© Springer. This is the author's version of the work. It is posted here by permission of Springer for your personal use.
Not for redistribution. The definitive version was published in the conference/workshop proceeding

A Field Study on the Elicitation and
Classification of Defects for Defect Models

D. Holling, D. Méndez Fernandez, and A. Pretschner

Technische Universitdt Miinchen, Germany
{holling, mendezfe, pretschn}@cs.tum.edu

Abstract. Background: Defect models capture faults and methods to
provoke failures. To integrate such defect models into existing quality
assurance processes, we developed a defect model lifecycle framework, in
which the elicitation and classification of context-specific defects forms
a crucial step. Although we could gather first insights from its practical
application, we still have little knowledge about its benefits and limita-
tions. Objective: We aim at qualitatively analyzing the context-specific
elicitation and classification of defects to explore the suitability of our
approach for practical application. Method: We apply case study re-
search in multiple contexts and analyze (1) what kind of defects we can
elicit and the degree to which the defects matter to a context only, (2)
the extent to which it leads to results useful enough for describing and
operationalizing defect models, and (3) if there is a perceived additional
immediate benefit from a practitioner’s perspective. Results: Our re-
sults strengthen our confidence on the suitability of our approach to
elicit defects that are context-specific as well as context-independent.
Conclusions: We conclude so far that our approach is suitable to pro-
vide a blueprint on how to elicit and classify defects for specific contexts
to be used for the improvement of quality assurance techniques.

1 Introduction

Defect models capture faults and methods to provoke failures [1,2] and describe
them formally. By operationalization, formal defect models can be used as a
basis to create (semi-) automatic defect detection tools. On the one hand, such
tools include (semi-)automatic test case generators to detect smells and gather
evidence for described faults or execute certain test strategies for methods to
provoke failures. On the other hand, they also include checklist generators or
reading technique organizers to detect defects in non-executable, and therefore,
non-testable artifacts. Since operationalizations directly target the described de-
fects, they support systematic fault-based testing and yield good test cases [1].

In our definition, a defect is an umbrella term including all faults, errors, fail-
ures, bugs, and mistakes made when designing or implementing a system. Similar
to the notion of quality in general, which constitutes a multifaceted topic with
different views and interpretations [3,4], defects and especially their relevance,
too, are something relative to their context. That is, a defect that might be
critical to one project might be without relevance to the next. The systematic
integration of (domain-specific) defect detection and prevention mechanisms into

2 D. Holling, D. Méndez Ferndndez, and A. Pretschner

the quality assurance (QA) of particular socio-economic contexts, e.g. a company
or a business unit is therefore crucial.

To integrate defect models into existing quality assurance processes, we de-
veloped and previously published a defect model lifecycle framework [5].This
framework can be embedded into established quality improvement lifecycle mod-
els and provides a blueprint of steps and artifacts to plan, employ, and control
defect models. A planning step comprehends the elicitation and classification of
defects (or defect classes respectively) in order to later on describe their defect
models formally and operationalize them in an employment step.

The construction of formalized defect models and their operationalization
in tools is very expensive. Eliciting and classifying the “relevant” defects for
specific contexts is thus crucial for taking the context-specific decision whether
to invest this effort. Defect elicitation and classification methods hence needed to
be comprehensive and to allow for frequency, and possibly severity, assessments.
Based on these assessments, the effectiveness of defect models can be anticipated
and the investment decision can be rationalized.

The subject of this paper is our Defect ELIcitation and CLAssification ap-
proach (DELICLA). We aim at understanding the effectiveness of DELICLA
by means of qualitative methods with particular focus on interviews for the
data collection and Grounded Theory for the analysis. One reason for relying on
Grounded Theory coding principles is the categorization as well as the possible
elaboration of cause-effect relations for defects. Once the defects are identified,
they are integrated in a taxonomy: technical or process-related. The qualitative
nature makes the approach agnostic to specific contexts/domains while, at the
same time, always yielding context-specific results. By relying on an adaptable
defect taxonomy, we follow the baseline of Card [6] and Kalinowski et al. [7],
who note that it is beneficial to “tailor it to our [...] specific needs”.

Problem Statement. Although we had gathered first insights from apply-
ing DELICLA in practice, we have yet little knowledge about its appropriateness
to (1) elicit and classify defects in specific contexts of different application do-
mains; (2) the extent to which it leads to results useful enough for describing and
operationalizing defect models; and (3) if there are immediate additional bene-
fits as perceived by practitioners. These problems are reflected by the research
questions in Section 4.

Contribution. We contribute a field study where we apply our DELICLA
approach to four cases provided by different companies. In each case, we conduct
a case study to elicit and classify context-specific defect classes. The goal of our
study is to get insights into advantages and limitations of our approach; this
knowledge supports us in its further development.

Researchers as well as practitioners can directly apply our approach and
the resulting defect taxonomies which include common and recurring defects. In
addition to the defect-based perspective, we explicitly provide tacit knowledge
about defects useful to organizations in order to advance in organizational learn-
ing [8]. By evaluating our approach in different contexts, we lay the foundation
for its adoption in research and practice.

