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Abstract

In the last decades the advent of new experimental techniques has lead to

a drastic increase of available data in biology. As a consequence the impor-

tance of mathematical methods to deduct scientifically relevant hypothesis

from this big amount of data is steadily growing. A major challenge for

bio-mathematics and bio-statistics therefore lies in both the adaption of ex-

isting methods to the, often very specific, properties of the measured data,

and in the development of new methods to model these data.

In this thesis we present methods from statistics and machine learning that

are suitable to perform this task. The quest for new mathematical methods,

thereby, is always pursued in conjunction with the goal to find new scientific

insights into the investigated biological system. The biological focus of

this work is the analysis of heterogeneity among cells: almost all cells of a

living organism share the same DNA, yet there is a multitude of different

cell types that may all perform different tasks within the organism. The

aim of this thesis is to explore both the biological principles that lead to

cellular heterogeneity, and to improve the identifiability of different cellular

phenotypes with mathematical methods.

For this purpose four different mathematical methods are implemented,

tested and applied to biological data in order to draw new conclusions about

cellular heterogeneity:

i We propose a statistical method to correct for latent confounding ef-

fects on single cell transcriptomics data that are due to differences in

cell size, which we show to have an impact on the inference of the

underlying gene expression mechanism.



ii By applying ordinary-differential-equation-based models on chromatin

data we can show that histone acetylation (a certain class of chro-

matin modifications with known impact on transcriptional regulation)

depends specifically on the chromatin status before these modifications

occur.

iii We apply transfer entropy to protein time-series data from hematopoi-

etic stem and progenitor cells and find that the information transfer

between two key transcription factors differs depending on the final

cellular phenotype of the progenitor cells.

iv By the help of machine learning methods we show that cellular pheno-

types can be identified without the need for chemical fluorescent stains

relying entirely on bright field and dark field images of the cells.

To conclude, we anticipate the contributions of bio-mathematics and bio-

statistics for the quest of deciphering and understanding the myriad bio-

chemical processes (and the molecular species involved in them) that even-

tually lead to the emergence of cellular heterogeneity to become more and

more important.



Zusammenfassung

Das Auftreten neuer experimenteller Methoden führte in den letzten Jahren

zu einer drastischen Zunahme verfügbarer, biologischer Daten geführt. Um

aus dieser Datenmenge wissenschaftlich relevante Ergebnisse abzuleiten,

wird es daher immer wichtiger geeignete mathematische und rechnergestützte

Methoden zu finden. Eine der größten Herausforderungen im Bereich der

Biomathematik und Biostatistik ist es daher, bestehende Methoden an die

oft sehr spezifischen Eigenschaften der Daten anzupassen und zusätzlich

neue Methoden für die Modellierung dieser Daten zu finden.

In dieser Arbeit werden Methoden aus der Statistik und dem maschinellen

Lernen vorgestellt, die dieser Aufgabe gerecht werden. Dabei wird die En-

twicklung neuer mathematischer Methoden stets mit dem Versuch verknüpft,

wissenschaftliche Einblicke in das untersuchte biologische System zu gewin-

nen. Der biologische Fokus dieser Arbeit liegt auf der Analyse von Hetero-

genität zwischen Zellen: die Zellen eines lebenden Organismus besitzen fast

alle die gleiche DNA, dennoch findet man eine Vielfalt an verschiedenen Zell-

typen vor, die jeweils andere Aufgaben im Organismus erfüllen. Ziel dieser

Arbeit ist es, mit mathematischen Methoden sowohl die Ursachen dieser

Heterogenität zu analysieren, als auch die Identifizierung von verschiedenen

Zellzustände zu verbessern.

Dazu werden vier verschiedene mathematische Methoden implementiert,

getestet und auf biologische Daten angewandt, um so neue Rückschlüsse

über das Auftreten von Heterogenität von Zellen ziehen zu können:

i Es wird eine statistische Methode vorgestellt mit der bei Einzelzell-

Transcriptomics Daten auftretende latente Störfaktoren korrigiert wer-

den können, welche durch Unterschiede in der Zellgröße zustande kom-



men und welche die Inferenz des zugrunde liegenden Genexpressions-

mechanismus beeinflussen.

ii Durch das Anwenden von Modellen basierend auf gewöhnlichen Differ-

entialgleichungen auf Chromatindaten wird gezeigt dass Histonacetylierun-

gen (eine spezielle Klasse von Chromatinmodifikationen, die für die

Regulation der Genexpression von Bedeutung sind) spezifisch vom Zu-

stand des Chromatins vor Eintreten der Modifizierung abhängen.

iii Mit Hilfe der Transferentropie werden zeitaufgelöste Proteindaten von

hämatopoetischen Stamm- und Vorläuferzellen untersucht und wird

festgestellt, dass sich der Informationsfluss zwischen zwei wichtigen

Transkriptionsfaktoren abhängig vom finalen Phänotypen der Zellen

unterscheidet.

iv Durch die Anwendung von Methoden aus dem Bereich des maschinellen

Lernens wird gezeigt, dass verschiedene Zellphänotypen ohne zusätzliche

chemische Farbstoffe klassifiziert werden können.

Mit Blick auf die Zukunft kann davon ausgegangen werden, dass die Rolle

der Biomathematik für die Erforschung der zahlreichen biologischen Prozesse,

die letztlich zu Heterogenität zwischen Zellen führen, immer wichtiger wer-

den wird.



Contents

List of Figures xv

1 Introduction 1

1.1 Scientific question of this thesis . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview over this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Main scientific contributions . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Biological background: cellular heterogeneity 9

2.1 Regulation of gene expression leads to cellular heterogeneity . . . . . . . 11

2.2 Stochastic gene expression leads to variability . . . . . . . . . . . . . . . 17

2.3 Single cell and cell population based experiments . . . . . . . . . . . . . 19

2.4 Cellular features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Biological model systems with cellular heterogeneity . . . . . . . . . . . 25

3 Stochastic and deterministic modeling of gene expression 29

3.1 The chemical master equation . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 The stochastic simulation algorithm . . . . . . . . . . . . . . . . . . . . 34

3.3 From discrete and stochastic to continuous and deterministic models . . 35

3.4 Application to biological processes . . . . . . . . . . . . . . . . . . . . . 38

4 Statistical learning methods 47

4.1 Parameter estimation and model selection . . . . . . . . . . . . . . . . . 50

4.2 Time-series analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Dimension reduction and clustering . . . . . . . . . . . . . . . . . . . . . 55

4.4 Regression and classification . . . . . . . . . . . . . . . . . . . . . . . . . 58

xi



5 cgCorrect: correcting single-cell gene expression data for confounding

cell growth effects 65

5.1 Biological background and problem statement . . . . . . . . . . . . . . . 66

5.2 cgCorrect: A probabilistic method to correct for confounding cell growth

effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Application of cgCorrect to biological data . . . . . . . . . . . . . . . . . 78

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Model comparison between histone acetylation scenarios reveals motif-

specificity 85

6.1 Biological background and problem statement . . . . . . . . . . . . . . . 86

6.2 A mathematical framework for modeling acetylation motif abundances . 88

6.3 Histone H4 acetylation is motif specific . . . . . . . . . . . . . . . . . . . 94

6.4 Pathway prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.5 Qualitative validation of computationally predicted pathways . . . . . . 102

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Time-series analysis of single-cell protein levels with transfer entropy 107

7.1 Biological background and problem statement . . . . . . . . . . . . . . . 108

7.2 Transfer entropy: a method to measure directional relations . . . . . . . 110

7.3 Application of transfer entropy to data simulated with the stochastic

simulation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4 Application of transfer entropy to time-lapse microscopy data from dif-

ferentiating hematopoietic stem cells . . . . . . . . . . . . . . . . . . . . 113

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8 Label-free prediction of cell phenotypes based on imaging flow cytom-

etry data 119

8.1 Biological background and problem statement . . . . . . . . . . . . . . . 120

8.2 Label-free analysis workflow . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.3 Application of the workflow to biological data sets . . . . . . . . . . . . 126

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9 Summary and Outlook 133

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



9.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

References 139





List of Figures

2.1 The central dogma of molecular biology: DNA, transcription and trans-

lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Transcriptional regulation of gene expression . . . . . . . . . . . . . . . 16

2.3 Comparison between single cell and population based experiments . . . 20

2.4 Accessible scales to extract cellular features relevant for this thesis . . . 22

2.5 Overview of data properties for selected experimental techniques . . . . 24

2.6 Cellular heterogeneity in hematopoiesis and the cell cycle . . . . . . . . 28

3.1 Stochastic simulation of gene expression . . . . . . . . . . . . . . . . . . 31

3.2 Simulated gene expression using the stochastic simulation algorithm . . 40

3.3 Steady-state distributions of gene expression for the two-stage and three-

stage model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Statistical learning methods to extract information from biological data 49

4.2 Example of a simple regression tree . . . . . . . . . . . . . . . . . . . . . 62

5.1 Differences in cell size lead to a broadened mRNA distribution and can

lead to incorrect identification of the underlying gene expression mechanism 68

5.2 Cell growth model and correction probability . . . . . . . . . . . . . . . 72

5.3 Cell growth correction of simulated gene expression data leads to the

correct identification of parameters and the underlying gene expression

mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Probabilistic principal component analysis of single-cell qPCR data re-

solves hematopoietic sub-populations better when using cell growth cor-

rection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xv



5.5 Parameter estimation and model selection on cell growth corrected single-

cell qPCR data reveals that 15 out of the 56 hematopoiesis genes are

more likely to origin from simple gene expression than from transcrip-

tional bursting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 Overview on biological background and possible histone H4 acetylation

scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 Testing different histone acetylation scenarios: a motif-specific model is

preferred over unspecific and site-specific models . . . . . . . . . . . . . 95

6.3 Model selection on the tested acetylation scenarios . . . . . . . . . . . . 97

6.4 Model ensemble analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.5 Model families allow for the prediction of acetylation pathways . . . . . 101

6.6 Predicted acetylation pathways . . . . . . . . . . . . . . . . . . . . . . . 104

7.1 Transfer entropy for data simulated with the stochastic simulation algo-

rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2 Fluorescence intensity of a typical tree with cells differentiating into the

granulocyte-monocyte lineage . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3 Fluorescence intensity of a typical tree with cells differentiating into the

megakaryocyte-erythrocyte lineage . . . . . . . . . . . . . . . . . . . . . 115

7.4 Transfer entropy for protein time-series from differentiating hematopoi-

etic stem cells measured with time-lapse microscopy . . . . . . . . . . . 116

8.1 Label-free imaging flow cytometry workflow . . . . . . . . . . . . . . . . 122

8.2 Images of Jurkat cells captured by imaging flow cytometry . . . . . . . . 124

8.3 Supervised machine learning allows for robust label-free prediction of

DNA content and cell cycle phases of Jurkat cells . . . . . . . . . . . . . 125

8.4 Label-free prediction of DNA content and cell cycle phases for fixed

Jurkat cells treated with a prophase-blocking agent . . . . . . . . . . . . 127

8.5 Label-free prediction of DNA content for live Jurkat cells and detection

of a phase blockage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.6 Images of fission yeast cells captured by imaging flow cytometry . . . . 130

8.7 Label-free prediction of DNA content and cell cycle phases for fission

yeast cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



9.1 Analyzing mechanisms that lead to different cellular phenotypes and

dissecting cellular heterogeneity . . . . . . . . . . . . . . . . . . . . . . . 134





Chapter 1

Introduction

Eine Reise, tausend Meilen lang,

mit einem ersten Schritt fing sie an!

Laozi [I]

1.1 Scientific question of this thesis

Cells are the fundamental building units of all life on earth. The human organism for

instance is formed by ∼ 4 × 1013 single cells (Bianconi et al., 2013). Even though the

DNA is the same in almost all cells of an organism (exceptions are, e..g. red blood

cells and cells from the immune system), cells occur in many different cellular pheno-

types leading to a vast heterogeneity. Important manifestations of different cellular

phenotypes are, e.g., the ∼ 2,000 different cell types that can be found in the human

organism (Hatano et al., 2011; SHOGoiN, 2016) and the different phases of the cell

cycle. Such different cellular phenotypes are often but not always reflected in a distinct

morphological appearance.

A fundamental question in biology is how does this cellular heterogeneity arise? The

answer to this question seems simple: the emergence of cellular heterogeneity is due

to differences in gene expression. On a coarse level gene expression consists of two

subsequent processes that link three different scales in the cell: first DNA that contains

the genetic information is transcribed into mRNA, which is then translated to functional

1



proteins. Gene expression can be regulated such that the present number of protein

species can be very different from cell to cell depending on the details of the regulation.

These details, however, are still not fully understood and also the means to tell different

phenotypes apart are limited (Pennacchio et al., 2013).

The reason for this is that even an isolated single cell is a highly complex system.

In its small volume of ∼ 1, 000 − 10, 000µm3 it contains ∼ 1010 molecules of proteins

and ∼ 105 − 106 molecules of mRNAs (in the case of mammalian HeLa cells; Milo

and Phillips (2015)), which both can be present in plenty of different species. At first

glance one might assume that the number of different mRNA and protein species in

the cell is limited by the number of genes in the DNA given by ∼ 22, 000 in case of the

human organism (Pertea and Salzberg, 2010). A single gene, however may give rise to

multiple mRNA species via a process known as alternative splicing (Matlin et al., 2005).

More importantly after translation, proteins can be modified in myriad ways: so far

∼ 150, 000 different species of these so called post-translational modifications (PTMs)

have been reported (The-UniProt-Consortium, 2015, 2016) and estimates anticipate

> 1, 000, 000 different PTMs (Jensen, 2004).

From a computational point of view it is very hard (if not to say infeasible) to keep track

of the positions and velocities of all these individual molecules and their biochemical

interactions in the cell. However, by making certain assumptions on the system, it is

possible to find mathematical formulations, which allow to describe a biological process

of interest (e.g. the regulation of gene expression). A very successful approach that

fulfills this purpose is given by the chemical master equation (CME; Gillespie (1992)),

where the positions and the velocities of the molecules are marginalized out and the

dynamics of the system can be described in terms of the present molecule numbers. The

CME provides a fully parametrized mathematical formulation of biochemical processes

that can be easily interpreted. Even though the CME cannot be solved analytically

in most situations there is an efficient way to simulate individual realizations from it

using the stochastic simulation algorithm (SSA; Gillespie (1976)).

To investigate cellular processes, however, we have to go one step further and link

its mathematical formulation with experimental data. Biological data is – from a

mathematical point of view – nothing else than a tensor, the dimensions of which equal

the number of measured features (e.g. molecular species, or morphological properties)

2



times the number of samples times the number of measurement time points. Although

great experimental progresses have been made in the last decades making more and

more data available even on a single cell level (Hoppe et al., 2014; Rubakhin et al., 2011;

Tang et al., 2011), the data is still often limited due to the experimental procedures

that are performed to measure it. While measurements of the morphology of a cell

can conveniently be performed using microscopes and do not constitute an invasive

procedure to the cells, a measurement of the molecular species present within the cell

is often very complicated and restrictive. In many cases it is only possible to measure a

small fraction of the molecular species that are involved in a biological process rendering

the data incomplete. Moreover, in most cases the experiments disrupt the cell such that

only a snapshot of the species at a single point in time can be measured. Lastly, the

data quality is often limited due to technical noise that comes from the experiments

or even from biological sources of additional variability that may not be of interest for

the specific question at hand.

This leaves us with the following problem statement: given the data of only a fraction

of the features from a biological process of interest, can we still infer something about

it? In this thesis we use methods from statistics and machine learning to pursue this

goal. We work with parameterized models (as derived from the CME) and link them to

biological data by formulating and maximizing the likelihood for the model parameters

given the data and a particular model topology. This approach allows to estimate

probability distributions for the considered parameters and to analyze the uncertainty

in the estimate enabling to assess if the information content of the data is sufficient to

draw conclusions. Moreover, we use methods from machine learning that do not rely on

a particular model definition, but look for significant differences within the data itself.

These methods can be used to dissect cellular heterogeneity and to identify different

cellular phenotypes. Often these methods have to be adapted to both, the specific

biological question that we aim to answer and the experimental procedure. Further

challenges lie in finding mathematical problem formulations that can be answered with

some given data, but also in the development of new experimental and computational

workflows that lead to more informative data.

The specific scientific questions that we aim to address with this thesis are:

3



i Can we improve on the existing methods to infer the regulatory status of a gene

and to dissect cellular heterogeneity from single cell transcriptomics data by taking

latent differences in cell size into account that are caused by the cell cycle?

ii Can we find a signature of specific and targeted activity in the acetylation of histone

protein tails, which is known to affect the accessibility of genes in its proximity and

therefore influences their expression?

iii Can we find distinguishing properties in the interplay of two key transcription fac-

tors in hematopoietic stem and progenitor cells that differentiate into two distinct

lineages?

iv Can we discriminate the different stages of the cell cycle based entirely on morpho-

logical properties of the cells?

To conclude, the scientific aim of this thesis is the application of existing and the

development of new mathematical methods to (i) gain new insights into the underlying

biological mechanisms that lead to cellular heterogeneity and (ii) to improve the ability

to dissect different cellular phenotypes in a data-driven way. Here, the aim to find

new mathematical methods is always linked with the aim to find new insights about

the underlying biological processes. This makes the scientific topic of this thesis an

interdisciplinary field of research, where mathematics, computer science and biology

come together.

1.2 Overview over this thesis

In Chapters 2-4 we summarize the background of the biology and the existing math-

ematical methods that we extend and/or apply in the original contributions of this

thesis in Chapters 5-8.

In Chapter 2 we introduce the biological background relevant for this thesis. We discuss

the biological process of gene expression and two major ways for its regulation, namely

DNA accessibility and gene regulatory networks. We then explain how regulation of

gene expression eventually leads to the emergence of cellular heterogeneity. Moreover,

we distinguish heterogeneity from variability, which is caused by stochastic gene expres-

sion. We then elaborate on the properties of biological data and explain to what extent

4



current biological data is limited for the inference of cellular heterogeneity. To this

end we elucidate the differences between single cell measurements and measurements

based on cell populations and discuss what features can be extracted from the cell.

We conclude Chapter 2 by naming two important examples of cellular heterogeneity:

hematopoiesis (the formation of adult blood cells) and cell cycle.

Chapter 3 provides the mathematical framework to describe biochemical processes,

the chemical master equation (CME), and discusses how realizations of biochemical

processes can be generated with the stochastic simulation algorithm (SSA). Moreover,

we show how in certain limits the CME, which governs stochastic and discrete dynamics,

can be converted to the reaction rate equation (RME), which is deterministic and

continuous. Finally, we discuss the implications of stochasticity for biological processes

and simulate an example for regulated gene expression.

Chapter 4 provides the statistical learning methods that we use to bring together bio-

logical data and the mathematical framework that describes biological processes. These

methods range from parameter estimation and model selection, over time-series analy-

sis, clustering and dimension reduction to classification and regression.

In Chapter 5 we present cgCorrect (cell growth correction) a novel statistical method to

correct snapshot data sets for differences in cell size, which we point out to constitute

a confounding source of variability for current analysis methods. We use this method

to infer the regulatory status of several genes that are important during hematopoiesis

In Chapter 6 we developed a tailored mathematical framework to study general prop-

erties of histone modifications, which influence DNA accessibility, a key ingredient for

regulation of gene expression. With our framework we find that combinatorial acety-

lation patterns on the histone H4 tail are specifically acetylated.

In Chapter 7 we use transfer entropy, a recently published mathematical method, to an-

alyze information transfer among two protein species in single cells during hematopoiesis.

We show that the information transferred between the two protein species is distinct

for two different lineages the cells differentiate to.

In Chapter 8 we use probabilistic learning methods within a novel computational work-

flow that facilitates the dissection of cellular heterogeneity during the cell cycle. We

show that the identification of cell cycle phase, which was traditionally performed by

5



labeling the cells with fluorescent stains, can also be achieved in a purely non-invasive

way based on morphological properties.

Chapter 9 contains a conclusion on the mathematical methods presented in this thesis

and gives an outlook on what further steps can be undertaken to infer cellular hetero-

geneity.

1.3 Main scientific contributions

The main scientific contributions of this thesis are the development of new mathematical

methods and the adaption of existing mathematical methods to gain new insights into

cellular heterogeneity.

Specifically, we developed novel methods to:

• correct confounding cell size effects that are due to cell cycle.

• predict reaction pathways for histone tail modifications.

• analyze protein time-series with respect to their information transfer.

• predict the cellular phenotype of cells based on their morphological properties.

This lead to the following new biological insights:

• Cell growth effects may obscure the underlying biological processes.

• Histone modification patterns are set in a highly specific manner.

• Information transfer from PU.1 to Gata-1 during hematopoiesis is distinct be-

tween cells of the megakaryocyte-erythrocyte and the granulocyte-macrophage

lineage.

• Information about molecular species inside the cell can be inferred from the mor-

phology alone.

These contributions are in part already contained in peer-reviewed publications and in

a provisional patent application. Parts of this thesis therefore correspond to or are in

parts identical to the publications listed here:
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Blasi, T., Buettner, F., Strasser, M.K., Marr, C. and Theis, F.J. cgCorrect: A method

to correct for confounding cell-cell variation due to cell growth in single-cell transcrip-

tomics. In preparation.

Blasi, T., Feller, C., Feigelman, J., Hasenauer, J., Imhof, A., Theis, F.J., Becker,

P.B. and Marr, C. (2016). Combinatorial histone acetylation patterns are generated by

motif-specific reactions. Cell Systems 2:49–58.

Gumpinger, A.∗, Blasi, T.∗, Hennig, H., Theis, F.J. and Marr, C. Transfer entropy:

PU.1 regulates Gata1 in MEPs but not in GMPs. In preparation.

Blasi, T., Hennig, H., Summers, H.D., Theis, F.J., Cerveira, J., Patterson, J.O.,

Davies, D., Filby, A., Carpenter, A. E. and Rees, P. (2016). Label-free cell cycle analysis

for high-throughput imaging flow cytometry. Nature Communications 7:10256.

Hennig, H.∗, Blasi, T.∗, Rees, P.∗ and Carpenter, A.E.∗ (2014). Method for Label-Free

Image Cytometry. US 61/985,236.

(* equal contributions)

The content of the third of the listed manuscripts, which is the basis for Chapter 7

of this thesis is also partially contained in a master thesis (Gumpinger, 2015) that the

author of this thesis co-supervised. We explicitly state the individual contributions in

the beginning of Chapter 7.
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Chapter 2

Biological background: cellular

heterogeneity

Doch Forschung strebt und ringt, ermüdend nie,

Nach dem Gesetz, dem Grund, Warum und Wie.

Johann Wolfgang von Goethe [II]

Even though almost all cells in an organism have the same DNA they can be found

in many different phenotypes. So far great progress has been made to understand this

remarkable concept of nature: we know that the underlying reason for cellular hetero-

geneity is that different cellular phenotypes express different sets of protein species. For

this, cells have the ability to highly regulate the expression of genes into proteins. We

start this Chapter by giving a brief (but by no means fully comprehensive) summary

of the current understanding of these regulatory processes on a molecular level. In

Section 2.1 we present the central dogma of molecular biology that explains how DNA

is transcribed into mRNA, which in turn is translated into proteins and discuss how

differences in gene expression give rise to cellular heterogeneity and explain how gene

expression can be regulated. There, we focus on two ways of transcriptional regulation,

namely DNA accessibility and transcription initiation.

In contrast to cellular heterogeneity, which is caused by the regulation of gene expression

there is a fundamental limit to what extend cellular processes can be regulated given

by the laws of thermodynamics that cause gene expression to be a stochastic process.
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In Section 2.2 we discuss of stochastic gene expression leads to variability in gene

expression among cells that we distinguish from cellular heterogeneity in this thesis.

In order to obtain insights about cellular processes and to learn about cellular hetero-

geneity we always need experimental evidence. The data that can be measured from

the cell, however, is limited and only information on certain scales (i.e. chromatin,

mRNA, proteins, morphology, etc.) of the cell can be extracted. If we had a way

to watch biological processes of interest in live cells we would be in great position to

answer most of the questions that are still open. This, however, is not always possible

and we have to rely on information extracted from the cell via complex biochemical

procedures, which are often incomplete (i.e. only one or a few scales of gene expression

can be measured at a time), invasive (often the cells are even killed) and subjected to

high levels of measurement noise. In Section 2.3 we describe the difference between

experiments that are performed on single cells as compared to experiments that are

performed on cellular material from a population of cells. Then, in Section 2.4 we

discuss the scales within a cell that can currently be experimentally assessed and the

properties of the measured features (e.g. on the mRNA scale the features correspond

to the abundance of the measured mRNA species). Finally, in Section 2.5, we give two

examples of biological systems that are of particular interest for this thesis, namely

hematopoiesis and the cell cycle, which both exhibit cellular heterogeneity.

It is important to note that despite the understanding that we currently have about

cellular processes (as described in Section 2.1) there are still a lot of open questions that

are partly due to a lack of available data but also due to a lack of suitable mathematical

models to analyze existing data sets (a point we will take on in Chapter 4). The two

questions that we aim to address in this thesis are (i) how can we gain knowledge about

the mechanism that leads to cellular heterogeneity and (ii) how can we improve the

classification of cell types given information about a mixture of cells.

10



2.1 Regulation of gene expression leads to cellular hetero-

geneity

In this Section we discuss how cellular heterogeneity arises even though the DNA of

almost all cells in an organism is the same. The key to this is that gene expression is

highly regulated in order to generate differences in the abundance of protein species

from cell to cell. We start by introducing the central dogma of molecular biology, which

describes how genetic information is transferred from DNA to functional proteins within

a cell (Crick, 1958, 1970). It involves three scales, DNA and its chromatin environment,

mRNAs and proteins, which are linked via transcription and translation, respectively.

In fact every single step involved in this process can be (and in fact is) subjected to reg-

ulation (see also Alberts et al. (2006)). Recent findings include the regulation of RNA

processing (Licatalosi and Darnell, 2010), RNA transport and localization (Wickra-

masinghe and Laskey, 2015), translation (Jackson et al., 2010), mRNA degradation

(Schoenberg and Maquat, 2012) and protein activity (Petsko and Ringe, 2004). Here,

however, we focus only on transcriptional regulation, which regulates the initiation of

transcription. This process is of particular importance for the cell since it is the first

step of gene expression and its control ensures that the cell produces no superfluous

products. Transcriptional regulation cannot only switch the expression of specific genes

entirely on or off but can also lead to a subsequent transition between these two states.

For the purpose of this thesis we subdivide transcriptional regulation into two parts: (i)

regulation of DNA accessibility and (ii) regulation of transcription initiation. In general,

both processes are intimately related and both of them are performed by transcription

factors that may even be present in a single protein complex. Here, however, we discuss

them as a two step process such that the densely packaged DNA has to be made

accessible for the transcription machinery first and then the initiation of transcription

can be regulated in the next step. The first of the following two subsections is in parts

adopted from Phillips and Shaw (2008) and the second subsection is in parts adopted

from chapter 7 of Alberts et al. (2006).
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Gene expression: the central dogma of molecular biology

Nowadays the fact that the genetic information of all cells is decoded in the deoxyri-

bonucleic acid (DNA) is taken for granted. The first evidence, however, that DNA is

the likely carrier of genetic information goes only back to the 1940s (Avery et al., 1944)

and it became only clear in 1953 how DNA can both decode the building instructions

for proteins and be faithfully replicated within the cell cycle when Watson and Crick

correctly predicted the double-helical structure of DNA. The DNA molecule consists

of two complementary DNA strands that are composed of four different nucleotides,

which only differ with respect to their nucleobases, adenine (A), cytosine (C), gua-

nine (G) and thymine (T). It is the sequence of many of these 4 base pairs that build

up the genetic information of a cell: ∼ 2.9 × 109 in the case of the human genome

(International-Human-Genome-Sequencing-Consortium, 2004).

In eukaryotes the DNA is placed in the nucleus, which forms a subunit of the cell with

a diameter of ∼ 6µm (in case of the human genome). The length of the human genome,

however, if it was rolled out to a line, would have a length of ∼ 2m. From this fact it

becomes clear that DNA has to be efficiently packaged to fit into the nucleus. This task

is performed by the formation of chromatin. The basic unit of chromatin consists of

nucleosomes (Kornberg, 1974), a complex of DNA and histone proteins that serve as a

structuring unit, around which ∼ 200 nucleotide pairs of DNA are wrapped. The core

of the nucleosome is formed by a histone octamer built by two proteins of each histone

H2A, H2B, H3 and H4. Nucleosomes are further packed into 30 nm wide chromatin

fibers, which then are coiled on several levels to form ∼ 700 nm wide domains. These

chromatin domains can then form highly condensed chromosomes with a width of ∼
1,400 nm (see Figure 2.1 A). Even though DNA is highly packaged in the chromatin,

specific regions of it must be made accessible in order to be read out. Chromatin

therefore has to be a dynamic structure that allows fast, localized and on-demand

DNA accessibility. This requirement makes chromatin a highly conserved concept in

evolution that is very similar for all eukaryotic cells.

