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Overview

@ Why Multiscale ?
@ all physical processes involve a synergy of multiple scales
@ often we can/choose to ignore finer-scales and employ coarsened
descriptions (e.g. continuum models)
@ in a lot of problems we cannot ignore the fine-scale and we have to work
with fine-scale or multi-scale models

@ Why Stochastic?

o the finer the scale we consider the less we know
@ when we coarse-grain, we loose information and information loss leads to
uncertainty

Coarse-grained models of complex, many-body systems are

useful in at least two ways:

@ They enhance our understanding of the salient physical/chemical/bio
mechanisms

@ They enable efficient computations in multiscale/multiphysics regimes
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Molecular Dynamics

Molecular Dynamics aim to estimate numerically macroscopic
quatities

@ equilibrium

@ non-equilibrium

Atomistic Simulation is a commonly-used tool in many fields
@ biology
@ material science
@ chemistry @
@ engineering

42013 Nobel Prize in Chemistry to Karplus & Levitt & Warshel for the “development
of multiscale models for complex chemical systems”

| \

Mature software exists
o LAMMPS, GROMACS (free)
@ AMBER, CHARMM
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Molecular Dynamics

If g, is the position of atom i:

Newton’s law:

J#i

For an isolated system with N atoms, the total energy is the

Hamiltonian H:

1 p? . o
H(q,p) = Z EEI,- +V(q4,G,....qy) Hamiltonian equations:
- —_—
IA,_/ potential energy . OH OH
kinetic energy q; = 8_p,-’ p; = _a_qi

where p; = mq; are the momenta
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Molecular Dynamics

One would need only to integrate in time (chaotic, non-linear
equations):

Newtonian equations: Hamiltonian equations:
. 0V(q) . OH _ _OH
m/qi—f/——a—qi qi—api; Pi = aq;
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Molecular Dynamics

There are two + one problems with that:

@ The number of atoms is very large, N — 1023
@ The dynamics is too fast, At — 10-12 — 1015
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Molecular Dynamics

There are two + one problems with that:

@ The number of atoms is very large, N — 1023
@ The dynamics is too fast, At — 1012 — 1015
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The evolution of MD simulations (from T. Schlick. Molecular Modeling: An
Interdisciplinary Guide, 2010)
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Molecular Dynamics

There are two + one problems with that:

@ The number of atoms is very large, N — 1023
@ The dynamics is too fast, At — 1012 — 1015
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The evolution of MD simulations (from T. Schlick. Molecular Modeling: An
Interdisciplinary Guide, 2010)

@ We do not know (exactly) the initial conditions i.e. there is uncertainty
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Statistical Mechanics

@ We do not know (exactly) the initial conditions for all DoFs
qi7pi’i: 1,2N

@ We prescribe an initital probability density of microstates po(q, p) which
is consistent with the initial macroscopic conditions

@ This density will evolve in time, p(q, p; 1) ' :

o0 __0H 0p  OH 0p
ot Op 0q 0q Op

(Liouville’s equation)

R. Zwanzig, Nonequilibrium Statistical Mechanics
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Statistical Mechanics

@ We do not know (exactly) the initial conditions for all DoFs
qi7pi’i: 1,2N

@ We prescribe an initital probability density of microstates po(q, p) which
is consistent with the initial macroscopic conditions

@ This density will evolve in time, p(q, p; 1) ' :

o0 __0H 0p  OH 0p
ot Op 0q 0q Op

(Liouville’s equation)

@ Is there an equilibrium/stationary distribution peq(q, p) = lim:— p(q, p; t)?

