for the Heston model. For both models we use Ptrain of |Ptrain| = 73 = 343
uniformly distributed points. The reduced bases are built with Algorithm 4.1 using
EN (µ) = Etrue

u (µ). The evolution of the error is presented in Figure 4.7 (left) and
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Figure 4.5: Evolution of maxµ∈Ptrain E
true
u/λ (µ) for the American put option in the

Black-Scholes model (case (B1)) during the iterations of Algorithm 4.1
using the error estimator EN (µ) = ωuE

true
u (µ) + ωλE

true
λ (µ) as a selec-

tion criterion with ωu = 1, ωλ = 0 (left), ωu = 0, ωλ = 1 (middle) and
ωu = ωλ = 0.5 (right).
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Figure 4.6: Left: Evolution of maxµ∈Ptrain E
true
u (µ) for the American put option in the

Heston model produced by Algorithm 4.1 with µ = (γ, κ). Right: Plot
of the selected parameters µ1, . . . ,µNmax ∈ Ptrain and their frequency of
the selection. The training set consists of |Ptrain| = 82 = 64 equidistantly
distributed points.

Figure 4.8 (left) for the Black-Scholes and Heston models respectively. For both cases
we observe an error decay with increasing dimension of the reduced system. However,
it can be observed that the convergence of the error for the Heston model is much
slower than for the Black-Scholes model. The RBM requires more than twice the
number of basis functions to reach a similar accuracy. This can be explained by, e.g.,
the non-trivial parameter dependence as well as the complexity of the Heston model.
Due to a non-linearity of the variational inequality problem we can clearly observe
that the error decay for American put options is much slower than for European put
options, see Section 3.5. To achieve a similar accuracy for American options, one
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clearly needs to work with the larger dimension of the reduced problem.
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Figure 4.7: Left: Evolution of maxµ∈Ptrain E
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u (µ) for the American put option in

the Black-Scholes model produced by Algorithm 4.1 with µ = (σ, q, r).
Right: Plot of the selected parameters µ1, . . . ,µNmax ∈ Ptrain and their
frequency of the selection. The training set consists of |Ptrain| = 73 = 343
equidistantly distributed points.
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Figure 4.8: Left: Evolution of maxµ∈Ptrain E
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u (µ) for the American put option in the

Heston model produced by Algorithm 4.1 with µ = (ξ, ρ, γ). Right: Plot
of the selected parameters µ1, . . . ,µNmax ∈ Ptrain and their frequency of
the selection. The training set consists of |Ptrain| = 73 = 343 equidistantly
distributed points.

Using the computed reduced basis sets ΨN , ΞN (constructed as described above,
for the cases (B2) and (H2)), we construct reduced basis spaces VN and WN of
dimension NV = 80, NW = 40 for the Black-Scholes model and NV = 200, NW = 100
for the Heston model. We consider the performance of the RB approach for a random

99



4 RBM for Parametrized Parabolic Variational Inequalities

parameter µ? ∈ P \ Ptrain. The results are depicted in Figure 4.9 and Figure 4.10
for the Black-Scholes and Heston models respectively. We observe that in both cases
the detailed primal and reduced solutions are hardly distinguishable and the relative
error in the maximum norm is of order 10−4, which reveals a good RB approximation.
The illustration of the RB basis vectors for the Black-Scholes model are presented in
Figure 4.11.
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Figure 4.10: Detailed and reduced primal solutions (left) and the corresponding de-
tailed and reduced dual solutions (middle) of the American put op-
tion in the Heston model at T = 2, extracted at ν = 0.25, and for
µ? = (0.7, 0.2, 0.16, 0.1, 0.007) 6∈ Ptrain. The difference of the primal
detailed and reduced solutions (right).

4.8.3 Comparison of Different RB Spaces
In our previous test we exploit the POD-Angle-Greedy, Algorithm 4.1. Now, we
present numerical tests for the alternative approaches. That is, we investigate the
combination of the NNMF algorithm with POD-Greedy algorithm, described in Sec-
tion 4.6.2.
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Figure 4.11: The first eight vectors of the primal (left) and dual (right) reduced bases
obtained with Algorithm 4.1 using Etrue

u (µ) as a selection criterion for
the American put option in the Black-Scholes model.

We restrict ourselves to the Heston model and consider the following settings:
Ω = (0.0025, 0.5)× (−5, 5), NX = 4753, T = 1, I = 20. The parameter specifications
are chosen as in the case (H1) with |Ptrain| = 102 = 100 equidistantly distributed
points. For the primal space construction we apply POD-Greedy, Algorithm 4.1,
and for the dual one we explore and compare different approaches, such as NNMF,
greedy or Angle-Greedy. Furthermore, using different multiplicative update rules
for the NNMF algorithm we consider several variants of NNMF, such as NNMF-
orthogonal, NNMF-local and NNMF-convolutive. The corresponding simulations
for NNMF are performed using the NMFlib (v0.1.3) [Gri10] library. We consider
Algorithm 4.2 with EN (µ) = Etrue

u (µ), and we build the reduced basis spaces with
Nmax = 5, 10, 15, 25, 35. As before, for stability reasons, we enrich the reduced primal
space with the supremizers, which results in NV ≤ 2Nmax and NW ≤ Nmax. The
values of maxµ∈Ptrain EN (µ) obtained during the iterations of the basis construction
algorithm for different Nmax and different strategies for the construction of WN are
reported in Table 4.1.

Method Nmax = 5 Nmax = 10 Nmax = 15 Nmax = 25 Nmax = 35
Angle-Greedy 1.163e− 01 5.764e− 02 2.452e− 02 1.192e− 02 8.944e− 03
NNMF 1.374e− 01 5.565e− 02 2.647e− 02 1.330e− 02 1.057e− 02
NNMF-orthogonal 1.174e− 01 5.621e− 02 3.218e− 02 1.880e− 02 2.164e− 02
NNMF-local 1.178e− 01 5.004e− 02 3.060e− 02 2.351e− 02 1.652e− 02
NNMF-convolutive 1.173e− 01 5.413e− 02 2.692e− 02 1.357e− 02 1.172e− 02
Greedy 1.170e− 01 5.630e− 02 2.459e− 02 1.641e− 02 1.251e− 02

Table 4.1: Comparison of the maximal training errors produced by the different basis
construction algorithms.
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Overall, we observe that all algorithms produce a similar accuracy for the approx-
imation. The graphical representation of these results is given in Figure 4.12. The
corresponding selected parameters, obtained during the basis generation routine are
presented in Figure 4.13. We can observe that Angle-Greedy, NNMF-convolutive,
and greedy procedures provide the most stable and sharp approximations. Com-
paring the distribution of the parameters in Figure 4.13 we can conclude that the
Angle-Greedy tends to exploit more of the parameter variation of the model than the
other approaches.

N
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Figure 4.12: Evolution of maxµ∈Ptrain E
true(µ) with respect to the different dimension

Nmax using different algorithms for the the dual reduced space construc-
tion.

4.8.4 A Posteriori Error Estimates

We now turn to the numerical investigation of the error estimates derived in Sec-
tion 4.5 using the example of American put options in the Black-Scholes and He-
ston models. For the Heston model we consider the same settings, introduced
at the beginning of this section. Namely, the computational domain Ω is set to
Ω = (10−5, 3)× (−5, 5) with NX = 49× 97 = 4753 nodes. We recall the time domain
[0, T ] = [0, 2] and ∆t = 0.008, I = 250, θ = 1.

We consider POD-Angle-Greedy algorithm (Algorithm 4.1) for basis construction,
and use alternatively EN (µ) = Eµ

u (µ) = |||euN (µ)|||µ or EN (µ) = Eapost
u (µ) =

∆u
N (µ), with the error bound Eapost

u (µ) defined as in (4.5.13) and Eµ
u (µ) as in (4.5.8).

To measure the rate of overestimation of the a posteriori error bounds, we define the
effectivity ηN (µ), associated with the error bound as

ηN (µ) = Eapost
u (µ)
Eµ
u (µ) . (4.8.3)
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Figure 4.13: The selected parameters µ1, . . . ,µNmax ∈ Ptrain and their frequency of
the selection using different algorithms for the dual reduced space con-
struction.

We consider the values of the quantity maxµ∈Ptrain EN (µ) along the iterations of
Algorithm 4.1, with EN (µ) = Eapost

u (µ).

Single Parameter Case

To study the effect of the error estimator, first, we consider Ptrain, composed of
only a single parameter µ, |Ptrain| = 1, with µ = (0.6, 0.0217, 0.001) for the Black-
Scholes model, and µ = (0.9,−0.6333, 0.01, 0.1, 0.007) for the Heston model. The
corresponding results for both models are presented in Figure 4.14. We can observe
that the error bound is tighter in the case of the Black-Scholes model. In fact, the
effectivity ηN (µ) for the Black-Scholes model is, on average, one order of magnitude
smaller as for the Heston model. This can be explained by the more complex structure
of the model. Taking a look on the constants contributing to the error estimator
Eapost
u (µ) for a given µ, we obtain the following values: αNa (µ) = 0.18, γNa (µ) =

0.3717, λNa (µ) = 0, γNa (µ)/αNa (µ) ≈ 2.065 for the Black-Scholes model and αNa (µ) =
0.0226, γNa (µ) = 2.447, λNa (µ) = 24.909, γNa (µ)/αNa (µ) ≈ 108.27 for the Heston
model. We observe that, for instance, the quotient γNa (µ)/αNa (µ), which certainly
influences the effectivity of the error bound, is much larger for the Heston model.
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Figure 4.14: Evolution of maxµ∈Ptrain E
µ/apost
u (µ) for the American put option in the

Black-Scholes (left) and Heston (right) models during the iterations of
Algorithm 4.1 with the error estimator E(µ) = Eapost

u (µ) as a selec-
tion criterion, using Ptrain ≡ {µ} = {(0.6, 0.0217, 0.001)} for the Black-
Scholes and Ptrain ≡ {µ} = {(0.9,−0.6333, 0.01, 0.1, 0.007)} for the He-
ston models.

