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Abstract

This thesis deals with the diagnoses of safety, security and reliability in modern Automotive
Electrical/Electronic (E/E) Architectures. In this context, it introduces three novel approaches
for the determination of undesired behavior in distributed embedded systems, specifically the
diagnoses of intermittent faults, permanent faults and security attacks.

The design and development of cars is driven by several factors which mainly comprise
the increasing customer demands (e.g., comfort and fuel efficiency), the economic aspects (e.g.,
manufacturing processes) and the legal requirements (e.g., emission and safety standards). Over
the past three decades, the technological progress in this development has turned the predomi-
nantly mechanical structures of vehicular architectures into electronics- and software-controlled
Cyber-Physical Systems (CPSs). Today, these automotive E/E architectures consist of a mul-
titude of control devices, so-called Electronic Control Units (ECUs), sensors and actuators
which are communicating via different gateway-connected buses, and thus, provide the nec-
essary hardware platform for hundreds of software functions and applications, ranging from
simple electric window lifts over fuel injection control to Advanced Driver Assistance System
(ADAS).

One of the major challenges for such complex and distributed architectures is to guarantee
a continuous safe and reliable operation at system level, especially in case of faults or other
unexpected disruptions. Appropriate diagnosis strategies, which are naturally situated at the
beginning of every fault tolerance approach, are crucial and must take both safety-criticality
and real-time requirements into account. At the same time, being subjected to a competitive
automotive market, they must consider cost efficiency. Current diagnosis methods mostly rely
on special hardware components, dedicated functions and exclusive diagnostic messages trans-
mitted to a monitoring controller. However, this disjoint approach may lead to disadvantages
such as single points-of-failure, extended diagnosis times and high implementation costs. Work-
ing often solely at component level, existing methods rarely consider the benefits a system-level
perspective can create for both the diagnosis strategy and the overall reliability of an automotive
E/E architecture.

To mitigate the aforementioned drawbacks and address the corresponding challenges, this
thesis proposes a novel methodology for system-level diagnoses in distributed architectures.
Compared to state-of-the art methods, it uses a holistic, decentralized and non-intrusive ap-
proach by analyzing a system specification at design time and using this knowledge to utilize
intrinsic system properties, such as message streams and functional tests, for diagnosis at run-
time. In the scope of this thesis, the above-mentioned methodology is applied to develop solu-
tions for the following problems: (1) the diagnosis of intermittent faults based on the analysis
of existing plausibility test outcomes; (2) the diagnosis of permanent faults based on current
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transmission states of messages; (3) the diagnosis of security attacks considering an undesired
behavior resulting from an unauthorized intrusion and traffic manipulation.

While transient faults in Integrated Circuit (IC) devices occur rarely and are considered
less hazardous, intermittent faults turn up in bursts and can cause longer lasting errors and
system disruptions. The objective of the proposed intermittent fault diagnosis is to identify
an unexpected increase of faults on a resource by performing a stochastic-based evaluation of
distributed plausibility tests. For this purpose, the use of a special fault expectation matrix is
applied to four specifically developed detection methods which are then compared and eval-
uated in terms of runtime and diagnosability. With regard to the transition from federated to
integrated automotive E/E architectures, the proposed techniques are suitable for multi- and
many-core processors. The feasibility and efficiency of the intermittent fault diagnosis as well
as its scalability is demonstrated based on a large set of automotive synthetic test cases.

When left untreated, intermittent faults can lead to permanent faults which usually are irre-
versible and result in a sustained error state of a resource. The objective of the proposed perma-
nent fault diagnosis is to identify a faulty resource by analyzing the current states of monitored
messages streams (i.e., received or omitted messages) considering system-wide data dependen-
cies. In the scope of this thesis, special diagnosis functions for all potential fault scenarios are
developed with the goal to be distributed among appropriate observing resources. The presented
framework additionally includes an optimization stage determining trade-offs between diagno-
sis times and the number of monitored message streams. A test case evaluation as well as a
case study demonstrate the functionality of the developed approach and illustrate, among other
things, possible reductions of diagnosis times by up to 50 % and more. Furthermore, a sched-
ule synthesis approach is proposed which can enhance the application of the permanent fault
diagnosis in time-triggered systems. It aims at a modification of the system schedule in order to
increase the diagnosability and considerably decrease the diagnosis time without compromising
the previously specified constraints.

Besides fault diagnosis, the concept of monitoring existing message streams can be used to
identify manipulated traffic patterns and, hence, detecting security threats in the distributed sys-
tem. The objective of the proposed security attack diagnosis is to identify a potential intrusion
into the system by verifying the compliance of each message stream with its predefined com-
munication characteristic. In this regard, particular system parameters from a given architecture
specification are used to define so-called arrival curves which are compact representations of the
upper and lower bound of the number of messages arriving within a specific time interval. These
curves are used to parametrize the corresponding detection algorithm, which is then automati-
cally distributed across the in-vehicle network, taking into account user specified redundancy-
and tolerance-levels. The feasibility, efficiency and scalability of this method are proven for
current automotive architectures together with an estimation of its computational overhead.

In summary, the main goal of this thesis is the introduction of novel system-level diagno-
sis strategies for safety and security in automotive E/E architectures which might extend and
partly replace existing methods. In a broader sense, the proposed general methodology, where
additional but reasonable design time effort is rewarded with lightweight, efficient and fast di-
agnosis methods, shall help to enhance the dependability of existing and future in-vehicle net-
works. Beyond that this work might inspire the creation of new automotive solutions in which
safety, security and reliability are integral aspects at system level rather than merely extending
the functionality of particular components.

vi



Kurzfassung (German Abstract)

Die vorliegende Doktorarbeit behandelt Diagnosen der Betriebssicherheit, Informationssicher-
heit und Zuverlässigkeit in modernen elektrischen und elektronischen (E/E) Fahrzeugarchitek-
turen. In diesem Zusammenhang werden drei neuartige Ansätze für die Bestimmung eines uner-
wünschten Verhaltens in verteilten Systemen vorgestellt, und zwar die Diagnosen intermittieren-
der Fehler, permanenter Fehler sowie Sicherheitsattacken.

Der Entwurf und die Entwicklung von Fahrzeugen wird hauptsächlich durch drei Faktoren
bestimmt: steigende Kundenanforderungen (z.B. Komfort und Verbrauch), wirtschaftliche As-
pekte (z.B. Produktionsprozesse) und gesetzliche Vorschriften (z.B. Emissions- und Sicher-
heitsstandards). Die vergangenen drei Jahrzehnte technologischen Fortschritts in der Auto-
mobilentwicklung wandelten einen vorwiegend mechanischen Aufbau von E/E Fahrzeugar-
chitekturen in computergesteuerte cyber-physische Systeme (CPS). Heutzutage bestehen diese
Fahrzeugarchitekturen aus einer Vielzahl an Steuergeräten, so genannten ECUs, Sensoren und
Aktuatoren, welche über verschiedene Busse und Gateways miteinander kommunizieren und
damit die notwendige Hardware-Plattform für hunderte Anwendungen bereitstellen. Dabei re-
ichen letztere vom einfachen Fensterheber über die Kraftstoffeinspritzung bis hin zu gesamten
Fahrerassistenzsystemen.

Eine der größten Herausforderungen für solche komplexen und verteilten Architekturen ist
die Sicherstellung eines durchgehend sicheren und zuverlässigen Betriebs auf Systemebene,
insbesondere dann, wenn Fehler und unerwartete Störungen auftreten. Angemessene Diag-
noseansätze, welche naturgemäß am Anfang jeder Fehlertoleranzstrategie stehen, sind von
großer Bedeutung und müssen sowohl die hohe Sicherheitsrelevanz als auch die Echtzeitan-
forderungen der untersuchten Systeme berücksichtigen. Zugleich erfordert ein wettbewerb-
sorientierter Automobilmarkt, auch die Kosteneffizienz mit einzuberechnen. Derzeitige Diag-
nosemethoden nutzen meistens spezielle Hardware-Komponenten, dedizierte Funktionen und
eigene Diagnosenachrichten, die zu einer zentralen Überwachungseinheit übermittelt werden.
Solch ein unzusammenhängender Ansatz hat jedoch auch Nachteile, wie zum Beispiel allein-
stehende Fehlerstellen, lange Detektionszeiten und hohe Implementierungskosten. Da sie oft
auf Bauteileebene angesiedelt sind, berücksichtigen bestehende Methoden selten die Vorteile
einer systemweiten Betrachtung sowohl für Diagnosestrategien als auch für die gesamte Zuver-
lässigkeit von E/E Fahrzeugarchitekturen.

Um die obengenannten Probleme zu adressieren und die zugehörigen Herausforderungen
zu erforschen, stellt diese Doktorarbeit eine neue Methodologie für die Diagnose von verteilten
Architekturen auf Systemebene vor. Verglichen mit aktuellen Techniken, wird ein holistischer,
dezentraler und eingriffsarmer Ansatz genutzt, bei dem das System zur Entwurfszeit analysiert
wird, um während der Laufzeit spezifische Systemeigenschaften (z.B. Nachrichtenströme und
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Funktionstests) für die Diagnose zu nutzen. Im Rahmen dieser Arbeit wird diese Methodolo-
gie auf die folgenden Problemstellungen angewendet: (1) Diagnose intermittierender Fehler,
basierend auf der Auswertung bestehender Plausibilitätsprüfungen; (2) Diagnose permanenter
Fehler, basierend auf dem beobachteten Zustand übertragener Nachrichten; (3) Diagnose von
Sicherheitsverletzungen, bei denen durch einem unautorisierten Systemeingriff die Nachricht-
enkommunikation manipuliert wird.

Während transiente Fehler in IC-Bausteinen relativ selten auftreten und generell nicht als
besonders riskant betrachtet werden, erscheinen intermittierende Fehler in einer kurzzeitig
großen Anhäufung und können länger anhaltende Störungen verursachen. Das Ziel der Di-
agnose intermittierender Fehler ist es, einen unerwarteten Fehleranstieg auf einer Ressource
anhand stochastischer Auswertung verteilter Plausibilitätstest zu identifizieren. Hierzu wird
eine spezielle Fehler-Erwartungsmatrix auf vier entwickelte Detektionsmethoden angewendet,
welche später bezüglich ihrer Laufzeit und Diagnosefähigkeit verglichen und ausgewertet wer-
den. Um die Entwicklung moderner integrierter Fahrzeugarchitekturen zu unterstützen, sind die
vorgestellten Techniken auch für Mehrkern-Systeme geeignet. Die Machbarkeit und Effizienz
der Diagnose intermittierender Fehler sowie ihre Skalierbarkeit wird anhand einer großen Zahl
synthetischer Testfälle dargestellt.

Wenn sie unentdeckt bleiben, können sich intermittierende Fehler zu permanenten Fehlern
entwickeln, die eine Ressource nachhaltig schädigen. Das Ziel der Diagnose permanenter
Fehler ist es, eine fehlerhafte Ressource anhand der Zustände bestimmter Nachrichtenströme
zu identifizieren, wobei Datenabhängigkeiten des Gesamtsystems berücksichtigt werden. Im
Rahmen der Arbeit, werden spezielle Diagnosefunktionen generiert, welche später für alle po-
tentiellen Fehlerfälle auf beobachtende Ressourcen verteilt werden. Das hierzu entwickelte
Software-Framework beinhaltet eine Optimierungsphase in welcher die Diagnosezeiten und
die Anzahl der überwachten Nachrichtenströme gegeneinander abgestimmt werden können.
Die Evaluierung von Testfällen und eine Fallstudie belegen die Funktionalität der entwickel-
ten Methode und, unter anderem, eine Reduzierung der Diagnosezeit um bis zu 50 % und mehr.
Darüber hinaus, wird auch ein Verfahren zur Ablaufplan-Synthese vorgestellt, der die Diagnose
permanenter Fehler in zeitgesteuerten Systemen verbessern kann. Das Ziel ist es, einen beste-
henden System-Ablaufplan so zu verändern, dass die Diagnostizierbarkeit verbessert und die
Diagnosezeiten verkürzt werden, ohne die vorher festgelegten Ablaufanforderungen zu verlet-
zen.

Abgesehen von der Fehlerdiagnose, kann eine Nachrichtenstromüberwachung dazu genutzt
werden, manipulierte Verkehrsmuster zu erkennen und damit unerlaubte Eingriffe in eine E/E
Fahrzeugarchitektur zu detektieren. Das Ziel der Diagnose von Sicherheitsverletzungen ist
es, ein mögliches Eindringen in das System zu identifizieren, indem die Nachrichtenströme
auf die Einhaltung ihrer vorgegebenen Kommunikationscharakteristik geprüft werden. Hierzu
werden bestimmte Systemparameter einer gegebenen Architektur für die Berechnung sogenan-
nter Ankunftskurven verwendet, welche eine obere und untere Schranke für die Anzahl ank-
ommender Nachrichten innerhalb eines bestimmten Zeitintervalls definieren. Diese Kurven
werden zur Parametrisierung des Detektionsalgorithmus verwendet, welcher automatisch auf
die verfügbaren Ressourcen verteilt wird und dabei spezielle Redundanz- und Toleranzniveaus
berücksichtigt. Die Machbarkeit, Effizienz und Skalierbarkeit der vorgestellten Methode wer-
den für moderne Fahrzeugarchitekturen untersucht.

Zusammengefasst ist das wichtigste Ziel dieser Doktorarbeit, neuartige Diagnosemetho-
den in E/E Fahrzeugarchitekturen vorzustellen, welche bestehende Ansetze ergänzen oder zum
Teil auch ersetzen können. Im weiteren Sinne soll die vorgestellte Methodologie, bei der ein
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zusätzlicher aber vertretbarer Aufwand während der Entwicklungszeit durch leichtgewichtige,
effiziente und schnelle Diagnosemethoden belohnt wird, die gesamte Verlässlichkeit heutiger
Fahrzeugarchitekturen verbessern. Darüber hinaus könnte die Arbeit die Entwicklung neuer
Lösungskonzepte für verteilte Systeme in Automobilen anregen, bei denen Betriebssicherheit,
Informationssicherheit und Zuverlässigkeit integrale Bestandteile auf Systemebene darstellen,
und nicht lediglich die Funktionalität bestimmter Komponenten verbessern.
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CHAPTER1
Introduction

Automotive Electrical/Electronic (E/E) Architectures are highly distributed and complex sys-
tems consisting of multiple networked subsystems and dozens of control devices, namely Elec-
tronic Control Units (ECUs). However, the high number of ECUs together with the decreasing
geometries of the corresponding Integrated Circuit (IC) components makes these architectures
more and more susceptible for both internal and external faults. Additionally, the increasing
interconnectedness of cars to the outside world raises serious concerns about the security of
in-vehicle networks. The thesis at hand proposes decentralized and non-intrusive strategies for
the diagnosis of intermittent faults, permanent faults and security attacks in modern automotive
E/E architectures.

This chapter shall provide an introduction to automotive E/E architectures and their compo-
nents, system-level diagnosis, as well as the corresponding challenges, which underlie the main
research part of this work. Section 1.1 introduces the regarded topic on a very general level and,
thereby, gives an overall motivation for this thesis. Section 1.2 provides background informa-
tion about the structure, functionality and the design process of automotive E/E architectures
which constitute the main target for the presented diagnosis methods. A general introduction
into system-level diagnosis and its challenges is given in Section 1.3. Finally, Section 1.4
summarizes the main contributions of this thesis and Section 1.5 depicts its structure and the
associated publications.
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1.1 Motivation

Since the advent of the large-scale production of vehicles more than a century ago, over decades,
the innovation in the automotive industry was characterized by advancements in mechanical en-
gineering, e.g., better materials, new designs, improved manufacturing technology. And even
though the first electric vehicles have seen a short boom at the beginning of the 20th century,
they had soon been displaced by the Internal Combustion Engine (ICE) cars. Afterwards, for
a long period electrical parts were limited mainly to illumination, the engine starter and wind-
shield wipers, while electronics were at best included in the transistor radio. Nevertheless, over
time, the innovation process also captured the electrics in the car. As a consequence, both
the mechanical and electrical components could represent complicated devices by themselves.
However, their interconnectedness and, thus, the overall automotive system architecture was
in its structure quite robust and in its complexity relatively manageable. Technical faults, for
example, engine overheating or a leakage of the break fluid, had often to be diagnosed by the
driver who was monitoring and interpreting the temperature and pressure gouges that were di-
rectly indicating the condition of a device.

All of this started to change in the late 1970’s, when microprocessor-equipped engine con-
trol units were introduced in order to regulate the fuel injection and ignition of an ICE and,
hence, increase its efficiency [22]. Over the following decades, IC-based control devices, called
ECUs1, occupied more and more automotive domains, beginning with the powertrain and chas-
sis (e.g., transmission control, power steering), over safety (e.g., Anti-lock Braking System
(ABS), airbags), to modern infotainment systems (e.g., navigation, telematics). The result of
this technological development are the Automotive E/E Archtiectures which represent in-vehicle
networks that use multiple different bus systems and nowadays can consist of more than 100
ECUs [20]. Eventually, the importance of automotive electronics becomes most evident when
looking at its costs and the extent of its innovation. While 30 years ago electronic embedded sys-
tems accounted for merely 1 % of the overall production costs of a car, this figure rose to 20 %
in 2005 and today might reach up to 40 % [133, 67]. Within the same period of time, it is as-
sumed that 90 % of all automotive innovations are directly or indirectly based on electronics [1]
as well as the corresponding ECU-software, whose amount is growing exponentially [15].

The paradigm shift described above, namely the evolution from a mostly mechanical archi-
tecture to electronics- and software-controlled Cyber-Physical Systems (CPSs), might be also
regarded as a shift from the driver to the car when it comes to the question of immediate vehi-
cle control. For instance, Advanced Driver Assistance Systems (ADASs) enhance or entirely
automate particular operations during driving and, by doing so, noticeably increase the com-
fort and especially the safety of the driver, passengers and other road participants. In modern
luxury cars, these systems can range from Adaptive Cruise Control, which adjusts the speed of
the vehicle to that of the cars in front, over an Intelligent Parking Assist System, to the Lane

1Although the acronym ECU predominantly stands for an electronic control unit in general, some literature still
uses it specifically when relating to engine control units.
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Departure Warning System. Most of the ADAS and other automotive systems require sophisti-
cated signal processing and control algorithms which are often distributed over multiple ECUs
and strongly depend on data communicated frequently (often in millisecond range) and in real-
time between different sensors, processing units and actuators. Considering the time-critical
maneuvers, actions and decisions initiated by the ECUs and their transmitted messages, every
unexpected disruption of the system may become a safety risk.

As a consequence, an early detection of both faults and potential malicious intrusions in au-
tomotive E/E architectures becomes crucial and inevitable as only a reliable safety and security
diagnosis, respectively, can allow the application of appropriate countermeasures in order to
guarantee a safe and predictable vehicle behavior. However, this is also the point where today’s
automotive industry, driven by its competitiveness, high manufacturing numbers and compo-
nent costs improvements, starts to call for solutions which are both cost efficient and easily
implementable [97].

In the context of this work, the strict requirements for safety, security and, in a broader
sense, reliability in automotive E/E architectures are considered, taking into account, inter alia,
the specific technical and economic circumstances mentioned above. More precisely, this thesis
proposes novel strategies for the distributed diagnosis of intermittent faults, permanent faults
and security attacks. To fulfill the demands of the automotive industry, a special focus is put on
high efficiency as well as minimal intrusiveness (e.g., by using existing communication data and
resources). A detailed description of the contributions of this thesis can be found in Section 1.4.

1.2 Background: Automotive E/E Architectures
In principle, the concepts introduced in this thesis are applicable to data-dependent distributed
electronic systems, of which in-vehicle networks are only one representative, albeit a prominent
one. Given the impact and relevance of cars in social and economical aspects, the proposed di-
agnosis methods mainly target automotive E/E architectures and, thus, specifically consider the
associated requirements, such as real-time constraints or predefined schedules. In the car indus-
try, the term E/E architectures comprises all electrical and electronic components, their topology
and interconnectedness, as well as the corresponding wiring harness [37]. A schematic illustra-
tion of an automotive E/E architecture is shown in Figure 1.1, where the small boxes represent
ECUs that are connected to a central gateway via different buses, such as Controller Area Net-
work (CAN) or FlexRay. The depicted automotive architecture is derived from the boardnet
topology presented in [65] and represents a typical, but not exclusive, up-to-date network-based
in-vehicle topology.

Usually the different parts of E/E architectures are classified according to their functionality,
general application area, and other constraints like safety, performance and Quality-of-Service
(QoS). Some of these domains, for instance, car body or Human-Machine Inteface (HMI),
are dealing with passenger-related, often less safety-critical functions, such as climate control,
lighting or mirror adjustment. Other domains, for example, powertrain and chassis, mainly
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Figure 1.1: Example for a typical modern automotive E/E architecture divided into different
domains (shaded background areas). The architecture uses multiple buses to connect ECUs
with each other as well as to a central gateway. Additionally, inter-domain communication is
provided via dedicated links. The illustrated architectrue is inspired by the boardnet topology
in [65].

cover safety-critical and real-time dependent functions, such as engine and transmission control
or X-by-wire systems, which are affecting the vehicle dynamics. Finally, the telematics domain
contains diverse functions related to information exchange, navigation and multimedia which
might not be as critical regarding safety but, due to (wireless) communication links with the
outside word, possess a higher potential for security attacks. The single domains as well as
their boundaries are not strictly specified and may vary among different car manufactures.

As the architecture in Figure 1.1 indicates, often the ECUs from one particular domain
(highlighted by gray background areas) are also connected to an own bus, especially to facil-
itate the higher data-dependency of the corresponding domain functions. Nevertheless, there
is a considerable and growing amount of data which is transmitted between the domains, e.g.,
considering the emerging ADASs relying on a number of different senor inputs and with high
computational demands [81]. Although the general intra-domain communication is mainly en-
abled by one or more automotive gateways, dedicated links between the different domains might
be used for selected data (compare cross-link between the telematics and the powertrain/chassis
domain in Figure 1.1). Lastly, the off-board system communication for device-programming,
maintenance or mass data exchange (e.g., navigation maps) is realized via CAN and Ethernet
interfaces connected directly to the central gateway.

Clearly, the different demands and requirements in E/E architecture design not only led to
a high distribution of hardware and software but also made these systems very heterogeneous,
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1.2 Background: Automotive E/E Architectures

where the ECUs vary, to a greater or lesser extent, in their structure and content. In this context,
an expectable trend towards ECU consolidation, which basically means that the functionality
of several ECUs is supported by a single ECU, could lead to more homogeneous networks in
the future [28] (see also outlook in Chapter 5). However, regardless of the level of hetero-
geneity, system-level approaches, such as the diagnosis methods proposed in this work, require
the development and utilization of suitable automotive E/E architecture models. For this, an
understanding of the underlying components and their different functionalities and interactions
is inevitable. While the abstraction and system models of automotive E/E architectures will
be discussed in detail in later chapters, the technical aspects of their main computation and
communication components, namely ECUs and buses, shall be outlined below.

1.2.1 Computation

As their name already suggests, ECUs are used to control and regulate electronic systems. In
a broader sense, they receive analogue or digital signals from sensors, evaluate and analyze
them, compute appropriate control values (e.g., with the help of a control algorithm) and send
the latter ones as new signals to the actuators. The specific application area of automotive
ECUs makes high demands not only on the reliability of the software functionality but also on
the hardware components and casing, as they are exposed to high external stresses and strains,
such as temperature changes, strong vibrations and moisture. Furthermore, various aspects of
Electromagnetic Compatibility (EMC) must be considered to guarantee both a minimal emis-
sion and a maximal immunity of electromagnetic interferences which can particularly cause
transient faults [136].

1.2.1.1 ECU Hardware

Although the range of application for ECUs can be very large, they usually resemble each other
in their basic structure. Figure 1.2 illustrates a general schematic diagram of a typical automo-
tive ECU with its main interfaces to the bus, sensors and actuators. The fundamental compo-
nent of an ECU is the microcontroller which mainly encompasses the Central Processing Unit
(CPU), a memory for variable data (i.e., Random Access Memory (RAM)), different memories
for program and permanent data (e.g., Read-Only Memory (ROM), Flash, Electrically Erasable
Programmable ROM (EEPROM)), a clock generator and input/output (I/O) functionality. Spe-
cial automotive microcontrollers often contain elements for signal acquisition, Analog/Digital
Converters (ADCs), communication interfaces for automotive buses and extended safety fea-
tures, such as a lockstep core which runs the same code in parallel to detect computational er-
rors [53]. Regarding their parameters, however, the current automotive microcontrollers show
significant differences. As listed in Figure 1.2, they can range from a small 8-bit controller
with only a few kilobytes of main and data memory (e.g. in simple car body applications like
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(Multi-core)
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Figure 1.2: Schematic illustration of a general ECU setup with its main components and periph-
erals. In the near future, particular ECU functionality could shift towards smart and advanced
sensors and actuators even resulting in the removal of particular ECUs. While the shown com-
ponents are typical for most ECUs, the microcontroller parameters can vary greatly depending
on the application area. Here, solid arrows represent necessary interfaces while dashed arrows
indicate possible connections.

electric window lifts) to powerful 32-bit processors with multiple cores and up to 2.7 MB RAM
and 8 MB ROM2.

Other elements which many ECUs have in common are an own power supply module to
transform the on-board voltage to the required component supply voltages as well as dedicated
communication interfaces for the on-board-diagnosis and the corresponding automotive buses
(e.g., CAN or FlexRay transceiver). The latter ones can be also integrated in the microcontroller.
In cases, where raw sensor data is collected, the incoming signals must be preprocessed before
they can be forwarded to the CPU. This can include noise filtering, signal level adjustments as
well as A/D conversion. In contrast to the industrial automation domain, simple raw data sensors
are still widely used in the automotive area, in spite of their disadvantages such as exposure to
interference signals or the exclusive connection to a single device [12]. Here, novel advanced
and smart sensors can transmit already preprocessed and digitized data and, hence, shift their
functionality more toward that of an ECU. Together with smart actuators and the potential use
of buses instead of dedicated connections, this might lead to the situation where the integrated
architectures discussed in [28], although still highly distributed, would now be consisting of
only a few powerful ECUs communicating with many intelligent sensors and actuators. Such a
development suggests that system-level approaches for highly distributed architectures, such as

2The example parameter data belong to state-of-the-art products from automotive suppliers and can be found
in [140, 52, 141].
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the diagnoses presented in this work, will still be relevant even if the number of classic ECUs
will decrease.

Finally, a substantial ECU property is its monitoring and diagnosis functionality, which also
emphasizes their safety-critical application area. It can be as simple as a watchdog waiting for
a regular control signal and as complex as an additional controller evaluating fault statistics and
ensuring a controlled behavior of the ECU in case of faults [12]. As fault detection capabilities
of single E/E architecture components are also relevant for this thesis, they will be discussed in
more detail in the following chapters.

1.2.1.2 ECU Software

While simple vehicle tasks (e.g., the above-mentioned window lift) may still be implemented at
register-level directly on an ECU microcontroller, most of the applications use the abstraction
of special embedded operating systems or middlewares. Furthermore, an important requirement
for automotive systems is the hard real-time capability of control functions, basically meaning
that particular tasks must be strictly finished before their deadline expires. Consequently, these
constraints must also be considered in the corresponding ECU software, namely in form of
so-called Real-Time Operating Systems (RTOSs). Today, there exist a number of suppliers for
automotive RTOSs [30, 29], which to some extent also include multi-core functionality [145].
In this context, the two platforms OSEK/VDX and Automotive Open System Architecture (AU-
TOSAR) are regarded as de-facto standards for automotive embedded software development.
They are briefly described below.

OSEK/VDX3, is widely applied and provides an operating system description [112] which
can be used by ECU suppliers for their own specific implementation, together with additional
standardized modules for the network management (OSEK NM) and communication (OSEK
COM) [12]. The RTOS is based on a traditional preemptive task model but the standard also
contains a description for a time-triggered Operating System (OS), OSEKtime, supporting static
cycling scheduling [111]. Regarding system reliability, a fault-tolerant communication layer is
offered as an extension to OSEKtime [110]. Its standard defines multiple services for interpro-
cess communication, such as message replication and filtering, external clock synchronization
and transparent task distribution, which can be used, for example, with the FlexRay bus [72].
However, due to its proximity to OSEKtime, it does not consider event-triggered protocols such
as the popular CAN bus.

The AUTOSAR initiative [5], which includes several major automotive manufacturers and
suppliers, derives the operating system and communication layer from the OSEK standard but
goes beyond a sole OS standardization. The objective of AUTOSAR is to expand the function-
ality and reduce the complexity of automotive E/E architectures by providing a model-based
software structure and component-based development. Standardized layers and interfaces al-

3OSEK/VDX stands for "Offene Systeme und deren Schnittstellen für die Elektronik in Kraftfahrzeugen /
Vehicle Distributed Executive" (German for: "Open Systems and Their Interfaces for the Electronics in Motor
Vehicles").
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Figure 1.3: Simplified illustration of an AUTOSAR software architecture on an ECU. Basically,
the RTE abstracts the mainly hardware-specific basic software componets from the application
software allowing a device-independent development of interconnected function components.
A detailed technical overview of AUTOSAR can be found in [6].

low a separation of an open subsystems integration from proprietary applications, but at the
same time, require the ECU hardware to support the AUTOSAR architecture [37]. Figure 1.3
illustrates the three main AUTOSAR layers and its modules as they would be implemented on
an ECU. Here, the Application Software layer mainly contains components for the functional
behavior of applications, for instance as an ABS, but can also describe physical properties of
sensors and actuators and, thus, decouple them from the hardware [116]. The Middleware layer
consists of a Runtime Environment (RTE) which "vertically" provides the necessary interface
to the Basis Software layer and "horizontally" enables the communication between software
components. Using the concept of a virtual function bus (VFB), the RTE hides the lower lying
hardware-specific components and facilitates a data exchange between software components on
both intra- and inter-ECU level. Finally, the Basic Software layer provides the standardized
modules for the actual RTOS, communication standards (e.g., CAN or FlexRay), modules for
the hardware periphery, drivers and other services, such as the memory management. At this
level, many standards have been adopted from OSEK/VDX [116]. Regarding safety and secu-
rity, AUTOSAR offers mechanisms such as memory partitioning, end-to-end communication
protection and cryptographic services since its release 4.0 [63]. Due to their lightweight and
non-intrusive nature, the diagnosis strategies presented in this work could be integrated into an
AUTOSAR-based system in the future.
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1.2.2 Communication

The methods proposed in this theses are at system-level and, hence, strongly rely on the com-
munication in an automotive E/E architecture as a whole. Although in general these methods
are independent of specific buses, in some cases their actual implementation might need to con-
sider the underlying bus protocols. The domain membership of the most prominent automotive
bus systems has already been illustrated in Figure 1.1. In the following, they shall be introduced
in more detail associated with one of three main application areas.

1.2.2.1 Real-Time

High-speed systems and real-time applications that are used, for instance, in the powertrain
and chassis domains require a high frequency and a low latency for the transmitted signals and
messages. Here, one of the first bus systems that was integrated in cars was CAN [56]. Its event-
triggered approach using Carrier Sence Multiple Access with Bitwise Arbitration (CSMA/BA)
allows a message with higher priority (or lower message ID) to win the arbitration phase and,
hence, to be transmitted without interruption. To provide a sufficient bandwidth for real-time
control applications, the (High-Speed) CAN standard supports transmission rates up to 1 Mbit/s.
Although due to cable length restrictions and EMC effects that require expensive shielding, in
practice 500 kbit/s are seldom exceeded [79]. Even though it is one of the most important and
predominant bus protocols (not least because of legacy reasons), CAN nevertheless suffers from
limitations such as a low bandwidth, lack of time-triggered transmission, insufficient redundant
bus arrangement or unreliable group communication [130]. To mitigate the first two limitations,
the extensions CAN with Flexible Data-Rate (CAN FD) and Time-Triggered CAN (TTCAN)
have been introduced. The recently released CAN FD specification allows a higher throughput
by increasing the original 8 bytes payload of a message frame to 64 bytes and by octuplicating
the data rate of this section. Solutions to overcome compatibility issues with legacy CAN
controllers have been proposed as well [18]. The goal of TTCAN, on the other hand, is to
increase the predictablity and current utilization of the CAN bus. Here, the latter one can be
set as low as 20 − 30 %, in order to prevent contention and error frames [80]. Although it
guarantees a deterministic data transmission, the biggest drawback of TTCAN is that it cannot
provide a higher bandwidth which is essential for the increasing demands of the powertrain and
chassis domains [154].

A considerably higher bandwidth of up to 10 Mbit/s is offered by FlexRay [58], a stan-
dard especially developed to support a broad range of hard real-time systems with different
communication requirements [124]. For this purpose, FlexRay integrates both time-triggered
and event-triggered functionality together with reliability enhancing mechanisms into one pro-
tocol. More precisely, FlexRay communication cycles of predefined length are divided into a
mandatory static segment and an optional dynamic segment for the time-triggered and event-
triggered communication, respectively. Fault tolerance is enabled by the use of two channels,
one of which is applied for redundant transmission, as well as an optional bus guardian allowing
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to send messages only during its assigned time slots [125]. Considering the predominance of
CAN as well as the long specification process of FlexRay, its use in series development is still
rare. Nevertheless, the market already sees first cars using this protocol [115, 65].

1.2.2.2 Non Real-Time

Especially in the car body domain many functions, such as rain sensors or comfort electronics,
are not safety-critical and, hence, do not require a real-time communication. Two common
buses for such low-criticality applications and aiming a reduction of the wiring complexity are
used, namely Low-Speed CAN and Local Interconnect Network (LIN) [59]. The former is a
fault-tolerant version of the original CAN standard which includes options for fault detection
and recovery on the physical-layer. For instance, a differential mode transceiver is used which
switches to single-wire in case of an error condition [123]. Low-Speed CAN supports data rates
between 40 kbit/s and 125 kbit/s, and hence, provides a considerably lower bandwidth than
High-Speed CAN.

However, for simple data transmission and the integration of intelligent sensors and actu-
ators CAN may still be a too expensive solution for the car manufacturers. For this purpose,
the LIN standard has been introduced, offering data rates from 1 kbit/s to 20 kbit/s. The low
implementation costs of LIN are achieved through a simple single-wired transmission standard
and the support of the Universal Asynchronous Receiver/Transmitter (UART) interface which
is available on the majority of all commercial microcontrollers. LIN follows a time-triggered
approach with a master node controlling up to 16 slave nodes and guaranteed latency times,
making it a predictable protocol. Moreover, it is designed as sub-bus where CAN-attached
ECUs often act as gateways [105]. This, however, often leads to hierarchical network structures
and, thus, more complex E/E architectures. Since version 2.0, the standard is extended, among
other things, by additional frame types for sporadic and time-triggered data transmission as well
as plug-and-play functionality, which also requires more costly controllers [154].