Field Study: Elicitation and Classification of Defects for Defect Models 3

2 Related Work

In the classification step of our approach, we provide a basic defect taxonomy /
classification. Efforts to create a standardized defect classification for the collec-
tion of empirical knowledge have been made in the past [9]. However, there has
not yet been a general agreement as defects may be very specific to a context,
domain or artifact. This leads to a plethora of taxonomies and classifications
techniques in literature and practice. In the area of taxonomies, Beizer [10] pro-
vides a well-known example for a taxonomy of defects. Avizienis et. al. [11,12]
provide a three-dimensional taxonomy based on the type of defect, the affected
attribute and the means by which their aim of dependability and security was at-
tained. IEEE standard 1044 provides a basic taxonomy of defects and attributes
that should be recorded along with the defects. Orthogonal Defect Classifica-
tion (ODC) [13] is a defect classification technique using multiple classification
dimensions. These dimensions span over cause and effect of a defect enabling
the analysis of its root cause. Thus, defect trends and their root causes can be
measured in-process. Apart from these general classification approaches, there
are approaches specifically targeting non-functional software attributes such as
security [14-16] or, based upon ODC, maintenance [17,18]. Leszac et al. [19]
even derive their classification aiming to improve multiple attributes (i.e relia-
bility and maintainability). Our approach, presented next, deliberately chooses
to employ a minimalistic/basic defect taxonomy to stay flexible for seamless
adaptation to specific contexts and domains. This lightweight taxonomy enables
the approach to be in tune with the expectations/prerequisites of our project
partners (see RQ3 in Sect. 4). In contrast to ODC, we are not generalizing our
taxonomy to be “independent of the specifics of a product or organization” [13],
but rather require adaptability to context. In addition, we do not aim to cap-
ture the effects of defects (other than the severity where possible) as it is not
required for the elicitation and classification of defects for defect models. How-
ever, our taxonomy can be mapped to ODC’s cause measures by (1) refining
the categories of technical and process-related defects into defect types and (2)
using the associated tasks of the role of the interview partner as defect trigger.
The severity can directly be taken in ODC’s effect measures, but other required
measures such as impact areas, “reliability growth, defect density, etc.” [13] must
be elicited in addition.

3 DELICLA: Eliciting and Classifying Defects

A first decision in the design of DELICLA was to use a qualitative approach
for defect elicitation and classification. The central aspect of our approach is
further its inductive nature where the focus is on generating theories rather
than testing given ones. That is, the approach makes no a-priori assumptions
about which defects might be relevant in a specific context, yet our hypothesis
is that common and recurring defects exist in the context. In addition, we rely
on circularity yielding further defects, if the approach is repeatedly used in the
same or similar contexts.

There exists a multitude of techniques employable in qualitative explorative
approaches with the ability to take a defect-based viewpoint. These established

4 D. Holling, D. Méndez Ferndndez, and A. Pretschner

techniques have been explored with respect to three goals: (1) cost-effectiveness
in their application, (2) comprehensiveness in the obtained results, and (3) ability
to establish a trust relationship during the data collection.

Trust is important because humans generally are reluctant to disclose poten-
tial problems in individual project environments [7,20]. The assessed techniques
include techniques for document analyses, interview research, participant obser-
vation, and creativity techniques such as brainstorming.

Due to their comprehensiveness and the possibility to establish a trust rela-
tionship [20,21], personal interviews were chosen as technique in the DELICLA
approach. This allows to fully explore the participants’ perspectives in their con-
text while adopting their vocabulary. Using this technique in a semi-structured
form yields the ability to guide the interview [20] along predefined questions
without interrupting their flow of words.

For the analysis of the collected data, we employed Grounded Theory [22]
and code the answers as described by Charmaz [23]. In a manual coding step,
we code all mentioned defects including their cause and effect. These codes are
then organized in a hierarchy representing a defect taxonomy. Following this
form of open coding, we apply axial coding to the results to explicitly capture
relationships between defects as well as possible causes and effects. In some cases,
we apply selective coding to capture possible causalities between defects. Our
DELICLA approach consists of the three steps explained next: (1) Preparation,
(2) Ezecution, and (3) Analysis.

Preparation. The first activity in the preparation step is to create a pool of
potential interview candidates (i.e. the participants). Candidates are identified
with the project partner by focusing on their projects or domains of expertise.
The selection of interview candidates is performed by the interviewer or project
partner yielding a variation point. In case the interviewer is able to select the
candidates, the context of the study (e.g. the projects and teams focused on)
and the expenditure of time for the project partner must be exactly defined. Key
aspects to consider before selecting any interview partners are the organizational
chart and the assessment of their potential contributions by their managers. The
order of interviews was from best to least contributing according to the execu-
tives’ opinions; and lowest to highest branch in the organizational charts [20].
When interviewing the best performing, the interviewer is able to assess the
maximum capabilities of team or project members thereby gaining a perspec-
tive of what can be achieved. Subsequent to interviewing executives on higher
branches, defects collected in lower branches can be discussed and used to de-
vise first indications towards future measures. Thus, even if the project partner
selects the interview partners, the interviewer should be able to get an overview
using an organizational chart and set the order of the interview partners.

After the interview partners have been selected, they are informed about the
upcoming interview and their required preparation. An interview preparation
sheet is given to them detailing the purpose of the interviews and the questions
to be prepared. In our studies, we used the open questions seen in Tab. 1 for
preparation similar to those presented by Charmaz [23]. An extension point are

Field Study: Elicitation and Classification of Defects for Defect Models 5

additional questions. Depending of the context, questions such as “How metic-
ulously is the SCRUM methodology followed?” may be added. When informing
the interview partners, the responsibles on the project partner’s side must also
be named for potential inquiries of interview partners about internal procedures.
Interviews are not part of the everyday working life of the interview partners
and may cause feelings of nervousness to anxiousness. To mitigate these feelings,
the description of the purpose of the interviews is very detailed and emphasizes
the defect-based view on tools, processes and people in defect models for quality
assurance.