Before the genetic information on DNA can be transformed into functional proteins

an intermediate step, known as transcription, takes place. A gene on the template

strand of DNA containing the information to build its corresponding protein species is
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Figure 2.1: The central dogma of molecular biology: DNA, transcription and

translation (Figure legend on next page).
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Figure 2.1: (From previous page). The central dogma of molecular biology. (A)

For DNA to fit into the nucleus it has to be densely packed. Its two complementary DNA

strands have a double helix structure with a diameter of ∼ 2 nm. The DNA double helix

is then wrapped around a nucleosome consisting of an histone octamer. Nucleosomes are

further organized into a 30 nm broad chromatin fibre, which is again wrapped on several

scales until a 250 nm wide and 700 nm broad chromatin coil. This chromatin coil is further

packed into 1,400 nm wide rod-shaped chromosomes that can be seen during cell division

(Figure adopted from Annunziato (2008)). (B) Transcription, the process in which DNA

is copied into RNA. In the transcription initiation step, RNA polymerase binds to the

promoter sequence on the template strand of the DNA and transcription starts. In the

elongation step, the RNA transcript becomes assembled by the RNA polymerase adding

nucleotides to the transcript. This process does not necessarily proceed smoothly, since

the DNA has to be unwound before it is accessible for transcription. In the termination

step, the polymerase unbinds from the DNA, once it reached the termination site on the

template strand (Figures adopted from Clancy (2008)). (C) Left: Representation of the

genetic code. The sequence of three nucleotides – a codon (to be read from the centre

outward) – becomes translated into an amino acid (on the outer circle). Since there are

64 different sequences that can be built with three nucleotides most of the amino acids

are represented by multiple sequences (Figure adopted from Wikipedia (2016)). Right:

Translation occurs in the ribosome. Specialized transfer RNA molecules can recognize

the codons and have the appropriate amino acid attached that they add to the newly

synthesized protein (Figure adopted from O’Connor and Adams (2010)).

transcribed into a complementary single strand of ribonucleic acid (RNA) containing

exactly the same information as the template DNA strand. This process consists of

three steps: initiation, elongation and termination (see Figure 2.1 B). In general, there

are different sorts of RNA, only one of them, called messenger RNA (mRNA), contains

building instructions for proteins. The primary RNA template becomes - still during

its assembly - subsequently modified: first, a methyl cap is added to the protruding end

of the mRNA, which makes it distinct from other RNA; then the transcribed intron

sequences are removed (a process called splicing); finally a poly-A tail is added to the

other end of the mRNA. Once these processes are finished, the mRNA is selectively

exported from the nucleus to the cytosol of the cell.

After the mRNA has been transported to the cytosol it is translated into proteins

by ribosomes. The information of the mRNA consisting of a sequence of 4 different

nucleotides has to be transferred into proteins that are built up of 20 different amino
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acids. The rules by which this translation occurs is known as the genetic code and

was deciphered in the 1960s (Crick et al., 1961; Nirenberg and Matthaei, 1961). The

mRNA is read out in subsequent groups of three nucleotides called codons, which can

be present in 4×4×4 = 64 possible combinations. Some of the 64 codon combinations

are therefore redundant and some amino acids are specified by multiple codons (see

Figure 2.1 C left). In the ribosome the codons are recognized by transfer RNA (tRNA)

that are attached to the specific amino acid the codon stands for. In this way amino

acids are subsequently added to the newly synthesized protein (see Figure 2.1 C right)

until a stop codon is reached and the protein is released from the ribosome. Note that

mRNAs can also be translated by many ribosomes simultaneously such that a single

mRNA can give rise to many proteins very quickly. Before the synthesized proteins can

perform their functions in the cell they are folded, modified and undergo a complex

quality control process that ensures that the process of translation was successful.

Regulation of DNA accessibility

The key for the establishment of cellular heterogeneity is the ability of the cell to

regulate the expression of genes. In this subsection we focus on the regulation of

DNA accessibility to perform this task before we discuss the regulation of transcription

initiation in the next subsection. As discussed in the previous paragraph DNA is

highly packaged into chromatin, which in turn consists of many individual nucleosomes

around which the DNA is wrapped. Before the transcriptional process can start the

DNA sequence containing the gene that is to be transcribed must be made accessible

for the transcription machinery (see Figure 2.2 A). This topic is studied by the field of

epigenetics, which is the study of functional effects that are not caused directly by the

DNA but by the state of its surrounding. Epigenetic modifications can be grouped into

the following main categories: DNA methylation, histone modifications and chromatin

remodeling (Portela and Esteller, 2010).

DNA methylation can occur at a di-nucleotide sequence consisting of C and G and

is generally associated with inhibition of gene expression. The histone proteins that

form the core of the nucleosome have protruding tails, which can be modified in many

different ways (among others they can be methylated and acetylated). Depending on

where and in what way the histone tails of a nucleosome are modified the gene in its
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Figure 2.2: Transcriptional regulation of gene expression. (A) DNA accessibility

is regulated: in order for RNA polymerase to bind on the DNA, the nucleosome around

which the promoter sequence and the initiation site are wound have to be made accessible.

If all nucleosomes are in place and the DNA is tightly wound around them the transcription

is off (left). If the chromatin structure was locally remodeled, which can e.g. be an effect

of histone modifications, RNA polymerase can bind and the transcription process starts

(right; Figures modified from Voss and Hager (2014)). (B) Transcription initiation can also

be regulated: in presence of repressor proteins that can bind to a repressor sequence on the

DNA located close to the initiation site the RNA polymerase cannot bind and transcription

is off (Figure in parts adopted from O’Connor and Adams (2010)). (C) Many genes also

need the presence of activator proteins and a mediator in order for transcription to start.

The activator proteins bind on an enhancer sequence in proximity of the promoter sequence

where the RNA polymerase binds (Figure in parts adopted from O’Connor and Adams

(2010)).

vicinity is either actively transcribed or not. Chromatin remodeling is necessary to

loosen the DNA that is wrapped around the histone proteins and to expose it to the

transcription machinery. It is important to note that all of these three processes can also

take place synergistically, e.g. certain histone modifications may recruit chromosome

remodeling complexes. These epigenetic mechanisms can be used by the cell to both,

silence large regions of DNA such that their transcription is turned off, and provide

dynamic access to DNA for transcription. Importantly, epigenetic modifications can

also be inherited through cell replication.
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Regulation of transcription initiation

In this subsection we discuss another way that is important for the establishment of

cellular heterogeneity: the regulation of transcription initiation. In addition to the

points discussed in the previous paragraph there are additional ways to regulate tran-

scription even when the DNA is already accessible. On the one hand repressor proteins

can bind to a DNA sequence in proximity of the transcription initiation site hindering

RNA polymerase to bind and therefore repressing transcription (see Figure 2.2 B). On

the other hand, there are several transcription factors necessary for the initiation of

transcription. A set of general transcription factors is needed for the initiation of tran-

scription of all genes but there may also be transcription factors that are specifically

needed for the transcription of a certain gene. These activator proteins bind to an

enhancer sequence that is located on the DNA in proximity of the initiation site and

only in their presence it is possible to start transcription (see Figure 2.2 C).

Via this mechanism proteins can act as activators or repressors for the expression of

genes (incl. their own gene) and regulate the presence of protein species in the cell. This

concept is at the foundation of gene regulatory networks, which consist of several genes

that activate or repress each other. Gene regulatory networks can – depending on their

topology – act as switches or even perform logical operations (Alon, 2006). Moreover,

they can become very large and complex; one example for this is the gene regulatory

network of the human cell cycle where 4,449 genes are associated to be involved in

(Amigo2, 2016; Carbon et al., 2009).

It is the regulation of DNA accessibility and the regulation of transcription initiation

that we investigate as the source for cellular heterogeneity in this thesis. While we study

ways to infer transcriptional regulation in Chapters 5 and 7, we examine general design

principles of histone modifications that are involved in making the DNA accessible in

Chapter 6.

2.2 Stochastic gene expression leads to variability

In contrast to cellular heterogeneity, which we argued to arise from differences in gene

expression that are due to regulation, there is another process that can cause differences
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in gene expression, namely stochastic gene expression leading to variability. For the

remainder of this thesis we want to distinguish heterogeneity (caused by regulation)

from variability (caused by stochastic gene expression). In the following we outline the

origin of variability in more detail.

As outlined in the previous subsection, gene expression can be highly regulated. So

far we adopted a biological point of view, where all tasks in the cell are performed by

a highly orchestrated and specific interplay of molecular species. However, there is a

fundamental limitation to this point of view that is given by the laws of thermodynam-

ics. In fact all molecules in the cell are in constant random motion and have a kinetic

energy that is proportional to the temperature of the cell (if all molecules in the cell

were non-interacting, stiff particles they would have a velocity that is proportional to

the square root of the temperature). As a consequence all molecules in the cell are ran-

domly wobbling around and for biochemical reactions to happen the molecular species

have to meet at the same place at the same time. This makes all processes in the cell

– including gene expression – fundamentally stochastic.

While we provide a rigorous mathematical formulation of stochastic molecular dynam-

ics in Chapter 3, we want to focus on the biological implications of stochasticity on

gene expression, here. As discussed before regulation of gene expression is the source

for the formation of different cellular phenotypes and leads to cellular heterogeneity.

Stochastic gene expression, however, adds additional differences in gene expression and

leads to variability in gene expression, even for cells that are in the same cellular phe-

notype (this is also known as intrinsic noise; Elowitz et al. (2002)). This variability

is especially important for lowly abundant molecular species, since then the stochastic

fluctuations in gene expression can have a substantial contribution to their abundance.

mRNA species for instance have a median abundance of ∼ 10 copies per cell. Small

variations in gene expression have a relatively greater contribution on their abundance

as compared to protein species, which have a median abundance of ∼ 10, 000 copies

per cell (Schwannhäusser et al., 2011).

Therefore, variability in gene expression makes it necessary to describe the abundance

of molecular species among cells from the same cellular phenotype with probability

distributions (the mathematical framework with which this is possible is presented in
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Chapter 3) rather than with a single value. In Section 3.4 we discuss that by investi-

gating the variability of gene expression among cells of an identical cellular phenotypes

it is even possible to draw conclusion on wether a gene is regulated or not.

2.3 Single cell and cell population based experiments

There are two possibilities to measure molecular species of cells: (i) It is possible to

combine many cells and then extract and measure their cellular content (population

based measurement). (ii) It is also possible to extract the cellular content of individ-

ual, single cells (single cell measurement). In this Section, we want to briefly discuss

advantages and disadvantages of the two approaches.

Let us consider two different scenarios that shall make the advantage of single cell

experiments over population based experiments apparent (Hoppe et al., 2014):

i We investigate biological processes in a single cellular phenotype. In this case, when

performing many single cell experiment, we can see the variability that is due to

stochastic gene expression (see Figure 2.3 A and Section 2.2). A population based

measurement coincides with the average value of the many single cell experiments

(see Figure 2.3 B) and does therefore also give valuable insight into the abundance

of a molecular species of interest. This biological scenario is of importance when

we analyze the underlying mechanism that leads to cellular heterogeneity.

ii We investigate a biological scenario where different cellular phenotypes are mixed

together. In this case a single cell experiments provide the abundance of the molec-

ular species for every single cell and is therefore suited to resolve the cellular het-

erogeneity (Figure 2.3 C). A population based experiment, however, coincides again

with the average value and is therefore not capable to report about the underlying

heterogeneity. Even worse, the measured value even may not be realized in neither

of the different phenotypes (Figure 2.3 D). This biological scenario is of importance

when we want to dissect cellular heterogeneity and we want to tell different cellular

phenotypes apart.

The disadvantage that single cell experiments have as compared to population based

measurements is that due to the lower abundance of cellular material in single cell
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Figure 2.3: Comparison between single cell and population based experiments.

(A) When performing single cell experiments (here mRNA measurement) on 2,000 cells of

a sorted cellular phenotype (green cells) we obtain the steady-state distribution of mRNA

transcript numbers. This is the normalized histogram of the measured transcript numbers

of all cells. Since gene expression is intrinsically stochastic (See Chapter 2.3 and Chap-

ter 4) the measured mRNA numbers display a variability. (B) Steady state-distribution

obtained by performing single cell experiments on 2,000 cells that consist of a mixture of

two different cellular phenotypes (1,000 orange cells and 1,000 blue cells). Here, the two

cellular phenotypes express the measured mRNA differently. The single cell experiment

can resolve the cellular heterogeneity between the two cellular phenotypes. (C) A popu-

lation based experiment, where all 2,000 cells are put into one single sample and are then

measured only returns one single value, namely the mean of the sample. In case of the

sorted cellular phenotype the mean value of population based experiment is biologically

meaningful since it corresponds to the mean value of the observed cellular phenotype. (D)

A population based experiment for the mixed cellular phenotypes also returns the mean

value of the whole sample. Here, however, the mean value is only barely realized in the two

distinct cellular phenotypes that are mixed together. In case the sample exhibits cellular

heterogeneity, a population based experiment is not capable to resolve the distinct cellular

phenotypes and may even give misleading results.
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experiments it is often hard to quantify the molecular species inside single cells and in

case it is possible to obtain a signal, the level of technical noise is considerably higher

than with population based experiments (see e.g. Brennecke et al. (2013)).

2.4 Cellular features

As discussed in the previous Section 2.1 there are multiple scales on which cellular

processes take place (e.g. chromatin, mRNA, protein, morphology, etc.; see Figure 2.3).

On each scale we can observe certain features (e.g. on the chromatin scale we can

observe a set of chromatin modifications). In this Section we discuss the experimental

techniques with which features from different scales can be extracted. It is important

to note that in this thesis, we are interested in data from cellular processes that happen

in living cells (in vivo) and not from biochemical processes that have been isolated and

are analyzed apart from their cellular environment (in vitro).

In the following we want to provide a brief overview over current experimental proce-

dures to access the different scales in the cell (Figure 2.4). We focus on summarizing

the available measurement methods and discuss the details of the data properties that

are of particular interest for the remainder of the thesis where we apply mathematical

models on the data. We note that the experimental processes are a rapidly evolving

field (see e.g. Konry et al. (2016) for a review).

DNA and chromatin

With the advent of next-generation sequencing in the 1990s (see Ansorge (2009) for a

review) it has become possible to efficiently read out the genetic information contained

in the DNA. Since in this thesis we want to focus on cells with the same DNA, we are

not interested in genomic differences among organisms. Next generation sequencing,

however, can also be used to investigate epigenetic modifications, such as DNA methy-

lation (with DNA bisulfite sequencing; see Plongthongkum et al. (2014) for a review)

and histone modifications (e.g. with chromatin immunoprecipitation sequencing (ChIP-

seq) or with an assay for transpose-accessible chromatin using sequencing (ATAC-seq);

see Meyer and Liu (2014) for a review). Another way to measure histone modifications
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Figure 2.4: Accessible scales to extract cellular features relevant for this thesis.

There are many different scales from which cellular features, can be extracted: chromatin,

mRNA, proteins but also – on a more coarse scale – morphology. The features (depend-

ing on the scale they are extracted from) can correspond to the abundance of a set of

chromatin modifications, mRNA or protein species, or to the value of morphological at-

tributes (such as cell size). Typical measurement techniques to obtain features about the

chromatin state are DNA sequencing and mass spectrometry. mRNAs can be measured

with RNA-sequencing (RNA-seq), quantitative polymerase chain reaction (qPCR) or fluo-

rescent probes, such as fluorescent in situ hybridization (FiSH). The protein scale can be

measured with mass spectrometry and also with fluorescent probes. The morphology of a

cell is typically measured with microscopes (parts of the Figure are adopted from Clancy

(2008) and O’Connor and Adams (2010)).
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is given by mass-spectrometry where the histone tails that contain the modifications

are disrupted into peptides, which can then be detected with a mass-spectrometer (see

e.g. Huang et al. (2015) for a review).

mRNAs

The abundance of mRNA species can be measured with RNA-sequencing (RNA-seq; see

Ozsolak and Milos (2011) for a review). There, the mRNAs are inversely transcribed

into cDNA (copy DNA), which can then (after multiple steps of amplification) be

read out with next-generation sequencing. Another way to measure mRNA is given

by quantitative polymerase chain reaction (qPCR; see e.g VanGulder et al. (2008))

where the mRNAs are also inversely transcribed and then subsequently doubled until

a fluorescent signal can be detected that appears once a certain threshold of mRNA

copies of a species are present. Yet another way to measure the abundance of mRNA

is given by fluorescent in situ hybridization (FiSH; see e.g. Levsky and Singer (2003)),

where individual mRNAs are tagged with fluorescent probes that can then be optically

detected.

Proteins

There are different ways to measure the abundance of proteins in cells. One way is

by the aforementioned mass-spectrometry where proteins are broken down into pep-

tides which can then be separated based on their mass (see e.g. Walther and Mann

(2010)). Moreover, it is possible to tag proteins with antibodies that are attached dif-

ferent isotopic forms of atoms, which naturally do not occur in the cell and then to

perform mass-spectrometry, a method called mass cytometry (see e.g. Bandura et al.

(2009)). Another common way to measure protein abundances are antibodies that are

attached to fluorophores – the more proteins there are the more antibodies can bind

and the higher is the fluorescence intensity of the cell. This approach can be combined

with subsequent cell sorting by a method called fluorescence activated cell sorting (see

Herzenberg et al. (2002) for a review).
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low: 1-100; med: 100-1,000; high: > 1,000

measurement technique scale number of features throughput [number of 
samples per run] live possible

DNA sequencing chromatin high med no

mass spectrometry chromatin
protein med low no

mass cytometry protein med high no

RNA sequencing mRNA high high no

quantitative polymerase 
chain reaction

mRNA low med no

fluorescent probes mRNA
protein low high yes

microscopy morphology med high yes

Figure 2.5: Overview of data properties for selected experimental techniques.

Important properties of measurement techniques contain: the cellular scale from which they

can report information, the number of features they are capable to extract, the number

of samples they can measure in one run, their capability to perform live cell analysis and

their capability to resolve local information about the measured biochemical processes.

Morphology

Finally the morphology of cells can be measured. It is important to note that differences

in morphology are usually a consequence of differences in gene expression and are

therefore only a downstream effect. Nevertheless, it is often beneficial to obtain images

of the cells before other experiments are performed or to focus entirely on imaging.

For this purpose, standard microscopy techniques to image live cells have been used

for decades (Stephens and Allan, 2003). A recent experimental technique is light sheet

microscopy (Keller et al., 2008) that enables the imaging of a whole organisms. In this

thesis we use data from another recent experimental technique, imaging flow cytometry

(IFC; Basiji et al. (2007)), which delivers robust images of thousands of cells with

40− 60× magnification. It is possible to obtain information rich features from images

by using imaging software tools that quantifies the morphological shape of the cell

(Eliceiri et al., 2012).
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Data limitations

The experiments with which features from cells can be extracted, however display

certain limitations that affect the properties of the obtained data (see Figure 2.5):

i Incompleteness. The features that can be measured from the cell are usually not

fully comprehensive, i.e. we cannot observe all properties of the cell that are of

interest for an investigated cellular process. Mostly only information about one

scale can be obtained.

ii Invasivity. The experiments are often invasive and often involve killing the cell. To

access the molecular content in the cell, cells have to be disrupted and the cellular

content of interest has to separated with biochemical techniques. As a consequence

it is often challenging to perform live cell analysis and the data is often of a so

called snapshot nature, which means that the information can only be extracted at

one time point, as compared to time-series where we have data from the same cell

over an extended period of time.

iii Technical noise. Technical noise directly stems from the way the experiment is

performed and it therefore can be unique to the kind of experiment performed. It

is a challenge for mathematics and computational biology to find proper ways to

take technical noise into account and to normalize the data (we will come back to

this in Chapter 6).

2.5 Biological model systems with cellular heterogeneity

We want to conclude this Chapter with the discussion of two biological systems that

display cellular heterogeneity: hematopoiesis (the formation of adult blood cells) and

cell cycle. While there is already a lot of knowledge about the principle mechanisms of

gene expression, its regulation and the cellular phenotypes it leads to, many details of

how genes interact and shape cellular phenotypes is yet incomplete. These two systems

are already well-studied and are also of interest for the remainder of this thesis.
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Hematopoiesis

Hematopoiesis (see Figure 2.6 A), the formation of mature blood cells, serves as a

paradigm to study stem cell development (Orkin and Zon, 2008). At the top of its

hierarchy is the hematopoietic stem cell (HSC), which is pluripotent (i.e. it can give

rise to all mature blood cells) and has the ability to self-renew (i.e. it can remain

its pluripotent state). During hematopoiesis a HSC subsequently differentiates into

progenitor cells (corresponding to different cellular phenotypes) that are more and more

restrictive in their differentiation potential. This process is accompanied by subsequent

changes in the protein species that are present in the cells. Thus each progenitor can be

categorized by a set of marker proteins that are only present in this particular cellular

phenotype. E.g. the common lymphoid progenitor (CLP) gives rise to all the lymphatic

cells and the common myeloid progenitor (CMP) gives rise to the other white and the

red blood cells, which both have specific marker genes (see e.g. Rieger and Schroeder

(2012) for a review on murine hematopoiesis).

In order to better understand the differentiation process it is therefore necessary to

study the dynamical changes of protein species. Since malfunction of hematopoiesis is

often related to diseases (Whichard et al., 2010) more knowledge about the involved

individual processes may increase our ability to find therapeutic targets. Two protein

species of particular interest are PU.1 and Gata-1, which were reported to be respon-

sible for the differentiation of the CMP to either the granulocyte-monocyte progenitor

(GMP) or the megacaryocyte-erythrocyte progenitor (MEP; Arinobu et al. (2007);

Burda et al. (2013)). The common hypothesis that gene regulation between the two

protein species is mutually inhibiting and self-activating (see e.g. (Duff et al., 2012)

for a review) has been challenged by recent measurements (Hoppe et al., 2016). Thus

there is a need for new mathematical methods to find general principles underlying

the interaction of the two protein species. In this thesis we therefore investigate the

information transfer between these two proteins based on the data measured by Hoppe

et al. (2016) (see Chapter 7). Moreover, we use independent mRNA data to check the

transcriptional regulation of the two proteins in MEPs (see Chapter 5).

Further recent findings also shine light on the role of chromatin modifications during

hematopoiesis (Lara-Astiasio et al., 2014). The quest for answering how chromatin
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modifications contribute to differentiation is still at the beginning and many details

are lacking (Signolet and Hendrich, 2015). Although we do not analyze chromatin

data from hematopoiesis in this thesis, we investigate the general design principles of

chromatin modifications to gain insights in their establishment (see Chapter 6).

The cell cycle

Another well-studied process that displays cellular heterogeneity is the cell cycle. Cell

cycle is the process cells undergo in order to duplicate their DNA and to divide into

two daughter cells. The cell cycle can be divided into 4 major phases (i.e. cellular

phenotypes; see Figure 2.6 B). It starts with a first gap phase (G1), in which the cells

prepare for the replication of their DNA. It is followed by the DNA synthesis phase

(S), in which the DNA then is replicated. Next, there is a second gap phase (G2),

where the cell prepares for cell division. The last cell cycle phase, mitosis (M), can be

further divided into prophase where chromatin condenses into rod-shaped chromosomes

(containing the original and the replicated chromatin fibers), into metaphase where the

chromosomes align, into anaphase where the chromosomes split apart and into telophase

where the two daughter cells, each with one set of chromosomes divide.

The cell cycle is an important biological process since it governs the replication of all

proliferating cells (Nurse, 2000). Investigating the regulatory mechanisms that control

the cell cycle therefore leads not only to new insights into a very fundamental process

but also helps to understand how diseases that are due to the malfunction of the

cell cycle develop (Vermeulen et al., 2003). Moreover, cancer cells are often highly

proliferating and arresting them in one of the cell cycle phases offers a prominent

therapeutic target (Dickson and Schwartz, 2009). A promising approach is the arrest

in the M phase since a prolonged stay in this cell cycle phase is likely to induce cell

death (Chan et al., 2012). There, one of the challenges is to identify cells that are in the

M phase, which are typically much less frequently occurring than the other cell cycle

phases (Filby et al., 2011), in order to closer investigate their response to cell-cycle

arrest treatments. In Chapter 9 we present a novel method to identify cell cycle phases

that may be of help for future applications.

27



A LT-HSC

MPP (IT)

MPP (ST)

MPP LMPP

CMP

MEP
GMP

MDP
CDP

ELP

Dendritic cell
Pro NKPro T

NK cellT cell

Erythrocyte

Platelets

Megakaryocyte
(Neutrophil)

(Basophil)

Granulocytes
Macrophage

Monocyte

(Eosinophil) Osteoclast

CD150+

CD48-

CD34lo

CD135-

CD49b-

CD201+

CD110+

CD150+

CD48-

CD34lo

CD135-

CD49b+

CD150-

CD48-

CD34hi

CD135-

CD150-

CD48+

CD34hi

CD135-

CD150-

CD48+

CD34hi

CD135+

CD110-

CLP
CD127+

CD117mid

Sca1mid

CD127-

CD117hi

Sca1mid

CD115+

CD117+

CD135+

Sca1-

CD150-

CD117+

Sca1-

CD16/32+

CD34hi

Lin-

CD150+

CD117+

Sca1-

CD16/32-

CD34lo

Lin-

B cell

Pro B

Gap (G1) 
phase

DNA synthesis 
(S) phase

Gap (G2) 
phase

Mitotic (M) 
phase

Meta-
phase

Pro-
phase

Ana-
phase

Telo-
phase

B

Figure 2.6: Cellular heterogeneity in hematopoiesis and the cell cycle. (A)

Hematopoiesis is the formation of mature blood cells. At the top of the hierarchy (de-

picted here the formation of murine blood cells) is the long-term hematopoietic stem cell

(LT-HSC), which differentiate subsequently into intermediate-term and short-term multi-

potent progenitors (MPP (IT) and MPP (ST)). The multi-potent progenitors split up

into a myeloid (common myeloid progenitor (CMP)), which gives rise to all mature red

(erythrocytes and megacaryocytes) and white (granulocytes, macrophages, monocytes and

dendritic killer cells) blood cells and into a lymphoid linage (common lymphoid progenitor

(CLP)), which gives rise to the cells of the immune system (T cells, nature killer cells

and B cells. For every cellular phenotype there is a set of protein species on the outer

membrane of the cell (listed at the side) that is specific for it, which can be marked with

fluorescently tagged antibodies (Figure adopted from Rieger and Schroeder (2012)). (B)

Many cells undergo the cell cycle, which is the process of cell division involving the dupli-

cation of DNA. The cell cycle starts in the first gap phase (G1), where the cell prepares

for DNA replication. The next cell cycle phase is the DNA synthesis phase (S) where the

DNA is replicated. It is followed by a second gap phase (G2), in which the cell prepares

for division. The last cell cycle phase is mitosis (M), which is further subdivided into

prophase, metaphase, anaphase and telophase. In the mitotic phase the cell divides into

its two daughter cells (parts of the Figure are adopted from O’Connor and Adams (2010)).
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Chapter 3

Stochastic and deterministic

modeling of gene expression

Essentially, all models are wrong,

but some are useful.

George E. P. Box [III]

So far the molecular processes discussed in the previous Chapter have been presented

from a biologists’ point of view in which the involved molecular species are thought to

act in a well-defined, deterministic and clearly specific way. In this Chapter we discuss

the limitations of this point of view, which are based on the laws of thermodynamics.

We describe how gene expression, just as every other chemical reaction is intrinsically

stochastic. As a consequence even two hypothetically identical cells display variability

in the expression of the same gene. It is important to note that these differences in gene

expression do not lead to cellular heterogeneity in the sense introduced in the previous

Chapter but to variability among cells that have an identical cellular phenotype.

In Section 3.1 we introduce a probabilistic mathematical framework that is suitable to

describe chemical reactions of an idealized system of molecules: the chemical master

equation (CME). We show how individual realizations of biochemical processes that

obey the CME can efficiently be simulated with the stochastic simulation algorithm

(SSA; Section 3.2). In Section 4.3, we then show how the discrete and stochastic CME

can be approximated and leads to the chemical Langevin equation and to the reaction
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rate equations (RRE). For these Sections we follow the presentation of Gillespie (1992)

and Gillespie (2007) and added further references (see also Figure 3.1). In Section 3.4 we

demonstrate the implications of stochasticity on biological processes. We simulate a toy

system where one gene is regulated by another and use this simplistic gene regulatory

network to derive analytic formulas for the steady-state distributions of the variability

of gene expression among cells of the same cellular phenotype. Eventually, we discuss

the applicability of the CME to biological processes in cells, which do not necessarily

obey all the assumptions made to derive the CME.