1.2.2.3 High Throughput

Multimedia and infotainment systems need a high data throughput for audio and video trans-
mission, but do not require strict guarantees on latency and reliability as it is the case for typ-
ical control applications. Here, a de-facto standard for the automotive industry is the Media
Oriented Systems Transport (MOST) protocol [98]. Within a predominant ring topology, the
corresponding physical layer supports optical and electrical connectors and offers three differ-
ent bit rates of circa 25, 50 and 150 Mbit/s defined in the protocol versions MOST25, MOST50
and MOST150, respectively. MOST provides synchronous channels for continuous streaming
of audio and video data as well as an asynchronous channel which is packet-oriented and usu-
ally used for sporadic transfers at a high data rate [37]. While the bus access on a synchronous
channel is realized by Time Division Multiple Access (TDMA), for the asynchronous channel
CSMA is used making MOST both a time-triggered and an event-triggered protocol [95].
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Furthermore, given its high data-rate beyond 100 Mbit/s and, not least, its predominance
in computer networks, Ethernet gradually finds its way into automotive E/E architectures. For
instance, MOST150 integrates an Ethernet channel and, thus, can provide a direct interface for
customers’ devices, such as laptops and smartphones [154]. Currently, the use of Ethernet in
automobiles is mostly limited to the communication with off-board systems for ECU program-
ming or for component diagnostics, as illustrated in Figure 1.1. The reasons are, on the one
hand, the high hardware costs for switches and shielded cables and, on the other hand, the non-
deterministic communication paradigm making Ethernet unsuitable for real-time applications.
However, it is expectable that in the near future Ethernet in cars will expand beyond diagnos-
tics and off-board communication and will be more and more used in the infotainment domain,
ADAS or even as a backbone network for the entire automotive E/E architecture [61]. Here,
approaches to facilitate the integration of Automotive Ethernet are emerging which not only de-
crease the wiring costs but also provide lower latencies and real-time capabilities. A prominent
example is the OPEN Alliance (One-Pair Ether-Net) Special Interest Group (SIG) [109] which
integrates the BroadR-Reach specification. The aim is to simplify the standard Ethernet cable
with multiple wires to a single unshielded twisted-pair cable [14]. Finally, solutions providing
highly reliable audio and video transmission based on Time-Sensitive Networking (TSN) or
Audio Video Bridging (AVB) have been introduced especially for the use in ADASs [38].

1.2.3 Automotive Systems Design
Usually, specific vehicle components like ECUs or bus systems are designed and provided by
suppliers, such as Continental, Bosch, or Delphi, rather than by Original Equipment Manufac-
turers (OEMs) (i.e., the car makers) themselves. These suppliers, on their part, rely on chip
manufacturers, for example, Freescale or Infineon. In this context, the main task of the OEMs
is the specification and engineering of requirements. OEMs are also responsible for the inte-
gration of ECUs and bus systems into their specific car models and for performing extensive
testing of the whole set-up. In a nutshell, the different roles of manufacturers and suppliers in
the automotive industry are distributed among three groups. The first and closest to the end
product is the OEM whose tasks are the requirements specification and engineering, the inte-
gration of systems and functions as well as the validation of an entire architecture [146]. The
second group consists of the Tier 1 suppliers, who are responsible for the development of ECUs
and corresponding application software. Finally, the Tier 2 suppliers deliver the necessary hard-
ware (e.g., microcontrollers and memory chips) and possibly basic software, such as firmwares
or operating systems.

1.2.3.1 Development Process

In the supply chain, besides OEMs, particularly the Tier 1 suppliers are involved in the system-
level design of E/E architectures. This process normally embraces different development phases
which can be classified into five categories, as shown and described in Table 1.1. For the design
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Table 1.1: List of five design phases together with the corresponding descriptions. The first two
columns contain the name and a short description for each design phase. The color code in the
third column facilitates the assignment of the phases within the V-model in Figure 1.4.

Design phase Description Color

System
Modeling

The first phase covers the E/E architecture development, beginning with the
definition of system requirements, followed by the modeling of the entire system
and, partly, also encompassing the ECU and network modeling.

Network
Modeling

The second phase focuses on the design and configuration of the network
architecture, its components, and the associated data communication.

Synthesis
In the third phase the actual system functionality is implemented and should

support the application design by a model-based environment. In order to deploy
the application code onto real hardware, efficient code generators supporting a
broad variety of microcontroller architectures for different ECUs are used.

Verification/
Validation

The fourth phase guarantees that all requirements are fulfilled and, thus, en-
sures the error-free operation for both the single components and the entire sys-
tem architecture.

Management
In the fifth phase an acceptance validation of the entire system is performed.

In contrast to the verification/validation phase, here the emphasis is more on
legal and safety issues such as compliance with the automotive functional safety
standards, such as ISO 26262.

and development within these phases, there exist numerous tools which have been studied, for
instance, in [150].

The design phases can be transfered to a V-model [51] which is an international development
standard used in software and systems design to describe the consecutive steps in a development
life cycle. Named after its V-formed shape, the model depicts the chronological evolution of
a system beginning with its general specification and modeling on the left branch down to the
implementation and up again to test, verification, and validation on the right branch. In this
respect, the amount of system detail increases on both branches towards the bottom of the V-
model. Figure 1.4 illustrates a V-model describing the development process of an automotive
system, where each color represents a particular design phases in Table 1.1. As the different
color shades indicate, this allocation is fuzzy and the design phases might exceed the bound-
aries of single V-model steps. For larger and more complex projects, the V-models allows the
insertion of connections between development steps at the same level (e.g., system architecture
design and system testing). These connections (illustrated by horizontal arrows) represent an
early-stage verification of the three lower V-model levels and the early-stage validation for the
topmost level. Although there exist multiple possible representations of the V-model, which
may differ in the number and naming of the used steps, they all follow a similar development
cycle to the one presented here.
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1.2.3.2 Consideration of Automotive Safety

The design of an automotive E/E architecture is a highly complex task with many interdepen-
dencies. In order to ensure an efficient and faultless development flow, it is important to use
design tools which can exchange information between each other. This means, that relevant
model-data from one design phase must be passed on to the next phase, and so on. Such a data
exchange requires suitable interfaces and standards and ideally enables the tools to be combined
within a tool-chain [150].

A consistent development flow is especially important in the area of automotive safety.
Given the aforementioned growing number of electronics in cars and with it the increased risk
for faults and system failures, there arises a strong need for special safety standards. Ideally,
these standards should cover the entire development process, the production phase and the final
operation of the car. In this context, an important step has been done recently, when the func-
tional safety standard IEC 61508 [55] has been adapted for automotive E/E systems leading to
the new standard ISO 26262 [57]. It is intended to support the functional safety of road vehicles
during the entire automotive lifecycle by providing an approach for the determination of spe-
cific risk classes, so-called Automotive Safety Integrity Levels (ASILs). For instance, following
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the V-model, ISO 26262 Parts 4, 5 and 6 deal with the product development on system-level,
hardware-level, and software-level, respectively. Depending on the particular ASIL, they not
only propose different strategies to fulfill the safety requirements but also allow the use of own
methods.

ISO 26262 is becoming an important requirement for safety-critical automotive ICs. For
the corresponding design process, the introduction of these formal safety standards imposes
higher costs and longer development times and both usually increase with the level of integrity
requirements, where ASIL A is the lowest and ASIL D the highest. However, ASILs are not
only defined for single ICs but also for larger subsystems and electronic modules, e.g., for
steer-by-wire or brake pedals [99]. This means, that by using additional system-level diagnosis
strategies such as the ones introduced in this thesis, the overall ASIL of a subsystem could be
increased without the necessity of using IC components with a higher ASIL. As a consequence,
an overall improvement of safety standards can be applied at lower costs.

1.3 System-Level Diagnosis and Its Challenges
Aside from the complexity of individual devices in automotive E/E architectures, such as ECUs
or smart sensors and actuators, Section 1.2 particularly illustrates the high level of intercon-
nectedness between them. While it is already a difficult task to guarantee the correct, safe
and reliable functionality of these single components individually, it becomes much more de-
manding when taking into account real-time constrained distributed control applications where
interdependent functions operate on different ECUs and exchange data.

This section gives an overview of existing diagnosis concepts in distributed systems and
presents a definition for system-level diagnosis as it is used in this thesis. Furthermore, it
highlights the related difficulties and challenges which are finally leading to the contributions
of this thesis, discussed in Section 1.4.

1.3.1 Diagnosis in Distributed Systems

According to the Oxford Concise Medical Dictionary [94], the term diagnosis is defined as
follows:

"[Diagnosis is] the process of determining the nature of a disorder by considering the
patient’s signs and symptoms, medical background, and - when necessary - results of
laboratory tests [...]."

In the context of this work, the automobile or, more precisely, its E/E architecture, can be
regarded as the patient. At the same time, the disorder and symptoms might be interpreted
as any unexpected safety-critical events, such as faults, and their detectable effects, such as
errors and failures, respectively. Here, according to the IEEE standard glossary of software
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engineering terminology [54], a fault is a defect in a hardware device or component, an error
is the difference between an observed value and a specified or theoretically correct value and,
eventually, a failure is the inability of a system or component to perform its required functions
within the specified performance requirements.

In the automotive industry, a safety analysis is conducted during system design in order to
estimate the types and probabilities of possible faults as well as to evaluate their effects [77].
However, due to the complexity of E/E architectures and especially their interaction with the
environment, it is practically impossible to predict all potential faults and to foresee their prop-
agation and manifestation as errors and failures. Moreover, upcoming security threats (i.e.,
attacks, intrusions and manipulations of the system) increase this uncertainty as they open an
additional source of system errors and faults. Obviously, a runtime diagnosis considering po-
tential unexpected system behaviors is inevitable.

One possible solution could be provided by traditional model-based diagnosis, which does
not require additional costly inspection hardware. As discussed, for example, in [60], this gen-
erally assumes that a model of the regarded physical system is executed at runtime in parallel
to the actual control system. To detect faults, tests are performed that check if the deviation
between the predicted outputs and the real control outputs are within predefined threshold val-
ues. Although model-based diagnosis can be used for fault detection in cars on component- or
function-level [107, 96, 50], it is computationally very expensive and can hardly be applied on
system-level. However, a fast, reliable and robust diagnosis of the entire system is crucial in
order to guarantee automotive safety and security and offer adequate mitigation strategies. It
is therefore inevitable to go beyond the fault detection of single components, which often only
determines that some fault occurred.

A classic example for system-level diagnosis in distributed systems and a basis for many
papers in the area of fault tolerance, is the PMC model which is based on the work in [114] and
named after its three authors Preparata, Metze and Chien. It describes a graph representation
of a distributed system where a fault-free node has the ability to correctly test another node (or
groups of nodes) for proper or erroneous functionality. Collecting and evaluating the outcomes
provided by the test units allows a system-wide identification of a group of faulty nodes in order
to isolate them from the functioning ones [92]. The PMC model is one of the first approaches
describing how a distributed system might diagnose itself in order to be aware of the health state
of the single components [7]. To this effect, it helped to reduce or even eliminate the cost- and
resource-intensive n-Modular Redundancy (NMR), where n processing units perform identical
tasks and majority votes are used to mask faults. Limitations of the PMC model, such as a
centralized analysis allowing a single point-of-failure or the consideration of only permanent
faults, have been discussed and extensions have been proposed, for instance, in [84, 113, 93].

Another well known concept for system-level diagnosis is the isolation of faulty nodes in a
distributed system, known as the Byzantine fault tolerance [76]. Unlike the PMC model, it can
handle malicious faults manifesting themselves in a different way to different observers, but,
by merely masking the faults, it lacks the ability of identifying an unhealthy node. However, in
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Figure 1.5: Illustration of the general approach towards a system-level diagnosis in an automo-
tive E/E architecture. Ideally, all ECUs have the ability to monitor other system resources at
network-level in order to diagnose both faults and security attacks. Here, black arrows represent
existing message-based communication and gray dashed arrows indicate a potential diagnosis
ability of other ECUs.

the heterogeneous automotive E/E architectures, where each ECU usually has a fundamentally
different function, the knowledge about the locations and types of faults is essential in order to
apply the appropriate countermeasures, for instance, restarting of particular tasks on a different
ECU or a controlled degradation of a function or system.

Eventually, based on the discussion above and paraphrasing the original meaning of diag-
nosis presented before, the definition for system-level diagnosis as it is used in this work can be
formulated as follows:

"Automotive System-Level Diagnosis is the process of determining the location, cause
and kind of an unexpected and unwanted behavior in a distributed system (i.e., au-
tomotive E/E architecture) by considering the system design and specifications, the
consequential detectable effects on the computation and communication, and - when
necessary - the results of integrated plausibility and functional tests."

Further detailed discussions on related diagnosis methods as well as other relevant work
covering the particular diagnosis approaches presented in this thesis are located in the corre-
sponding chapters, in Sections 2.2, 3.2 and 4.2, respectively.
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1.3.2 Challenges for the System-Level Diagnosis

On the one hand, theoretical concepts, such as the PMC model, can be a help and inspira-
tion for designing novel diagnosis methods for automotive E/E architectures. On the other
hand, as already mentioned above, they also indicate the difficulties to overcome and challenges
which must be dealt with in the context of automotive system-level diagnosis. Some of these
challenges, which contain the four aspects distribution, timeliness, coverage and efficiency,
are discribed below. To facilitate the following discussion, the overall idea for an automotive
system-level diagnosis is illustrated in Figure 1.5. The depicted architecture corresponds to the
in-vehicle network in Figure 1.1 which is inspired by an up-to-date boardnet.

1.3.2.1 Distribution

One of the main challenges of the presented work arises from the physical distribution of ECUs
and their functionality in automotive E/E architectures. In contrast to a diagnosis on component-
level where the monitoring and detection methods are limited to a particular device, a system-
level diagnosis requires the distributed resources in the system to be aware of one another. That
characteristic is visualized in Figure 1.5, where particular resources (green ECUs) have the
ability to detect faults or security attacks on other resources (red ECUs). Obviously, for an on-
line diagnosis on system-level it is necessary to monitor the existing traffic data or specifically
injected diagnostic data in one way or another. For instance, one possibility to indicate if the
red ECU attached to the bottom left bus is faulty might be, to observe its message stream at
the immediate destination, i.e., the orange ECUs, and check for any inconsistencies, such as
omitted messages. Generally, this is a valid diagnosis concept which has been used in different
variations in the automotive domain, for example, in [4, 127, 64]. On the downside, however,
it usually restricts the choice of monitoring resources to nodes at the corresponding messages
stream destinations or, at best, to nodes attached to the same communication bus.

Here, a more powerful and beneficial diagnosis approach would be one, that allows an ob-
serving resource to be independent from a direct (physical) communication link to the observed
resources. On the one hand, this approach can remove single points-of-failure by assigning
multiple monitoring resources for particular safety-critical devices. This is demonstrated in
Figure 1.5, where two green ECUs (on the top left and bottom right) can diagnose the faulty
ECU on the bottom left. On the other hand, it gives the system designer greater flexibility in
distributing particular detection tasks, for instance, to resources with lower utilization or higher
computational abilities. However, such diagnosis strategies presume a deep knowledge of the
entire system, particularly including architectural links between resources and buses, data de-
pendencies of application tasks as well as their corresponding mappings to the hardware. The
same applies to off-line approaches, where diagnosis data is collected at runtime but the main
system-level evaluation happens when the system is not in (a safety-critical) operation. Conse-
quently, for both on-line and off-line diagnosis strategies, a thorough analysis of a given system
specification and its graph-based representation is inevitable.
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1.3.2.2 Timeliness

A fast and, especially, timely execution of safety-critical tasks in automotive applications is of
utmost importance, e.g., in an air-bag controller. For the corresponding real-time system which
must guarantee that critical deadlines are met, there exist two communication principles, event-
triggered and time-triggered. While in an event-triggered systems the occurrence of a specific
event initiates a process activity, in a time-triggered system activities are started at predefined
points in time [68]. As already discussed in Section 1.2.2, both principles are used in automotive
bus protocols and both have their advantages and disadvantages which must be considered for
system-level diagnosis methods. For instance, although time-triggered systems exhibit a higher
latency than event-triggered systems, the synchronization with a global clock usually removes
jitters making them more predictable. On the other hand, event-triggered systems perform
better in a hard real-time environment, as they can quickly react to asynchronous internal or
external events [2]. As a consequence, while purely time-triggered approaches are more and
more considered for the automotive system design [118, 120], event-triggered protocols, such
as CAN, will continue to play a major role for automotive E/E architectures in the near future.

In this context, it is important for novel message-based diagnosis strategies to be indepen-
dent from the underlying protocol and, hence, preferably support both a time-triggered and
an event-triggered communication. At the same time, the necessary observation and detection
times for each given diagnosis type must be as short as possible to allow sufficient time for the
application of countermeasures. For this purpose, a proper choice of the fault distribution model
and observation times (e.g., for intermittent faults) as well as the use of suitable communication
models (e.g., for permanent faults and security attacks) are crucial.

1.3.2.3 Coverage

An essential aspect for a reliable diagnosis strategy is the consideration of all fault and attack
scenarios that are basically detectable with the help of a particular diagnosis approach. This
means, that a method does not necessarily need to be capable of detecting all possible faults,
but rather should correctly diagnose the specified and considered fault scenarios. Here, the
latter might include intermittent faults inside a microcontroller, a group of permanently faulty
ECUs as well as entire bus failures. Consequently, it must be assured first, that potential fault
scenarios are properly described and, second, that the corresponding diagnosis approaches are
able to detect all of them and, thus, cover the entire system. In cases where this coverage is not
given, the diagnosis method should be extended appropriately in order to increase the number
of diagnosable resources, e.g., through the insertion of additional diagnosis messages.

In the scope of this work, the main focus lies in the diagnosis of faults and attacks, on
particular E/E architecture components. For the in-vehilce network in Figure 1.5, for example,
that would include all ECUs, the central gateway and each automotive bus.
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1.3.2.4 Efficiency

Today’s automotive industry is strongly driven by competition and choses solutions which are
cost-efficient and easily implementable [97]. Due to automotive mass production, a minimal
application code size, fast development processes and even short program execution times are
pursued, for which a reuse of software is increasingly applied during system design [70]. The
costs become an even more crucial topic when new hardware components are introduced.

Consequently, it is important to consider the cost-efficiency and implementation factors al-
ready early during the design of novel diagnosis strategies. Ideally, the proposed approaches
should exploit as much as possible of the available resources both on hardware and software
level, before implementing new explicit diagnosis components (e.g. specific messages or mon-
itors). In this context, the intrusion into the existing system architecture and additional com-
munication should be kept minimal in order to facilitate the implementation of the appropriate
diagnosis method.

1.4 Thesis Contributions
The previous discussions concerning automotive E/E architectures, the system-level diagnosis
and the corresponding challenges serve as the basis and an important motivation for the work
at hand. In this section, the main contributions of this thesis shall be summarized, particularly
highlighting the methods and strategies of the corresponding diagnosis approaches.

As a matter of principle, the presented system-level diagnoses for automotive E/E architec-
tures use a holistic view on the distributed architecture and are following a decentralized and
non-intrusive paradigm4, as already indicated in Section 1.3.2 and in Figure 1.5. More precisely,
the proposed methods use specific knowledge acquired at design time, for instance, architecture
topologies, message routings and communication timings, in order to provide reliable diagno-
sis strategies for particular fault types as well as security attacks. At runtime, specific and, for
the most part, already integrated system properties, such as message streams and plausibility
tests, are utilized. The abandonment of explicit diagnostic hardware and the exploitation of the
available system functionality offers a high reliability and efficiency and distinguishes this work
from most state-of-the-art diagnosis approaches.

The three main contributions stated below are listed in the same order as the subsequent
thesis chapters covering them.

(1) The growing number of IC devices and their shrinking component sizes in modern automo-
tive E/E architectures lead to an increased susceptibility of intermittent faults. We propose
an intermittent fault diagnosis, in order to detect these faults early and prevent them from
causing long lasting system damages, such as a complete failure of an ECU. The introduced

4In this thesis, non-intrusiveness indicates both a complete renunciation and a merely minimal use of explicit
diagnostic components (i.e., special messages or hardware). This circumstance is sometimes also referred to as
implicitness.
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approach evaluates outcomes of existing plausibility tests and, on that basis, identifies sys-
tem components for which the monitored fault rate exceeds the expected fault rate of tran-
sient faults. In contrast to a trivial method with a fault detector on each monitored resource,
the proposed approach uses the design-time knowledge about mappings and dependencies
of distributed tasks. As a consequence, the number of necessary plausibility tests can be
reduced.

Within the proposed diagnosis framework, first, a special expectation matrix is defined,
which assigns statistically estimated failure rates of all possible plausibility tests to all sys-
tem resources. Furthermore, this expectation matrix can be used to analyze the overall
diagnosability of the architecture at design time in the first place. When the car is in oper-
ation, the plausibility test outcomes are monitored and collected for a predefined period of
time (observation time). Because a faults on one resource can also influence test results on
other resources, the evaluation of test vectors is non-trivial and will be usually performed
off-line. We investigate four different methods for this evaluation, and thus, for the diagno-
sis of intermittent faults in distributed systems. The first two methods are vector-based and
make use of the linear dependencies within the system model. The remaining two methods,
on the other hand, are exploiting the statistical properties of the fault model and are imple-
mented with the help of an Integer Linear Programming (ILP) approach. Experiments with
a number of automotive test cases demonstrate that while the vector-based methods are
generally faster, the ILP methods achieve better results in terms of correctness and show
less false negative outcomes. As a consequence, aside from a reliable fault diagnosis, our
approach offers the system designer a flexible tool for selecting and implementing the most
suitable of the four detection methods with respect to the regarded architecture.

Additionally, we propose an extension of the intermittent fault diagnosis towards many-
core systems which are becoming more and more relevant for automotive E/E architectures.
Because future many-core systems are expected to consist of hundreds or even thousands
of cores, the corresponding experimental results are especially focusing on the scalability
of the proposed diagnosis methods.

(2) Since intermittent faults often occur in bursts, in the most cases an affected resource will still
be operational afterwards, allowing the application of particular precautionary measures
before a more severe failure can happen. This is usually not the case for permanent faults
which are preventing the resource from performing any useful functionality. We propose
a permanent fault diagnosis where the affected resource is detected instantly on the basis
of so-called diagnosis functions and can be identified on one or more other resources. By
offering a very short and deterministic diagnosis time, our approach keeps the hazardous
downtime minimal and supports, inter alia, the application of degradation strategies where
crucial system functions must be quickly adopted by other suitable resources.

Overall, the proposed diagnosis framework consists of two stages. In the first stage, a graph-
based search algorithm is applied to a given system specification in order to determine
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possible faulty resources, so-called fault scenarios, as well as the corresponding message
streams affected by a potential permanent fault. Based on this, for each fault scenario
and each observing resource unique diagnosis functions are generated. These consist of
special Boolean representations of omitted and received messages indicating a particular
fault scenario. Implemented on the respective observing resources, the diagnosis functions
enable a fast detection of permanent faults located anywhere in the architecture, namely, on
network-level. The second stage of the framework provides an ILP-based optimization of
the generated diagnosis functions aiming at a trade-off analysis between the diagnosis times
and the amount of monitored message streams. A number of automotive test cases and a
detailed case study give evidence of the overall feasibility and efficiency of our method
and demonstrate that the optimization stage is capable of reducing the initial diagnosis time
in particular cases by more than half. Additionally, the experimental results comprise the
outcome of an implementation of the permanent fault diagnosis on a research platform for
distributed automotive systems. Here, the evaluation of real hardware utilization illustrates
the practical usefulness of the proposed approach.

In the context of permanent fault diagnosis, we furthermore propose a diagnosis-aware
schedule synthesis for time-triggered systems. It improves our approach in terms of the
required diagnosis times and increases the number of diagnosable resources. For this pur-
pose, first, a given system schedule is modified by adapting the transmission times of exist-
ing messages in the network in order to obtain an optimal distribution for their subsequent
monitoring. Second, the available bandwidth of the communication channel can be used to
insert lightweight diagnostic tasks and messages for fault scenarios which cannot be nat-
urally diagnosed, for instance, because they are located at the end of a transmission chain
and lack outgoing message streams.

(3) Novel automotive functionality, such as Car-to-Car (C2C) and Car-to-Infrastructure (C2I)
communication or Over-the-Air (OTA) software updates, use wireless interfaces to the out-
side world and make cars more and more vulnerable to security attacks. In this regard,
an exposed and hacked E/E architecture component can increase the overall safety risk for
road participants to the same extent as a faulty component. Many common forms of at-
tacks (e.g., message flooding or Denial of Service (DoS)) manifest themselves in altered
traffic patterns with unforeseeable consequences for the highly timing-critical automotive
control functions. We propose a security attack diagnosis to identify a potential intrusion
into the system quickly by verifying the compliance of message streams with a predefined
communication characteristic.

Within the proposed security diagnosis framework, initially, a given specification of the
system is analyzed in terms of its communication parameters as well as its application
and architecture structure. The goal is to obtain the necessary information, such as mes-
sage timings and task mappings, for the subsequent diagnosis process. The second part
of the framework describes the actual diagnosis algorithm for the decentralized and light-
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weight detection of message-based attacks. Furthermore, it defines an optimization-based
and redundancy-aware method to efficiently distribute the diagnosis functions among suit-
able monitoring resources. By using so-called message arrival curves (i.e., representations
of the upper and lower bounds for the number of incoming message stream events in an
arbitrary time interval), the diagnosis algorithm is easily adaptable for different patterns of
message streams and, hence, facilitates the distribution of the single diagnosis tasks. In our
approach, this distribution is automated using an ILP and allows to set specific redundancy
and tolerance values. As a consequence, the system designer does not have to manually
select each monitoring resource or assign the corresponding message streams. Instead, the
proposed framework provides sufficient flexibility for a proper configuration of the distribu-
tion in terms of redundancy as well as allocation of the monitoring tasks. The experimental
results show, that by using a light-weight detection method and an optimization-based task
distribution, our security approach guarantees a full coverage and timeliness of the diagno-
sis and offers a good scalability while imposing a low additional overhead.

1.5 Organization and Publications

This section outlines the remaining chapters of the thesis and contains a list of the corresponding
publications.

1.5.1 Organization of the Thesis

After the general introduction presented in this chapter, the thesis continues with the actual
description of the conducted research. Chapter 2 presents the proposed intermittent fault di-
agnosis. The general approach, whose results have been published in [147], is explained in
Sections 2.1 to 2.5. The extension towards many-core systems is discussed in Sections 2.6
and 2.6.3 and appeared in [148]. Chapter 3 presents the proposed permanent fault diagnosis
and can be roughly divided into two parts. First, Sections 3.1 to 3.5 discuss the main diag-
nosis approach, its methodology and the corresponding experimental results which have been
published in [149]. Second, a diagnosis-aware system design approach for the permanent fault
diagnosis is presented in Section 3.6. The corresponding results appeared in [151]. Chapter 4
presents the proposed diagnosis of security attacks. The corresponding results of this approach
are still under submission at the time of writing this thesis. The final Chapter 5 concludes the
thesis, discusses possible future work and gives a brief outlook.

All publications associated with this thesis are listed below.

1.5.2 Corresponding Publications

The main contributions presented in Chapter 2 appeared in the following two publications.
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(1) Peter Waszecki, Matthias Kauer, Martin Lukasiewycz, Samarjit Chakraborty: Implicit In-
termittent Fault Detection in Distributed Systems. In Proceedings of the 19th Asia and
South Pacific Design Automation Conference (ASP-DAC), 2014.
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of Non-Permanent Faults in Many-Core Systems. In Workshop Proceedings of the 27th
International Conference on Architecture of Computing Systems (ARCS), 2014.

Parts of the contributions presented in Chapter 3 appeared in the following two publications.
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Chakraborty: Diagnosing Altered Traffic Patterns for Security in Automotive E/E Architec-
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The publications stated below address the general topic of automotive E/E architectures, the
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closely related to this thesis.
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CHAPTER2
Diagnosis of Intermittent Faults

This chapter introduces a strategy for an intermittent fault diagnosis in a distributed system
which follows the basic assumptions of non-intrusiveness and decentralization introduced in
Chapter 1. More precisely, we investigate an approach to identify components, such as ECUs in
an automotive E/E architecture, where the occurrence of observed non-permanent faults exceed
the amount of expected transient faults caused by environmental phenomena. Our approach
indicates the presence of intermittent faults which usually occur due to stressed resources and
are often a precursor of the more severe permanent faults.

The proposed fault diagnosis enables an early use of precautionary measures, namely, before
a potential affected resource in a distributed system fails permanently. For this, the diagnosis
framework analyzes and evaluates four different methods designed to implicitly detect intermit-
tent faults by considering both the distribution of application tasks and their data-dependencies.
The methods are using the outcomes of existing plausibility tests which are stored in special
expectation matrices so that explicit tests, which would lead to additional costs and resource
load, are not required. Moreover, the proposed methods can considerably reduce the number
of necessary plausibility tests compared to the conservative solution with one test per resource.
The analysis and evaluation of experimental results give evidence of the feasibility of our ap-
proach and show a comparison of the implemented methods in terms of runtime and detection
rate.

Chapter outline. Chapter 2 is divided in seven sections. In Section 2.1, the topic is in-
troduced with an illustrative example and the particular contribution is described. A detailed
discussion of existing related work is presented in Section 2.2. In Section 2.3 the intermittent
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fault diagnosis approach is explained in detail, including the fault model, the expectation matrix
and the diagnosability analysis. A formal definition of four different diagnosis methods is given
in Section 2.4 and the corresponding evaluation with respect to automotive E/E architectures is
presented in Section 2.5. An extension of the intermittent fault diagnosis towards many-core
systems is discussed in Section 2.6 where the appropriate experimental results are presented in
Section 2.6.3. Finally, Section 2.7 concludes this chapter and briefly outlines the future work.

2.1 Introduction

This section gives an introduction into the intermittent fault diagnosis. After a general motiva-
tion part, it demonstrates a simple illustrative example of the diagnosis approach and points out
the specific contributions.

2.1.1 Motivation

Today, the reliability of embedded systems and the associated safety aspects are of high rele-
vance in many domains with strict real-time requirements such as in avionics and automotive.
Also for non-safety critical applications, for example, in consumer electronics, efficient fault
detection and fault tolerance mechanisms are important to fulfill the customers’ quality expec-
tations. At the same time, the ever-growing Very Large Scale Integration (VLSI) processes
with shrinking geometries and decreasing power supply voltages result in devices which are
increasingly susceptible to transient faults and, hence, might have a negative impact on the sys-
tem reliability [23]. In distributed systems, the failure of a single component can influence the
behavior of a multitude of applications. It is therefore of utmost importance to indicate the
risk of potential errors and failures of components before they actually occur. This allows to
apply precautionary measures, which can vary from graceful degradation to a replacement of
the affected component.

For such an early detection1, an increased number of non-permanent faults is a suitable
indicator to determine stressed components. Assuming that a defective hardware causes the oc-
currence and accumulation of so-called intermittent faults which lead to (possibly distributed)
errors, then a potential imminent failure of a specific resource could be projected by analyzing
the results of appropriate plausibility tests running within regular tasks or as discrete applica-
tions. A major objective of the proposed approach is to perform such a detection implicitly in
order to keep the additional costs and resource utilization low. In contrast to an explicit method
which would require additional test tasks for each component, the proposed fault diagnosis
relies on existing plausibility tests which are part of the distributed applications.

1Usually, the term detection relates to the identification of the presence of a fault, whereas diagnosis describes
the location and identification of its cause. However, in some cases this distinction may be ambiguous and the
terms can be used interchangeably.
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Figure 2.1: Simplified example for the the intermittent fault diagnosis of a faulty ECU in an
automotive E/E architecture. The application tasks tx1 , tx2 , ty1 are mapped to ECU r1 and tx3 ,
ty2 , ty3 are mapped to r2. The remaining tx4 and ty4 as well as the plausibility test tasks2τx and
τy are assigned to r3. Given an equal task utilization, the increased intermittent fault rate on r1
results in a test failure ratio of 2:1 between τx and τy.

In automotive E/E architectures, these plausibility tests are used, for instance, to ensure
that the control values an ECU is dealing with are correct. However, due to the architectural
constraints of the resources, it is often only possible to check the consistency of test results at
specific points, e.g., on particular ECUs. For this purpose, we take the distribution of applica-
tions, the runtimes of tasks, and their data-dependencies into account to implicitly determine
the component with an increased number of intermittent faults.

2.1.2 Illustrative Example

To better illustrate the diagnosis approach, a motivating example is shown in Figure 2.1. In the
left part of the figure an application with two functions, fx and fy, is shown, which, for instance,
could represent distributed control algorithms. Each function consists of four application tasks
txi/yi and two test tasks τx/y meant to perform a plausibility check at the end of the function
execution. The interconnection between the tasks in each function indicates a strong depend-

2Although they are using a different identifier, a test τ is regarded and treated equivalent to a task t. Therefore,
the terms test and test task are interchangeable.

27



2 Diagnosis of Intermittent Faults

ability meaning that any error in one task will be propagated to the corresponding test task. All
eight tasks are mapped to the three ECUs in the right part of the figure, as indicated by the gray
background areas. Now, depending on the particular assignment and utilization of the tasks,
a higher rate of intermittent faults on a resource can be detected by analyzing the failure ratio
of the test tasks. Given an equal utilization among all application tasks and a consistent error
propagation towards the test tasks, a faulty ECU r1 will cause a failure ratio between τx and τy

of 2:1, since it is running two tasks from the fx-task chain and only one from the fy-task chain.
Correspondingly, a test failure ratio of 1:2 would indicate a faulty r2 and a test failure ratio of
1:1 a faulty r3.

2.1.3 Contributions

The overall purpose of the diagnosis presented in this chapter is to identify intermittent faults
early before a permanent fault occurs in order to apply appropriate precaution measures. Fur-
thermore, an important aspect is the implicit nature of the approach which reduces an addi-
tional implementation and testing overhead. The main contributions of the proposed work com-
prise four different methods for an implicit and decentralized intermittent fault diagnosis in
distributed systems. The methods use an expectation matrix which comprises the expected
failure rates for all plausibility tests for resources in a functioning (i.e., intermittent fault-free)
system. The first two methods are based on the analysis of linear dependencies within the sys-
tem model, while the other two methods use an ILP for an optimization-based approach. Based
on the evaluation of a number of synthetic test cases3, we show the feasibility of the proposed
fault diagnosis and compare the different methods in terms of their runtime and detectability.

Basically, we consider the automotive diagnosis to happen on the level of E/E architectures,
i.e., we assume ECUs, sensors, and actuators as the main and crucial components. However,
multi- and many-core Systems-on-Chip (SoC) are becoming more and more important for the
automotive industry and due to their use in safety-critical systems they will be subjected to
higher standards regarding the fault diagnosis and fault tolerance. As a matter of principle, the
proposed methodology is also applicable at other levels of granularity where, for instance, in
case of a multi-core SoCs, the basic components would be processor cores, buses, switches, or
memories. In Sec. 2.6 the extension of the intermittent fault diagnosis to many-core systems
is discussed. More precisely, the four introduced diagnosis methods are applied to architec-
tures with several hundred cores and evaluated regarding the correct diagnosis rate and runtime.
While for E/E architectures the number of basic components stays in a double-digit or lower
three-digit range, other domains might easily reach ranges of 104 or even 105, which makes the
scalability of our approach an important objective.

3In the scope of this chapter, test, test task or plausibility test refer to the functional tests as part of the system
to be analyzed, whereas test case and test run refer to the different system specifications used for the experimental
evaluation in Sections 2.5 and 2.6.3.
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2.2 Related Work

In the regarded distributed systems a resource can execute one or multiple periodic tasks or,
generally speaking, manipulate data. At the same time, these tasks can have data-dependencies
across different resources and use messages or shared memory for communication. Allocating
and scheduling these tasks on system resources is a crucial part during system design. It often
uses a so-called Y-chart approach, where the applications and architectures are consolidated
through task mappings and message routings to get a complete system specification before a
subsequent schedule synthesis is performed. This process flow is elaborately discussed, for
instance, in [85]. It is assumed, that the system specifications used for the proposed approach
are generated based on such a principle such that the correct system information can be properly
utilized during the fault diagnosis.

Regarding fault tolerance in distributed systems, the common strategies include task re-
mapping and rescheduling, respectively, to allow a continuing execution of safety-critical func-
tions on other resources in case of errors and failures. For example, in [153], a fault-tolerant
scheduling is presented, where a backup copy of a task on a faulty resource will be executed
on a healthy one and the scheduler excludes faulty nodes. Furthermore, task redundancy can be
used, to either detect a fault using task duplication or resolve a fault using task triplication, as
shown in [24]. When intact resources do not have enough free capacity to take over all tasks
of the affected resources, a graceful degradation mechanism is necessary as described, for ex-
ample, in [35] and [31]. A comprehensive overview of state-of-the art techniques used for fault
tolerance strategies for real-time distributed systems is presented in [34].

