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Abstract— Deformation of optimal trajectories has a great In [4] the combination of a numerical optimal control
potential in various applications due to the ability of real- method and LTE-based deformation is presented. This ap-
il Lecorgp“ta“o” d?f the g‘r’].era” trajectory when applyllng proach is experimentally verified using a robotic arm for
new boundary conditions. This paper presents a novel ap- . . . .
proach where optimal trajectories are created offline through constrained d){namlc mampUIat'on tasks. Howevgr, the rpa.pe
numerical direct optimal control methods. Afterwards the does not provide theoretical bounds on control inputs with
trajectories are deformed online with a spline deformation respect to the deformed trajectories which may lead to
approach, providing minimum acceleration deviation between viplation of constraints and torque saturation.
optimal and deformed trajectories and considerably reducing  he gesign of trajectory following controllers plays a
the computational complexity of the algorithm during run time. crucial role in robotics. Their robustness and traiector
A feasibility check based on upper bounds for the deformed - : | 8 y
trajectory, the controller tracking error and the resulting torq ue  feasibility depend on the boundedness of the system maitrice
is provided. This guarantees correct task execution in the and disturbance, the chosen control scheme and knowledge
presence of bounded disturbances and unmodeled dynamics. gbout the desired trajectory. Uniform boundedness and pos-

itive definiteness of the inertia matrix are necessary when
| INTRODUCTION deS|gp|ng adaptlve controllers and ensuring global Lyapun
o ) ) stability for various control laws [5], [6]. A uniform bousd

Existing numerical optimal control methods recalculatgnalysis for the Coriolis/Centripetal matrix is provided?7].
the entire optimal control problem (OCP) for every newiefer et al. [8] proposed to use modeling errors as a joint
set of boundary conditions [1], [2]. Direct optimal control acceleration disturbance to track a near time-optimaé¢raj
methods provide the capability of solving numerical OCPgyry with prescribed accuracy by modification of controller
by discretizing both states and controls while S|multanegains_
ously solving a finite set of nonlinear optimization prob®m A variety of path-tracking controllers dealing with kine-
(NLP). In contrast to indirect methods [1], they do not relymatic and dynamic constraints are proposed in literatuce. B
on the determination of first-order necessary conditiors arhrow et al. [9] introduced the time-optimal path parametriza-
the solution of a Hamiltonian boundary value problem, i.ejon (TOPP) idea with a bang-bang controller and a switching
direct methods are less sensitive to boundary conditiongyy that depends on a maximum velocity curve to fulfil
Solutions of direct methods readily incorporate constsainorque constraints. The approach provides both time optima
for a successful task execution, but are limited as theyirequ spjutions and algorithm for online computation. However,
a good initial guess in order to converge to a feasible swiuti there are some limitations such as admissible accelesation
and are too slow to find an optimal trajectory online. which reduce the maximum acceleration capabilities of the

Another approach is presented in [3] where a least-squargspot, especially when the motors have different power and
based approach named Laplacian Trajectory Editing (LTRhuys different maximum torques. The method requires ideal
minimizes the acceleration deviation to a given referenggnowledge of the robot dynamics. Shenal.[10] introduced
path. When given feasible boundary points, the approach igimissible regions and investigated at most quadraticiearq
able to retarget the entire trajectory online. As the methogs|ocity dependence for non-simply connected admissible
does n_ot_rely on any kernel/mtern_al state, its r_esolutpn regions. Other works [10], [11] analyzed constraints on
solely limited by the number of trajectory sampling points.torque and its derivative and proposed time-scaling filters

The research leading to these results has received funditiy from the modify the velocity prOf.”e accordingly. The major .dlﬁ.em
European Research Council under the European Union's S8ev@ame- betw_een T[he m_ethOdS is that for TOPP the path is fixed _and
work Programme (FP/2007-2013) / ERC Grant Agreement n. [2g7877the time is optimized, whereas for LTE-based deformation

partly from the European Union’s Horizon 2020 Research ambVation  the time is fixed and the trajectory is optimized.
Programme under Grant Agreement . [643433], project *Rolsstant The contribution of this paper is a feasibility verification
for MCI Patients at home (RAMCIP)* and partly from the Tecluhie pap y