3.1 The chemical master equation

As outlined in Section 2.1 there are many molecular species involved in gene expression

and even the products of gene expression, functional proteins are often present in a

vast abundance. Therefore it is an almost infeasible task to keep track of all positions

and velocities of all the molecular species involved in biochemical processes. A full

simulation of all involved species is computationally simply infeasible. However, based

only on a few assumptions about the status of the molecular species, it is possible to

derive a suitable mathematical framework to efficiently describe biological processes.

In this Section we follow Gillespie (1992) and Gillespie (2007) and present a rigorous

derivation of the chemical master equation (CME), which can be used as a probabilistic

formulation of (bio-)chemical processes of interest. It is important to note that the CME

is a formulation for an idealized system and although it is widely applied to biochemical

processes in cells by the community (see e.g. Liang and Qian (2010)) as well as in this

thesis, the assumptions that are made for its derivation do not necessarily hold in the

context of cells (an issue that we discuss at the end of Section 3.4). The general idea

behind the derivation is to:

i Make assumptions about the distribution of the positions and velocities of all species

in the cell in order to reach a framework that describes the state of the system based

only on the number of molecular species that are involved in a cellular process of

interest.

ii Calculate the probability for a particular reaction to happen given the current state

of the system.
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ajdt = probability that reaction Rj 
will occur in next dt

CMESSA

tau-leaping

discrete and stochastic

aj = constant during τ, for all j  

ajτ ≫ 1, for all j  

CLE

Xi  → ∞, Ω → ∞

Xi/Ω = ci, for all i 

RRE

continuous and stochastic

continuous and deterministic

biochemical system with positions rk and 
velocities vk for every molecule k

(i) well-steerdness: P(rk) ~ 1/V
(ii) thermal equilibrium: P(vk) ~ exp(-|vk|2)  

full simulation of 
molecular dynamics

Figure 3.1: Mathematical descriptions of chemical reactions. With assumptions

about the positions and velocities of the molecules in a chemical system it is possible to

describe the dynamics of the system with propensities aj(x) that only depend on the current

abundance of all species x instead of simulating the full molecular dynamics. In this case,

it can be shown that the probability that reaction Rj will occur in the next infinitesimal

time interval dt is proportional to the propensity aj(x). This is the starting point for

the derivation of the chemical master equation (CME; see Section 3.1). While the CME

can hardly be solved analytically, individual realizations that obey a given CME can be

simulated efficiently with the stochastic simulation algorithm (SSA; see Section 3.2). Both

the SSA and the CME describe discrete and stochastic chemical processes. In Section 3.3

we show under which limits we obtain a continuous and stochastic description with the

chemical Langevin equation (CLE) and finally a continuous and deterministic description

with the reaction rate equation (RRE).
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iii Derive a time-evolution equation for the molecular species in the system.

We start with a cellular subsystem of interest (e.g. regulation of gene expression) that

is restricted to a particular reaction volume Ω consisting of N biochemical species

{S1, . . . , SN}, which interact through M chemical reactions {R1, . . . , RM}. Xi(t) indi-

cates the number of molecules of the species Si and X(t) = {X1(t), . . . , XN (t)} denotes

the state vector containing all the molecular species present in the system at a given

time t. Every reaction is accompanied by a state-change vector νj = (ν1j , . . . , νNj)

where νij is the change in the number of molecules of species Si due to one Rj reac-

tion, e.g., Rj leads the system from state X(t) to X(t) + νj (note that the number

of molecules can change through a chemical reaction) Moreover, each molecule has a

position rk and a velocity vk. Our goal is to calculate the state vector X(t) when we

know that the system was in state X(t0) at the initial time t0.

We now make certain assumptions about the distributions of the positions and the

velocities of the system:

I The system is well-steered: the probability that the position of a randomly selected

molecule lies inside a small volume ∆Ω of the cell is equal to ∆Ω/Ω.

II The system is at thermal equilibrium: the probability that the velocity of a ran-

domly selected molecule is given by the Maxwell-Boltzmann distribution (i.e. every

velocity component of a molecule is independent from each other and normally dis-

tributed with mean 0 and variance that scales with the temperature of the system).

Note that it is implicitly assumed that the positions and the velocities are statistically

independent from each other.

The key for the derivation of the CME is the reaction probability P (Ri|x), given X(t) =

x, that a reaction Rj will occur in the next infinitesimal time interval [t, t+ dt). Given

assumptions (I) and (II) one can show that this probability does not depend on neither

the species’ positions, nor their velocities (Gillespie, 1992)

P (Ri|x) = aj(x)dt (3.1)

and it is proportional to the propensity function aj(x). For Rj being a unimolecular

reaction (S1 → product(s)) the propensity function is given by aj(x) = cuni
j x1, whereas

for Rj being a bimolecular reaction (S1 + S2 → product(s)) it is given by aj(x) =
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cbi
j x1x2. Here cuni

j and cbi
j are known as reaction rate constants. The fact that the

reaction probability P (Rj |x) scales with the number of present species is also known as

mass action kinetics. Given the specific form of assumptions (I) and (II) it can be shown

(Gillespie, 1992) that in case of unimolecular reactions, the cuni
j ’s are independent of

the volume, but in case of bimolecular reactions, the cbi
j are inversely proportional to

the volume. Furthermore, both c1uni
j and cbi

j scale with the square root of the system’s

temperature (i.e. the higher the temperature the faster the dynamics in the system).

By the help of Eq. 3.1 we can calculate a time-evolution equation for P (x, t|x0, t0),

i.e. the probability for finding the system in the state x at time t, given the system in

the initial state x0 at time t0:

P (x, t+ dt)|x0, t0) = P (x, t|x0, t0)×

1−
M∑
j=1

aj(x)dt+ o(dt)


+

M∑
j=1

P (x− νj , t|x0, t0)× (aj(x− νjdt+ o(dt)) + o(dt). (3.2)

The first term on the right hand side of Eq. 3.2 corresponds to the probability for no

reaction to happen within the time dt (i.e. the system remains in the state x) and the

second term corresponds to the probability for exactly one reaction Rj to happen that

drives the system to x (i.e. the system has to be in the state x − νj before). Any

reaction that drives the system into the state x with more than one reaction has a

probability that for dt→ 0 goes to zero faster than dt (indicated by o(dt)).

Subtracting P (x, t|x0, t) from both sides, dividing through dt and taking the limit

dt→ 0 we obtain the chemical master equation (CME):

∂P (x, t|x0, t0)

∂t
=

M∑
j=1

[aj(x− νj)P (x− νj , t|x0, t0)− aj(x)P (x, t|x0, t0)]. (3.3)

Note that the CME is a discrete and stochastic differential equation that describes how

a biochemical system that starts in an initial state P (x, t0) propagates in time. At

every point in time the system is described by a probability distribution for x rather

than by a deterministic value and at a given time point t individual realizations of the

CME display variability with respect to their state x (see also Section 2.2).
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The CME provides a mathematical foundation to calculate biochemical processes. Al-

though it can only be solved analytically in rare cases (Jahnke and Huisinga, 2007)

that are often too simplistic for real biochemical systems of interest, there are many

ways to find approximate solutions. One way to obtain approximate solutions for the

CME is to solve the time-evolution for its moments (Engblon, 2006). Another way is

given by the finite state projection (Munsky and Khammsh, 2006) where the number

of species in the system is restricted to a finite upper value. This upper value is lim-

ited because of computational reasons: the dimensions of the matrix that results from

the finite state projection scales with the number of molecules in the system, which

becomes too large to computationally keep track of very fast. Furthermore the CME

can be expanded in a Taylor series for the systems volume Ω, known as system size

expansion (Van Kampen, 1997) that leads to the linear noise approximation (Elf and

Ehrenberg, 2003) when only the first two terms in the Taylor series are considered.

3.2 The stochastic simulation algorithm

In the previous Section we derive the CME and point out that it is hard to find analytical

solutions for it. Often, however, it is not necessary to solve the CME, but it is sufficient

to simulate a biochemical process of interest. In this Section we follow Gillespie (2007)

and show that it is possible to efficiently simulate realizations of a biochemical process

that obeys the CME.

Simulating trajectories of X(t) is possible by considering the probability that, given

the current state of the system X(t) = x at time t, a reaction will occur in time τ > t,

and that it will be the reaction Rj :

p(τ, j|x, t) = a0(x) exp(−a0(x)τ) · aj(x)

a0(x)
, (3.4)

where a0(x) =
∑M

j′=1 aj′(x) is the sum over all propensity functions. This probability

is obtained by the product of an exponential distribution (with parameter a0(x)) for

the time τ , and a weighting factor aj(x)/a0(x) for the reaction being of type j.

Here, we present the ’direct method’ to generate realizations that obey the CME (Gille-

spie, 2007):
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0. Fix the initial time t = t0 and the initial state of the system x = x0.

1. Evaluate all propensities aj(x) and calculate their sum a0(x).

2. Generate two random numbers r1 and r2 from the uniform distribution that lie

in the interval [0, 1].

3. Given the random numbers r1 and r2 calculate the time τ for the next reaction

to happen and the integer j that indicates what Rj reaction it is

τ =
1

a0(x)
log

(
1

r1

)
, (3.5)

j = arg min
j∈N

j∑
j′=1

aj′(x) > r2a0(x). (3.6)

4. Perform the next reaction by updating t← t+ τ and x← x + νj

5. Save (x, t) and return to Step 1 or end the simulation if sufficient reactions or

time points have been simulated.

We give an example for individual realizations for the CME of a biological toy system

in Section 3.4.

3.3 From discrete and stochastic to continuous and deter-

ministic models

In this Section we want to show under which limits the CME can be approximated

by continuous and/or deterministic instead of a discrete and stochastic equations. As

outlined in Section 2.2 stochastic gene expression is mostly relevant for lowly expressed

molecular species (e.g. mRNA species can be present with a median of ∼ 10 copies per

cell; see Section 3.4). This Section provides a clear mathematical formulation for what

’lowly expressed’ means quantitatively.

The chemical Langevin equation

We start by approximating the CME with the chemical Langevin equation (CLE). To

this end, we make the following assumption, known as the leap condition. We suppose
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there exists a τ > 0, for which

aj(x) = constant during [t, t+ τ ], for all j (3.7)

holds. Then the number of reaction Rj to happen in the time interval [t, t+ τ ] is given

as a Poisson distribution P (j|x, t, τ) = Poisj(aj(x)τ) and we can leap the system from

time t to t+ τ by

X(t+ τ) = x +
M∑
j=1

Poisrndj(aj(x)τ)νj , (3.8)

where Poisrndj(aj(x)τ) are statistically independent random numbers drawn from the

Poisson distribution with mean aj(x)τ (note that for the Poisson distribution the mean

equals the variance). Eq. 3.8 is known as the tau-leaping formula.

Additionally to the leap condition, Eq. 3.7, we assume

aj(x)τ � 1, for all j, (3.9)

i.e. the product of all propensities with the time τ during which we assume the propen-

sities to be constant is supposed to be large. Then we can make use of the fact that

a Poisson distributed random variable with a large mean value (� 1) can be approx-

imated as a normal distributed random variable with the same mean and variance,

giving the Langevin leaping formula

X(t+ τ) = x +

M∑
j=1

Normrndj(aj(x)τ, aj(x)τ)νj

=

M∑
j=1

νjaj(x)τ +

M∑
j=1

νj

√
aj(x)Normrndj(0, 1)

√
τ , (3.10)

where Normrndj(µ, σ
2) denotes statistically independent random numbers drawn from

the normal distribution with mean µ and variance σ2. Note that by approximating the

Poisson random variables with normal random variables the Langevin leaping formula

now describes the state of the system X(t) in a continuous way.

It can further be shown (Gillespie, 2000) that, in the limit of τ → 0, Eq. 3.10 leads to

the chemical Langevin equation (CLE)

dX(t)

dt
=

M∑
j=1

νjaj(X(t)) +
M∑
j=1

νj

√
aj(X(t))Γj(t), (3.11)
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which is a continuous, stochastic differential equation for the time-evolution of the sys-

tem’s state X(t). Here Γj(t) are statistically independent and temporally uncorrelated

Gaussian white processes defined by Γj(t) = limτ→0N (0, 1/τ).

The CLE, Eq. 3.11, offers a nice way to interpret biochemical processes. The first

term on the right hand side corresponds to a deterministic part of the time-evolution

whereas the second term incorporates the stochastic part. If the stochastic part of

the CLE was neglected (we will see in the next Section under what conditions this

can be done) the state of the system X(t) could be described purely by an ordinary

differential equation (ODE) that is governed by the topology of the reactions and the

time-evolution would deterministically follow the solution of the ODE. The second

term, however, adds stochastic fluctuations that let the state of the system fluctuate

around the ODE time-evolution (Huang, 2009).

The reaction rate equation

Finally the CLE can be approximated by a deterministic equation when

Xi →∞ and Ω→∞ such thatXi/Ω = const, (3.12)

which is known as the thermodynamic limit and is given by the system’s size as well

as the species becoming very large, but in a way that the concentration of the species

Xi remains constant.

To assess the implications of this approximation, we need to remember that both the

propensity functions for unimolecular and bimolecular reactions scale with the system

size (see Section 3.1). In the thermodynamic limit, Eq. 3.12, the second term on

the right hand side of the CLE, Eq. 3.11, becomes negligibly small compared to the

deterministic part and can be neglected, leaving us with the reaction rate equation

(RRE)

dX(t)

dt
=

M∑
j=1

νjaj(X(t)), (3.13)

which is a deterministic and continuous formulation for biochemical processes. Note

that only for unimolecular reactions the mean of the CME and the RRE coincide.
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3.4 Application to biological processes

In this Section we begin by formulating the CME for a simple gene regulatory network

where a constantly expressed gene represses the expression of another gene and simulate

its gene expression using the SSA. We then focus on the steady-state limit of the

CME, in which analytical solutions for the CME can obtained for both regulated and

unregulated genes. We conclude this Section with considerations on the applicability of

the CME to cellular processes where we discuss to what extend the assumptions made

for the derivation of the CME are biologically reasonable.

Simulation of a simple toy example of regulated gene expression

In general we could simulate every individual step of transcription and translation,

which we described in Section 2.1, with the CME. While both processes by itself are

very complex and it currently proves to be infeasible to observe all the molecular species

involved in gene expression in vivo, it is possible to measure the abundance of mRNA

and protein species in a cell (see Section 2.3). Since the aim of this thesis is to infer

cellular properties in a data-driven way (i.e. we need data to compare our model with),

we treat, for the remainder of this thesis, transcription and translation, each as one

single process neglecting their molecular sub-steps.

Let us now consider a concrete biological process, namely a gene regulatory network,

where a gene A represses another gene B (see Figure 3.2 A and B). Gene A is constantly

transcribed into mRNA A with a rate constant νmRNA,A and subsequently translated

into protein A with a rate constant νprotein,A. The transcription initiation of gene B is

repressed by protein A, which binds and unbinds on the repression site of gene B with

rate constants koff and kon, respectively. When the repression site of gene B is not bound

by protein A, gene B is transcribed into mRNA B with rate constant νmRNA,B, which

then is translated into protein B with rate constant νprotein,B. Once the mRNA and pro-

teins A and B are produced they can degrade with rate constants γmRNA,A, γprotein,A,

γmRNA,B and γprotein,B, respectively. The current state of this system at time t is de-

scribed by the vector X(t) = (xmRNA,A, xprotein,A, xDNA,B,off , xDNA,B,on, xmRNA,B, xprotein,B)

and obeys the CME, Eq. 3.3, which in this case reads

38



∂P (x, t|x0, t0)

∂t
=νmRNA,AP (xmRNA,A − 1, xprotein,A, xDNA,B,off , xDNA,B,on, xmRNA,B, xprotein,B)

− νmRNA,AP (xmRNA,A, xprotein,A, xDNA,B,off , xDNA,B,on, xmRNA,B, xprotein,B)

+ νprotein,AxmRNA,AP (xmRNA,A, xprotein,A − 1, xDNA,B,off , xDNA,B,on, xmRNA,B, xprotein,B)

− νprotein,AxmRNA,AP (xmRNA,A, xprotein,A, xDNA,B,off , xDNA,B,on, xmRNA,B, xprotein,B)

+ γmRNA,A(xmRNA,A + 1)P (xmRNA,A + 1, xprotein,A, xDNA,B,off , xDNA,B,on, xmRNA,B, xprotein,B)

− γmRNA,AxmRNA,AP (xmRNA,A, xprotein,A, xDNA,B,off , xDNA,B,on, xmRNA,B, xprotein,B)

+ γprotein,A(xprotein,A + 1)P (xmRNA,A + 1, xprotein,A, xDNA,B,off,xDNA,B,on
, xmRNA,B, xprotein,B)

− γprotein,Axprotein,AP (xmRNA,A, xprotein,A, xDNA,B,off , xDNA,B,on, xmRNA,B, xprotein,B)

+ koffxDNA,B,on(xprotein,A + 1)P (xmRNA,A, xprotein,A + 1, xDNA,B,off , xDNA,B,on, xmRNA,B, xprotein,B)

− koffxDNA,B,onxprotein,BP (xmRNA,A, xprotein,A, xDNA,B,off , xDNA,B,on, xmRNA,B, xprotein,B)

+ konxDNA,B,offP (xmRNA,A, xprotein,A − 1, xDNA,B,off , xDNA,B,on, xmRNA,B, xprotein,B)

− konxDNA,B,offP (xmRNA,A, xprotein,A, xDNA,B,off , xDNA,B,on, xmRNA,B, xprotein,B)

+ νmRNA,BxDNA,B,onP (xmRNA,A, xprotein,A, xDNA,B,off , xDNA,B,on, xmRNA,B − 1, xprotein,B)

− νmRNA,BxDNA,B,onP (xmRNA,A, xprotein,A, xDNA,B,off , xDNA,B,on, xmRNA,B, xprotein,B)

+ νprotein,B(xmRNA,B)P (xmRNA,A, xprotein,A, xDNA,B,off , xDNA,B,on, xmRNA,B, xprotein,B − 1)

− νprotein,BxmRNA,BP (xmRNA,A, xprotein,A, xDNA,B,off , xDNA,B,on, xmRNA,B, xprotein,B)

+ γmRNA,B(xmRNA,A + 1)P (xmRNA,A, xprotein,A, xDNA,B,off , xDNA,B,on, xmRNA,B + 1, xprotein,B)

− γmRNA,BxmRNA,BP (xmRNA,A, xprotein,A, xDNA,B,off , xDNA,B,on, xmRNA,B, xprotein,B)

+ γprotein,B(xprotein,A + 1)P (xmRNA,A, xprotein,A, xDNA,B,off,xDNA,B,on
, xmRNA,B, xprotein,B + 1)

− γprotein,Bxprotein,BP (xmRNA,A, xprotein,A, xDNA,B,off , xDNA,B,on, xmRNA,B, xprotein,B) (3.14)

Before we can simulate this system with the SSA, we need to specify the reactions’

rate constants for transcription, translation as well as mRNA and protein degradation.

To this end, we adopt typical values for mammalian cells from Schwannhäusser et al.

(2011) who analyzed the genome-wide abundance of all mRNA and protein species in

mouse fibroblast cells. They report that there are ∼ 6,000 different species of proteins

and their corresponding mRNAs present with a median abundance of 16,000 proteins

and 17 mRNAs per species. Moreover, they measured the median half-life times among

all protein species to be 46 h and the median half-life time among all mRNAs to be

9 h. Given the abundance and the half-life time of all the mRNA and protein species

they determined a median transcription rate constant to be 2 mRNA transcripts per

hour and the median translation rate constant to be 40 proteins per mRNA transcript

per hour. The degradation rate constants can be obtained as the inverse half-life times.

We chose the reaction rate constant for the binding and unbinding of protein B, such

that transcription can remain in the on state longer than the typical time that it takes

for one mRNA transcript to be produced.

For the simulation of the described gene regulatory network displayed in Figure 3.2

we used the SSA as implemented by the StochKit2 toolbox (Sanft et al., 2011) with

the following reaction rate constants: νmRNA,A = 5.6 × 10−4s−1, νprotein,A = 1.1 ×
10−2s−1mRNA−1, γmRNA,A = 3.1 × 10−5s−1,γprotein,A = 6.0 × 10−6s−1, νmRNA,B =
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Figure 3.2: Simulated realizations of gene expression using the stochastic

simulation algorithm (Figure legend on next page).
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Figure 3.2: (From previous page). Simulated gene expression using the stochas-

tic simulation algorithm. (A) We consider a simple gene regulatory network, where gene

A is a repressor protein for gene B (see also Figure 2.2 C). Gene A is constantly transcribed

into mRNA and translated into protein. Protein A can bind on the repressor site of gene

B and can turn gene B into an off state, where no transcription occurs. When protein

B unbinds. gene B is turned on and can be transcribed into mRNA, which in turn is

translated into proteins. (B) All ten reactions that can occur within the gene regulatory

network depicted in (A). Every reaction is governed by its own reaction rate constant.

We used values for the reaction rate constants that are similar to the values obtained by

Schwannhäusser et al. (2011). (C-H) Time evolution of 100 individual realizations of the

CME simulated with the SSA. A single realization is highlighted with a colored solid line;

the mean value of the 100 realizations is displayed with colored dashed lines. While gene

A remains constantly in the on state, gene B is repressed by protein A and can switch

between the on and the off state.

8.4×10−4s−1, νprotein,B = 1.7×10−2s−1mRNA−1, γmRNA,B = 3.1×10−5s−1,γprotein,B =

6.0 × 10−6s−1, kon = 1.0 × 10−1s−1 and koff = 1.0 × 10−5s−5.The system starts with

initial conditions xmRNA,A(t = 0) = 18 mRNA transcripts of gene A, xmRNA,A(t =

0) = 6, 624 proteins of species A, xmRNA,B(t = 0) = 27 mRNA transcripts of gene B,

xmRNA,B(t = 0) = 7, 677 proteins of species B and the DNA of gene B in the on state.

Steady-state distributions of gene expression

We now turn to a very important limit of the CME, namely the limit t→∞, in which

we reach the steady-state where the system approaches is chemical equilibrium and

∂P (x, t|x0, t0)/∂t = 0. In this case we can obtain analytical solutions of the CME’s

steady-state distribution for biologically relevant systems. In the previous paragraph

we discussed the case where one gene is constantly transcribed whereas the other gene

can switch between a state where the DNA is off and a state where it is on and only

then can be transcribed. The steady-state of these two cases corresponds to the two-

stage model (i.e. constant gene expression) and the three-stage model (i.e. regulated

gene expression) that have been introduced in literature (Peccoud and Ycart, 1995; Raj

et al., 2006; Raj and van Oudenaarden, 2009; Shahrezaei and Swain, 2008).

For large time scales t� t0 the dynamics of the previously described system (see Fig-

ure 3.2) approaches its steady-state where the abundances of mRNA A and B stochas-

tically fluctuate around their expectation value (see Figure 3.3 A and C). Then the
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Figure 3.3: Steady-state distributions for the two-stage and three-stage model.

(A) Stochastic simulation of 100 realizations of mRNA A transcripts that stem from an

unregulated gene once the system is in chemical equilibrium. An individual realization

that obeys the CME is displayed with a solid blue line; the mean of all 100 realizations

is depicted with a dashed blue line. (B) Steady-state distribution of the unregulated

mRNA transcripts of gene A that follows the Poisson distribution (dashed black line). (C)

Stochastic simulation of 100 realizations of mRNA B transcripts that come from a regulated

gene described by the system displayed in Figure 3.2 for large times (i.e. the system is in

its steady-state). An individual realization that obeys the CME is displayed with a solid

orange line; the mean of all 100 realizations is depicted with a dashed orange line. (D)

The state-state distribution of mRNA B that is transcribed from a regulated gene rather

follows the over-dispersed negative binomial distribution (dashed black line).
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steady-state distribution can be obtained by sampling from an individual time-series

(see Figure 3.3 B and D). Note, however, that the steady-state distributions of molec-

ular species are experimentally often obtained by a snapshot measurement of many

single cells (see also Figure 2.3 A and B) rather than by time-dependent observations.

We now describe how the steady-state distributions for the two-stage and the three-

stage model can be obtained analytically. First, it is important to note that for the

three-stage model we do not consider the coupled gene regulatory network from the

previous Section, but look at a regulated gene individually of the abundance of its

regulatory protein. By assuming a constant abundance of the regulatory protein the

propensity for the off-switching rate of the regulated gene turns into an effective rate

constant k∗off = xprotein,Bkoff .

The steady-state distribution of mRNA numbers m for the three-stage model contains

four reaction rate constants: kon, the rate constant at which the DNA transitions from

the off to the on state; k∗off , the (effective) rate constant at which the DNA transitions

from the on to the off state; ν, the transcription rate constant; and γ, the mRNA

degradation rate constant. It can be shown that the CME has the following steady-

state distribution for mRNAs (Raj et al., 2006; Shahrezaei and Swain, 2008)

P(m|θ) =
θm1 e−θ1

Γ(m+ 1)

Γ(θ2 +m)Γ(θ2 + θ3)

Γ(θ2 + θ3 +m)Γ(θ2)
× 1F1(θ3, θ2 + θ3 +m, θ1), (3.15)

where (θ1, θ2, θ3) = (λ, κon, κoff) and only ratios of the rate constants λ = ν/γ, κon =

kon/γ and κoff = k∗off/γ enter. Here, Γ(.) denotes the Gamma function and 1F1(.)

describes the Kummer confluent hypergeometric function.

In the limit of large κoff � 1 and constant ξ = ν/koff , Eq. 3.15 turns into a negative

binomial distribution

P(m|θ) = (1 + θ1)−θ2
Γ(θ2 +m)

Γ(θ2)Γ(m+ 1)

(
θ1

1 + θ1

)m
(3.16)

where (θ1, θ2) = (ξ, κon). In this case the DNA stays only very shortly in the on state

and transcription takes place in instantaneous bursts, with an average burst size ξ and

a burst frequency κon.

For κoff = 0 the DNA remains constantly in the on state corresponding to the two-

stage model. In this case the mRNA steady-state distribution is given by a Poisson

distribution

P(m|θ) =
θm

m!
e−θ (3.17)
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where θ = λ denotes the average number of mRNA molecules over many single cells.

Similar solutions can also be obtained for the protein number steady-state distributions

of the two- and three-stage model of gene expression. Since for this thesis only the

mRNA distributions are of interest, we refer to Shahrezaei and Swain (2008).

To conclude, the mRNA numbers of gene A, which is unregulated are distributed ac-

cording to a Poisson distribution where the mean equals the variance and the mRNA

numbers of gene B, which is regulated have an over-dispersed steady-state distribution

(i.e. the mean exceeds the variance of the distribution, which it does e.g. in case of

the negative binomial by a factor of (1 + ξ) > 1). The absence of over-dispersion can

therefore be used as an indicator for unregulated genes; the presence of over-dispersion,

however, can also be due to other confounding sources of variability (such as technical

noise) and is not necessarily sufficient to conclude that a gene is regulated (see also

Chapter 5).

Considerations on the applicability of the chemical master equation to

biological processes

It is worth mentioning that the derivation of the CME as carried out by Gillespie

(1992) is intended to hold for chemical systems that behave like an ideal gas. An

ideal gas is a hypothetical system where all species are perfectly well mixed and not

subjected to any affinity to react with each other, except that they randomly collide in

an elastic way. This corresponds to a system of non-interacting particles (or molecules)

with no internal degrees of freedom (a real world example where these conditions are

approximately fulfilled is a low-density noble gas). In this case the assumptions that

were made to integrate out the positions and velocities of the molecules, (I) uniformly

distributed positions (well-steardness) and (II) normally distributed velocities (thermal

equilibrium; see Figure 3.1 and Section 3.1) are well justified (see e.g. Schroeder (2000)).

The cell, however, has a high degree of internal organization and substructure and

the molecular species in the cell are not elastic and have clear affinities to react with

other molecules (as described in Section 2.1). It is important to be aware of this fact

and the limitations that it implies: a system of interacting molecules with internal

degrees of freedom exhibits potential energy that couples the positions and velocities

of the molecules (depending on the specific form of the interaction) and gives rise to an

altered and joined probability distribution f(rk,vk) for the positions and velocities.

The ideal gas assumptions (I) and (II) were taken to obtain propensity functions that
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are constant with respect to the molecules’ positions and velocities. Only with con-

stant propensity functions it is possible to avoid simulating the positions and velocities

individually and to work with the probabilistic framework of the CME instead. Note,

however, that the derivation of Eq. 3.1 does not necessarily depend on the specific

form of the position- and velocity-distributions of the ideal gas. It might therefore be

possible to find other distributions f(rk,vk) for the positions and velocities that could

be derived from a more suitable description of the cellular environment, which could

also give rise to constant propensity functions.
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Chapter 4

Statistical learning methods

Frustra fit per plura,

quod potest fieri per pauciora.

William of Ockham [IV]

Causa latet, vis est notissima fontis.

Ovid [V]

Niemand urteilt schärfer als der Ungebildete;

er kennt weder Gründe noch Gegengründe [...].