R. Zwanzig, Nonequilibrium Statistical Mechanics

www.tinyurl.com/mnmug2014 Stochastic Multiscale Analysis



Statistical Mechanics

Equilibrium Statistical Mechanics

@ Microcanonical ensmble (isolated system):

pea(q, P) o< 6(H(q, p) — Ho)
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Statistical Mechanics

Equilibrium Statistical Mechanics

@ Microcanonical ensmble (isolated system):
peq(q, P) o< 6(H(q, p) — Ho)
@ Canonical ensemble (system in a heat bath with temperature T):

exp{—r7H(q, p)}
peq(q, P) = kB;
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Statistical Mechanics

Equilibrium Statistical Mechanics

@ Microcanonical ensmble (isolated system):
peq(q, P) o< 6(H(q, p) — Ho)
@ Canonical ensemble (system in a heat bath with temperature T):

exp{—r7H(q, p)}
peq(q, P) = kB;

@ Grand-canonical ensemble ...
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Statistical Mechanics

Equilibrium Statistical Mechanics

@ Microcanonical ensmble (isolated system):

peq(q, P) o< 6(H(q, p) — Ho)

@ Canonical ensemble (system in a heat bath with temperature T):

exp{—+H(q,p)}
pea(qs P) = =

@ Grand-canonical ensemble . ..

Maximum Entropy connection 2

@ Entropy increases with time ¢
@ The equilibrium density is the one that maximizes the entropy:

S=- / Peq(q; P) 109 peq(q, p) dqdp
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Equilibrium Statistical Mechanics

The objective of equilibrium statistical mechanics is to compute
averages :

o E.g.:

Elf(q,p)] = / (9, P)req(q, P)dqdp

@ Other notations: < f(q, p) >, Eglf] ...

@ These averages correspond to macroscopic thermodynamic quantities
e.g.:
o stress,
pressure
diffusivity,
viscosity,
specific heat etc.

¢ © ¢ ¢
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Equilibrium Statistical Mechanics

The objective of equilibrium statistical mechanics is to compute
averages :

Elf(q,p)] = / (g, P)peq(q, P)dqdp

@ Deterministic methods

o Generate a trajectory (q(t), p(t), x(t))

o The auxiliary variables x(t) are appropriately selected to ensure states
consistent with the canonical ensemble

o Typical examples: Nosé-Hoover, Nosé-Poincaré
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Equilibrium Statistical Mechanics

The objective of equilibrium statistical mechanics is to compute
averages :

E[f(q,p)] = / (g, P)peq(q, P)dqdp

@ Deterministic methods

o Generate a trajectory (q(t), p(t), x(t))

o The auxiliary variables x(t) are appropriately selected to ensure states
consistent with the canonical ensemble

o Typical examples: Nosé-Hoover, Nosé-Poincaré

@ Stochastic Methods (Monte Carlo)

o Generate random samples q;, p; or sample trajectories (q(t), p(t)) from
appropriately selected Stochastic PDEs.

o Typical examples: Importance Sampling, Markov Chain Monte Carlo,
Sequential Monte Carlo

@ Strong convergence results, increased flexibility that can incorporate
deterministic methods.
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Equilibrium Statistical Mechanics

Some considerations for Monte Carlo samplers:

@ Suppose we wish to sample from:

exp{—7H(q, p)}
peqa(@, P) = e

where H(q,p) =31 55 + V(41,92 - - qy)
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Equilibrium Statistical Mechanics

Some considerations for Monte Carlo samplers:

@ Suppose we wish to sample from:

exp{—7H(q, p)}
peqa(@, P) = e

where H(q,p) = Yy 32 + V(qy. G5, - qy)

@ Nis very large i.e. we can afford algorithms that scale O(N) but probably
not O(N?)
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Equilibrium Statistical Mechanics

Some considerations for Monte Carlo samplers:

@ Suppose we wish to sample from:

exp{— 7 H(q, p)}

peq(q, P) = >

where H(q,p) = Yy 32 + V(qy. G5, - qy)

@ Nis very large i.e. we can afford algorithms that scale O(N) but probably
not O(N?)

@ Correlations between g and p are strong (i.e. no random-walk scheme
would work)
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Equilibrium Statistical Mechanics

Some considerations for Monte Carlo samplers:

@ Suppose we wish to sample from:

exp{— 7 H(q, p)}

peq(q, P) = >

where H(q,p) = Yy 32 + V(qy. G5, - qy)

@ Nis very large i.e. we can afford algorithms that scale O(N) but probably
not O(N?)