The methods proposed here are set at the level of fault diagnosis and, thus, before the fault
tolerance mechanisms come into action. For this reason, they are based on a given task distribu-
tion and an existing schedule but are not restricted to a particular method to eliminate the faulty
state. In this context, there exists a number of approaches that are dealing with the reliability
and fault diagnosis in distributed systems. In [132], a method for the detection of transient faults
is proposed where the execution flow of a preemptive RTOS is monitored in order to identify a
scheduling misbehavior. Although, the introduced technique is passive and does not interfere
with the existing execution flow in the embedded system, it is a hardware-based solution requir-
ing a special guardian core. By contrast, [42] presents multiple on-line self-testing policies for
dynamic applications in multi-processors which affect the scheduling and allocation of applica-
tions but not the underlying hardware. The work concludes that periodically applied tests can
show a good trade-off between performance and fault detection probability if it considers idle
states of the processors, the test history as well as task priorities.

Approaches, which address the fault diagnosis problem on a system design level are pre-
sented, for instance, in [152] and [142]. The work in [152] proposes a design methodology
where safety-critical tasks are selectively duplicated in order to detect soft errors caused by
transient faults. As the allocation and scheduling considers idle computation times and mutual
exclusiveness of tasks, the method does not increase the existing resource utilization. How-
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ever, due to the required schedule knowledge, it cannot be easily applied for event-triggered
systems. Similarly, the work in [142] addresses soft errors with the help of a high-level syn-
thesis approach. Here, first a reliability characterization of specific system components, such
as adders and multipliers, is applied. Then, within a Data Flow Graph (DFG) representation
of the system the overall reliability is maximized by selecting the most suitable resources on
condition that specific area and performance constraints are met. However, for the latter ob-
jectives the selection process may be suboptimal. As a remedy, [36] proposes a multi-objective
design space exploration which considers not only reliability but also all other design objectives
simultaneously.

Compared to the approaches above, the intermittent fault diagnosis proposed in this thesis
specifically considers non-intrusiveness and does not require any changes to the existing system
specification. Moreover, by taking into account that non-permanent faults might finally lead to
permanent faults and, in the worst case, system failures, it stresses the importance of a fast and
reliable diagnosis in a safety-critical real-time environment.

Many-core systems. For the application of our approach to many-core systems, it is as-
sumed that one core can have multiple periodic tasks assigned to it but it can only execute one
task at a time. Nevertheless, this does not restrict the distribution of applications where tasks
have data-dependencies across different cores and use, for instance, a Network-on-Chip (NoC)
or shared memory for communication. Consequently, also here an efficient mapping between
tasks and cores is an important aspect to satisfy high performance and safety requirements.

A survey and categorization of mapping methodologies for multi- and many-core systems is
presented in [134], where the analysis differentiates between design-time and runtime optimiza-
tion methods. In [62], static task mapping for embedded many-core SoC is using an ILP-based
and a greedy algorithm-based approach, respectively, in order to find the optimal number of
cores for each task. To increase the reliability for many-core system, one can use similar fault
tolerance strategies as for the general distributed systems discussed above, such as re-mapping
of tasks. Some are presented in [3] and [25] for the use of NoC-based Multiprocessor System-
on-Chips (MPSoCs). In [48], a lifetime reliability estimation of homogeneous many-core sys-
tems is proposed, which analyzes different configurations and redundancy schemes. However,
that paper mainly regards system faults that manifest themselves as permanent faults while our
work analyzes and compares test failure rates in order to implicitly detect cores in a many-core
system tending to fail due to an increase of intermittent faults.

2.3 Diagnosis Description
This section gives a basic description of the intermittent fault diagnosis and the corresponding
framework which is depicted in Figure 2.2. It schematically illustrates how a diagnosable sys-
tem model is extracted from the system architecture and then used for a runtime observation
and an off-line diagnosis in order to locate a faulty resource.
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Figure 2.2: Basic framework structure of the intermittent fault diagnosis. At design time, a
given system specification is used to determine the expectation matrix as well as its general
diagnosability. The plausibility test outcomes are observed at runtime and usually evaluated
off-line in order to pinpoint a potential faulty resource. The subsequent precautiory measures
are not part of this work.
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2.3.1 Fault Model
Within the considered system model, we assume that a resource can be affected by both perma-
nent faults and non-permanent faults which can be further divided into transient and intermittent
faults. Although the latter two fault types only temporarily affect the system, intermittent faults
are more severe than transient faults as they last much longer and can occur in bursts [27]. Usu-
ally, permanent faults, which often result in enduring physical changes of the affected hardware,
are often preceded by an increased number of intermittent faults which themselves are caused
by malfunctioning hardware and occur with a high arbitrary frequency, see [23]. In contrast
to intermittent faults, transient faults are caused by temporary environmental phenomena, like
cosmic rays, Electromagnetic Interference (EMI), Electrostatic Discharge (ESD) or radiation
from lightning.

Within the diagnosis process, the presence of intermittent faults is recognized with the help
of plausibility tests which are evaluating the outcome of particular periodic tasks. In this con-
text, according to the hypothesis of the Resilience Articulation Point (RAP), all faults origi-
nating from a physical phenomenon, if not masked, will manifest themselves as a single- or
multi-bit flip [41]. It is assumed that if the errors caused by bit flips are not masked, they are
propagated between data-dependent tasks and finally result in plausibility test failures, with the
probabilistic fault distribution remaining unaltered. Thus, a failed plausibility test indicates an
error in its executing test task or a preceding task, originally caused by a transient or intermittent
fault on a corresponding resource.

The occurrence of non-permanent faults is assumed to happen independently of the preced-
ing faults and with a known average rate. This circumstance makes the Poisson distribution a
good choice to model the fault probability. Nevertheless, the presented approach is flexible and
expandable, so that it can adopt other probabilistic error models if necessary or required.

In order to illustrate the intermittent fault diagnosis principle, Figure 2.3 depicts how fault
rates with different expected values are reflected in the occurrence of non-permanent faults over
time and how it can be used to distinguish transient and intermittent faults. Here, each peak
in the two upper graphs reflects one single fault while the lower curves represent two distinct
Poisson distributions. During regular operation a resources will be subject to transient faults.
However, with advancing operation time the occurrence rate of intermittent faults can increase,
e.g., due to aging effects of the hardware. In the example in Figure 2.3 a possible observed
increase of non-permanent faults over time finally results in a permanent fault. Using a known
fault rate for the expected transient faults (e.g., λP = 3) allows to split the observation into a
transient and an intermittent part, with the latter becoming more and more predominant over
time as illustrated by a higher expected value of the Poisson distribution λP. This illustration
also demonstrates, that it is important to consider the transient faults in our diagnosis approach
as a kind of "noise", as it helps to avoid possible false positive fault detections.

As already mentioned, we analyze a number of plausibility tests at the end of particular
task chains and compare the expected and observed results of several tests. This allows us
to diagnose resources affected by intermittent faults. However, due to architectural and cost
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Figure 2.3: Illustrative example for the occurrence of of observed and detected non-permanent
faults on a resource. In the beginning the operation is affected by transient faults only. Then,
gradually more and more intermittent faults occur which finally results in a permanent fault.
The probabilistic distribution of the intermittent faults depicts an early (λP = 3) and a late
(λP = 8) stage of the fault period.
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reasons not every resource can be equipped with specific plausibility tests to detect intermittent
faults. Hence, the presented implicit diagnosis is not only designed to use existing plausibility
tests which are part of the regular system operation but also considers the data-dependencies of
their preceding tasks, hence, enabling a distributed fault detection.

Diagnosis time remarks. As a matter of principle, the fault diagnosis methods presented in
this work are designed to being applied either off-line or during low system utilization. This
is, on the one hand, due to the necessary observation time during which the plausibility test
outcomes are collected and stored. On the other hand, some of the diagnosis methods may be
computationally too expensive to be performed during system runtime. As demonstrated in [23],
the degradation of a resource due to a gradually increasing occurrence of intermittent faults can
last for days or even weeks before a potential permanent fault turns up. As a consequence,
intermittent fault approaches do not necessarily have to satisfy strict runtime requirements, but
due to possible large system sizes, their timing and computational costs have to be within a
reasonable range with a good scalability.

2.3.2 Expectation Matrix
Locating a potentially faulty resource with the help of a simple quantitative analysis of plau-
sibility test failures might not be successful. On the one hand, as already discussed above, to
properly diagnose intermittent faults the unavoidable transient faults have to be considered as
well. On the other hand, a distributed system can consist of more resources than available test
tasks, as shown in the motivating example in Figure 2.1, with three resources but only two tests.
As a consequence, a potentially faulty resource not only needs to be associated with test failure
rates of its own plausibility tests but also of all other tests in the distributed system which, due
to task dependencies, may be influenced by faults on that particular resource. For this, the pre-
sented fault diagnosis uses a so-called expectation matrix which connects all system resources
with all plausibility tests and assigns them the corresponding expected test failure rates.

In the following, the determination of the expectation matrix and the test failure rates (i.e.,
the matrix entires) shall be explained. The parameters, sets and function listed below serve
as basis to formally define the expectation matrix and its use for the diagnosis methods in
Section 2.4.

τ ∈ T plausibility test task from the set of all available plausibility tests T
r ∈ R system resource from the set of all resources R to be considered

for fault diagnosis

t ∈ T tasks from the set of all tasks T to be considered for fault diagnosis

Tr ⊆ T subset of tasks executed on a particular resource r ∈ R

Tpred
τ ⊆ T subset of data-dependent predecessor tasks of a test task τ
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et ∈ R specified execution time of a task t ∈ T

ht ∈ R specified execution period of a task t ∈ T

λr
P ∈ R expected value of a Poisson-distrubuted fault rate on resource r ∈ R

λ : T × R→ R function describing the frequency of a test τ ∈ T failing due to
faults in r ∈ R

We regard the fault rate (i.e., number of faults per time interval) for a specific resource as
being subject to the Poisson distribution with a known average value (see Figure 2.3). This is
defined in Equation (2.1), where the fault rate of a resource r follows an independent random
variable Xr of the Poisson distribution with an expected value λr

P, where e represents the Euler’s
number and k is a positive integer value.

Poisson(Xr = k) =
(λr

P)
k · e−λr

P

k!
, with k ∈N+

0 and λr
P > 0 (2.1)

The expected value is strongly dependent on the resource’s susceptibility to transient faults
and can vary among the different sorts of resources and components within a distributed system.
As transient faults can be influenced by many factors, such as radiation or electromagnetic
interference, the determination of the expected values is not trivial and must be investigated
experimentally or gleaned from the manufacturer’s hardware description. In the scope of this
work λr

P shall be assumed to be known.
Thereby, for each test τ ∈ T and each resource r ∈ R we can calculate a λ(τ, r) which rep-

resents the number of expected test failures per time interval caused by the respective resource.
λ(τ, r) is defined in Equation (2.2), with et describing the average execution time of a periodic
task t ∈ Tr and hτ describing its period. Here, Tpred

τ represents the set of predecessor tasks of
a test τ within a task tree or function.

λ(τ, r) = ∑
t∈Tr∩Tpred

τ

et

ht
· λr

P (2.2)

As the equation indicates, λ(τ, r) proportionally includes the effect of any task executed on
the corresponding resource in which an error would lead to a failure of the test τ. That can be
the test task itself, or any of its predecessors. In the case that a resource has no influence on a
particular test the corresponding failure rate is null (λ(τ, r) = 0). The allocation of each test to
the resources which can cause its failure leads to a test expectation matrix Λ which comprises
all λ(τ, r) values as its elements. This is formally defined in Equation (2.3).

∀τ ∈ T , r ∈ R :
Λ =

(
λ(τ, r)

)
τ,r (2.3)

Here, each row of the matrix contains the resulting expected test failure rates of one single
test caused by each resource. Correspondingly, each column of the matrix is made of the failure
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rates of all tests a single resource can influence. Again, as already mentioned above, the test
tasks do not necessarily have to reside on the resources causing their failure. To better illus-
trate this principle, Figure 2.4 shows an example system specification with the corresponding
expectation matrix.

The specification comprises a process graph GP defining the application which consists of
two functions fx and fy with three interdependent tasks tx/y and one test task τx/y each. The
architecture graph GR connects five resources r1 - r5 to a central bus and the mapping EM
associates each task with one resource. The expectation matrix depicted in the lower part of the
figure represents the expected failure rates (i.e., transient faults under normal operation) for the
two tests depending on the regarded resource. In the context of this work, we consider only a
single faulty resource at a time, which is a common assumption during automotive architecture
design [77]. This limitation is also briefly discussed in Section 2.7. Now, assuming that resource
r3 is affected by intermittent faults, the observation of the test failure rates will deviate from the
original expected values in the third column (see shaded area) enable an implicit fault diagnosis
as described in Section 2.4.

2.3.3 Diagnosability Analysis

An important prerequisite for an efficient and successful detection of faulty resources is an
optimal placement of tests in terms of both a minimal system utilization resulting from their
execution and an unambiguous decision whether and which resource shows an increased fault
rate. Currently, the presented diagnosis follows an implicit approach where the observed tests
are regarded to be part of the specified system. Consequently, in this paragraph only the latter
aspect shall be discussed, namely, how to ensure that the given distribution of test tasks leads to
an unambiguous identification of the affected resource.

Given the presumption that only one resource can fail within a considered time interval, a
mutual comparison of the tests associated with specific resources enables a conclusion about
the system’s diagnosability, i.e., its ability to diagnose a faulty resource. For this, the so-called
cosine similarity CosSim is used which compares, to which extent two vectors are varying
among themselves. More precisely, the cosine similarity represents the cosine of the angle θ

between two vectors and can be derived from the Euclidean dot product of these vectors, as
defined in Equation (2.4).

CosSimri,rj = cos(θ) =
vri · vrj

‖vri‖ · ‖vrj‖
⇒ θ = ∠(vri , vrj) (2.4)

As a consequence, the CosSim between two arbitrary column vectors in the Λ matrix, vri

and vrj , will result in a number proportionally approximating 1, the smaller the angle θ between
these two vectors is and, hence, the more similar these two vectors are. The more the value
deviates from 1 the greater the angle between two vectors and, hence, the clearer the difference
between a potentially faulty resource and a healthy one. Therefore, for two opposite vectors
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Figure 2.4: Illustration of a graph-based systems specification and the corresponding expecta-
tion matrix. It consists of an application GP with two functions ( fx, fy), an architecture GR with
five resources (r1 - r5) and the mapping EM between tasks and resources (99K). The expecta-
tion matrix derived from the specification highlights the affected λ(τ, r) values of the faulty
resource r3.
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the CosSim will result in −1. Equation (2.5) illustrates this correlation, where, due to the
inaccuracy induced by the expected transient faults, a threshold value εana is used to define the
maximum acceptable deviation of the cosines from 1.

∀i, j ∈ {1, · · · , |R|} :

1− CosSimri,rj

{
≤ εana ⇒ ri ≈ rj ("weak diagnosability")

> εana ⇒ ri 6= rj ("strong diagnosability")
(2.5)

Combining the outcome of a cosine similarity analysis allows us to define the diagnosability
of a system specification as follows:

"The allocation of plausibility tests to resources is called fully diagnosable, if the
resulting CosSim between each to vectors vri , vrj in the expectation matrix Λ exceeds
a predefined threshold value."

A trivial representation of a fully diagnosable system would be an architecture where each
single resource contains one plausibility test without considering any data-dependencies with
predecessor tasks. Such a configuration would results in a diagonal expectation matrix Λ =

diag(λ(r1, τ1), λ(r2, τ2), · · · , λ(r|R|, τ|T |)) with all vectors being orthogonal to each other
and, thus, leading to a minimal cosine similarity. One of the goals of this work is to beat that
reference solution by regarding a reduced number of required tests.

2.4 Methodology
This section presents formal definitions and descriptions of four different methods for the eval-
uation of plausibility test outcomes leading to an implicit and decentralized diagnosis of inter-
mittent faults in distributed systems.

2.4.1 Diagnosis Approaches
The presented fault diagnosis is designed to indicate resources in a distributed system experi-
encing an increased occurrence of intermittent faults. These resources can be the ECUs in an
automotive E/E architecture, but also the single cores in a many-core processor, as will be dis-
cussed in Section 2.6. As a matter of principle, the fault diagnosis problem can be abstracted to
an analysis of the quantitative relation between observed and expected test failures. Thus, based
on the expectation matrix Λ introduced in Section 2.3.2, four different approaches towards the
intermittent fault diagnosis shall be described and evaluated with respect to their correctness
and performance. These approaches are summarized in Table 2.1 listing both the diagnosis
methods as well as the computational principle underlying their implementations. In addition
to the the parameters introduced in Section 2.3, the following parameters will be used for the
definitions of the diagnosis methods.
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Table 2.1: List of the four proposed methods for the intermittent fault diagnosis, additionally
specifying the general diagnosis principle.

Identifier Diagnosis method Diagnosis principle

Method I Cosine Similarity Vector-based
Method II Singular Value Decomposition Vector-based
Method III Confidence Interval ILP / Probabilistic
Method IV Pearson’s χ2-Test ILP / Probabilistic

∆τ ∈ R time interval for a test failure observation

Oτ ∈ R observed failures of a test τ ∈ T in ∆τ

Eτ ∈ R expected failures of a test τ ∈ T in ∆τ

εcos ∈ R deviation threshold for the determination of the cosine similarity

εsvd ∈ R deviation threshold for the determination of the
Singular Value Decomposition (SVD)

λlo,Oτ
∈ R lower test failure limit of the confidence interval for an observation Oτ

λhi,Oτ
∈ R upper test failure limit of the confidence interval for an observation Oτ

xr ∈ R stress variable which weights the expected test failure rate λ(τ, r)

yr ∈ {0, 1} switch variable for the optimization methods

δr ∈ R decision threshold for the switch variable yr

The sets Oτ and Eτ are representing the observed and the expected number of test failures
τ ∈ T , respectively, that occur in the observing time interval ∆τ. Basically, it can be assumed
that at least one resource r ∈ R is faulty when the number of observed failures of a test is
significantly higher than the number of its expected failures caused by the transient faults on all
system resources within a specific time interval ∆τ, This is defined in Equation (2.6), where the
summation is done over all system resources as those not contributing to a particular test τ have
a zero value.

Oτ � ∆τ · ∑
r∈R

λ(τ, r) (2.6)

Fault rate remarks. The magnitude of this inequality (2.6) is clearly depending on how
often faults on a resource will cause a particular test to fail as well as the observation time ∆τ

for this test. In this thesis, for the evaluation of synthetic test cases in Section 2.5, a stress factor
of approximately 103 between healthy and unhealthy resources is used. This static range has
been chosen in order to evaluate and verify the general suitability and effectiveness of the four
detection methods. However, it is likely that in reality, the rate of intermittent faults caused, e.g.,
by aging, would increase over time and also occur in bursts. This behavior is not specifically
considered in the experimental results.
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2.4.2 Method I - Cosine Similarity

The diagnosis Methods I and II are based on a vector analysis for which they mainly use the
columns from the expectation matrix Λ. As the name already indicates, the first diagnosis
method uses cosine similarity and, hence, a similar mathematical approach as the diagnosability
analysis in Section 2.3.3. However, as they concern two different stages of the intermittent fault
diagnosis, the approaches are independent and defined separately.

Each matrix column represents an expectation vector vri which is assigned to one particular
resource and contains the corresponding utilization-dependent expected failure rates for all re-
garded plausibility tests, as defined in Equation (2.7).

∀i ∈ {1, · · · , |R|} :

vri = [λ(τ1, ri), λ(τ2, ri), · · · , λ(τ|T |, ri)]
T (2.7)

Furthermore, an observation vector vOT is used, containing the number of observed failures of
each plausibility test. As defined in Equation (2.8) this vector has the same dimension as the
expectation vectors, namely |T |.

vOT = [Oτ1 , Oτ2 , · · · , Oτ|T | ]
T (2.8)

Is is important to mention that the expectation vectors vri do not directly represent the actual
expected numbers of failed tests Eτ, because they are not scaled with the observation time
interval ∆τ. However, this has no influence on the final diagnosis results, as the calculation
of the cosine similarity is independent of the magnitude of the vectors. This becomes evident
when regarding the denominator in Equation (2.9) which defines the cosine similarity between
the expectation and observation vector.

CosSimri,OT =
vri · vOT

‖vri‖ · ‖vOT ‖
(2.9)

The analysis of the similarity between the observation vector and each expectation vector
can reveal whether the regarded resource is also the faulty one. If CosSim is close to 1, the
certainty is high that the (possibly increased) observed test failures stem from the expectation
vector of the regarded resource. This is, because it indicates that the relative distribution of the
test failures among all considered tests correlates with the expected failure rates associated with
this resource. Correspondingly, two vectors with a much lower correlation would result in a
cosine similarity value closer to 0 or even −1. In this context, due to the unavoidable transient
faults, the correct diagnosis if a resource is affected by intermittent faults must include a thresh-
old value. As shown in Equation (2.10), we use εcos which defines the maximum acceptable
deviation of CosSim.
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∀i ∈ {1, · · · , |R|} :

1− CosSimri,OT

{
≤ εcos ⇒ observation OT originates in ri

> εcos ⇒ observation OT originates not in ri
(2.10)

2.4.3 Method II - Singular Value Decomposition

By contrast, the second vector-based method uses the linear dependence of two vectors in a
broader sense rather then solely rely on their angular similarity. For this, the observation and
the expectation vectors defined in Equations (2.8) and (2.7) are joint together to build the sub-
matrices Λri = (vOT , vri) which are then used for a Singular Value Decomposition (SVD).

For real numbers, linear algebra defines a SVD as the factorization of a matrix into one di-
agonal matrix Σ and two orthogonal matrices U and VT. Geometrically, this can be interpreted
as one scaling and two rotations of the corresponding matrix4. Now, the idea is to use the rank
of the scaling matrix Σ to determine if the observation and expectation vectors are linearly in-
dependent. As Σ only contributes to the expansion or shrinking of the corresponding matrix
without changing its orientation, it forms a diagonal matrix whose rank calculation might be
more efficient and precise than the cosine similarity determination introduced before.

Applying the SVD to the sub-matrices Λri results in a product of the orthogonal matrix
U, the diagonal matrix Σ and the transposed orthogonal matrix VT, which is defined in Equa-
tion (2.11).

∀i ∈ {1, · · · , |R|} :

Λri
|T |×2 = UΣVT, with Σ|T |×2 =




σ1 0
0 σ2

. . .
0 0


 and |T | ≥ 2 (2.11)

Here, the matrices U and V, whose columns contain the eigenvectors of Λri Λ
T
ri

and ΛT
ri

Λri ,
respectively, are not relevant for the diagnosis and shall receive no consideration during the
further detection procedure. Σ has the same dimension as Λri (i.e., |T | × 2) and consists of the
singular values σ1 and σ2 on its diagonal and of zeros otherwise.

An observation OT is considered being caused by the resource ri, if the rank of the corre-
sponding diagonal matrix Σ is less than 2, as defined in Equation (2.12).

rank(Σ)

{
< 2⇒ OT from ri, if ∃σ ≤ εsvd

= 2⇒ OT not from ri, if ∀σ > εsvd
(2.12)

4Note, that T represents the transpose of a matrix and should not be confused with T or T which represent sets
of all tasks and plausibility test tasks, respectively.
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Similarly to the previous method and the diagnosability analysis, a threshold value εsvd is
used to adjust the diagnosis regarding potential test failures caused by transient faults. It holds,
that to associate the observation Oτ with a resource, aside from the proper rank, the matrix Σ
must also contain at least one singular value σi which is less than or equal to the threshold. By
contrast, the case when both singular values are greater than εsvd is trivial, as it already implies
a rank of 2.

In general, both the performance and correctness of Methods I and II are depending on the
proper choice of the threshold levels. On the one hand, a too large value might be not sensitive
enough and could cause false positive results. On the other hand, a too small value might
not consider the noise caused by transient faults which would lead to false negative results.
Regarding the experimental results, numerous test runs proved εcos ∼ 10−3 and εsvd ∼ 10−5

as good ranges for the analyzed system sizes.

2.4.4 Method III - Confidence Interval
A fundamentally different detection approach can be applied when we take into account the
probabilistic nature of fault occurrences. To mirror the stochastic uncertainty of the expected
transient faults occurring on a resource, we can create a confidence interval around the expected
test failures Eτ inside which an observation is considered to comply with the corresponding
λ-values in the expectation matrix. Assuming, that the fault events are following a Poisson dis-
tribution and that during normal operation all observed test failures Oτ lie within three standard
deviations from the expected value Eτ, we can define the interval according to the 3σ-rule. This
is defined in Equation (2.13), where σ represents the standard deviation and µ the mean of the
Poisson-distributed random variable Xτ.

Pτ(µ− 3σ ≤ Xτ ≤ µ + 3σ) ≈ 0.9973 (2.13)

Given the Cumulative Distribution Function (CDF) of Xτ, we are interested in the the lowest
(λlo,Oτ

) and highest (λhi,Oτ
) mean test failure rate which can still be regarded as compliant with

the 3σ-rule. These rates can be determined by gradually approximating the corresponding CDFs
Fλ(Xτ ≤ Oτ) towards the boundaries of the interval defined in Equation (2.13). Formally, this
process can be described by an optimization problem searching for minimal observed mean test
failure rates (compare Equations (2.14a) and (2.15a)) complying with the constrains given by
Equations (2.14b) and (2.15b), respectively.

∀τ ∈ T :

minimize
λlo,Oτ∈R+

0

λlo,Oτ
(2.14a)

subject to:

Fλlo,Oτ
(Xτ ≤ Oτ) ≤

Pτ + 1
2

(2.14b)
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∀τ ∈ T :

maximize
λhi,Oτ∈R+

0

λhi,Oτ
(2.15a)

subject to:

Fλhi,Oτ
(Xτ ≤ Oτ) ≥

1− Pτ

2
(2.15b)

The result is a confidence interval [λlo,Oτ
, λhi,Oτ

] which determines the lower and upper
limits for the expected test failures Eτ during an observation time ∆τ in a faultless system.
Now, in order to identify a potentially faulty resource which would cause a shift of the corre-
sponding confidence interval, we can formulate an ILP-based optimization problem as shown
in Equations (2.16a) through (2.16e)5.

minimize
yr∈{0,1}

∑
r∈R

yr (2.16a)

subject to:

∀τ ∈ T : λlo,Oτ
≤ Eτ

∆τ
≤ λhi,Oτ

(2.16b)

∀τ ∈ T : Eτ = ∑
r∈R

xr · λ(τ, r) · ∆τ (2.16c)

∀r ∈ R : xr ≥ δr · yr (2.16d)

∀r ∈ R : xr ≤ δr + 1010 · yr (2.16e)

The aforementioned relation between Eτ and the confidence interval is defined as Con-
straint (2.16b). The expected test failures Eτ are calculated as sum of weighted λ-values over
all resources, where the weight is defined by the resource-dependent stress variable xr (Con-
straint (2.16c)). In this context, we use yr as a switch variable to decide whether xr is signif-
icantly exceeding (yr = 1) or still within an acceptable range (yr = 0) in order to keep Eτ

inside the confidence interval (Constraints (2.16d) and (2.16e)). The threshold for this decision
is set by the parameter δr. Applying these constraints, the objective function (2.16a) searches
for cases where a minimal number of stressed resources (ideally a single one) is responsible
for the observed test failures. To rule out additional resources being responsible for the failed

5Note that in this thesis, bold characters in an ILP denote variables alterable by the solver while normal char-
acters represent constant and precalculated values, respectively.

43



2 Diagnosis of Intermittent Faults

tests, the optimization algorithm must be started a second time with the first solution excluded
from the test. The correctness of the first run can only be confirmed if the latter test run finished
without a solution.

Although Eτ and Oτ intuitively depict countable integers, the ILP-based optimization al-
gorithm considers both as values from the set of positive rational numbers R+

0 . Similarly, the
variables λ(τ, r) and xr are from R+

0 , whereas the switch parameter yr is defined as a binary
variable with the two values 0 and 1. Finally, the threshold δr is crucial for the goodness of
the fault diagnosis, such that several different values have been applied during the experimental
results in Section 2.5.

2.4.5 Method IV - Pearson’s χ2-Test

As a fourth diagnosis method, an approach based on a statistical hypothesis test shall be inves-
tigated. To determine whether the observed test failures correspond with the expected failure
rate, the Pearson’s χ2-Test shall be used as a statistical model to describe the goodness of fit.
Within this test, χ2 describes the value of the test statistic representing the normalized sum of
squared differences between observed and expected test failures, as shown in Equation (2.17).

χ2 = ∑
τ∈T

(Oτ − Eτ)2

Eτ
(2.17)

At the same time, Equation (2.18) defines a null hypothesis H0 for the χ2-Test which indi-
cates that all observed test failures Oτ result from the expected test failures Eτ.

H0 : Eτ → Oτ (2.18)

This hypothesis shall be accepted if the p-value of the χ2-Test is higher than a predefined
significance level and rejected otherwise. The p-value describes that the probability of a corre-
sponding test statistic is equal as or higher than the actual observation, given that the null hy-
pothesis is true. We chose the significance level of 0.05, as it is commonly used in science [126].
Consequently, the p-value can be described as in Equation (2.19), where F(χ2, |T | − 1) repre-
sents the CDF of the χ2 distribution and |T | − 1 defines the number of degrees of freedom.

1− F(χ2, |T | − 1) ≥ 0.05 (2.19)

Based on the definitions above, we can formulate an ILP-based optimization problem to
find solutions for the χ2-Test. Similar to the approach in Method III, we are trying to minimize
the number of cases, where the expected test failure rates associated with potentially faulty
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resources need to be weighted with a stress variable xr exceeding a predefined limit δr. The
optimization problem is defined in Equations (2.20a) through (2.20g).

minimize
yr∈{0,1}

∑
r∈R

yr (2.20a)

subject to:

χ2 = ∑
τ∈T

Oτ
2 · Rτ − 2 ·Oτ + Eτ (2.20b)

χ2 ≤ F−1(1− 0.05) (2.20c)

∀τ ∈ T : Eτ · Rτ = 1 (2.20d)

∀τ ∈ T : Eτ = ∑
r∈R

xr · λ(τ, r) · ∆τ (2.20e)

∀r ∈ R : xr ≥ δr · yr (2.20f)

∀r ∈ R : xr ≤ δr + 1010 · yr (2.20g)

In contrast to the confidence interval (see Constraint (2.16b)), the correlation between the
observed and the expected test failures are defined by the χ2-Test. The Constraint (2.20b) refers
to the test statistic from Equation (2.17) where the squared difference is resolved and the quo-
tient 1

Eτ
is substituted with Rτ. The comparison of the test statistic with the χ2 distribution is

represented in Constraint (2.20c) where the inequality in Equation (2.19) is solved for χ2 with
F−1 describing the corresponding inverse cumulative probability. To define the reciprocal of
Eτ, Constraint (2.20d) consists of the multiplication of two variables which leads to a non-linear
problem in the ILP. In order to still be able to apply a linear solver, the variable Rτ must be
fragmented into a sum of bit-variables representing the coefficients of the corresponding pow-
ers of two. This enables an addition-based calculation of 1

Eτ
. The last three Constraints (2.20e)

to (2.20g) are identical to the Constraints (2.16c) to (2.16e) in Method III and are serving the
same purpose. Finally, similar to the confidence interval approach, the χ2-Test has to be exe-
cuted twice to rule out alternative solutions.

2.5 Diagnosis Evaluation

In this section, the four intermittent fault diagnosis methods defined in Section 2.4 shall be
analyzed and evaluated with the aim to verify their general feasibility as well as compare their
efficiency and performance.
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2.5.1 Test Case Generation
The test cases used for the following experimental results are inspired by current automotive
E/E architectures. As already introduced in Figure 2.4, they use graph-based representations of
the system specifications (i.e., applications, consisting of data-dependent tasks and architectures
consisting of interconnected resources) and are implemented based on a previously presented
model [86]. In the following, the generation of test cases for the experiments shall be briefly
explained.

2.5.1.1 Generating Expected Faults

Expected test failure rates for all resources are represented as λ-values of a Poisson distribution,
as defined in Section 2.3.1. Each resource is initially given a randomly calculated λ-value
which represents its utilization-independent susceptibility for transient faults. The mapping of
an application to an architecture also assigns the test tasks τ to particular resources. For the
experiments, test tasks are always depicted by the final element of a task chain. Based on this,
the Λ-matrix for a specific test case can be constructed.

2.5.1.2 Generating Observed Faults

The fault observations are identified by failures of plausibility tests within a predefined period
of time. As the fault occurrence on a resource is assumed to follow the Poisson-distribution, the
inter-arrival times are exponentially distributed with a mean represented by a (possibly stressed)
λ-value. To simulate a resource with an increased intermittent fault rate, the corresponding λ-
values are multiplied with a stress factor in the range of 103. In each test case one such resource
is randomly selected. Here, it must be ensured that all tasks which are a predecessor of the
plausibility tests are affected by the faults with a frequency related to their utilization on the
corresponding resources. Based on that, the numbers of observed test failures Oτ are simulated
for each test case.

Altogether, 240 specifications with realistic sizes and topologies have been generated. These
specifications comprise various system definitions with 10-100 resources and 3, 5 and 10 tasks
executed on each resource, respectively. The ratio of plausibility tests to resources varies be-
tween 1

4 and 1. The four fault diagnosis methods presented in Section 2.4 are applied to each of
the 240 specifications in different variants described by three sets of the parameters resulting in
a total of 2880 distinct test runs. The parameters are εcos and εsvd in case of the vector-based
approaches (Methods I and II) as well as δr in case of the ILP-based approaches (Methods III
and IV). The parameter values are listed in Table 2.2. As already mentioned, the choice of
these values can have a significant impact on the diagnosis results. Their selection used for the
following evaluation is based on several preliminary test-runs in order to rule out values which
would provide little or no insight into the intermittent fault diagnosis. In other words, the pa-
rameters shall lead to a better assessment of the presented methods rather than provide optimal
thresholds to be applied on real architectures.
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Table 2.2: List of three different sets of parameter values for the proposed diagnosis methods.

Method Parameter Set 1 Set 2 Set 3

I εcos 3.0 · 10−3 6.0 · 10−3 1.2 · 10−2

II εsvd 4.3 · 10−5 8.50 · 10−5 1.70 · 10−4

III & IV δr 1.1 1.5 1000

For each test case, the observation time varies, ranging from 10 to 1000 times of an average
task period, as shown in Equation (2.21) (see also discussion in Section 2.7).

∆τ = 10n · ht, with n ∈ {1, 2, 3} (2.21)

Finally, in order to additionally indicate false positive results, we assume that only 50 % of all
test cases (i.e., 120) actually contain a faulty resource.

2.5.2 Experimental Results
All experiments were carried out on an Intel Core i5 with 2.6 GHz and 8GB RAM. For the
methods that required an ILP solver, GUROBI version 5.0 [39] was used.

2.5.2.1 Correctness

First, the correctness of the introduced intermittent fault diagnosis shall be analyzed, which
gives evidence of the overall feasibility of our approach. For this, the chart in Figure 2.5 shows
for which percentage of the test cases the system has been correctly diagnosed as faulty and
healthy, respectively. Here, as denoted by the labels on the y-axis, results from each of the four
methods are further divided into the parameter sets, such that each bar represents a particular
diagnosis method with one specific parameter value. Furthermore, as each outcome can be
assigned to one of four different results, the bars are subdivided into four categories, namely,
correct (filled), false positive (north-west lines), false negative (north-east lines) and timeout
(empty), which correspond to a number of test cases between 0 and 240 for each single bar
(illustrated in percent on the x-axis). Correct results include both the exact detection of a faulty
resource and the proper conclusion that a system is not affected by intermittent faults. In contrast
to this, a false positive result indicates that an actually healthy resource has been diagnosed as
faulty. Moreover, this category also contains results where several resources are considered
faulty, which can also include the one initially stressed. Finally, false negative results are cases
where the stressed resource is not detected and the system is considered fault-free. The timeout
for each test case was set to 60 seconds, which means that a test run was aborted if no solution
had been found within this period. Inside the chart, these cases are illustrated by an empty bar.