General Parameter Case

Next, we extend our consideration to the general case. Namely, we consider the
settings (B1)–(B2) for the Black-Scholes model and (H2) for the Heston model (de-
scribed in Section 4.8.2). As before, we study the evolution of maxµ∈Ptrain EN (µ)
during the iterations of Algorithm 4.1, choosing either EN (µ) = Eµ

u (µ) or EN (µ) =
Eapost
u (µ) as the selection criterion. The results are presented in Figure 4.15 and

Figure 4.16 for the Black-Scholes model, and in Figure 4.17 for the Heston model.
Note that the choice of the error measure EN (µ) does not have a significant impact
on the effectivities.

We notice that for both models, using EN (µ) = Eµ
u (µ) as an error measure in

Algorithm 4.1, results in less monotone error convergence of Eapost
u (µ) with respect

toNmax, and vice versa. However, overall we obtain similar order of convergence when
using either of these error indicators. From this we can conclude that the rigorous
upper bound of the error is confirmed in the numerical experiments and reflects the
error behavior, hence provides the certification of the reduced basis method. As we
have already observed, the sharpness of an error bound can be model dependent,
which could be investigated in greater detail in a future work.

In addition, we investigate the effect of the maturity T (length of the time interval)
on the effectivities. To this purpose, for the same reduced bases computed above, we
also evaluate the error indicators with T̃ = ∆tĨ where Ĩ ∈ N, Ĩ ≤ I. It is clear that
the result from Theorem 4.5.2 remains valid if we replace I by Ĩ in the definition of
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the error Eµ
u (µ) and the estimator Eapost

u (µ). Numerical values of the corresponding
effectivities are reported in Table 4.2 and Table 4.3.

We point out that the error bound (4.5.13) includes the term (CΩδ
k+1
s /βN )2, which

does not have a multiplicative factor ∆t. This suggest a possible growth of an error
in the number of the time steps. However, empirically this behavior can be observed
rather weakly (see Table 4.2 and Table 4.3).
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Figure 4.15: Evolution of maxµ∈Ptrain E
µ/apost
u (µ) for the American put option in the

Black-Scholes model during the iterations of Algorithm 4.1 with the error
estimator EN (µ) = Eµ

u (µ) (left) and EN (µ) = Eapost
u (µ) (right) as a

selection criterion. The training set consists of |Ptrain| = 50 equidistantly
distributed points and µ = σ.
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Figure 4.16: Evolution of maxµ∈Ptrain E
µ/apost
u (µ) for the American put option in the

Black-Scholes model during the iterations of Algorithm 4.1 with the er-
ror estimator EN (µ) = Eµ

u (µ) (left) and EN (µ) = Eapost
u (µ) (right) as

a selection criterion. The training set consists of |Ptrain| = 343 equidis-
tantly distributed points and µ = (σ, q, r).
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Figure 4.17: Evolution of maxµ∈Ptrain E
µ/apost
u (µ) for the American put option in the

Heston model during the iterations of Algorithm 4.1 with the error es-
timator EN (µ) = Eµ

u (µ) (left) and EN (µ) = Eapost
u (µ) (right) as a

selection criterion. The training set consists of |Ptrain| = 343 equidis-
tantly distributed points and µ = (ξ, ρ, γ).
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Ĩ = 30 Ĩ = 60 Ĩ = 120 Ĩ = 180 Ĩ = 250
Nmax = 5 1.74e+01 2.44e+01 2.98e+01 3.82e+01 4.48e+01
Nmax = 15 7.32e+01 8.81e+01 9.94e+01 1.19e+02 1.36e+02
Nmax = 25 1.10e+02 1.21e+02 1.54e+02 2.33e+02 2.55e+02
Nmax = 30 9.42e+01 2.26e+02 2.86e+02 3.09e+02 3.72e+02
Nmax = 35 1.06e+02 1.37e+02 1.52e+02 1.84e+02 2.32e+02
Nmax = 45 9.63e+01 9.06e+01 1.00e+02 1.79e+02 1.68e+02
Nmax = 50 3.47e+02 4.59e+02 4.87e+02 8.65e+02 1.16e+03

(a) EN (µ) = Eµ
u (µ)

Ĩ = 30 Ĩ = 60 Ĩ = 120 Ĩ = 180 Ĩ = 250
Nmax = 5 1.07e+01 1.45e+01 1.70e+01 2.06e+01 2.32e+01
Nmax = 15 3.91e+02 5.49e+02 5.53e+02 5.37e+02 6.79e+02
Nmax = 25 5.50e+02 5.01e+02 4.93e+02 7.06e+02 9.60e+02
Nmax = 30 4.01e+02 4.27e+02 5.81e+02 7.81e+02 8.30e+02
Nmax = 35 6.29e+02 2.46e+02 3.35e+02 8.04e+02 9.24e+02
Nmax = 45 2.37e+02 4.27e+01 8.85e+02 1.30e+03 1.19e+03
Nmax = 50 1.06e+02 1.13e+02 1.47e+02 1.25e+02 1.78e+02

(b) EN (µ) = Eapost
u (µ)

Table 4.2: Maximum effectivities for the American put option in the Black-Scholes
model for different maturities T̃ = Ĩ∆t, with a fixed ∆t = 0.008 and
for different values of Nmax, using the error measure EN (µ) = Eµ

u (µ) or
EN (µ) = Eapost

u (µ) as a selection criterion (always for Ĩ = I = 250). The
training set consists of |Ptrain| = 50 equidistantly distributed points and
µ = σ.
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Ĩ = 30 Ĩ = 60 Ĩ = 120 Ĩ = 180 Ĩ = 250
Nmax = 5 1.54e+02 2.24e+02 2.83e+02 3.89e+02 4.89e+02
Nmax = 15 1.95e+02 2.64e+02 3.22e+02 4.38e+02 5.55e+02
Nmax = 25 2.51e+02 3.90e+02 4.97e+02 6.52e+02 7.58e+02
Nmax = 30 1.64e+02 2.34e+02 2.90e+02 3.88e+02 4.52e+02
Nmax = 35 1.16e+02 1.49e+02 1.77e+02 2.27e+02 2.84e+02
Nmax = 45 2.80e+02 4.33e+02 5.47e+02 6.90e+02 8.20e+02
Nmax = 50 2.42e+02 2.28e+02 2.21e+02 2.23e+02 2.36e+02

(a) EN (µ) = Eµ
u (µ)

Ĩ = 30 Ĩ = 60 Ĩ = 120 Ĩ = 180 Ĩ = 250
Nmax = 5 1.18e+03 1.75e+03 2.22e+03 3.04e+03 3.70e+03
Nmax = 15 4.82e+02 7.86e+02 9.76e+02 1.16e+03 1.24e+03
Nmax = 25 5.49e+03 9.57e+03 8.43e+03 8.20e+03 9.11e+03
Nmax = 30 1.58e+03 1.92e+03 2.19e+03 2.67e+03 3.05e+03
Nmax = 35 6.33e+02 6.72e+02 7.66e+02 8.74e+02 8.64e+02
Nmax = 45 2.65e+03 3.93e+03 3.41e+03 2.90e+03 3.23e+03
Nmax = 50 5.94e+03 4.05e+03 3.40e+03 3.22e+03 3.64e+03

(b) EN (µ) = Eapost
u (µ)

Table 4.3: Maximum effectivities for the American put option in the Heston model
for different maturities T̃ = Ĩ∆t, with a fixed ∆t = 0.008 and for different
values of Nmax, using the error measure EN (µ) = Eµ

u (µ) or EN (µ) =
Eapost
u (µ) as a selection criterion (always for Ĩ = I = 250). The training set

consists of |Ptrain| = 343 equidistantly distributed points and µ = (ξ, ρ, γ).
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4.8.5 Efficiency of the Method
Now we turn to the study of the efficiency of the reduced basis method. The run-
time performance of the reduced basis scheme compared to the computation of the
detailed solution is reflected in Table 4.4. We compare different model settings, as
described in Section 4.8.2. We measure the computational times of the offline and
online phases, similarly as in Section 3.5. We briefly recall the following quantities:

• t1: Computation time for a single detailed solution for a given parameter µ ∈ P.

Online phase

• t2: Computation time to assemble the reduced system and to solve the reduced
problem for a given µ ∈ P.

Offline phase

• t3: Computation time for the construction of the reduced bases using Algo-
rithm 4.1 with EN (µ) = Etrue

u (µ).

• t4: Computation time to construct the parameter independent reduced data,
e.g., Aq

N , BN etc.

• t5: Computation time for evaluation of the snapshots, that is the time for
computing the detailed solutions (ukN (µ), λkN (µ)), for all µ ∈ Ptrain. The cost
is influenced by the dimension of Ptrain, which is |Ptrain| = 50 for the case (B1),
|Ptrain| = 343 for (B2) and (H2), and |Ptrain| = 64 for (H1).

• t1/t2: Asymptotic speed-up of the online routine obtained using the reduced
basis method.

Nmax t1 t2 t3 t4 t5 t1/t2

Black-Sholes, (B1) 50 1.971 0.331 1661 0.0268 80.46 5.954
Black-Sholes, (B2) 35 1.798 0.1471 1810 0.0054 529.1 12.22
Heston, (H1) 50 270.3 0.2545 3155 0.0425 46830 1006
Heston, (H2) 100 264.6 0.5008 13471 0.1073 138901 528.3

Table 4.4: Runtime measurements (in seconds) of the reduced basis method for dif-
ferent Nmax and for different model parameter settings.

We observe a significant speed-up, in particular, when dealing with the more complex
Heston model, where the complexity of the two dimensional detailed problem prevails
the complexity of the one-dimensional Black-Scholes model. We also can notice that
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4 RBM for Parametrized Parabolic Variational Inequalities

the costly offline routine does not suggest to apply the reduced basis method for a
single parameter evaluation only. However, this cost will pay off in the case when we
are performing multi-query simulations. A situation where the need for multi-query
simulations arises naturally will be studied in the next chapter in the context of the
calibration to market data.