@ Correlations between g and p are strong (i.e. no random-walk scheme
would work)

@ Sampling p is easy (i.e. multivariate Gaussian)
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Equilibrium Statistical Mechanics

Some considerations for Monte Carlo samplers:

@ Suppose we wish to sample from:

exp{— 7 H(a, p)}
pea(qs P) = =

2
where H(q, p) = Y1y 35 + V(44 G2, - Q)
@ Techniques that employ first-order derivatives of H are generally
employed. Their cost is generally determined by the number of times
force evalautions have to be performed i.e. ‘g—‘;.
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Equilibrium Statistical Mechanics

Some considerations for Monte Carlo samplers:

@ Suppose we wish to sample from:

exp{— a7 H(q, P)}
Peq(q, P) = kB;

2
where H(q, p) = Sy 32 + V(4. 95, - qn)

@ Techniques that employ first-order derivatives of H are generally
employed. Their cost is generally determined by the number of times
force evalautions have to be performed i.e. g—“;.

@ Increasing the temperature T “flattens” the target density

@ peq is generally multi-modal. It is very difficult for usual MCMC schemes
to escape these modes.
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Equilibrium Statistical Mechanics

Some considerations for Monte Carlo samplers:

@ Suppose we wish to sample from:

exp{— 7 H(q, p)}

N p2
peq(q, P) = v Z;—;’ V(9. 9z, ... qy)

v

Hybrid or Hamiltonian Monte Carlo (s rea. 2012)
Given the current state (g4, Porg)
@ Draw new p from multivariate Gaussian

@ Perform L time-integration steps with your favorite, explicit (volume-perserving,
reversible) integrator e.g. velocity Verlet:

. q=
(qoldv p) . P _ BgH tet —>(qnew7pnew)

L—steps
@ M-H accept/reject based on: exp{— kBT( (Grew> Prew) — H(Q o0, P) }
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Equilibrium Statistical Mechanics

Hybrid/Hamiltonian Monte Carlo (s nea.2012)

Random—walk Metropolis

First posidon coordmate

Frstposition coordinate

Hamiltonian Monte Carlo

'
150

'
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Samples of gy for a 2-dimensional problem using Random Walk Metropolis (left) and

HMC (right) -
DN e
RN

ey,

o 200 100 o0
Iteration

BOO

1000

Samples of gy for a 100-dimensional problem using Random Walk Metropolis (left) and

HMC (right)
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Coarse-graining in Equilibrium statistical Mechanz=;

@ Consider a very long (N >> 1) one-dimensional chain of atoms at
equilibruim temperature T

@ We want to predict the macroscopic behavior of the chain i.e. the (force)
F - (Iength) [ relation.

@ Suppose we fix gy =0and / = 1/(q) = gn.

Fm:cro q)‘ F F = — < Fmicro > gy=1—< agcg:) >aqn=I
Vi
f %qg—lpeq qlgv =1) dq

@ What is peq(q|qN =1)?
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Coarse-graining in Equilibrium statistical Mechanz=;

@ Consider a very long (N >> 1) one-dimensional chain of atoms at
equilibruim temperature T
@ We want to predict the macroscopic behavior of the chain i.e. the (force)
F - (Iength) [ relation.
@ Suppose we fix gy =0and / = 1/(q) = gn.
Fmiero( q)‘ F F = _— < Fmicro > gyt =< ag/cgg) > gt
f O peq(qlan = 1) dgq

@ What is peq(q|qN =1)?
@ Let:

2(1) = [ peol @3l - an) da
i.e. the probability that the length of chain is I.
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Coarse-graining in Equilibrium statistical Mechanz=5

@ Then:
_no o) — V@) s

@ Note that: avig)
f 3q,7 Peq q|QN = /) dq

oVv(g) e PV @s(1—
f Bz dg

= 2 (~5logZ()) (8= gir)

@ The quantity:

All) = —% log Z(l) = —% log / e PV @5(/ - qu)dq

is called Helmholtz Free Energy.
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Coarse-graining in Equilibrium statistical Mechanz=g

[Mechanik

Helmholtz Free Energy

A =~ 3109 Z(1) =~ log [ &~*V(@3(/ - qu)dq

@ Note that:
e PA) = Z(I) = probability that the length of chain is /

@ Hence A(/) is the effective potential for the marginal distribution of the
macroscopic variable /.
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Helmholtz Free Energy

A =~ 3109 Z(1) =~ log [ &~*V(@3(/ - qu)dq

@ Note that:
e PA) = Z(I) = probability that the length of chain is /

@ Hence A(/) is the effective potential for the marginal distribution of the
macroscopic variable /.