Universitit Miinchen - Institute for Advanced Study (www.tum-ias.de),for online deformation of previously calculated optimad-tr

funded by the German Excellence Initiative. =~ _ jectories. If the amount of deformation is small, the optima
A. Pekarovskiy and M. Buss are with the Chair of Automatic Coint

Engineering and the TUM Institute for Advanced Study, Testine Uni- 1ty Properties related to the acceleration profile of orain

versitit Miinchen, Lichtenbergstr. 2a, 85748 Garching, Germany optimal trajectory in task space will be preserved in thetea

{a. pekar ovskiy, mh}@um de . - squares sense. As an example, curvature properties of the
T. Nierhoff and S. Hirche are with the Chair of Informatioriemted def d . di v infl d. Itis sh hat f

Control, Technische Universit Minchen, D-80333 Munich, Germany eformed motion are directly influenced. It is shown that for

{tn, hirche}@um de a specific type of spline deformation, it is possible to deriv



tight boundaries of the deformed trajectory, making thén terms of task space position and velocity, a trajectory is
approach an ideal choice for motion adaptation in conghin calculated through spline deformation that moves the robot
environments. Maximum norms on the deformed trajectoryyom its initial point to the end point. Here upper bounds on
feedback controller and the maximum possible torque atbe joint torques and task space kinematic parameigrg,,
provided in a segment-wise manner. X4 have to be provided to guarantee safe trajectory execution.
The remainder of this paper is as follows: Sec. Il provide
detailed problem formulation. Sec. lll discusses the OC
formulation. Sec. IV then describes the trajectory deferma
tion process. Sec. V analyses the feasibility of trajectory For the presented approach all original optimal trajeetori
tracking for kinematic and dynamic constraints. Finallyare first precomputed offline using a Direct Collocation
Sec. VI discusses the presented approach and suggests idég#od DirCol [2], resulting in piece-wise polynomial func

EUI. OPTIMAL TRAJECTORYGENERATION WITH DIRECT
COLLOCATION

for further expansion. tions for states and controls. Even if the obtained results
of numerical optimal control methods are in general only
Il. PROBLEM FORMULATION locally optimal, we will call them optimal for brevity for th
The dynamic model of the robot is described by remainder of this paper.
Most optimal control methods including DirCol [12]
7> = M(q)4 + N(q, q), M) cannot guarantee a feasible solution for general nonlinear
N(q,q) = C(q,q)q + G(q) + F(g), problems. And even if a solution is found, it still takes a-con

. - ._siderable amount of time to calculate it. This time depends t
with 7. as a torque vector correspondent to a joint motion

. : lar xtent on th mplexity of th tem, it n in
qa, 4, q. Given system matrices of a robot model, C, alarge extent on the complexity of the system, its condta

and tolerances. We gain advantage by precomputing several
G and F, computed torque and outer loop PD controller 9 ge by p puting

scheme withk. k. gains. maximum torque disturbanceoptimal trajectories for various initial and final points as
S p Ko Galns, ) d ) well as different costs offline. These costs can represent
T4, original optimal trajectoryx,, x,, 7, and a resulting

deformed traiector <, %, satisfying given boundar basically anything: minimum time, energy, etc. What really
conditions thle oaﬁg’t;{?i'nij{dout whethgr%he corres on<)j/inmatters afterwards, during the deformation procedurdds t

' g SP Qeceleration profile of the optimal trajectory that posssss
upper bounds of the actuator torquies|| . are feasible at

every time step. It is done by performing feasibility checkessemIal information for the dynamic task.

not along the entire trajectory but only at some specific For example, we set an OCP in (3) for a robotic task
9 : ! y Y P ith the robot dynamics as in [13] and choose an objective
segmentation points of the deformed trajectory, as in [4].