Anselm Feuerbach [VI]

In the last Chapter we presented a mathematical framework to describe and simulate

biological processes. A mere simulation of a biological system, however, is only of

limited predictive power since many different parameters and model topologies could in

principle give rise to qualitatively very similar biological observables. Here, we provide

the mathematical formulation with which we can quantitatively assess the underlying

model topologies and parameters and which conjoins the mathematical formulation of

biological systems with the data we can measure.

In Chapter 3 we discussed the properties of data that can be obtained from biological

systems and concluded that their information content is limited in the sense that the

data is incomplete, subjected to technical noise and often suffers from an averaging out

of relevant information. We therefore need mathematical methods that are capable to

deal with these limitations and that are often intimately related to the properties of

the data. One major challenge of biomathematics and computational biology is the
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development of novel methods and the adaptation of existing methods to handle data

limitations and to infer new knowledge about biological systems.

In this Chapter, we provide several probabilistic learning methods that are ideally

suited to (i) conjoin biological data and the mathematical formulation of biological

systems in a probabilistic way to investigate biological mechanisms that lead to cel-

lular heterogeneity and (ii) discover information in data sets in an unbiased way to

dissect cellular heterogeneity. The task of these methods is to infer biological relevant

information given data from the system. Moreover, a probabilistic approach provides

straightforward ways to quantify the error of the estimated conclusions, which is of

fundamental importance given the aforementioned data limitations.

From a mathematical point of view biological data can often be understood as a three-

dimensional data tensor whose dimensions equal the number of features times the num-

ber of samples times the number of time-points (see Figure 4.1). As mentioned before,

it is not always possible to observe all three dimensions depending on the particular

experiment that is performed. Nevertheless, it is possible to use methods from statistics

and machine learning even if only one of these dimensions is observed. For instance if

only cellular features are provided for one sample, we can still analyze the mechanisms

that lead to the observed features (we do this in Chapter 6, where we analyze the

mechanism behind histone tail modification). We can also perform an analysis if only

one feature for many samples is given and investigate the steady-state distributions of

gene expression (we do this in Chapter 5, where we perform a steady-state distribution

analysis for key genes during hematopoiesis). Moreover, there are also measures to

analyze data sets with only one or a few different features, but with many time points

(we analyze time-series of two proteins during hematopoiesis in Chapter 7). Lastly, we

can use machine learning methods for the multivariate analysis of data with a large

number of samples and features (we use this approach in Chapter 8 to classify cells

based on their morphological features into their cell cycle phase). One of the major

tasks in the application of these methods is to find suitable biological questions that can

be posed to given data and that can actually be answered with methods from statistics

and machine learning.

We start in Section 4.1 by providing the mathematical framework to perform parameter

estimation and model selection. In Section 4.2 we discuss ways to analyze time-series

data. Section 4.3 contains methods for clustering and dimension reduction of high-

dimensional data sets. We conclude with Section 4.4 where we provide an overview

over classification and regression methods. In this Chapter we introduce all methods
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Figure 4.1: Statistical learning methods to extract information from biological

data. From a mathematical viewpoint the biological data relevant for this thesis can be

understood as a tensor where the dimensions are given by the number of measured features

times the number of measured samples times the number of measured time points. There

are different mathematical tools to extract information from either of these dimensions in-

dividually (indicated by the blacked dashed boxes around vectors from the three mentioned

dimensions), such as parameter estimation and model selection for models based on the

reaction rate equation (RRE) with data from different features, parameter estimation and

model selection on steady-state distribution of many samples, analyzing the time-evolution

of one or two features with transfer entropy, and clustering and dimension reduction meth-

ods on the samples times features matrix. We present these methods in this Chapter and

apply them in the original contributions of this thesis (Chapters 5-8).
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that are necessary for the original contributions of this thesis (Chapters 5-8), where

we apply them to biological data. The interested reader finds references for further

approaches at the end of each Section.

4.1 Parameter estimation and model selection

In this Section we show how we can estimate parameters and perform model selec-

tion. As discussed in Chapter 3, we can formulate mathematical models that describe

biochemical systems. Here, we present how the parameters of these models can be es-

timated and how even the model topology can be inferred. This method is particularly

suitable if we already have some knowledge about the biological process of interest and

we can formulate a model for it. We use parameter estimation and model selection

in Chapter 5 on individual features (across samples) and in Chapter 6 on individual

samples (across features) to infer model parameters for transcription and histone mod-

ifications, respectively (see Figure 4.1).

The likelihood

If we regard both the measured data pointsD and the model parameters θ = (θ1, . . . , θN )

as random variables with a certain probability distribution, we can use Bayes’ theorem

(see e.g. Murphy (2012)) to denote

P (θ|D) =
P (D|θ)P (θ)∫
dθP (D|θ)P (θ)

(4.1)

for the posterior probability P (θ|D) of the parameters given the data, with the prior

distribution P (θ), the evidence P (D) =
∫

dθP (D|θ)P (θ) and the likelihood P (D|θ).

This formulation provides us with a probabilistic framework that incorporates the data

into the model in a natural way.

In case we choose a uniform prior distribution, which is done when there is no a priori

information about the model parameters available, the posterior distribution is directly

proportional to the likelihood P (θ|D) ∝ P (D|θ). We can then work directly with the

likelihood instead of the posterior distribution and we do not have to evaluate the

potentially high-dimensional integral of the evidence. The explicit formulation of the

likelihood depends on both the model formulation and an error model that is chosen to

incorporate measurement noise (we formulate likelihood functions in Chapters 5 and

6).
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Once we formulated the likelihood of a particular model we can perform maximal

likelihood estimation by finding

θ̂ = arg max
θ

P (D|θ), (4.2)

where, θ̂ denotes the maximum likelihood estimate (MLE) of the model parameters.

In some cases it is possible to find closed solutions for the MLE. In this thesis, however,

we use local optimization strategies to minimize the negative log-likelihood

J (θ) = − logP (D|θ). (4.3)

Additional material on working directly with the posterior probability distribution,

which requires solving the integral of the evidence can be found in Hug (2015). Typical

methods to numerically calculate the posterior probability distribution are the poste-

rior harmonic mean estimate (Newton and Raftery, 1994), Chib’s method (Chib and

Jeliazkov, 2001) and thermodynamic integration (Gelman and Meng, 1998).

Uncertainty analysis

As mentioned in Section 2.4 the data of biological systems is often not comprehensive

and subjected to technical noise. It is therefore important to have a way to quantify

the error in the prediction that can come from this limited amount of information.

Furthermore, the model can have a structure that does not allow to identify some of

its parameters. A practical way to obtain error bars to the MLE and to assess the

identifiability of the parameters is the profile likelihood (PL; Venzon and Moolgavkar

(1988)). It allows us to obtain confidence intervals in which the estimated parameters

lie with a given significance level.

To determine CIs and to address identifiability of the MLE of the parameters, we can

calculate the profile likelihood (PL) for each parameter θn (Raue et al., 2009):

PL(θn) = max
θn′ 6=n

J (θ). (4.4)

This corresponds to maximizing the log-likelihood with respect to all parameters θn′ 6=n =

(θ1, . . . , θn−1, θn+1, . . . , θN ) for each parameter value θn. Point-wise CIs of the param-

eters to a significance level α can be obtained as

CI(θn) = {θn|PL(θn)− J (θ̂) < ∆α} (4.5)
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with the threshold ∆α = (χ2)−1(θn ≤ α, 1)/2 determined by the chi-square inverse

cumulative distribution function (Raue et al., 2009). In case the confidence intervals

are finite the parameters are identifiable.

There are also different approaches to perform uncertainty analysis in the context of

parameter estimation. For instance, one can obtain asymptotic confidence intervals

with the Fisher information matrix (which corresponds to the Hessian matrix of the

negative log-likelihood) or directly from the posterior distribution as posterior profile

CIs (see e.g. Hasenauer and Theis (2013) for more details).

Model selection

In many cases it is not the MLE of the model parameters that is of particular interest,

but the model topology, which is a more general property of the biological system of

interest. To compare two models j and k with different model topology we can calculate

the ratio of the posterior probability of two models, which (in case of uniform prior

probabilities for both models, i.e. P (j) = P (k)) equals the Bayes factor

Bjk =
P (j|D)

P (k|D)

=

∫
dθjP (D|θj)P (θj |j)∫
dθkP (D|θk)P (θk|k)

. (4.6)

It can be shown (Kass and Raftery, 1995) that in the limit of large samples (i.e. dimD �
1) the Bayes factor of a model j with parameters θj can be approximated by the

Bayesian information criterion

BICj = −2 max
θj

P (D|θj) + dimθj log(dimD), (4.7)

via the following limit

lim
dimD→∞

−2 logBjk − (BICj − BICk)

−2 logBjk
= 0. (4.8)

The BIC is given as the sum of twice the log-likelihood evaluated at the MLE and a

term that scales proportional to the number of model parameters and the logarithm of

the number of observed data points.

Kass and Raftery (1995) also specified for which values of the Bayes factor (or the

BIC) model j should be rejected in favor for model k. With ∆BIC = BICj −BICk the
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evidence against a model with higher BIC is considered to be ’not worth more than a

bare mention’ if the difference in the BIC value of the two models ∆BIC < 2, ’positive’

if 2 < ∆BIC < 6, ’strong’ if 6 < ∆BIC < 10, and ’very strong’ if ∆BIC > 10.

While in the following we exclusively use the BIC for model selection, there is also

another criterion, known as the Akaike information criterion (AIC) based on which

models can be selected. The AIC is derived as the Kullback-Leibler divergence be-

tween a candidate model and the true underlying model. Moreover, there are different

approximations to the Bayes factors available than the BIC (such as the Laplace ap-

proximation) or it is possible to directly evaluate the Bayes factor without further

approximations (Hug, 2015). In case we have to select between nested models (model

j is nested in model k when model j can be obtained from model k by fixing some

of model k’s parameters) we can perform the likelihood ratio test, which is based on

Wilks’ theorem (Wilks, 1938). Additional reading on other model selection strategies

can be found in Hasenauer and Theis (2013).

4.2 Time-series analysis

Time-series can be obtained by observing cellular features and samples over time t

(see Figure 4.1). We have seen in the previous Chapter how time-dependent biological

processes can be simulated in an efficient way. In the context of cellular processes,

however, it is often challenging to obtain time-dependent measurements from the same

cell, since experiments tend to be invasive (see Section 2.4). In general, there are

many time-series analysis methods that can be applied to biological data (see e.g. Bar-

Joseph et al. (2012) for a review). For instance it is straight-forward to formulate the

likelihood for a time-dependent biological model given measured data and to infer its

systems parameters with the methods introduced in the previous Section (we formulate

the likelihood for models based on the RRE in Chapter 6). Another way to learn about

the biological process given measured data is by exploiting its correlation structure. In

this thesis, we want to focus on one particular sort of time series analysis that relies

on such correlation structure: transfer entropy (Schreiber, 2000). In Chapter 7 we use

transfer entropy to infer the information transfer between two protein species.
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Transfer entropy

We start by introducing Shannon entropy, which measures the amount of information

in a random variable (Shannon, 1948). Given a discrete random variable X that can

take values X ∈ {x1, . . . , xN}, each with probability p(xi) (where i = 1, . . . , xN ) it is

defined by

H(X) = −
N∑
i=1

p(xi) log p(xi). (4.9)

From an information theoretic point of view it quantifies the average information con-

tained in the discrete random variable X that is distributed according to p(X). In

other words, it measures the uncertainty in the random variable X. In case of a certain

event where p(X = xi∗) = 1 the Shannon entropy becomes zero, whereas it reaches its

maximum if X is uniformly distributed.

The Shannon entropy can also be formulated for two discrete random variables X and

Y leading to the joint entropy

H(X,Y ) = −
NX∑
i=1

NY∑
j=1

p(xi, yj) log p(xi, yj) (4.10)

with the joint probability distribution p(xi, yj) for X being in state X = xi while Y

being in state Y = yj corresponding to the joint information content in both random

variables X and Y .

Moreover, we can compute the conditional entropy

H(X|Y ) = −
NX∑
i=1

NY∑
j=1

p(xi, yj) log p(xi|yj), (4.11)

which corresponds to the information content of the random variable X when the other

random variable Y is already known.

Let X = (x1, . . . , xN ) and Y = (y1, . . . , yN ) denote two time series then the transfer

entropy can then be obtained by

TEX→Y = H(Y |Y (l)
t )−H(Y |Y (l)

t , X(k)
τ ), (4.12)

where X
(k)
τ and Y

(l)
t denote the elements of the time series X and Y that are shifted by

τ and t and of length k and l, respectively. More explicitly, the transfer entropy reads

TEX→Y =
N∑

i>max(t,τ)

p(yi, y
(l)
i−t, x

(k)
i−τ ) log

p(yi|y(l)
i−t, x

(k)
i−τ )

p(yi|y(l)
i−t)

(4.13)
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with x
(k)
i−τ = (xi−τ , . . . , xi−τ−k+1) and y

(l)
i−t = (yi−t, . . . , yi−t−l+1).

For the remainder of this thesis we follow Schreiber (2000) and set k = l = 1 and τ = t.

In this case Eq. 4.13 simplifies to

TEX→Y (τ) =
N∑
i>τ

p(yi, yi−τ , xi−τ ) log
p(yi|yi−τ , xi−τ )

p(yi|yi−τ )
. (4.14)

Transfer entropy quantifies the amount of information in time-series Y that is already

contained in time-series X. In both limits where either X = Y or X is statistically

independent from Y the transfer entropy between them becomes TEX→Y (τ) = 0, as in

both limits P (yi|yi−τ , xi−τ ) = P (yi|yi−τ ) and the argument of the logarithm in Eq. 4.14

becomes 1.

4.3 Dimension reduction and clustering

Dimension reduction and clustering are methods from the field of unsupervised machine

learning (see e.g. Hastie et al. (2009) or Murphy (2012)). While dimension reduction

methods are used to map a high dimensional data set into a low dimensional represen-

tation with the aim to preserve the information content in the data, clustering methods

are used to group objects into distinct subsets or ’clusters’ that share certain similari-

ties. These methods are often used to investigate data sets in an explorative way and to

generate new hypotheses. In the context of dissecting cellular heterogeneity, clustering

and dimension reduction algorithms can be used to search in gene expression data sets

for new cellular phenotypes (see e.g. Sandberg (2014) for an overview and Buettner and

Theis (2012) for an application). In Chapter 6 we show how new mathematical meth-

ods can further contribute to improve this quest for identifying cellular phenotypes. In

Chapter 7 we use hierarchical clustering to find similarities not among cells but among

different candidate models.

Dimension reduction

Dimension reduction methods are mappings f(.) from a high dimensional data space

with dimD = N × M (where N equals the number of features and M equals the

number of samples; see Figure 4.1) to a low dimensional representation space D′ with

dimD = N ′×m, where N ′ ≤ N , f(D)→ D′. The aim of the mapping f(.) is to preserve

the information content from the dataD. The dimensionN ′ of the low dimensional data
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space D′ is often chosen to be N ′ = 2 in order to to visualize the M samples in a two-

dimensional figure. It is often beneficial to have a one-to-one correspondence between

features in the original data space D and in the mapped data space and/or a one-to-one

correspondence between the features (also known as loadings) in the low dimensional

space. A well-known method that performs this task is principal component analysis

(PCA; Hotelling (1933)).

Latent variable models

One way to formulate a probabilistic framework for dimension reduction mappings

is given by latent variable models (see e.g. Murphy (2012)). Let ym denote the N -

dimensional feature vector of one observed data sample (i.e. D = {y1, . . . , yM}) and let

xm denote a N ′-dimensional latent variable vector of the mapped data space (i.e. D′ =

{x1, . . . , xM ′}). For now, we assume there is a linear mapping W between the feature

vector and the latent variable vector of the form

ym = Wxm + ηm, (4.15)

that is additionally subjected to Gaussian noise

P (ηm) = N (ηm|0, β−1I) (4.16)

with zero mean and variance β−1. Here, I denotes the N -dimensional unity matrix.

The likelihood (see Section 5.1) for the observed data sample ym is then given by

P (ym|W,xm, β) = N (ym|Wxm, β
−1I). (4.17)

This likelihood is the starting point for latent variable models (see discussion below).

For the purpose of this thesis we proceed by marginalizing the likelihood, Eq. 4.17, over

the latent variables

P (ym|W,β) =

∫
dxmP (ym|xm,W, β)P (xm). (4.18)

By choosing a normal distributed prior distribution for the latent variables P (xm) =

N (xm|0, I) we end up with

P (ym|W,β) = N (ym|0,WW T + β−1I). (4.19)
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The mapping WMLE we obtain by maximizing the likelihood, Eq. 4.19, for all data

samples M is known as probabilistic principal component analysis (PPCA) introduced

by Tipping and Bishop (1999). They showed that the maximization corresponds to

finding the eigenvectors of the N ×M dimensional data matrix. To eventually obtain

a lower dimensional representation of the data we have to calculate xm = (WMLE)−1.

PPCA is characterized by a linear mapping W and a covariance matrix β−1I with

scalar β. If we allow for different values along the diagonal of the covariance matrix

in Eq. 4.19 (i.e. β is given by a vector) the mapping is known as factor analysis (see

e.g. Murphy (2012)).

Another approach for LVMs is to marginalize Eq. 4.17 not over the latent variables xm

but over the parameters W . By assuming a Gaussian prior for the parameters W one

obtains a likelihood P (ym|xm, β) corresponding to Eq. 4.19 (a method known as dual

PCA (Lawrence, 2004)). If we replace the linear covariance matrix by a non-linear

kernel we end up with a mapping known as Gaussian process latent variable model

(GP-LVM; see Lawrence (2004) and Lawrence (2005)).

Since there is no clear way of evaluating the goodness of a dimension reduction mapping

a priori, there is a multitude of different methods known in literature (for an overview

see e.g. Fan and Kamath (2014)), many of which have been successfully applied to

dissect heterogeneity in biological data (see e.g. Haghverdi et al. (2015), who also

present a comparison between the applicability of different approaches on biological

data). Alternative methods to the LVMs introduced above that are commonly applied

are t-SNE (t-distributed stochastic neighbor embedding; Van der Maaten and Hinton

(2008)) and diffusion maps (Coifman et al., 2006).

Clustering

Often dimension reduction and clustering are performed in combination, when first

a high-dimensional data set is mapped into lower dimensions and then the resulting

data points are grouped into clusters based on their closeness in the mapped space.

This clustering is known as ’partitional clustering’ (see Murphy (2012)). Typical meth-

ods are mixture models (see e.g. McLachlan and Peel (2000)) and ’k-means clustering

MacQueen (1967). In this thesis we use hierarchical clustering, which – in addition to

partitional clustering – aims to find nested pairs of relations among the data points.

The following paragraph is adopted from chapter 25.5 of Murphy (2012).
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Hierarchical clustering

The aim of hierarchical clustering is to merge data points into clusters whilst keeping

a nested hierarchy that indicates the degree of similarity between the data points. For

this purpose a dissimilarity matrix is calculated that quantifies how different individual

data points are. Then subsequently pairs of data points are merged into clusters based

on them being minimally dissimilar. The algorithm can be denoted as follows:

0. (a) initialize clusters as single data points Cm = {m} for all data points m.

0. (b) initialize the set of clusters that can be merged: S = 1, . . . ,M .

0. (c) Calculate the initial dissimilarity matrix d(j, k)

1. Find the 2 most similar clusters and merge them: (j, k) = arg minj,k∈S d(j, k).

2. Define new cluster Cl = Cj ∪ Ck.

3. Remove j and k from the set of clusters that can be merged S = S \ {j, k}.

4. If Cl 6= {1, . . . ,M} mark l as available, S = S ∪ {l}.

5. Calculate the dissimilarity matrix d(i, l) for each i ∈ S.

6. Go back to 1. and repeat until no more clusters can be merged.

There are different ways to define the dissimilarity matrix d(j, k). A popular choice is

average linkage clustering (Sokal and Michener, 1958), where the average distance of

all pairs is measured:

davg(G,H) =
1

nGnH

∑
i∈G

∑
i′∈H

di,i′ (4.20)

with nG and nH denoting the number of elements in each group and di,i′ a distance

measure (usually a metric) between two data points in the high-dimensional data space.

4.4 Regression and classification

After we have discussed methods from the field of unsupervised machine learning in

the previous Section, we now present supervised machine learning methods, namely

regression and classification. Although both concepts fulfill distinct purposes, i.e. clas-

sification aims to predict a class label and regression aims to predict a continuous

variable, they can be derived from the same premises as we detail below. In super-

vised machine learning we use a subset of the data (known as ’training data set’) to
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minimize a target variable (also known as ’training’), which can be continuous (in the

case of regression) or discrete (in the case of classification) before we use the trained

algorithm to predict the target variable on an independent subset of the data for which

the target variable is unknown. During the training step the algorithm can find the

most important features in the data set, which then can be used to make predictions

for the independent data set. Note that now we specify a target variable that we like

to predict whereas in the case of unsupervised machine learning the algorithms try to

find similarities among data points in an entirely unspecified and unbiased way.

When using regression and classification methods it is very important to ensure that

the algorithms do not overfit the training data set and lack predictive power on the

independent data set. One way to prevent overfitting is by applying cross-validation.

There the predictive power of the algorithm is tested on another subset of the data

(known as ’test data set’) and the training and testing steps are repeated multiple

times before applying the trained algorithm to make predictions on the independent

data set. We use regression and classification in Chapter 9 to predict the position of

cells in their cell cycle. In this Section we start our presentation with the formulation

of regression in a general way, before we outline the specific method, classification and

regression trees that we applied in Chapter 9. The following parts of this Section are

extracted from chapters 1, 7, 14 and 15 of Murphy (2012).

Linear regression and classification

Given a data set D = {y1, . . . , yM} (corresponding to the test data set) of M data

samples ym containing dimym = N features, the likelihood for the linear regression of

a target variable zm (m = 1, . . . ,M), which is not among the features of ym is given by

P (zm|ym,θ) = N (zm|wTφ(ym), σ2). (4.21)

Here θ indicates a vector of parameters containing the linear weights w of the regression,

the parameters of the mapping φ(.), which can be a non-linear function of the feature

vector ym and the variance σ2. Note that Eq. 4.21 is called linear regression since it is

still linear with respect to the weights w, even though non-linear interdependencies in

the data set can be incorporated with the non-linear mapping φ(.).

In case φ(.) = Id (the identity matrix), we obtain the simplest form of linear regression,
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where the expectation value of the normal distribution in Eq. 4.21 turns into

E[zm|ym] = z̄m(θ)

= w0 +

N∑
n=1

wn · yn,m. (4.22)

Then the negative log-likelihood J (θ) = − logP (D|θ) takes the following form

J (θ) =
M

2
log(2πσ2) +

∑M
m=1(zm − z̄m(θ)2

2σ2
. (4.23)

Similar closed form solutions can be obtained also for non-linear mappings φ(.), since

the negative log-likelihood still remains linear with respect to the parameters w.

To render the mapping φ(.) non-linear, often kernel functions κ(ym, y
′
m) can be chosen

such that φ(ym) = [κ(ym, y1), . . . κ(ym, yM )]. One class for the choice of kernels, e.g., are

radial basis functions κ(ym, y
′
m) = g(||ym− y′m||,θ), which only depend on the distance

between ym and ym′ . Since the kernels also depend on the parameters θ that have to

be estimated from the data it is often beneficial to enforce sparsity on the parameters.

This can be achieved by the selection of suitable priors for the parameters, in case of

sparse vector machines (see e.g. Krishnapuram et al. (2005) for a Laplacian prior) or

by modifying the likelihood term with additional constraints, in case of the support

vector machine (SVM; Cortes and Vapnik (1995)).

The same approach can be taken for linear classification, where we only have to alter

two things: (i) the normal distribution in the likelihood, Eq. 4.21, has to be changed

to a Bernoulli distribution and (ii) we ensure the prediction to be between 0 and 1 by

applying a sigmoid function to the prediction

P (zm|ym,θ) = Ber(zm|sigm(wTφ(ym))), (4.24)

with sigm(ym) = 1/(1 + exp(−ym)).

In contrast to regression there is no closed form solution for the maximum likelihood in

the case of classification. However, there are several iterative algorithms that can fulfill

this task. E.g. one class of algorithms, such as the steepest descent or the conjugate

gradient method, use the gradient at the current step of the algorithm, which corre-

sponds to the direction that points towards the maximum of the likelihood in order to

find the next step in an iterative way until the maximum is reached.
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Classification and regression trees

A different approach to predict the target variable zm is by learning the basis functions

from the data itself – instead by specifying them in advance as was done in the previous

subsection – known as adaptive basis function models. The prediction then takes the

form

E[zm|ym] = f(ym,θ)

= w0 +
K∑
k=1

wkφ(ym, vk) (4.25)

where φk(.) is the kth basis function learned from the data and vk are the parameters

of the basis function.

In this thesis we use classification and regression trees (CARTs) as the basis functions.

There, the data set is split into a tree structure with K different regions Rk (k =

1, . . . ,K). In this case, Eq. 4.25 becomes

f(ym,θ) =
K∑
k=1

wkI(ym ∈ Rk), (4.26)

The regions are obtained by growing a tree where subsequently maximally distinguish-

ing features n∗ and thresholds tn∗ on them are chosen according to

(n∗, tn∗) = arg min
n∈1,...,N

min
t∈Tn

cost({D, z1, . . . , zM : yn,m ≤ t})

+ cost({D, z1, . . . , zM : yn,m > t), (4.27)

where yn,m is the nth feature value of data sample m and Tn is the set of possible

threshold for feature n.

The choice of the cost-function depends on whether we want to perform regression or

classification. In case of regression we define

cost(D, z1, . . . , zM ) =

M∑
m=1

(f(ym)− zm)2, (4.28)

whereas in classification we use

cost(D, z1, . . . , zM ) =
1

M

M∑
m=1

I((sigmf(ym)) = zm). (4.29)
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Figure 4.2: Example of a simple regression tree. (A) Graphical representation and

(B) prediction of a simple regression tree. The regression tree divides the two dimensional

feature space of y1 and y2 into K = 5 five regions Rk (k = 1, . . . ,K). Subsequently it finds

the maximally distinguishing feature (n = 1, 2) and the threshold tn value that minimize

the cost function. The prediction for each region corresponds to the z-axis of (B) are given

by the weights wn. Figure adopted and modified from Murphy (2012).

An example for a simple regression tree on a two dimensional feature space is given in

Figure 4.2.

There is a variety of choices for the basis functions. For instance the discussed clas-

sification and regression trees can also be used for training random forests (Breiman,

2001). A different choice for basis functions are splines resulting, e.g., in multivariate

regression splines (Hastie et al., 2009). A very fashionable choice of basis functions

is taken in the framework of feedforward neuronal networks as so called hidden layers

φ(ym, vk) = a(vTk ym) with non-linear activation functions a(.) where k = 1, . . . ,H runs

over all hidden units H and V = (v1, . . . , vH) denotes the weight matrix (see (Bengio

et al., 2015) for an introduction to neuronal networks and deep learning).

Boosting

Boosting is an algorithm that allows to fit adaptive basis function models, such as

CARTs, which we discussed in the previous subsection, in a greedy way (Schapire,

1990). In boosting weak learners, which are adaptive basis functions that are efficient

to fit and that have only a poor performance on their own are subsequently fitted to

the data. While there are different choices for the weak learners, we focus on CARTs,

Eq. 4.26, with only a few regions K . 10 for the remainder of this thesis.
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The objective of boosting is to minimize a loss-function

min
f

M∑
m=1

L(zm, f(ym, wk)) (4.30)

that depends on the aim of the prediction.

In case of least-squares boosting the loss-function is given by

L
(l)
L2B(zm, fl(ym, w

(l)
k )) = (zm − fl(ym, w

(l)
k ))2. (4.31)

At each iteration step l a new learner fl(ym, w
(l)
k ) with parameters w

(l)
k is fit to the

difference between the data and the aggregated prediction of all previously grown weak

learners fl(ym, w
(l)
k ). Once a pre-defined number of maximal weak learners L is reached

the prediction of least-squares boosting for the target variable is given by the ex-

pectation value of all learners. The algorithm that solves this objective is known as

L2boosting (see Hastie et al. (2009) for details).

Another loss-function is chosen for binary classification

L
(l)
AM1(zm, fl(ym, w

(l)
k ) =

M∑
m=1

g(l)
m I(zm 6= fl(ym, w

(l)
k )) (4.32)

where at each iteration step l the loss-function data points ym, which were classified

incorrectly before become an increased weights g
(l)
m to ensure that they are also fitted

properly. After a pre-defined number of maximal weak learners L is fitted the average of

all weak learners decides about the prediction of the class label also known as majority

vote. Boosting for binary classification is solved by the AdaBoost.M1 algorithm (see

Freund and Schapire (1996) where also a generalization for multi-class classification

can be found).
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Chapter 5

cgCorrect: correcting single-cell

gene expression data for

confounding cell growth effects

Transcriptional regulation of gene expression is one of the core principles that allow

cellular heterogeneity to occur among cells that share the same DNA (see Section 2.1).