To begin with, it can be stated that overall the results in Figure 2.5 give evidence of the fea-
sibility of the presented intermittent fault diagnosis approach. Comparing the different methods
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Figure 2.5: Bar chart depicting the amount of correctly diagnosed test cases. Each bar repre-
sents the result for one fault diagnosis method with one specific parameter value. False positive
and false negative results refer to test cases which could not be solved correctly. The timeout
for finding a solution for one single test case was set to 60 seconds.

among each other, shows the best results for the Cosine Similarity with about 90 % correctly
diagnosed cases for all three parameter configurations, however, with a slightly increasing num-
ber of false negatives when the threshold εcos becomes smaller. With the overall best result in
its upper bar, the SVD method shows a similar outcome, although it contains some more false
negative test case results for the larger values of εsvd. The decrease of false positive detections
with lower threshold values can be explained by the narrowed tolerance scope for the compari-
son between observed and expected vectors. Since at the same time the false negative detections
are increasing, which for a safety-critical system might be regarded more severe, the parameter
values must be chosen with care. In contrast to this, the Confidence Interval method shows a
larger variation between the parameters but can achieve similar diagnosis results with the right
choice of the decision threshold. Here, however, the correlation is reversed, as a higher δr leads
to significantly more false negative detections with overall more correct results. This behavior
can be explained by the fact that in the ILP-based methods the decision threshold in a certain
way reflects the level of the assumed system noise (i.e., the amount of transient faults). For this
reason, a similar trend can be seen in the χ2-Test results, where false positive outcomes appear
only at low δr values.
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Figure 2.6: Graph illustrating the relative amount of correctly diagnosed test cases over the
corresponding test-to-resource ratios. The graphs combine the results of all regarded diagnosis
methods and parameters. The gray plot represents an estimation of the χ2-Test results without
timeouts.

The evident limitation of the fourth method is the large number of test cases resulting in a
time out error, which most probably are caused by the linearization of the quotient term in the
ILP, discussed in Section 2.4.5. Nevertheless, aside from the timeouts, the results for the χ2-Test
look promising and it is expectable that this method would deliver detection rates comparable to
the Confidence Interval results or even better, when using an alternative implementation, such
as a non-linear optimization.

2.5.2.2 Plausibility Test Distribution

The intermittent fault diagnosis uses a distributed approach where the outcomes of existing
plausibility tests located on various resources are evaluated collectively. As a reduction of
(possibly redundant) plausibility tests might contribute, on the one hand, to a lower utilization
of the system at runtime and, on the other hand, to a faster diagnosis process, it is interesting to
investigate the correlation between the average number of tests per resource and the diagnosis
efficiency. In this regard, the chart in Figure 2.6 depicts the percentage number of correct test
results on the y-axis and marks four points with different test-to-resource ratios on the x-axis.
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Here, each diagnosis method includes the results of all three parameter sets. The ratios lie
between 0.25 and 1 which means that we split the results in cases where each four resources in
a system share one, two, three or four plausibility tests, respectively.

Overall, all methods except for the χ2-Test show a good detectability in a high two-digit
percentage range with only small deviations between the different ratios. However, besides the
much lower values for the χ2-Test resulting from a high number of timeouts, the progressions
of the four curves can also seem unexpected due to two other aspects. Firstly, the differences
between the different ratios seem rather small, as one might expect the curves increasing more
clearly when higher test-to-resource ratios are used. Secondly, the three upper curves show the
worst results on system with one test per resource. A possible explanation for low variation
between the four ratios can be, that the here regarded system sizes with maximal 100 resources
are not large enough. As will be shown in Section 2.6.3, the expected increase is clearly vis-
ible when considering systems roughly larger by one order of magnitude. The decline of the
upper curves at the highest ratio, on the other hand, most probably derives from an increased
number of false positive detections, when many tests are applied and could be reduced by adapt-
ing the corresponding threshold parameter values accordingly. Regarding solely the χ2-Test, a
higher number of tests seems to improve the detectability. These results should be interpreted
with care, as that correlation may be distorted by the limited number of considered test results
caused by the timeout, which is also responsible for the low detection rate. To get an idea
how the outcome for the χ2-Test could look like without timeout errors, the gray curve in the
graph illustrates estimated results projected on the basis of the available test cases including all
analyzed methods. However, it must be noted, that even though the projected curve seems in
accordance with the other results, it is only a rough estimation and should not be considered for
implementation or further refinement of the χ2-Test method.

Summing up, for the results in Figure 2.6 in can be concluded that the choice of the right
parameter values has a greater impact on the fault diagnosis than the number of plausibility
tests. It also shows that for system sizes used in the automotive area, our approach works well
also for lower test to resource ratios.

2.5.2.3 Runtime

As a third experimental result, the computation times of the four proposed diagnosis methods
shall be analyzed. Similar to Figure 2.5, the graphs in Figure 2.7 are divided into the four
diagnosis methods as well as the corresponding three parameter values. The x-axis illustrates
the runtimes of the computation in seconds where each cross denotes one single test case. Here,
the lowest values are in the range of microseconds and the timeout is set to 60 seconds. The
numbers in brackets at the χ2-Test results represent test cases which have been aborted due to a
timeout error.

Overall, the graph illustrates that the results of the two vector-based diagnosis methods are
in a lower millisecond range even for the slowest test cases. Also the results for the Confidence
Interval method are still below one second and, hence, do not cause severe runtime issues. On
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Figure 2.7: Graph illustrating the computation times of the analyzed test cases with a timeout at
60 seconds. It is divided according to the four detection methods with three different parameters.
The numbers of test runs that are aborted due to a timeout are annotated in brackets.

the contrary, the computation times for the χ2-Test are in sub-second range only for very few
test cases, while most of the remaining ones deliver no proper results due to a timeout error.
However, as already mentioned before, this outcome could be possibly improved by using a
non-linear solver, which would eliminate the additional computationally expensive linearisation
of the reciprocal of expected failures Eτ (compare Equation (2.20d)).

Considering the parameter values, it can be seen that there are only small differences in
runtimes in each method. The small gaps at the beginning of εcos2 and εsvd2, respectively, are in
a negligible time range and most probably due to small differences in the implementation. On
the other hand, the slightly faster results of the Confidence Interval for δr3 reflect the use of the
computational intensive ILP solver. Obviously, the solver is able to find a solution faster when
the threshold δr is set higher and, hence, the search space is smaller.

Finally, although there seem to be almost no differences between the runtime results for the
Cosine Similarity and the SVD, it can be expected that with a higher number of resources the
SVD-Test will experience longer computation times caused by a more intensive SVD calculation
compared to the relatively simple cosine similarity. Generally, it should be considered that the
runtime of the diagnosis does not have to support any real-time requirements since already the
observation time of a system can be rather long and compared to that the presented methods are
very fast.
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2.6 Intermittent Fault Diagnosis in Many-Core Systems
The intermittent fault diagnosis has been primarily designed for automotive E/E architectures
at system level in order to detect faulty ECUs. However, the approach introduced before is
not necessarily restricting the considered resources to ECUs but could be also applied to dis-
tributed systems on a different scale, for instance, in many-core NoCs. As these architectures
are becoming more and more relevant for the automotive domain, in the remaining part of this
chapter we want to investigate the usefulness and efficiency of the intermittent fault diagnosis
in many-core systems. More precisely, we apply the methodology proposed in Section 2.4 to
implicitly detect an affected core by diagnosing an increased fault-rate while taking into account
the distributed application tasks and their data-dependencies. The four diagnosis methods are
evaluated and compared in terms of runtime and detectability, among other things, considering
a significantly higher number of resources than in Section 2.5.

2.6.1 Motivation and Illustrative Example
Nowadays, the multi- and many-core paradigm is not an exclusive characteristic of servers or
workstations any more. Due to higher performances and lower energy consumptions, CPUs
with multiple cores find their way into embedded SoCs architectures and, thus, into domains
where safety aspects are of high relevance, such as avionics and automotive. However, to fulfill
the corresponding reliability requirements of safety-critical systems, efficient fault diagnosis
and fault tolerance mechanisms are inevitable. Here, especially the minimized component sizes
and lower supply voltages resulting from a higher number of cores on one die could lead to
an increased susceptibility for faults. The latter, in turn, can be caused by environmental phe-
nomena, like EMI or ESD, as well as marginal hardware and variations during the production
process. Whatever their cause is, these faults have a negative impact on the system reliabil-
ity [23]. Moreover, in many-core systems, the faults in one core can influence the behavior of
the running application and, in the worst-case, lead to the failure of the entire processor. It is
therefore desirable to obtain knowledge about potential core failures before they actually hap-
pen, and apply precautionary measures, which can vary from restarting the affected task on a
different (redundant) core to a controlled shutdown of the entire processor. For such an early
fault detection, an increased number of non-permanent faults is a suitable indicator to determine
unhealthy cores.

Consequently, just as for ECUs within an automotive architecture, we are interested in an
approach to implicitly detect cores in a many-core system that show an increased number of
non-permanent faults. In other words, the presence of intermittent faults shall be verified. As-
suming that in the course of the aging process a deficient hardware causes the presence and
accumulation of intermittent faults, a potential imminent permanent fault of a specific core can
be projected by analyzing the results of a set of plausibility tests running within regular tasks
or as discrete applications. As mentioned earlier, one goal of the proposed diagnosis approach
is to perform such a detection implicitly in order to keep the additional resource utilization low.
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In contrast to an explicit diagnosis which would require additional tests for each component,
the proposed fault detection relies on existing plausibility tests being part of the corresponding
many-core applications. Moreover, heterogeneous CPU architectures might often only be able
to check the consistency of test results on specific cores and components, respectively. For this
purpose, the distribution of applications, the runtime of tasks, and their data-dependencies are
taken into account to determine the core that shows an increased number of intermittent faults.
However, the fault diagnosis is not basically limited to existing tests and could be extended to
work with explicit test task when necessary, as will be briefly discussed in Section 2.7.

Based on the above considerations, we apply the intermittent fault diagnosis methods, pre-
sented in the context of faulty ECUs in automotive E/E architectures in the previous sections,
to many-core systems. As the number of cores in many-core systems quickly increases and
might reach ranges of 103 and higher within the next decade [73], the scalability of our ap-
proach is crucial. Therefore, we aim at optimizing two conflicting objectives: on the one hand,
our method shall provide an optimal diagnosability of faulty cores and, on the other hand, the
runtime of the diagnosis shall be minimal. In the experimental results, we show the general
feasibility of the proposed approach and compare the methods in terms of runtime and correct-
ness of the detection. For the sake of simplicity, we consider a system with at most one affected
core. However, as mentioned earlier, the presented approach can be extended to a concurrent
detection of multiple faulty resources.

Motivating example. Analogue to the E/E architecture scenario, Figure 2.8 illustrates the
intermittent fault diagnosis principle in a many-core system. It shows four cores of a (possibly
larger) NoC-based many-core system where an increased fault rate occurs on core0. More
precisely, the considered system consists of two functions each executing four application tasks
τxi/yi and two test tasks tx/y as well as a processor architecture containing at least four cores.
The dashed arrows and shaded background areas indicate which tasks are mapped to which
cores. Depending on the particular assignment and utilization of the tasks, a higher rate of non-
permanent faults on one core can be detected by analyzing the failure ratio of particular test
tasks. In this trivial example, we assume that all cores are equally utilized by the application
tasks and a specific observation time is defined. Now, given that all faults will finally lead
to failures of the plausibility tests, an increased fault rate on core0 will cause a failure ratio
between tx and ty of 2:1, since it is running two tasks from the tx-task chain and only one from
the ty-task chain. Correspondingly, a failure ratio of 1:2 indicates a faulty core1, whereas the
occurrence of failures of just one test tx or ty shows a faulty core2 and core3, respectively.

2.6.2 Many-Core System Model

Generally, the system model for the intermittent fault diagnosis in many-core systems is for-
mally equal to that introduced in Section 2.3.1, including the Poisson-distributed fault model,
the expectation matrix as well as a possible diagnosability analysis. As a consequence, also
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Figure 2.8: Example illustrating the principle of our detection approach on four cores of a NoC-
based many-core system. The application tasks tx1 , tx2 , ty1 are mapped to core0 and tx3 , ty2 , ty3

are mapped to core1, whereas the remaining tx4 and τx as well as the ty4 and τy are assigned
to core2 and core3, respectively. The increased fault rate on core0 results in a test failure ratio
between τx and τy of 2:1.

the formal definitions presented in Section 2.4 can be applied for many-core systems. How-
ever, given the different dimensional and architectural constraints, there are several differences
regarding the corresponding requirements, which shall be briefly discussed below.

Unlike in single-core architectures, the system performance in many-core systems arises
from the number of cores rather than their complexity or clock-frequency. While beneficial with
respect to the energy consumptions and computational efficiency, this also results in an absence
of hardware-based fault diagnosis and fault tolerance mechanisms for each single core [131].
Consequently, to keep or increase the reliability level of single-core architectures, it becomes
inevitable to implement this functionality in software for which the computational overhead
should be kept as low as possible. Within the many-core system model, we consider a single
core in a many-core architecture as one particular resource. However, by adapting the expected
fault rates, our fault diagnosis can also be used for other system granularity levels where a
resource is regarded, for example, as a whole tile comprising a computation core, cache memory
and router in a NoC or, in a fine grained model, just one of these elements.

As discussed earlier, the diagnosis methods themselves do not need to comply with strict
real-time requirements. However, in contrast to the intermittent fault diagnosis at ECU-level,
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Figure 2.9: Figure illustrating a simplified many-core system specification and the correspond-
ing expectation matrix. It consists of three application functions ( fx, fy, fz), the cores core0 to
core8 and mappings between tasks and cores (99K). The expectation matrix derived from the
specification points out the affected λ-values in case of a faulty core c3.

the memory necessary to store plausibility test outcomes may be a crucial issue. Hence, re-
ducing the number of regarded tests or rather minimizing the tests-to-core ratio becomes an
even more important characteristic of the diagnosis quality. Finally, the determination of the
λ-values might turn out to be very challenging. On the one hand, the small sizes and similar
structure of cores on a single will lead to only minimal differences between the single entires
of the Λ matrix. On the other hand, effects like an uneven distribution of heat throughout the
SoCs must be considered as they can influence the aging and, thus, the fault rate of particular
cores.

The many-core system model used for the experimental results in Section 2.6.3, can be con-
sidered as according to the example in Figure 2.9. It shows an simplified system specification
consisting of an process graph GP representing the application with three functions fx, fy and
fx with two or three application tasks tx/y/z and one test task τx/y/z each. The architecture
graph GR represents a many-core system with nine cores core0 to core8 assigned to the tasks
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according to the mapping definition EM. Below the system specification, the expectation matrix
represents the expected failure rates of the three plausibility tests caused by each core. In this
example, core c3 is considered faulty, which would affects the observations associated with the
highlighted λ-values in the third matrix column.

2.6.3 Diagnosis Evaluation
This section shall investigate the feasibility and performance of the proposed intermittent fault
diagnosis in many-core systems.

2.6.3.1 Test Case Generation

For the following evaluation a similar testing environment has been used as for the previous
analysis in Section 2.5. This includes the generation of expected and observed faults as well
as the choice of the threshold parameters listed in Table 2.2 which might facilitate a possible
comparison between the two result sections. However, the goal of the evaluation is not to
merely provide the comparability between large distributed systems, such as automotive E/E
architectures, and small distributed systems, such as NoCs, but also and especially to investigate
the applicability of our intermittent fault diagnosis for those different scenarios as well as its
scalability.

Consequently, the main modifications for the many-core scenario are in the experimental
test cases. Based on the system model described above, 240 test cases have been generated with
topologies inspired by NoCs. The architecture sizes are ranging from 3x3 to 48x48 cores and,
thus, the corresponding system specifications comprise 9 to 2304 resources executing 3, 5 and
10 tasks on each resource on average. Due to the larger systems, the ratio of plausibility tests
to cores varies between 1

2 and 1
16 . Analogue to the previous evaluation of the intermittent fault

diagnosis, the observation time varies according to Equation (2.21) and we assume that only
half of the test cases have faulty core in order to detect false positive results.

2.6.3.2 Experimental Results

Correctness. First, the overall fault diagnosis results shall be investigated based on the bar
chart in Figure 2.10. Like for the graph in Figure 2.5, each bar represents one detection method
with one specific parameter value and each test outcome can be assigned to one of four different
results, correct, false positive, false negative and timeout, with the latter one set to 60 seconds.

Inspecting the absolute numbers of correct test case results indicates a superiority of the
Cosine Similarity, SVD-Test as well as the Confidence Interval methods (49 − 73 % correct
detections) over the χ2-Test (11 − 16 % correct detections). The two vector-based methods
show a comparable distribution of the four regarded result categories with the Cosine Similarity
being able to correctly detect 2− 8 % more test cases. The Confidence Interval, has, on the one
hand, the overall highest number of correct detections for the parameter δr3, on the other hand,
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Figure 2.10: Graph comparing the numbers of all test case results of the intermittent fault
diagnosis in many-core systems. Each bar represents the outcome for a fault diagnosis method
with one specific parameter value. False positive and false negative results comprise test cases
which could not be solved correctly. The timeout for finding a solution for one single test case
is 60 seconds.

it also presents the highest variance between the different parameters. Here, the experiments
using the parameters δr2 and δr3 ran into a timeout for about 5 % of the test cases. In contrast to
this, for the χ2-Test the calculations have been aborted in almost 80 % of the cases but otherwise
show a comparable distribution of the results as the Confidence Interval. Again, using a different
solver for the corresponding ILP might reduce the number of timeouts making the χ2-Test still
an interesting method for the intermittent fault diagnosis. Due to equal test parameter values
and diagnosis methods, the distribution of correct, false positive and false negative test results
for all test configurations accords with the discussion in Section 2.5.2. Nevertheless, although
the presented outcome confirms the general feasibility of our approach for many-core systems
and shows a qualitative similarity to the results for smaller architectures, such as the in-vehicle
networks, the quantitative detection rate appears to be worse. As a consequence, the diagnosis
behavior in relation to the system size, namely the number of cores, shall be investigated in the
following.

Figure 2.11 illustrates the detectability as a function of the number of cores for all four
methods with the results from all three parameter values combined. The y-axis represents the
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Figure 2.11: Diagnosis rate as a function of the system size. The curves represent only correct
fault diagnosis outcomes without considering false positives results and the outcome of each
method combines the results of all three parameter values. The number of cores on the x-axis
is depicted in logarithmic scale.

rate of correct test outcomes, however not including false positive results and the x-axis depicts
the number of cores on a logarithmic scale. Interestingly, the Cosine Similarity and the SVD are
both outperformed by the ILP-based methods when less than 25 cores are being analyzed but
rise quickly afterwards when the systems sizes increase, making the latter two methods a good
choice only for smaller multi-core architectures. The unsteady and irregular behavior of the
three upper curves towards higher core numbers is mainly caused by the nonuniform number of
test cases for the different system sizes. Additionally, this might also be intensified by the ran-
dom distribution of task chains during the test case generation. In general, all implementations
except for the χ2-Test provide a detectability which lies clearly above 50 % in almost all cases
for all system sizes. Hence, the above-mentioned inferior results for many-core systems do not
merely come from the larger system sizes but rather from a lower total number of plausibility
tests, as will be discussed later. Regarding the χ2-Test, the rapid fall and lack of correct detec-
tions for more than 144 cores can be explained by the unfinished experiments which ran into a
timeout.
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Figure 2.12: Diagnosis rate as a function of the tests-to-core ratio. A higher ratio on the x-
axis indicates that less cores share one plausibility test. The curves represent only correct fault
diagnosis outcomes without considering false positives results and the outcome of each method
combines the results of all three parameter values. The test ratio on the x-axis is depicted in
logarithmic scale.

Test distribution. As the proposed fault diagnosis follows an implicit paradigm, and by this,
utilizes already existing plausibility tests, we want to investigate the influence of the number of
tests per core on the diagnosis quality.

In Figure 2.12 the y-axis depict the percentage number of correct test results and the x-axis
represents the tests-to-core ratios with the four values between 2−4 and 2−1. This indicates
that a single plausibility test per 16, 8, 4, and 2 cores, respectively, is considered for the fault
diagnosis. Like for the previous plots, in this graph the results for all parameters are combined.
Overall, the curves demonstrate that the diagnosis rate is increasing with a higher tests-to-core
ratio for all methods except for the χ2-Test for which this behavior is reversed and quantitatively
less distinct. The most probable reason for this is that for a higher number of tests the detection
problem becomes more complex and, thus, more χ2-Test test cases result in a timeout error. This
fact is also responsible for the overall low detectability of this method, as already discussed. By
contrast, for the remaining three approaches it can be seen that even a relatively low rate of one
plausibility test per 16 cores still correctly detects every second test case while applying one

59



2 Diagnosis of Intermittent Faults

9 25 64 144 256 400 625 1024 1600 2304

10−4

10−3

10−2

10−1

100

101

102 timeout=60s

Number of cores

R
un

tim
e

[s
]

Cosine Similarity SVD-Test

Confidence Interval χ2-Test

Figure 2.13: Average test case runtimes as a function of the system size. The outcome of
each method combines the results of all three parameter values. The timeout for the test case
calculation was set to 60 seconds. Both axes are in logarithmic scale.

test per two cores on average leads to a detectability of up to 90 %. For illustration purpose,
the gray curve represents estimated results for the χ2-Test without timeouts, but should not be
considered for implementation or further refinement due to its possible imprecision.

Runtime. In the next step, the diagnosis methods shall be evaluated regarding their computa-
tional efficiency. For this, the graph in Figure 2.13 depicts the runtime in seconds on the y-axis
and the number of cores on the x-axis. Both axes are displayed in a logarithmic scale. The result
curves indicate very short computational times for the Cosine Similarity lying below 100 ms for
all system sizes. The runtime of the SVD-Test method is comparable up to 64 cores but becomes
slower afterwards with two orders of magnitude above the Cosine Similarity for the largest sys-
tems. Compared to the vector-based methods, the runtime of the Confidence Interval is lower
but still in a reasonable range. In contrast to this, the χ2-Test shows a low efficiency already
for the smallest architectures and quickly becomes infeasible for test cases with more than 64
cores.
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Figure 2.14: Illustration of Pareto efficient points with respect to a high detection rate at low test
case runtimes. The pinned labels show the core numbers associated with the particular results
and two connected points represent a Pareto-front. The outcome of each method combines the
results of all three parameter values. The runtime on the y-axis is in logarithmic scale.

Trade-off analysis. As mentioned previously, the design of distributed systems with a focus
on efficient fault diagnosis requires both a high fault detection rate without additional software
or hardware extensions as well as a fast corresponding computation time. Hence, a system
designer might be especially interested in the results from Figure 2.11 and 2.13 in order to select
and implement the most suitable fault diagnosis method. For this, the graph in Figure 2.14
combines these two results and, thus, helps to analyze the Pareto efficiency with respect to
the diagnosis quality and runtime. Here, the deep blue marks represent optimal results for a
particular system size, with the number of cores pinned to the corresponding marker. In the
case, where two detection methods are optimal for both objectives (i.e., runtime and correct
diagnosis), the corresponding marks are connected with the resulting line forming the Pareto-
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front for the corresponding system size. All grayed out points are dominated by the full blue
ones and, hence, are regarded as Pareto inefficient.

The graph shows, that for the most system sizes the Cosine Similarity seems to be the best
diagnosis method. Although the SVD shows slightly better detection rates for 256, 400 and
1024 cores, its runtime is one or two orders of magnitude slower (however, still in a millisecond
or low second range). When considering small systems with 9 and 25 cores, then, clearly, the
Confidence Interval is the best choice, as in this time range the difference to the vector-based
method is negligible. Due to its long computation time, using the χ2-Test seems not beneficial
for the regarded test cases.

2.7 Conclusion
In this chapter, an approach was presented that enables an implicit detection of resources in
a distributed system affected by intermittent faults. Multiple methods, which analyze existing
plausibility test outcomes collected at runtime, are applied off-line and during low system uti-
lization, respectively. Overall, the diagnosis is aiming at an early detection of increased fault
rates indicating a potential imminent permanent fault. Although in the first instance intended
for larger automotive E/E architectures, it has been shown that the presented approach can be
used for distributed systems on IC level, such as modern many-core NoC-based architectures,
as well. The latter application is relevant for the automotive industry, since the use of multi-
and many-core systems in safety-critical domains is constantly growing.

Four different fault diagnosis methods are proposed. Two of them use a vector-based ap-
proach (Cosine Similarity and SVD) and two use a probabilistic approaches (Confidence Inter-
val and χ2-Test). All methods are evaluated based on a number of synthetic test cases covering
both the automotive in-vehicle networks and many-core systems. The experimental results give
evidence of the effectiveness and efficiency of the proposed approach. For instance, in can be
shown that, depending on the analyzed method, a correct fault diagnosis result can be obtained
in up to 95 % for the automotive test cases and up to 75 % for the many-core systems. Espe-
cially regarding the wide range of the system sizes, the approach shows a good scalability and
satisfactory runtimes. The main limitation is resulting from an insufficient scalability of the
computational intensive χ2-Test method.

To the best of our knowledge, this is one of the first approaches analyzing and compar-
ing distributed plausibility test failures to implicitly detect an increased occurrence of non-
permanent faults on faulty resources. Therefore, the main goal of the intermittent fault diagno-
sis is the demonstration of its general feasibility and its possible use in the area of safety-critical
distributed systems. Finally, the presented approach has the potential for future extensions, as
discussed below.

Future work. One of the aspects which shall be investigated in more detail in the future,
is the influence of the observation time on the diagnosis quality. Although intermittent faults
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may be not as safety-critical as permanent faults, it is still very important to guarantee a fast
diagnosis which, for the presented approach, depends on the choice of the observation time. As
already mentioned, in this stage of the work, we only consider a single faulty resource (i.e., one
ECU or one core) at a time. However, ILP approaches innately support the detection of multiple
stressed resources and the methods based on the analysis of linear dependencies can be adapted
appropriately. Hence, an extension of the approach towards a concurrent detection of multiple
faulty resources is basically possible and shall be included in the future work. For the evaluation
part of our work, the generation of synthetic test cases involves a random distribution of tasks
and plausibility tests to resources. This is mainly to reflect a given and unmodified system
supporting the implicit character of the diagnosis. Here, it would be interesting to investigate
the influence of a deliberate and optimized placement of tasks and plausibility tests, which
could improve the detection rate, however, for the price of an increased effort during design
time. In this context, an option could also be to add explicit plausibility tests in order to enable
or enhance the diagnosis for particular system specifications. Finally, we want to investigate the
behavior of the fault diagnosis approach for different fault rates and also analyze various fault
propagation models, possibly with the help of an Instruction Set Simulator (ISS).
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CHAPTER3
Diagnosis of Permanent Faults

The previous chapter presented an approach for the diagnosis of intermittent faults in distributed
systems. It has been shown how the analysis of existing monitoring and testing features inte-
grated in particular distributed resources can be used to detect and locate an increased occur-
rence of non-permanent faults on system-level. Furthermore, by using task dependency knowl-
edge, resources without self-testing functionality are diagnosable as well.

This chapter presents a novel decentralized approach for the diagnosis of permanent faults
in automotive E/E architectures. As already discussed in Chapter 2, both the safety-critical real-
time requirements and the distributed nature of these architectures make novel fault tolerance
approaches on system-level a crucial and challenging issue. At the same time, high unit numbers
in manufacturing add cost efficiency as an important criterion during system design, which is
conflicting with the use of often expensive explicit fault diagnosis hardware or software.

To address these challenges, we propose a diagnosis framework for permanent faults that
mainly consists of two stages. In the first stage, called diagnosis determination, a given archi-
tecture is analyzed and all potential fault scenarios, such as a faulty ECU, are investigated to
obtain a set of special diagnosis functions. These diagnosis functions are used at runtime on
each suitable resource in the in-vehicle network to determine whether a certain fault scenario
occurred or not, and thus, to detect a permanent fault. In the second stage, called diagnosis opti-
mization, an optimization approach is proposed to determine trade-offs between diagnosis times
and the number of monitored message streams. The feasibility and efficiency of the presented
framework is evaluated based on a number of synthetic test cases as well as an automotive case
study. Furthermore, the results of an implementation on a research platform for distributed
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automotive systems shall investigate its real hardware utilization and demonstrate its practical
usefulness.

In addition to the general approach, we also propose a schedule synthesis method specially
designed for the presented permanent fault diagnosis. It is capable of reducing the necessary di-
agnosis time compared to a given unchanged schedule and also, under particular circumstances,
to improve the overall diagnosability by increasing the number of diagnosable resources.

Chapter outline. Chapter 3 contains seven sections which can be divided into two parts. In
the first part, Section 3.1 introduces the topic, gives an illustrative example and presents the main
contribution. Section 3.2 discusses the related work. The main principle of the diagnosis and
the corresponding framework are presented in Section 3.3. Mathematical formulations of both
the diagnosis determination and optimization are given in Section 3.4 and the corresponding
experimental evaluation is discussed in Section 3.5. In the second part, Section 3.6 proposes
a diagnosis-aware schedule synthesis. Being basically self-contained, it is further divided in
the four subsections: Motivation (3.6.1), Communication Model (3.6.3), Methodology (3.6.4)
and Evaluation (3.6.5). Finally, the concluding remarks for this whole chapter are given in
Section 3.7.

3.1 Introduction
This section introduces the proposed approach for the distributed diagnosis of permanent faults.
It first motivates the topic and gives an illustrative example before discussing the specific con-
tributions.

3.1.1 Motivation
In the previous chapters, it has been highlighted how the increasing complexity of automotive
E/E architectures together with the simultaneously growing use of software and hardware for
safety-critical applications, such as ADAS, make strict guarantees on reliability, fault tolerance
and diagnosis times inevitable. In case of a component failure, the defective resource, such as an
ECU, a gateway or a bus, must be identified as quickly as possible in order to apply appropriate
countermeasures which can range from restarting the affected tasks on other resources to a safe
shutdown of the entire system. That issue becomes even more relevant in the view of shrinking
component dimensions and decreasing supply voltages in modern integrated circuits which, in
general, lead to an increased susceptibility to internal and external faults [13]. At the same time,
it still holds that given the high number of units in the automotive industry, costs for electronics
are a crucial optimization criterion restricting the use of explicit fault tolerance strategies.

In Chapter 2, a fault diagnosis approach was introduced which basically evaluated the out-
come of distributed plausibility tests in order to detect resources with an increased fault occur-
rence indicating intermittent faults. The main goal there, was to diagnose the system early in
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advance, especially, in order to prevent a long-lasting damage or a complete failure of a re-
source. However, due to the characteristics of intermittent faults, their corresponding detection
requires a sufficiently long observation time. Moreover, that detection is ineffective for sudden
component failures which are not preceded by an increased intermittent fault rate but happen in-
stantly. As a consequence, although the framework presented in Chapter 2 offers a relevant and
valid diagnosis tool for intermittent faults, it is inevitable to complement it with an appropriate
method for diagnosing permanent faults. For this, a novel approach is proposed and described
in this chapter.

As a matter of principle, the introduced permanent fault diagnosis monitors and analyzes
existing message streams in a distributed architecture in order to identify defective resources.
Within its communication and fault model, it uses specific patterns of received and omitted
messages, so-called diagnosis functions, generated by the presented framework. The approach
does not rely on a single observing entity, but rather each message-processing resource in the
architecture, like an ECU or a gateway, may be capable of diagnosing the entire system or parts
of it. Consequently, this decentralized approach removes the single point-of-failure and, thus,
improves the reliability of the fault diagnosis itself. By using only existing system messages,
the induced diagnosis overhead for each observing resource is minimal.

3.1.2 Illustrative Example

The general concept of the proposed permanent fault diagnosis is illustrated in Figure 3.1 which
contains a simple automotive architecture with three ECUs, two buses and one gateway connect-
ing these buses. In this example, ECU r3 can diagnose a permanent fault on ECU r1 by detecting
that single messages in the streams m3 or m4 have been omitted for two consecutive periods.
It is assumed that the transmission of the message streams m3 and m4 strictly depends on a
previous correct reception of messages in the stream m1 and m2, respectively, by the resource
r2. Consequently, by using explicit diagnosis functions which consider both omitted (¬mi) and
received (mi) messages1, we are able to pinpoint the source of fault (in this case by excluding
r2) and reduce the diagnosis time.

More precisely, ECU r1 is transmitting two periodic message streams m1 and m2 to ECU r2

where they are processed and forwarded to ECU r3 as message streams m3 and m4, respectively.
In this way, there is a dependency between m1 and m3 as well as m2 and m4, such that when
the transmission of messages from the primary stream fails, then the depending stream will
be interrupted as well. Furthermore, r2 sends another periodic message stream to r3, namely,
m5. As the ECUs r1 and r2 use a different bus than r3, the communication between them is
routed via an automotive gateway. Based on the periods and jitters of the messages listed as
communication parameters in a table in Figure 3.1, we are able to diagnose faulty ECUs and

1Note that while mi normally denotes a message stream (i.e., the periodic occurrence of the message), in some
cases it might also refer to single message instances. The use of the terms should be unambiguous due to the
context. By contrast, the binary variable mi describes the considered state of detection of a message stream.
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[mi ] [pi ] [ji ]

m1 and m3 20ms 5ms
m2 and m4 15ms 5ms

m5 10ms 5ms

ASSUMPTIONS:
◦ Loss in stream m1/m2 → interruption of m3/m4

◦ Loss of 2 consecutive messages→ permanent fault

PERMANENT FAULT DIAGNOSIS OF ECU r1 ON ECU r3 :
1. Observing single message losses 2. Using proposed diagnosis functions

¬m3: 2 · p3 + j3 = 45ms ϕ=(¬m3 ∨ ¬m4) ∧m5:

¬m4: 2 · p4 + j4 = 35ms p3 + j3 = 25ms (> p4 + j4)

m1 m2

m3 m4 m5

m3 m4

m5

Figure 3.1: Example for an automotive E/E architecture consisting of three ECUs, r1 to r3,
two buses and one gateway. ECU r3 is an observing resource capable of diagnosing permanent
faults (E) by monitoring patterns of omitted (¬mi) and received (mi) messages. Often, these
diagnosis functions allow a reduction of the diagnosis time.

minimize the diagnosis times not only on the common bus but also across the gateway borders,
and hence, on network-level.

For instance, a permanent fault on r1 will cause an interruption (grayed out message blocks)
of the message streams m1 and m2 and, due to the aforementioned dependency, also m3 and m4.
In order to distinguish a permanent fault from a transient fault, the number of omitted message
instances is monitored by taking into account both the measured and the expected amount of
time in which the corresponding message streams are interrupted. Equivalent to the message
transmission model periodic-with-jitter, this time is represented as an integer multiple of the
number of periods and must also include a possible worst case jitter. As will be explained in
detail in Section 3.3, two omitted messages shall indicate a permanent fault. As a consequence,
when r3 monitors the streams m3 and m4 separately, it needs at least 45 ms (2 · p3 + j3) or
35 ms (2 · p4 + j4), respectively, in order to decide if a permanent fault occurred. Besides, it still
cannot be decided if the fault stems from r1 or r2. However, a concurrent analysis of all message
streams on bus2 can reduce the diagnosis time and correctly pinpoint the defective ECU. With
the help of a special diagnosis function, in this example (¬m3 ∨ ¬m4) ∧m5, one only needs
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to wait until the first loss of a message instance from the stream m3 as it has the longer period,
during which a message from m4 must have been inevitably omitted or received as well. Hence,
the corresponding diagnosis time decreases to 25 ms, because (p3+j3)> (p4+j4). At the same
time, by detecting a properly received m5, one can exclude r2 as potentially faulty ECU.

For a better comprehension of the diagnosis methodology, the architecture and communica-
tion parameters described above will serve as running example throughout Section 3.4.