The problem is reformulated as 0 provide the desired motion behavior. It is important to
P notice that the state space of the OCP consists of the task

||T||oo = f(Mﬂ 07 G7 F7 élda Elda kp; k’U7 Td, Xo, )‘(0, T0)7 (2) space coordinates.

where||r|| , has to be compared with maximum input motorminimize  J(xq, 7o, ty)

torquUe Thound- aTel
' . . . : . _Jo 1 0 0 0
As an illustration, you can imagine a fully actuated 3-subjectto xq = [0 0} Xq + [0 M(xq)*l} f— {N(xq)}
DoF planar robot moving in &-dimensional task space= h(xq(0,t4), Torts) =0 A3)

[+ y ¢|, see Fig. 1. For each new motion, initial and
9(Xq, Tost) >0

with
N(xq) = M(Xq)il(c(xq) + G(xq) + F(xq)), (4)

where h(xq(0,tf),To,ty) represents the initial and final
states as equality constraintg(xq, 7,,¢) > 0 incorpo-
rates kinematic and dynamic inequality constraintg, =

_ (X0,%0)T, X0 = [y ¢] is the state vectof; = J "7,
X denotes the task space forcdds the Jacobian matrixy is
the inertia matrix,C is the Coriolis and centrifugal forces,
G accounts for all gravitational terms, aiidis the Coulomb

\y and viscous frictional force.
Nﬁ For this method, time is discretized @s= t{ < t5... <
xr

t? = ty. The controls are approximated by piecewise linear
Fig. 1: Robotic manipulator operates within constrained tggace or in interpolating functions betwee]j and t‘?+1 as
presence of obstacles. The optimal trajectory is deformenlgusTE with 7
the new start and end point. t—1t°

i = u(tg) + A_—tu §er) —u(t),

Deformed
xra_Optimal

end boundary points of the trajectory are assigned based on _ . .
the task goal. After the end boundary points are determined JEelyn =117 <t <tf, (®)



where At? =2, , — t?. At the same time, the statégt;)  of these bounds. Meanwhile the upper bounds for the second
for each segment are approximated with piece-wise cubterm can be found online using control points of Bernstein
polynomials polynomial.

k
o t—t5 V. FEASIBILITY OF A DEFORMED TRAJECTORY
x(tj) = E aj ,

pors Atg By retargeting the trajectory in task space and not config-

. - i he curse of dimensionality can be avoided.
ell,...,n—1],t2 <t <t%,q, ) uration space, t ; . L

el ) J Jrt ©) On the downside, multiple deformations are possible in case

using Hermite interpolation robot movement is infeasible. Thus a quick feasibility ¢hec
is required.
a;o = I(f?), a1 = At?fj7 q
ajo = —3z(t]) — 24t f; + 3x(t?+1) — At fiy1, (7) A. Trajectory and torque feasibility
ajz = 2x(t]) + At]f; — 2x(t7q) + At] fi41, This section investigates the torque feasibility of the

o ) resulting trajectory for a given parametrization of theabb
where f; = f(x(t7), u(ty), t7). The approximating functions feedpack controller. The estimation is based on a piece-
of the states must satisfy the constraints at the grid peints ise polynomial representation of the deformed trajectory
and at the centers of the discretization interval. The ohloseby taking advantage of the special properties of Bernstein
approximations ofz(t) already satisfy these constraints atpolynomials.
t7. The optimal control problem is split in & set of NLP" the following control structure, see Fig. 2, consists of
problems with a number of collocation constraints, inetyal o offline optimal trajectory generator and a reactive goal
constraints at the grid point§ and the initial and end-point generator that sets new boundary states distinct from the
constraints aty andi;. As result, we get a set of motions qginal ones depending on the task. Afterwards, LTE based

working for a specific set of boundary constraints. deformation generates the new trajectasy, %q, %q. This
IV. DEFORMING OPTIMAL TRAJECTORIESTHROUGH new trajectory is followed by a feedback controller. In
LAPLACIAN TRAJECTORYEDITING this work we assume the feedback controller to consist of

. . . . an internal computed-torque controller in combinationhwit
Typically, and also including previous papers [12], [13]a PD controller. In many cases the robot must consider

an optimal Fra]eptory for every separate mo'gon .has beeJbth kinematic and dynamic constraints. Such limitations
produced with direct collocation method, but its high com-