Table 1: Instrument used for the interview preparation sheet.

ID Question

Q1 What are the classical faults in the software you review/test?

Q2 What does frequently/always go wrong? With which stakeholder?

Q3 What was the “worst” fault you have ever seen? Which one had the “worst” consequences?
Q4 Which faults are the most difficult ones to spot/remove?

Q5 What faults were you unaware of before working in your context?

Q6 What faults do you find most trivial/annoying?

Q7 What faults do engineers new to your area make?

Each interview requires 30 minutes for the preparation by the interview part-
ner and 30 minutes for the actual interview; usually a negligible amount of time.
This lets interview partners prepare so that they “can be prepared to speak di-
rectly to the issues of interest” [20]. When planning the concrete times for the
interviews, every two interviews include a 30 minute break at the end. In case
any interview takes more time than expected, this break is used to prevent the
accumulation of delay for the following interviews.

The interviewer must also prepare w.r.t. the processes and tools employed
by the interview partners and their roles at the project partner. To establish the
trust relationship, an address of reassurance is prepared to be given before the
interview. In addition, the room is small and any distractions are removed. All
technology used during the interviews is tested beforehand and interviews are
recorded as suggested by Warren [20].

Execution. With trust and comprehensiveness of results our main objec-
tives, we follow the basic principles of interview research: At the beginning of
the interview, the interview partner and interviewer agree on a first name basis.
This basis takes down psychological walls and is a key enabler of an open discus-
sion later in the interview. When sitting down, the interviewer never faces the
interview partner as it creates the sense of an interrogation [20]. The interview
starts with a short introduction consisting of a description of the survey, its goals
and the reasons for personal interviews. This introduction aims to mitigate any
fears and allows the interview partners to get used to the interview situation.
The interviewer can display knowledge and emotional intelligence at this point
by stating that elicited defects will be used rather than judged for example.
At the end of the introduction the way of documenting the interview results is
agreed upon. There, a trade-off might be necessary between recording the in-

6 D. Holling, D. Méndez Fernandez, and A. Pretschner

terview results and manually documenting them; we experienced recordings to
threaten the validity by potentially influencing the behavior of the participants
while manual documentation might be prone to bias. In any case, the anonymity
of the analysis is guaranteed before the interview.

Following the introduction is the description of the context by the interview
partners. This includes the tasks, activities and processes they are involved in.
This part of the interview is individual and helps the interviewer later in the
classification of the discussed defects. Questions such as “What are your inputs
and outputs?” help the interview partners to express their role, constraints,
tasks and results toward the interviewer. The semi-structured approach of the
interview helps the interviewer in this part as it allows for inquiries by the
interviewers in case of unfamiliar terms and concepts. This part is not described
on the questionnaire as interview partners are typically able to elaborate their
work context. This also helps them to get into a flow of words as “at a basic
level, people like to talk about themselves” [20].

The core part of the interview is the discussion of defects including their
description, frequency and severity. Also the resulting failures and possible de-
tection and/or prevention techniques are discussed. Again, this part is individual,
but is guided by the questions on the interview preparation sheet. This guidance
exploits the order in the heads of the interview partners as they likely prepared
the questions in the order they were on the preparation sheet. At the end of the
interview, an agreement of future contact has to be reached.

In general, it is the interviewer’s job to keep up an objective atmosphere and
tone. It is hard for humans to admit defects and discuss them, but it is in fact
the decisive point of the presented approach. Thus, the interviewer must cater to
the interview partner using emotional intelligence. Additionally, “whatever the
training and intentions of the interviewer, the social interaction of the qualitative
interview may unfold in unexpected ways.” [20].

Analysis. The analysis of the interviews is used for the classifications of the
collected defects. Defects interesting for the description and operationalization of
defect models are common and recurring defects and defects with a high severity.
To perform the classification and go from defects to defect classes, the first step
of Grounded Theory [22] is employed. In that step, the recordings are coded
in chronological order whereas the codes are iteratively abstracted to categories
eventually leading to a basic defect taxonomy. Codes may also include contexts,
roles and distinctions of the employed quality assurance process. This helps the
interviewer to capture “what is happening in the data” [20]. After coding, all
excerpts of the recordings are grouped by code and reheard to focus on one
particular defect and its context, origination and consequences.

In the classification, the basic taxonomy of defects contains two basic families
of defects: technical and process-related defects. Process-related defects concern
all methodological, organizational and process aspects (as defined by the defect
causal analysis [24]) and contain defects causing technical defects. Technical de-
fects are directly attributable to the product and are detectable by measures
of quality assurance. These two families of defects yield extension points. An

Field Study: Elicitation and Classification of Defects for Defect Models 7

exemplary extension could be tool-related defects or defects rooted in the be-
havior of humans. These can be added dynamically and defects may belong to
multiple classes depending on the context. Recall that, we deliberately chose to
“tailor [the taxonomy] to our [...] specific needs” [6,7] to stay flexible for seamless
adaptation to specific contexts and domains w.r.t. the creation of defect models.

After the analysis, we created a report summarizing the results to the project
partners and used it as basis for discussion in a concluding workshop. In this
workshop, we presented the results and the discussion yielded a last validation
of the results w.r.t. the expectations of the project partners. Afterwards, eligible
defects for the creation and operationalization of defect models were discussed
and selected constituting a last contact with the project partners to potentially
initiate the development of tools based on the defect models.