3.1.3 Contributions

This chapter proposes a novel approach towards the diagnosis of permanent faults in automo-
tive E/E architectures, which is based on the analysis of the monitored network traffic. Modern
in-vehicle networks use different buses, such as CAN, LIN or FlexRay, operating in different
domains and connected via automotive gateways [121]. This can impede a message-based fault
diagnosis especially when the monitoring resource and the defective resource are attached to
different buses, as in the example in Figure 3.1. By regarding the entire distributed architecture
at network-level, including all buses and gateways (i.e., considering all system messages and
their dependencies) the introduced fault diagnosis extends the number of detectable resources
and enables a low diagnosis time. Moreover, the abandonment of a single diagnosis entity
increases the overall system reliability and, hence, improves the safety-critical aspects of au-
tomotive E/E architectures. At the same time, by using only existing network communication,
there is no need for special diagnostic messages which would involve additional computation
overhead and possibly extend the diagnosis time. Such a decentralized and implicit fault diag-
nosis is especially (but not solely) beneficial in the cost-driven automotive industry where an
early diagnosis of defective hardware is crucial but each dedicated monitoring and testing de-
vice entails increased hardware costs due to a high number of units. However, it cannot be ruled
out that an analyzed architecture contains some resources which are not transmitting any suit-
able messages for the diagnosis process. For this purpose, Section 3.6 proposes a method for a
diagnosis-aware system design which optimizes existing message streams for a lower diagnosis
time and allows the insertion of efficient diagnostic messages.

In particular, we introduce a fault diagnosis approach which determines the effect of po-
tential permanent faults on the existing message-based communication. For a given system
architecture, we generate unique diagnosis functions for each possible fault scenario which will
be implemented on suitable resources (see Section 3.5.3). In order to find trade-offs between
diagnosis times (i.e., the observation times necessary to detect particular fault scenarios) and the
number of monitored message streams, we propose an optimization method for the diagnosis
functions.

In summary, the contribution of this chapter is twofold:

1. Determination of light-weight diagnosis functions for an implicit and decentralized real-
time fault diagnosis in distributed systems.
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2. Optimization of diagnosis functions to determine trade-offs between diagnosis times and
the number of monitored message streams.

We address fault diagnosis as a self-contained topic and the system behavior subsequent to
it is not in the focus of this work. However, our approach is not limited to a specific fault recov-
ery method and, hence, applicable to any fault tolerance strategy in a distributed system which
considers a fail-silent behavior of its resources. To the best of our knowledge, this work repre-
sents the first approach towards a fully implicit and decentralized permanent fault diagnosis for
automotive E/E architectures, including a trade-off analysis of the real-time and performance
aspects.

3.2 Related Work
In safety-critical automotive systems it is important to detect and diagnose faults early in order
to provide appropriate countermeasures. This is even more crucial for permanent faults which
usually involve an immediate loss of a particular functionality. For this reason, there exists
a variety of work in the area of reliability-aware system design. The approaches comprise,
on the one hand, component-oriented strategies which try to enhance reliability by the proper
selection of system components, taking into account constraints such as the chip area, energy
consumption and performance [142, 36]. On the other hand, there are task-oriented methods
where a better reliability is achieved through specific process allocation, additional tasks or
schedule optimization [42, 152]. All these works cover differently elaborated fault diagnosis
strategies and have been discussed in more detail in Section 2.2.

Furthermore, [47] goes beyond the assumptions of an ideal diagnosis and investigates the
use of imperfect software fault detectors. The paper presents a design optimization which
considers both detectable and undetectable faults, assuming that, although imperfect detectors
might not prevent all silent data corruptions, they may provide more capacity for fault toler-
ance methods due to a lower resource utilization. Enhanced reliability techniques for system-
level synthesis have been proposed in [24]. Here, multiple fault management requirements for
different target platforms can be specified at design time together with the specific available
reliability-oriented techniques. A subsequent design space exploration identifies the optimal
solutions for a hardened system regarding performance and reliability requirements. An ex-
tension of this work has been published in [10] especially considering mixed-criticality fault
management and an optimal placement of the voting/checking algorithm. Regarding the ac-
tual fault detection methods, the three works above consider well-known approaches like task
duplication with concurrent error detection units or particular checking and voting mechanisms.

By contrast, our work presents a diagnosis of permanent faults which analyzes the message-
based communication in order to identify defective resources. In this context, a detection algo-
rithm using corrupted messages to discriminate functioning from defective resources is intro-
duced in [129, 128]. It is designed as an add-on protocol for a time-triggered communication
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platform and to some extent resembles our approach as it also uses omitted messages to detect
faults. However, while their detection methods are applied at bus-level, our approach considers
the entire system at network-level, which means that it includes all buses, gateways and other
dedicated links. This increases the diagnosis capability of our methods but makes them also
more challenging by requiring, inter alia, special diagnosis functions. Furthermore, the detec-
tion time in [129, 128] is bound by the sending slot cycles of the TDMA-architecture, while our
approach supports event-triggered communication as well.

The idea of monitoring conjoint event arrivals has been used in [103] in the context of
mixed-criticality systems. In this work the activation of a group of low priority tasks is modeled
through the sums of their workload arrival functions to bound their influence on high priority
tasks. While the concept of combined workload arrival functions is similar to our approach of
summing up message arrival curves, it is used for integrating applications aiming at increasing
the system utilization. On the contrary, in our work the arrival curves are used to determine the
minimal diagnosis time for the detection of a potential permanent fault.

A distributed fault diagnosis for automotive architectures is presented in [89]. Here, single
nodes send the outcome of a local fault diagnosis to neighboring nodes in order to achieve a
global fault diagnosis. Although the paper highlights the high communication costs and de-
lays of a centralized diagnosis, the approach is still relying on diagnosis status broadcasts and
diagnosis times are not explicitly discussed. Our method uses solely existing messages and
is based on a decentralized principle to reduce system overhead as well as remove a possible
single point-of-failure. It also puts an emphasis on a minimal diagnosis time.

In [144] the authors present an on-line/off-line diagnosis framework motivated by the au-
tomotive domain. The approach uses propositional logic to describe the relationship between
specific system properties and potential faults. However, in contrast to our work which provides
a concrete massage-based detection method, the presented framework is a purely formal speci-
fication depending on user-defined tests and monitors to produce a valid diagnosis outcome.

Fault diagnosis has been also addressed in the area of Discrete Event Systems (DESs), for
instance in [33, 91, 137]. Such diagnosis methods often apply a model-oriented approach using
logical models, such as Petri nets or timed automata. [33] proposes an on-line diagnosis to
detect and localize multiple event and state faults. For this a special diagnosis tree representation
for a Petri net (Coverability tree) is used to identify faulty transitions as well as to isolate faulty
places. Similarly, Petri nets are used in [91] to detect permanent faults based on the observation
of a subset of fault transitions, where the latter ones are classified according to three different
diagnosis states (no fault, uncertain, sure fault). In [137], first a temporal, functional and fault-
based analysis of a system with a timed automaton model is performed and a special automaton
called diagnoser is built. Then, the model-based diagnosis uses characteristic times during
normal behavior to detect system failures. Although we use a graph-based system description to
determine diagnosis functions, at runtime the fault diagnosis does not depend on a fault-model
but rather on precalculated diagnosis functions and a real-time monitoring of the network traffic
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to keep the computational and memory overhead low. As has been pointed out in Section 1.3.1,
model-oriented diagnosis methods are not suitable and can be hardly applied in our work.

Finally, the diagnosis-aware system design approach presented in Section 3.6 uses a time
predictable scheduling paradigm and, therefore, is inspired by the work in [119, 118]. These pa-
pers discuss integration strategies for independently defined subsystem schedules into a global
schedule, which are applied for modular architectures based on a time-triggered and data-centric
system model. As the design strategy proposed in this thesis targets time-triggered systems as
well, to some extent the corresponding message stream adaptation has to meet similar con-
straints during the synthesis process as the schedule integration approach in [118].

3.3 Diagnosis Description
This section describes the distributed system model especially emphasizing the considered rep-
resentation of permanent faults. Furthermore, the corresponding diagnosis framework is pre-
sented.

3.3.1 Fault Model
As illustrated in Figure 3.1, we generally regard automotive E/E architectures as distributed
systems where ECUs are linked to different gateway-connected buses and use message-based
communication. Within the considered system model, each message stream mi is defined by
its nominal period pi and a jitter ji which depicts the variation of the measured period from the
nominal period caused by task delays. For the proposed fault diagnosis strategy, these message
streams are monitored and analyzed in order to identify and properly interpret particular traffic
patterns. In this context, among other things, it is an important task to distinguish potential
permanent faults from the less critical transient faults.

In electronic components faults originate from physical phenomena and usually manifest
themselves as bit flips. In Section 2.3.1, it has been explained that the cause of a fault can be
both external, such as a temporary change in the environmental conditions, and internal, such as
an unstable or marginal hardware. The first case can be often linked to transient faults while the
second case normally results in intermittent and permanent faults. In the approach presented
in this chapter, intermittent faults, which might cause the interruption of several consecutive
messages, are considered severe and are practically not distinguishable from permanent faults.

Fault assumptions. Generally, we assume a fail-silent behavior where a fault will result in
an error leading to a transmission failure of messages. For instance, this could be the effect of
a total breakdown of a resource. However, it is also possible that a fault will not automatically
lead to a message loss but, for example, will entail a message corruption or other erroneous
behavior. In order to guarantee a complete and correct fault diagnosis, especially for the latter
cases it is expected that an internal fault detection mechanism prevents a resource from sending
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faulty messages. Although, this could require an extension of the current functionality of a
monitoring resource, the gain would be an improved and simplified fault diagnosis at system-
level. Moreover, most ECUs usually posses dedicated monitoring and diagnostic components
for self-diagnosis, as has been discussed in Section 1.2.1. In this way, our approach only needs
to consider existing communication without the necessity for special diagnostic messages. And
even if a system already uses diagnostic messages it can further benefit from the proposed
method by a reduction of the diagnosis time.

Basically, we discriminate between a healthy (functioning) resource, which only exhibits
transient faults, and an unhealthy (defective) resource, which is affected by permanent faults.
The distinction is made on the basis of the number of consecutive message losses in a message
stream. For this, we state that the loss of a single message indicates any fault (also transient),
while several consecutively omitted messages in one message stream indicate a permanent fault.
However, depending on its specific manifestation within the system, a transient fault might also
cause more than one message loss such that each additional omitted message increases the
certainty that a permanent fault has been diagnosed. As a consequence, in a trivial case when
regarding merely one single message stream, the minimum diagnosis time for a permanent
fault can be calculated as N · pi + ji, where N specifies the number of consecutively omitted
messages in this message stream (and accordingly the number of omitted periods) and N≥ 2.
This means, that for N = 2 one needs to detect an interruption in the message stream mi for
at least two periods pi (plus the worst case jitter ji) in order to conclude that a permanent fault
occurred at the corresponding resource.

3.3.2 Diagnosis Framework
Figure 3.2 illustrates the proposed diagnosis framework which can be divided into two parts:
the fault diagnosis determination (Stage I) and the fault diagnosis optimization (Stage II). A
general outline of the framework is given below and the relevant formulations will be discussed
in detail in Section 3.4.

3.3.2.1 Stage I: Fault Diagnosis Determination.

Diagnosis functions are a fundamental element of the proposed permanent fault diagnosis and
thus, play an essential role within our diagnosis framework. They are represented by Boolean
functions of message observations that are derived from a given system specification and can
be generated at design time. The system specification is a graph-based representation of a dis-
tributed architecture, where applications, consisting of tasks and messages, are mapped onto
architecture resources, such as ECUs and buses. With the help of a graph-oriented search algo-
rithm, the system is inspected for all potential sources of failure, which are then defined as fault
scenarios. The latter are represented as sets which can consist of a single resource or a group
of resources with a common potential source of fault, such as a shared power supply2. For
each fault scenario a unique pattern of received and omitted messages per observing resource is
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Figure 3.2: Illustration of the proposed permanent fault diagnosis framework including a de-
termination and optimization stage. At design time, a given system specification is analyzed in
order to generate special diagnosis functions that are applied at runtime. In the second stage,
these functions are used to optimize the diagnosis times and the number of monitored message
streams.

determined that allows to indicate the occurrence of a permanent fault. It is assumed, that each
bus-attached resource can act as an observing resource.

In order to efficiently integrate our fault diagnosis in a runtime system, the observation
patterns are initially encoded as Binary Decision Diagrams (BDDs). With the help of a minimum
cut algorithm potential suboptimal paths are excluded from the BDDs and the final diagnosis
functions ϕro,s(Mro,s) are obtained. The observing resources ro use the diagnosis functions to
identify a defective system component by indicating the occurrence of a particular fault scenario
s. This is done by evaluating the state of messages from a set of monitored streams Mro,s and
calculating the outcome of ϕro,s(Mro,s), as defined in Equation (3.1).

The corresponding methods and formulations for Stage I are described in Section 3.4.1.

2Although in principle the diagnosis methods could handle multiple faults (e.g., by generating specific diagnosis
functions), in the scope of this work we apply the single-fault assumption which is common in automotive [77]
and has been also discussed in Chapter 2.
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Figure 3.3: Example of a system specification and message routing: an application consisting
of three tasks t1, t2 and t3 is mapped onto the resources r1, r2 and r3. The routing defines the
message communication where m1, m2 are sent over an exclusive connection between r1, r2 as
well as over the bus resource and m3 is using only the bus.

∀ro ∈ R, s ∈ S :

ϕro,s(Mro,s) =

{
1, fault scenario s is diagnosed by observing resource ro

0, fault scenario s is not diagnosed by observing resource ro
(3.1)

Within the presented decentralized approach, the diagnosis functions for one fault scenario s
can vary for different observing resources ro.

3.3.2.2 Stage II: Fault Diagnosis Optimization.

In the second stage, our framework uses the diagnosis functions to investigate trade-offs be-
tween the fault diagnosis times and the number of message streams that have to be monitored.
To allow a general description of message streams and facilitate the addition of message times,
the corresponding periods and jitters are modeled by means of event arrival curves. At the same
time, the Boolean representation of ϕro,s(Mro,s) enables to determine message streams in Mro,s

which can be excluded from a diagnosis function without downgrading its diagnosis capability.
However, while this exclusion is done without affecting the diagnosis itself, it may increase the
corresponding diagnosis time. This stage applies ILP with the objective to minimize the obser-
vation time for each diagnosis function. The optimization problem is repeated multiple times
where the cardinality of the set Mro,s is successively reduced.

The corresponding methods and formulations for Stage II are described in Section 3.4.2.
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3.4 Methodology
This section provides the formal descriptions and detailed explanations about the determination
of diagnosis functions as well as their subsequent optimization. The permanent fault diagnosis
framework uses a graph-based representation for applications and architectures where nodes
depict processes (e.g., tasks or messages) and resources (e.g., ECUs or buses) while edges
constitute dependencies and links, respectively. Figure 3.3 illustrates this and shows that ap-
plications are mapped onto architectures and from this mapping an appropriate routing for the
messages can be obtained. A more detailed explanation of a system specification is given for the
diagnosis-aware system design, in Section 3.6.3. In the following, the focus lies on the commu-
nication aspects, namely, the corresponding message streams, their routings and timings. For
a better understanding of the presented methods, the architecture in Figure 3.1 will be used as
running example.

3.4.1 Fault Diagnosis Determination: Formulation
The definitions in this section are mainly based on the sets and functions listed below.

r ∈ R system resource from the set of all resources R to be consid-
ered for the permanent fault diagnosis

ro ∈ R observing resource from the set of all resources R to be con-
sidered for monitoring all observable message streams

s ∈ S fault scenario from the set of all scenarios S, each represent-
ing a subset of (potentially faulty) resources (i.e., s ⊆ R)

m ∈ M message stream from the set of all message streams M,
where Mro⊆M contains all messages observable by ro and
Mro,s ⊆ M contains messages observable by ro for a partic-
ular fault scenario s

c : R×Mro → 2R cause function determining all resources which can cause the
loss of a message in m observable by ro

o : R× S×Mro →{0, 1} observation function determining if a message in m observa
ble by ro will be omitted (0) or detected (1) when a fault
scenario s occurs

b : R× S→ 2Mro BDD function constructing the Binary Decision Diagram
b(ro, s) for an observing resource ro and a fault scenario s

ϕro,s : 2Mro ,s → {0, 1} diagnosis function indicating if a fault scenario s has been
diagnosed (1) or not (0)
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3.4.1.1 System Analysis

At first, we need to define all message streams which can be detected by each specific observing
resource. If ro is attached to a bus then, besides the own dedicated messages streams, Mro

usually contains all other streams on this bus as well. For example, in Fig. 3.1, the message set
for r3 is defined as Mr3 = {m3, m4, m5}.

Now, for each message stream m ∈ Mro , all resources r ∈ R shall be identified which
could lead to the loss of m when affected by a permanent fault. Within our framework, cause
functions c(ro, m) are used to assign these resources. In particular, a cause function performs
a Depth-First Search (DFS) on the graph GR representing the system architecture, starting at
the observing resource ro. As all dependencies in the application graph GP are taken into
account, also remote resources which are not directly attached to a respective bus can be iden-
tified as causes. In our example architecture the cause function c(r3, m3) will result in the set
{r1, bus1, r2, gw, bus2}.

Using the cause functions, it shall be determined which message streams can be affected
by a particular fault scenario s ∈ S, e.g., a faulty resource, and which not. For this, we use
observation functions o(ro, s, m), formally defined in Equation (3.2) and explained below.

∀ro ∈ R, s ∈ S, m ∈ Mro :

o(ro, s, m) =

{
1, if c(ro, m) ∩ s = ∅

0, otherwise
(3.2)

An observation function indicates if any of the resources which can cause the interruption
of a particular message stream m are also contained within a fault scenario s. It delivers 1 if
a fault scenario s and a cause function c(ro, m) have no common intersection, else it returns
0. In other words, o(ro, s, m) = 1 indicates that a message stream m will not be affected by
a permanent fault in s (observation of m is true) while o(ro, s, m) = 0 means that a fault in s
will cause an interruption of m (observation of m is false). For example, in the specification in
Figure 3.1, an observation function for the fault scenario s1 = {r1} and the observing resource
ro = r3 will result in o(r3, s1, m3) = 0, o(r3, s1, m4) = 0 and o(r3, s1, m5) = 1, as only m3 and
m4 are affected by a defective ECU r1.

Although each observation function unambiguously defines received and omitted messages
for a particular fault scenario and observing resource, it comprises all detectable messages from
Mro . However, our goal is to find representations of diagnosis functions ϕro,s which not only
provide low diagnosis times but also a low computational effort which, in turn, can be achieved
when fewer message streams have to be monitored. In this regard, we use BDDs to efficiently
encode the observations determined by o(ro, s, m). As described in [16], a BDD represents
Boolean functions in the form of propositional directed acyclic graphs and enables an easy and
efficient manipulation and analysis of the underlying data structure. Each node in a BDD rep-
resents a binary variable and the terminal nodes indicate the function result, i.e., 0 or 1. An
example for a BDD is shown in Figure 3.4, which will be discussed later. To obtain one of
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Figure 3.4: Illustration of the original (a) and the modified (b) BDD b(r3, s1) representing the
diagnosis function for a faulty r1 and an observing r3 in the specification in Figure 3.1. A solid
line denotes a received message, a dashed line denotes an omitted message. Note, that the edges
for auxiliary variables m̂ are inverted.

potentially multiple variable assignments for a positive result of the Boolean function, one has
to follow a path from the root node to the 1-terminal and set each variable according to the out-
going edge (usually, 1 for a solid line and 0 for a dashed line). Equation (3.3) shows the formal
definition for the construction of BDDs for all observing resources ro with the corresponding
observed fault scenarios s.

∀ro ∈ R, s ∈ S :

b(ro, s) =
∧

s̃∈S,s 6=s̃

(
(

∨

m∈Mro
o(ro,s,m)=0
o(ro,s̃,m)=1

¬m) ∨ (
∨

m∈Mro
o(ro,s,m)=1
o(ro,s̃,m)=0

m)
)

(3.3)

Basically, within the permanent fault diagnosis, a BDD encodes observation differences
between the analyzed scenario s and all other fault scenarios s̃ for a particular observing resource
ro. In this context, messages from a message stream m are modeled one-to-one by the binary
variables m. More precisely, m = 1 indicates a positive observation and m = 0 indicates a
negative observation representing a received and an omitted message, respectively.

The implementation (and possibly a more legible description) of the BDD function is given
in Algorithm 1, where the variables btar and baux are used for the target and auxiliary BDDs,
respectively, and the values for the observation of a message stream m are represented by the
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Algorithm 1 Construction of the BDD for one fault scenarios s
Require: S, Mro , o(ro, s̃, m), o(ro, s, m), ro ∈ R, s ∈ S
Return: btar . Boolean function representing the target BDD

1: function b(ro, s)
2: btar = 1 . initialization of a new target BDD

3: for all s̃ ∈ S and s̃ 6= s do
4: baux = 0 . initialization of a new auxiliary BDD

5: for all m ∈ Mro do
6: if o(ro, s, m) 6= o(ro, s̃, m) then
7: if o(ro, s, m) == 0 then
8: baux := baux ∨ ¬L(m) . disjunction of a negated message li-

9: teral for a negative observation

10: else
11: baux := baux ∨ L(m) . disjunction of a non-negated message

12: literal for a positive observation

13: end if
14: end if
15: end for
16: btar := btar ∧ baux . conjunction of target BDD with auxiliary BDD

17: end for
18: end function

binary literals L(m). Following the definition in Equation (3.3) as well as Algorithm 1, the
function b(r3, s1) for our example specification will result in the BDD illustrated in Figure 3.4a.

3.4.1.2 Diagnosis Function Generation

The immediate way to retrieve a Boolean function from a BDD is to disjunctively combine all
possible paths towards the 1-terminal. However, as this procedure may result in non-minimal
solutions, for the eventual generation of diagnosis functions we make use of a minimum cut
algorithm which excludes redundant paths within the BDD. The recursive computation of the
algorithm is defined in Equation (3.4) and illustrated in Algorithm 2.

MinCut (b(ro, s)) =

{C ∪ {mt} | C ∈ MinCut (b(ro, s)|mt=0) \Cut (b(ro, s) |mt=1)}
∪ MinCut (b(ro, s)|mt=1)

(3.4)

Here, the variable mt denotes the root node of b(ro, s), and its two sub-BDDs on the 1-path
and 0-path are referred to as b(ro, s)|mt=1 and b(ro, s)|mt=0, respectively (compare the shaded
areas in Figure 3.4b). Broadly speaking, redundant paths in the BDD are removed by apply-
ing the relative complement of Cut (b(ro, s)|mt=1) in MinCut (b(ro, s)|mt=0). The operation
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eliminates the nodes which reside on paths towards the 0-terminal in b(ro, s)|mt=1. Additional
explanations as well as the proof of correctness of the algorithm can be found in [122].

An essential prerequisite for the minimal cut algorithm is the monotonicity of the analyzed
Boolean function, which, simply said, restricts the function to using non-negated variables only.
We can achieve monotonicity by substituting negative observations with positive auxiliary vari-
ables m̂ and switch them back after the calculation is finished. The auxiliary variables invert
the edges of their nodes, as can be seen in the modified BDD in Figure 3.4b.

In principle, the minimal cut algorithm provides sets of Boolean variables representing
minterms (i.e., conjunctions of binary variables) in a Disjunctive Normal Form (DNF) func-
tion. However, as our goal is to analyze the sums of message arrival curves, it is more beneficial
to have diagnosis functions in a Conjunctive Normal Form (CNF). An uncomplicated circum-
vention of this problem can be achieved by applying De Morgan’s laws, which describe the
transformation between disjunctive and conjunctive expressions via negations of terms. More
precisely, we modify the algorithm to follow paths to the 0-terminal instead of the 1-terminal
and interpret the resulting minterms as maxterms (i.e., disjunctions of binary variables).

The entire process is described in detail in Algorithm 2. There, the function addMinCuts
recursively cuts subtrees from the BDD in order to find minimal sets of nodes leading to 0. For
this, four cases are distinguished which correspond to different states of the 0-edge and 1-edge
subtrees (lines 7, 15, 21 and 25). Finally, the algorithm provides a family of sets Btar, each of
which contains the observation variables of one particular maxterm in a CNF function. The lat-
ter one represents the desired diagnosis function ϕro,s and its corresponding formal description
is shown in Equation (3.5).

∀ro ∈ R, s ∈ S :

ϕro,s(Mro,s) =
∧

i

Φi(Mi) , i ∈N (3.5a)

where Φi(Mi) = (
∨

m∈M−i

¬m) ∨ (
∨

m∈M+
i

m) (3.5b)

and Mi = M−i ∪M+
i ,

⋃

i

Mi = Mro,s (3.5c)

Here, Φi(Mi) defines the i-th maxterm in ϕro,s that consists of positive and negative mes-
sage observations (Equation (3.5b)). The sets M−i and M+

i contain the omitted and received
message streams, respectively, for the i-th maxterm (Equation (3.5c)). Relating to the example
specification in Figure 3.1, the diagnosis function for the observing resource r3 and a faulty r1

is defined as ϕr3,s1 =(¬m3∨¬m4)∧m5.
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Algorithm 2 Recursive function for an efficient determination of maxterm sets from a BDD
Require: btar
Return: Btar . Set of sets representing maxterms in final diagnosis function

1: function addMinCuts(btar)
2: Btar = ∅,Blo = ∅,Bhi = ∅ . initialize sets of sets

3: mt = source(btar) . get source node of BDD

4: blo = low(btar) . get subtree following the 0-edge of mt

5: bhi = high(btar) . get subtree following the 1-edge of mt

6: switch state(blo, bhi) . different cases for different subtree states

7: case {blo 6= 0∧ bhi 6= 1}
8: Blo = addMinCuts(blo) . add mincuts of 0-edge subtree to Blo

9: removeCuts(Blo, bhi) . remove cuts from Blo leading to 1 in bhi

10: for all B ∈ Blo do
11: B = B∪ {mt} . add root node to each maxterm B in Blo

12: end for
13: Bhi = addMinCuts(bhi) . add mincuts of 1-edge subtree to Bhi

14: end case
15: case {blo 6= 0∧ bhi = 1}
16: Blo = addMinCuts(blo) . add mincuts of 0-edge subtree to Blo

17: for all B ∈ Blo do
18: B = B∪ {mt} . add root node to each maxterm in Blo

19: end for
20: end case
21: case {blo = 0∧ bhi 6= 1}
22: Bhi = addMinCuts(bhi) . add mincuts of 1-edge subtree to Bhi

23: Bhi = Bhi ∪ {{mt}} . add root node as maxterm in Blo

24: end case
25: case {blo = 0∧ bhi = 1}
26: Btar = Btar ∪ {{mt}} . add root node to Btar

27: end case
28: end switch
29: Btar = Blo ∪ Bhi . unify the calculated sets and return the result

30: return Btar
31: end function
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3.4.2 Fault Diagnosis Optimization: Formulation
The proposed diagnosis functions are the foundation for an efficient decentralized diagnosis of
permanent faults. In a runtime system (e.g., the automotive E/E architecture), each observing
resource will be provided with a set of diagnosis functions for different fault scenarios. By
monitoring the bus with respect to the message arrival times and updating the message obser-
vations within the diagnosis functions accordingly, an observing resources can reliably detect
faulty resources. However, as the number of monitored message streams affects the computa-
tional performance of the system, we propose an optimization-based determination of minimal
diagnosis times for different lengths of the corresponding diagnosis functions, i.e., numbers of
monitored message streams. Here, the correctness and accuracy of the diagnosis shall not be
degraded by excluding particular message streams from being monitored.

As discussed in Section 3.3, diagnosis times are defined by both the periods and the worst-
case jitters of the corresponding message streams in Mro,s. Their determination and optimiza-
tion is based on the sets and variables listed below.

tϕro ,s ∈ R variable defining the diagnosis time of a diagnosis function ϕro,s(Mro,s)

Φ ∈ ϕro,s one disjunction (maxterm) of a set of binary variables m within a diag-
nosis function ϕro,s(Mro,s)

N ∈N number of consecutively omitted messages in a message stream
(equivalent to the number of omitted periods)

RF ⊆ R set of all faulty resources that is a subset of all resources R

M−, M+ sets of message streams in Mro,s with omitted (M−) and received (M+)
messages

αl
m lower arrival curve for a message stream m ∈ Mro,s

sk
m binary variable describing the kth step of a corresponding lower arrival

curve

3.4.2.1 Diagnosis Time Determination

To determine the arrival times of messages, we use so-called arrival curves that are based on
an event model introduced in [19]. As a matter of principle, this model represents the earliest
and latest possible arrival times of an event as an upper (αu) and a lower (αl) arrival curve,
respectively. For example, Figure 3.5 illustrates the arrivals of the message streams m3 and
m4 from Figure 3.1 where, for reasons of clarity, only lower arrival curves αl

m are depicted.
Although in the scope of this work we regard the communication model periodic-with-jitter,
the use arrival curves allows us to apply more complicated traffic patterns, for instance those
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Figure 3.5: Lower arrival curves (αl
m) for the message streams m3 and m4 from Figure 3.1.

They define the minimum number of messages (y-axis) observed during an arbitrary time in-
terval ∆ (x-axis). Diagnosis times for the single message observations (rings) as well as the
reduced diagnosis time (dot) defined by the sum of the curves (dotted line) for N = 2, are
highlighted.

containing bursts or even non-periodic processes. A more detailed explanation of arrival curves
is presented in the context of a message-based security diagnosis in Chapter 4.

Considering, that for each message stream m ∈ Mro,s the arrival curves are known through
the corresponding periods and jitters, then the set M+ contains all messages whose arrival times
are above their lower arrival curve αl

m and M− holds all messages with arrival times below αl
m.

Here, intersections are excluded for reasons of consistency of the diagnosis, which is defined in
Equation (3.6).

M− ∩M+ = ∅ (3.6)

Now, the general diagnosis condition can be formulated in Equation (3.7).

∀ro ∈ R,
̂
m ∈ M−, ∀m̂ ∈ M+ :

(
c(ro,

̂
m) ∩ RF 6= ∅

)
∧
(

c(ro, m̂) ∩ RF = ∅
)

(3.7)

The condition implies that each faulty resource must result in omitted messages while, at
the same time, there can be no message loss from a functioning resource. Based on this general
premise, we can formulate an ILP which determines the minimum diagnosis time of a diag-
nosis function. The objective of the optimization problem is to minimize the variable tϕro ,s
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representing the diagnosis time of ϕro,s(Mro,s). The Objective (3.8a) and the corresponding
Constraints (3.8b) through (3.8g) are defined below.

∀m ∈ Mro,s, sk
m ∈ {0,1}, tϕro ,s ∈ R :

minimize tϕro ,s (3.8a)

subject to:

∀Φ ∈ ϕro,s : ∑
m∈M−

αl
m ≥ N (3.8b)

∀Φ ∈ ϕro,s : ∑
m∈M+

αl
m ≥ 1 (3.8c)

αl
m =

N

∑
k=1

sk
m (3.8d)

sk
m ≥ sk+1

m (3.8e)

tϕro ,s ≥ (pm+ jm) · s1
m +

N

∑
k=2

pm · sk
m (3.8f)

tϕro ,s < (pm+ jm) + pm · s1
m +

N

∑
k=2

pm · sk
m (3.8g)

The Constraints (3.8b) and (3.8c) state that the message arrivals defined by sums of lower ar-
rival curves αl

m must add up to at least N for the omitted messages (m ∈ M−) and at least 1 for
received messages (m ∈ M+) in order to identify the corresponding observations as negative
and positive, respectively. For this, each maxterm Φ in a diagnosis function is regarded sepa-
rately. As can be seen in the following Constraints (3.8d) through (3.8g), a lower arrival curve
itself is defined by means of a monotonically increasing step function with time t representing
the independent variable of the step function. More precisely, Constraint (3.8d), allocates the
single steps described by binary variables sk

m as a sum to an arrival curve. It delivers 1 for the
latest arrival time of the kth message instance from stream m and returns 0 otherwise. Con-
straint (3.8e) is necessary to guarantee that all previous steps are set before a new step can be
added to the arrival curve. Finally, the last two Constraints (3.8f) and (3.8g) define the bound-
aries for the time variable tϕro ,s which are depending on the predefined messages periods pm

and worst case jitters jm. Here, the lower and upper limits are regarded for each single step of
the arrival curve.
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The consideration of multiple message streams in the diagnosis function ϕro,s when monitor-
ing omitted messages is an essential aspect in our approach as it allows to reduce the diagnosis
time for particular functions. The principle is illustrated in Figure 3.5, where the sum of the
arrival curves αl

m1
and αl

m3
results in a minimal diagnosis time tϕr3,s1

=25 ms for N=2.
The ILP (3.8) is formulated for a periodic with jitter representation of the message stream,

which is common for automotive real-time communication. Nevertheless, the proposed diag-
nosis approach can be applied to other arrival curve descriptions as well in which case the ILP
can be easily adapted.

3.4.2.2 Trade-Off Analysis

Based on the determination of minimal diagnosis times, we want to evaluate trade-offs between
the diagnosis time and the number of monitored message streams. For an efficient approach,
low values are preferable for both parameters in order to guarantee a fast diagnosis of a fault
scenario and a low computational overhead. However, it must be considered that a reduced
message set may (depending on the size of its reduction) result in an increase of the diagnosis
time, defined by Equation (3.9).

tϕ̃ro ,s(M̃ro ,s)
≥ tϕro ,s(Mro ,s) , with M̃ro,s ⊆ Mro,s (3.9)

The trade-off analysis is performed by successively reducing the cardinality of the message
set Mro,s and repeating the diagnosis time optimization for each reduced set M̃ro,s. For this, the
ILP is extended with an additional binary variable cm which determines whether a message m
shall be considered for the optimization (1) or not (0). This is illustrated in the optimization
problem below, where the objective function is defined in Equation (3.10a), and two additional
Constraints (3.10b) and (3.10c) are used for the message stream reduction. Note that all con-
straints defined for the ILP (3.8) also hold in this ILP (3.10).

∀k ∈ {|Mro,s| , . . . , 1} :
∀M̃ro,s⊆Mro,s, |M̃ro,s|= k, cm, sm∈{0,1}, tϕ̃ro ,s ∈R :

minimize tϕ̃ro ,s(M̃ro ,s)
(3.10a)

subject to:

cm − s1
m ≥ 0 (3.10b)

∑
m∈Mro ,s

cm = |M̃ro,s| (3.10c)

This stage of our framework results in diagnosis functions with a reduced number of moni-
tored message streams but still capable of correctly diagnosing the corresponding fault scenario.
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Regarding the example in Figure 3.1, the optimization removes m3 and, hence, results in a more
compact diagnosis function ϕ̃r3,s1 = ¬m4 ∧m5. However, the diagnosis time tϕ̃r3,s1

= 35 ms
for N=2 increases by 10 ms with respect to the original function (compare also Figure 3.5).

3.5 Diagnosis Evaluation
To provide a significant evaluation of the proposed diagnosis approach, a selection of 100 syn-
thetics test cases and a case study, both based on automotive E/E architectures, are used. The
test cases comprise systems with more than 20 ECUs, several gateway-connected buses and
functions with different task and message stream numbers, as indicated in Table 3.1. Overall,
up to 24 fault scenarios per test case have been determined and each of them has been analyzed
for all possible observing resources as well as for 1 to 5 omitted message periods. For the pre-
sented experimental results, each fault scenario consists of one resource, such that si = {ri}.
All experiments including the system analysis, diagnosis function generation and optimization
were carried out on an Intel Core i5 with 2.6 GHz and 8 GB RAM. For the ILP-based optimiza-
tion, GUROBI version 5.6 was used as solver [39].