. ) o ... originate from a finite applicable torque on each joint. LTE a
putational complexity and sensitivity towards a good atiti

guess are major drawbacks. In contrast, this paper assuni%e%same time deforms trajectories in a task space. Thgs, thi
: X . ' ’ tion develops upper bounds for the joint torques based on
that optimal trajectories have been calculated beforelhadd PS Ubp ) q

il be def 4 online t t additional : i the LTE deformation. These bounds are easily verified and
wit be detormed onlin€ 1o meet additional requirements,, ., predictions whether the deformed trajectory can be
Although giving up the optimality of the direct collocation executed

mthod, it results in minimum apceleraﬂon deV|at|on_ betwe 1) Segment-wise representatioAn important feature of
optimal and deformed trajectories, ensuring a certain anou

f similarity between them. In addition. computational mthe method is that it is sufficient to check feasibility only
ot simifarity between them. In addition, computational com ¢ segmentation points. Checking the required torques
plexity is reduced considerably.

) . . . only at the boundary segment points reduces the overall
A generic method for deforming trajectories through y y S€g P

. ) i - omputations. As the osition, velocity and acceleration
least-squares approach is Laplacian Trajectory Editifge T b b Y

. X i S constraints are equitemporally discretized with, and the
key idea of LTE during trajectory deformation is to calcelat optimal trajectory and control are calculated with differe

local trajectory properties, resulting in a linear system %ut known time gridA#2, j € [1,....n— 1], we Superimpose
equations. When adding boundary constraints, the resultirﬂgose two grids, see Fjiiq] 3 Ty ’

overdetermined system of equations can be solved using IeaSMotion time is reduced to fit the time of optimal trajectory.

squares. . . he minimum acceleration deviation is calculated on the
It was shown in [4] that the least squares solution thaOriginal not scaled time grid

requires matrix inversion can t_)e decompo;e(_j n 2 parts. For each interval of the superimposed grid, it holds that
The first part is a sole translation of the original optimal S . g .
.Is cubic,, is quadratic and: is linear. The motion may not

Be feasible when the robot position, velocity or accelerati

(e.g. using Bernstein polynomials) of the form constraints are violated for the required motion. Thusheac

3 of these terms should be checked on each time interval as
P; = Zajaktk7 te[0,1], ) well.
k=0 2) Boundedness of Deformed Trajectotypper bounds
for the j-th trajectory interval. on the deformed trajectory for each time interval allow

Such representation possesses some useful properties. g robot to suffice dynamic constraints in joint space.
per bounds for optimal trajectories can be calculated efflinExplicit bounds on the position, velocity and acceleration
with any segmentation. The same holds for pure translatiateviation result in deviation in joint torques that are boeh
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Fig. 2: Overall motion planning and control scheme. Setting@& boundary states;, xs, X;, Xy, and overall motion time;, is carried out based on
sensory data and provided goal. The optimal trajectasyx, together with optimal contror, is generated through a direct collocation method. Using
forward dynamicsk, is calculated. The optimal trajectory is deformed using LTEhwhe new start and end point. The obtained task space tvajeis
converted to joint spacqy, 44, dq through inverse kinematics (IK), inverse velocity (IVK) amyerse acceleration kinematics (IAK). It is further tradke
using the control structure with computed torque and PD odatr

. . manipulation variable.

g ta tn OperatorI — J{J; projects a generic velocity vector

in the null space of the Jacobian matrix. The null space

projection can be used to perform various optimizations

+ [14], without affecting the given tracking task. For instan
one can consider an optimization procedure for torque and

At?

n—1

i tho -1t acceleration minimization as a desired additional taskter

‘ ‘ At i At ‘ mar_ﬂpulator nuII—space [15]. If_the secondary task i_s Syt
_ similarly to the primary task in terms of a Jacobidnand
- task space coordinatés, it is bounded from above according

131 th—2 tp_q tho1 tn to

léiall oo < 9F | (ralloc + [J]| _enall)+
(I + 137 o 1920)
195 Cltaall o + |32 _ llteall ).

ldalloo < [|IT] o I1%1alloo +
(T o + 133N 1911 193] Ik2a ]l o

Fig. 3: Optimal time grid (top) remains untouched with fixed mottone
of OCP¢¢. Then time grid superposition (bottom) is obtained as a sum of
original optimal and LTE reduced time grids.