4 Field Study Design

We conducted our field study by relying in total on four cases. In each case, we
follow the same study design. In the following, we report on the design which
we organize according to Runeson et al. [25].

4.1 Research Questions

The goal is to investigate the advantages and limitations in the elicitation and
classification of defects for defect models using our DELICLA approach described
in section 3. To this end, we formulate three research questions.

RQ 1 (Suitability): What (kind of) defects can be elicited with the ap-
proach; what is the degree of sensitivity to their context; and how comprehensive
is the approach?

The core idea behind the approach is to elicit and classify common and recur-
ring / severe defects independent of the context it is used in while preserving the
context-dependent usefulness to adapt QA techniques to those defects. Hence,
our first research question targets the adaptability of the approach to different
employment contexts and its ability to always elicit and classify defects rele-
vant to quality assurance independent of context. In particular, it should not be
affected by changes of domains (information and cyber-physical), test / qual-
ity assurance levels (review, inspection, unit, integration and system test) and
project partner. Finally, we rate a defect as context-independent if we find a
relation to existing evidence in a given baseline. This means, if we find a study
that indicates to the same defect in a different context, we may assume that the
defect is context independent.

RQ 2 (Operationalizability): Can the results of the approach be used for
the description and operationalization of defect models?

The classification and elicitation of defects for defect models aims at their
later description and operationalization. Thus, the results of the approach must
yield a basis for decision-making to make the effort to describe and operationalize
the respective defect models and yield starting points for their description and
operationalization. This research question therefore aims at analyzing whether
the basis of decision-making and starting points are retrievable by the approach,
thereby manifesting a direct usefulness to project partners. We do not have a

8 D. Holling, D. Méndez Fernandez, and A. Pretschner

clear oracle to answer this question.To answer the research question, we will
therefore point to indicators for successful description and operationalization of
defect models based on our approach.

RQ 3 (Indirect short-term benefit): Besides potential defect models and
their operationalization, how valuable are our results to the project partners?

When our approach has been applied, project partners are given a final report
to inform them about the results. This report contains all elicited and classified
defects as well as possible proposals for action. In addition to the value for defect
models. This research question targets the usefulness of the report in the eyes
of those project partners considering the time invested on the project partner’s
side, thereby manifesting the indirect benefit of the approach. Again, we do
not have an oracle. However, the quality of the results w.r.t. sufficiency and the
cost-effectiveness can be rated by the project partners based on subjective expert
judgement and feedback gathered during a concluding workshop.

4.2 Case and Subject Selection

We apply our process for the elicitation and classification of defect models to
four software development projects of different industry project partners. We do
not change our process throughout the field study to gain comparable results,
although this affects internal validity. The four projects were chosen on an op-
portunistic basis. As we required real-world development projects and project
managers / members to agree, the process was performed when possible. How-
ever, the chosen cases are suitable to answer our research questions if the selected
projects are distributed across different companies working in different applica-
tion domains.

4.3 Data Collection and Analysis Procedures

To collect and analyze the data, we use our DELICLA approach for the elicitation
and classification of defects as described in Sect. 3.

To answer RQ 1, we list the top 14 defects (i.e. all defects mentioned in at least
two interviews within the same context) we elicited and classified and evaluate
their commonality in contrast with their context sensitivity. That is, for each
defect, we analyze whether it is context-dependent or context-independent if we
find a relation to existing evidence. As a baseline, we use the defects reported
by Kalinowski et al. [7] and Leszak et al. [19].

We also quantify the number of defects elicited and give an assessment as to
if the interviews allow for a comprehensive defect-based perspective on projects
or organizations. There is no clear agreement on a sufficient number of interviews
in general, but indicators toward sufficient numbers may be given [26]. For our
cases, we agree on the sufficiency of the number of interviews when we observe
a saturation in the answers given, i.e. when no new defects arise. Saturation is
taken as a sign of comprehensiveness.

To answer RQ 2, we list indicators of tools and methods created from defects
classified and elicited with our approach. These tools and methods may not have
a fully formulated formal defect model description, but are able to demonstrate
whether (and how) results may be operationalized.

Field Study: Elicitation and Classification of Defects for Defect Models 9

To answer RQ 3, we describe indicators of the quality of the results and the
involved costs by gathering expert feedback from project partners after perform-
ing our approach. This feedback is a direct external grading of our approach by
industry experts and yields an assessment of its cost-effectiveness.

5 Case Study Results

We performed the case study in four different industry projects (settings) with
different industry partners. For reasons of non-disclosure agreements, we cannot
give detailed information on project-specifics and the particularities of context-
specific defects. However, we can state their domain, the number of interviews
conducted and the classes of defects.

The top 14 defects independent of their setting are shown in Tab. 2. The
settings and their respectively elicited and classified defects are shown in Fig. 1.
They are grouped by our basic taxonomy defined in Sect. 3 into technical
(Fig. 1a) and process-related defects (Fig. 1b) and ordered each according to
their context-sensitivity. Interestingly, we have found existing evidence for de-
fects identified as context dependent as the existing evidence provided an exten-
sive, and thereby, fitting defect description.