We also note that similarly to the case of European options, in the multi-query
context it makes sense to neglect the assembly time in t1, when computing the asymp-
totic speed up. However, in the present case this does not have a significant effect,
since t1 is not dominated by the assembly time, but by the detailed solution proce-
dure, i.e., the PDAS strategy. For the Heston model the contribution of the assembly
time to t1 is less than 10% for the given numerical examples.
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5 Application to the Calibration on
Option Prices

“But the days of closed-form solutions are
numbered because models are increasingly
complex. Numerical algorithms will have to be
more efficient because speed is becoming a
dominant factor with high-frequency trading...”

O. Pironneau, “Pricing futures by deterministic
methods”, Acta Numerica, 21 (2012), pp. 577–671

5.1 Introduction
To calculate the price of an option (European or American) in a specific model, one
needs to provide the respective input data. These data consist of the current stock
price S0, the maturity time T , the strike price K, and the set of the input parameters,
which we previously denoted by µ ∈ P. Whereas the first three components, S0, K,
T , are known and provided by the market data, the input parameter vector µ is not
known a priori, except for the interest rate r, and needs to be estimated from the
market. These types of problems are referred to as parameter identification problems
or, among practitioners, calibration problems. That is, given a set of observations of
market option prices, we are searching for the parameter µ that provides the best fit
of the given data to the model one.

Generally, the market data is characterized by:
1. The spot price today S0

2. The market option prices P obs
i = P obs(S0, Ti,Ki) (for American or European

options, put or call) for different maturities Ti and for different strikes Ki,
i = 1, ... . . . ,M .

Mathematically, the calibration on option prices can be stated as a least squares
minimization problem: find µ ∈ Popt ⊂ P that solves

min
µ
J(µ), J(µ) := 1

M

M∑
i=1
|P obs
i − Pi(µ)|2, (5.1.1)
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where Pi(µ) = P (S0, Ti,Ki; µ) are the model prices, which can be computed by, e.g.,
solving the PDE corresponding to the particular model. In Chapter 2 we saw that
for European options, Pi solves

∂Pi(µ)
∂τ

+ L(µ)Pi(µ) = 0, in [0, Ti)× Rn+, (5.1.2a)

Pi(Ti; µ) = Hi, in Rn+, (5.1.2b)

where Hi = (Ki − S)+ for the put and Hi = (S − Ki)+ for the call options and
n = 1, 2. For the case of American put options we have

∂Pi(µ)
∂τ

+ L(µ)Pi(µ) ≤ 0, in [0, Ti)× Rn+, (5.1.3a)

Pi(µ) ≥ Hi, in [0, Ti)× Rn+, (5.1.3b)(
∂Pi(µ)
∂τ

+ L(µ)Pi(µ)
)

(Pi(µ)−Hi) = 0, in [0, Ti)× Rn+, (5.1.3c)

Pi(Ti; µ) = Hi, in Rn+, (5.1.3d)

with Hi := (Ki−S)+. Both models are subject to suitable boundary conditions. As
before, the partial differential operator L is defined by the model used to price the
option; see Chapter 2 for more details.

We note that, alternatively, one can work directly in the stochastic framework and
compute Pi, e.g., by the Monte Carlo method or by the (binomial) tree method, see
e.g., [CRR79]. For European options, one can also use analytic techniques such as
closed-form solutions or FFT. However, since for complex options, such as American
puts, in general, one can not expect to derive an analytic formula to value an option,
this framework remains still restrictive. Therefore, to maintain the generality of our
approach we focus on the calibration problem within the PDE framework.

The problem of type (5.1.1) is also referred in the literature as a PDE constrained
optimization problem or an optimal control problem (in a reduced form). For Amer-
ican options, it is also interpreted as an optimal control problem constrained by
parabolic variational inequalities. These problems have been extensively studied in
the literature, cf. [Hin01; HR86; IK00; Mig76; MP84]. In the context of option
pricing, we refer to, e.g., [Ach05; AIP04; AP05a; AP05b; BI97].

The solvability of (5.1.1) is accomplished by the construction of an appropriate
numerical optimization algorithm coupled with the numerical approximation of the
underlying PDE problem. The performance and the choice of the algorithm is directly
connected to the properties of J(µ), such as differentiability, convexity etc. At each
iteration of the optimization algorithm we evaluate several times the least square
objective J(µ), which requires to solve M times a PDE. However, if one performs
the usual log-transformation of the stock variable, S = Kex (see Section 2.7), this
reduces to a single solution of the underlying PDE. Indeed, in the new variable
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x = log(S/K), the strike price K enters as a scaling factor in the PDE. Hence,
taking T = max(Ti) and choosing some reference value of K, e.g., K = 1, for each µ,
to find Pi(µ), i = 1, . . . ,M , reduces to solve the problem (5.1.2) or (5.1.3) only once.

Even though we can reduce the number of the PDE computations from M to a
single evaluation, we still have to solve a high-fidelity problem, the cost of which,
especially for complex options, can be very high. And since the market data is
changing rapidly, there is a high demand to provide fast and efficient calibration
routines. Accordingly, the use of model order reduction techniques to accelerate the
optimization process are of high interest. One of the approaches is to replace the
underlying complex model by the reduced-order surrogate one, which is constructed
by, e.g., the POD or the reduced basis method. The employment of POD techniques
for calibration gained its popularity in recent years, e.g., [SS08; SS14; SSS14]. The
reduced basis method was studied in [CLP11; Pir09].

We also mention the application of model order reduction techniques in the general
context of PDE constrained optimization problems. This comprises the works [SV10]
using the POD method and recent work [DH15] for the reduced basis method. For
inverse problems the method was applied in [GHH16].

For European options, the efficiency can be improved by using closed form solu-
tions, see e.g., [GGM+12; MPS14; SST04]. The availability and fairly easy and cheap
computations of these solutions make this approach very popular in applications.

In turn, for American options, which do not admit an analytic expansion, one
can consider, the so called de-Americanization approach [BGG+16; CW10], which is
frequently used among practitioners. This method translates American prices into
European ones and then performs the calibration on the respective European prices
by directly using the closed-form solutions for European options.

As we can see there is a high demand of fast, accurate and reliable techniques to
calibration on option prices. Motivated by this example, the goal of this chapter
is twofold. From one side, we seek to apply the previously developed methodology
to the calibration on American options. And from another side, we introduce alter-
native techniques, such as the de-Americanization method and provide a numerical
comparison of both approaches.

Due to the richer parameter nature of the Heston model and its ability to replicate
closer the market behavior than the standard Black-Scholes model does, we restrict
our consideration in this chapter to this model only. It is worth to mention that the
reduced basis method as well as the other approaches investigated here are general
enough that they can be easily adapted to different models.

The content of the chapter is structured as follows: We start in Section 5.2.1 by
describing the optimization problem with the detailed model. In Section 5.2.2 and
Section 5.2.3 we consider the optimization with the surrogate models, obtained by
the RBM and the de-Americanization methods. In Section 5.2.4 we briefly comment
on the optimization algorithms to solve the problems. Eventually, in Section 5.3

113



5 Application to the Calibration on Option Prices

we supply the reader with numerous numerical examples of the calibration with the
reduced-order models. We start in Section 5.3.1 by demonstrating the performance of
the reduced basis method for calibrating on American and European options. Next,
in Section 5.3.2, we take a look on the numerical study of the de-Americanization
method. Then the comparison of both techniques is presented in Section 5.3.3 on the
synthetic and in Section 5.3.3 on the real market data sets.

5.2 Calibration Procedure

5.2.1 Problem Setting

We describe the calibration problem for the Heston model. Recall the model param-
eter µ = (ξ, ρ, γ, κ, r) ∈ P ⊂ R5. Apart from the interest rate r, the remaining pa-
rameters need to be identified. Given S0 and the set of observations P obs

i at (Ti,Ki),
i = 1, . . . ,M , we need to compute the corresponding prices in the Heston model
Pi(ν0, S0, Ti,Ki), where ν0 ∈ R+ is the initial volatility. The value of ν0 is not known
and needs to be estimated together with the other parameters. We collect all param-
eters to be identified in the single vector Θ = (Θ1, . . . ,Θ5) = (ξ, ρ, γ, κ, ν0) ∈ Popt,
where

Popt :=
{
Θ ∈ R5 : Θmin,i ≤ Θi ≤ Θmax,i, i = 1, . . . , 5

}
. (5.2.1)

We replace the PDE constraints with the corresponding weak discrete problem in a
log-transformed variable. To avoid repetition, we do not present the full procedure
here and refer to Chapter 3 and Chapter 4, where the weak and discrete weak formu-
lations for European and American options have been derived in detail. We remain
in the same functional analytic settings as introduced in the aforementioned chap-
ters. Recall, that suitably chosen discrete approximation spaces to price European
and American options are denoted by XN ⊂ X, VN ⊂ V and (VN ,WN ) ⊂ (V,W )
and the discrete cone by MN ⊂ WN . Let t := T − τ and denote by T the maximal
maturity time, T = max(Ti), i = 1, . . . ,M . The time interval [0, T ] is subdivided
into I subintervals of equal length, tk = k∆t, 0 < k ≤ I with ∆t = T/I. We
consider the θ-weighted scheme for the time integration, in particular, θ = 1/2.
Recall the definition of the Dirichlet lift function ukLN (ν, x; µ) with (ν, x) ∈ Ω,
where Ω = (νmin, νmax) × (xmin, xmax) ⊂ R2. For a given µ ∈ P we approximate
P (ν,Kex, tk; µ) by wkN (ν, x; µ), where wkN (ν, x; µ) := ukN (ν, x; µ) + ukLN (ν, x; µ).

The detailed solution ukN (µ) ∈ VN for the European option problem solves the
following discrete problem (see Problem 3.3.1)

EEO
N (µ) =


1

∆t

(
uk+1
N − ukN , v

)
L2(Ω)

+ a(uk+θ
N , v; µ) = fk+θ(v; µ),

(u0
N − u0, v)V = 0, v ∈ VN .
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Respectively, the solution pair (ukN (µ), λkN (µ)) ∈ VN ×MN for the American option
problem satisfies (see Problem 4.3.4)

EAO
N (µ) =


1

∆t

(
uk+1
N − ukN , v

)
L2(Ω)

+ a(uk+θ
N , v; µ)− b(λk+1

N , v) = fk+θ(v; µ),

b(η − λk+1
N , uk+1

N ) ≥ gk+1(η − λk+1
N ; µ), η ∈MN , v ∈ VN ,

(u0
N − u0, v)V = 0.