11)

from above. The vectorgy and ¢ are related to the task
space coordinates through the inverse and differentiakge/
kinematics schemes. After derivation we obtain

s . For the non-redundant case, e.g. as in Fig. 1, or in
X=Jq+Jq. redundant case with a single tracking task we get respéctive
In case of redundancy and another prioritized task$0th the manipulator Jacobian and its norms uniquely defined
presence of unbounded secondary tasks projected into th&
kernel of J can lead to (theoretically) arbitrarily large joint
velocities and accelerations. In this case an upper bound of

the resulting joint angle velocity of the secondary task tmus

be determined as well. A pseudoinverse-based scheme d4fich links the task space acceleratiéinto joint space
be used to calculate the differential inverse kinematics as Velocity and acceleratioq, §. Whereas the Moore-Penrose
pseudoinverse ensures that a unique solution with minimal

joint velocity can be found, the singular-robust inverse-pr

wherex,, X5 are bounded from above by the secondary task
design.

g=J%x-Ja), (12)

g=J7h; +(1-J7J31)I5hy,

h; = %; — Jiq,
q

Jrxy + (1 —-JFJ3) I %s,

(10)

where J; is the Jacobian of-th manipulation variablex,
%o are the desired velocity and acceleration of thed

vides upper bounds of the matrix norm also in a singular
configuration.

Without loss of generality, in this work we consider a
single tracking task case and use pseudo-inverse as a primar
solution. Using (9) and (12), the normsdf, ¢, are bounded



by Thus, (13) is rewritten as

léiall oo < 9% |0 (salloe + 3] _ Neall) ) N
o < 3" o Ul + ] Mlc) el < Y™ (Sl + G L [0, (@D)
léalle < 197 I%allc » (13 \}%ﬂ min

where ||-|| ., is the infinity norm ¢o-norm) of a continuous 1l < T [1%all o -

function on a closed interval. A§,, G4 depend both on the
JacobianJ and the task space velocity/acceleratian %4, The upper bound on the joint velocities and accelerations
an upper bound has to be determined for them as well. Tigglarantees that the trajectory deformed in task space does
norm of the manipulator Jacobian is bounded from above Byot violate any joint space constraints. Still, for a susees
a constant scalar, due to the finite extent of each robotelf tHul trajectory execution, the tracking error of the feedbac
Jacobian is Lipschitz continuous and the joint velocities a controller and torque bounds are required.
bounded, the norm of is bounded by a scalar factg,ax 3) Boundedness of Feedback Controlléwith the im-
as posed dynamic constraints, feasibility of the control sohe

HJH < (14) fora given'trajectory and bounded externa_ll disturbangdmee

o T UrRex to be provided. The feedback controller is characterized by

An upper bound of the normi* can be derived through the @ tracking error and its dynamics

singular valuesr iy, ..., omax Of J. Itis
€=qq — q,
[ < v < Y = s, 5) 6= da—d. 22)
min

. ) . . € = u + Wajst,
where m is the rank of the Jacobian ang,., is a finite

scalar if the robot does not enter a singular configuratioRyhere the applied controller torque and disturbance teem ar

which is ensured through a workspace analysis. represented as
In most cases the upper bounds %f, X, cannot be
calculated in closed form and must be determined by itegatin u=4q§q+M (N -17),
along the deformed trajectory. An exception is the spline- u=kyé + kpe, (23)

based deformation as in Sec. IV. When splitting the deformed
trajectory up in two parts, the sole translation of optimal

raj ry enabl n lcul n r nd of th . . :
rajecto y. © ?b es one to calculate a ubper boq do tw%erer is a disturbance torque applied to the motors that
norm of x,, X, independent of the deformation &s,,.,

Imax. Since the additive deformation term is represented %%z&s}égfcch%?ggt;he|ilégnggc:ﬁlee?oﬁﬁ?zﬂ'icns a:de?a?oaélr_rll_ﬁm
Bernstein polynomial®!, its derivative is calculated based PP rng op ;
upper bound for this torque can be assigned for each time

on . X . ) :