A mathematical way to infer information about the underlying regulation status of a

gene is given by the analysis of steady-state distributions of mRNA transcript numbers.

Moreover, it is possible to dissect the cellular heterogeneity by applying dimension

reduction methods and by looking for cells that form distinct clusters. However, there

can be different confounding factors that the measured data from cells may exhibit.

In Section 2.4 we discuss that due to the experimental techniques applied to measure

the data, technical noise is present that leads to additional confounding variability.

Furthermore, additional variability in the data (beyond cellular heterogeneity) can be

caused by differences in cell sizes. Therefore there is a need for the adaption and

extension of existing methods to analyze gene expression data.

In this Chapter we introduce a novel mathematical framework that is capable to correct

confounding effects that come from technical noise and from different cell sizes. We

outline the problems that arise when cells of different sizes are used for steady-state dis-

tribution analysis in Section 5.1. In Section 5.2 we show how current analysis methods

can be extended to correct for confounding cell size effects for both dimension reduction

mappings and the analysis of steady-state distributions. In the following we apply our
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new mathematical framework to artificially simulated data (Section 5.3) and to data

from a single cell qPCR experiment (Section 5.4) before we discuss the assumptions

and possible limitations of the presented method in Section 5.5.

We find that many genes may misleadingly be interpreted to originate from the three-

stage model of gene expression (also known as bursty gene expression) corresponding

to a regulated gene when differences in cell size are not taken into account. When

correcting for differences in cell size many genes can actually be understood in terms of

the simpler two-stage model of gene expression (also known as simple gene expression)

corresponding to an unregulated gene (see Section 3.4).

This Chapter is based on and in parts identical with the following manuscript that is

currently under preparation:

Blasi, T., Buettner, F., Strasser, M.K., Marr, C. and Theis, F.J. cgCorrect: A method

to correct for confounding cell-cell variation due to cell growth in single-cell qPCR data.

In preparation.

5.1 Biological background and problem statement

Recent technical advances allow for the analysis of single cells with high-throughput

omics technologies (Wang and Steven, 2010). Investigating transcripts of single cells

with both quantitative real-time PCR (qPCR; Citri et al. (2012); St̊ahlberg and Martin

(2010)), and single-cell RNA sequencing (RNA-seq; Islam et al. (2011, 2014); Tang et al.

(2009); Yan et al. (2013)) has become possible. But new experimental methods bring

new challenges with them: biological variability among single cells, which remained

hidden in population based approaches now becomes evident. One major challenge of

bio-mathematics and computational biology is the development of new and the adapta-

tion of existing methods for single-cell gene expression data (Buettner and Theis, 2012;

Kim and Marioni, 2013).

Gene expression is a stochastic process (see Section 2.2 and Chapter 3) and the abun-

dance of mRNA transcripts (of an individual gene) among many single cells (of the same

cell type) can be formulated in terms of steady-state probability distributions (see Sec-

tion 3.4). Analyzing these steady-state probability distribution can yield new insights

into the underlying gene expression mechanism (Kim and Marioni, 2013; Larson, 2011;

Shahrezaei and Swain, 2008).
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There are two well-studied mechanisms of gene expression that have been serving as a

paradigm (Raj and van Oudenaarden, 2008): Simple, constitutive gene expression (also

known as the two-stage model), where DNA is continuously transcribed to mRNA (see

Figure 5.1 A) and bursty gene expression (also known as the three-stage model), where

the promoter of the DNA successively switches between an active and inactive state

and transcripts are produced in episodic bursts (see Figure 5.1 B). The steady-state

distributions of simple gene expression follows the Poisson distribution (Peccoud and

Ycart (1995); Thattei and van Oudenaarden (2001); see also Figure 3.3 B) whereas the

steady-state distribution of bursty gene expression follows the over-dispersed negative

binomial distribution ((Raj et al., 2006); see also Figure 3.3 D), which allows for more

variability among the transcript numbers.

Besides the stochastic nature of gene expression that gives rise to this insightful biologi-

cal variability, there are also other, confounding sources of variability, such as technical

noise (Brennecke et al., 2013; Buettner et al., 2014; Ramsköld et al., 2012; Vallejos

et al., 2015) and cell cycle effects. Especially the influence of the latter on the interpre-

tation of gene expression data based on steady-state probability distributions has not

been sufficiently investigated so far, even though confounding cell cycle effects appear

in all proliferating cells (such as stem and progenitor cells). During cell cycle, the cell

grows and the number of transcripts within a cell doubles on average (Mitchison, 2003).

Recently Padovan-Merhar et al. (2015) found experimental evidence for the compensa-

tion of differences in cell size and suggest that the concentration of transcripts within a

cell is maintained constant. This means that measuring the abundance of a particular

transcript in two identical cells with different cell sizes will yield different results. The

differences in cell size cause a broadened, over-dispersed steady-state distribution of

transcript numbers, which may be mistakenly interpreted in an upstream analysis.

To illustrate this issue we consider the following scenario (illustrated in Figure 5.1 C):

Assume we measure the mRNA transcripts of a particular gene from several single cells,

which have the same volume. The gene of interest is subjected to simple, constitutive

gene expression and follows the Poisson distribution. In a typical experiment, how-

ever, cells are not synchronized and single cells with different sizes are pooled together

(see Figure 5.1 C) leading to an over-dispersed steady-state distribution. Performing

model selection (see Section 5.1) on the steady-state distribution of transcript numbers

obtained by this type of experiment incorrectly favors the negative binomial over the

Poisson distribution and therefore the gene expression mechanism would be interpreted

to be bursty.
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Figure 5.1: Differences in cell size lead to a broadened mRNA distribution and

can lead to incorrect identification of the underlying gene expression mecha-

nism (Figure legend on next page).

5.2 cgCorrect: A probabilistic method to correct for con-

founding cell growth effects

Here, we introduce cgCorrect (cell growth correction), a statistical method to correct

single-cell transcriptomics data for latent differences in cell size. cgCorrect can be used

for both normalizing single-cell gene expression data sets, and for parameter estimation

and model selection on steady-state distributions of gene expression. Our approach is

based on the assumption that the average number of mRNA transcripts within the cell
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Figure 5.1: (From previous page). Differences in cell size lead to a broadened

mRNA distribution and can lead to incorrect identification of the underlying

gene expression mechanism. (A) Simple gene expression mechanism. The promoter

of a particular gene is always active transcribing its associated DNA to mRNA with rate

ν. The degradation rate of the mRNA is given by γ. (B) Bursty gene expression mech-

anism. Additionally to the simple gene expression mechanism, the promoter can perform

transitions between the active and inactive state with rates kon and koff , respectively. (C)

Observing mRNA transcripts from single cells with different cell sizes obscures their true

underlying steady-state distribution of transcript numbers. We display the Poisson dis-

tribution of steady-state transcript numbers for three generic cells with different cell sizes

(increasing volume from top to bottom) that are all subjected to constitutive, simple gene

expression. By pooling these 9 cells together and ignoring their different volumes, a broad-

ened mRNA distribution is observed (bottom panel, dashed black line) that does not follow

a Poisson distribution any more. This will in turn lead to wrong conclusions about the

underlying gene expression mechanism.

increases proportionally to the volume as the cell grows during cell cycle, leaving the

concentration of transcripts constant (Padovan-Merhar et al., 2015).

We calculate the cell growth correction probability, which corrects for differences in

transcript numbers that are due to differences in cell size. This is the conditional prob-

ability, for finding the corrected, cell growth independent number of mRNA transcripts

of a particular gene, given the measured, cell growth dependent number of mRNA

transcripts of this gene. cgCorrect can include information on the cells’ volume, but,

more strikingly, it can also be applied if there is a total lack of additional information

on the cell’s volume. Since the cell volume is typically not observed, we marginalize

this latent variable out, which corresponds to a blind deconvolution problem.

cgCorrect is based on discrete molecule numbers of individual mRNA transcripts in

single cells. Discrete molecule numbers are essential for the interpretation of the un-

derlying mechanism of gene expression (Raj and van Oudenaarden, 2009). There are

two high throughput transcriptomics techniques, qPCR and RNA-seq, which both hold

the ability to measure discrete molecule numbers in single cells (e.g. via digital PCR

(Vogelstein and Kinzler, 1999), droplet digital PCR (Hindson et al., 2011), direct RNA

sequencing (Ozsolak et al., 2009) or strand-specific single-cell sequencing (Islam et al.,

2011)). Especially the use of unique molecular identifiers for quantitative RNA-seq

(Islam et al., 2014) offers a powerful method to perform this task. If the experiment

does not provide discrete molecule numbers, the data can be converted to such by
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matching the measured value (e.g. cycle time (ct) values in qPCR experiments or reads

per kilo-base of transcript per million mapped reads (RPKM) values in RNA-seq) to

known absolute molecule numbers of a particular gene in the same cell type.

Current state-of-the-art normalization techniques to account for confounding variabil-

ity are based on scaling the measured number of mRNA transcripts with reporters that

should correlate with the confounding variability. In qPCR where the mRNA tran-

scripts of only a few genes are observed the measured number of transcripts is scaled

with the abundance of house-keeping gene transcripts from the same single cell (Guo

et al., 2010; Liviak et al., 2013; Moignard et al., 2013). In RNA-seq experiments where

the whole transciptome is measured the sum of all mRNA transcripts or rank statistics

thereof can be used as an estimator for the cell size of each single cell (Brennecke et al.,

2013; Glusman et al., 2013; Sasagawa et al., 2013; Vallejos et al., 2015). However,

scaling does not account for the discreteness of mRNA numbers.

Scaling normalization strategies can also be performed based on genes selected from the

data as has been pointed out for bulk measurements (Glusman et al., 2013). Whereas

this approach is infeasible for single cell qPCR, it is applicable for single cell RNA-

seq data since there the whole genome is measured. For instance, it has been shown

that the covariance of cell cycle related genes can be used to correct for specific gene

expression during cell cycle phases (Buettner et al., 2015). However, this is not the

focus of this work where we introduce a correction scheme that is based on a global

characteristic of each sample, namely the cells’ volume, rather than on the correlations

among the expression of different genes.

The cell growth correction probability

Measuring the abundance of a particular mRNA in a single cell during its cell cycle

yields a discrete transcript number m, which is generally greater than the transcript

number m0 that we would find at the beginning of the cell’s cell cycle (τ = 0). During

cell cycle the size of the cell increases from its initial volume V0 = V (τ = 0) (at the

beginning of its cell cycle) to V (τ > 0). Cell cycle and cell growth are intimately related

(Kafri et al., 2013; Mir et al., 2011) and the number of mRNA transcripts within the

cell increases as the cell volume increases. Therefore, we assume the concentration of

mRNA transcripts m/V to remain constant during cell cycle. To render the numbers of

mRNA transcripts from single cells with different cell sizes comparable, we introduce

the volume-dependent cell growth correction probability Pcgc(m0|m,V ). This is the
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probability of finding m0 mRNA transcripts within a cell’s initial volume V0 given a

measured number of mRNA transcripts m within a cell’s total volume V . The volume-

dependent cell growth correction probability is described by a binomial distribution

Pcgc(m0|m,V ) = Bi(m0|m,V0/V ), (5.1)

since this is the discrete probability distribution for finding m0 transcripts inside the

initial volume V0 given the number of transcripts m present in the total volume V

with success rate p = V0/V (see Figure 5.2 A). In the limit of high mRNA transcript

numbers the binomial distribution tends to a normal distribution. In this limit cell

growth correction corresponds to scaling the measured number of mRNA transcripts

m with the normalized volume of the cell V0/V . Therefore, the volume-dependent

cell growth correction probability, Equation (5.1), contains the commonly performed

scaling correction in the limit of high mRNA transcript numbers.

If the single cell’s volume V and its initial volume V0 are measured, we can evaluate

Pcgc(m0|m,V ) directly. In many experimental applications (such as qPCR), however,

measuring each single cell’s volume is not performed or impossible. In this case, we

treat the volume as a latent variable and marginalize over it to obtain the cell growth

correction probability

Pcgc(m0|m) =

∫
dV Pcgc(m0|m,V )P (V ). (5.2)

To evaluate this we require the probability distribution of the cells’ volumes P (V )

(i.e. the volume distribution over the cell population). This may be determined exper-

imentally, or we can use generative models to simulate P (V ) computationally. In the

following we use a linear growth model to generate P (V ).

There are two common growth scenarios in literature, linear and exponential growth

(Mitchison, 2003, 2005), which both can be used for our method. Here, we use a linear

growth model, which has been reported to be appropriate for rat Schwann cells (Conlon

and Raff, 2003) to computationally simulate the distribution of cell volumes. Moreover

the linear growth model does not depend on additional parameters. The cell cycle

time τ indicates the time-point of a single cell during its cell cycle and is normalized

to the cell cycle length, such that 0 ≤ τ ≤ 1. For linear growth, the cell increases

its mean volume from its initial value 〈V (τ = 0)〉 = 1 (without loss of generality, we

will set V0 = 1) at the beginning of cell cycle according to 〈V (τ)〉 = 1 + τ and will

have doubled its mean volume at the end of cell cycle. The conditional probability

distribution P (V |τ) of the cells’ volume V given its cell cycle time τ is generated by a
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Figure 5.2: Cell growth model and correction probability (Figure legend on

next page).

Gaussian density

P (V |τ) =
1√

2πσ2
exp

(
−(V − 〈V (τ)〉)2

2σ(τ)2

)
, (5.3)

where we used a standard deviation that increases linearly with the cell cycle time

σ(τ) = σ0 · τ . The resulting conditional probability distribution P (V |τ) is displayed in

Figure 5.2 B. The marginal probability distribution yields

P (V ) =

∫
dτP (V |τ)P (τ). (5.4)

To determine the probability of the cells’ cell cycle time P (τ), we simulated entirely

asynchronous cells that proliferate with known cell cycle time τ (see Figure 5.2 C). The

resulting probability of the cells’ volume P (V ) is displayed in the inset of Figure 5.2 B.

The cell growth correction probability Pcgc(m0|m) (Eq. 5.2) for this growth model is

displayed in Figure 5.2 D for several values of observed molecule numbers m .
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Figure 5.2: (From previous page). Cell growth model and correction probabil-

ity. (A) During cell cycle, a cell will increase its initial volume V0 to V > V0. We assume

the cell to increase its molecular content accordingly keeping the concentration of mRNA

transcripts constant. Then the number of mRNA transcripts m measured at a latter time

in cell cycle (τ > 0) is greater than the number of mRNA transcripts m0 at the beginning

of the cell cycle (τ = 0). To render measured mRNA transcript numbers m from single

cells at different time points in their cell cycle comparable, we calculate the cell growth

correction probability Pcgc(m0|m,V ). This is the probability to find m0 transcripts within

the cell’s initial volume V0 (light grey area) given the cell’s current volume V and the

measured number of transcripts m. (B) Linear generative growth model. The colorbar

indicates the probability P (V |τ) for the cell to be found with a particular volume V given

the cell’s time during cell cycle τ . For each time point τ the probability distribution is

given as a Gaussian with a variance that increases during cell cycle. On average the cell

doubles its volume during one cell cycle. Inset: Marginalized probability distribution for

the cells’ volume P (V ) when integrating over the the probability of the cells’ cell cycle

time P (τ). (C) Probability of the cells’ cell cycle time(red line) that was determined by

simulating a population of totally asynchronous cells with known cell cycle time τ and ran-

domly picking cells out of this population. The obtained histogram of their cell cycle times

is depicted with blue bars. (D) Cell growth correction probability Pcgc(m0|m) obtained

after marginalizing over a linear growth-model (see text and Supplementary Figure S1) for

several values of measured mRNA transcript numbers m. Notice that Pcgc(m0|m) = 0 for

m0 > m resulting in the displayed discontinuities.

cgCorrect for normalization of data sets

The cell growth correction probability Pcgc(m0|m) can be used to correct measured

mRNA transcript numbers m directly to cell growth independent mRNA transcript

numbers m∗0 by determining its mode

m∗0 = arg max
m0

Pcgc(m0|m). (5.5)

For instance, measuring m = 15 transcript numbers in a single cell, the most likely

value for the transcript number, which we corrected for differences in cell size is m∗0 =

11 (see blue line in Figure 5.2 D). This approach offers a rank-conserving, one-to-

one correspondence between measured and cell growth corrected mRNA transcript

numbers, as needed for normalization of a data set.
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cgCorrect for steady-state distribution analysis of gene expression

When using point estimates (such as the mode of a probability distribution) many alter-

native mRNA transcript numbers m0 with non-negligible probability are ignored (see

Figure 5.2 B). However, we can also exploit the full distribution of the correction prob-

ability Pcgc(m0|m): The number of mRNA transcripts of a particular gene is measured

in many single cells. This yields a set of measured mRNA transcript numbers, which

we use to obtain the steady-state probability distribution P (m) of measured mRNA

transcript numbers of this gene. We then sum over the correction probability of all

measured transcript numbers m multiplied by the steady-state probability distribution

to gain the cell growth corrected steady-state distribution

Pcgc(m0) =
∑
m

Pcgc(m0|m)P (m). (5.6)

The correction probability can also be used to account for differences in cell size when

performing parameter estimation and model selection. Given the mRNA transcript

numbers m of a particular gene from several single cells, the likelihood P (m|θ) for the

kinetic parameters θ of the underlying gene expression mechanism can be calculated

at steady-state (see Section 3.4). Neglecting differences in cell size, however, can lead

to incorrect parameter estimation and identification of the underlying gene expression

mechanism (as already demonstrated in Figure 5.1 C) and has not been considered

within this context so far.

Using the correction probability, it is straightforward to incorporate cell growth correc-

tion into the existing framework,

Pcgc(m|θ) =
∑
m0

Pcgc(m|m0)P (m0|θ), (5.7)

allowing us to obtain the likelihood for the measured mRNA transcript numbers m from

cells that differ in cell size given the parameters θ of the gene expression mechanism

under consideration. To obtain Pcgc(m|m0) from the correction probability Pcgc(m0|m),

we use Bayes’ theorem with uniform prior on the measured transcript numbers numbers

m.

In case of simple gene expression where the steady-state distribution is given by a

Poisson distribution there is one kinetic parameter: The mean expression level among

all cells λ = ν/γ. In case of bursty gene expression where the steady-state distribution

is given by a negative binomial distribution there are two kinetic parameters: The
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burst size ξ = ν/koff and the burst frequency κon = kon/γ (see Figure 5.1). The

model parameters can then be found via maximum likelihood estimation (MLE) θ̂ =

arg maxθ Pcgc(m|θ).

We evaluate if the parameters of both gene expression mechanisms are identifiable

and therefore capable of describing the data by calculating their profile likelihoods. If

both the parameters of both mechanisms are identifiable, we perform model selection

using the Bayesian information criterion (BIC) to select between the simple and bursty

mechanism. In case this test is inconclusive (∆BIC ≤ 10), we call the underlying gene

expression mechanism inconclusive due to model selection (see Section 4.1 for details

on parameter estimation and model selection).

cgCorrect and technical noise correction

In general, cell growth correction can also be combined with technical noise correction.

To incorporate technical noise correction into the likelihood, Equation (5.7), the tech-

nical noise has to be measured in the experiment (e.g. with external spike-in controls)

and the probability distribution of the technical noise Ptn(m|mt) has to be determined

experimentally. This is the conditional probability for the number of mRNA transcripts

m that would be measured without technical noise given the number of mRNA tran-

scripts mt that are measured and are subjected to technical noise. The likelihood of

cell growth correction and technical noise correction can then be calculated as

Pcgc,tn(mt|θ) =
∑
m

Ptn(mt|m)Pcgc(m|θ). (5.8)

To obtain Ptn(mt|m) from the probability distribution of the technical noise Ptn(m|mt),

Bayes’ theorem can be applied with uniform prior on the measured mRNA transcript

numbers with technical noise mt.

Validation of cgCorrect on simulated gene expression data

To validate cgCorrect, we applied it to mRNA transcript numbers that we simulated

from the simple gene expression mechanism. We generated mRNA transcript numbers

m of 100 single cells with different cell sizes. We started by simulating the cell’s

volumes by the inverse transform method (Gentle, 2004) such that the cell’s volumes

are distributed according to the probability we obtained by the generative model for

cell growth V ∼ P (V ) (see Figure 5.2 B). The measured mRNA transcript number m

75



ra
tio

 o
f P

oi
ss

on
 

di
st

rib
ut

io
ns

average mRNA transcript number

neg. bin.

Poisson

estimated parameter

B

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

 

 

measured
Poisson
cell growth corrected
house−keeping norm.

number of mRNA transcripts per cell

A

st
ea

dy
-s

ta
te

 d
is

tri
bu

tio
n

cell growth corrected

0 5 10 15 20 25 30 35

λ

ξ
κon

0 10 20 30 40 50
0

10

20

30

40

50
C

true parameter

D

es
tim

at
ed

 p
ar

am
et

er

0 10 20 30 40 50
0

1

Figure 5.3: Cell growth correction of simulated gene expression data leads

to the correct identification of parameters and the underlying gene expression

mechanism (Figure legend on next page).

for a cell with volume V was then simulated by randomly drawing from the Poisson-

distribution m ∼ Pois(m|λ) with λ = V · λ0, where λ0 indicates the average mRNA

transcript number per cell if the cell’s did not grow and not differ in size. During

cell growth we assume the transcription rate ν (λ = ν/γ) to increase proportional

to the cell’s volume V . This particular choice of the parameter λ ensures that the

concentration of mRNA transcripts remains constant during cell growth, whereas the

number of mRNA transcripts increases and reflects the differences in cell size.

Without differences in cell size the mRNA transcript numbers would be Poisson-

distributed m0 ∼ Pois(m0|λ0) with the average number of mRNA transcripts per cell

chosen to be λ0 = 10 (see red line in Figure 5.1 C and 5.3 A). Due to differences in

cell size the steady-state distribution of measured mRNA transcript numbers P (m) is

shifted towards higher transcript numbers (green line in Figure 5.3 A). We can correct

for latent differences in cell size by calculating the corrected steady-state distribution
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Figure 5.3: (From previous page). Cell growth correction of simulated gene

expression data leads to the correct identification of parameters and the un-

derlying gene expression mechanism. (A) Steady-state probability distribution of

the measured mRNA transcript numbers m (green line) and the cell growth corrected

mRNA transcript numbers m0 (blue line). The underlying gene expression mechanism in

the absence of differences in cell size is given by a Poisson distribution with an average

mRNA molecule number per cell λ0 = 10 (red line). The cell growth corrected probability

distribution resembles the Poisson distribution closer than the house-keeping normalized

distribution (yellow line). (B) Estimated parameters and identified models for cell growth

corrected, house-keeping normalized and measured mRNA transcript numbers. The gene

expression mechanism is identified to be simple for house-keeping normalization and cell

growth correction; for the measured data it is identified to be bursty. The simple mecha-

nism is governed by one parameter: the mean expression level among all cells λ = ν/γ. The

bursty mechanism is governed by two parameters: the burst size ξ = ν/koff and the burst

frequency κon = kon/γ. Only cell growth correction is in the range of the true parameter

(red x). Error bars indicate 0.99 confidence intervals of the estimated parameters. (C) To

explore the parameter range we performed parameter estimation and model selection for

several values of the true kinetic parameter λ0. We find that cell growth correction (blue

line) is capable of correctly inferring the true parameter (red dashed line) for the whole

parameter range whereas inferring the parameter on the measured (green line) and the

house-keeping normalized mRNA transcript numbers (yellow line) fails. (D) Ratio of gene

expression mechanisms that were identified to be simple for 10 independently simulated

data sets. Model selection (based on the BIC) on the cell growth corrected data (blue line)

identifies the true gene expression mechanism correctly over the whole parameter range,

in contrast to model selection on the measured data (green line) and on the house-keeping

normalized data (yellow line).

of transcript numbers Pcgc(m0), Equation (5.6) (blue line in Figure 5.3 A). Since we

ignored the cell’s volumes by marginalizing the volume out (cf. Equation (5.2)) the cor-

rected steady-state distribution of transcript numbers does not entirely coincide with

the Poisson distribution but has slightly larger tails. To compare cgCorrect with con-

ventional house-keeping normalization, we scaled the measured number of transcripts

m with the transcript number of an additionally simulated house-keeping gene mhk,

which we chose to have an average number of transcripts λ0,hk = 100 (yellow line in

Figure 5.3 A). Visual comparison of the two normalization strategies shows that cell

growth correction for normalization outperforms house-keeping normalization for this

data set.

Model selection between the simple and bursty gene expression mechanism reports
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very strong evidence that the measured steady-state distribution of mRNA transcript

numbers is bursty. When correcting for cell growth, model selection correctly chooses

the simple expression mechanism. Performing parameter estimation the true gene ex-

pression parameter can only be inferred when using cgCorrect (see Figure 5.3 B), con-

firming that cgCorrect outperforms house-keeping normalization in recovering the true

underlying distribution. To test cgCorrect for a broad parameter range we simulated

additional mRNA data sets for several average numbers of mRNA transcripts per cell

(Figure 5.3 C and D): Only when we apply cgCorrect we are able to infer the underlying

gene expression mechanism and its parameters for the whole parameter range correctly.

Moreover, we verified that after applying cgCorrect on transcript numbers that were

simulated from the negative binomial distribution the inferred steady-state distribution

is negative binomial: To this end, we simulated mRNA transcript numbers from the

negative binomial distribution m0 ∼ NB(m0|ξ, κon) for a wide range of average numbers

of mRNA transcripts 〈m0〉 = ξ · κon. When applying cgCorrect we found that model

selection for m0〉 ≥ 3 correctly identifies the underlying steady-state distribution to be

negative binomial. For very small average numbers of mRNA transcripts 〈m0〉 ≤ 2 the

obtained distribution of transcript numbers is very narrow and we find cases (20% for

〈m0〉 = 2 and 90% for 〈m0〉 = 1), where the underlying steady-state distribution is

identified to be Poisson (data not shown). In summary, cgCorrect is capable of both,

successfully inferring the underlying system parameters from the simulated, cell growth

dependent transcript numbers and correctly specifying the steady-state distribution of

transcript numbers.

5.3 Application of cgCorrect to biological data

cgCorrect on qPCR data suggests that many genes rather follow the

simple than the bursty gene expression mechanism

To reveal the gene expression mechanism during hematopoiesis, we applied cgCorrect

to a recently published single-cell qPCR data set of hematopoietic stem and progenitor

(HSP) cells (Moignard et al., 2013). In this experiment 18 transcripts of key hematopoi-

etic genes (and six additional transcripts of house-keeping genes) were measured in 597

single cells of five different HSP cell types. To transform the measured data from

ct-values into discrete numbers of mRNA transcript we use results from digital qPCR

(Warren et al., 2006), where the discrete number of one of the 18 transcripts, PU.1, was
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Figure 5.4: Probabilistic principal component analysis (PPCA) of single-

cell qPCR data resolves hematopoietic sub-populations better when using cell

growth correction. (A) PPCA of cell growth corrected and (B) PPCA of house-keeping

normalized single-cell qPCR data of 18 transcripts. The nearest neighbor error ε decreases

by 12.1% when using cell growth correction compared to house-keeping normalization.

measured for hematopoietic stem cells (HSCs), common lymphoid progenitors (CLPs)

and common myeloid progenitors (CMPs), all of them found among the HSPs (see

Supplementary Material S6 for details on the data pre-processing).

Since in this experiment neither technical noise nor information about the cells’ vol-

ume was measured we apply cgCorrect without technical noise correction and with

marginalized volume (Equation 5.2). To compare cgCorrect with conventional house-

keeping normalization we normalized the data set with the house-keeping genes Ubc and

Polr2a as described by Moignard et al. (2013). cgCorrect is better suitable to resolve

distinct cell types than house-keeping normalization, as can be visualized by a prob-

abilistic principal component analysis (PPCA) (see Figure 5.4 and Section 4.3): The

nearest neighbor error of finding two differing cell-types next to each other is decreased

by 12.1%.

Applying cgCorrect to all measured mRNA transcripts, we find that 18 out of 54

(∼ 33.0%) gene/cell type combinations can be explained by simple rather than by

bursty gene expression, whereas this is the case for only 3 out of 54 (∼ 5.6%) without

cgCorrect (see Figure 5.5 C).

To further illustrate the effect of cgCorrect, we focus on one particular transcript,

PU.1 in one cell type (CLP) (see Figure 5.5 A). We analyze the Fano factor F =
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σ2/µ defined as the ratio between the variance σ2 and the mean µ of the steady-state

distribution of mRNA transcript numbers. The Fano factor is a key parameter to

quantify deviations from a Poisson distribution (Munsky et al., 2012) and it equals 1 if

the values are Poisson-distributed. cgCorrect alters the Fano factor from F(m) = 2.29

for the measured PU.1 transcript numbers to F(m∗0) = 1.32. Parameter estimation

for the measured and the corrected transcript numbers is depicted in Figure 5.5 B.