#1(n=12)] #1(n=1) Specification
#1(n=13) | #1(n=2) | #1(n=3) | #1(n=4) 2 incomplete/inconsiste
nt

Interface

#3(n=8)] #3 (n=2)

#2(n=13) [#2(n=2) | #2 (n=5) 20

Domain specific

Context independent

Domain independent
Context independent

#5 (n=2)]_#5 (n=4) 6 Exception Handiing defects

xt sensitivity
xt sensitivity

Inter
Project
Inter
Project

9 (n=4 n=2| #3 (n=7]
#10 (n=4) n=2| #7 (n=4)
n=2|_#8 (n=0)
n=2] #11 (n=3}
12 (n=3)

n=1] 13 (n=3)

n=1] 14 (n=3)
SettingA SettingB SettingC SettingD ___sum Description SettingA SettingB SettingC SettingD _ sum Description

(a) Technical defects (b) Process-related defects

#12(n=4)| #4(n=8))
#13 (n=3)[#14 (n=3)|
n=2)
n=2)

Intra project

n=1]

Context dependent
Context dependent

Intra project

Fig. 1: Defects with applicable ID (#, if number in top 14) and frequency (n) in
the classification by setting, domain and context specificity

5.1 Case Description
Setting A is a medium size cyber-physical software supplier. 24 subjects were
interviewed with the aim to draw a organization-wide picture of common and
recurring (mentioned in at least 2 interviews) defects. These systems primarily
targeted the automotive domain, but also were in the domain of aerospace,
railway and medical. The predominant development process was the V-model.
Setting B is a department of a large German car manufacturer. 3 subjects
were interviewed as to try out the approach and enable a first glance at a defect-
based perspective in this department using the V-model as development process.
Note that, this low number of interviews is discusses in threats to validity.
Setting C is a project of medium size in an information system developing
company. 6 subjects were interviewed to give the company an introduction to

10

Table 2: Top 14 defects by frequency
(at least mentioned twice in the same context (n>2) from 43 interviews)

D. Holling, D. Méndez Ferndndez, and A. Pretschner

Name ‘Ex. Ev.‘Description ‘Mentioned Consequences ‘
1 Signal Range [19] Ranges of signals were not as de-|Undefined / unspecified behaviour of
scribed in the specification connected systems
é’ 2 Scaling [19] Fixed-point values were scaled incor-|Possible under-/overflows and/or
< rectly for their specified range system outputs differ from specifica-
5 tion
3 3 Wrong initial|[19] The initial values of the system were|Initial system outputs differ from
© value not set or set incorrectly specification
£ 4 Data dependen-|[7] [19] |Data dependencies were unclear When changing data formats, not all
g cies locations of the data formats were
& updated
25 Exception Han-|[19] Exception handling was either|Execution of exception handling rou-
g« dling untested or not implemented as|tines lead to system failure
= specified
6 Dead code due|[19] Dead superfluous safeguards were|Degraded system performance
to safeguards implemented and/or real-time requirements not
met
7 Linkage of Com-|[19] Interfaces of components were not|System outputs differ from specifica-
ponents connected as specified tion
8 Variable re-use |[19] Mandatory re-use of variables and|System outputs differ from specifica-
developers assumed incorrect current |tion
values
9 Different base |[[19] Calculations switched base (10 to 2|System outputs differ from specifica-
and vice versa) tion
10 State chart de-|[19] Defects related state charts System outputs differ from specifica-
fects tion
11 Transposed [19] Characters in user interfaces and|Mapping of code to user interface
characters framework configurations were trans-|does not work
posed
12 Web browser in- Web browsers had different interpre-|Browser-dependent rendering of web
compatibilities tations of JavaScript and HTML pages
13 Validation of in- Inputs were either not or not vali-|Ability to input arbitrary or mali-
put dated according to specification cious data
14 Concurrency Concurrency measures were not used|Deadlocks and atomicity violations
as specified
al Specification [7] [19] |The specification was either incon-|Thorough verification of implementa-
0 incom- sistent, lacking information or inex-|tion impossible and testing deferred
T plete/inconsistert istent
A 2 Interface incom-|[19] Agreed interfaces of components|Rework for interfaces required after
3 patibilities were not designed as discussed /|deadline for implementation
= specified
Tsj 3 Missing domain|[7] Engineers lacked the concrete do-|Delivery delayed and project time ex-
% knowledge main knowledge to implement a re-|ceeded
g quirement
2 4 Cloning Engineers used cloning as a way to|Cloned parts provide functionality
~ add functionality to systems not required by the system in devel-
= opment
& 5 Static Analysis|[19] Static analysis of the implementation|Delivery delayed and project time ex-
= runtime was started too late in the process |ceeded
6 Quality assur- Engineers did not see the necessity|Review / Testing not performed ac-
ance deemed for quality assurance cording to specified process
unnecessary
7 Late involve-|[19] Users were involved late or not at all|Requirements not according to user
ment of users in a SCRUM-based process problem statement
8 Misestimating |[19] Inability to estimate cost for require-|Delivery delayed and project time ex-
of costs ments in a SCRUM-based process ceeded
9 Call order de-|[19] Call orders were switched without in-|Extra testing effort required with dif-
pendencies forming engineers ficult fault localization
10 Misunderstood New engineers did not understand|Delivery delayed and project time ex-
instructions given documentation ceeded
11 Distributed de-|[19] Development and test team were at|Communication deficiencies yielded
velopment different locations untested components with runtime
failures
12 Insufficient test|[19] The test environment did not contain|Some defects could only be detected

environment

13 Development by
single person

14 Overloaded em-
ployees

all components to be tested

A single person was developing a
large part of the system

Engineers were overwhelmed with
the amount of work requested from
them

in production environment
Incomprehensible implementation of’
components

Careless misateks due to stress

Field Study: Elicitation and Classification of Defects for Defect Models 11

the approach. The interviews were performed in a large scale website front end
project developed using the SCRUM methodology.