) interval independently. This is especially useful for robo

B, = (B, - B/, (16) tasks where the disturbance related to contacts occur only
at some specific intervals, for instance, neighboring with
®The tracking error dynamics can be rewritten as

! dfe] [o I]fe] [o 0
Xs = ZakBgﬁ’ (17) E |:é:| - |:0 O:| |:é:| + |:I:| u -+ |:I:| Wdist - (24)
k=0

The transfer function of the disturbance to error and torerro
derivative is as follows [16]

1

—1
Waist = M~ 7g,

where [ is a degree of polynomial. For a spline curv
described by

its velocity is a Eezier spline of degreé — 1 defined byl
control pointsi(a; — ag),...,I1(a; —a;—1) calculated as

-1
i = 5w =Gy i(s), 25
Xs = ZZ(ak+1 —a;)BL (18) ei(s) 52 + kpis + kpi“’ (s) = Gi(s)wi(s) (25)
k=0 ) s
éi(s) = —————w;(s) = sG;i(s)w;(s).
and the acceleration as 82 4 kyis + kpi

=2 However, for obtaining theco-norm of the error, the2-

T . . 1—2
Ko =101—1)) (an2 — 2ap41 +ap)B % (9)  horm of the transfer function and tienorm of the input

’“:0_ ) ) ) are required [17, Chap. 2]. Thus, the-norms of the error
Thanks to non-negativity of each Bernstein polynomial, theynctionse; () ande;(t) are found using

norm of x, X is bounded by

-1 _ N
[Kalloo < Fmax +1 _max  fagsr —ax, (20) Iw()llo < [IM7H], li7all, < minvd, )
—Oetm lei(O)lloe < NGi(s)2 lwils)lly < 1Gi(s)]lo Minvd,  (26)

t)]

[Rall oo < dmax + 11— 1) e lag 2 — 2ap1 + ag. l1é:( _

N

|oo
|oo

< lsGi(s)lly lwi(s)lly < [lsGils)lly Minvd,



where the norm of the transfer function is defined a&a  4) Torque Boundednesdn general the joint torques are
norm over frequency of7(s) from (25) limited by the hardware used, thus the goal is to keep the
too oco-norm of all torque values below a specific constagt
1 2 to prevent torque saturation. This is done by evaluating the
1G(s)ll, = o / GG dw | (27)  worst case scenario, i.e. by deriving upper bounds for each
—00 factor involved in the torque calculation.

Nl

For the definite integral from (27) we find

Theorem. Given the kinematic and dynamic models of the
—jwky + (kp — w?)

G(jw) = ’ (28) robot (1)-(12), the feedback control structure (22), and a
(kp — w?)? + (wky)? bounded external disturbance (23), then tkenorm of the
) ) 2w\ /ky + j(kpw — w?) joint torques is bounded from above for each segment of the
juG(jw) = (kp — w2)2 + (why)? superimposed time grid from Fig. 3 by a scalar value
and by choosing critically damped PD gaibs= 2 /k, Thound = ||dall o, + m(ky [|€]l + kp [l€]| )+
: 1 em([|dall o + l1€ll.c)* + g+
Glw)* = =5 (29) <
(p + w?)? vovVm([|dall o + l1€llo) + ke (34)
2
ljwG(jw)|?> = d 1 Ky 5 for LTE deformation decomposed in transformation and

(kp +w?)? - kp + w? - (kp + w?)
we calculate the definite integral of the proper rationakfun ) o
tion for which the denominator contains repeated irredacib Proof- The norms of the matricesI, C, G [18] are limited

spline interpolation expressed by Bernstein polynomials.

quadratic factors, and thus above by factors as
e 1 1 W e T M(q) < ml,
/ [ (\/@m \/’71)) R/ Cla,q) < cllall, < evmlldll (35)
> o . G(q) < g,
F(q) < wlldll, + ks < vpv/m ||l o + Fo,

—+o0
/ S Y (I S
(kp +w?)2 "\ 2kp(kp +0?) 2Ky VEp

— 00

oo thus the bound on the overall torque from computed torque
with PD controller scheme is rewritten using upper bounds