For i = 1, . . . ,M we denote the approximate model price

PN ,si (Θ) := wki
N (log(S0/Ki), ν0; µ),

where wki
N (µ) := uki

N (µ) + uki
LN (µ), and uki

N (µ) solves EN := EsN , s ∈ {EO,AO}. By
abuse of notation, we often omit the index s in the notation of PN ,si , if it is clear from
the context. Then the minimization problem (5.1.1) can be written in the following
form (often referred to as a reduced problem in the optimal control theory),

min
Θ∈Popt

JN (Θ), JN (Θ) := 1
M

M∑
i=1
|P obs
i − PNi (Θ)|2. (5.2.2)

We comment on the solvability of the above finite dimensional minimization problem.
Since for a given µ ∈ P under appropriate conditions there exist a unique solution
ukN (µ) of EEO

N (µ) or EAO
N (µ) (see Section 3.3.4 and Section 4.3.2), invoking the conti-

nuity of the solution map, we then can guarantee the existence of the global solution
Θ ∈ Popt of (5.2.2). The uniqueness is more involved and studied depending on the
particular properties of J(Θ), which is not convex, in the present case.

5.2.2 Reduced Basis Approximation

As it has been pointed out previously, the high-fidelity discrete problem EN is
computationally expensive and significantly slows down the calibration procedure.
To reduce the complexity we apply the reduced basis method and substitute the
detailed model EN with the reduced-order surrogate one EN . The detailed procedure
of the construction of the efficient reduced basis method is reported in Chapter 3 and
Chapter 4 and omitted here to avoid redundancy.

Using a suitable basis generation procedure, see Section 3.4.3 and Section 4.6,
we construct the low-dimensional reduced spaces VN ⊂ VN for European options
and VN ⊂ VN , WN ⊂ WN , MN ⊂ MN for American options with dim(VN ) �
dim(VN ), dim(WN ) � dim(WN ). The reduced surrogate models to price European
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and American options are defined as follows

EEO
N (µ) =


1

∆t

(
uk+1
N − ukN , v

)
L2(Ω)

+ a(uk+θ
N , v; µ) = fk+θ(v; µ),

(u0
N − u0, v)V = 0, v ∈ VN .

EAO
N (µ) =


1

∆t

(
uk+1
N − ukN , v

)
L2(Ω)

+ a(uk+θ
N , v; µ)− b(λk+1

N , v) = fk+θ(v; µ),

b(η − λk+1
N , uk+1

N ) ≥ gk+1(η − λk+1
N ; µ), η ∈MN , v ∈ VN ,

(u0
N − u0, v)V = 0.

Analogously, for i = 1, . . . ,M we denote the reduced basis approximation of the
model price as

PN,si (Θ) := wki
N (log(S0/Ki), ν0; µ),

where wki
N (µ) := uki

N (µ)+uki
LN (µ), and uki

N (µ) solves EN := EsN , s ∈ {EO,AO}. Then
we approximate JN (Θ) ≈ JN (Θ), and obtain the following minimization problem
for the reduced model

min
Θ∈Popt

JN (Θ), JN (Θ) := 1
M

M∑
i=1
|P obs
i − PNi (Θ)|2. (5.2.3)

Remark 5.2.1. Since the interest rate r is not a calibrated parameter and it is
provided by the data set, for the construction of the reduced basis spaces, one may
consider the variation of only four parameters µ = (ξ, ρ, γ, κ) ∈ P ⊂ R4. However,
this choice is restrictive and for new market data one needs to construct a new reduced
basis set. Therefore, to conserve generality in our approach, we consider the variation
of all parameters, µ = (ξ, ρ, γ, κ, r), and consequently the constructed reduced basis
will be entirely market-independent.

5.2.3 De-Americanization Method (DAS)
The de-Americanization approach, which is frequently applied by practitioners, can
also be considered as a model order reduction technique for calibration on American
options. However, in contrast to the reduced basis framework, where the reduction
was performed towards the underlying PDE constraints, in the de-Americanization
method we substitute the original minimization problem by means of a perturbation
of the given input data set. That is, given an input data of American put options,
we consider minimization problem (5.2.2) with JN (Θ) ≈ J̃N (Θ),

min
Θ∈Popt

J̃N (Θ), J̃N (Θ) := 1
M

M∑
i=1
|P̃ obs
i − PNi (Θ)|2, (5.2.4)

where the prices P̃ obs
i are the pseudo-European put prices. These are obtained by

perturbing American put prices P obs
i , i.e., P̃ obs

i := D(P obs
i ), where D : R → R, and
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5.2 Calibration Procedure

the corresponding model prices are PNi (Θ) = PN ,EO
i (Θ), i = 1, . . . ,M . Following

the approach as in [BGG+16], we use the binomial tree method, see [CRR79], to
transform American put option prices into pseudo-European (“de-Americanized”)
put prices.

The advantage of this method is that the complexity of the non-linear model for
pricing American options can be reduced to that of the linear model for pricing Eu-
ropean options. To perform a further reduction, one may consider instead of solving
linear, but still high-dimensional problem EEON , to use the closed-form solutions to
evaluate the model prices. Denote the model prices, obtained by the closed-form
solutions, by PCF

i . For the European call option in the Heston model it is defined in
(2.6.19). Using the put-call parity (2.4.15) the respective European put prices can
be obtained.

Then we are dealing with the following minimization problem

min
Θ∈Popt

J̃CF(Θ), J̃CF(Θ) := 1
M

M∑
i=1
|P̃ obs
i − PCF

i (Θ)|2. (5.2.5)

As it was remarked previously, closed-form solutions can have limited applicabil-
ity and in some cases, e.g., for the Heston model, one should make use of suitable
numerical approximation techniques to approximate the integrals.

Being simple in implementation and efficient, the de-Americanization method, to
the best of our knowledge, is lacking a rigorous theoretical framework. In [BGG+16]
the de-Americanization error is numerically investigated for different models (CEV,
Heston and Merton) and the settings, in which the application of the de-Americani-
zation method leads to pitfalls, are explored. From the computational point of view,
the method is very attractive, especially in combination with the closed-form solu-
tions. However, for each set of observations, it requires an additional pre-processing
time to transform the American data into European one, and, as we will see later,
this cost can dominate significantly the computational cost of the entire calibration
routine.

One could also consider a combination of the RBM with the de-Americanization
strategy, i.e., applying the RBM to approximate EEO

N by EEO
N . The corresponding

minimization problem can be stated as follows

min
Θ∈Popt

J̃N (Θ), J̃N (Θ) := 1
M

M∑
i=1
|P̃ obs
i − PNi (Θ)|2, (5.2.6)

with PNi (Θ) = PN,EO
i (Θ).

5.2.4 Optimization Algorithms
The minimization problems we have introduced belong to the class of finite dimen-
sional optimization problems with box constraints. To solve such problems one needs
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5 Application to the Calibration on Option Prices

to employ an appropriate numerical optimization algorithm, which, ideally, would
satisfy some basic requirements, e.g., to be robust, efficient and to identify the so-
lution with sufficient accuracy. Among a wide variety of the existing algorithms,
see, e.g., [NW06] for an overview, there is no general approach fulfilling all these
requirements. The choice and construction of the algorithm is solely based on the
structure and properties of the objective J(µ), such as convexity and differentiability,
as well as the structure of the admissible set Popt. In general, the fastest algorithms,
such as gradient-based ones, provide only a local solution. Global optimization al-
gorithms, e.g., probabilistic methods as simulated annealing or genetic algorithms,
do not require any information of the gradient. However, they are known to be
computationally demanding.

For the particular case of the calibration with European options, the most popular
algorithms are the gradient-based optimization methods; see, e.g., [AIP04; AP05a;
AP05b; SS14]. By contrast, for American options, the situation is more involved not
only due to the non-linearity of the underlying PDE model, but also due to the fact
that one can not guarantee the differentiability of the solution map. The remedy is
to apply regularization techniques, e.g., by adding penalty terms or smoothing the
inequality constraints, e.g., [Ach05; Ach08; AP05a; Hin01; IK00; SW13].

Since the purpose of this chapter is to apply the reduced basis method to real-
world examples and to compare it to alternative model reduction techniques, we do
not consider this issues as a main focus of the work and leave a detailed study of the
impact of the numerical solver of the optimization problem for future investigation.

For our numerical experiments we use the MATLAB Optimization Toolbox [Mat].
In particular, the built-in “black-box” optimization solver lsqnonlin or fmincon, in
which the gradients are approximated by finite differences.

5.3 Numerical Results

For the numerical experiments we consider the setting for the Heston model as in
Section 4.8. In particular, we set X = H1(Ω), V = H1

ΓD
(Ω) and W = V ′. The

approximate spaces XN , VN are the standard conforming nodal first order finite
elements. The dual space WN is composed of the dual biorthogonal basis functions.
We set T = 2 and I = 250, ∆t = T/I = 0.008. The computational domain Ω =
(νmin, νmax) × (xmin, xmax) = (10−5, 3) × (−5, 5) is resolved by a triangulation with
NX = 4753 nodes. For µ = (ξ, ρ, γ, κ, r) ∈ P ⊂ R5 and Θ = (ξ, ρ, γ, κ, ν0) ∈ Popt ⊂
R5, we define

P ≡ [0.1, 0.9]× [−0.95, 0.95]× [0.01, 0.5]× [0.1, 5]× [0.0001, 0.8], (5.3.1)
Popt ≡ [0.1, 0.9]× [−0.95, 0.3]× [0.01, 0.5]× [0.1, 5]× [10−5, 1]. (5.3.2)
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5.3.1 Calibration on Options with the RBM

For the detailed problem of pricing European, EEO
N (µ), and American put options,

EAO
N (µ), in the Heston model the boundary conditions are chosen as in (2.7.10) and

(2.7.14) respectively. We consider Ptrain composed of uniformly distributed points in
P with |Ptrain| = 1024 for the European put and |Ptrain| = 3125 for the American
put options. The basis generations are conducted by using POD-Greedy algorithm
(Algorithm 3.1), and POD-Angle-Greedy algorithm (Algorithm 4.1) with Etrue

u (µ)
as a selection criterion for both models. In addition, for American options, we enrich
VN with supremizers to guarantee the stability of the reduced system. Accordingly,
we obtain the dimensions of the reduced system as Nmax = 100 for European put
and Nmax = 125 for American put options.