Setting D was an information system project of a railway company. 10 sub-
jects were interviewed to show process deficiencies and give a defect-based per-
spective on currently employed development and quality assurance measures.
The project was a graphical rail monitoring application project developed using
the SCRUM methodology.

5.2 Subject Description

As described in the subject selection, we chose our project partners and projects
in an opportunistic manner. All interview participants had an engineering or
computer science background and at least one year of experience. The first author
applied the approach in the case studies.

In setting A, the majority of participants had a background in mechanical or
electrical engineering and developed system using Matlab Simulink with either
automatic code generation or using Matlab Simulink models as specification for
their manually implemented systems.

In setting B, the interview partners were developing and/or testing the func-
tional software for an electronic control unit developed in C++ and integrated
into AUTOSAR.

In setting C, the interview partners included a broad selection of roles in-
cluding architects, developers, testers, test managers, and scrum masters.

In setting D, the interview partners were from several different teams defined
in SCRUM to also gain a comprehensive view on synergy effects and defects
missed by their managers.

RQ 1: Suitability. In all studies performed, the results always yielded tech-
nical and process-related defects. The top 14 defects of each category are shown
in Tab. 2. For each defect, we additionally show whether we could find a relation
to existing evidence (see column 4 in Tab. 2). Figure 1 further illustrates each
defect (via its identifier provided in Tab. 2) in relation to its degree of sensitivity
to the context. Remember from the introduction that “context” here refers to a
specific company or business unit of a company.

In setting A, the interviews revealed 15 technical and 7 process-related de-
fects. The technical defects were mainly run-time failures such as overflow due to
the abstraction from the underlying computational model in Matlab Simulink.
These failures were caused by wrong signal ranges of units, wrong scaling of
fixed-point types and wrong initial values. The process-related defects were in-
terface incompatibilities and incomplete / incorrect specifications. We performed
24 interviews in total. However, the top most common and recurring faults were
named in 12, 11 and 8 interviews respectively. Since this was a cross-project
company wide survey, the diversity of developers and testers interviewed intro-
duced differences in the defects common and recurring in their respective fields.
Baker and Edwards [26] hint at 12 interviews to be sufficient. In our setting, sat-
uration was indeed achieved with even fewer interviews; the revealed common
and recurring defects can be assumed to be comprehensive.

In setting B, the interviews revealed 3 technical and 1 process-related defect.
The technical defects were related to initial values in C++ (2) and overflows (1).

12 D. Holling, D. Méndez Ferndndez, and A. Pretschner

The process-related defect were due to interfaces (2) and incomplete specifica-
tions (2). Contrary to all other settings, this setting was only to give a first glance
as described in the case description. Thus, comprehensiveness was intentionally
neglected, but to provide a first glance 3 interviews were sufficient.

In setting C, the interviews revealed 5 technical defects and 6 process-related
defects. The technical defects were related to web browser incompatibilities (4),
validation of input data (3) and exception handling (2). The most prominent
process-related defects were incomplete specification (5) and interface incom-
patibilities (3). With only 6 interviews, we did not perform a sufficient number
of interviews per se. However, the project’s size was only 10 persons and effects of
saturation were quickly observable. This saturation yields an indication towards
comprehensiveness, albeit inconclusive.

In setting D, the interviews revealed 3 technical defects and 7 process-related
defects. The top technical defects were related to data dependencies (8), excep-
tion handling (4), concurrency (3). The prominent process-related defects were
incomplete specifications (7), interface incompatibilities (4) and late involvement
of the customers (4). Again, 10 interviews are below the sufficiency baseline, but
the project’s size was only 18 persons. Once again, saturation yields an indication
towards comprehensiveness, albeit inconclusive.

Although the aim of the DELICLA approach was only to elicit and classify
technical defects, process-related defects were mentioned by interview partners
and were classified as well. Many interview partners stated process-related de-
fects as causes for technical defects, yielding a causal relation between some
defects. For instance, in the cyber-physical settings, the inconsistent / incom-
plete specification was described to lead to incorrect signal ranges and wrong
initial values. In the information system domain, the format of user stories as
use cases without exceptions was described to lead to untested / incorrect excep-
tion handling. We did not believe in advance these causalities or process-related
defects to be important at first. However, we later realized their potential for
deciding whether to (1) employ defect models for quality assurance to detect
or (2) make organizational, methodological or process adjustments to prevent
these defects. Many project partners were intrigued about the causalities and
estimated the effort to change their processes lower than to employ defect mod-
els for some technical defect. In particular, since process improvement by using
elicited defects has been described in literature [7,24].

An interesting observation was the presence of domain independent defects
of technical as well as process-related nature (see Fig. 1). Domain independent
technical defects were run time failure causing defects in embedded systems in
setting A and B as well as untested exception handling defects in information sys-
tems in settings C and D. Moreover, interface incompatibilities and incomplete /
inconsistent specifications/requirements were process-related defects present in
all settings.

We therefore conclude so far that our approach is suitable to elicit a broad
spectrum of defects which cover the particularities of the envisioned context as
well as context-independent defects.

Field Study: Elicitation and Classification of Defects for Defect Models 13

RQ 2: Operationalizability. In all settings, we were able to derive pos-
sible solution proposals for handling each elicited and classified defect. These
solution proposals do not necessarily include formal descriptions of defect mod-
els, but rather are indicators for operationalization possibilities. However, we or
our project partners were able to design tools or methods that have an underlying
defect model, and in some cases described next, we were able to operationalize
the defects via tools.