Model selection between the simple and bursty gene expression mechanism shifts strong

evidence for PU.1 expression in CLP from bursty without correction to simple with

cgCorrect.

5.4 Discussion

In this work we present cgCorrect, a statistical method for the correction of latent

differences in cell size. We show that differences in cell size may lead to an over-

dispersed steady-state distribution of transcript numbers, which may be misleadingly

interpreted in a computational analysis. cgCorrect can be used for data normalization

before visualization as well as for a steady-state distribution analysis of the data. It can

incorporate information about the cell size on different levels: (i) If the size of each cell

or an estimator for the size is known, we can use this information to obtain the volume-

dependent cell growth correction probability. (ii) If only the probability distribution of

the cells’ volume among the whole population is known we can use this distribution to

marginalize the volume out. (iii) If there is a total lack of information about the cells’

volume (as is typically the case for qPCR data), we can use generative growth models to

simulate the cells’ volume distribution computationally and use this for marginalization.

Moreover, we showed how cgCorrect can in principle be combined with the correction

of technical noise, if the technical noise of the experiment is measured.

We validated cgCorrect on simulated mRNA data, where we could show that it is only

possible to infer the true steady-state distribution and its parameters when cgCorrect

was applied. To show that cgCorrect is generally applicable and independent of the

experimental setup that was used to measure the data it was applied on transcriptomics

data from single-cell qPCR. Analyzing steady-state distributions of transcript numbers

from the qPCR data set we found that cgCorrect changed the identified steady-state

distribution in 27.4% of the measured cell/gene combinations in HSPs from an over-

dispersed negative binomial distribution to the Poisson distribution.

In contrast to conventional normalization techniques cgCorrect takes the discreteness
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Figure 5.5: Parameter estimation and model selection on cell growth corrected

single-cell qPCR data reveals that 15 out of the 56 hematopoiesis genes are

more likely to origin from simple gene expression than from transcriptional

bursting. (A) Probability density of corrected (blue) and measured (green) PU.1 tran-

script numbers within CLPs. cgCorrect renders the observed distribution narrower. (B)

Estimated kinetic parameters and identified gene expression mechanism for PU.1 mRNA

in CLPs. After cell growth correction (blue) the gene expression mechanism is identified to

be simple whereas without correction (green) it is bursty. (C) The result of model selection

between the simple (black) and bursty (white) gene expression mechanism is visualized.

Inconclusive model selection is indicated in grey. The lower right triangle indicates the

identified mechanism of the measured transcript numbers, the upper left triangle of the

corrected transcript numbers. The identified gene expression mechanism is altered in 20

cases after having performed cgCorrect.

of mRNA transcript numbers into account. For the analyzed qPCR data set we showed

that cgCorrect outperforms traditional house-keeping gene normalization resulting in a

better separation of known cell types in a principal component analysis (PCA). House-

keeping genes underlie stochastic gene expression themselves and may therefore not

suit as reliable reporters for cell size.

In previous analysis the steady-state distribution of a gene is used to interpret its

gene expression mechanism (Kim and Marioni, 2013; Larson, 2011; Raj et al., 2006;

Shahrezaei and Swain, 2008). The Poisson steady-state distribution corresponds to the
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simple gene expression mechanism and the negative binomial distribution corresponds

to the bursty gene expression mechanism. However, there are several assumptions

involved that are important to consider for this interpretation.

First, it is assumed that the reaction rates that govern the gene expression mechanism

remain constant during cell cycle. Here, we do not consider transcriptional changes

during cell cycle that may alter the reaction rates and have been reported to affect

the measured number of mRNA transcripts (Bertoli et al., 2013; Zopf et al., 2013). In

order to assess the effect of cell cycle specific gene expression, we modeled transcrip-

tional changes of the reaction rates by an activation function reaching its maximum in

the S phase of cell cycle.The resulting steady-state distribution is identified to follow

the over-dispersed, negative binomial distribution and would therefore be interpreted

to origin from the bursty gene expression mechanism both with and without applying

cgCorrect (data not shown). Cell cycle specific gene expression corresponds to a highly

orchestrated on and off switching of the promoter region. For a sample of unsynchro-

nized cells that are pooled together, however, the resulting steady-state distribution of

mRNA transcript numbers exhibits over-dispersion.

The second assumption that is made when analyzing steady-state distribution of mRNA

transcript numbers is that the kinetic parameters that govern gene expression are equal

for all cells of the same cell type (Kim and Marioni, 2013; Raj and van Oudenaarden,

2008; Shahrezaei and Swain, 2008; Thattei and van Oudenaarden, 2001), which does not

necessarily have to reflect the biological reality. We tested the effect on the steady-state

distribution analysis when neglecting this assumption by simulating mRNA transcript

numbers from a cell population with varying transcription rates expressing mRNAs

with the simple mechanism and showed that this effect can also lead to over-dispersed

steady-state distributions (data not shown). A final conclusion on the gene expression

mechanism cannot be made based on steady-state distributions of gene expression alone

but needs techniques that also allow for spatial resolution such as fluorescence in situ

hybridization (FiSH) (Battich et al., 2013; Raj et al., 2006).

Finally, we made assumptions concerning the cell growth parameters for the generative

growth model that we used to obtain the correction probability. The question whether

mammalian cells grow linearly or exponentially is still under debate (Cooper, 2004;

Popescu et al., 2014). Here, we used a linear growth model, which has been reported

to be appropriate for rat Schwann cells (Conlon and Raff, 2003) to computationally

simulate the distribution of cell volumes. Moreover, we performed a sensitivity analysis

(data not shown) that investigates the effect of different linear cell growth scenarios on
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the correction probability and indicates that our findings are robust with respect to the

growth scenario. As already discussed, cgCorrect does not rely on a generative growth

model as it allows to include additional information on either each single cell’s volume

or the distribution of the cells’ volume, if they are measured.

To summarize, we identified differences in cell size of proliferating cells to be a latent

cause of confounding variability. We introduced cgCorrect, a statistical method that is

capable to correct for this confounding cell cycle effect in gene expression data, which

can be used for data normalization, parameter estimation and model selection. We

validated cgCorrect on a simulated data set and applied it to single-cell qPCR gene

expression data (Moignard et al., 2013) from mouse HSPs where we could show that

the interpretation of the underlying gene expression mechanism could be influenced by

cell growth effects.
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Chapter 6

Model comparison between

histone acetylation scenarios

reveals motif-specificity

In Section 2.1 we discuss how histone modifications influence transcription initiation

and how they therefore serve as an important ingredient for the emergence of cellular

heterogeneity. In this Chapter our focus lies on histone acetylation: so far high levels of

histone acetylation have mainly been associated with an increased transcriptional ac-

tivity whereas low levels of histone acetylation have been associated with gene silencing

(see e.g. Grunstein (1997)).

It only recently became possible to experimentally resolve the combinatorial patterns

of histone acetylation using a novel approach in liquid chromatography mass spectrom-

etry (LC-MS; Feller et al. (2015)). However, the complexity of the new data made it

unfeasible to analyze it with standard means and called for a new bio-mathematical

and computational framework.

The question we answer with our new approach is if combinatorial modification patterns

(’motifs’) are specifically set or if they arise merely by random events (Section 6.1). In

Section 6.2 we formulate the likelihood (see Section 4.1) for all possible acetylation sce-

narios that we describe using the reaction rate equation (RRE; see Section 3.3) and com-

pare the models using the Bayesian information criterion (BIC; see Section 5.1). Our

new mathematical framework reveals that histone acetylation is highly motif-specific

(Section 6.3). Moreover we can use our findings for the prediction of acetylation path-
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ways (Section 6.4), which we subsequently validate qualitatively (Section 6.5) using an

independent data set where all enzymes that are known to be involved in the acetylation

of histones were systematically depleted (Feller et al., 2015).

The data we analyze here is from untargeted mass spectrometry measurements on bulk

samples. As detailed in Section 2.3 it is not possible to observe cell to cell variability

with bulk data on a single cell level. The mechanism, histone acetylation, we study in

this Chapter, however, allows cells to regulate transcription initiation and is therefore

a key for the establishment of cellular heterogeneity that – as we show here – can

also be analyzed with bulk data. While targeted mass spectrometry approaches where

antibodies with unique isotope masses are attached to different protein species has

become widely applied for single cell measurements (see e.g. Bjornson et al. (2013)),

the ability to quantify the abundance of proteins in single cells with an untargeted

approach (as it was chosen for the bulk measurements analyzed in this Chapter) has

been reported only very recently (Lombard-Banek et al., 2016). We anticipate the quest

for single cell based techniques to measure the abundances of histone modification states

in single cells to be highly beneficial to further resolve cell to cell heterogeneities. Single

cell techniques have already been attracting more and more attention in other fields

of epigenetics (Bheda and Schneider, 2014), such as the study of DNA methylation,

where single cell data can readily be obtained via bisulfite sequencing (see e.g. Farlik

et al. (2015)).

This Chapter is based on and in parts identical with the following article:

Blasi, T., Feller, C., Feigelman, J., Hasenauer, J., Imhof, A., Theis, F. J., Becker, P. B.

and Marr, C. (2016). Combinatorial histone acetylation patterns are generated by

motif-specific reactions. Cell Systems 2:49–58.

The designed workflow and the used data is open-source and freely available on the

publisher’s homepage.

6.1 Biological background and problem statement

In the nucleosome, the fundamental structuring unit of DNA in eukaryotes, DNA winds

around an octamer formed by four pairs of core histones, H2A, H2B, H3, and H4. Each

histone has an N-terminal tail extending from the otherwise compact nucleosome (Fig-

ure 6.1 A). These tails are subject to a large number of post-translational modifications

(PTMs) of fundamental importance for gene regulation and gene regulatory networks
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(see Section 2.1 and Kouzarides (2007); Suganuma and Workman (2011); Tan et al.

(2011)). One important type of histone PTM is lysine acetylation, which often pre-

vents tight folding of the nucleosome fiber through charge neutralization, and thereby

increases the accessibility of DNA to regulatory proteins Shahbazian and Grunstein

(2007).

The histone N-terminal tails have many lysines that can be acetylated, and although

some functions for acetylation at specific lysines (’sites’) are known (Lucchesi and

Kuroda, 2015; Shahbazian and Grunstein, 2007; Straub and Becker, 2011) it is assumed

that acetylation at neighboring sites may serve largely redundant functions based on

simple charge neutralization Allahverdi et al. (2011); Dion et al. (2005). However, the

observation that nearby lysines may be acetylated in combinatorial patterns – forming

’motifs’ – led to the hypothesis that such acetylation motifs may interact and lead to

functions beyond those of their single acetylations (Jennuwein and Allis, 2001; Smith

and Shilatifard, 2010; Strahl and Allis, 2000; Suganuma and Workman, 2011; Turner,

2000). We thus differentiate between ’sites’ which denote acetylation of a single ly-

sine residue independent of its adjacent modifications, and ’motifs’ which denote lysine

acetylation in the context of the modification state from neighboring lysines (e.g. the

motif ’K5K12’ refers to acetylations at lysines K5 and K12).

Understanding how acetylation motifs arise is key to elucidating their function. The

prevailing paradigm of histone tail acetylation is that KATs target either a single site

with high specificity (e.g. MOF acetylates unmodified histone H4 at lysine 16) or mul-

tiple residues with relaxed specificity (e.g. CBP for lysine residues K5, K8, and several

sites on histone H3). Whether combinatorial motifs arise through the action of ded-

icated enzymes or are the result of independent, uncoordinated activities is poorly

understood. The only well-characterized acetylation motif so far is K5K12, which is

generated by the lysine acetyltransferase HAT1 (Parthun, 2012). In vitro, HAT1 was

shown to serially acetylate the unmodified H4 tail peptide (referred to as 0ac) first

at the lysine K5 site followed by K12 to yield the motif K5K12 (Benson et al., 2007;

Makowski et al., 2001; Richman et al., 1988), although other modes have also been

reported (Dose et al., 2011; Parthun et al., 1996; Sobel et al., 1994).

In order to evaluate whether motif-specific acetylation constitutes an inherent property

of the histone acetylation system, i.e. a ’general design principle’, Feller et al. (2015)

recently began to study the network components at the system scale (including all

KATs, KDACs, their regulators and all acetylation motifs. Key to the analysis was

a liquid chromatography-mass spectrometry (LC-MS)-based workflow that enables the
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precise and accurate quantification of most histone acetylation motifs, including the

16 motifs formed on the H4 tail by combinatorial acetylation of lysines K5, K8, K12

and K16 (Figures 6.1 A, B). They found that Drosophila melanogaster KC cells show

substantially skewed motif abundances within layers as well as across layers (see Fig-

ure 6.1 B). They also assessed systematically perturbed cells by individually depleting

all known and suspected KATs and KDACs expressed in these cells and quantifying the

resulting changes in the histone acetylation distribution. The response of the system

to depletion of individual enzymes provided insight into specific enzyme-substrate rela-

tionships but a deeper understanding was hindered by the complex interplay between

the network components. Hence the principles underlying the regulation of acetylation

motif abundances could not be deduced with standard analysis.

We surmise that a theoretical framework based on simple, biologically reasonable as-

sumptions should be helpful for identifying the mechanisms giving rise to the observed

motif abundances and therefore for identifying the underlying properties of the histone

H4 acetylation system. In the past, computational modeling of genomic datasets was

able to explain the emergence of heritable chromatin states that can lead to bistable

gene expression (Angel et al., 2011; Dodd et al., 2007; Sneppen and Dodd, 2012; Zerihun

et al., 2015) and gene silencing (Mukhopadhyay and Sengupta, 2013; Sedighi and Sen-

gupta, 2007). Others reported turnover rates for histone modifications using metabolic

labelling and LC-MS time-course strategies (Evertts et al., 2013; Zheng et al., 2012).

Here, we developed a computational framework to investigate the genesis of combi-

natorial histone acetylation motifs, and to assess the relative importance of dedicated

synthesis pathways versus uncoordinated enzymatic activity. We trained our model on

published data from unperturbed cells and validated predicted pathways using an inde-

pendent KAT depletion dataset Feller et al. (2015). Our modeling strategy represents

a novel approach for providing insight into the design principles of PTM motifs, which

will become increasingly relevant as further LC-MS datasets become available.

6.2 A mathematical framework for modeling acetylation

motif abundances

The 16 histone H4 acetylation isoforms (motifs) show different abundances within lay-

ers and across layers (Fig. 6.1 B, data from LCMS measurements from unperturbed

Drosophila melanogaster KC cells). However, the general design principles underly-
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ing the observed complex acetylation patterns remain elusive. We hypothesized that

motif-specific reactions contribute to the skewed abundance distribution, where en-

zymes are sensitive to adjacent modifications (or their absence), and hence catalyze

(de)acetylations only in the context of a distinct pre-modification state (Feller et al.,

2015). To test this hypothesis, we assessed three hypothetical acetylation scenarios

(Fig. 6.1 C):

1. Lysine acetylation could be unspecific, i.e. not dependent on the site or motif,

and therefore be governed by a single, basal acetylation rate constant αr = αb for

all reactions r (Fig. 6.1 C, left).

2. Acetylation could be site-specific with some or all of the four lysine sites K5,

K8, K12, K16 being acetylated by site-specific enzymes, resulting in a common

acetylation rate for each reaction that targets that site independent of neighboring

modifications (e.g. αK5 6= αK16 6= αb in Fig. 6.1 C, middle).

3. Acetylation could be motif-specific with enzymes being sensitive to the modifica-

tion state of nearby amino acids. In the depicted example, the acetylation rate at

site K12 is different from the basal rate when K16 (but not K5 or K8) is already

acetylated (αK16 6= αb; Fig. 6.1 C, right).

We thus develop different mathematical models encompassing these three acetylation

scenarios. For each model, we predict the abundance of all acetylation motifs as a

function of the acetylation rates and infer the most likely acetylation rates by fitting

the predictions to the measured abundances (see Figure 6.1 D).

In the following, we use the symbol m to denote a motif (e.g. m = 0ac for the state

with no acetylations, m = K5 for acetylated lysine 5 and no modifications at lysines

8, 12, 16, etc.) and xm for the relative abundance of m, for each of the 16 acetylation

motifs. In our model we assume:

• Acetylation and deacetylation occurs stepwise, i.e. only one acetylation or deacety-

lation event can occur at a time. Thus, a motif can be generated via a single

acetylation of a less acetylated state, or a single deacetylation of a more acety-

lated state (Figure 6.1 C).

• Deacetylation is unspecific, such that the rate constant is the same for all reac-

tions r connecting two motifs, consistent with current views on deacetylation and

measured response upon KDAC depletion in Drosophila cells (Feller et al., 2015;

Seto and Yoshida, 2014).
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Figure 6.1: Overview on biological background and possible histone H4 acety-

lation scenarios (Figure legend on next page).
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Figure 6.1: (From previous page). Overview on biological background and pos-

sible histone H4 acetylation scenarios. (A) Nucleosome with protruding N-terminal

histone ’tail’ domains (left), with four potential lysine (K) acetylation residues (’sites’)

on the histone H4 peptide G4R17 (center) which together form the histone H4 N-terminal

acetylation ’motifs’ (right). The motif K16 (right bottom) arises by acetylation of lysine 16

from the unmodified 0ac motif (right top). (De)acetylation reactions are mediated by lysine

acetyltransferases (KATs) and lysine deacetylases (KDACs). Only two out of 16 possible

acetylation motifs are shown (unmodified: white, acetylated: grey). (B) Skewed abundance

distribution of the histone H4 acetylation motifs in Drosophila cells. Network representa-

tion of the abundances for the 16 histone H4 acetylation motifs as determined by liquid

chromatography-mass spectrometry (LCMS) (data from Feller et al. (2015)). Box sizes de-

pict log10 abundances. Note that the box size for K5K16 was set to scale with the lowest

quantifiable H4 motif (K5K8K16), because the K5K16 motif is below the quantification

limit (see Supplementary Experimental Procedures 1). (C) Testing hypothetical acetyla-

tion scenarios: unspecific acetylation scenario with the same unspecific, basal reaction rate

αb for all lysines (left); site-specific acetylation scenario with site-specific reaction rate(s)

for individual site(s) (blue, center);and motif-specific acetylation scenario with rate(s) spe-

cific to the modification context of lysines 5, 8, 12 and 16. In the depicted case, acetylation

of lysine 12 requires pre-acetylated lysine 16 (green). (D) Outline of computational model-

ing framework. All models are based on mass action kinetics with rate constants αr for the

r reactions. The models are fitted to the LC-MS data from (B) via maximum likelihood

estimation (MLE). To find the model with an optimal trade-off between complexity and

goodness of fit, we perform model selection based on the Bayesian Information Criterion

(BIC), a score which penalizes more complex models. Applying this approach allows to test

the different acetylation scenarios shown in (C) with a rigorous quantitative assessment.

This Figure and its legend is adopted from Figure 1 of the author’s following publication

Blasi et al. (2016a).

• Histone H4 acetylation follows mass action kinetics: the rate of each acetylation

or deacetylation reaction is proportional to the abundance of the substrate of that

reaction.

• The measured motif abundances are assumed to be in steady state. This is

consistent with the fact that acetylation and deacetylation progresses much faster

than the cell cycle and histone protein turnover (Katan-Khaykovich and Struhl,

2002; Toyama et al., 2013).

See the next subsection for more details.
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For the site-specific and/or motif-specific scenarios, it is unknown which of the sites or

motifs are acetylated with a non-basal rate, hence we consider models containing any

combination of site-specific reactions or any combination of motif-specific reactions. In

case of site-specific acetylation there are 11 different combinations of site-specific and

basal acetylation rates: 4 possibilities with one site-specific rate, 6 possibilities with two

site-specific rates, and one possibility where every site has a specific acetylation rate.

For the motif-specific acetylation scenario, there are a total of 232 = 4.295×109 possible

combinations of motif-specific reactions among the 32 acetylation reactions. In each

case, we formulate the likelihood of the model given the data and optimize the model

parameters to obtain the best fit, given by the maximum likelihood estimator (see

Section 4.1). To ensure identifiability of the model parameters we calculate the profile

likelihoods. We then compare all models using the Bayesian Information Criterion

(BIC) based on their likelihood. This allows us to penalize highly complex models and

thereby prevents overfitting, thus permitting the identification of the simplest models

capable of describing the data.

Reaction rate equation of the acetylation network

To model the reaction network of histone H4 tail acetylation and deacetylation we use

a stepwise reaction network (Fig. 6.1 B) wherein only a single acetyl group can be

added or removed at a time. We use the reaction rate equation (RRE; Section 3.3)

to describe the acetylation and deacetylation reactions with acetylation rate constants

ar and deacetylation rate constants dr. The change of the abundances of a particular

motif xm is given by the difference between influx from and the outflow to neighboring

motif abundances
dxm
dt

=
∑
m′

Rm,m′(ar, dr) · xm′ (6.1)

The reaction matrix Rm,m′ incorporates all possible reactions between the motifs within

the stepwise reaction network. For example, the change of the abundance of motif K8

dxK8

dt
= aK8x0ac + dK5xK5K8 + dK12xK8K12 + dK16xK8K16 (6.2)

−(aK5 + aK12 + aK16 + dK8)xK8 (6.3)

is given as the difference between the influx from (terms with positive sign) and the

outflow to (terms with negative sign) neighboring motifs (i.e. motifs differing by exactly

one acetyl group).

92



It was previously found that deacetylation occurs broadly with only little evidence for

motif-specificity in the analyzed cell system (Feller et al., 2015). Thus, we additionally

assume that deacetylation is unspecific, and therefore proceeds with the same rate

constant d for all motifs. We then simplify by dividing Eq. 6.1 by the deacetylation

rate constant d , thus converting all acetylation rate constants ar to rescaled, effective

rate constants αr = ar/dr.

The time scale of acetylation and deacetylation is much faster than the cell cycle and

measured histone protein half-lifes. Therefore we assume the reactions to be at steady

state
dxm
dt

= 0. (6.4)

To take into account that the abundances of the motifs are not measured in total

numbers but are given as fractions that are normalized to one, we solve for the steady

states subjected to the constraint of unity total abundance, i.e. we solve∑
m′

Rm,m′(ar, dr) · xm′ = 0 s.t.
∑
m

xm = 1. (6.5)

Likelihood for the acetylation network

In order to fit our model to the measured static dataset (Feller et al., 2015) we need to

define the likelihood function (Section 4.1). By using an error model with the differences

between the logarithms of estimated and measured motif abundances being normally

distributed we ensure that low and high motif abundances (the measured abundances

vary over three orders of magnitude) enter the likelihood with equal weights (Kreutz

et al., 2007). This choice of the error model corresponds to a multiplicative lognormal

distributed error. Given the data D of measured abundances xm,i of all motifs m and

biological replicates i we can calculate the log-likelihood J (α) = logP(D|α) for all

effective reaction rate constants α = (α1, . . . , α32)

J (α) = −1

2

n log(2πσ2) +
∑
m,i

(log xm,i − log xm(α))2

σ2

 . (6.6)

Here n =
∑

m,i 1 denotes the number of measured data points (including all motifs and

replicates) and

σ2 =
1

n− 1

∑
m,i

(log xm,i − log xm(α))2 (6.7)
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indicates the empirical variance. The dependency on the effective reaction rates α enter

via the model motif abundances xm(α). The maximum likelihood estimate (MLE) of

the reaction rate constants can be obtained by maximizing the log-likelihood

α̂ = arg max
α
J (α). (6.8)

In this Chapter, all optimizations were performed via multi-start local optimization

using the lsqnonlin function from Matlab with the boundaries of the reaction rate

constants set to 10−12 < αr < 103 (for all reactions r).

6.3 Histone H4 acetylation is motif specific

We start by analyzing the simplest scenario, which contains only one basal reaction

rate governing all acetylation reactions. In this unspecific model all motifs with the

same total number of acetylations (0, 1, 2, 3 and 4) will have the same abundance

due to symmetry of the model. Using MLE we determine the basal rate constant

αb = 0.182 [0.170, 0.195] (95% confidence interval estimated using the profile likelihood)

that fits the data best (Fig. 6.2 A right). The basal reaction rate is hence approximately

18% of the deacetylation rate leading to an overall higher abundance of motifs with a

lower degree of acetylation. This simple scenario already suffices to capture the overall

trend of decreasing abundance with increased degree of acetylation apparent in the

data (Fig. 6.2 A left). However, comparison of the predicted and the experimentally

determined values shows that the abundance for motifs with a single or two acetylated

lysines (except K5K12) is overestimated. Moreover this very simple model cannot

capture the large abundance variability present for the multiply acetylated motifs. In

summary, we find that 86.6% (13 out of 15 measured abundances) are not explained

by the unspecific scenario, because they fall outside the estimated 95% confidence

intervals of the model. We therefore conclude that the unspecific scenario is insufficient

to explain the observed abundances.

Next, we analyze the site-specific acetylation scenario, in which the acetylation rates of

each site K5, K8, K12 and K16 are allowed to differ. We construct all 11 possible models

and in each case obtain the MLE of the parameters. We compare the models using the

BIC, and find that the most complex model with four different site-specific reaction

rates best explains the measured abundances (Fig. 6.2 B left). This model yields the

site-specific acetylation rate constants αK5 = 0.225 [0.181, 0.280], αK8 = 0.126 [0.104,

0.154], αK12 = 0.417 [0.331, 0.528] and αK16 = 0.107 [0.088, 0.131]. We note that as
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Figure 6.2: Testing different histone acetylation scenarios: a motif-specific

model is preferred over unspecific and site-specific models (Figure legend on

next page).
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Figure 6.2: (From previous page). Testing different histone acetylation scenar-

ios: a motif-specific model is preferred over unspecific and site-specific models.

(A) Left: Fitted basal reaction rates of the unspecific model after fitting its parameter αb

to the data. The size of the arrows corresponds to the magnitude of the basal reaction rate

αb. Right: Measured (indicated with × symbols, 18 replicates) and estimated (indicated

with bars and boxes) abundances of acetylation motifs. For 13 motifs the measured abun-

dances do not fall within the 95% confidence intervals of the model, indicating that the

unspecific model is inadequate to explain the data. (B) Left: Reaction rates of the best

site-specific model, where 4 sites are acetylated with different rates αK5, αK8, αK12, αK16.

K12 is acetylated fastest followed by K5, K8 and K16. Right: For 7 motifs all abundances

deviate significantly from the measured abundances indicating that the site-specific model

is also inadequate to explain the data. (C) Left: Reaction rates of the best motif-specific

model, characterized by 7 motif-specific reactions. The acetylations K5 → K5K12, K12 →
K5K12, K16 → K12K16, K5K12 → K5K8K12, K12K16 → K8K12K16 and K8K12K16 →
4ac are increased compared to the basal reaction rate, whereas the acetylation 0ac→ K8 is

decreased. Right: The motif-specific acetylation model explains the mean of all measured

acetylation motif abundances. Corresponding to the BIC there is very strong evidence

that the best motif-specific model describes the data significantly better than both the

best site-specific model (∆BIC = 577.4) and the best unspecific model (∆BIC = 630.2).

This Figure and its legend is adopted from Figure 2 of the author’s following publication

Blasi et al. (2016a).

for the unspecific scenario, the acetylation rates are all less than 1, indicating that

deacetylation is faster than acetylation in this dynamic equilibrium. Since in this

model each site possesses a different acetylation rate, it is possible that motifs within

a single layer can achieve different abundances. Indeed, this extra flexibility allows the

model to achieve better agreement with the data compared to the unspecific model

(Fig. 6.2 B right), and is favored by the BIC (644.5 for the site-specific model as

compared to 697.3 f or the unspecific model). We find that 46.6% of all replicates

of the measured motif abundances (0ac, K5, K12, K5K8, K8K12, K12K16 and 4ac)

fall outside the 95% confidence intervals of the predicted abundances, representing a

roughly twofold improvement compared to the purely unspecific model. However, the

substantial fraction of measurements not explained by the model suggests that a more

complex model, which accounts for differences among individual motifs, is required.

Finally, we analyze the motif-specific acetylation scenario which takes into account the

context of nearby modifications. We compute the BIC score of each model and find

that the BIC increases monotonically for models with more than 7 motif-specific rates
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Figure 6.3: Model selection on the tested acetylation scenarios. (A) The cumula-

tive distribution of Bayesian Information Criterion (BIC) scores shows a strong preference

(i.e. left shift) of motif-specific and combined motif- and site-specific models over unspe-

cific and purely site-specific models. Shown are all tested models (> 109). (B) Comparison

of the best 100 models shows BIC scores ranging from 67.1 to 73.2 with little difference

between motif-specific and combined motif-and- site-specific models; the BIC difference of

∆BIC < 6 indicates no individual model is singularly the best. (C) The best 100 models

all exhibit motif-specific acetylation with 6 to 9 motif-specific rates. (D) The majority of

the best 100 models are not site-specific and no model is characterized by more than 2

site-specific rates. (E) All models in the ensemble contain between 6 and 9 motif-specific

rates. However, most models show no site-specificity, and no model contains more than 2

site-specific rates. This Figure and its legend is adopted from Supplementary Figure 2 of

the author’s following publication (Blasi et al., 2016a).