Unless otherwise stated, the calibration routine is performed with lsqnonlin, which
uses a Trust-Region-Reflective algorithm, and the stopping criterion is set as J(Θ)−
J(Θ?) ≤ 10−12, ‖Θ−Θ?‖2 ≤ 10−5, where Θ? is a locally optimal solution.

Calibration on the Synthetic Data Set

First, we consider a performance of the RBM on a synthetic data set composed of
option prices for different maturities and strikes under the following settings:

S0 = 1, r = 5%,

T1 = 2
12 , K1 = {0.95, 0.975, 1, 1.025, 1.05},

T2 = 6
12 , K2 = K1 ∪ {0.9, 0.925, 1.075, 1.1},

T3 = 9
12 , K3 = K2 ∪ {0.85, 0.875, 1.125, 1.15},

T4 = 1, K4 = K3 ∪ {0.8, 0.825, 1.175, 1.2},
T5 = 2, K5 = K4 ∪ {0.75, 0.775, 1.225, 1.25}.

(5.3.3)

For each pair (Ti,Ki)i=1,...,5, we generate two artificial sets of observations P obs

which consist of 65 European and American put options computed at Θ = Θex =
(0.7,−0.8, 0.3, 1.4, 0.3). That is, we solve the detailed problems (5.2.2) with EAO

N and
EEO
N for the parameter µ = (0.7,−0.8, 0.3, 1.4, 0.3) and K = 1 and interpolate the

corresponding solutions Kiu
ki
N (ν, x; µ) at ν? = ν0, x?i = log(S0/Ki).

We perform the optimization routine with the reduced surrogate model (5.2.3).
To verify the approach, we also carry out the optimization with the high-fidelity
detailed problem (5.2.2). For both procedures we use the same initial guess Θin for
the numerical optimization routine. The results of the calibration for two different
data sets of American and European options are presented in Table 5.1a. We observe
that using the detailed models EsN , s ∈ {AO,EO} we can recover the exact parameter
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Θex up to the parameter tolerance. For the reduced surrogate models we observe
a slight deviation of the parameters from the exact one, however the results remain
still accurate enough.

The graphical illustration of the results can be found in Figure 5.1 and Figure 5.3
for American and European put options respectively. In the plots, we hardly can
observe any differences in the option price obtained from the synthetic and the cal-
ibrated data with the detailed problem and with the reduced problem. To quantify
the differences between the reduced and detailed calibration, we plot the pointwise
absolute relative errors |P obs

i −P si (Θ?)|/P obs
i , s ∈ {N , N}, i = 1, . . . ,M , in Figure 5.2

and in Figure 5.4. We observe that the reduced models produce very good fit to the
observed synthetic data with the relative error within the 0.5% margin.

The run-time performance is reported in Table 5.1b. We notice that the optimiza-
tion routine with the surrogate reduced model is about 100 times faster for American
put options and about 350 times faster for European put options.

In addition, one can observe that the reduced model for American options recovers
the parameter slightly better than the European one, which intuitively would seem
surprising. This fact can be explained by the larger dimension of the reduced system
for American options and the larger training set, which is is also reflected in the run-
time performance. Consequently, depending on the priority of the task, i.e., accuracy
vs. efficiency, one can always manually adjust the dimension of the reduced system.

It is well known that optimization algorithms are sensitive to the initial guess. To
study the robustness of the algorithm w.r.t. an initial guess, we consider a sample of 30
initial values Θin, randomly distributed in Popt for both cases of American and Euro-
pean put options. We averaged the results and for American (European) options these
are: Θ? = (0.6940,−0.8314, 0.2983, 1.4466, 0.3013) (Θ? = (0.6162,−0.8858, 0.2926,
1.3063, 0.3003)), the average number of iterations is 18 (17), the average number of
function evaluations #J is 114 (108), the average time for calibration is 12.56 min
(2.58 min). These results are similar to the ones reported in Table 5.1, which suggests
that the optimization algorithm is robust with respect to an initial guess.

5.3.2 Numerical Study of the de-Americanization Approach

Next, we turn to the numerical investigation of the de-Americanization method as an
alternative model reduction approach to calibrate with American put options, which
was briefly described in Section 5.2.3. Since we are not aware of any theoretical
study on the approximation quality of the method, we try to examine it numerically
in various scenarios. For a more detailed parameter study of the de-Americanization
effect we refer to [BGG+16].

First, we study the approach and the errors caused by transforming from Amer-
ican to European options. In particular we investigate the discrepancy of the de-
Americanized put options with the corresponding American ones. We consider the

120
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Method E(µ) Θ ξ ρ γ κ ν0 ‖Θex −Θ?‖2
Θex 0.700 −0.800 0.300 1.400 0.300
Θin 0.601 −0.682 0.487 2.020 0.496

JN (Θ) EAO
N Θ? 0.700 −0.800 0.300 1.399 0.300 2.14e− 05

JN (Θ) EAO
N Θ? 0.694 −0.831 0.298 1.447 0.303 5.62e− 02

JN (Θ) EEO
N Θ? 0.700 −0.800 0.300 1.399 0.300 2.05e− 05

JN (Θ) EEO
N Θ? 0.616 −0.886 0.293 1.306 0.300 1.52e− 01

(a) Parameters obtained by the calibration routine.

Method E(µ) # iter. # J calib. time J(Θ?)
JN (Θ) EAO

N 7 48 15.59 hrs 1.698e− 16
JN (Θ) EAO

N 8 54 9.50 min 9.515e− 09
JN (Θ) EEO

N 7 48 11.67 hrs 1.242e− 16
JN (Θ) EEO

N 11 72 1.996 min 1.157e− 08

(b) Calibration results in terms of the run-time performance. The number “# iter.” corre-
sponds to the number of iterations and “# J” is the total number of function evaluations
performed by the optimization routine.

Table 5.1: Calibration results for the synthetic data set of American and European
put options in the Heston model using different approaches.
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Figure 5.1: Results of the calibration to the synthetic data set of American put op-
tions in the Heston model using the detailed model EN (µ) (left) and the
reduced surrogate model EN (µ) (right). The circles are the synthetic
prices and the stars are the prices in the calibrated model.
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Figure 5.2: Calibration results for the synthetic data set of American put options
in terms of pointwise absolute relative errors, |P obs

i − P s,AO
i (Θ?)|/P obs

i ,
i = 1, . . . ,M , using the Heston model. Left: calibration with the detailed
model EN (µ), s = N . Right: calibration with the reduced surrogate
model EN (µ), s = N .
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Calib. value: ξ =0.6161 ρ =-0.8859 γ =0.2926 κ =1.3062 ν0 =0.3003
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Figure 5.3: Results of the calibration to the synthetic data set of European put op-
tions in the Heston model using the detailed model EN (µ) (left) and the
reduced surrogate model EN (µ) (right). The circles are the synthetic
prices and the stars are the prices in the calibrated model.

We consider different scenarios that correspond to the different values of the pa-
rameter Θ, presented in Table 5.2. We comment on the choice of these parameters.
Since, in statistical tests it is commonly observed that the correlation between stocks
and their volatilities is negative (the leverage effect), we exclude positive values of
the parameter ρ in our scenarios. Starting from scenario p1, we increase the volatil-
ity of volatility parameter ξ and decrease the correlation ρ, and accordingly increase
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Figure 5.4: Calibration results for the synthetic data set of European put options
in terms of pointwise absolute relative errors, |P obs

i − P s,EO
i (Θ?)|/P obs

i ,
i = 1, . . . ,M , using the Heston model. Left: calibration with the detailed
model EN (µ), s = N . Right: calibration with the reduced surrogate
model EN (µ), s = N .

the long-run variance γ and the mean reversion speed κ. In all scenarios the initial
volatility is set to the value of the mean reversion γ, i.e., ν0 = γ.

Scenario ξ ρ γ κ ν0

p1 0.10 −0.20 0.07 0.1 0.07
p2 0.25 −0.50 0.10 0.4 0.10
p3 0.40 −0.50 0.15 0.6 0.15
p4 0.55 −0.45 0.20 1.2 0.20
p5 0.70 −0.80 0.30 1.4 0.30

Table 5.2: Overview of the parameter sets for the Heston model, used to study the
de-Americanization approach.

For these parameter scenarios we construct different synthetic data sets, i.e., the
data sets corresponding to the different values of the parameters Θi and interest rates
rj , i, j = 1, . . . , 5. Each data set is composed of the respective American put option
prices in the Heston model, PN ,AO

i , i = 1, . . . , 72, computed for each pair (Ti,Kj),
i = 1, . . . , 8, j = 1, . . . , 9. Then, applying the de-Americanized approach, we translate
these option prices into the corresponding European put prices P̃N ,EO

i := D(PN ,AO
i ).

To investigate the error produced by this transformation, we compare the European
put prices produced by the de-Americanization method P̃N ,EO

i with the European put
prices obtained by solving the Heston PDE directly, PN ,EO

i . The values of maximal
error (maxi |P̃N ,EO

i (Θ)−PN ,EO
i (Θ)|) are presented in Table 5.3. The reference values
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(maxi PN ,EO
i (Θ)) are presented in the second column of the table.