@ Since A(/) gives the exact marginal of /, there is no coarse-graining error
i.e. we do not lose any information by “integrating out” the atomistic
degreees of freedom.
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Helmholtz Free Energy

A =~ 3109 Z(1) =~ log [ &~*V(@3(/ - qu)dq

@ Note that:
e PA) = Z(I) = probability that the length of chain is /

@ Hence A(/) is the effective potential for the marginal distribution of the
macroscopic variable /.

@ Since A(/) gives the exact marginal of /, there is no coarse-graining error
i.e. we do not lose any information by “integrating out” the atomistic
degreees of freedom.

@ One can, in principle, compute free energies w.r.t to any macroscopic
variables Q = £(q) (e.g. strain) i.e.:

A(Q) = —% log / 5@ £(q)) e #V D dq
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Coarse-graining in Equilibrium statistical Mechanz=5

Free Energy comprises contributions from:
@ Energy/Potential
@ Entropy

| A

Energetic contributions

@ Suppose: A
V(q) = W(an) + V(a1, ..., qn-1)

@ Then for Q = gn:
A(Q) =—}log [e PV @5(Q - qy) dq

= _% |og e—ﬂw(o) f e—ﬁv(% 77777 an—1)) dq1 . qu_1
~ W(Q)
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Coarse-graining in Equilibrium statistical Mecha

Free Energy comprises contributions from:

@ Energy/Potential
@ Entropy

| \

Entropic contributions
@ Suppose V(x,y) is 0 inside the box and +oc outside. For Q = x:

3.4 I

y coordinate

|
i
i
i
i
i
i
i
i
i
i
i
i
-
2

-8 -6 -2
X coordinate X coordinate
(@) V(x,y) (b) A(x)

From Lelievre et al. 2010. Free Energy Computations: A mathematical
perspective
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Free Energy in Equilibrium statistical Mechanics E=5

Some considerations:

A(Q) = —}—3 log / 5@ £(q)) e *V@ dg

@ The Helmholtz Free Energy A(Q) provides a principled and exact
representation of the equilibrium atomistic ensemble w.r.t the reduced
coordinates Q = &(q).

@ If A(Q) is known we can reproduce exactly any macroscopic property
depending on Q.

o A(Q) is really A(Q, ) i.e. it depends on the temperature
@ Free energy differences are of interest.
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Coarse-graining in Equilibrium statistical Mechanzz

Helmholtz Free energy A(Q):

A(Q) = —}—3 log / 5 £(q)) e #V@ dg

@ How can one estimate A(Q)?
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Helmholtz Free energy A(Q):

A(Q) = —% log / 5(Q - £(q)) e °V@ dq

@ How can one estimate A(Q)?
@ Suppose Q = g, and peq(g1, g2) is bimodal.

(b) peq(a1, g2) (c) Metastability
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Coarse-graining in Equilibrium statistical Mechanz= u

Helmholtz Free energy A(Q):

A(Q) = —% log / 5(Q - £(q)) e °V@ dq

@ How can one estimate A(Q)?
@ Suppose Q = g, and peq(g1, g2) is bimodal.

(d) peq(a1,q2) (e) Metastability

@ Convergence is very, very slow - g is the slow variable
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Free Energy Computations

Coarse-grained variables Q = £(q):

@ Other names: relevant variables, macrostates, macroscopic variables,
collective variables, reaction coordinates, internal variables, order
parameters etc.
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Free Energy Computations

Coarse-grained variables Q = £(q):

@ Other names: relevant variables, macrostates, macroscopic variables,
collective variables, reaction coordinates, internal variables, order
parameters etc.