™
- 2k, ﬁkp’ (30) on joint space velocities and accelerations (21), erro23 (3
too too too and system matrices (35) in a following way:
w? 1 1
———pdw = ——dw—k ——d = &1 — N
| it | et [ et Il = IMG - w4 N
o e —oo < Ml [1(@a — w)lo + [N (36)
N < m|éall oo +m ull o, +m @l +
P

g+ovm gl + ko
< ||l o +m(ky (€] + kp [le]l)+

1 _ . . _
1Gi()lly = | 7= (31) em(||aall + 18ll.0)* + g+
(4kpi\/ kpi) 1 . . o
Ub m(”qd”oo + ”eHoo) + kb = Tbound

1

Finally, the2-norm for i-th joint

|sGi(s)|l, = , with the scalar valuen,,u,a accounting for the maximum
(4v/kpi) motor torque boundary for the deformed trajectory. O

results in One should consider to perform a torque feasibility check

les®)llo < 1G()]ly llwi(s)]l5 < 1 i d, for each joint independently to make norms tighter, espe-
< N \/ (4kypi~/kpi) ’ cially in cases when different motors are used in the robot.
Segment-wise torque estimation is carried out for the
lé:())loe < I18G(5)l5 lwi(s)]]y < ;mmvi scenario presented in Fig. 1. Initial boundary point is fixed
(4y/kpi) for optimal and deformed trajectories = 0m, y; = 0.3 m,
(32) ¢; = m/4rad. Final optimal boundary point is, =

and subsequently the acceleration error from (22) is badinde 0-18m, yo = 0.46m, ¢, = w/drad, Vyo = —0.4m/s,

by Vyo = 0.4m/s, w, = 0.08rad/s, and deformed final
. . ) - boundary iszy = —0.23m, yy = 0.56m, ¢y = 0.64rad,
lei®)lloe < hpi ll€i®)lloe + kvillei ()l oo +minvd- B3) v " Zg530m/s, V,y = 0.66m/s, wy = 0.03rad/s.

As it can be seen from the structure of the error norms (32Upper boundaries on torque for deformed trajectories with
an increase of the controller gains will lead to a betterrerrdk, = [1369, 1089, 841], k, = [74, 66, 58] are shown in
suppression, but it will also result in higher required terg.  Fig. 5 and Fig. 6.
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LTE-based time grid (magenta) are depicted with verticaledbtines.

VI. CONCLUSION

This paper discusses a method for retargeting and track-
ing previously calculated optimal trajectories online.eTh
approach is executed together with the feasibility check on
kinematic and dynamic constraints of the generated trajec-
tories. Analytical upper bounds on the manipulator joint
torques depending on the amount of deformation are de-
rived. Even though calculation eb-norm is computationally
efficient, it is still quite conservative and can be replaced
with tighter bounds for a specific robot. Better knowledge
about the system matrices, external forces and disturbance
results in a smaller disturbance bounds and thus improves
performance of the control scheme and decreases maximum
torque boundaries. Future work will focus on applicability
of this method to other numerical optimal control schemes.
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Fig. 5: Upper boundary foso-norm of the torques witll = 0N'm for all
joints Thouna (blue), and for every joint separatety 1,,una (red, orange (6]
and violet) on the superimposed grid. Optimal time grid (bleahgl LTE-
based time grid (magenta) are depicted with vertical dotteesli 71
: . : . [8]
In case if the feasibility check fails, the following steps
can be taken to lower torque bounds. -

As a first option, optimization with minimax objective is
carried out that modifies controller gains prior to the robot

movement. (0]
minimize Max T; bound -
kp i ’
SUbjeCt to Ti,bound < Tmaz (37)
12
kp,min < kp < kp,max~ [12]
[13]

The cost is responsible for torque minimization. This searc
algorithm is consistent with torque constraints and hetps t
choose the best controller parametrization. The secorioropt [14]
is to increase number of segments for spline deformation.
As overall time is fixed, this will lead to smaller bounds on[15]
norms of x4, X4, ¥4 and thus will result in tighter torque
bounds, however additional computational effort is reeglir [1¢)
As a last option, one can deform another precomputed
optimal trajectory to fit boundary conditions. (17]

If all three procedures fail to find suitable upper bound onus]
torque, the robot motion should be terminated.
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