Maximal absolute difference Maximal European price
T1 T2 T3 T4 T5 T6 T7 T8 T1 T2 T3 T4 T5 T6 T7 T8

p1

r = 0% 1e−6 8e−7 7e−7 2e−7 7e−7 6e−7 2e−6 2e−6 0.200 0.202 0.205 0.209 0.217 0.229 0.240 0.278
r = 1% 3e−4 1e−4 1e−4 9e−5 7e−5 6e−5 5e−5 6e−5 0.199 0.200 0.202 0.205 0.212 0.222 0.231 0.261
r = 2% 3e−4 1e−4 2e−4 1e−4 1e−4 8e−5 5e−5 1e−4 0.198 0.198 0.200 0.202 0.207 0.214 0.221 0.244
r = 5% 5e−4 2e−3 2e−4 1e−4 2e−4 2e−4 9e−5 3e−4 0.195 0.193 0.191 0.191 0.192 0.194 0.195 0.198
r = 7% 6e−4 3e−3 7e−3 3e−5 8e−5 3e−4 2e−4 2e−4 0.194 0.189 0.186 0.184 0.182 0.180 0.179 0.171

p2

r = 0% 5e−7 5e−7 4e−7 5e−7 7e−7 7e−7 1e−6 2e−7 0.201 0.204 0.208 0.214 0.224 0.238 0.251 0.293
r = 1% 1e−4 7e−5 8e−5 5e−5 2e−5 1e−5 5e−5 2e−4 0.200 0.202 0.206 0.210 0.219 0.231 0.242 0.277
r = 2% 7e−4 1e−4 1e−4 6e−5 2e−5 3e−5 9e−5 4e−4 0.199 0.200 0.203 0.207 0.214 0.224 0.233 0.261
r = 5% 8e−4 6e−5 3e−4 9e−5 2e−5 2e−5 7e−5 4e−4 0.196 0.195 0.195 0.197 0.200 0.204 0.208 0.217
r = 7% 1e−3 5e−3 3e−6 1e−4 4e−5 6e−5 7e−5 5e−5 0.194 0.191 0.190 0.190 0.191 0.192 0.193 0.192

p3

r = 0% 1e−6 2e−6 1e−6 7e−7 6e−7 6e−7 5e−7 3e−6 0.202 0.208 0.216 0.224 0.238 0.256 0.273 0.326
r = 1% 8e−5 5e−5 4e−5 1e−5 2e−5 6e−5 1e−4 3e−4 0.201 0.207 0.213 0.220 0.233 0.250 0.264 0.309
r = 2% 2e−4 7e−5 7e−5 8e−6 5e−5 1e−4 2e−4 6e−4 0.200 0.205 0.211 0.217 0.228 0.243 0.255 0.294
r = 5% 2e−4 1e−4 1e−4 1e−5 1e−4 3e−4 4e−4 1e−3 0.197 0.199 0.203 0.207 0.215 0.224 0.231 0.250
r = 7% 2e−3 1e−4 2e−4 2e−5 2e−4 3e−4 4e−4 8e−4 0.195 0.196 0.198 0.201 0.206 0.212 0.216 0.225

p4

r = 0% 4e−8 8e−7 2e−6 4e−8 2e−6 2e−6 3e−6 2e−6 0.204 0.214 0.224 0.234 0.252 0.275 0.295 0.362
r = 1% 7e−5 3e−5 2e−5 2e−6 3e−5 6e−5 9e−5 3e−4 0.203 0.212 0.221 0.231 0.247 0.268 0.287 0.345
r = 2% 1e−4 4e−5 4e−5 2e−5 7e−5 1e−4 2e−4 6e−4 0.202 0.210 0.219 0.227 0.243 0.262 0.278 0.329
r = 5% 3e−4 6e−5 7e−5 8e−5 2e−4 3e−4 4e−4 1e−3 0.199 0.205 0.211 0.218 0.229 0.243 0.255 0.286
r = 7% 3e−4 6e−5 9e−5 1e−4 3e−4 4e−4 5e−4 1e−3 0.197 0.202 0.207 0.212 0.221 0.231 0.240 0.259

p5

r = 0% 5e−7 4e−7 2e−7 4e−7 8e−7 4e−6 6e−6 4e−6 0.207 0.222 0.234 0.248 0.270 0.297 0.322 0.400
r = 1% 6e−5 3e−5 2e−5 9e−6 6e−5 2e−4 3e−4 1e−3 0.206 0.220 0.232 0.245 0.265 0.291 0.314 0.384
r = 2% 1e−4 5e−5 5e−5 1e−5 1e−4 3e−4 5e−4 2e−3 0.205 0.218 0.230 0.242 0.261 0.285 0.306 0.369
r = 5% 2e−4 1e−4 1e−4 3e−5 1e−4 4e−4 9e−4 3e−3 0.202 0.213 0.223 0.233 0.249 0.268 0.283 0.326
r = 7% 3e−4 1e−4 2e−4 9e−5 6e−5 4e−4 8e−4 3e−3 0.201 0.210 0.219 0.227 0.241 0.257 0.269 0.300

Table 5.3: Summary of the de-Americanization effects for the Heston model.

We observe that for each parameter setting the de-Americanization error tends to
increase with increasing interest rate r. We can also see that for r = 0% the de-
Americanization has the weakest effect. Another observation is that, for scenarios p4
and p5, where the volatility of volatility ξ and correlation ρ have high magnitudes,
the de-Americanization has the strongest effect. These findings can be traced also in
the reconstruction of these parameters in the calibration routine, as we will see in the
next section. Additionally, we notice that for short maturities the de-Americanized
price is lower than the according European price, whereas for high maturities the
de-Americanized price is higher than the European one.

5.3.3 Comparison of Different Model Reduction Approaches

In this section we perform a numerical comparison of the calibration with American
put options using different model reduction techniques: the reduced basis method,
the de-Americanization approach and the combination of both techniques. That is,
we consider the minimization problems (5.2.3), (5.2.4) and (5.2.6). For the purposes
of comparison, we also carry out the calibration with the detailed solver (5.2.2).

First, we generated a synthetic set of observations P obs with the settings as in (5.3.3).
We consider different parameter scenarios corresponding to different values of Θ ∈
Popt; see Table 5.4. For each scenario, we construct an artificial set of observations
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P obs
i := PN ,AO

i , i = 1, . . . , 65. We note that, in general, the parameter κ is price-
insensitive, see, e.g. [JKW+11], and thus it can not be reconstructed. Therefore,
for each scenario we fix the parameter κ to its exact value and do the parameter
estimation only for the remaining parameters ξ, ρ, γ, and ν0.

Scenario ξ ρ γ κ ν0

p1 0.10 −0.20 0.07 0.5 0.07
p2 0.25 −0.50 0.10 0.5 0.10
p3 0.40 −0.50 0.15 0.6 0.15
p4 0.55 −0.45 0.20 1.2 0.20
p5 0.70 −0.80 0.30 1.4 0.30
p6 0.2928 −0.7571 0.0707 0.6067 0.0707

Table 5.4: Overview of the parameter sets used to generate the synthetic data set.

The results of the calibration are summarized in Table 5.5. We observe that,
overall, all methods provide a good reconstruction of the parameters. The optimiza-
tion routine with the detailed solver identifies the parameter up to the optimization
tolerance, that demonstrates the robustness of the optimization algorithm.

For clarity, the graphical illustration of these scenarios using different model reduc-
tion techniques is depicted in Figure 5.5. To eliminate the effect of different scaling
we also present the value of each parameter in Figure 5.6. It can be seen that for all
approaches the main difficulty lies in identifying ξ and ρ. In fact, this tendency has
been also observed for the detailed solver (see cases p1, p4, Table 5.5). The remaining
parameters γ and ν0 are recovered almost exactly. We also note that for scenarios
p1–p3, which correspond to the cases when the magnitudes of ξ, ν0 and ρ are the
smallest, the calibration with the de-Americanized approach is able to provide a bet-
ter reconstruction of the parameter ξ than the reduced basis method. By contrast,
in the scenarios p4 and p5, which correspond to large magnitude of the correlation
parameter, the de-Americanization gives poorer results for ξ and ρ. This is consistent
with the observation made in Section 5.3.2, where we noticed that the errors caused
by de-Americanization are the largest in the cases where the absolute values of ξ and
ρ are large (see Table 5.3, scenario p5, maturity T8).

To summarize, we can say that the cases with “extreme” parameter values have
a significant impact on the performance of the optimization routine, in both the
detailed and the reduced problems. In the case of the reduced basis method, this
difficulty may be overcome by considering, e.g., an adaptive parameter domain parti-
tion, see [HDO11], in particular for ξ and ρ or by increasing the number of snapshots,
and furthermore increasing the dimension of the reduced system.

As the next step we study the efficiency of both methods. The statistical data
about the run-time performance is given in Table 5.6. We observe that all reduction
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Scenario Method E(µ) Θ ξ ρ γ ν0 J(Θ?)
Θex 0.1 −0.2 0.07 0.07

JN (Θ) EAO
N Θ? 0.1002 −0.1997 0.07 0.07 7.8806e−14

p1 J̃N (Θ) EEO
N Θ? 0.1000 −0.3003 0.0701 0.0688 1.0248e−07

JN (Θ) EAO
N Θ? 0.1477 −0.0788 0.0697 0.0700 4.3440e−08

J̃N (Θ) EEO
N Θ? 0.1849 −0.1801 0.0772 0.0634 3.2571e−07

Θex 0.25 −0.5 0.1 0.1
JN (Θ) EAO

N Θ? 0.25 −0.5 0.1 0.1 6.4756e−17
p2 J̃N (Θ) EEO

N Θ? 0.2404 −0.5388 0.1001 0.0991 1.1363e−08
JN (Θ) EAO

N Θ? 0.2860 −0.4824 0.0968 0.1015 9.9148e−08
J̃N (Θ) EEO

N Θ? 0.2973 −0.4104 0.1087 0.0959 1.1681e−07
Θex 0.4 −0.5 0.15 0.15

JN (Θ) EAO
N Θ? 0.4 −0.5 0.15 0.15 2.9834e−18

p3 J̃N (Θ) EEO
N Θ? 0.4282 −0.4620 0.1544 0.1492 2.2003e−09

JN (Θ) EAO
N Θ? 0.3537 −0.5731 0.1456 0.1504 6.2085e−09

J̃N (Θ) EEO
N Θ? 0.4576 −0.4155 0.1519 0.1484 4.4351e−08

Θex 0.55 −0.45 0.2 0.2
JN (Θ) EAO

N Θ? 0.5502 −0.4499 0.2 0.2 4.8235e−14
p4 J̃N (Θ) EEO

N Θ? 0.5801 −0.4220 0.2044 0.1989 1.5377e−09
JN (Θ) EAO

N Θ? 0.5048 −0.4980 0.1989 0.1995 1.6681e−08
J̃N (Θ) EEO

N Θ? 0.5359 −0.4473 0.2013 0.1989 1.9256e−08
Θex 0.7 −0.8 0.3 0.3

JN (Θ) EAO
N Θ? 0.7 −0.8 0.3 0.3 3.4388e−18

p5 J̃N (Θ) EEO
N Θ? 0.8433 −0.6668 0.3170 0.2990 1.8369e−08

JN (Θ) EAO
N Θ? 0.6881 −0.8259 0.2994 0.3006 1.0533e−08

J̃N (Θ) EEO
N Θ? 0.7718 −0.7136 0.3102 0.2991 2.3145e−08

Θex 0.2928 −0.7571 0.0707 0.0707
JN (Θ) EAO

N Θ? 0.2928 −0.7571 0.0707 0.0707 6.5746e−18
p6 J̃N (Θ) EEO

N Θ? 0.3690 −0.6026 0.0736 0.0685 1.6179e−07
JN (Θ) EAO

N Θ? 0.3096 −0.7049 0.0700 0.0718 9.6369e−08
J̃N (Θ) EEO

N Θ? 0.3527 −0.5209 0.0814 0.0638 3.5672e−07

Table 5.5: Calibration results on American put options in the Heston model with
different model reduction techniques.