® How does one find the most appropriate coarse-grained variables Q 2?

@ based on the macroscopic prediction objectives.
@ based on physical insight
@ based on (principled) processing of computational data (machine learnining)

@ In the following we will assume that Q = £(q) is given.

4Rohrdanz et al. 2013 Discovering mountain passes via torchlight: methods for the
definition of reaction coordinates and pathways in complex macromolecular reactions
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Free Energy Computations

Given good Q = £(q) the compuation of free energy
(differences) A(Q) amounts to:

@ sampling efficiently a multi-modal density
@ computing the marginal w.r.t. Q.

| \

Some techniques:
@ Thermodynamic integration (Kirkwood 1935)
@ Equilibrium methods
@ Nonequilibrium methods (Jarzynski 1997)

@ Adaptive Biasing Potential (ABP) or Force (ABF) methods (Wang-Landau
2001)

@ Keep in mind that a lot of these techniques can be used in completeley
different contexts in UQ e.g. Bayesian inference (Chopin et al. 2012)
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A unifying ABP framework for Free Energy

Computations

@ Recall that the marginal pq(Q) w.r.t the coarse-grained variables
Q=¢(q)is:

pal@) x & @ — [ e 2V@5(Q - ¢(q)) dg
@ Define an auxiliary density (q) as:

- e~ B(V(@)-A(&(a):9))
A=)

where A(Q; ¢) is a function of the coarse-grained variables Q that is
parameterized by ¢.
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A unifying ABP framework for Free Energy

Computations

@ Recall that the marginal pq(Q) w.r.t the coarse-grained variables

Q=¢(q)is
pal@) x & @ — [ e 2V@5(Q - ¢(q)) dg
@ Define an auxiliary density 5(q) as

- —B(V(q)—A(£(q):))
= Z(9)

where A(Q; ¢) is a function of the coarse-grained variables Q that is
parameterized by ¢.

@ The corresponding marginal pq(Q) will be:
= [(q)5(Q—&(q)) dg
o—BlA@ > (0¢>)
Z(9)
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A unifying ABP framework for Free Energy

Computations

@ Note that if A(Q) = A(Q; ¢)) + constant then:

0(Q) e AA(Q)-A(@:9)) (uniform)
= = (uniform
ra Z(¢)
@ In practice we define a (small or large) subset of Q-values, say D, that is
of interest. Let 7(Q)  1p(Q) be the uniform on D
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A unifying ABP framework for Free Energy

Computations

@ Note that if A(Q) = A(Q; ¢)) + constant then:

e BAQ)-A(Q:¢)) ,
pa(@Q) = ————~—— = (uniform)

Z(¢)

@ In practice we define a (small or large) subset of Q-values, say D, that is
of interest. Let 7(Q)  1p(Q) be the uniform on D

@ Hence the optimal free energy approximation 2\(0; ¢)) is found by:

¢ = argmin f(¢) = DISTANCE( =(Q) , pa(Q))
¢ ——

uniform on D
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A unifying ABP framework for Free Energy
Computations

FEY
K
Fachgebiet fu
[Kontinuums
[Mechanik

@ Note that if A(Q) = A(Q; ¢)) + constant then:
A e AA@-AQ:4))
P T T Z(e)

@ In practice we define a (small or large) subset of Q-values, say D, that is
of interest. Let 7(Q) o 1p(Q) be the uniform on D

@ Hence the optimal free energy approximation 2\(0; ¢)) is found by:
¢ = argmin f(¢) = DISTANCE( =(Q) , pa(Q))
[ N——

uniform on D
@ We propose using the Kullback-Leibler divergence to measure the
distance between densities i.e.:

f(¢) = KL(m(Q)||pa(Q)) = — [7(Q)log “&a" po dQ
= — /(@) (-5( (0)—A(o $)) 4@+ logZ(¢) + .
— 3 [ n(QA(Q; ) dQ+log Z(¢) + ...