(data not shown). Thus, we limit the analysis to maximally 11 motif-specific rates,

reducing the number of candidate models from 4.295 × 109 to 2.366 × 108 models.

Of the motif-specific models, the model that best fits the data has 7 motif-specific

reaction rates, while all other reactions are governed by the same basal reaction rate

(Fig. 6.2 C left). Six motif-specific rates are faster than the basal rate of 0.067± 0.004

and three reactions (K5→ K5K12, K12K16→ K8K12K16 and K8K12K16→ 4ac) have

an acetylation rate constant αr > 1, indicating faster acetylation than deacetylation.
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The obtained BIC of 67.1 indicates a strong preference of the motif-specific scenario

over the unspecific (∆BIC = 631.2) and the best site-specific scenario (∆BIC = 577.4),

which is corroborated by the observation that the best motif-specific model captures

all measured mean motif abundances (Fig. 6.2 C right).

Our analysis of the three hypothetical scenarios provides strong evidence that motif-

specificity is a necessary component to accurately recapitulate measured motif abun-

dances. Having identified the single best model, we next analyze the robustness of this

candidate model. Until now we considered only unspecific or exclusively site- or motif-

specific models. However, by allowing both site- and motif-specificity simultaneously, it

might be possible to obtain an even better candidate model. Thus we again fit all mod-

els containing up to 11 motif or site-specific acetylation rates (9.3× 108 total models)

and compare the models using the BIC. Interestingly, we find that permitting both site-

and motif-specific rates improves the corresponding model BICs only minimally (Fig-

ure 6.3 A). The model comparison reveals that the best model in this mixed scenario

is exactly the same candidate found in the motif-specific scenario, i.e. no site specific

reactions included (Figure 6.2 C). Taken together, this implies that site-specificity is

not essential to describe the observed abundances and confirms our previous finding

(Figures 6.2A-C) that motif-specificity strongly contributes to the acetylation network.

We compare the best model with all other models by examining the distribution of BIC

scores over all scenarios. This analysis reveals that i) the BIC scores of motif-specific

models are vastly reduced compared to site-specific or unspecific models, confirming

the essentiality of motif-specificity (Figure 6.3 A), and ii) there are approximately 100

motif-specific and motif-and-site-specific models with very similar BIC scores to the

best model (∆BIC < 6) (Figure 6.3 B). However, a ∆BIC of less than 6 is insufficient

to reject one model in favor of another (see Section 4.1), therefore we obtain rather

an ensemble of candidate models for further consideration. All models in the ensemble

contain between 6 and 9 motif-specific reaction rates (Figures 6.3 C, E) while 89% of

the best 100 models have only one or no site-specific rate (Figures 6.3 D, E).

6.4 Pathway prediction

In order to explore the commonalities among the best models, we grouped them using

hierarchical clustering (see Section 4.3) on the reaction rates of the models. We applied

an average linking clustering as implemented in the Matlab software (function ’cluster-

gram’) using a Minkowski distance with exponent p = 4. We clustered the matrix of the
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Figure 6.4: Model ensemble analysis (Figure legend on next page).
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Figure 6.4: (From previous page). Model ensemble analysis. (A) The histogram

shows the abundance distribution for all motif-specific reaction rates among the best 100

models. K5 → K5K12 is supported by 99/100 best models. Seven reaction rates occur

with a frequency more than 50%. (B) The motif-specific reactions occur with variable

frequency within the best 100 models. (C) We performed hierarchical clustering to group

models according to similarity patterns in their estimated acetylation rates. The resulting

clusters can be categorized into three model families and a small group of 5 uncategorized

models. The black dots in the heatmap indicate cases where the motif-specific reaction rate

supersedes the site-specific rate (left columns). The color key shows the magnitude of the

log fold-change of reaction rates (colored, right) relative to the basal rate of each model

(gray, left). Best model (ranked 1) is highlighted in red (line 75). This Figure and its

legend is adopted from Figure 3 of the author’s following publication (Blasi et al., 2016a).

32 log-transformed reaction rates of all best 100 models with respect to the models. We

partition the hierarchical clustering at the third level from the root of the dendrogram

and define clusters with similar patterns among their reaction rates if they are repre-

sented by more than 5 models. By doing so, we identified three large model families

(at least 5 models per family), distinguished by similar patterns among their reaction

rates (Figure 6.4). Moreover, each family contained a different collection of frequently

occurring motif-specific rates (Figure 6.5).This procedure allows us to further analyze

properties of the model families in terms of their common features.

By examining the structure of motif-specific rates within each family, we are able to

predict acetylation pathways that yield specific combinatorial motifs. In particular, we

examine the frequency distribution of specific motif-specific reactions within the entire

ensemble (Figures 6.4 A, B), and discover a subset of overrepresented motif-specific

reactions, which occur in more than 50% of the candidate models. We conservatively

threshold the motif-specific reactions at 60% for each model family to yield a set of

essential acetylation segments, and connect adjacent segments from this set to construct

hypothetical acetylation pathways (Figures 6.6 A-D).

Applying this analysis, we identify four pathways, which are distinct between the three

model families (Figure 6.6 A-D). Pathway 1 (supported by 45.8% of the models in family

3) suggests that K5K12 is not only generated via K5→ K5K12 (100% of the models in

family) but also via K12→ K5K12 (45.8% of the models in family 3). Pathway 1 further

suggests that K5K12 is subsequently acetylated at K8 to generate K5K8K12 (78.0%

of the models in family 3), which is consistent with previous biochemical experiments

(Makowski et al., 2001). Furthermore, most models (84.8%) in family 3 contain pathway
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Figure 6.5: Model families allow for the prediction of acetylation pathways

(Figure legend on next page).
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Figure 6.5: (From previous page). Prediction of acetylation pathways. (A-C)

Distribution of motif-specific rates in the three model families that were identified in Figure

3C Reaction rates that occur more frequently than 60% within one family are highlighted

in green. (D-F) Network representation of average models for model families 1-3. Box size

indicates model-predicted abundances (compare similarity to Figure 6.1 B). Motif-specific

reaction rates with 60% support (see A-C) are highlighted in green whereas reaction rates

with less support are displayed in black. Each arrow represents the average reaction rate

of the respective model family. We define segments connecting more than three motifs

with motif-specific reaction rates to be acetylation pathways (see Figure 6.6 A-D). This

Figure and its legend is adopted from Supplementary Figure 3 of the author’s following

publication (Blasi et al., 2016a).

4, which yields the fully acetylated isoform 4ac via the serial acetylation K16→ K12K16

→ K8K12K16→ 4ac. We also discover alternative pathways to the fully acetylated 4ac

state in model families 2 and 3. Pathway 2 (contained in 81.8% of the models in family

1) suggests K8 → K5K8 → K5K8K12 → 4ac while pathway 3 (contained in 42.3% of

the models in family 1) suggests K8K12 → K5K8K12 → 4ac .

6.5 Qualitative validation of computationally predicted

pathways

After having trained our model ensemble on the dataset derived from unperturbed

Drosophila cells, we now want to qualitatively validate the predicted pathways. We thus

analyze an independent dataset where individual KATs have been depleted by RNA

interference (Feller et al., 2015). Specifically, we annotate enzymes to the predicted

pathways if their ablation leads to a reduction of the product and an increase of the

unused substrate. For a details we refer to Blasi et al. (2016a).

In summary, our analysis identifies three acetylation pathways that can be linked to

known and recently reported enzyme activity (Figure 6.6 E). The combinatorial acety-

lation motif K5K12 is generated by HAT1 via K5 (red pathway in Figure 6.6 E). The

fully acetylated 4ac state appears to originate from two main routes: The ’inverse K5K8

zipper pathway’ (blue pathway in Figure 6.6 E) relies on the enzymes CBP, NAA10,

NAT10, MGEA5, and the ’K16 zipper pathway’ (orange pathway in Figure 6.6 E) is

brought about by the coordinated activity of MOF, TIP60 and CBP. The ’K16 zip-

per pathway’ was previously proposed based on the skewed abundance distribution
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in many human cell types as well as in other selected species (Garcia et al., 2007;

Zhang et al., 2002). In those species the abundance of K16 exceeds by far that of

other mono-acetylated motifs, a trend that continues also for di- and tri-acetylated mo-

tifs that contain acetylated K16. While established for other species, such a pathway

has not been previously described for Drosophila, nor is it evident from the measured

abundances alone (Figure 6.1 B).

6.6 Discussion

The objective of this study was to advance our understanding of how complex acety-

lation patterns arise. The simplest explanation is that cooccurring acetylations on the

histone H4 N-terminus arise due to the uncoordinated action of individual KATs inde-

pendent of prior modifications close to the substrate lysine. Our mathematical model-

ing approach supports an alternative scenario, whereby dedicated enzymatic pathways

generate combinatorial motifs via motif-sensitive enzymes. We validated the putative

acetylation pathways inferred by our models using an independent dataset from a cel-

lular perturbation study.

In order to dissect the distribution of combinatorial motifs, and their respective inde-

pendent or ’coordinated’ enzymatic origins, it is necessary to systematically character-

ize the abundance of all possible acetylation permutations. While the dataset of Feller

et al. (2015) is uniquely suited to this task as it provides comprehensive quantitative

measurements for all possible 16 histone H4 acetylation motifs, it also poses several

difficulties for mathematical modeling which we addressed by developing a tailored

computational framework.

Our framework can be easily adapted in order to test for the existence of (further) gen-

eral design principles that are responsible for modification regulated biological networks

in different cellular contexts and disease scenarios. For example, while our assump-

tion of a universal, constant deacetylation rate is justified by our current knowledge on

KDAC activities in Drosophila cells (Feller et al., 2015), it is conceivable that the higher

complexity of the human KDAC network (Joshi et al., 2013; Yang and Seto, 2007) may

suggest an extension to the modeling approach which relaxes this assumption.

The modeling framework presented here has several benefits. It is exhaustive, in that

we compare all model topologies. It utilizes an established information-theoretic tech-

nique to rigorously evaluate candidate models. It is directly interpretable, revealing
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Figure 6.6: Predicted acetylation pathways (Figure legend on next page).
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Figure 6.6: (From previous page). Predicted acetylation pathways. (A-D) Pre-

dicted acetylation pathways that are composed of connected motif-specific acetylation rates

with more than 60% support within a family (see Figure 6.5). Each model family is charac-

terized by distinct acetylation reaction pathways. (E) We validate the predicted pathways

by an independent KAT depletion dataset (Feller et al., 2015)) and propose candidate en-

zymes for the acetylation pathways. We find evidence for pathway 1, 2 and 4 (A, B, D)

whereas we exclude pathway 3 (C). In pathway 1 (red), HAT1 catalyzes the two main

steps of the K5K12 pathway, and a potential third ’promiscuous’ step to yield K5K8K12

(not shown). CBP, NAA10, NAT10 or MGEA5 are putative candidates for the first two

reactions of the inverse K5K8 zipper (pathway 2, blue, solid). The remaining links of

pathway 2 (blue, dashed) are inferred by the model, but the dataset does not allow the

assignment of the associated enzymes. In pathway 4 (orange), the K16 zipper is likely

generated by the subsequent actions of MOF (0 → K16), TIP60 (K16 → K12K16 and

K12K16 → K8K12K16) and CBP (K12K16 → K8K12K16 and K8K12K16 → 4ac). This

Figure and its legend is adopted from Figure 4 of the author’s following publication (Blasi

et al., 2016a).

acetylation rates, and site- and motif-specificity. Using the model, one can identify

pathways that are directly testable, aiding in hypothesis generation and experimental

design. Moreover, the model is flexible enough to be adapted to more extensive datasets

including e.g. time-series data following perturbation or other PTMs (e.g. methylation

and other peptide substrates. Thus the modeling framework is a valuable tool to the

life science community for analyzing and interpreting future datasets.
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Chapter 7

Time-series analysis of single-cell

protein levels with transfer

entropy

An important challenge of computational biology is to discover regulatory links (cf.

the yearly held DREAM challenges where this is often the aim; see e.g. Marbach et al.

(2012)). Recent examples where the interactions of individual genes during the forma-

tion of adult blood cells have successfully been learned from single-cell snapshot data

are Ocone et al. (2015) and Moignard et al. (2015). In this Chapter we use transfer

entropy (see Chapter 5.2) for time-series analysis in order to infer information transfer

between two protein levels that were measured over time in single cells. This infor-

mation transfer could occur directly via a gene regulatory link or via indirect effects

(e.g. one protein could be involved in a gene regulatory network that at a later time

point triggers the regulation of the other protein). As we outline in Section 2.1 the regu-

lation of gene expression is one of the major sources responsible for establishing cellular

heterogeneity among cells with the same genetic information. We want to stress that

this Chapter does not contain a methodological novelty but presents the application of

an existing mathematical method to new data to find novel biological insights.

We start by introducing time-lapse microscopy data and explaining why transfer en-

tropy is a suitable method for its analysis (Section 7.1). In Section 7.2 we elaborate

on the calculation of the probability distributions necessary for the evaluation of the

transfer entropy. As a proof of principle we apply transfer entropy to artificial data
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simulated from the stochastic simulation algorithm (SSA; Section 7.3) before we use it

to infer the information transfer between the time-series of two proteins that play a key

role in hematopoiesis (Section 7.4). We then conclude with a discussion of our findings

in Section 7.5.

The novel contributions of this Chapter are that a probabilistic time-series analysis

method is used for gene expression data analysis. Before transfer entropy has been used

in physics (Schreiber, 2000) and in bio-medicine (Lee et al., 2012) to infer directional

links between two time-series. Using this method we find an information transfer from

PU.1 to Gata-1 in cells with granulocyte-monocyte progenitor (GMP) fated cells but

not in megakaryocyte-erythrocyte progenitor (MEP) fated cells (see 2.6 A).

Some results of this Chapter are already contained in a master thesis (Gumpinger,

2015), which the author of this thesis co-supervised, conducted pioneering studies for

and also contributed in conceiving the objectives for (see Section 7.5 for an explicit

discussion of the individual contributions). In addition to the results presented there,

we here apply transfer entropy to artificial data simulated from the SSA. Moreover, we

extend the previous results on hematopoietic stem and progenitor cells by providing p-

values for the calculated transfer entropy values and give further details on the biological

relevance of our findings.

This Chapter is based on and in part identical with the following manuscript that is

currently in preparation:

Gumpinger, A.∗, Blasi, T.∗, Hennig, H., Theis, F.J. and Marr, C. Transfer entropy:

PU.1 transfers information to Gata-1 in GMPs but not in MEPs. In preparation. (*

equal contributions)

7.1 Biological background and problem statement

A crucial question in stem cell research is how stem and progenitor cells differenti-

ate into mature cells. To dissect different cellular phenotypes and to understand the

gene regulatory network during differentiation it is very important to perform single

cell experiments (see Figure 2.3). Additionally, to temporally resolve changes during

differentiation it is important to continuously monitor the gene expression levels from

the same cell (and its descendants) without perturbing the cells substantially (Hoppe

et al., 2014).
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One way how time-dependent data from the same cell can be measured is single-cell

time-lapse microscopy (Schroeder, 2011) where single cells are imaged in constant in-

tervals of time. Time-lapse microscopy can provide both, bright field and fluorescent

images. To this end either fluorescently tagged protein antibodies (Kueh et al., 2013) or

genetically modified cells that have fluorophores fused to a protein of interest (Filipczyk

et al., 2015) can be used.

A well-studied system for cellular decision making is adult hematopoiesis (see Chap-

ter 2.4). There hematopoietic stem cells (HSCs) undergo a hierarchy of subsequently

differentiate into more and more restrictive progenitor cells, eventually giving rise to all

mature blood cells (Orkin and Zon, 2008). A particular transition within hematopoiesis

is the differentiation of common myeloid progenitors (CMPs) into either myeloid-

erythrocyte progenitors (MEPs; giving rise to all red blood cells) or granulocyte-

monocyte progenitors (GMPs; giving rise to a substantial part of all white blood cells).

Biochemical studies showed evidence that this transition is controlled by the proteins

PU.1 and Gata-1 Galloway et al. (2005); Rhodes et al. (2005). The details of the

interplay between PU.1 and Gata-1 have been investigated by numerous biochemical

studies that reported auto-regulatory activity for both PU.1 (Okuno et al., 2005) and

GATA-1 (Nishimura et al., 2005) and a mutually antagonistic regulation between them

(Arinobu et al., 2007; Liew et al., 2006).

In the mean time several mathematical models were proposed that exhibit dynamical

properties allowing to describe the transition from one progenitor into two distinct

progenitors that are more restricted (Duff et al., 2012). The biochemical evidence for

the mutually antagonistic and auto-regulatory activity motivated the development of so

called toggle-switch models that incorporate these interactions. Toggle-switch models

both based on deterministic (Chickarmane et al., 2009; Huang et al., 2007; Roeder

and Glauche, 2006) and stochastic dynamics (Strasser et al., 2011) were studied and

provided further insights into gene regulatory networks suitable to describe cellular

decision making by investigating possible model topologies and their parameter spaces.

Recent results by Hoppe et al. (2016), however, indicate that our current perspective

on the interaction of PU.1 and Gata-1 during murine hematopoiesis might need to

be revised, as they did not find evidence for mutually antagonistic regulation in their

time-lapse microscopy data (see Section 7.4). Instead of proposing new models that

may give rise to their recent data, we here take an alternative approach and investigate

the information transfer between the two protein time-series. Transfer entropy is an

ideal candidate to analyze the interdependency between two protein time series since
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it does not rely on a particular definition of the underlying gene regulatory network,

but it quantifies the net information transferred from one protein to the other in an

entirely data-driven way.

7.2 Transfer entropy: a method to measure directional

relations

We use transfer entropy to analyze the information transfer between two time-series

X = (x1, . . . , xN ) and Y = (y1, . . . , yN ) of protein abundances measured with time-

lapse microscopy. It is important to note that, here, we use transfer entropy to generally

analyze the information transfer between the two measured protein time-series directly

from the data without any assumptions on the particular underlying gene regulatory

network.

To evaluate the net transfer of information from one time-series to the other we consider

the difference between the transfer entropy (see Section 4.2) from the time-series X to

Y and from Y to X:

∆TEX→Y (τ) = TEX→Y (τ)− TEY→X(τ). (7.1)

The remaining task for the calculation of the transfer entropy is to estimate the joint

probability distribution p(yi, yi−τ , xi−τ ) in Eq. 4.14 from the data. The other two con-

ditional probability distributions necessary for the evaluation of the transfer entropy,

Eq. 4.14, can subsequently be obtained from the joint probability distribution via

p(yi|yi−τ , xi−τ ) = p(yi, yi−τ , xi−τ )/p(yi−τ , xi−τ ) and p(yi|yi−τ ) = p(yi, yi−τ )/p(yi−τ ).

Here, we construct the joint probability distribution with kernel density estimation

(KDE). Although KDE scales badly with the dimension of the probability distribution

that is to be estimated, we here only focus on a three dimensional probability distri-

bution, where KDE delivers suitable results as we verified by visually inspecting the

estimated probability distributions (data not shown).

Besides KDE there are different methods to calculate the joint probability distribution

from the measured time series. Lee et al. (2012) presented different methods to esti-

mate such probabilities, one of them is adaptive partitioning using the Darbellay-Vajda

algorithm (Darbellay and Vajda, 1999). We chose to use KDE for the construction of

the joint probability distribution as it practically proved to be most efficient for the

task at hand.
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Note that for data that is obtained from a biological process, which can be described

with the chemical master equation (CME; i.e. where X and Y are the abundances of

some molecular species and correspond to individual realizations of the CME) the joint

probability distribution p(yi, yi−τ , xi−τ ) needed in Eq. 4.14 could in principal also be

calculated from an analytical solution of the CME.

Kernel density estimation

In this subsection we explain how we obtain the joint probability densities p(yi, yi−τ , xi−τ )

needed to evaluate the transfer entropy. The joint probability at a given point (ỹi, ỹi−τ , x̃i−τ )

can be estimated by

pKDE(ỹi, ỹi−τ , x̃i−τ ) ≈

1

N

N∑
j=1

K

(
ỹi − yi+j
hyi

)
×K

(
ỹi − yi−τ+j

hyi−τ

)

×K
(
x̃i−τ − xi−τ+j

hxi−τ

)
(7.2)

where for each of the N data points we apply a Gaussian kernel

K(u) =
1√
2π

exp(−0.5u2). (7.3)

To fix the scaling factor h(.) that defines the bandwidth of the estimated kernels we

follow Lee et al. (2012) and use the rule of thumb motivated by Silverman (1986)

h(.) = 1.06bσ̂N1/5 (7.4)

where σ̂ is the empirical standard deviation of the time-series.

7.3 Application of transfer entropy to data simulated with

the stochastic simulation algorithm

We use the artificial data set simulated in Section 3.4 with the stochastic simulation

algorithm (SSA) in order to evaluate the capability of transfer entropy to detect the

correct information transfer. We take 100 steady-state realizations of a simple gene

regulatory network where a protein A that is constantly expressed represses the ex-

pression of a gene B where we use the same parameters as denoted in Section 3.4 (see

Figure 7.1 A and B).
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Figure 7.1: Transfer entropy for data simulated with the stochastic simulation

algorithm. (A) and (B) Excerpt of 100 steady-state time-series realizations of the simple

gene regulatory network displayed in Figure 3.3 where the proteins of a gene A regulate

the expression of a gene B. (C) Average difference ∆TEA→B of 100 time-series where gene

A regulates gene B. Time lags where ∆TEA→B(τ) is significantly different from zero with

a p-value of p = 0.01 are marked with red dots.

We calculate the transfer entropy TEA→B(τ) and TEB→A(τ) (Eq. 4.14) for all the

100 realizations and all time lags τ . The average difference between transfer entropies

∆TEA→B(τ) is displayed for all time lags τ < 140h in Figure 7.1 C. To obtain p-values

for the calculated transfer entropy values to be significant, we performed a one sided

t-test with a p-value p = 0.01 at every time lag.

We find that for time lags 10h . τ . 105h there is a significant information transfer
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from the time-series of protein A to protein B. This finding is consistent with the

underlying gene regulatory network where protein A is upstream of protein B.

7.4 Application of transfer entropy to time-lapse microscopy

data from differentiating hematopoietic stem cells

In this Section we analyze the time-series data of Hoppe et al. (2016). There, PU.1 and

Gata-1, two proteins that have been considered to play a key role for the differentiation

into the granulocyte-monocyte lineage or the megakaryocyte-erythrocyte lineage (see

Section 7.1), were fused with fluorophores. Then murine hematopoietic stem cells

(HSCs) were extracted and the intensity levels of the fluorophores were continuously

monitored using time-lapse microscopy. Once the cells were differentiated into either

GMPs or MEPs they were annotated with an additional surface markers and/or manual

annotation based on morphological properties.

The obtained sequence of images were further processed along Buggenthin et al. (2013)

where the cells were tracked, segmented and both their fluorescence intensities and

morphological features (such as the area of the cell) were extracted. Since stem and

progenitor cells proliferate, a single progenitor cell gives rise to a multitude of descen-

dant cells. This defines a relationship between the cells: all cells that stem from the

same progenitor cell are grouped into one ’trees’. Moreover, the set of a single cell’s

direct progenitors are called the cell’s ’branch’.

Our analysis starts with normalizing the fluorescence intensity levels by dividing through

the cell’s size in order to correct for cell cycle effects (see Chapter 5 for a detailed dis-

cussion of cell cycle normalization). We select trees based on a filtering strategy as

outlined in Gumpinger (2015) where trees that are not annotated to either the GMP

or MEP lineage at the end of the experiment are rejected as well as trees that contain

cells with strong outliers in the fluorescent intensities. Using this approach we obtain

10 trees where the majority of cells differentiates to the GMP lineage (see Figure 7.2 for

a typical example) and 14 trees where the majority differentiates to the MEP lineage

(see Figure 7.3 for a typical example).

In order to exploit the time-series data that is contained in one tree, transfer entropy

was extended to be capable to incorporate tree-structured data by Gumpinger (2015).

In brief, the calculation of the joint probability distribution using KDE, Eq. 7.2, was

modified such that it can be estimated for an entire tree (as compared to only an
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Figure 7.2: Fluorescence intensity of a typical tree with cells differentiating into

the granulocyte-monocyte lineage. (A) Gata-1 and (C) PU.1 fluorescence intensity

time-series of individual branches that commit to the GMP lineage (branch 2 of the Gata-

1 time-series is highlighted in blue and branch 10 of the PU.1 time-series is highlighted

in red). (B) and (D) Heatmap representation of the whole trees containing the branches

depicted in (A) and (C). Cell divisions are indicated with white vertical lines. Figure

adopted from Gumpinger (2015).

individual branch).

We apply transfer entropy for tree structured data to both the GMP and MEP fated

trees and find an information transfer from PU.1 to Gata-1 in GMP fated cells but not in

MEP fated cells (see Figure 7.4). We obtain values that are significantly different from

zero (based on a p-value of p = 0.01 calculated via a one-sided t-test) of the transfer

entropy for very small time lags, but more importantly many subsequent values in for
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Figure 7.3: Fluorescence intensity of a typical tree with cells differentiating

into the megakaryocyte-erythrocyte lineage.(A) Gata-1 and (C) PU.1 fluorescence

intensity time-series of individual branches that commit to the MEP lineage (branches 10

of the Gata-1 and PU.1 time series are highlighted in blue and red, respectively). (B) and

(D) Heatmap representation of the whole trees containing the branches depicted in (A) and

(C). Cell divisions are indicated with white vertical lines. Figure adopted from Gumpinger

(2015).

time lags 24h . τ . 44h.

It is important to note that this is a finding that is averaged over all stem and progenitor

cells that are passed through during differentiation from HSCs to MEPs/ GMPs. How-

ever, under the assumption that the interdependency (e.g. a possible the gene regulatory

link) between the two genes PU.1 and Gata-1 does not change during differentiation

this does not affect the result.
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Figure 7.4: Transfer entropy for protein time-series from differentiating

hematopoietic stem cells measured with time-lapse microscopy. (A) Aver-

age transfer entropy between PU.1 and Gata-1 for GMP fated cells. The difference

∆TEPU.1→Gata−1 was averaged over all 10 analyzed trees. Values that are significantly

different from zero (based on a p-value p = 0.01 obtained by a one-sided t-test) are high-

lighted with red dots. (B) Average transfer entropy between PU.1 and Gata-1 for MEP

fated cells (averaged over the 14 analyzed MEP trees). While we find significant values of

the transfer entropy indicating information transfer from PU.1 to Gata-1 for GMP fated

cells we do not find significant values for MEP fated cells. This Figure is a modified version

of Figures 3.18 (C) and (D) of Gumpinger (2015).

7.5 Discussion

In this Chapter we applied transfer entropy to analyze both protein time-series from

artificial data and data from differentiating hematopoietic stem and progenitor cells.

We could show that transfer entropy successfully detects the underlying information

transfer from one protein time-series to another for a simple gene regulatory link for

data simulated with the SSA. Moreover, we could show that PU.1 transfers information

to Gata-1 in cells that commit to the GMP lineage, whereas we do not detect an

information transfer between the two protein time-series in cells that commit to the

MEP lineage.

In a master thesis (Gumpinger, 2015) that was co-supervised by the author of this thesis

transfer entropy was more rigorously evaluated for artificial data simulated from a sim-

ple gene regulatory network using the Ornstein-Uhlenbeck process to simulate intrinsic

gene expression noise (see Dunlop et al. (2008) for the used toy system). Moreover,
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transfer entropy was compared against cross-correlation (a time-series analysis method

used by Dunlop et al. (2008)). Next, transfer entropy was generalized to be applicable

to tree-structured data sets. Furthermore, there it was shown that transfer entropy

is capable to infer the right gene regulatory link when it is applied to synthetic gene

regulatory links in Escheria coli investigated by Dunlop et al. (2008). Lastly, trans-

fer entropy was applied to the data set from hematopoietic stem and progenitor cells

that we also present here. We want to conclude by noting that it may be possible to

use transfer entropy also on pseudo-time series that are constructed from single cell

snapshot data (Bendall et al., 2014; Ocone et al., 2015; Trapnell et al., 2014).
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Chapter 8

Label-free prediction of cell

phenotypes based on imaging

flow cytometry data

While we focussed on the analysis of transcription initiation in the previous three

Chapters, we now turn to the dissection of cellular heterogeneity among single cells

that were extracted from a mixed population. To this end we use supervised machine

learning methods (see Section 4.4) to find differences among cellular phenotypes. More

specifically, we seek to find a cell’s position within its cell cycle (see Section 2.5). In

contrast to Chapter 5 where we point out that cell cycle may have confounding effects

when analyzing models of gene expression that are not associated with the cell cycle

itself, we here specifically look for differences that are due to the cell cycle.