approaches provide a significant speed-up compared to the expensive detailed solver,
which on average takes about eight hours for each scenario. We also note that, despite
the computational efficiency of the de-Americanization method in the calibration
process, it requires an additional time to pre-process the data, i.e., to transform the
American prices into the corresponding pseudo-European ones. This deteriorates
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Figure 5.5: Graphical illustration of the reconstructed parameters for different sce-
narios obtained by calibrating on American put options in the Heston
model using different model reduction approaches.

significantly the overall efficiency of the method.
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Figure 5.6: Graphical illustration of the reconstructed parameters obtained by cal-
ibrating on American put options in the Heston model using different
model reduction approaches.

We note that the combined approach (5.2.6), i.e., a combination of RBM with the
de-Americanization method, also provides promising results, especially in terms of
efficiency, where it seems to be the fastest. However, in terms, of the reconstruction of
the parameter, the method is inferior to other approaches, which could be explained
by the “double” reduction error, caused, first by the de-Americanization method and,
secondly by the RBM (scenarios p5, p6).

Calibration on Google Options

Finally, we extend our consideration to the calibration on a real market data set,
provided by options on the Google stock. Since the Google stock does not pay divi-
dends, the American call options can be priced the same as the European call options,
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Scenario Method E(µ) #J calib. time pre-process. time for P obs

JN (Θ) EAO
N 75 8.524 hrs

p1 J̃N (Θ) EEO
N 145 18.018 min 36.045 min

JN (Θ) EAO
N 70 3.912 min

J̃N (Θ) EEO
N 170 4.855 min 36.045 min

JN (Θ) EAO
N 65 8.035 hrs

p2 J̃N (Θ) EEO
N 70 8.895 min 36.830 min

JN (Θ) EAO
N 70 3.489 min

J̃N (Θ) EEO
N 70 2.050 min 36.830 min

JN (Θ) EAO
N 60 8.341 hrs

p3 J̃N (Θ) EEO
N 60 8.083 min 35.374 min

JN (Θ) EAO
N 70 3.574 min

J̃N (Θ) EEO
N 80 2.353 min 35.374 min

JN (Θ) EAO
N 50 7.0877 hrs

p4 J̃N (Θ) EEO
N 45 6.031 min 36.660 min

JN (Θ) EAO
N 55 2.813 min

J̃N (Θ) EEO
N 75 2.189 min 36.660 min

JN (Θ) EAO
N 40 6.3318 hrs

p5 J̃N (Θ) EEO
N 65 8.607 min 36.574 min

JN (Θ) EAO
N 45 2.271 min

J̃N (Θ) EEO
N 65 1.933 min 36.574 min

JN (Θ) EAO
N 70 9.6656 hrs

p6 J̃N (Θ) EEO
N 70 9.555 min 36.960 min

JN (Θ) EAO
N 90 4.503 min

J̃N (Θ) EEO
N 100 3.055 min 36.960 min

Table 5.6: Computational time for calibrating American put options using different
model reduction techniques.

[Hul03]. Hence, we restrict consideration to only American put options. Namely, we
consider the data P obs of 401 American put options with S0 = 523.755, r = 0.15%
on February 2nd, 2015. The data is pre-processed by using the methodology applied
to the volatility index (VIX) by the Chicago board of exchange [CBO09]:

• For each option with the strike price Ki, we consider the midpoint of the bid-ask
spread.

• Options with zero bid prices are neglected.

• If two puts with consecutive strike prices have zero bid prices, no puts with
lower strike prices are included.
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5 Application to the Calibration on Option Prices

The used data is given in Table 5.7. In terms of the moneyness, we consider
all types, out-of-the money (Ki < S0), at-the-money (Ki = S0) and in-the-money
(Ki > S0) options.

In our synthetic test scenarios, the Feller condition (2.6.2) was automatically sat-
isfied. However, this does not hold for general calibration processes. Thus, we incor-
porate the following additional constraint on Θ = (ξ, ρ, γ, κ, ν0) ∈ Popt

Popt :=
{
Θ ∈ R5 : Θmin,i ≤ Θi ≤ Θmax,i, 2Θ3Θ4 −Θ2

1 < 0, i = 1, . . . , 5
}
. (5.3.4)

As optimization algorithm, we take the MATLAB function fmincon based on the
Interior-Point method and which, in contrast to lsqnonlin, allows the inclusion of
inequality constraints. We consider the same termination condition for the optimiza-
tion routine as previously.

To calibrate the parameters, we consider the detailed minimization problem (5.2.2)
and, as previously, the reduced models: the RBM (5.2.3), the de-Americanization
method (5.2.4) and the combination of both (5.2.6). For completeness, we also
consider the calibration of the de-Americanized data using the closed-form solu-
tions (2.6.19) for the problem (5.2.5).

The results of the calibration are presented in Table 5.8. At the first glance, we
observe that all approaches provide a very similar reconstructed parameter. In par-
ticular, γ and ν0 seem to be easily identified, which has been already noted in our
previous experiments. The rate of mean reversion κ appears to be a non-identifiable
parameter, and all models provide quite different results. For the remaining parame-
ters ξ and ρ, we observe that the de-Americanization method tends to underestimate
the volatility of volatility ξ and the correlation ρ, compared to the detailed and
reduced approach. This is clearly reflected in all models that use the perturbed de-
Americanized data, i.e., J̃N (Θ), J̃N (Θ), and J̃CF(Θ). This is in good agreement
with our observations for the synthetic data sets (see scenario p5 and p6), where for
large absolute values of the correlation parameters the de-Americanization method
was unable to provide a good reconstruction of the parameters ξ and ρ.

The graphical illustrations of the results are presented in Figure 5.7 for the detailed
and reduced models using the calibration on the actual market data. In Figure 5.8,
the results corresponding to the calibration on the de-Americanized data with de-
tailed model and closed-form solutions are also reported. The relative error for all
approaches does not exceed 60% and increases in the out-of-the money region, which
corresponds to the smallest option prices. To reduce this effect, one may consider
different weights in the objective functional, e.g., imposing more weights for small
option price values.

The results of the run-time performance of the different methods are given in
Table 5.8b. We notice that the detailed approach requires an extensive amount of
time, which might be fully impractical for industrial applications. The reduction
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K\T 0.2027 0.3753 0.6247 0.9507 1.9671
250 2.50
260 1.20 2.90
265 0.55
270 0.62 1.30 3.30
275 0.68 1.50
280 0.75 1.62 3.80
285 0.80 1.73
290 0.88 1.80 4.65
295 0.97 1.95
300 0.28 1.00 2.10 5.35
305 0.40 1.12 2.27
310 0.40 1.20 2.45 6.25
315 0.40 1.30 2.67
320 0.47 1.38 2.85 7.40
325 0.57 1.50 3.12
330 0.65 1.60 3.40 8.10
335 0.72 1.75 3.60
340 0.78 1.90 3.85 9.65
345 0.82 2.05 4.20
350 0.88 2.23 4.55 10.90
355 0.97 2.40 4.90
360 1.05 2.70 5.30 12.55
365 1.12 2.90 5.65
370 1.25 3.17 6.15 14.30
375 1.38 3.45 6.65
380 1.52 3.75 7.15 16.45
385 1.65 4.10 7.65
390 2.05 4.45 8.15 18.30
395 0.93 2.25 4.85 8.80
400 1.05 2.50 5.30 9.45 20.85
405 2.73 5.75 10.10
410 1.40 3.08 6.30 10.75 22.85
415 1.48 3.35 6.85 11.55
420 1.65 3.75 7.45 12.40 25.55
425 1.93 4.10 8.15 13.40
430 2.10 4.55 8.80 14.20 28.30
435 2.33 5.05 9.55 15.35
440 2.70 5.55 10.40 16.25 31.35
445 3.10 6.10 11.25 17.35
450 3.50 6.80 12.30 18.65 34.00
455 3.92 7.50 13.25 19.80
460 4.25 8.35 14.25 21.20 37.80
465 5.20 9.20 15.45 22.60
470 5.85 10.20 16.70 23.90 41.45
475 6.65 11.25 18.00 25.30
480 7.60 12.40 19.45 27.15 45.20
485 8.65 13.70 20.95 28.55
490 9.85 15.10 22.55 30.75 49.20
495 11.15 16.55 24.25 32.60
500 12.65 18.25 26.00 34.60 53.50
505 14.05 20.00 27.90 36.80
510 16.05 21.95 30.00 38.70 58.15
515 17.75 23.90 32.15 41.45
520 19.90 26.20 34.40 43.65 62.90
525 22.50 28.55 36.70 46.05
530 24.70 31.05 39.20 48.55 67.90
535 27.40 33.50 41.85 50.85