= (uniform)
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A unifying ABP framework for Free Energy
Computations

@ Note that if A(Q) = A(Q; ¢)) + constant then:
50(@) e~ HAQ)-A@#))
P T T Z(e)
@ In practice we define a (small or large) subset of Q-values, say D, that is
of interest. Let 7(Q) o< 1p(Q) be the uniform on D
@ Hence the optimal free energy approximation A(Q; ¢)) is found by:
¢ = argmin f(¢) = DISTANCE( =(Q) , pa(Q))
[} ~——
uniform on D
@ We propose using the Kullback-Leibler divergence to measure the
distance between densities i.e.:
f(¢) = KL(r(Q)||pa(Q)) = — [(Q)log 25} d@
=~ [ 7(0Q) (~B(AQ) - A(@: ¢)) dQ+10gZ(¢)+ ..

_ _g/w(o)ﬁ\(o; #) dQ+log Z()
———

difficult

FEY
K
Fachgebiet fu
[Kontinuums
[Mechanik

= (uniform)

easy

Stochastic Multiscale Analysis
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A unifying ABP framework for Free Energy

Computations

@ Objective:

m|nf :—,8/ A(Q; ¢) dQ + log Z()

@ Suppose one expresses:

M
=) 6iKi(Q)
i

where K;(Q) are some given basis/kernel functions 2.

2You will ask how did you pick K; and how do you know how many M you must use?
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A unifying ABP framework for Free Energy

Computations

@ Objective:

m|nf :—,8/ A(Q; ¢) dQ + log Z()

@ Suppose one expresses:

M
=) 6iKi(Q)
i

where K;(Q) are some given basis/kernel functions 2.
@ Derivatives:

8%:' _ —ﬁE [6A(0¢> ] + dIogZ(¢)
= —B(E-K(Q)] - pa[K,(O)]), pa(Q) = <G
—6%@ = PCovy,[Ki(Q), K(Q)] >0 — CONVEX

2You will ask how did you pick K; and how do you know how many M you must use?

www.tinyurl.com/mnmug2014 Stochastic Multiscale Analysis



A unifying ABP framework for Free Energy

Computations

o~ FAQ—AQ:$)

2 = —B(E(K(Q)] - ExlK(Q)). (@) = 55"

@ Q: But one does not know pqo(Q), after all, isn’t A(Q) is what we are looking for?
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A unifying ABP framework for Free Energy

Computations

o~ FAQ—AQ:$)

2 = —B(E(K(Q)] - ExlK(Q)). (@) = 55"

@ Q: But one does not know pqo(Q), after all, isn’t A(Q) is what we are looking for?
@ A: We will use the auxiliary (joint) density 5(q) of which pq(Q) is the marginal:
e BV(a)-AE(q)i$))
) =—Z@
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A unifying ABP framework for Free Energy

Computations

o~ FAQ—AQ:$)

2 = —B(E(K(Q)] - ExlK(Q)). (@) = 55"

@ Q: But one does not know pqo(Q), after all, isn’t A(Q) is what we are looking for?
@ A: We will use the auxiliary (joint) density 5(q) of which pq(Q) is the marginal:
e BV(@O—AE(@)®)

A(q) = Z(@)

@ Q: Even if you do Monte Carlo for 5(q) you will get a very poor estimates
(especially in the begining i.e. when A = 0)?
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A unifying ABP framework for Free Energy

Computations

F = B(EK(Q)] - ExlKi(Q)]).  pa(@) = <50

@ Q: But one does not know pqo(Q), after all, isn’t A(Q) is what we are looking for?
@ A: We will use the auxiliary (joint) density 5(q) of which pq(Q) is the marginal:
e BV(@O—AE(@)®)

A(q) = Z()

@ Q: Even if you do Monte Carlo for 5(q) you will get a very poor estimates
(especially in the begining i.e. when A = 0)?