3.5.1 Synthetic Test Cases
3.5.1.1 Diagnosis Times

To demonstrate the general feasibility of the permanent fault diagnosis framework, Figure 3.6
illustrates diagnosis times as function of the number of monitored message streams. In the
graph, each vector represents the duration-complexity relation for the diagnosis of a permanent
fault. It starts with a minimal number of monitoring message streams and a maximal diagnosis
time and points towards a minimal observation time with a maximum number of streams. As
defined in Sec. 3.4.2, the diagnosis time reduction represents the difference in observation time
between the diagnosis functions ϕ̃ro,s with reduced numbers of message streams and the original
function ϕro,s. The experiments have been performed with all generated diagnosis functions for
each analyzed test case, however, results where a reduction of the diagnosis time was not pos-
sible or less than 50 ms have been omitted to maintain legibility. The resulting graph indicates
that diagnosis functions can be optimized either towards a minimal diagnosis time or towards

Table 3.1: Essential test case parameters for the permanent fault diagnosis and their minimum
and maximum values.

ECUs Buses Tasks Functions
Message
Streams

Fault
Scenarios

Omitted
Messages

MIN 2 1 10 2 7 2 1
MAX 23 4 132 25 78 24 5
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Figure 3.6: Relation between the diagnosis time and the number of monitored message streams
for the permanent faults. Each vector represents the decrease from a maximum to a minimum
diagnosis time indicating the corresponding message numbers. The graph comprises results for
N=2 with a time reduction of more than 50 ms.

a lower computational performance by monitoring fewer message streams. As a consequence,
during system design, an emphasis can be put on hard real-time requirements or energy/cost
efficiency, depending on the current preferences.

Generally, the amount of diagnosis functions allowing a diagnosis time reduction depends
on the system specification of a particular test case. Here, the experiments show that the op-
timization step can have a large impact by reducing the observation times in some cases by
more than 50 % or, on the other hand, removing more than 90 % of the monitored message
streams. Furthermore, results with an irreducible diagnosis time provide important information
about which messages can be removed from the diagnosis function without affecting the fault
diagnosis itself. Such results would be depicted as horizontal vectors in the graph and have been
left out for the sake of clarity, as mentioned above.
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Figure 3.7: Amount of diagnosis functions with reduced diagnosis times for different numbers
of consecutive message losses. The y-axis represents the mean ratio of reduced diagnosis func-
tions to all determined functions and the x-axis indicates numbres of omitted periods. The error
bars illustrate the corresponding standard deviations.

3.5.1.2 Omitted Message Streams

Figure 3.6 depicts the outcome where two message losses imply a permanent fault, i.e., N=2.
To investigate the influence of different numbers of omitted periods, Figure 3.7 illustrates the
mean ratios of reducible to irreducible diagnosis times for up to 5 omitted periods (i.e. consecu-
tive message losses). It can be seen, that while a diagnosis time improvement is very improbable
when only one omitted period is regarded, the amount of reducible diagnosis functions strongly
increases for two and more omitted periods. This is due to the summation of message arrival
curves where for a higher period number more messages can contribute to a potential diagnosis
time reduction. For the same reason, an increased number of omitted periods does not necessar-
ily proportionally increase the diagnosis time. Overall, the outcome indicates that considering
a higher number of omitted periods might be an important design criterion, especially, as the
certainty for detecting a permanent fault increases with the number of consecutively observed
message losses, as has been discussed in Section 3.3.1.

The results in Figure 3.6 and 3.7 are based on approximately 8000 distinct diagnosis func-
tions for each N. Altogether, based on 100 test cases, a total of 40380 distinct fault observations
have been analysed from which 12551 (31 %) could be optimized with respect to diagnosis time
and number of monitored message streams, respectively.
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Figure 3.8: Performance analysis of the presented permanent fault diagnosis approach. The
three graphs illustrate how the size of an architecture (i.e., number of ECUs) influences the
runtimes of the system analysis (top, o-marks) and optimization (top, x-marks), the BDD size
(middle), and the size of the diagnosis functions (bottom). Additionally, dashed lines represent
trend curves indicating the estimated behavior for larger systems.

3.5.1.3 Framework Performance

As the fault diagnosis determination and optimization are performed off-line and the target sys-
tem only stores the diagnosis functions ϕro,s(Mro,s), a fast and memory-efficient computation
for our framework is not directly required to guarantee a fast diagnosis at runtime. However,
both the BDD-based diagnosis function determination and their ILP-based optimization might
exhibit relatively large time complexities in the number of regarded message streams. For this
reason, it is worth to analyze the corresponding performance behavior of the diagnosis frame-
work.

In this context, three graphs in Figure 3.8 show the computation times (top), the BDDs sizes
(middle), and the diagnosis function sizes in terms of variable numbers (bottom). All axes are in
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logarithmic scale and the system sizes are depicted for up to 128 ECUs to indicate the estimated
scalability.

The runtime results in the upper graph are divided into the system analysis (i.e., the genera-
tion of diagnosis functions) (o-marks) and the diagnosis function optimization (x-marks). Here,
the timeout for one test case after which the computation is canceled is set to one hour. It can be
seen, that even for systems beyond 20 ECUs both runtime values do not exceed 100 s and 600 s,
respectively. The BDD sizes in the middle graph are measured in number of nodes per tree
and their extent reaches slightly above 200 at the most. The lower graph shows the maximum
sizes of non-optimized diagnosis functions. Although for some large systems the numbers can
exceed 1000 variables, in many cases our optimization can reduce this values by a factor of
10 or more without affecting the diagnosis time. The functions can be minimized even further
when taking an increase of the diagnosis time into account.

Furthermore, each of the three graphs contains dashed curves indicating an estimated be-
havior for system sizes up to 128 ECUs and, hence, several hundred message streams. Each
curve represents the linear regression for the appropriate measuring points and is determined by
means of the method of least squares. Evaluating the corresponding coefficients of determina-
tion suggests, that a good estimation for both the system analysis approach and the diagnosis
optimization is a polynomial-time complexity in the number of message streams. Regarding
the necessary memory capacity, which increases with the number of BDD nodes or diagnosis
function variables, our method seems to scale linearly. All four curves indicate a manageable
scalability with a worst case optimization time of less than three hours for a system with 128
ECUs. Also the estimated sizes of BDDs and diagnosis functions should not have a too large
impact on the performance of the diagnosis framework. However, the presented trend curves
are only a rough estimation and cannot replace a proper extension of the test cases for future
analyses.

Summing up, the performance results show that a deployment of the diagnosis functions to
today’s automotive hardware should be feasible in principle and can be further considered for a
prototypical implementation as discussed in Section 3.5.3.

3.5.2 Case Study

Finally, a case study shall demonstrate the usability of our method for an in-depth reliability
analysis. For this, an assignment of observing resources ro to fault scenarios s is depicted by a
matrix of dots and circles in Figure 3.9.

The case study is based on a realistic automotive E/E architecture comprising 106 tasks and
61 messages and a distributed system with 22 ECUs. The architecture uses 4 buses connected
to a gateway (gw) where resources r1 to r4, r5 to r12, r13 to r15 and r16 to r22 are sharing a bus,
respectively. Message periods can range from 5 ms to 80 ms and their worst case jitters are
determined according to the priority and delay calculation for event-triggered systems proposed
in [88]. Based on the system specification, our framework generated 268 explicit diagnosis
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Figure 3.9: Assignment of the determined diagnosis functions to different fault scenarios (y-
axis) and the corresponding observing resources (x-axis). It holds that, si = {ri} and s0 =
{gw}. The depicted results cover the case study with N = 3. Diagnosis times can be reduced
for 119 diagnosis functions (dots) while the remaining 149 cases (rings) are irreducible.

functions, from which 119 allow a diagnosis time reduction (dots) and the remaining ones
cannot be minimized (rings). Here, each scenario consists of one potentially faulty ECU and
the dashed lines delimit the ECUs which are attached to different buses. For instance, the four
groups lying on the diagonal represent cases where the observing resource and the fault scenario
are attached to the same bus.

The matrix illustrates, that each fault scenario can be diagnosed by at least two observing
resources as well as the gateway (see s13). In many cases, however, the monitoring possibilities
are much larger and besides the plain diagnosis, on many resources also optimized functions
can be applied. Moreover, we can clearly recognize the ability of our method to diagnose
faulty resources (as well as optimize the diagnosis) beyond the limits of the own bus, namely,
at network-level. The high density of reducible diagnosis functions in the upper right corner
mainly results from an overall larger amount of data exchange between the corresponding re-
sources and, consequently, more freedom for the optimization approach.
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On the other hand, the empty areas in the matrix indicate that there are several cases where
the permanent fault diagnosis is not applicable. For three resources the suitable fault scenarios
(s2, s9, s19) are missing completely, as they are not transmitting any diagnosable messages. As
a remedy, the proposed fault diagnosis approach could be considered already during system
design in order to provide improved diagnosis times and increase the number of diagnosable
resources. A corresponding approach is proposed and described in Section 3.6.

In summary, an off-line diagnosis analysis as demonstrated by this case study gives the
system designer the possibility to implement the permanent fault diagnosis in a most suitable
and efficient way.

3.5.3 Prototypical Implementation
To complement the evaluation of the proposed diagnosis approach, this section presents the
design and outcome of a prototypical implementation on a research platform for automotive E/E
architectures. The results demonstrate the practical feasibility of the permanent fault diagnosis
and provide first measurements of the hardware utilization. For this reason, even though the
implementation itself is only a minor part of the research work presented in this thesis, its main
results shall not be withheld at this point 3.

3.5.3.1 Research Platform and Conceptual Design

The permanent fault diagnosis is implemented on a research platform for distributed predictable
automotive E/E architectures consisting of four ECUs and using Ethernet-based communication
for data exchange (see Figure 3.10). Each of the ECUs is represented by a development board
with an ARM-based microcontroller [108] (Cortex-M4 with 168 MHz, 1 MB Flash and 196 KB
RAM) and using the Micrium µc/OS-III as RTOS [74]. Basically, the platform architecture cor-
responds to that in Figure 3.1 where three processing ECUs are attached to two separate buses
connected to an automotive gateway. To model a suitable bus behavior, the switched Ethernet
connection uses a multicast function to transmit messages appropriately. The test system runs
a distributed steer-by-wire application where sensor data from a steering wheel connected to r1

and r2 is first processed on r2 and then, together with other messages, transmitted via the gate-
way gw to r3. The latter ECU is logically connected to a different bus and controls the simulated
vehicle wheels (compare right screen in Figure 3.10). One investigated fault scenario includes
a permanent fault on r1. After it is diagnosed, all relevant tasks are automatically switched to
r2 which now takes control over the steering wheel input. Given the minimal diagnosis times
of our proposed approach, the fault-tolerant application is able to handle this scenario correctly
and with a imperceptible delay for the driver.

One of the main challenges for the implementation of the permanent fault diagnosis is to
keep the additional monitoring overhead (i.e., computation time and memory) as low as possible

3The implementation of the proposed permanent fault diagnosis and the corresponding performance measure-
ments have been conducted for a Master’s Thesis [138] supervised in the context of this thesis.
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Figure 3.10: Picture of a research platform for a distributed steer-by-wire application. This
setup is used to test an implementation of the proposed permanent fault diagnosis.

such that it does not restrict or impede the execution of other system and application tasks on
the ECUs. For this, [138] investigates possibilities of monitoring message stream receptions
on observing resources in order to correctly and efficiently detect message omissions. Two
methods are considered in particular, a baseline approach and an extended approach. Broadly
speaking, the baseline approach applies a simple time-sliced concept where the diagnosis tasks
are executed periodically, for instance, one every millisecond. In this context, a diagnosis task
mainly analyses the outcome of a diagnosis functions ϕro,s by setting its variables m according
to the current message reception status and calculating the Boolean function. By contrast, for the
extended approach the diagnosis tasks are executed aperiodically, only at the specified deadline
times of the appropriate message streams. This is achieved by using a binary tree (min-heap)
which allows to efficiently sort all message data structures according to the earliest absolute
deadline. Here, the trade-off to be investigated lies between low memory costs of the basic
approach and the low computation time costs of the extended approach.

3.5.3.2 Experimental Results

As our main interest lies in the computational overhead of the permanent fault diagnosis, those
results from [138] which prove the feasibility and correctness of the implementation are omit-
ted here. For the overhead evaluation the baseline and the extended monitoring approach are
compared. Additionally, to get an indication for the scalability of the implementation, two bus
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Figure 3.11: Comparison of the computational overhead of the fault diagnosis implementation.
The graph illustrates the average and the maximum CPU utilization for both the baseline ap-
proach and the extended approach, respectively. Furthermore, a low and a high network traffic
help to investigate the scalability.

utilization scenarios are considered, a low traffc with 5 message streams and a high traffic with
103 message streams.

Computational overhead. Figure 3.11 depicts the additional CPU usage on an ECU while
performing the permanent fault diagnosis. It illustrates the average overhead during a fault-free
operation and and the maximum overhead when a fault occurs. Clearly, in all configurations
the baseline approach utilizes more computational resources then the extended approach. This
reflects the inefficiency of the periodic inspection of the current message states in contrast to
the aperiodic monitoring based on the expected message deadlines.

Generally, in this graph the average utilization results are more relevant, as faults occur
rather seldom and not regularly. Here, regarding the scalability (i.e., the number of message
streams increase by a factor of 20), the extended approach shows a better behavior causing
a computation increase by a factor of about 13, compared to a factor of 19 for the baseline
approach.

Memory overhead. Aside from the computation, also a low memory usage is important
when dealing with the limited resources in automotive E/E architectures. Figure 3.12 illustrates
the memory allocation on an ECU for the relevant diagnosis data (e.g., structures for message
streams, maxterms and diagnosis functions). In both traffic scenarios the extended approach
shows an increase in memory usage by 40− 50 % compared to the basic method. This is mainly
caused by the additional data structures and the corresponding memory allocation necessary for
implementing binary trees. Nevertheless, even for the high traffic the extended approach utilizes
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Figure 3.12: Comparison of the memory allocation of the fault diagnosis implementation. The
graph depicts the low and high traffic results for both the baseline and extended monitoring
approach.

only about 6 KB of memory. Regarding scalability, both approaches indicate an increase by a
factor of 13 when switching from 5 message streams to 103.

Summing up, for both methods the average computational overheads of 1.6 % and 2.55 %,
respectively, seem to be small enough to be applied in automotive ECUs without a necessary
increase of the hardware performance. Similarly, the memory costs are in a reasonable range
even for systems with low memory resources, for instance, only a few tens of kilobytes.

3.6 Diagnosis-Aware System Design

This section introduces a schedule synthesis approach which specifically considers the perma-
nent fault diagnosis strategy described in this chapter. The approach is based on a time-triggered
architecture and aims at a decentralized and non-intrusive communication-based solution. In
this context, we propose a system design methodology which optimizes a subsequent perma-
nent fault diagnosis method in terms of the necessary diagnosis time as well as the overall
diagnosability. Broadly speaking, in order to increase the system reliability, during schedule
synthesis a modified and adapted message distribution is taken into account which additionally
considers previously not diagnosable resources. While this method might lead to a slightly in-
creased bandwidth utilization, it clearly improves the overall diagnosis of faulty resources by
offering a faster diagnosis covering previously undetectable resources.

Thematically, the diagnosis-aware system design is part of the permanent fault diagnosis.
However, due to the specific time-triggered paradigm with its own mathematical formulations it
is described as a self-contained topic. Consequently, this section consists of a brief introductory
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part, a description of the used communication model, the actual scheduling methodology and a
case study evaluation.

3.6.1 Motivation
In Chapter 1 it has been discussed how an increasing number of vehicle functions, such as X-
by-wire or ADAS, together with their safety-critical and hard real-time requirements call for
new safety standards. At the same time, the continuous advancements in the underlying hard-
ware architecture, e.g., shrinking geometries and reduced supply voltages, result in an increased
occurrence of faults. The consequence can be clearly seen within the V-model illustrated in
Section 1.2.3, where a large part of the development process is dealing with testing of single
components and the entire system. The corresponding system integration effort can become
very complex and time consuming, especially when addressing event-triggered systems where
the communication is not predictable and many different execution scenarios have to be tested
in order to guarantee a safe system behavior [68]. By contrast, as time-triggered systems use
predefined schedules, the task executions and timings can be easily determined and the sys-
tem behavior is more deterministic. This allows to use a more systematic testing approach and
greatly simplify the verification and validation process, for instance, when different variants
of one vehicle are offered [120]. Hence, this deterministic paradigm and its advantages for
system safety is one of the main reasons why the automotive industry is slowly shifting from
event-triggered towards time-triggered architectures.

During the diagnosis-aware system design, both a time-triggered scheduling and a reliable
fault diagnosis method are regarded as part of a common system design approach where the syn-
thesis of a system schedule is explicitly considering a message-based fault diagnosis at runtime.
As a matter of principle, besides decreasing the fault diagnosis time and increasing the compo-
nent coverage, the presented approach can be also beneficial during the design and maintenance
phase. There, by providing strictly defined and consistent diagnosis times it can improve and
reduce the testing and verification efforts.

3.6.2 Contribution
We propose a novel approach towards an improved permanent fault diagnosis in a distributed
network-based system, such as an automotive E/E architecture. It is mainly designed for time-
triggered architectures and uses a framework which was previously introduced in the context of
schedule integration [118]. Within the proposed diagnosis-aware system design, that framework
is extended and adapted for a message-based fault diagnosis.

The main contribution of this section is the modification of a time-triggered system schedule
in order to improve a diagnosis of permanent faults at runtime. This covers, first, a determined
and reduced diagnosis time and, second, the inclusion of resources which could not be diag-
nosed earlier. The first goal is achieved by adapting the message transmission times of existing
message streams in the network in order to obtain a better distribution for their detection. The
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second goal uses the available bandwidth of the communication channel to insert auxiliary
light-weight diagnostic messages for naturally undetectable resources, for example, those ex-
ecuting reception tasks only. Furthermore, the insertion of additional message streams can be
used to resolve infeasible constraints in terms of a too short observation time4. Finally, the
approach does not compromise the predefined system specifications, such as end-to-end delays
of applications. The modification of system schedules in order to enhance a message-based
fault diagnosis can be also seen as a first step towards Design for Testability (DFT) which is a
relevant topic for the automotive industry.

3.6.3 System Model

Similar to the diagnosis method discussed in Section 3.4, the proposed system design approach
uses a graph-based description where software functionality and hardware components are mod-
eled by process graphs and architecture graphs, respectively. The upper part of Figure 3.13
shows a simple example for the specification of a distributed system with three applications ai
and an architecture consisting of three bus-attached resources ri where the bus is considered
an own resource. Here, a process graph GP = (P, EP) consists of the vertices P = T ∪ M,
where a process p ∈ P can define both a tasks t ∈ T and a message m ∈ M, respectively. The
edges EP represent the corresponding data-dependencies. Accordingly, an architecture graph
GR = (R, ER) connects resources r ∈ R (e.g., ECUs, buses and gateways) through architec-
tural links l ∈ ER. In order to assign processes to the appropriate resources, both graphs share
mappings defined by the edges EM = (P, R).

3.6.3.1 Time-Triggered Scheduling

The system model comprises a fully synchronous time-triggered schedule where at design-time
each process, i.e., task or message, is assigned a start time which defines the instant of its
execution within a periodic cycle. An application, on the other hand, is defined by its end-
to-end delay which is described by the interval between the beginning of its first task (e.g., a
sensor process) and the end of the last task (e.g, an actuator process). Generally, automotive
applications define distributed control functions that rely on maximal end-to-end delays rather
than on single deadlines for each task. As a consequence, given a sufficient bandwidth on the
communication channel, the start-times of single messages within the end-to-end boundaries
might be shifted without affecting the control performance. This aspect is used for the approach
proposed here, as our main goal is to modify system schedules in order to improve the diagnosis
times and increase the diagnosability without compromising the original constraints specified
during system design. In this context, we assume the required maximum diagnosis time to be

4Although, observation time and diagnosis time are usually used interchangeably, in some cases the former
term refers to a pure detection of message instances while the latter one indicates the duration of diagnosing a fault
scenario.
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Figure 3.13: Specification for a distributed system consisting of several applications mapped
to an architecture. The bottom part shows the communication on the bus resource for three
different schedules, where tw

o and tb
o indicate the worst and best observation time, respectively,

whereas tmax
o represents its upper bound. A permanent fault occurs on r1 and prevents a further

message transmission.

specified by the system designer depending on specific application requirements as well as the
subsequent fault tolerance strategy.

3.6.3.2 Illustrative Example

The lower part of Figure 3.13 depicts three different allocations of messages on a bus resource
for a simple system specification. Each communication pattern is illustrated for two periodic cy-
cles and will be referred to as schedule (a), (b) and (c), respectively. Schedule (a) represents the
unaltered message allocation resulting from the schedule synthesis of an original user-defined
system specification. The messages m1 and m2 are carrying data from task t1 to task t2 and,
hence, will be transmitted from resource r1 to r3, whereas m3 is sent from r1 to r2.
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Now, let us assume that during the transmission of m2, a permanent fault occurs on resource
r1 (symbolized by a lightning in Figure 3.13) and resulting in the transmission failure of all
following messages. At this point, it shall be also presumed, that the system designer defined
a maximum diagnosis time tmax

o which cannot be exceeded. As discussed before, in order to
rule out that the resource was only affected by a transient fault, our diagnosis method needs to
observe at least two consecutively omitted messages from a message stream whose diagnosis
function is targeting the potentially faulty resource. Thus, for schedule (a) the diagnosis of a
faulty r1 would require a worst case observation time of tw

o,1, which is supposed to be higher than
the predefined maximum observation time tmax

o . By contrast, the proposed approach uses the
idle times on the bus to distribute messages from each resource in such a way that tmax

o between
two consecutive messages in a stream is not exceeded. This is demonstrated in schedule (b)
where the single messages are distributed more evenly, preventing larger gaps between them.
In many cases the proposed method can not only reduce the observation time itself, but it also
enables a better overall system predictability by defining un upper bound for the observation
time, as in this example where tw

o,2 ≤ tmax
o .

So far, only message streams from the original system specification have been considered.
This is in accordance with the overall methodology introduced in Section 1.3, that requires a di-
agnosis method to be as less intrusive as possible. However, a complex distributed system, such
as an E/E architecture, can contain a number of resources whose faults might not be detectable
with the help of a fully implicit and non-intrusive fault diagnosis approach. For instance, in the
specification in Figure 3.13 the resources r2 and r3 are both endpoints in the corresponding task
communication and, thus, not transmitting messages on their own. For this purpose, in order to
improve the diagnosability, the diagnosis-aware system design is able to identify such resources
and integrate auxiliary tasks which can broadcast short diagnostic messages, such as the ap-
plication a3. These auxiliary tasks are supposed to be lightweight and transmit the diagnostic
message in time intervals that do not influence the execution of regular system applications
(e.g., once a hyper period). Schedule (c) illustrates this scenario, where the task td is mapped to
resource r3 and transmits a diagnostic message md. Assuming that, due to a limited bandwidth
or other timing constraints resource r2 remains undiagnosable, then the overall diagnosability
of the system in Figure 3.13 has been increased from one resource to two resources.

3.6.4 Methodology

This section formally describes the proposed diagnosis-aware system design, divided into the
general requirements, message stream adaptations and message insertion. Besides the process
and architecture graphs introduced in Section 3.6.3, it mainly uses parameters and variables
describing time-triggered schedules, as listed below.

p ∈ P system process from the set P = T ∪M that is either a task t ∈ T or a
message m ∈ M

99



3 Diagnosis of Permanent Faults

ha

std
w(td ,md)

et2om3

r1 :

rbus :

r2 :

r3 :

t1 t3

m1 md m2 m3

t4

td t2

Figure 3.14: Example for a time-triggered schedule of a system based on the specification in
Figure 3.13. The schedule excerpt depicts one application period ha showing the appropriate
positions and data dependencies of all processes. Moreover, it illustratively describes the role
of the main variables and parameters used for the diagnosis-aware system design.

w( p̃,p) ∈ R waiting time between the end of a process p̃ and the start of a data-de-
pendent process p

op ∈ R variable describing the offset interval of a single process p

oa ∈ R variable describing the offset interval of an entire application a

ha ∈ R period defining the recurring execution of an application a

sp, ep, hp ∈ R start time, execution time, and period defining a single process p

Hr ∈ R hyper period (i.e., least common multiple) of all processes executed on
a resource r

α(p) : P→ A function returning the respective application a a process p is part of

ρ(p) : P→ R function returning the respective resource r a process p is executed on

tmax
o,r maximum observation time to detect message omissions on a poten-

tially faulty resource r

In Figure 3.14 the parameters listed above are shown within a hypothetical time-triggered
schedule based on the specification in Figure 3.13. Each row illustrates the processes on one
particular system resource (including the bus resource in the second row from the top) and
the solid arrows represent their data dependecies corresponding to the process graph. In this
example, the schedule excerpt comprises one period ha which is the same for all three example
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applications a1, a2 and a3. Here, optimization variables, such as the message offset om3 , are
depicted in bold characters to distinguish them from previously specified parameters, such as
the task execution time et2 .

3.6.4.1 Requirements

Broadly speaking, in order to adapt a schedule for better diagnosis performance, both single
messages and entire applications are shifted in terms of their start times, ensuring that the
defined maximal end-to-end delay is met. As our approach uses previously specified system
schedules, it basically only requires modifications on the communication resources, leaving the
originally defined time constraints for task processes unchanged. However, to gain an additional
degree of freedom for the following message stream adaptation, the applications are allowed to
be shifted as a whole without changing their end-to-end delay. Hence, to begin with, we define
the boundaries of the individual message offsets om as well as the application offsets oa.

∀a ∈ A, ∀m ∈ M, ( p̃, m) ∈ EP, (m, p′) ∈ EP :

0 ≤ oa < ha (3.11a)

−w(t̃,m) ≤ om ≤ w(m,t′) (3.11b)

According to Equation (3.11a), the offset of an application can amount to the length of its
period, where the latter one itself is excluded from the interval. Because shifting an application
is equivalent to setting an identical offset for all its corresponding processes the relevant end-
to-end delays are not affected. In contrast to this, in Equation (3.11b) the offset of one single
message is bounded by the waiting times to its predecessor task t̃ and its successor task t′. For
instance, in the schedule in Figure 3.14 the message m3 (whose offset interval om3 is indicated
by the subjacent gray area) can be maximally shifted by −w(t3,m3) towards t3 and by w(m3,t4)

towards t4.

Without loss of generality, in the following we consider a non-preemptive single-threaded
execution model where a resource can execute concurrently at most one process. For this reason,
it must be guaranteed that both tasks and messages are not scheduled on a shared resource at
the same time. The constraints assuring non-interference between the corresponding messages
and tasks are defined for the Equation (3.12) and (3.13), respectively, which, in turn, determine
the message offsets om and the application offsets oa. In other words, in both cases the two
exclusively disjunctive (⊕) inequalities are preventing two processes from overlapping. In order
to ensure that a process is compared with every other process executed on the shared resource, it
is necessary to iterate over the process periods up to a duration of three and two hyper periods,
respectively, as defined by the counting variables i and j.

∀m, m̃ ∈ M, m 6= m̃, a = α(m), ã = α(m̃), ρ(m) = ρ(m̃),
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i = {0, · · · ,
3Hρ(m)

hm
− 1}, j = {0, · · · ,

3Hρ(m̃)

hm̃
− 1} :

oa + om + i · hm + sm + em ≤ oã + om̃ + j · hm̃ + sm̃

⊕ oã + om̃ + j · hm̃ + sm̃ + em̃ ≤ oa + om + i · hm + sm (3.12)

∀t, t̃ ∈ T, t 6= t̃, a = α(t), ã = α(t̃), a 6= ã, ρ(t) = ρ(t̃),

i = {0, · · · ,
2Hρ(t)

ht
− 1}, j = {0, · · · ,

2Hρ(t̃)
ht̃
− 1} :

oa + i · ht + st + et ≤ oã + j · ht̃ + st̃

⊕ oã + j · ht̃ + st̃ + et̃ ≤ oa + i · ht + st (3.13)

3.6.4.2 Message Stream Adaptation

Having assured that no two processes can utilize a resource at the same time, we can now
formulate the diagnosis-aware message stream adaptation for an improved fault diagnosis. Its
main constraint is shown in Equation (3.14).

∀r ∈ R, ∀m ∈ Mr, a = α(m), i = {0, · · · ,
Hρ(m)

hm
} :

∨

m̃∈Mr

em ≤
(

xm,i · hm̃ + sm̃ + om̃ + oã=α(m̃)

)

−
(

i · hm + sm + om + oa

)
≤ tmax

o,r

(3.14)

As mentioned before, one of our goals is to guarantee that a fault diagnosis does not exceed
predefined diagnosis times which is equivalent to setting specific upper bounds for the obser-
vation times of the message streams on the appropriate resources. More precisely, the system
designer selects a maximum observation time tmax

o,r for each resource r during which a potential
permanent fault shall be diagnosed with the help of the corresponding diagnosis function.

In this context, the observation time is defined as the interval between the expected arrival
times of two consecutive messages from the same resource. However, as the individual process
periods may differ between applications, it is not sufficient to compare adjacent messages only.
As can be seen in Equation (3.14), an auxiliary integer variable xm,i is used in such way, that
for each iteration i of a message occurrence m, the defined equation finds at least one closest
neighbor m̃ within the regarded hyper period. In contrast to Equation (3.12) and (3.13), where
all message streams are analyzed concurrently, here each resource is analyzed separately, which
means that only message streams from the appropriate set Mr are considered. Consequently,
given a sufficiently large set Mr, applying the constraint in Equation (3.14) will ideally result
in a schedule which complies with the maximum observation time as well as exhibits an even
distribution of the message start times for streams from the same resource.
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3.6.4.3 Message Insertion

Our second goal is to extend the system schedule by inserting diagnostic messages and, hence,
include previously undiagnosable resources r ∈ Rd into the fault diagnosis process. The re-
trieval of these resources is performed with the help of a DFS algorithm on the architecture
graph GR that basically looks for resources with an insufficient amount of outgoing message
streams. Having determined the set Rd, we can extend the system specification with particu-
lar diagnostic tasks td that periodically broadcast short diagnostic messages md. As defined in
Equation 3.15, both the task period htd and the message period hmd are bound by the maximum
observation time to be consistent with the previous constraints.

∀r ∈ Rd, td ∈ Td,r, md ∈ Md,r :

htd = hmd ≤ tmax
o,r (3.15)

The new diagnostic applications ad, consisting of one task td and one message md each,
are treated as normal system applications such that they are added to the extended message and
task sets, as defined in Equation (3.16a) and (3.16b). In this manner, it is guaranteed that the
inclusion of the new processes into the existing schedule is performed in compliance with all
previous constraints and the initial values for the start times, std and smd , are adjusted based on
the corresponding application and message offsets oad and omd , respectively.

T′ = T ∪ Td (3.16a)

M′ = M ∪Md (3.16b)

Although not discussed in detail, the insertion procedure described above makes use of a
special conflict refinement, presented in [118]. In cases, where the adaptation of the message
distribution is not able to comply with the specified constraints (e.g., there are not enough mes-
sages to guarantee a defined maximal observation time), auxiliary diagnostic messages can be
inserted to decrease the observation time. This approach is used for the case study in Sec-
tion 3.6.5. It is important to keep in mind that, depending on the used hardware, the proposed
message insertion might require adaptations on the respective resources, e.g. in terms of their
bus interfaces, to allow a transmission of messages in the first place.

3.6.5 Case Study

The presented case study is an automotive application where multiple tasks and messages are
mapped to an architecture with four bus-attached ECUs. It use the research platform for auto-
motive E/E architectures introduced in Section 3.5.3 executing the corresponding steer-by-wire
application. Here, the maximal tolerable observation times for the ECUs are required to stay
below 2.7 ms, 5.0 ms, 4.0 ms and 3.0 ms, respectively. All other relevant case study parameters
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Figure 3.15: Screenshot of a schedule visualization tool, showing the resulting schedules for
the presented case study. Messages in schedule (a) follow solely the constraints of the ini-
tial specification and seem more clustered, whereas our adapted schedule (b) distributes them
according to a defined maximum observation time tmax

o .

Table 3.2: Case study parameters and maximal tolerable observation times tmax
o .

ECUs Buses Functions Tasks Messages tmax
o for ECU 1/2/3/4

4 1 5 25 15 2.7/5.0/4.0/3.0 ms

are listed in Table 3.2. The calculations were carried out on an Intel Core i5 with 2.6 GHz and
8 GB RAM. For the methods that required solving a decision problem, Microsoft Z3 version
4.3.0 as Satisfiability Modulo Theories (SMT) solver has been used [26].

Figure 3.15 depicts the case study outcome for both the unaltered system schedule (a) and
the adapted schedule (b), which results after applying the diagnosis-aware system design. The
bus resource in the middle of each schedule contains the entire message communication and
the task schedules for the ECUs 1 and 2 as well as 3 and 4 are arranged above and below,
respectively. For clarity reasons, from the entire hyper period of 20 ms only 13 ms are depicted
and all processes (i.e., tasks and messages) which belong to one particular ECU are shown as
bars in the same color. The worst case observation time tw

o for ECU 3 is highlighted in both
schedules and the processes td and md, inserted by our algorithm, are framed.

Generally, comparing the bus resources only, it can be clearly seen that the proposed method
distributes messages more evenly, which is a first indicator that the observation times might
have been decreased. The relative positions of single task processes to each other are unaltered
showing that the end-to-end delays of the individual applications have not been affected. As an
example, it is pointed out that the initial worst case observation time of 9.7 ms for two message
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Table 3.3: Initial and improved fault diagnosis observation times.

observation time tw
o ECU 1 ECU 2 ECU 3 ECU 4

initial 5.0 ms 5.0 ms 9.7 ms 4.5 ms
improved 2.7 ms 5.0 ms 4.0 ms 3.0 ms

omissions from ECU 3 has been reduced to the required maximum observation time of 4.0 ms.
This would decrease the corresponding diagnosis time of a permanent fault on this resource
by more than 50 %. At the same time, the observation times for the remaining three ECUs
could also be decreased or remained unchanged in order to comply with the required maximum
times. The remaining results are shown in Table 3.3 which lists both the initial and the improved
observation times.

The computation time of our algorithm did not exceed 1.3 seconds for the presented small
case study. As our method introduces relatively few additional scheduling constraints, a good
scalability for larger systems can be expected. Nevertheless, more experimental results with
larger test cases need to be performed in the future.

3.7 Conclusion
This chapter presented a novel approach for the diagnosis of permanent faults in automotive
E/E architectures. A faulty resource can be detected instantly on the basis of special diagnosis
functions, which are distributed among the other system resources to prevent a single point-
of-failure. The diagnosis method is based on the monitoring and analysis of existing message
streams and, thus, is non-intrusive with respect to the network communication. Only in special
cases, for instance, when particular resources are undetectable, additional diagnostic messages
can be included to improve the general diagnosability.

The proposed diagnosis framework covers two stages. First, during a diangosis determina-
tion stage, a given system architecture is analyzed in order to identify potential fault scenarios.
Diagnosis functions are then generated based on BDD-encoded observations of traffic patterns
to detect these scenarios. Second, during an optimization stage, the diagnosis functions are
used to determine trade-offs between the diagnosis times and the numbers of monitored mes-
sage streams.

The general feasibility of our approach is demonstrated based on the evaluation of 100
synthetic test cases covering automotive architectures of up to 23 ECUs and more than 40000
distinct fault observations. The experimental results show, that an optimization of the generated
diagnosis functions can have a large impact on the efficiency by reducing the observation times
by up to 50 % or removing up to 90 % of the monitored message streams. The practical use
is illustrated on a case study highlighting the ability of diagnosing permanent faults beyond the
limits of the bus the observing resource is connected to (i.e., on network-level). Moreover, the
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implementation of the diagnosis method on a research platform for automotive E/E architectures
demonstrates low CPU and memory overheads of maximum 5.13 % and 6.06 KB, respectively.

Finally, this chapter also presents an approach to extend and improve the permanent fault
diagnosis by applying a diagnosis-aware system design. Here, the communication of a given
system schedule is modified by adapting start times of periodic messages and including light-
weight diagnostic applications for undiagnosable resources. As a result, the evenly distributed
messages offer a more consistent and deterministic fault diagnosis which is able to further
reduce the initial observation times.