Setting A resulted in a testing tool called 8CAGE [27]. 8Cage is a lightweight
testing tool for Matlab Simulink systems based on defect models. The employed
defect models target overflow/underflow, division by zero run time failures as
well as signal range and scaling problems.

Setting B yielded an internal testing tool for the testing of the interfaces of
the software to the AUTOSAR Runtime Environment (RTE) developed by the
project partner. Due to frequent changes in the communication between each
electronic control unit, the RTE had to be recreated for each change. Sometimes
changes were not implemented leading to unusual failure message and large
efforts spent in fault localizations. The internal testing tool can now be run to
show these unimplemented changes automatically.

Settings C and D did not result in any tools as of now. However, they yielded
requirements to specifically test exception handling functionality in Java sys-
tems. The task of the tool is to explicitly throw exceptions at applicable points
in the code as to deliberately test the developed exception handling. We cur-
rently have collected these requirements and tool development is imminent. In
addition, quality standards for SCRUM user story standards as a method of
early defect detection have been proposed and partially implemented in setting
C and B. These methods include perspective-based reading [28] of user stories
before accepting them and explicit definitions of acceptance criteria including a
specification for exception handling.

Overall, the tools and methods developed enable front-loading of quality
assurance activities. This allows developers and testers to focus on common and
recurring defects in specification and implementation and either makes them
aware of the defects or allows the (semi-)automatic detection. Thus, the defect-
based perspective may be able to increase the potential to avoid these defects in
the future.

We therefore conclude so far that we could elicit defects suitable for opera-
tionalization in the chosen context.

RQ 3: Indirect short-term benefit. After presenting the results in the
workshop meeting of DELICLA, we asked the responsibles to assess the useful-
ness of our approach in terms of (1) being aware of the elicited and classified
defects, (2) future actions based on the report, and (3) cost-effectiveness.

In setting A, the responsibles deemed the results satisfying. The defects were
mostly known to them, but they were content to have written results in hand for
justification towards their management. Using the results, they could convince
their management and customers to invest into consulting regarding specific
defects. The efficiency of only one hour per interview while leading to sufficiently

14 D. Holling, D. Méndez Ferndndez, and A. Pretschner

comprehensive results was perceived positively. They agreed to perform further
interviews in the future. However, they remarked that our approach did not
reveal many defects previously unknown to them, but were now able to gain an
essential understanding of their frequency. They also commented on the difficulty
to select distinct projects for the proposed measures in this inter-project setting.

In setting B, the project responsibles only gave us a limited feedback. They
stated all defects to be known and saw the advantage in now having a thorough
documentation. We did not create defect models or develop operationalizations
for them after applying the approach. However, they developed a tool without
our involvement based on one reported defect.

In setting C, the project responsibles were surprised how non-intruding and
conciliatory our approach is and how professionally it can be handled. They were
aware of most of the defects, but not that 20% of their test cases were already
defect-based. The project was already in a late stage when we applied the ap-
proach and future actions could not be taken due to the time left. They also per-
ceived the efficiency of one hour per interview partner as positive and described
the comprehensiveness of results as given. When discussing further interviews,
they questioned the application towards a whole organization as measure to find
organization-wide defects with a small number of interviews.

In setting D, the project responsibles were aware of most defects elicited and
classified and satisfied with the application of the approach in general. They
said the approach “yields good results with little effort” and it provides “a
view” on the defects in the project from “a different side”. In addition, they
stated that “nothing is missing [from the results] and [results are] diagnostically
conclusive”. Concerning the possible solution approaches presented, they “may
not be the way to go”, but “give a first idea for discussion in project meetings”.
Again, further interviews were discussed, but the time required to interview the
complete project with more than 50 employees was deemed to much. The project
partner rather wanted to use other techniques such as observation or focus groups
to minimize time required on their side. However, qualitative interviews were
deemed “a good starting point”.

5.3 Threats to Validity

There is a plethora of threats to the validity, let alone those inherent to case
study research. To start with, the qualitative nature of the approach as well
as the qualitative nature of the evaluation technique rely to a large extent on
subjective expert judgment. First and foremost, the approach was applied by
the same person evaluating it. The internal validity is particularly threatened by
the subjectivity in the interviews and especially in their interpretation. Coding
used to classify the defects, for example, is an inherently creative task. However,
our aim was to explore the potential of such qualitative methods, to reveal
subjective opinions by the study participants, and to elaborate — despite the
inherent threats — the suitability of the chosen approach.

The construct validity is threatened in two ways. First, the research ques-
tions were answered via qualitative methods only and we cannot guarantee that
we could fully answer the questions based on our data. We compensated the
threat, especially for research question 1, by taking an external baseline as an

Field Study: Elicitation and Classification of Defects for Defect Models 15

orientation. Second, we cannot guarantee that we have a sufficient number of
interviews to reliably decide on the completeness of the data to elaborate com-
prehensive defects. We compensated this threat by applying the principles of
Grounded Theory where we explicitly considered a saturation of the answers if
no new codes arose. Also, we believe the number of interviews to be less impor-
tant than the coverage of roles within (different) teams and superordinate roles.
This is hinted at by setting B, C and D in particular.