K\T 0.2027 0.3753 0.6247 0.9507 1.9671
540 30.20 36.40 44.45 52.70 72.65
545 33.25 39.25 47.60 56.10
550 37.15 42.30 50.25 58.95 78.50
555 40.80 45.45 53.15 61.85
560 44.30 49.00 56.55 64.80 84.05
565 48.25 52.35 59.40 67.50
570 51.95 56.00 63.50 71.10 90.40
575 55.90 59.80 66.70 73.90
580 60.20 63.70 69.85 77.25 96.45
585 64.50 67.10 74.25 81.30
590 68.80 71.60 77.85 84.45 103.00
595 73.35 76.30 81.70 88.20
600 77.35 80.65 85.10 91.55 108.85
605 82.35 84.80 89.65 95.20
610 87.30 89.65 93.20 99.10 116.45
615 92.50 94.05 97.40 102.90
620 96.65 98.45 101.85 106.80 123.75
625 101.30 103.00 106.40 111.80
630 106.50 107.25 110.60 116.00 130.65
635 111.75 112.95 115.00 120.25
640 117.20 117.25 119.85 124.40 138.10
645 121.45 122.30 124.40 128.55
650 127.25 126.70 128.90 132.55
655 131.45 133.70 137.15
660 136.45 138.15 141.80 153.70
665 141.45 143.05 146.10
670 146.65 147.35 150.50
675 151.80 152.05 154.90
680 156.20 158.25 159.45 169.45
685 161.20 161.60 164.05
690 166.30 166.55 168.65
695 171.30 171.45 173.15
700 176.20 176.45 178.15 186.40
705 181.10 181.75
710 186.15 186.25 188.40
715 191.10 191.35
720 196.05 195.85 197.15 203.70
725 201.05 201.80
730 205.85 206.50 206.95
735 211.00 211.05
740 216.80 216.80 216.20 222.30
745 221.80 221.90
750 226.55 226.85 226.20
755 231.80
760 236.80 236.15 240.60
765 241.95
770 246.95 246.05
775 251.80
780 256.80 256.05 258.90
790 267.00 265.70
800 276.95 276.05 277.70
810 287.25 286.05
820 296.05
830 306.05
840 316.05
860 336.05
880 356.05

Table 5.7: Google market data consisting of 401 American put options with S0 =
523, 755 on February 2nd, 2015.
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(b) Reduced problem, JN (Θ)

Figure 5.7: Left: the Google data set of American put options (circles) and the cali-
brated model data in the Heston model (stars). Right: the relative error
of the market and calibrated data, |P obs

i −P
s,AO
i (Θ?)|/P obs

i , i = 1, . . . ,M ,
s ∈ {N , N}.

approaches in this case seem to be powerful and necessary tools, which allow to
reduce significantly the cost from a couple of days to less than an hour. Notably, we
observe the substantial speed-up obtained by evaluating model prices with the closed-
form solutions. This approach appears to us the most efficient when dealing with
European options. However, taking into consideration the additional time for pre-
processing the data in the de-Americanization approach, the total time for calibration
with this method can be much slower than the calibration with American options
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(a) De-Americanized problem, J̃N (Θ)
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(b) De-Americanized problem with the closed-form solutions, J̃CF(Θ)

Figure 5.8: Left: the Google data set of the de-Americanized American put op-
tions (circles) and the calibrated model data in the Heston model
(stars). Right: the relative error of the market and calibrated data,
|P obs
i − P s,EO

i (Θ?)|/P obs
i , i = 1, . . . ,M , s ∈ {N ,CF}.

using the RBM, depending how often the calibration has to be performed with new
market data. We point out, that for the cases of multiple usage of the same data
set the de-Americanization strategy with the closed form solutions could seem to be
more attractive from the performance point of view than the reduced basis method.
However, the de-Americanization method introduces an additional error. Together
with the lack of a rigorous theoretical analysis of the de-Americanization approach,
the combination of the calibration with American options and the RBM appears to
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Method E(µ) Θ ξ ρ γ κ ν0

Θin 0.6005 −0.6815 0.4867 2.02 0.4961
JN (Θ) EAO

N Θ? 0.5953 −0.7210 0.0527 3.3615 0.0584
JN (Θ) EAO

N Θ? 0.5144 −0.7964 0.0521 2.5906 0.0554
J̃N (Θ) EEO

N Θ? 0.4095 −0.6818 0.0516 1.6262 0.0567
J̃N (Θ) EEO

N Θ? 0.3785 −0.9469 0.0500 4.9822 0.0717
J̃CF(Θ) — Θ? 0.3927 −0.6518 0.0580 1.4554 0.0546

(a) Parameters obtained by the calibration routine.

Method E(µ) # iter. # J calib. time pre-process. time for P obs

JN (Θ) EAO
N 35 219 68.72 hrs

JN (Θ) EAO
N 38 260 44.20 min

J̃N (Θ) EEO
N 34 207 56.47 min 4.96 hrs

J̃N (Θ) EEO
N 35 228 37.40 min 4.96 hrs

J̃CF(Θ) — 43 265 4.30 min 4.96 hrs

(b) Calibration results in terms of the run-time performance. The number “# iter.” corre-
sponds to the number of iterations and “# J” is the total number of function evaluations
performed by the optimization routine.

Table 5.8: Calibration results for the market data set of American put options given
on the Google stock in the Heston model using different approaches.

be an attractive choice for this application.
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6 Conclusions and Outlook

In this thesis we have developed a framework of the reduced basis method which
enables an efficient evaluation of finance products, such as option prices. The deduced
theoretical results are supported by numerical studies. In addition, we have applied
the method to financial applications and compared its efficiency to commonly used
methods. In conclusion, we can say that the RBM method can be considered as an
efficient, reliable and competitive method for option pricing problems, especially for
the evaluation of complex options, such as American puts.

The main objective of the present work was to develop the methodology of the
RBM for parabolic variational inequalities and to adapt it in the context of option
pricing problems. The theoretical results for the reduced variational inequality prob-
lem have been presented in the second part of the thesis. The well-posedness of the
reduced system and a posteriori error estimates have been derived. The latter ones
have been also extended to cover the cases of weakly coercive problems. One of the
challenges, caused by the non-linearity of the problem is reflected in the approxima-
tion of the reduced space of Lagrange multipliers, where one needs to preserve the
positivity constraint. Here we have compared different algorithms which could tackle
this difficulty, such as the Angle-Greedy and the NNMF strategies. With the de-
veloped framework we have been able to treat realistic examples for the variational
inequalities which concern the pricing of American options. We have observed a
significant speedup with the RBM compared to the FEM.

In order to evaluate the practical efficiency of the method, we have extended the
RBM to the application of a calibration on option prices. Here, we have studied
the performance of the RBM for both linear and nonlinear models, that is, pricing
European and American options. However, our primary focus was on the RBM for
American options, due to the fact that for calibration on European options, one can
already gain a significant speed up by using, e.g., closed-form solutions. We have
compared the RBM to some reduction approaches which are common in practice,
such as the de-Americanization method. The empirical study demonstrated a high
efficiency of the RBM method and its competitiveness to other model reduction
approaches. One of the main advantages of the RBM is in its independence on
the given market data set, i.e., the method does not require an additional online
computational time to pre-process the given data. Additionally, the RBM framework
allows to control the reduction error, by enlarging the dimension of the RB space,
in contrast to, e.g., the de-Americanization method, where the approximation error
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6 Conclusions and Outlook

remains fixed.
During the development of the current RBM methodology, we encountered several

open questions and problems which can serve as potential extensions to our approach.
With the use of the RBM we have been able to perform the reduction of the spatial

complexity only. To reduce the complexity further, i.e., in the temporal direction,
one may consider space-time discretization schemes. These schemes in combination
with the RBM have been already successfully applied in [GU14; MU14; Ste14; UP14;
Yan14; YPU14], however only in the context of the tensor product spaces. One can
consider a more general approach, that is, a full space-time method [Kar15; NS11;
NS13; Ste15], which does not restrict us to the tensor-product structure. Here,
the time variable is treated as an additional spatial variable. This approach can
be considered as a general framework to perform more sophisticated adaptive local
refinement in a whole space-time cylinder. This feature could be beneficial for the
detailed solver for American options, where one can provide an adaptive refinement
in the early exercise region that constitutes the area of actual interest. It also allows
to apply the RBM without loss of its consistency property.

The online efficiency of the RBM applied to the time-stepping schemes mostly
depends on the three ingredients, which are the RB dimension, the number of time
steps and the computational cost of the reduced solver. The first two, which provide
the most contribution to the online computational cost, are adjustable depending on
the model problem and desired accuracy of the reduced basis approximation. The
reduced solver is dependent on the nature of the problem. In our computational
study for parabolic variational inequalities we have limited ourselves to the solution
algorithm based on the primal-dual active set strategy (PDAS). A competitive studies
of the different reduced and detailed solvers and their efficiency could be a potential
topic of interest.

In the present work, we did not attempt to reduce the cost of the offline stage.
However, as we could observe from the numerical results, there are situations when
the accuracy of the RBM does not seem to be sufficient or the method is lacking
in recovering some of the parameters. This can be improved in several ways. The
natural choice would be to enlarge the dimension of the reduced space. Additionally,
one can conduct an empirical study by using a richer training set or an adaptive
parameter domain partitioning, see, e.g., [HDO11; HO08a]. However this could lead
to a significant increase of the offline computational cost. To overcome this difficulty,
additional techniques from HPC, such as parallelization, could be applied.

Another open question concerns the optimization problem for the calibration on
the American put options. The main difficulty here comes from the fact that one
can not guarantee the differentiability of the objective functional with respect to
the parameter. Hence, in order to theoretically justify the application of gradient
based optimization algorithms, the problem needs to be regularized. This can be
achieved by, e.g., smoothing the inequality constrains or by adding a penalty term,
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see, e.g., [Ach05; Ach08; AP05a]. Although this topic has been discussed actively in
the literature, in particular in the context of the optimal control problems, e.g, [Hin01;
HR86; IK00; Mig76; MP84; SW13], in the RBM framework this remains an interest-
ing and new perspective for future research.
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