Future work. Similar to the intermittent fault diagnosis in Chapter 2, the approach presented
here basically uses the single-fault assumption. Even though a fault scenario can contain mul-
tiple resources, it is presumed that a single permanent fault causes their failure and therefore
they are all covered by one specific diagnosis function per observing resource. In future, an ex-
tended set of diagnosis functions together with a possible consideration of delays between two
successive faults could facilitate the diagnosis of multiple resources affected by both dependent
and independent permanent faults.

Considering the diagnosis-aware system design, the proposed method mainly targets a fault
diagnosis at runtime. However, this work could be regarded as an initial step towards future DFT
techniques for distributed architectures. By considering both the verification and validation
during manufacturing as well as the maintenance tests after delivery, the proposed approach
could be extended to support diagnoses and tests during the whole product life time.
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CHAPTER4
Diagnosis of Security Attacks

In the previous chapter a strategy for a permanent faults diagnosis in distributed systems has
been introduced. It has been shown how, based on the observation of message stream patterns,
special diagnosis functions can be used and further optimized for a decentralized detection of
faulty resources. Furthermore, a diagnosis-aware system design approach was presented which
allows both a reduction of the necessary diagnosis times and an inclusion of previously unde-
tectable resources into the fault diagnosis. Now, still considering the general idea of a decen-
tralized monitoring of message streams, we want to shift from a pure fault diagnosis towards the
diagnosis of deliberate system infringements. For this, the present chapter introduces a novel
approach towards the distributed diagnosis of security attacks in automotive E/E architectures.

Due to the growing interconnectedness and complexity of in-vehicle networks, in addition
to safety, security is becoming a more than ever relevant topic in the automotive domain. We
propose a diagnosis method for the detection of manipulated message streams in which the
contents of the messages themselves are not considered problematic. The approach is based
on a decentralized principle where the diagnosis tasks are distributed among suitable system
resources, such as ECUs, aiming at an overall improvement of the diagnosis reliability and
robustness. The proposed security framework consists of two stages. First, a given system
architecture is analyzed and the necessary communication parameters and properties for the
subsequent diagnosis are determined. In the second stage, this system knowledge is used for
both a redundancy-aware distribution of diagnosis tasks and an appropriate parametrization
of the diagnosis algorithms executed on the monitoring resources. By using a light-weight
detection method and an optimization-based task distribution, our approach guarantees a full
coverage and timeliness of the diagnosis while imposing a low additional overhead.
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Chapter outline. Chapter 4 consists of the seven following sections. First, in Section 4.1 an
introduction is given, which also contains an illustrative example and a description of the main
contributions of the diagnosis. Section 4.2 discusses the related work. Section 4.3 presents the
diagnosis framework and provides a description of the communication and architecture models
underlying the proposed approach. The diagnosis itself is introduced in Section 4.4 which also
contains an overview of possible attack scenarios. The methodology and formal definitions
are presented in Section 4.5, which is further divided into two parts: real-time detection and
redundancy-aware distribution. Section 4.6 contains the experimental results which evaluate
our approach based on synthetic test cases and a case study. Finally, the conclusion and future
work are presented in Section 4.7.

4.1 Introduction
This section provides the introduction to the diagnosis of security attacks. Following the mo-
tivation, which includes a brief literature overview, the overall idea is explained with the help
of a realistic automotive attack scenario. Afterwards, the main contributions of this chapter are
presented.

4.1.1 Motivation
Over the past decades, automobiles have been transforming from mere functional means of
conveyance into connected, electronically controlled vehicles. They are expected not only to
transport passengers but also to entertain and inform in a safe and protected environment. As
a consequence of the specific requirements on safety, efficiency and customers’ demands, the
complexity of automotive E/E architectures has been constantly growing. In-vehicle networks
with more than 100 ECUs communicating over multiple automotive-specific buses and gate-
ways are now common in the industry. At the same time, novel functionality like C2C and C2I
as well as modern infotainment systems have resulted in an increasing amount of vehicle com-
ponents with interfaces to the outside world, for instance, via radio-based communication links.
Integrated in an automotive architecture, such devices make cars more than ever vulnerable to
security infringements, as presented in [45]. Recent demonstrations of security violations in
production vehicles, for instance by [69] and [21], clearly illustrate the growing importance of
this topic. An equal treatment of safety and security as part of the overall reliability of an au-
tomotive E/E architecture seems crucial, as an exposed electronic component might contribute
to the passengers’ safety risk at the same extent as a faulty device [119]. However, in the com-
petitive automotive domain, the related increased costs at design-time are an obstacle for the
introduction of novel security features which, in turn, call for inexpensive solutions.

In recent years, the problem of automotive security has been regarded from various per-
spectives. First, in addition to the examples given above, the overall dangers of an insecure
automotive architecture for the driver’s safety are pointed out in [9] and [46], where the lat-

108



4.1 Introduction

ter one also considers DoS-based threats. The inclusion of security measures into automotive
E/E architectures at design-time requires, among other things, extended formal definitions and
solution strategies for a security-aware Design Space Exploration (DSE), as shown in [135]
and [82]. On the other hand, the diagnosis of security attacks at runtime uses special Intrusion
Detection System (IDS) in order to detect anomalies in the system communication behavior or
data content, as presented in [102] and [101]. Finally, automotive security also comprises the
intra-vehicular communication which has been studied in [17] and [32] and may contribute to
an early intrusion prevention for in-vehicular networks. Although monitoring of input streams
has been used in the context of traffic verification and regulation in real-time systems [47], to
the best of our knowledge, our approach is the first one analyzing the automotive message-based
communication on system-level for security purpose. A detailed discussion of the existing work
in the area of automotive security is presented in Section 4.2.

In this chapter, we present an automotive security diagnosis approach, that, due to its decen-
tralized and non-intrusive principle, offers a reliable and cost-efficient solution for the emerg-
ing and fast-growing topic of vehicle security. Generally, in message-oriented networks many
common forms of attacks change a message stream and manifest themselves in altered traffic
patterns (e.g., DoS or message flooding). In classic computer networks which are based on a
highly dynamic and unpredictable packet transmission, such as the Internet, potential traffic-
manipulating attacks can only be detected in extreme cases. This is basically different for
in-vehicle networks where due to highly time-critical control software, message periods and
execution time bounds are given, such that delays and worst case jitters can be precisely cal-
culated. Here, in contrast to the aforementioned generic networks, already a relatively small
increase of the message rate can compromise safety-critical functions, for instance, by slacken-
ing the responsiveness in a brake-by-wire system or impede a correct power management. As a
consequence, our automotive security diagnosis approach is not analyzing the message content
itself, but rather the overall communication behavior in order to detect and prevent an effective
attack. In addition to classic DoS, our method can also diagnose attacks where a service is not
entirely rejected but, for instance, carried out incorrectly.

4.1.2 Illustrative Example

We demonstrate the relevance of the automotive security problem as well as our solution ap-
proach with the help of a realistic attack scenario. For this purpose, Figure 4.1 illustrates a
part of an E/E architecture based on the in-vehicle network of an up-to-date and currently best-
selling commercial Electric Vehicle (EV) [104]. It consists of four ECUs connected to a CAN
bus: a telematics unit (TCU) providing a wireless connection for remote services, a vehicle con-
trol module (VCM) evaluating ECU and sensor signals, a Battery Management System (BMS)
controlling the Li-Ion cells and a power management unit (PMU). In EVs, to avoid a potentially
harmful battery depletion, the transmission of energy to the motor or other electrical devices
is initiated by a torque request (e.g., by the PMU) to the BMS and has to be accepted or re-
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Figure 4.1: Attack scenario illustrating our security diagnosis approach. The telematics unit of
an automotive E/E architecture is attacked in order to manipulate the communication between
the battery (BMS) and the power management (PMU). The attack can be detected and counter
measures (e.g. high-priority warning mp) can be applied at the vehicle control module (VCM)
by testing the compliance of the manipulated stream m̃ with the arrival curve of the original
stream m.

jected by a response message (compare message stream m between r3 and r4). Moreover, to
ensure functional safety, a BMS usually contains a hard-wired shut-off switch which will cut the
electrical power supply, for instance, before current or voltage levels can fall below dangerous
thresholds [117]. Let us assume, that an attacker intends to bring the vehicle to an immediate
halt. As recently discussed in [69], an intruder can relatively easily gain wireless access to the
automotive architecture, e.g., via the telematics interface or a Bluetooth adapter for the on-board
diagnostics connector (OBD-II port). Once having control over the TCU, the attacker manip-
ulates its code to transmit a simple high frequency stream of responses accepting the torque
request (compare message stream m̃), such that they would in any case dominate the original,
possibly rejecting, response messages on the bus. As it is receiving positive responses to its
torque request at a high rate, the PMU continues to draw current from the battery beyond the
designated threshold which will trigger the aforementioned shut-down switch. Disconnected
from its power source, the car will abruptly slow down, lose its brake booster or power steering
and finally come to a halt. This could have catastrophic consequences, for instance, during an
overtaking manoeuvre, such that an instant detection of such an attack is crucial and indispens-
able.
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Within the proposed security diagnosis approach, we use the knowledge of particular system
components about essential communication parameters, such as message periods and maximum
jitters. This information is specified during system design and can be stored in the form of so-
called message arrival curves which are compact representations of the upper and lower bounds
for the number of message stream events within a specific time interval. As arrival curves are
easily adaptable and can be parametrized for many different message stream patterns, they help
us to design efficient and distributable diagnosis tasks. Consequently, within the illustrated sce-
nario, the VCM can very quickly detect the transgression of a predefined upper arrival curve
αu

m by monitoring and analyzing the actual message count of the manipulated stream Rm̃ with
respect to αu

m. Such a transgression is illustrated in the arrival curve graph in the right part
of Figure 4.1 at time to. After having detected the altered message stream and identified it as
torque response (e.g., via the CAN-ID), the VCM transmits a high priority message mp to the
PMU informing it about the wrongful responses from the BMS. The subsequent countermea-
sures could include, among other things, a safe and controlled reduction of the torque request
and at the same time warn the driver about a serious malfunction asking him or her to stop
the car. By all means, it is of utmost importance that these measures are initiated as early as
possible, which can be ensured with the methods presented in this chapter. Moreover, should
the attacker try to disrupt the corresponding diagnosis functionality on the VCM, our decentral-
ized redundancy-aware methodology maintains the overall diagnosis capability by using several
distributed monitors for each message stream.

4.1.3 Contributions

As a matter of principle, the proposed security diagnosis approach is designed to detect
communication-based attacks aiming at compromising the vehicle’s E/E architecture or parts
of it. For this, the network communication is monitored in order to identify deviations from the
transmission specification of single message streams. In other words, it is detecting changes in
the expected communication patterns. Such an approach is insofar relevant, as many common
methods to harmfully infiltrate and disrupt automotive networked systems manifest themselves
in altered transmission patterns. For instance, [101] explores, inter alia, two attack scenarios:
an increased frequency in a regular message stream as well as message flooding using highest-
priority CAN identifiers to restrict the availability of the bus. While [46, 43] describe how such
attacks can cause severe dangers for road participants, e.g., by turning off headlights at night,
our motivating example extends this by demonstrating that the manipulation of particular traffic
patterns in an EV can easily disable its entire power supply.

In general, our security diagnosis approach follows an implicit paradigm and is performed
in a decentralized manner. On the one hand, it utilizes only the existing communication with-
out the need for additional diagnostic messages or hardware components making the proposed
method non-intrusive. The used diagnosis tasks are lightweight and, hence, the induced com-
putational and timing overhead is minimal. On the other hand, distributing the diagnosis tasks
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helps to remove the risk of a single point of failure and, hence, improves the overall reliability
of the diagnosis itself. Additionally, different ECUs can inspect a limited number of message
streams to prevent an over-utilization of particular resources. In order to guarantee a complete
coverage of diagnosis, the proposed distribution method considers the entire system commu-
nication and allows to be configured in terms of redundancy and allocation of the monitored
message streams.

In this work, we want to provide an efficient and reliable security diagnosis framework
which can overcome the three main difficulties mentioned below. First, the formulation of a
fast diagnosis algorithm which can be efficiently implemented on each considered monitoring
resource, preferably close to the communication controller to minimize latencies. Here, the ac-
tual diagnosis algorithm is implemented on each monitoring ECU and is based on a method for
the verification of runtime conformity of hard-real time systems to detect the violation of pre-
defined communication parameters. For this, as already illustrated in the motivating example,
message streams are represented by special arrival curves which efficiently describe the speci-
fied earliest and latest times a messages should be received. This enables a suitable detection
of potential malicious attacks on the system communication. Second, the distribution of this
algorithm within specific diagnosis tasks shall be carried out automatically but still enable the
system designer to manually adjust necessary parameters regarding monitoring redundancy and
component utilization. Third, to cover current and future distributed architectures, the overall
diagnosis framework must provide a suitable scalability. In summary, we propose:

1. A real-time traffic conformity check for a decentralized and light-weight detection of
message-based attacks in automotive E/E architectures.

2. An optimization-based method to efficiently distribute diagnosis tasks among the moni-
toring resources considering redundancy.

It shall be mentioned that the focus of this work is on the diagnosis process for a secure au-
tomotive E/E architecture. The system behavior subsequent to an identified attack, especially
the application of specific countermeasures as discussed in the motivating example, is not part
of this work. Eventually, it is important to understand, that the proposed work does not raise
a claim to sufficiency in terms of a universal security strategy. While the presented approach
cannot guarantee to detect all types of security infringements, the low implementation effort
along with the anyway required diagnosis functionality offers an additional security measure
which can be used orthogonally to other approaches.

4.2 Related Work
In this section, a comprehensive overview and discussion of the existing work in the area of
automotive security is given. The main focus is on the design-time and runtime diagnosis of
attacks on in-vehicle networks.
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General automotive security. The automotive industry is more than ever driven by the
technological progress, notably in terms of connectivity and communication. The security risks
arising from this development are evident, and beyond the stage of mere thought experiments or
lab setups, as pointed out in [9]. An introductory insight and discussion of automotive security
is presented in [119]. On the one hand, it illustrates the threats and the challenges arising from
the growing complexity of automotive electronics and its interconnections to the outside world
and, on the other hand, it proposes potential concepts for future solutions comprising Ethernet-
based networks and formal verification approaches.

It has been shown that the related threats can range from a relatively harmless unautho-
rized access to the vehicle by cracking the key-less entry system [11] to the much more severe
intrusion into an in-vehicle network and infiltration of its ECUs. This, in turn, can interrupt
safety-critical systems and endanger the lives of the car occupants, as shown, for instance,
in [45, 69, 21]. Using the example of an Electronic Throttle Control (ETC), [46] highlights the
relevance and danger arising from a DoS attack, which is also an important scenario addressed
in our work. The authors demonstrate how an attacker, after having hacked the engine man-
agement ECU, can use malicious code to flood the CAN bus with a large number of spoofed
messages and provoke a DoS on the ETC ECU unit, thereby potentially causing an uncontrolled
acceleration. In this context, the authors also developed an adaptive strategy to communicate
security related incidents to the driver [44].

Furthermore, multiple approaches examine the topic of automotive security from a larger
perspective including inter-vehicular networks, Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) communication [49, 90]. For example, the work in [17] analyses the per-
formance of vehicular communication systems, where the car itself is regarded as a node in a
network. Similarly, the authors in [32] investigate and discuss the use of the IPv6 protocol to
create a secure mobile vehicular communication and demonstrate that this is possible without
serious network overload. Although these intra-vehicular approaches are not covering automo-
tive E/E architectures in particular, the presented methods and analyses can help to prevent an
intrusion into in-vehicle networks in the first place.

Overall, the examples above imply that cyber-attacks on automotive systems have become
a practical threat which must be considered both during the design process of E/E architectures
and while the vehicle is in operation.

Securing systems at design-time. In recent years, several papers have been published
addressing the automotive security at design-time. In [135], security aspects are integrated into
the traditional DSE of distributed embedded systems. For this, the formal system representation
is extended by a formal description of the attacker capabilities, such as reading, modifying or
inserting messages, as well as security requirements, defining what kind of attacks shall be
prevented, in order to obtain cost-optimized architectures and security guarantees. Similarly,
in [82] the security in the DSE process is addressed but puts the focus on the mapping problem
from functional models to CAN-based platforms, where the latter are additionally extended
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by Message Authentication Codes (MACs). Security constraints preventing direct and indirect
attacks on the MAC are defined and Mixed Integer Linear Programming (MILP) formulations as
well as a heuristic algorithm are used to solve the mapping problem. To improve the efficiency
and define the security scenarios in a more realistic way, the authors have extended the work
in [83] by redefining the MILP formulations and considering functional paths rather than signal-
based constraints. The application of MACs for the Flex-Ray bus is presented in [40]. There, the
corresponding security requirements are specified together with usual system parameters, such
as end-to-end latencies, but a divide-and-conquer technique is used to reduce the complexity of
the corresponding schedule synthesis.

In [100], the strategy for the verification of security requirements of automotive architectures
is proposed. The approach uses pre-assessed security-specific parameters such as exploitability
and patching rate to describe the system and determine a Markov model which is then subjected
to a probabilistic model checker. Special functions describing particular demanded security
aspects are fed into the model checker and allow the corresponding architecture to be analyzed
in terms of confidentiality, integrity or availability.

By contrast, at design-time, our security diagnosis approach covers two tasks, first, a system
analysis extracts the necessary parameters for the runtime diagnosis and second, an optimal
distribution of the diagnosis tasks among the system resources is performed. As a consequence,
our work follows a rather different approach from the papers above, mainly because it uses the
unaltered system specification for the diagnosis process (i.e., without initial security extensions)

Securing systems at runtime. Together with its consideration during automotive system-
design, security has been also addressed in the context of runtime diagnosis. A general detection
scheme for attacks on in-vehicle networks is proposed in [102], where the authors define a set of
eight recognition criteria for the identification of a typical behavior of automotive bus systems,
such as CAN, with a minimum number of false positive detections. The goal of this work is to
present a concept for an IDS for future vehicles where the associated recognition criteria, called
Anomaly Detection Sensors, are supposed to inspect the communication in terms of formality,
location, range, frequency, correlation, protocol, plausibility and consistency. In such a holis-
tic framework, the current state of our diagnosis approach would mainly fit into a frequency
detection sensor, however, it could be also extended towards a location and correlation sensor
with relatively little effort in the future. Besides the general scheme, the authors of [102] have
also proposed a specific anomaly detection method using an information-theoretical approach
where especially their scenario of an entropy-based increased frequency detection at runtime
seems to be related to our work [101]. However, the corresponding evaluation in that work
merely proves the concept and does not provide the observation times needed for the diagnosis.
Thus, for the time being, a direct comparison with our approach in terms of real-time efficiency
is not possible.

Beyond the automotive domain, the importance of a distributed IDS, which removes the
single point of failure, has been recently discussed in [143]. There, the actual differentia-

114



4.3 System Model

SYSTEM SPECIFICATION

DIAGNOSIS PARAMETERS/
MESSAGE ARRIVAL CURVES

TIMELINESS OF DIAGNOSIS
(COMPONENT-LEVEL)

COVERAGE OF DIAGNOSIS
(SYSTEM-LEVEL)

analysis
diagnosis

Communication Model
(Section 4.3.2)

Architecture Model
(Section 4.3.3)

Real-Time Detection
(Sections 4.4.3 and 4.5.1)

Diagnosis Distribution
(Sections 4.4.4 and 4.5.2)

0

2

4

6

8

10

∆

|m|

0

2

4

6

8

10

E
∆

|m|

Figure 4.2: The proposed security diagnosis framework is built up as follows: first, the sys-
tem specification is analyzed in terms of its communication and architecture in order to obtain
the necessary message arrival curves as well as the diagnosis parameters, e.g. a resource-to-
observation map. In a second stage, this outcome is used for both the real-time detection of
compromised message streams and the distribution of the diagnosis tasks.

tion between normal and attacked traffic is based on a feature extraction performed during
a parametrization and training phase on each node using the Naïve Bayes Classifier and the
agreement between the nodes is determined using an average consensus protocol.

In contrast to this probabilistic approach, our security diagnosis takes advantage of the fact
that automotive system and communication properties are known at design-time, which facili-
tates a verification if the observed traffic behavior conforms to the given specification.

4.3 System Model

In this section, we first present an overview of the security diagnosis framework before intro-
ducing the corresponding communication and architecture models.
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4.3.1 Framework
Figure 4.2 depicts the general structure of the proposed diagnosis framework, that can be
roughly divided into two stages. The first stage (upper part of the figure) illustrates the sys-
tem analysis while the second stage (lower part of the figure) represents the actual system di-
agnosis. More precisely, first of all, a given specification of the system is analyzed in terms
of its communication parameters as well as its application and architecture structure. The goal
is to obtain the necessary information for the subsequent diagnosis stage. For the latter, the
resulting communication parameters, which define special message arrival curves, are used to
configure the real-time diagnosis functions later implemented on the corresponding monitor-
ing resources. Furthermore, the knowledge about the system architecture is incorporated in
the distribution of the diagnosis tasks among the system resources using predefined parameters
such as redundancy levels. The second stage covers two important diagnosis criteria for safety-
critical systems, namely, the timeliness and the coverage, which will be explained in detail in
Section 4.5.

In the following, the communication model which underlies the presented approach is in-
troduced in Section 4.3.2 and the description of the corresponding architecture model is given
in Section 4.3.3.

4.3.2 Communication Model
The presented approach for diagnosing security infringements aims at the entire in-vehicle net-
work independent of the particular communication protocol. Nevertheless, setting the focus on
event-triggered communication, such as used by the CAN bus, is reasonable as it is one of the
most prevalent automotive buses. Moreover, as it is often used for safety-critical tasks, CAN-
based communication brings the highest risk of being exploited for undesired purposes [66]. To
model the network traffic, we adopt the concept of arrival curves presented in [19] for general
event-based systems. In the context of the security diagnosis, these arrival curves are used to
define the bounds for the number of observed message streams on a bus during a specified time
interval.

In the following, we first generally define message streams before introducing arrival curves
and discussing their determination.

4.3.2.1 Message Streams

A message stream m is generally described by its event trace function µm(n) where the n-th
message arrives at time tn−1, as defined in Equation (4.1). For example, Figure 4.3 shows a part
of a message stream m where six message events arrive at times t0 through t5. Additionally,
nine events of a compromised message stream m̃ are depicted.

∀tn ∈ R, n ∈N :
µm(n) = tn−1, with n ∈ {1, ..., nmax} (4.1)
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Figure 4.3: Example for two event traces. Six event arrivals (long arrows) represent an excerpt
of a regular message stream m and nine event arrivals (short arrows) stand for a possible attack
on m in the form of a compromised message stream m̃.

Based on the event trace of a message stream m, the message count function Rm[ta, tb) re-
turns the actual number of events (i.e., message instances or messages) arriving at a communi-
cation resource in the time [ta, tb), where ta is inside and tb outside the half-closed interval. This
is formally defined in Equation (4.2a) with Rm(ta) and Rm(tb) determined by the maximum
number of events of the trace function up to the time ta and tb, respectively (Equations (4.2b)
and (4.2c)).

∀ta, tb ∈ R+, ta < tb, n ∈N :

Rm[ta, tb) = Rm(tb)− Rm(ta) (4.2a)

Rm(ta) = max {n | µm(n) < ta} (4.2b)

Rm(tb) = max {n | µm(n) < tb} (4.2c)

4.3.2.2 Arrival Curves

Obviously, for a message stream which is not purely periodic but, for example, periodic-with-
jitter, the message count can differ for the same interval length [s, t) but different start times s of
the counting. Consequently, in order to diagnose communication inconsistencies, we are inter-
ested in determining the highest and lowest message count of m for each possible time interval.
This can be facilitated by the aforementioned arrival curves. By definition, the minimum and
maximum number of messages arriving within an arbitrary time interval ∆ is bound by a lower
arrival curve αl

m(∆) and an upper arrival curve αu
m(∆), respectively, both represented by step

functions. Given the message count on a bus which lasts for an interval of length ∆, the lower
and upper arrival curves must satisfy the two Equations (4.3a) and (4.3b), respectively, for all
times t.
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Figure 4.4: Example of an arrival curve graph depicing the Regular Operation Mode on a com-
munication resource. Rm(t) represents the message count (not an arrival curve) for an example
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fined by αl
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two message counts Rm(ta) and Rm(tb).

∀t ∈ R+ :

αl
m(∆) = min

t≥0
{Rm(t + ∆)− Rm(t)} (4.3a)

αu
m(∆) = max

t≥0
{Rm(t + ∆)− Rm(t)} (4.3b)

An example for a pair of arrival curves is shown in Figure 4.4. The graph depicts the number
of messages in a stream m (y-axis) which can be observed within any arbitrary time interval ∆
(x-axis). With the upper and lower arrival curves at its edges, the shaded area in the graph
marks the region of the Regular Operation Mode which is not allowed to be left by a regular
message stream, independent from the starting time of its observation. Here, Rm(t) illustrates
one of the infinite number of possible regular message streams. In this case it is representing
the message arrivals of the stream m in Figure 4.3, where the observation begins at t0 and ta

and tb correspond to t3 and t5, respectively.

It is important to understand, that Rm(t) does not represent an arrival curve for an arbitrary
time interval ∆ but rather the message count of a particular message stream for a specific obser-
vation time. Hence, strictly speaking, Rm(t) does not refer to the x-axis of time intervals ∆ but
one reflecting the absolute runtime t. In the graph, a separate axis for the latter one is omitted
for the purpose of clarity.
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4.3.2.3 Arrival Curves Determination

Although some bus protocols, such as CAN and partly also FlexRay, follow an event-triggered
communication paradigm, most of their messages are transmitted in a cyclic manner which
is a common characteristic for the automotive communication with a large number of control
functions in a sensor/actuator environment. As a consequence, for many applications, message
streams can be modeled as periodic-with-jitter. In an event-triggered architecture, the jitter in
a periodic message stream is an indicator for the variation between the inter-completion or re-
sponse times of its corresponding successive release tasks. It can be caused by task preemption,
changes in execution times or other delays [8]. Moreover, particular bus protocols can encounter
jitters caused by the variations of the frame length due to bit-stuffing [106]. Consequently, this
means that the arrival curves αl

m and αu
m are shifted by the maximum possible jitter jm of a

message stream m relative to a nominal period pm, as defined by Equations (4.4a) and (4.4b).

∀pm, jm ∈ R+, ∆ > 0 :

αl
m(∆) =

⌊
∆− jm

pm

⌋
(4.4a)

αu
m(∆) =

⌈
∆ + jm

pm

⌉
(4.4b)

In other words, the earliest moment to detect a message on the bus is at the instant of starting
the observation and the latest is immediately before pm + jm has elapsed. Hence, the definition
for an upper and lower arrival curve for a periodic event-triggered system can be given by the
period with jitter of the corresponding message stream. A detailed derivation of these equations
is presented in [139].

Since during system design the arrival curves are initially calculated based on the task re-
lease times of the transmitting resources, the effects of existing bus traffic must be considered
to assure the correct diagnosis timing. More precisely, it is necessary to add delays to the nom-
inal intervals of the arrival curves with respect to a possible current bus occupation and higher
priority messages. For instance, in [66] this has been done for the CAN bus. In case of a
non-periodic communication, the curves can be determined from measurement or simulation,
where a window of length ∆ is slid over a traced message stream, recording the minimum and
maximum message numbers. Repeating this for different window lengths allows to construct
the arrival curves. Strategies for generating arrival curves have been presented, for instance,
in [71]. However, it must be considered that the measurement and simulation approaches might
not be sufficient as they still can miss the worst-case arrival times of messages.

In the context of automotive architectures, which are particularly regarded in this thesis, a
system analysis can provide the upper and lower arrival curves for each message stream. This is
possible since the communication of in-vehicle networks is generally known at design-time and
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Figure 4.5: Example for a graph-based system specification used for the security diagnosis
framework. A process graph GP consisting of two applications a1 and a2 is mapped onto a
system architecture. The latter is defined by the resource graph GR. The specificatios are used
to define so called resource-to-observation maps.

specified for the worst-case arrival times. Without loss of generality, in this work, we regard
periodic streams with jitter.

4.3.3 Architecture Model

The presented diagnosis framework employs a graph-based system specification where software
functionality and hardware are modeled by process and architecture graphs, respectively. The
example in Figure 4.5 illustrates this with two applications, a1 and a2, being implemented to
a small system architecture. The descriptions of the process graph GP, architecture graph GR
and mapping EM are basically the same as for the system model presented in Chapter 3, so that
Section 3.6.3 can be referred to for more details.

We have already discussed that our goal is to diagnose a system in an implicit manner,
which means that no additional diagnostic messages or hardware is used. Furthermore, we re-
gard the system specification, like the one described above, as given. However, at this level of
abstraction, the diagnosis functions themselves that are implemented on multiple resources can
be regarded as tasks even though without any data-dependencies (see Section 4.4.4). In order to
properly distribute the diagnosis tasks with respect to both the redundancy requirements and a
complete coverage of the potentially attacked message streams, a preliminary system analysis is
performed. The purpose is to define all observations describing the message streams and their
parameters which can be monitored by a particular resource, not necessarily the transmitting
one. These observations are then stored in a resource-to-observation map which basically asso-
ciates sets of message stream data with the appropriate monitoring resources. Later, this map is
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used to retrieve the necessary configuration parameters for the distribution of diagnosis tasks,
which is discussed in detail in Section 4.5.

4.4 Diagnosis Description
In the area of hard real-time systems, an important precondition is the ability to react to an
asynchronous event within a predefined time interval, i.e., without violating the deadline [2].
In order to detect a security infringement, such as an unusual or unwanted communication
behavior, within a guaranteed or shortest possible diagnosis time, each message stream in the
system should be continuously monitored. Based on the observed occurrence of message stream
events resulting, for instance, in a violation of the upper arrival curve, particular security attack
scenarios can be diagnosed. In the following, we will briefly discuss some scenarios which are
based on three general security principles.

4.4.1 Attack Scenarios
As already mentioned in Section 4.1, there are some fundamental differences between a classic
computer network and an automotive in-vehicle network, for instance, regarding the safety-
criticality or the predictability in the system communication. Nevertheless, as shown in [100],
the three general security principles, namely, confidentiality, integrity and availability, can be
applied in the automotive domain as well. In the context of this work, infringements of these
principles can be broadly interpreted as follows:

1. Confidentiality Breach leads to the read access of messages by an unauthorized entity.

2. Integrity Breach leads to an unauthorized creation or manipulation of messages.

3. Availability Breach leads to an interruption of one particular or all messages streams.

An attack scenario violating confidentiality might be a hacked resource giving read access to
the message content but producing no additional traffic. The diagnosis of such an infringement
could benefit from possible (but not definite) increase of the computational effort during the
unauthorized read access, causing additional delays in the corresponding message stream. As
a result, the stream would violate the regular operation mode by falling below the lower arrival
curve and could be detected accordingly.

Regarding integrity, a possible attack scenario is a hacked resource which counterfeits an-
other resource by injecting a compromised message stream into the network (e.g., with the
message ID belonging to a stream from the counterfeited resource). Assuming that the compro-
mised transmission is not precisely overwriting the original messages, this attack would result
in an increased message frequency and could be detected with the help of the method proposed
here.
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Finally, a scenario violating the principle of availability could be an attack, where one or
more hacked resources start to transmit a large number of (possibly void) messages in order
to mitigate the system’s availability or to entirely disable it. Similar to the second scenario,
a DoS attack will result in an increased transmission rate of the particular messages and the
transgression of the upper arrival curve.

In contrast to the latter two scenarios, the first one, which deals with the non-compliance
of the lower arrival curve, requires a different detection algorithm which is not discussed in the
scope of the security attack diagnosis. However, the violation of lower arrival curves has been
used in the context of the permanent fault diagnosis in Chapter 3 and the approaches presented
there could be considered for an inclusion of the confidentiality attack detection in our security
diagnosis in the future.

In the following we will consider especially the third scenario, namely availability attacks,
to define the algorithm for the detection of compromised message streams.

4.4.2 Limitations

As has been briefly mentioned in Section 4.1, our attack detection does not claim sufficiency or
represent a universal security strategy for automotive E/E architectures. There exist attacks, that
cannot be detected with the proposed method. For example, attacks targeting confidentiality,
such as message sniffing, and specific integrity breaches, such as single message injection,
might not alter the traffic in a way that is detectable with the proposed algorithm. Consequently,
many attacks will require own special security solutions which are not covered in the scope of
this work.

The presented approach targets a class of attacks, which result in an abnormally altered
frequency of transmitted messages, where the attacker has no information about the impacted
message arrival curves. At the same time, due to its specific attack detection principle, this
framework can improve automotive safety and reliability. For instance, it can be combined with
the message-based fault diagnosis into a unified safety and security framework [149]. Never-
theless, because of the realistic threats arising from a malicious manipulation of traffic patterns
(e.g., illustrated in Section 4.1 or in [101]) as well as its non-intrusive and lightweight detection
principle the proposed approach is legitimate as an additional security solution orthogonal to
other methods.

4.4.3 Real-Time Detection

In the framework overview in Figure 4.2, it was shown that the component-level part of the
security diagnosis deals with the actual detection of a compromised message stream. As men-
tioned above, the detection method is explained by means of a common security infringement,
namely the manipulation of the communication behavior. Figure 4.6 illustrates this scenario,
with the shaded area marking the corresponding compromised region and Rm̃(t) representing
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Figure 4.6: Example for an arrival curve graph depicting an attack on a single message stream
by manipulating its transmission period. The corrupted message stream violates the upper ar-
rival curve for the first time at to.

the message count from one possible stream violating the predefined upper bound. This stream
equates to the event trace function in Figure 4.3 depicted by the short arrows.

Based on the arrival curve definition in Equation (4.3), we can now formulate a condition
for the transgression of the upper bound, caused by an increased occurrence of message events.
The attack requirement is defined in Equation (4.5).

∃t ∈ R+ :
αu

m(∆) < max
t≥0
{Rm(t + ∆)− Rm(t)} (4.5)

Here, the inequality itself is a necessary condition to detect a corrupted message stream. How-
ever, it might be not sufficient, as there could exist observation intervals for which a corrupted
stream provides a Rm(t) which is on or below the upper curve αu

m(∆). Such a situation is
shown in the example in Figure 4.6 at time ta. Hence, it is necessary to monitor inter-arrival
times for more than merely two consecutive messages in order to guarantee a proper detection
of the earliest upper bound violation. It shall be emphasized once more that Rm(t) depicts a
message stream in a normal runtime domain rather than an arrival curve in the interval domain
and, hence, allows it to present decreasing periods between two events with increasing x-values.
The procedure of diagnosing arrival curve violations is explained in detail in Section 4.5.1.

4.4.4 Redundancy-Aware Distribution

The system-level part of the diagnosis framework covers the distribution of the diagnosis tasks
to the system resources. Due to the decentralized nature of our approach, different observing
resources may diagnose different security attacks and also vary in the corresponding diagnosis
time. This means, that it might not be necessary to consider all observable and potentially
manipulated message streams on each monitoring resource but only a subset of them, which
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Figure 4.7: Example for different distributions of diagnosis tasks. The left architecture uses two
tasks per message stream (λm = 2) which are unevenly distributed. In the right architecture the
tasks are placed evenly with a higher redundancy level (λm = 3).

would clearly reduce the implementation and computation effort for the security diagnosis.
An optimization-based diagnosis distribution at design-time, as proposed in this chapter, can
help the designer to chose suitable resources and configurations for particular message stream
observations. Additionally, besides the omission of a single point of failure and the reduction of
the computation effort, a specific distribution of the monitors can be used in order to introduce
redundancy into our diagnosis approach and, hence, improve the reliability.