@ A: Stochastic Approximation (Robbins-Monro, 1951)
¢(m+1) ¢(m - Vf( m))

Iltis OK if VF(¢™) is a noisy estimate of Vf(¢™) as long as 350 nm = +o0,
> om0 Tl < 00
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A unifying ABP framework for Free Energy
Computations

Enforcing Sparsity - Greedy addition of kernels (Berger et al 1996. A
Maximum Entropy Approach to Natural Language)

M
A 6) = > 6:K(Q)
i=1

o Let A(Q)™ the approximation with M basis/kernel functions
o If

e—BV(@)-AM(&(q):9))
Z(®)
is the corresponding auxiliary density, then select Ky..1(Q) such as:

p(q) =

Ku1(Q) = arg max (Ex[K(Q)] = EzolK( Q)))*
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A unifying ABP framework for Free Energy
Computations

a

[SE=T SN

Peq(q1 L) e AV(a1,a)

Stochastic Multiscale Analysis
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A unifying ABP framework for Free Energy

Computations

Example: Bimodality

‘ reference
T
i M=1 N
M=2 8| B
a . - M=3 5 y=s M=7
<l - M=8 % )
E—:/ L = reference 21
| L | L L L L | L |
Q=g iterations
AM(Q) for various M KL-gain for various M
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A unifying ABP framework for Free Energy
Computations

LJsg: Two reaction coordinates

v

Q; =0.01
(i(;osahedron) &) =0, (b) T=0.17.
S S
| @b\ o
3 =
Q4

) T = 014 (d) T=0.11.
Q; =0.19
octahedran Free energy contours A(Qs, Q) at various temperatures.
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Pseudo-Molecular Coarse-Graining

All-atom system

°o,
I(,° of uu.e
Q = 5(@”05?."99
%01";
, CG of water moleculers. (from Bilionis
From Noid et al. 2008 etal. 2013)

@ e.g. define pseudoatoms | such that for all atoms i € I

_ 2 ici Miq;
D ierMi

@ Is there an optimal CG-description? How should two alternative
CG-coordinate systems be compared?

Q
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Pseudo-Molecular Coarse-Graining

@ If V(q) is the refegrence potential and peq(q):

o8V
Peq(q) = Z

the equilibrium distribution.

@ The exact coarse-graining w.r.t. to Q = £(q) requires the compuation of
the corresponding Helmholtz free energy A(Q):

=——log/e* 79 s@—e(a) da
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Pseudo-Molecular Coarse-Graining

@ If V(q) is the refegrence potential and peq(q):

e—BV(q)
Peq(q) = Z

the equilibrium distribution.

@ The exact coarse-graining w.r.t. to Q = £(q) requires the compuation of
the corresponding Helmholtz free energy A(Q):

=——|og/e* 79 s@—e(a) da

@ In principle any of the Free Energy computational techniques can be
employed.

@ The problem is that all of them are applicable to low-dimensional Q (e.g.
dim(Q) < 50r10)
@ When dim(Q) >> 1, physical insight is necessary.
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Pseudo-Molecular Coarse-Graining

@ Let an approximation to the true free energy A(Q) be:

e PAQ:¢)
Z(9)

that depends on some parameters ¢ .E.g.:

A ) =32, V(IQi - Qul: )

A@¢) = N(Q) =

A@p) =M (X, wi(1Q - Q)
=31, 6iK(Q)

pairwise— potential

V(rip) =31, ¢ii(r)
~—~

known

—

@ What is the optimal ¢p°°'?
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Pseudo-Molecular Coarse-Graining

@ Let an approximation to the true free energy A(Q) be:
e PAQ:¢)
- Z(9)
that depends on some parameters ¢ .E.g.:

A@ ) =3, V(Q - Q)

pairwise— potential

V(rip) =31, ¢ii(r)
~—~

known

A@¢) = N(Q) =

A@p) =M (X, wi(1Q - Q)
=31, 6iK(Q)

—

@ What is the optimal ¢p°°'?
@ The Relative Entopy method 3

¢op! = arg mqibn f(¢) = KL(peq(@)|15(Q))

3Shell et al 2008, Bilionis et al. 2013
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Pseudo-Molecular Coarse-Graining

Relative Entropy method

¢ = arg min f(¢) = KL(peg( @)|15(Q))

INICIGENES

@ Inversion based methods. E.g. Boltzman Inversion (Tchép et al. 1998),
Iterative Boltzmann Inversion (Reith et al. (2003), Inverse Monte Carlo
[Lyubartsev et al. 1995, Soper 1996).