Finally, the external validity is threatened by the nature of the approach and
the evaluation as well. Our intention was, however, not to generalize from our
findings but to evaluate the extent to which our approach is suitable to cover the
particularities of contexts whereby the results hold specifically for those contexts.
Yet, by comparing the results with an external baseline, we could determine
context-independent defects which potential for generalization.

6 Conclusion

We have evaluated our DELICLA approach to elicit and classify defects for their
eventual description and operationalization as defect models. DELICLA is en-
tirely based on existing elicitation and analysis approaches [20]. Our approach
uses a qualitative explorative method with personal interviews as elicitation and
grounded theory as classification technique. We have evaluated the approach in
a field study with four different companies. The chosen settings varied in their
domains. Using our approach, we were able to elicit and classify defects having
both a context-dependent and -independent relevance while providing indica-
tors to the extent to which they relate to existing evidence. The approach was
applicable in different contexts/domains due to the employment of qualitative
approaches. We could use the elaborated defects to derive requirements for their
(semi-) automatic detection by tools and create possible solution proposals in
all settings. The feedback given to us by project partner executives was positive
yielding “informative results with little effort”. Thus, the results strengthen our
confidence that the studies are representative and the approach is suitable to
elicit context-specific defects without being too specific for a context. However,
we are lacking a study with negative results.

Using DELICLA, we have gained an insight of existing defects in different
contexts and domains. For some defects, we have built and operationalized re-
spective fault models. Moreover, for some defects we were able to find cause
effect relationships to other defects. This yields the question about the ability
of the method to extensively find cause effect relationships for all defects. To
answer this question, further work and maybe a higher level portrayal of defects
as provided by the methodology of Kalinowski et. al [7] is required.

References

1. Pretschner, A., Holling, D., Eschbach, R., Gemmar, M.: A generic fault model for
quality assurance. In: Proc. MODELS. (2013) 87-103

2. Pretschner, A.: Defect-Based Testing. In: Dependable Software Systems Engineer-
ing. IOS Press (2015) to appear.

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

D. Holling, D. Méndez Ferndndez, and A. Pretschner

Garvin, D.: What does Product Quality really mean? MIT Sloan Management
Review 26(1) (1984) 25-43

Kitchenham, B., Pfleeger, S.: Software Quality: The Elusive Target. IEEE Software
13(1) (1996) 12-21

Holling, D.: A fault model framework for quality assurance. In: International
Conference on Software Testing, Verification and Validation. (2014)

Card, D.N.: Defect analysis: Basic techniques for management and learning. Ad-
vances in Computers. (2005)

Kalinowski, M., Mendes, E., Card, D., Travassos, G.: Applying dppi: A defect
causal analysis approach using bayesian networks. In: PROFES. (2010)
Schneider, K.: Experience and Knowledge Management in Software Engineering.
1st edn. Springer Publishing Company, Incorporated (2009)

Wagner, S.: Defect classification and defect types revisited. In: Defects in Large
Software Systems, ACM (2008)

Beizer, B.: Software testing techniques (2nd ed.). Van Nostrand Reinhold Co.,
New York, NY, USA (1990)

Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions (Jan 2004)
Avizienis, A., Laprie, J.C., Randell, B.: Dependability and its threats: A taxonomy.
In: Building the Information Society. IFIP. Springer (2004)

Chillarege, R., Bhandari, 1.S., Chaar, J.K., Halliday, M.J., Moebus, D.S., Ray,
B.K., Wong, M.Y.: Orthogonal Defect Classification-A Concept for In-Process
Measurements. IEEE Trans. SE (1992)

Aslam, T., Krsul, I., Spafford, E.H.: Use of a taxonomy of security faults. In:
NIST-NCSC. (July 1996) 551-560

Landwehr, C.E., Bull, A.R., Mcdermott, J.P., William, Choi, S.: A taxonomy of
computer program security flaws. ACM Computing Surveys (1994)

Landwehr, C.E., Bull, A.R., McDermott, J.P., Choi, W.S.: A taxonomy of com-
puter program security flaws. ACM Comp (1994)

Ma, L., Tian, J.: Analyzing errors and referral pairs to characterize common
problems and improve web reliability. In: ICWE. (2003)

Ma, L., Tian, J.: Web error classification and analysis for reliability improvement.
J. Syst. Softw. (2007)

Leszak, M., Perry, D.E., Stoll, D.: Classification and evaluation of defects in a
project retrospective. J. Syst. Softw. (2002)

Gubrium, J., Holstein, J.: Handbook of Interview Research: Context and Method.
SAGE Publications (2001)

Hove, S., Anda, B.: Experiences from conducting semi-structured interviews in
empirical software engineering research. In: Software Metrics, 2005. (Sept 2005)
Glaser, B., Strauss, A.: The Discovery of Grounded Theory: Strategies for Quali-
tative Research. Aldine Publishing Company (1967)

Charmaz, K.: Constructing Grounded Theory: A Practical Guide Through Quali-
tative Analysis. (2006)

Kalinowski, M., Travassos, G.H., Card, D.N.: Towards a defect prevention based
process improvement approach. In: SE&AA. (2008)

Runeson, P., Host, M.: Guidelines for Conducting and Reporting Case Study
Research in Software Engineering. EMSE (2009)

Baker, S., Edwards, R.: How many qualitative interviews is enough? (March 2012)
Holling, D., Pretschner, A., Gemmar, M.: 8cage: lightweight fault-based test gen-
eration for simulink. In: ASE 2014. (2014) 859-862

Shull, F., Rus, L., Basili, V.: How perspective-based reading can improve require-
ments inspections. Computer (2000)