In this Chapter, we work with data from imaging flow cytometry (IFC) that offers

information rich, morphological properties of single cells (Section 8.1). In Section 8.2

we present a novel approach to predict cell cycle phases based on bright field and dark

field images alone, without the need for any further chemical stains. Subsequently

(Section 8.3), we apply the proposed work-flow to different cell types and also to cells

under different conditions. Eventually we conclude with a discussion where we note

that our workflow is likely to be broadly applicable for the identification of many more

cellular phenotypes (Section 8.4).

The novel contributions of this Chapter are the design of a user-friendly workflow to do

label-free cell analysis, which involves the extraction of information rich features from
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bright field and dark field images and the application of supervised machine learning

on these features. The designed workflow is open-source and freely available online

(CellProfiler, 2016) and accompanied by step-by-step tutorials and example data sets.

By applying our worklfow to data from imaging flow cytometry we find that cell cycle

phases can be determined without the need for any additional markers.

This Chapter is based on and in parts identical with the following article:

Blasi, T., Hennig, H., Summers, H.D., Theis, F.J., Cerveira, J., Patterson, J.O.,

Davies, D., Filby, A., Carpenter, A.E. and Rees, P. (2016). Label-free cell cycle analysis

for high-throughput imaging flow cytometry. Nature Communications 7:10256.

The possible future applications of this Chapter are in parts subjected to the following

patent application:

Hennig, H.∗, Blasi, T.∗, Rees, P.∗ and Carpenter, A.E.∗ (2014). Method for Label-Free

Image Cytometry. US 61/985,236. (* equal contributions)

8.1 Biological background and problem statement

A major challenge in many modern biological laboratories is obtaining information rich

measurements of cells in high-throughput and at single cell resolution. Conventional

flow cytometry is a widespread and powerful technique for the measurement of cell phe-

notype and function using targeted fluorescent stains (Brown and Wittwer, 2000). It is

highly suited to the study of cell populations and rare subset identification due to its

high-throughput, multi-parameter nature. The fluorescent stains can be used to label

cellular components or processes, revealing specific cell phenotypes in the population

and quantifying the particular state of each cell. For example, quantifying the propor-

tion of cells in each phase of the cell cycle, including mitotic phases is very useful in

the modern biological laboratory. It can be achieved with conventional flow cytometry

using multiple stains: Typically, a stoichiometric fluorescent stain for DNA reports the

cells’ position within the G1, S and G2 phases of the cell cycle (Darzynkiewicz and

Huang, 2004), and additional stains are needed to sort mitotic cells into phases. Of-

ten these stains are incompatible with live cell analysis (e.g. antibodies against histone

modifications; Hans and Dimitrov (2001)) and even if live cell reporters are available

(Sakaue-Sawano et al., 2008) these may have confounding effects on the cells. For ex-

ample the commonly used Hoechst 33342 stain, which binds to the minor groove of

the double-stranded DNA can induce single-strand DNA breaks (Chen et al., 1993), or
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DRAQ5 (deep red fluorescing bisalkylaminoanthraquinone) the nuclear stain which in-

tercalates with the cell’s DNA can influence chromatin organization and lead to histone

dissociation (Wojcik and Dobrucki, 2008). Also several different markers are usually

required to unambiguously identify all cell cycle phases (Miltenburger et al., 1987).

Therefore an assay that reduces or even eliminates the number of stains required to

identify phenotypes such as the position in the cell cycle is particularly attractive.

In recent years, the two technologies of fluorescence microscopy and flow cytometry

have been integrated to create imaging flow cytometry (IFC, see also Section 2.4 and

Basiji et al. (2007)), where an image is captured of each cell as it flows past an ex-

citation source and a CCD detector. It combines conventional flow cytometry’s high-

throughput speed and easy identification of each individual cell with the fluorescence

microscopy’s spatial image acquisition. Therefore imaging flow cytometry measures

not only fluorescence intensities but also the spatial image of the fluorescence together

with brightfield and darkfield images of each cell in a population. The rich information

captured using imaging flow cytometry makes it an ideal candidate for the use of high

content approaches to identify complex cell phenotypes such as the cell cycle phase of

an individual cell. Filby et al. (2011) have previously demonstrated that measuring

the shape of the nucleus from cells stained with a nuclear marker using imaging flow

cytometry drastically improves the classification of mitotic phases. However, the even

richer morphological information that can be extracted using imaging software tools

(Eliceiri et al., 2012) offers the prospect of using more advanced multivariate analysis

techniques to mine the data and to identify various cell phenotypes, as has been suc-

cessfully done for traditional microscopy images (Jones et al., 2009; Kamentsky et al.,

2011; Perlman et al., 2004; Rajaram et al., 2012). This type of analysis is also usually

more accurate and less subjective than any manual analysis of the acquired images

(Jones et al., 2009) as well as more robust than typical gating strategies that rely on

only few features of the cells.

Here, we report that quantitative image analysis of two largely overlooked channels

– brightfield and darkfield, both readily collected by imaging flow cytometers – en-

ables cell cycle-related assays without needing any fluorescence biomarkers. We use

the image analysis software CellProfiler (Kamentsky et al., 2011) to extract numerical

measurements of cell morphology from the brightfield and darkfield images, then we

apply supervised machine learning algorithms to identify cellular phenotypes of inter-

est, in the present case, cell cycle phases. Avoiding fluorescent stains provides several

benefits: it reduces effort and cost, avoids potentially confounding side effects of live
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Figure 8.1: First the brightfield and darkfield images of the cells are measured by an

imaging flow cytometer. The brightfield and darkfield images depict the light transmitted

through the cell and light scattered from the cells within a cone centered at a 90o angle,

respectively. Then the images are preprocessed, where we reshape the images to have their

sizes coincide and tile them to montages of 15× 15 images. The montages are loaded into

the open source image software CellProfiler that we use to segment the cells’ brightfield

images and to extract morphological features from the images. Lastly, we apply supervised

machine learning such as classification. For this purpose we need an annotated set of cells

where the actual cell state is known to train the classifier and to test its predictive power.

Once the classifier is trained it is used to predict the state of unlabeled cells and to digitally

sort the cells into bins. This Figure and its legend is identical with Figure 1 of the author’s

following publication Blasi et al. (2016b)
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cell markers, and frees up the remaining available fluorescence channels of the imaging

flow cytometer that can be used to investigate other biological questions.

8.2 Label-free analysis workflow

Image-processing to extract informative features

The first step in the workflow of label-free cell-cycle classification (Figure 8.1) is to ac-

quire brightfield and darkfield images from the cells using an imaging flow cytometer.

To allow visual inspection and to optimize the file size for processing, we tile individual

cells’ brightfield and the darkfield images into 15×15 montages, with up to 225 cells per

montage. Then, we load the montages into the open-source imaging software CellPro-

filer (Kamentsky et al., 2011) for processing. There is sufficient contrast between the

cells and the flow media to robustly segment the cells in the brightfield images without

the need for any stains. We extract 213 features from the segmented brightfield and

the full darkfield image.

The features can be summarized into five categories: size and shape, granularity, inten-

sity, radial distribution, and texture. These image features are the input for supervised

machine learning, namely classification and regression (see Section 4.4), which we use

to predict each cell’s DNA content and the mitotic phases in the cell cycle without

the need for any stains. The machine learning algorithms have to be trained on an

annotated subset of the investigated cells where the true cell state, i.e. the ’ground

truth’ is known. The ground truth can be obtained either by manual identification (by

a trained biologist or using software tools) or from labeling a subset of the investigated

cells with fluorescent stains.

Supervised machine learning to predict cellular phenotypes

We use classification and regression with classification and regression trees (CARTs) in

conjunction with a boosting strategy to predict the cell’s DNA content and its cell cycle

phase (see Section 4.4 for details on boosting with CARTs). In brief, in boosting many

’weak learners’ (here short trees with R = 5 regions) are subsequently fit to the data

when after each step the data becomes re-weighted in order to penalize data points that

are not yet well explained by the ensemble of weak learners. Eventually a ’majority

vote’ of all weak learners leads to the prediction (see e.g. Murphy (2012)).
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Figure 8.2: Images of Jurkat cells captured by imaging flow cytometry. Typical

brightfield, darkfield, PI and MPM2 images of cells in the G1/S/G2 phases, prophase,

metaphase, anaphase and telophase of the cell cycle. The size of the images is 55×55

pixels. This Figure and its legend is identical with Supplementary Figure 1 of the author’s

following publication Blasi et al. (2016b).

For the prediction of the DNA content we use LSboosting (least-squares boosting;

Hastie et al. (2009)) as implemented in Matlab’s fitensemble routine and for the as-

signment of the mitotic cell cycle phases we use RUSboosting (boosting with random

undersampling; Seiffert et al. (2010)) as also implemented in Matlab’s fitensemble rou-

tine. In both cases we partition the cells into a training and a testing set. The brightfield

and darkfield features of the training set as well as the ground truth of these cells are

used to train the ensemble. Once the ensemble is trained we evaluate its predictive

power on the testing set. To demonstrate the generalizability of this approach and to

obtain error bars for our results the procedure is ten-fold cross-validated.

To prevent overfitting the data and to fix the stopping criterion for the applied boosting

algorithms, we performed a five-fold internal cross-validation. To this end, we split up

the training set into an internal-training (consisting of 80% of the cells in the training

set) and an internal-validation (20% of the cells in the training set) set. We trained

the algorithm on the internal-training set with up to 6,000 decision trees. We then
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of DNA content and cell cycle phases of Jurkat cells (Figure legend on next

page).
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Figure 8.3: (Figure on previous page). Supervised machine learning allows for

robust label-free prediction of DNA content and cell cycle phases of Jurkat cells.

(A) We find a Pearson-correlation of r = 0.896 ± 0.007 between actual DNA content and

predicted DNA content (based on regression using brightfield and darkfield morphological

features only). We used the Watson pragmatic curve fitting algorithm to specify the

fraction of cells in the G1, S and G2 phases. (B-F) For cells that are actually in a particular

phase (e.g. (B) shows cells in G1/S/G2), the bar plots show the classification results based

on brightfield and darkfield morphological features only (e.g. (B) shows that the few cells

in prophase (Pro), metaphase (Meta), anaphase (Ana), and telophase (Telo) are errors).

(G) Bar plot of the true positive rates of the cell cycle classification. This Figure and its

legend is identical with Figure 2 of the author’s following publication Blasi et al. (2016b).

predicted the DNA content/cell cycle phase of the inner-validation set and evaluated

the quality of the prediction as a function of the used amount of decision trees. The

optimal amount of decision trees is chosen as the one for which the quality of the

prediction is best. We repeat this procedure five times and determine the stopping

criterion for the whole training set as the average of the five values for the stopping

criterion obtained in the internal cross-validation.

8.3 Application of the workflow to biological data sets

Cell-cycle analysis of fixed Jurkat cells

As an initial demonstration of our technique we sought a label-free way to measure

important cell cycle phenotypes including a continuous property (a cell’s DNA content,

from which G1, S and G2 phases can be estimated) and discrete phenotypes (the

mitotic phase of a cell: prophase, anaphase, metaphase, and telophase). We used

the ImageStream platform to capture images of 32,255 asynchronously growing Jurkat

cells (Figure 8.2). As controls, the cells were fixed and stained with Propidium Iodide

to quantify DNA content and an MPM2 antibody to identify mitotic cells. These

fluorescent markers were used to annotate a subset of the cells with the ground truth

needed to train the machine learning algorithms and to evaluate the predictive accuracy

of our label-free approach. Since it is infeasible to accurately identify individual cells in

the G1, S and G2 phase based only on one nuclear marker (Miltenburger et al., 1987)

we do not aim to predict those phases individually but to predict each cell’s DNA

content. Subsequently, we use the Watson pragmatic curve fitting algorithm (Watson
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Figure 8.4: Label-free prediction of DNA content and cell cycle phases for

fixed Jurkat cells treated with a prophase-blocking agent. (A) Based only on

brightfield and darkfield features, we find a Pearson-correlation of r = 0.894±0.032 between

actual DNA content and predicted DNA content using regression. We applied the Watson

pragmatic algorithm to determine the G1, S and G2/M phases in the DNA histograms.

(B-D) For cells that are actually in a particular phase (e.g. (B) shows cells in G1/S/G2),

the bar plots show the classification results (e.g. (B) shows that the few cells in prophase

(Pro) and the other mitotic phases (others) are errors). Note that we grouped the cells in

metaphase, anaphase and telophase into one class since we only detected very little cells

in those phases after treatment with the prophase blocking agent. (E) Bar plot of the true

positive rates of the cell cycle classification. Using boosting with random undersampling to

compensate for class imbalances, we obtain true positive rates of 87.6±2.2% (P), 87.6±2.2%

(G1/S/G2) and 100% (others). This Figure and its legend is identical with Figure 3 of the

author’s following publication Blasi et al. (2016b).

et al., 1987) to estimate the percentage of cells in each of the G1/S/G2M phases based

on the predicted DNA content.

Using only cell features measured from brightfield and darkfield images we were able to

devise a regression ensemble (using least squares boosting that accurately predicts each

cell’s DNA content, obtaining a Pearson correlation of r = 0.896± 0.007 between pre-

dicted and actual nuclear stain intensity (Figure 8.3A). This highly accurate prediction

of the DNA content can be used to further categorize G1, S and G2/M cells or to allo-

cate each cell a time position within the cell cycle via the ergodic rate analysis, where

cells are sorted according to their DNA content (Kafri et al., 2013). Moreover, we were
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able to classify mitotic phases (using random undersampling (Seiffert et al., 2010))

to compensate for the high class imbalance) with true positive rates of 55.4 ± 6.6%

(for prophase), 50.2± 16.3% (for metaphase), 100% (for anaphase and telophase) and

93.1± 0.5% for the non-mitotic phases (Figures 8.3B-G.

We analyzed which features have the most significant contributions for the prediction of

both the nuclear stain and the mitotic phases by ’leave one out’ cross-validation (data

not shown). We find that leaving one feature out has only a minor effect on the results

of the supervised machine learning algorithms we used, likely because many features

are highly correlated to others. The most important features are intensity, area, shape,

and radial distribution of the brightfield images.

Detection of mitotic phase block

The assessment of the therapeutic blocking of the cell cycle (in a particular phase) is

of particular importance. We tested the method’s ability to predict the DNA content

of Jurkat cells treated with 50µM Nocodazole, a mitotic blocking agent. To confirm

the magnitude of the block of cells in mitosis we performed three additional replicates

demonstrating an average increase of cells in the G2/M phase of 19.0±11.1% compared

with the control. The label-free prediction of the DNA content has a Pearson correlation

of r = 0.894± 0.032 with the true DNA content (PI is used as a fixed cell nuclear stain

to provide the ground truth for the machine learning algorithms) and the percentage

of cells in the G1, S and G2/M phases are in excellent agreement (Figure 8.4A).

Therefore the technique is successfully detecting the expected increase in the G2/M cells

due to the blocking agent based on the predicted DNA content. Again, we were able to

classify mitotic phases and found true positive rates of 67.6±7.4% (for prophase), 100%

(for the other mitotic phases) and 87.6±2.2% for the non-mitotic phases (Figures 8.4B-

E). Treatment of the cells with the mitotic blocking agent lead to an increase in the

percentage of prophase cells from 1.88 to 11.07, which is confirmed by comparison with

the ground truth (data not shown) and in agreement with the identified magnitude of

the block of cells in mitosis.
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Figure 8.5: Label-free prediction of DNA content for live Jurkat cells and

detection of a phase blockage. (A) Supervised machine learning (trained using live cells

stained with DRAQ5 to determine the DNA content) allows for robust label-free prediction

of the DNA content of live cells based only on brightfield and darkfield images. We find a

Pearson-correlation of r = 0.786± 0.010 between actual DNA content and predicted DNA

content using regression. We believe this reduction in correlation from the value of 0.896

obtained for fixed cells to be a consequence of the greater variability of the uptake of the

live DNA dye compared with the staining achieved with fixed cells. Despite the reduction

in correlation a value of 0.786 is still high enough to make this a viable method for the cell

cycle analysis of live cells. As previously we determine the fraction of cells in the G1, S

and G2/M phases using the Watson pragmatic curve fitting algorithm. (B) We predict an

increase of 13.4% in the G2/M phase after the cells were treated with 50µM Nocodazole,

which is in good agreement with the average increase of 19.0±11.1% in G2/M as was found

for three independent cell populations under the same treatment. The phase-blocked data

set was not labeled with any marker. Instead, we trained our machine learning algorithm

on the untreated data set, which was labeled with a DRAQ5 DNA stain (see A) and used

the trained machine learning algorithm to predict the DNA stain of the blocked cells. This

Figure and its legend is identical with Figure 4 of the author’s following publication Blasi

et al. (2016b).
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Figure 8.6: Images of fission yeast cells captured by imaging flow cytometry.

Typical brightfield, darkfield and PI images of cells in the G1, S, G2 and M phases of

the cell cycle. This Figure and its legend is identical with Supplementary Figure 4 of the

author’s following publication Blasi et al. (2016b)

Cell-cycle analysis of live Jurkat cells and detection of mitotic phase

block

Many experimental protocols require live cells rather than fixed. We tested the ability

of the technique to detect cell cycle changes in live Jurkat cells. To provide ground truth

(that is, the expected cell cycle distribution), the cells were stained with DRAQ5, a

live cell DNA stain (Figure 8.5A). Like most live-cell-compatible DNA stains, DRAQ5

is not an ideal marker because of the variability of uptake of the dye in live cells (Yuan

et al., 2004), nonetheless, we obtain a Pearson correlation of r = 0.786 ± 0.010 for

predicting the DNA content of untreated cells.

With a regression ensemble trained on the stained live cells we are also able to predict

the effect of treatment with a phase blocking agent on an entirely unstained data set

(Figure 8.5B). We detect an increase of cells in the G2/M phase from 20.9% to 34.3%

when the cells are treated with 50µM Nocodazole; this is consistent with the average

increase of 19.0 ± 11.1% obtained from repeating the phase block experiments with

stained cells.
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Figure 8.7: Label-free prediction of DNA content and cell cycle phases for

fission yeast cells. (A) Based only on brightfield and darkfield features, we find a Pearson-

correlation of r = 0.855± 0.006 between actual DNA content and predicted DNA content

using regression. Note that the fission yeast cell cycle is different from the Jurkat cell cycle

since the two daughter cells divide between the S and G2 phases (and not at the end of

M phase as is the case for Jurkat cells). (B-E) For cells that are actually in a particular

phase (e.g. (B) shows cells in G1), the bar plots show the classification results (e.g. (B)

shows that the cells in S, G2 and M are errors). (F) Bar plot of the true positive rates

of the cell cycle classification. Using boosting with random undersampling to compensate

for class imbalances, we obtain true positive rates of 70.3 ± 4.1% (G1), 90.13 ± 1.3% (S),

96.8±0.1% (G2) and 43.9±4.7% (M). This Figure and its legend is identical with Figure 5

of the author’s following publication Blasi et al. (2016b)

Cell-cycle analysis of fission yeast

To explore the generality of our method for other cell types, we tested it on another

species, fission yeast (Figure 8.6). The yeast cells were fixed and stained with PI to

measure the DNA content of each cell; subsequently the cells were assigned to the G1,

S, G2 or M phase by manually gating on image based metrics from the PI channel

of the Image-stream data (Patterson et al., 2015), which provided the ground truth.

The label free regression predicts a DNA content with a Pearson correlation of r =

0.855±0.006 (Figure 8.7A) and a classification accuracy of 70.2±2.2% (G1), 90.1±1.1%

(S), 96.8± 0.3% (G2) and 44.0± 8.4 (M) (Figures 8.7B-F).
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8.4 Discussion

We demonstrate here that it is possible to determine a cell population’s DNA con-

tent and mitotic phases based entirely on features extracted from cells’ brightfield and

darkfield images, as obtained in high-throughput via imaging flow cytometry. The

method requires an annotated dataset to train the machine learning algorithms, either

by staining a subset of the investigated cells with markers, or by visual inspection and

assignment of cell classes of interest. Once the machine-learning algorithm is trained

for a particular cellular phenotype, the consistency of imaging flow cytometry allows

high-throughput scoring of unlabeled cells for discrete and well-defined phenotypes

(e.g. mitotic cell cycle phases) and continuous properties (e.g. DNA content).

The same basic strategy can be readily adapted to measure other phenotypes, making

this a generally useful approach for label-free, single-cell phenotyping in the modern

biological laboratory. The method can also be used retrospectively on datasets that

do not have the necessary stains for phenotype identification, providing an annotated

dataset is available to train the algorithms. While current imaging flow cytometers

do not have physical cell-sorting capabilities and for now our approach is suited to

experimental contexts where samples are analyzed only, this approach may offer the

possibility to entirely avoid any fluorescent stain and opens up the perspective for a new

generation of image flow cytometers that could operate without fluorescence channels.

Label-free identification of phenotypes enables continuous, non-destructive monitoring

of cell samples, minimizes potentially confounding influences of the stains on the cells,

and maximizes available fluorescence channels to investigate biological questions such

as the search for novel hallmarks in cell cycle (Zuleta et al., 2014), the identification

of stem and progenitor cells (Xia and Wong, 2012), or the proliferation of cancer cells

(Chan et al., 2012).
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Chapter 9

Summary and Outlook

Men say they know many things;

But lo! they have taken wings, –

The arts and sciences,

And a thousand appliances;

The wind that blows

Is all that any body knows.

Henry David Thoreau [VII]

9.1 Summary

In this thesis we developed new and applied existing mathematical methods to analyze

cellular heterogeneity in a data-driven way. We started by introducing the relevant

biological background where we explained how transcriptional regulation leads to het-

erogeneity among cells with the same DNA and by giving an overview over currently

available biological data (Chapter 2). We then derived mathematical frameworks that

are capable to describe biological processes (Chapter 3). In Chapter 4 we pointed

out the importance of conjoining the mathematical models with biological data and

presented several probabilistic approaches that are suitable for this task.

In the original contributions of this thesis, we analyzed cellular heterogeneity on two

levels (see Figure 9.1). On the one side, we found a new workflow to better identify

cellular phenotypes from a heterogeneous mixture of cells by applying mathematical

methods from supervised machine learning (Chapter 8; Figure 9.1 A), on the other
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Figure 9.1: Analyzing mechanisms that lead to different cellular phenotypes

and dissecting cellular heterogeneity. (A) Three different cellular phenotypes (green,

blue and orange) form a heterogeneous cell population. Methods from machine learning

(see Chapters 4.3 and 4.4) such as classification can be used to dissect the heterogeneity

and to identify the different cellular phenotypes given data D from the cells. (B) Within

a cell genes are transcribed into mRNA and translated into proteins (see Section 2.1). We

can formulate mathematical models that describe this biological process in a parametrized

way (see Chapter 3). Given biological data D and the parameters of the model θ we can

infer information about the regulation of gene expression by formulating and optimizing

the likelihood P (D|θ) (see Chapter 4.1). We argue that differences in gene expression are

the main source of cellular heterogeneity (dashed line; see Section 2.1). Parts of the Figure

are adopted from O’Connor and Adams (2010).

side, we derived and applied mathematical models to investigate biological processes in

the cell that lead to the formation of different cellular phenotypes, such as chromatin

modifications (see Chapter 6) and gene regulation (Chapters 5 and 7; Figure 9.1 B).

More specifically:

• In Chapter 5 we presented a novel mathematical framework, cgcorrect, that takes

confounding sources of variability for both dimension reduction and steady-state

distribution analysis into account. By applying our method to single cell qPCR

data, we found that many genes that are important during hematopoiesis are

rather continuously expressed than bursty when correcting for this variability.

• In Chapter 6 we found evidence for motif-specific histone H4 acetylation by com-

paring a large set of mathematical models to data from LC-MS. Our approach

allowed us predict acetylation pathways and could be used to find candidate en-

zymes that may be involved in the pathways.

• In Chapter 7 the application of transfer entropy to time-series data of the proteins

PU.1 and Gata-1 that were measured during hematopoiesis revealed that PU.1
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transfers information Gata-1 in cells that eventually commit to the granulocyte-

monocyte lineage.

• In Chapter 8 we provided a new workflow to identify the cell’s position in the cell

cycle for imaging flow cytometry data. We could show that it is possible to avoid

fluorescent stains and that morphological features of the brightfield and darkfield

images are sufficient to obtain a precise identification.

9.2 Outlook

An iterative loop between the identification of cellular phenotypes and

understanding their underlying mechanisms

In this thesis we outlined how differences in gene expression eventually lead to different

cellular phenotypes from a bottom-up perspective. For diagnostic purposes, however,

it turns out to be fruitful to reverse this perspective:

The recent advent of high-throughput single-cell technologies has made the screening of

large numbers of single cells possible. This new data enables a convenient identification

of cellular phenotypes (see e.g. Grün et al. (2015) for RNA-seq data or Chapter 8 for

imaging flow cytometry data) and is anticipated to lead to a new era in diagnostic

research, where malignant cells can be identified in tissue samples (Sandberg (2014); see

also Figure 9.1 B) without any a priori knowledge about the underlying mechanisms.

It is the iterative loop between the identification of (malignant) cellular phenotypes

and the quest for an improved understanding of cellular processes that may contribute

to better understand the formation of diseases and serve as a starting point for the

development of therapies.

On the way to single cell epigenetics

In Chapter 6 we analyzed the abundances of histone acetylation states that were mea-

sured by untargeted mass spectrometry from bulk samples (Feller et al., 2015). Single

cell analysis has already become possible in many areas of epigenetics such as DNA

methylation, e.g. via bisulfite sequencing, and chromatin modifications via targeted

antibody assays (see Bheda and Schneider (2014) for a review). However, the quality

assessment of antibody binding properties is still heavily debated in literature where

questions concerning the specificity of targeted approaches are raised (see Kungulovski
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et al. (2014) for a discussion). While an untargeted approach without the need for

antibodies avoids these issues, current mass spectrometry methods are only on the way

to reach sensitivities that are suitable for the analysis of small sample volumes that are

given by single cells (Lombard-Banek et al., 2016). A suitable technological framework

for future applications is the integration of microfluidics with mass spectrometry to

lab-on-a-chip mass spectrometry (LOC-MS) as proposed by Oedit et al. (2015).

Untargeted mass spectrometry based approaches on the other hand do not contain

local information in terms of the genomic loci where the modifications occur. This in-

formation, however, is necessary to construct more detailed models of gene expression

where additional epigenetic layers can be incorporated as compared to the simplified

three stage model of gene expression (as discussed in Section 2.1). Since chromatin

modifications can be inherited from one cell to the other they provide a fundamental

mechanism to guide linage choices in differentiating cells (see Margueron and Reinberg

(2010)). Therefore, a major future goal will be the integration of single cell epigenetics

data that are obtained with orthogonal experimental techniques to provide new insights

into the biological mechanisms that drive cellular heterogeneity.

Linking the scales: towards data-driven multi-scale models of single

cells

In this thesis, we analyzed biological data that stem from several scales in the cell

(i.e. chromatin, mRNA, protein and morphology). A long term goal for bio-mathematics

and computational biology is to integrate data from multiple scales.

Since current measurements are often invasive to the cells (including killing the cells)

it is often infeasible to obtain data from more than one scale per measurement. For

a multi-scale model it is therefore necessary to combine data sets from different ex-

perimental methods. As previously discussed, however, the data sets have different

properties (e.g. time-series or snapshot data; single cell or population based) depend-

ing on the experimental technique. Moreover, since the experimental methods are often

not broadly established yet (but only conducted by a few highly specialized labs) the

investigated cell lines or other experimental conditions may differ rendering a direct

comparison between the data sets into a challenging task.

Nevertheless, both future experimental and mathematical advances may enable to in-

tegrate the data from some or all of these scales into multi-scale models to improve the

predictive power of current mathematical approaches.
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Beyond gene expression in single cells

In this thesis, we focussed on the analysis of heterogeneity among isolated single cells. In

their natural environment, however, mammalian cells are usually organized in tissue and

organs and constantly exchange signals with their surrounding cells (see e.g. Berridge

(2016)). This leads to a constant in and outflow of molecular species (such as nutritions

or hormones) that may also influence the gene expression in the cell (see e.g. Becker

et al. (2010)). In order to gain a more comprehensive understanding of the biolog-

ical processes that lead to cellular heterogeneity it is crucial to incorporate cell-cell

interactions and their natural environment into the current analysis frameworks.

The need for novel mathematical methods

So far already many achievements have been made by the bio-mathematical community

that improved our understand of biological processes. With single-cell high-throughput

experiments becoming more and more established and the measured number of sam-

ples continuously increasing (see e.g. Macosko et al. (2015) and Klein et al. (2015) for

single-cell RNA-sequencing) the demand for suitable mathematical methods to analyze

this data is still growing.

Since a better understanding of cellular mechanisms and their malfunctioning has di-

rect implications for the development of new therapeutical approaches the impact of

new bio-mathematical methods is likely high. In the light of the aforementioned open

challenges it becomes clear that the role of bio-mathematics will become more and more

important for the data-driven analysis of cellular systems.
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