As a manual distribution of the diagnosis tasks might quickly become very complex for
large systems, we propose an automatic ILP-based solution. For this, the system designer can
configure two parameters: a redundancy level λm for all or only particular message streams as
well as tolerance limits θr for the monitoring resources. While the former increases the overall
diagnosis reliability, the latter is used to balance the diagnosis task distribution. The principle is
illustrated in Figure 4.7 using a simple architecture with three ECUs, two buses and a gateway,
where the message streams m1, m2 and m3 utilizing bus1 and bus2 are being monitored by the
corresponding tasks. For instance, the task tm1 can detect a manipulated m1, tm2 a manipulated
m2 and so on. The left side of the figure shows an unbalanced diagnosis scenario with a re-
dundancy level of 2, which means that the tasks are not evenly distributed and there exist two
diagnosis tasks per message stream. By contrast, the balanced scenario on the right uses three
diagnosis tasks per message stream (λm = 3) which are evenly distributed among all moni-
toring resources. The distribution process and the corresponding ILP are formally described in
Section 4.5.2.
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4.5 Methodology

We regard two important criteria for the quality of a security diagnosis method, namely, the
timeliness and the coverage. Timeliness guarantees a minimal diagnosis time which is essential
for a safety-critical real-time system, such as an automotive E/E architecture. Coverage, on the
other hand, ensures that all diagnosable attacks can be correctly and reliably detected. This sec-
tion provides the formal descriptions for the real-time diagnosis and the diagnosis distribution
which both cover these two criteria, respectively.

In the following, m̃ refers to a manipulated version of the message stream m and is accord-
ingly described by the period pm̃ and a worst-case jitter jm̃.

4.5.1 Real-Time Detection: Formulation

Within an in-vehicle network, the main purpose of manipulating traffic is to make one or several
system resources unavailable or disrupt the corresponding services by decreasing the periods of
one or more message streams beyond the allowed limits. As a timely detection of an attack is
crucial in a safety-critical system, an obvious approach is, to test for arrival curve violations
of specific message streams at the arrival instants of the corresponding messages. For this, at
the monitoring resource, an event trance function µm(n) provides timestamps tn−1 for message
instances of the stream m (see Equation (4.1)). However, as mentioned in Section 4.4, for a
correct diagnosis it might not be sufficient to simply evaluate the inequality in Equation 4.5
after each received message. For example, in Figure 4.6, such a procedure would often lead
to a negative test result, because in the most cases the intervals between two messages comply
with the upper arrival curve interval for the first observation. In contrast to this, by checking
after two consecutive message arrivals, the test would be positive, as depicted in the motivating
example at time to. A sufficient observation time is especially crucial when considering a bursty
behavior of the message stream with the upper arrival curve steeply ascending in the beginning
before swinging into a periodic run. At the same time, checking for an attack only after a
particular number of detected messages can also be an unfavorable strategy, as a message count
can indeed fall below αu before exceeding it again, as demonstrated in Figure 4.6 at time ta.
Clearly, it seems to be important to know the history of a monitored message stream, i.e., the
arrival times of the previous messages.

4.5.1.1 Detection Algorithm

Considering the issues discussed above, in order to detect the violation of an upper arrival
curve as defined by Equation 4.5, we adopt the leaky bucket approach used to validate the
runtime conformity of event arrivals in the context of network calculus [78]. The method has
been selected as it is lightweight and can be efficiently implemented, which makes it especially
suitable for hard real-time systems, such as automotive E/E architectures. The basic idea of this
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Algorithm 3 Testing for compromised message streams on a resource r
Require:

⋃
m,s(δm,s, νm,s) . tuples describing the arrival curves αu

m for all

message streams m monitored by resource r
1: for s ∈ {1, .., n}, m ∈ Mr do . initialize timers and counters

2: TIMm,s ← δm,s
3: CNTm,s ← νm,s
4: end for
5: for m ∈ Mr do . analyzing monitored message streams

6: if received(m) = TRUE then . message from m arrived

7: for s ∈ {1, .., n} do
8: if CNTm,s = νm,s then . first message in δm,s

9: TIMm,s ← δm,s
10: end if
11: CNTm,s ← CNTm,s − 1 . reduce message counter

12: if (CNTm,s < 0) then
13: attacked(m) . report attack on message stream m
14: end if
15: end for
16: end if
17: for s ∈ {1, .., n} do . adapt message counters after timeout

18: if timeout(TIMm,s) = TRUE then
19: CNTm,s ← min(CNTm,s + 1, νm,s)
20: TIMm,s ← δm,s
21: end if
22: end for
23: end for

approach is to monitor the numbers of message arrivals in all particular time intervals which
define an upper arrival curve.

Algorithm 3 illustrates the detection procedure for an observing resource r monitoring the
message streams m ∈ Mr with given upper arrival curves αu

m(∆). It is mainly based on the
parameters listed below.

pm nominal period of a message stream m

jm worst case jitter defining the maximum deviation from pm

δm,s time interval between message arrivals for a particular curve step s

νm,s maximum message number in the interval δm,s

ρm,s parameter for the message counter reduction in the modified algorithm

The algorithm is based on the event stream regulation presented in [47] and uses the knowl-
edge that each arrival curve can be conservatively approximated by a minimum on a set of peri-
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odic staircase functions [75]. More precisely, distinct step widths of an arrival curve are repre-
sented by n tuples (δm,s, νm,s) with s ∈ {1, .., n} in ascending order, where νm,s = αu

m(δm,s)− 1
is the maximum allowed message number until the interval δm,s has elapsed.

Regarding the detection procedure, first, an initialization process (lines 1-4) allocates the
time intervals δm,s and the corresponding message numbers νm,s to timer variables and message
counters, respectively, for each regarded step s and message stream m. Then, during a contin-
uous detection process (lines 5-23), the diagnosing resource is checking for arriving messages
(line 6) and expired timers (line 18) of each m. When a message arrives, the timers of each
full message counter variable are restarted and all CNTm,s are decreased by one (lines 8-11). If
during this process a variable falls below zero, an arrival curve violation occurred and an attack
on the message stream m is reported (lines 12-14). Finally, after a timer TIMm,s has expired,
CNTm,s is incremented by one if it lies below the initial value νm,s and the timer is reset again
(lines 17-22).

The evidence of the correctness of Algorithm 3 is related to the formal proofs presented
in [47] and can be easily derived from them. It is therefore omitted here.

4.5.1.2 Complexity Reduction (for periodic message streams)

By iterating over both message streams and distinct curve steps, the presented algorithm is
of complexity O(n2) and, hence, its computation time increases quadratically in the number
of message streams. However, this complexity seems manageable, as the presented method
does not require tuples for each single step of an arrival curve, but only for the distinct periods
describing the curve. For consecutive periodic steps, the timers would expire at the same time
instant, leading to only one tuple per such periodic section.

Complementary to the general definition of the detection algorithm covering different vari-
ants of arrival curves, in the following we present a modification targeting the automotive E/E
architectures in particular. The efficiency of the presented algorithm can be increased, given the
prevalent periodicity of the message-based communication in automotive networks, where the
boundaries of message streams can often be described by arrival curves composed of a nominal
period p and a worst case jitter j. Based on the derivations for horizontally shifted staircase
functions defined in [75], we can slightly modify Algorithm 3 and adapt it for a periodic-with-
jitter model. As a result of the modification, it only needs one tuple as input but requires an
additional parameter ρ for the message counter reduction. The three parameters are defined in
Equations (4.6a)-(4.6c), where gcd(x1, x2) is a function returning the greatest common divisor
of x1 and x2.

δm = gcd(pm, pm − jm) (4.6a)

νm = 2 · ρm −
pm − jm

δm
(4.6b)
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ρm =
pm

δm
(4.6c)

Now, after initializing the timer with δm and the counter with νm, the only change in the code
needs to be done in line 11 where the counter is decreased by ρm rather than by 1 (CNTm ←
CNTm − ρm). The modified algorithm requires only one timer variable (i.e., s ∈ {1}) per
monitored message stream resulting in a linear complexity, which indicates a good scalability
and promises an efficient implementation by reducing the memory and runtime overhead of the
diagnosis.

4.5.1.3 Numerical Example

To illustrate the procedure, we apply it to the scenario in the motivating example in Figure 4.1,
where a message stream m with period pm = 30 ms and worst case jitter jm = 15 ms is
attacked and replaced by a compromised message stream m̃ with pm̃ = 20 ms and no jitter. The
parameters for the diagnosis algorithm result in δm = 15 ms, νm = 3 and ρm = 2, meaning
that the timer TIMs is loaded with 15 and the counter CNTm is set to 3 and reduced by 2 when
a message arrives. Neglecting the actual computation times and assuming that the first message
of m̃ is detected instantly after the algorithm has been started, then the detection time (i.e., the
time until the method attacked(m) is reached) will be exactly 40 ms. The fast execution time
ensures that an attack can be diagnosed early in order to initiate any necessary counter measures.

4.5.2 Redundancy-Aware Distribution: Formulation
Our diagnosis approach does not use a central diagnostic component but rather is designed
for a decentralized implementation where the introduced detection algorithm is simultaneously
executed for multiple message streams on different resources. This approach guarantees, on the
one hand, a continuous diagnosis functionality in case of a system fault or attack disabling one
or more resources. Besides the removal of a single point of failure, the decentralized concept
also facilitates the coverage of the entire architecture, as the diagnosis method can be easily
deployed into remote parts of the system, such as different sub-networks. On the other hand,
it allows the system designer to evenly distribute the diagnosis effort amongst the resources,
which also increases the overall reliability. Moreover, in order to improve the security for
safety-critical messages, a redundancy level is used, which defines how many diagnosis tasks
are used on different resources to monitor one particular message stream.

First of all, an essential requirement is that each message-transmitting resource, such as
an automotive bus, is connected to at least one computation resource (e.g., ECU, gateway),
providing the ability for a security diagnosis implementation. For the following definitions,
we make use of the graph-based specification of the system architecture. As described earlier,
the graph GR = (R, ER) connects resources r ∈ R (e.g., ECU and buses) through architectural
links l ∈ ER where the latter are defined as resource pairs (ri, rj). Using two sets Rbus and Recu

containing the bus and the computational resources, respectively, as well as a binary function
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κ(r) indicating if a resource r is capable of implementing the diagnosis tasks (κ(r) = 1) or not
(κ(r) = 0)1, we can define the coverage of diagnosis at system level, as shown in Equation (4.7).

∀m ∈ M :
∃r ∈ Recu : κ(r) ∧ (r, rb) ∈ ER ∧ (m, rb) ∈ EM

with rb ∈ Rbus and Recu ∪ Rbus = R
(4.7)

As required, the equation demands that for each message stream m there exists at least one
resource that provides diagnosis functionality and, at the same time, contains an architectural
link l ∈ ER to the bus resource rb serving the corresponding message m. It describes the min-
imal requirement for the capability of the system to detect security attacks. However, besides
an efficient runtime performance and a satisfactory diagnosis time, the proposed decentralized
approach shall provide diagnosis reliability as well. This can be achieved with the help of a
redundant message stream monitoring which takes advantage of the fact that bus-attached re-
sources can also detect messages which are not destined for them. As mentioned above, one
goal of our decentralized security diagnosis approach is to evenly distribute the diagnosis effort
to the monitoring resources while maintaining a predefined redundancy level λm for the mes-
sage streams. This problem can be formulated as an ILP containing several constraints and one
optimization objective. The ILP and its corresponding parameters are defined in the following.

Mr ⊆ M subset of the message streams which are detectable by a resource r ∈ R

κ(r) : R→ {0, 1} implementation function indicating if a resource r is capable of imp-
lementing a diagnosis task (1) or not (0)

λm ∈N redundancy level, defining on how many different resources one par-
ticular message stream m is being monitored

λr ∈ R average redundancy level on a resource r ∈ R

θl
r, θu

r ∈ R tolerance limits, define the lower and upper limit for the monitoring
messages around the system average θl

r ≤ |M|
∑∀r∈R κ(r) ≤ θu

r

or,m∈{0, 1} observation switch, determining if a message stream observable by re-
source r will be omitted (0) or monitored (1) during security diagnosis

xr ∈N monitoring variable, determining the number of monitored message
streams on resource r ∈ R

yr∈{0, 1} range switch, determining whether the monitoring variable xr resides in
the desired range (1) or not (0)

1Reasons for a resource being incapable of diagnosis can range from insufficient computational performance
to the lack of fundamental architectural capabilities, e.g., in case of a bus resource.
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maximize
yr∈{0,1} ∑

∀r∈R
yr (4.8a)

subject to:

∀m ∈ M : ∑
∀r∈R
∧m∈Mr

(κ(r) ∧ or,m) = λm (4.8b)

∀r ∈ R : ∑
∀m∈Mr

(κ(r) ∧ or,m) = xr (4.8c)

∀r ∈ R : xr ≤ |Mr| (4.8d)

∀r ∈ R : xr ≤ θu
r · λr · yr + |Mr| · (1− yr) (4.8e)

∀r ∈ R : xr ≥ θl
r · λr · yr (4.8f)

Constraint (4.8b) uses the redundancy level λm to determine the number of observations of
one particular message stream monitored on different resources. For instance, a value of λm=1
means no redundancy and the message stream will be monitored by only one resource. At the
same time, Constraint (4.8c) uses a monitoring variable xr to determine the number of message
streams on each resource r which are simultaneously monitored during the security diagnosis.
In both equations, the implementation function κ(r) is used to indicate the diagnosis capability
of a resource. As defined by Constraint (4.8d), the monitoring variable is limited by the cardi-
nality of Mr, the set of all streams observable by r. Constraints (4.8e) and (4.8f) are used to
define the desired range for the monitoring variable and, thus, the number of observations on
each resource. For this, the tolerance limits θr are used which state how much the observation
number can deviate from the system-wide average, where the latter is calculated by the ratio of
all monitored message streams to all monitoring resources. To include the influence of message
streams with a redundancy level other than one, the tolerance limits are multiplied with the
average redundancy level value λr for each regarded resource. The range switch yr is used to
decide if the predefined range has been met. Finally, the objective of the optimization problem
is to maximize the sum of range switches over all resources, as defined in Equation (4.8a). This
ideally should lead to a balanced distribution of message stream monitors in the investigated
automotive E/E architecture.

4.6 Diagnosis Evaluation

In this section, the presented framework is subjected to a number of experiments which are
evaluated accordingly. In the scope of this work, we are especially interested in investigating
the general feasibility and efficiency of our diagnosis method and, by doing so, providing a
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convincing proof of concept for the security diagnosis in automotive E/E architectures. After a
brief description of the test environment, we use a test case evaluation to demonstrate both the
fast detection of manipulated message streams and the automated distribution of diagnosis task.
Furthermore, a runtime analysis shows the efficiency and scalability of our framework. Finally,
a case study illustrates our approach in more detail using a large E/E architecture with more
than 100 ECUs.

Test environment. Altogether, 460 synthetic test cases have been generated for the exper-
imental results. Following our system model, as it was introduced in Section 4.5.2, each of
these test cases comprises the specification for an automotive in-vehicle network, including the
graph-based descriptions of the system architecture, the application and the corresponding map-
pings between them. In an architecture graph the vertices represent ECUs, gateways and buses
while the edges stand for the links connecting them (compare Figure 4.5). In an application
graph, on the other hand, vertices represent tasks and messages and their mutual dependences
are depicted by edges. Essential parameters of the test cases are listed in Table 4.1 together with
their minimum and maximum values. As indicated, the test cases encompass E/E architecture
sizes of up-to-date vehicles with more than 100 ECUs.

All experiments were carried out on an Intel Core i7 with 3.4 GHz and 16 GB RAM. The
system specifications were generated with the help of OPENDSE [87] and the ILP-based com-
putations used GUROBI version 6.0 [39] as solver.

4.6.1 Test Cases Evaluation
In the following, all test cases are evaluated with respect to the duration of diagnosis, the effi-
ciency of its distribution as well as the corresponding computation times.

4.6.1.1 Diagnosis Time

At first, we want to demonstrate the general feasibility of the proposed security diagnosis algo-
rithm. For this, Figure 4.8 illustrates the periods and diagnosis times averaged over all message
streams in each test case. More precisely, the graph depicts the predefined nominal periods
(ring marks), the generated compromised periods (cross marks) as well as the corresponding

Table 4.1: Reference values of essential parameters for 460 test cases.

ECUs Buses GWs Tasks
Message
streams

Nominal
period

[ms]

Compromised
period

[period ratio]

MIN 2 1 0 6 3 5 5%
MAX 117 4 1 366 438 100 90%
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Figure 4.8: Average nominal (predefined) periods (O) and compromised (randomly generated)
periods (X) of the message streams. The solid curve illustrates the average diagnosis times
needed to detect a potential attack. To improve legibility, the results for the test cases are
ordered by increasing average diagnosis times.
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diagnosis times (solid curve), respectively. For each message stream, the compromised (i.e.,
reduced) period has been randomly generated and lies in a range between 5% and 90% of the
nominal period. Due to the normal distribution of the random variable, the associated average
values of the compromised period are located roughly at 50% of the nominal period curve and
show a similar trend in the graph. Here, the test cases are sorted by increasing average diagnosis
times which leads to a smooth diagnosis curve but results in a slightly dispersed distribution of
the period points.

A general inspection of the graph indicates a clear dependency between the the diagnosis
time and the message stream periods. This is in accordance with the diagnosis algorithm which
uses the nominal period for the parameter calculation necessary for a correct violation detection.
At the same time, it is visible that, on average, the diagnosis times themselves are in the range
of the nominal message stream periods, lying only slightly above their average towards higher
periods. Consequently, the overall outcome in Figure 4.8 shows that a real-time diagnosis of a
compromised message stream using the introduced method is feasible. Moreover, the numeric
results of the diagnosis times are not notably exceeding the nominal periods and indicate a
promising application of the security diagnosis algorithm in practice.

4.6.1.2 Diagnosis Distribution

Next, the ability of our approach to distribute the diagnosis task shall be investigated. Figure 4.9
shows three graphs depicting the average amount of monitored message streams per resource
for each test case (curve with error bars), which are calculated in accordance with the ILP de-
fined in Section 4.5.2. The error bars represent the appropriate standard deviation from these
average values and, hence, are an indicator for how evenly the monitored messages are dis-
tributed among the observing resources. It holds true that lower standard deviations, i.e. shorter
error bars, correspond to a more even distribution and vice versa. A second curve in each graph
shows the percentage of the results with a correct adherence to the predefined monitoring range
(i.e., cases where yr = 1). To evaluate the effect of the tolerance limits θr, the curves are de-
picted for three desired ranges around the average message per resource number, namely ±5%
(top), ±20% (center), and ±50% (bottom).

When comparing the compliance curve with the message stream number curve, it can be
seen that a lower percentage of hits for the monitoring range is met by a higher standard de-
viation. This correct and presumed correlation verifies the ILP formulation and allows us to
estimate an appropriate tolerance level. Obviously, while a too small θr value in many cases
prevents the solver from finding an optimal solution (compare upper graph), a too large value
results in an overall high standard deviation (compare lower graph). From the three selected
values, the middle one (±20%) seems to lead to the smallest standard deviation among all test
cases and, hence, to a most balanced distribution of the monitored message streams among all
resources. Although for particular architectures the lowest tested tolerance level can indeed
lead to an optimal diagnosis distribution (e.g., test cases around 110 and 250), a level of ±20%
provides satisfying results for a broad range of system specifications and could be used by the
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Figure 4.9: Three graphs showing the average amount of diagnosis tasks (i.e., number of mon-
itored message streams) per resource together with their standard deviation for each test case.
Additionally, a second curve indicates the compliance with the predefined monitoring range
(right y-axis). The curves are plotted for three different tolerance values. The results are shown
for a redundancy level λm = 2.
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Figure 4.10: Runtime performance of the security diagnosis framework for different system
sizes. The graph shows the computation times for each test case (including different configu-
rations) for the ILP-based distribution of monitored message streams (O). It also illustrates the
detection algorithm-based diagnosis simulation (X). Additionally, two trend curves indicate a
polynomial computational complexity.

system designer as a starting point for a fine-grained adjustment. Considering the number of
redundantly monitored message streams, all results in Figure 4.9 are calculated for a redun-
dancy level λm = 2. A lower (λm = 1) and a higher (λm = 3) level have been evaluated as
well, and in both cases the overall tendency discussed above remained similar. The case study
investigated below provides more detailed results concerning the redundancy levels.

4.6.1.3 Runtime

Regarding the timing behavior, a short detection time is of utmost relevance for the security
diagnosis method and has been discussed by means of Figure 4.8. However, within our diag-
nosis framework, both the algorithm-based diagnosis simulation and the ILP-based distribution
of diagnosis tasks are performed at design-time, and, hence, do not have such strict demands
on the runtime. Nevertheless, like most processes in the automotive industry, also the system
design is must be cost-efficient and, thus, low computation times are beneficial. To investigate
this, a runtime analysis has been performed and its results are shown in Figure 4.10. Here, the
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computation times of the simulation and distribution are regarded separately and plotted as a
function of the system size depicted by the number of ECUs in the architecture. Each measured
point represents the runtime for the simulation and distribution part, respectively, of one test
case with a particular parameter configuration where the largest analyzed architecture is com-
posed of 117 ECUs. In order to get a better visualization of the distribution and behavior of the
different runtimes, two dashed curves illustrate trends for both the simulation and distribution,
respectively2. The calculated trends are polynomial curves indicating a quadratic and cubic
complexity in the number of ECUs for the simulation and distribution, respectively.

At the same time, it can be seen that, in general, the duration of the computation does not
exceed 100 seconds even for the largest analyzed architectures. In detail, the longest simulation
takes 83.1 seconds and the longest distribution 30.7 seconds. Considering that today’s mod-
ern automotive networks consist of a lower three-digit number of ECUs, the results illustrate
practical computation times of our diagnosis framework and indicate a good scalability for even
larger architectures in the future. Note, that both axes in Figure 4.10 are in logarithmic scale
and the numbers of test cases for different system sizes may vary, causing noticeable changes
in the distribution of the single measurement points.

4.6.2 Case Study
An automotive case study shall illustrate the functionality of the proposed distributed security
diagnosis in detail. The study is based on a modern state-of-the art automotive E/E architecture
which consists of 144 ECUs3, five buses and one automotive gateway. On the application side,
the system uses 618 tasks which communicate via 321 messages with message periods ranging
from 5 to 100 ms and message jitters determined according to the delay calculation for event-
triggered systems proposed in [88].

The results of the case study are shown in Figure 4.11 where for each of the four graphs,
monitoring resources are depicted on the x-axis and the number of diagnosis tasks (i.e., the
number of monitored message streams per resource) on the y-axis. The bars in each graph
stand for a different tolerance level, namely 5% (top graph) 10% (second graph), 20% (third
graph), and 50% (bottom graph), with the different shades representing three redundancy levels,
λm = 3 (plain bars), λm = 2 (north-east striped bars) and λm = 1 (north-west striped bars), for
which each message stream is monitored by three resources, two resources, and one resource,
respectively. Consequently, the increasing height of each of the shaded stacks towards the
bottom clearly indicates the growing number of monitoring tasks with each higher redundancy
level. It can be seen that for the two middle graphs with tolerance levels of 10% and 20%,
the diagnosis tasks for the different redundancy levels are quite evenly distributed among the
resources, with approximately 7, 5 and 3 tasks per resource, respectively. However, for λm = 1,
the second graph shows a slightly larger variance leaving a tolerance level of 20% as the most
optimal option. By contrast, the graphs illustrating a tolerance level of 5% and 50% show much

2The approximation has been determined by the method of least squares.
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larger irregularities with up to 14 tasks difference between the resources. Summing up, this
result shows how a proper adjustment of the optimization parameters during the system design
can help to properly distribute the diagnosis tasks to monitoring resources.

Computational overhead. The presented results are based on the analysis and simulation
of synthetic test cases. That is why, at this time, we can only give an estimation of the compu-
tational overhead which will be caused by the implementation of the security diagnosis method
on real hardware. For the estimation, we orientate ourselves on the implementation results of
the distributed diagnosis of permanent faults described in Section 3.5.3. Although the fault di-
agnosis algorithm is different in its basic functionality, it is relatively comparable regarding its
length and complexity as well as the way it deals with multiple message streams. On the basis
of those measurements, the proposed security diagnosis, monitoring about 15 message streams
per resource, would utilize a processor by not more than 5% and use less than 10 KB of mem-
ory. Keeping the computational overhead in such a low range will facilitate its implementation
and support the efficiency of our security diagnosis approach. The corresponding prototypical
implementation is part of the future work.

3As of the 144 resources 24 have no monitoring capability, for clarity, only the results for the remaining 120
resources are depicted in Figure 4.11.
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Figure 4.11: Amount of diagnosis tasks (i.e., number of monitored message streams) allocated
to different resources for an exemplary automotive E/E architecture with 144 ECUs. The dis-
tribution is most balanced for the tolerance levels ±10% and ±20%, as depicted by the two
middle graphs. It varies largely for ±5% and ±50%.
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4.7 Conclusion
In this chapter, we presented a novel approach to diagnose security attacks on the communica-
tion in safety-critical distributed systems, such as automotive E/E architectures. The overall goal
lies in improving the security in a decentralized and implicit manner, which allows both enhanc-
ing the reliability of the diagnosis and reducing the costs at design time. Motivated by a realistic
scenario describing the intrusion into an electric vehicle, we have emphasized the importance of
an early, distributed and reliable diagnosis which can be assured by our approach. The proposed
framework consists of two stages comprising the analysis of a given system specification and
the actual diagnosis functionality. The first stage defines the necessary message arrival curves
and provides additional architecture-related parameters which are used in the second stage for
both the component-based real-time detection of altered traffic patters and the distribution of
the corresponding diagnosis tasks among suitable resources. The implicit and decentralized na-
ture of the proposed approach allows the security diagnosis to be efficiently implemented in an
existing system architecture without the risk of a single point of failure, hence, increasing the
overall diagnosis reliability. We demonstrate the general feasibility and efficiency of our ap-
proach based on the evaluation of a number of test-cases including 460 synthetically generated
system specifications with sizes up to 117 ECUs and, hence, applicable to modern automotive
E/E architectures. Additionally, a case study with 144 ECUs provides a more detailed discus-
sion of the security diagnosis including a realistic estimation of the computational overhead
below 5%.

Future work. As part of future work, we want to extend the optimization-based diagnosis
task distribution by allowing the designer to define more specific constraints, such as different
criticality levels or specifically vulnerable system resources. Furthermore, we are looking into
other security threats which might result in an alteration of the traffic patterns, such as the
removal or overwriting of lower priority messages or the manipulation of the message content
causing a potential delay of the sending instance. Finally, the security diagnosis method shall
be implemented on an existing research platform for automotive E/E architectures to further
investigate its applicability as well as the actual computational overhead.
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CHAPTER5
Concluding Remarks

The rapid development of automotive electronics is a double-edged sword. On the one hand,
sophisticated engine or drive train control applications enhance the vehicle’s efficiency, ABS,
Electronic Stability Program (ESP) or ADAS greatly contribute to the safety of all road par-
ticipants and HMI or infotainment improve the overall driving experience. On the other hand,
however, the growing number of VLSI IC-components and interfaces to the outside world in-
crease the susceptibility for faults and security attacks, respectively.

The main research goal of this thesis was to design and investigate approaches to system-
level diagnoses which can improve the safety, security and overall reliability of modern auto-
motive E/E architectures.

5.1 Summary
In particular three system level diagnoses for distributed automotive architectures have been
proposed, addressing intermittent faults, permanent faults and security attacks.

The intermittent fault diagnosis uses expected transient fault rates to identify cases where re-
sources are affected by an increased (unexpected) occurrence of non-permanent faults. Consid-
ering possible data dependencies between tasks on different resources, the proposed approach
is able to diagnose faulty components that do not have integrated fault detectors or monitoring
functionality. For this, the outcomes of existing distributed plausibility tests are collected, ana-
lyzed and compared based on special predefined expectation matrices. To gain a better insight
as well as a broader scope for a future practical use, four different evaluation strategies, con-
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sisting of two vector-based and two probabilistic methods, have been proposed and compared.
Additionally, it has been shown, that the presented diagnosis methods can be applied to modern
many-core architectures as well, as they are becoming more and more important in the auto-
motive domain due to an increased demand for computational power. We have demonstrated
the overall feasibility as well as an encouraging diagnosability and efficiency for the proposed
approach (e.g., up to 95 % and 75 % correct test outcomes for the automotive and many-core
test cases, respectively).

In contrast to intermittent faults where observation times can be relatively long, it is imper-
ative that the diagnosis of permanent faults happens instantly in order to apply countermeasures
as fast as possible. The proposed permanent fault diagnosis uses special diagnosis functions
which define distinct traffic patterns for different fault scenarios from the perspective of each
observing system resource. At runtime, monitoring all message streams and evaluating the di-
agnosis functions accordingly on different resources provides a reliable real-time diagnosis of
the entire system. Here, to improve the flexibility and efficiency of the approach, a trade-off
analysis allows to optimize the diagnosis functions towards a better observation time or a lower
number of monitored message streams. Furthermore, it has been presented, how a diagnosis-
aware system design can further optimize the permanent fault diagnosis and even extend the
number of detectable resources. Complementary to test cases and a case study proving the
method’s feasibility, an implementation on a research platform demonstrated its low computa-
tional and memory overhead.

Finally, the decentralized monitoring of existing message streams can be also applied for the
detection of malicious attacks on the automotive E/E architecture. It has been shown how an
algorithm for the verification of the runtime conformity can be used in the context of a message-
based security diagnosis, for instance, to detect DoS or message flooding attacks. For this, a
strategy has been proposed, to distribute the corresponding diagnosis tasks evenly among the
system resources, considering user-specified redundancy levels and preferences for observing
components. Experimental results consisting of several hundred test cases and an automotive
case study have demonstrated the applicability and efficiency of the proposed security diagnosis
method for in-vehicle architectures with more than 100 ECUs.

Summing up, we have presented how an implicit and decentralized methodology that takes
into account system design knowledge about the corresponding architectures can offer a good
and reliable diagnosis while ensuring a minimal overhead and system intrusion. Consequently,
regarding the overall outcome summarized above, it can be concluded that the research goal of
this thesis has been reached.

5.2 Limitations
One of the main aspects for the presented diagnosis strategies is their lightweight implemen-
tation necessitating none or only minimal adaptations to existing specifications of distributed
systems. However, one consequence of this approach is that it cannot cover all possible fault
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and attack scenarios. For instance, the intermittent fault diagnosis is depending on the propaga-
tion of soft-errors towards devices executing specific plausibility test tasks in order to properly
identify an increased fault rate. Stand-alone devices or faults that are masked and do not mani-
fest themselves as errors need to be diagnosed with different, possibly more hardware-oriented
detection methods. In terms of permanent faults and security attacks, the proposed methods
are especially analysing message transmission times without considering their content. In cases
where the contents of messages are of interest for the diagnosis, different detection strategies
must be applied. The solutions in this thesis are considered fully orthogonal to other existing
and future fault and attack diagnosis methods.

5.3 Future Work
The proposed system-level diagnoses can be further improved and extended in multiple aspects,
some of which are discussed in the following.

Generally, the presented decentralized diagnosis methods were designed with the single-
fault assumption in mind which implies that only one independent fault occurs at a time. Al-
though this is a common approach for automotive architectures design and testing [77], the
growing system complexity and shrinking components also increase the risk of multiple inde-
pendent faults at a time or at least withing a short time interval. In this context, the ILP-based
diagnosis methods for intermittent faults already innately support multiple faulty resources and
for the vector-based methods the expectation matrices could be adapted accordingly. In order
to diagnose more than one permanent fault simultaneously, an additional set of specific fault
scenarios and corresponding diagnosis functions targeting several resource failures could be
generated at design time and executed in parallel to the single fault functions. Regarding the
security threats, a diagnosis of multiple attacks on different message streams is already covered
by the appropriate distribution of monitors among the observing resources.

An important property of the overall diagnosis methodology is the non-intrusiveness, mean-
ing that the detection methods merely utilize the existing communication or built-in plausibility
tests and the only overhead comes from the storage and execution of necessary fault and intru-
sion monitors. Nevertheless, in the context of the permanent fault diagnosis, it has been shown
how already small adaptations and extensions of a system specification during the design phase
can be beneficial, for instance, by improving a subsequent real-time diagnosis or enhancing its
range. Such a diagnosis-aware system design could be also applied to improve the diagnosis
of intermittent faults. For example, a deliberate and smart placement of plausibility tests might
increase the overall positive detection rate and reduce the number of necessary tests. In cases
where the execution of particular tasks is not strictly bound to specific resources, a diagnosis-
aware mapping of tasks could improve the detection algorithms and reduce the observation
times for all presented diagnosis approaches.

A related strategy could be also applied in the area of a diagnosis-aware control and archi-
tecture co-design. Here, a joint controller and schedule synthesis could be used to maximize
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the performance during both fault-free and faulty periods. For example, from two schedules,
one with a shorter end-to-end delays but longer diagnosis times and another where this rela-
tions are reversed (i.e., longer end-to-end delays and shorter diagnosis times), a multi-objective
optimization problem could determine the best solution in terms of the system performance.

Finally, the experimental and evaluation phase of our methods could be extended as well.
The presented implementation of the permanent fault diagnosis on a research platform stressed
the relevance of applying the theoretical diagnosis concepts on real hardware. On the one hand,
this is necessary to investigate their practical use and efficiency but, more importantly, it helps
to gain an early insight into potential difficulties and future challenges that were not evident
during the conceptual design of the approaches. The aforementioned research platform for
automotive E/E architectures or a similar experimental setup could also be used for hardware
implementations of the diagnoses of intermittent faults and security attacks. Basically, it is
essential that the testing environment resembles a final target system in as many aspects as
possible, for example, regarding the number of resources which is an important aspect for us,
given the distributed nature of the presented methods. As it could be too expensive to build test
architectures with several tens or hundreds of ECUs, an extension of the presented test cases
and case studies into a comprehensive and flexible test and simulation platform might improve
the further development of the diagnosis strategies as well.

5.4 Outlook
The trend to more complex architectures with more ECUs will most probably slow down and
finally revert in the future, leaving a small number of powerful multi-core ECUs, only a fraction
of which will be assigned dedicated functionality and the rest will be multi-purpose comput-
ing devices [15]. However, this change will not happen overnight. For instance, traditionally,
the car development is carried out in an evolutionary rather then revolutionary way meaning
that a radical change of E/E architectures will not happen from one vehicle generation to the
other. Moreover, even though the number of ECUs might decrease, the corresponding sensors
and actuators will remain necessary. Their number will most probably even increase and with
novel functionalities they will become smarter and, thus, more communication-intensive. Con-
sequently, it can be expected that distributed diagnosis solutions, such as the ones proposed in
the scope of this thesis, will still be relevant in the future.
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ICE Internal Combustion Engine

IDS Intrusion Detection System

ILP Integer Linear Programming

IPAS Intelligent Parking Assist System

ISS Instruction Set Simulator

LDWS Lane Departure Warning System

LIN Local Interconnect Network

MAC Message Authentication Code

MILP Mixed Integer Linear Programming

MOST Media Oriented Systems Transport

MPSoC Multiprocessor System-on-Chip

NMR n-Modular Redundancy
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List of Acronyms

NoC Network-on-Chip

OEM Original Equipment Manufacturer

OS Operating System

OSEK/VDX Offene Systeme und deren Schnittstellen für die Elektronik in
Kraftfahrzeugen / Vehicle Distributed Executive

OTA Over-the-Air

QoS Quality-of-Service

RAM Random Access Memory

RAP Resilience Articulation Point

ROM Read-Only Memory

RTE Runtime Environment

RTOS Real-Time Operating System

SMT Satisfiability Modulo Theories

SoCs Systems-on-Chip

SVD Singular Value Decomposition

TDMA Time Division Multiple Access

TSN Time-Sensitive Networking

TTCAN Time-Triggered CAN

UART Universal Asynchronous Receiver/Transmitter

V2I Vehicle-to-Infrastructure

V2V Vehicle-to-Vehicle

VLSI Very Large Scale Integration
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