@ Variational methods. E.g. Force Matching (Ercolessi et al. 1994, Izvekov
et al. 2005, Noid et al. 2007).
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Pseudo-Molecular Coarse-Graining

Relative Entropy method

(@) = KL(pea(Q)IIA(Q))
L pe@)log )
=B [ A(Q; $)peg(Q) dQ + log Z(¢p) + . ..

= E,,,[A(Q; ¢)] + log Z(e)

@ Derivatives (If A(Q; ¢) = >V, ¢:Ki(Q)):

f
2L = B(E Q) - EAlK(Q?
ﬂ = f2Cov;[Ki(Q),Ki(Q)] >0 — CONVEX
dpidg; PRI

4This is exactly what one would get with MAXENT
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Pseudo-Molecular Coarse-Graining

Relative Entropy method

of
7, = PEslK(Q)] - EK(Q))

@ Q: How can one estimate E,,, [Ki(Q)]?

@ A: All existing methods assume that a very long MCMC run of peq(q) is
available and:

EpelKi(Q Z Ki(¢(q

@ As we have seen this is not always stralghtforward.
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Pseudo-Molecular Coarse-Graining

Relative Entropy method

of
7, = PEslK(Q)] - EK(Q))

@ Q: How can one estimate E,,, [Ki(Q)]?

@ A: All existing methods assume that a very long MCMC run of peq(q) is
available and:

EpelKi(Q Z Ki(¢(q

@ As we have seen this is not always stralghtforward.
@ Q: How can one estimate E;[K;(Q)] where 5(Q) « e~#A(@:#)

@ A: With ones favorite MCMC sampler (sampling in the reduced
coordinates)
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Pseudo-Molecular Coarse-Graining

Relative Entropy method

of
7, = PEslK(Q)] - EK(Q))

@ Q: How can one estimate E,,, [Ki(Q)]?

@ A: All existing methods assume that a very long MCMC run of peq(q) is
available and:

EpelKi(Q Z Ki(¢(q

@ As we have seen this is not always stralghtforward.
@ Q: How can one estimate E;[K;(Q)] where 5(Q) « e~#A(@:#)

@ A: With ones favorite MCMC sampler (sampling in the reduced
coordinates)

@ Both estimates will be noisy — Stochastic Approximations are needed.

4
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Pseudo-Molecular Coarse-Graining

Example (Bilionis et al. 2013):
@ Full-order system: 2180 water molecules (i.e. dim(q) > 19620)
@ T = 300K, SPC/E water model (Kusalik et al. 1994)
@ 220ns in total are simulated with a time step of 0.002ps (Gromacs)
@ 5hrs on 240 CPUs!
@ N = 10° samples are used to estimate expectations w.r.t peq(q)
@ Coarse-grained model with dim(Q) = 6540
@ Cubic splines were used as the basis functions ¢;(r) in the pairwise
coarse-grained potential

All-atom system Coarse system
T,

T famt
T2
” S ® .0
TI0 ry, 20 R;
r,

8.3 o

30 Ty .

g @
rio Ry
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Pseudo-Molecular Coarse-Graining

Example (Bilionis et al. 2013):

— Reference
- - - RE.step=0

— Reference
- - -RE,step=5 1.5

— Reference
- - - RE,step=9

(©)

Learned pairwise coarse-grained potential (Bilionis et al. 2013)
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0.3

0.4

(d)

0.5
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Conclusions & Outlook

@ What is the best set of coarse-grained coordinates Q?
@ How does this change depending on the prediction objectives?
@ Is there a way to learn a hierarchy of coarse-grained coordinates

QI =&(Q2) =& 0&(Q3) =...=&10&...0&4(q)?
@ Is there a way to learn this exclusively from (short bursts of) simulation
data?

@ How can one learn free-energy surfaces in high-dimensions?

@ Since we are learning from finite amounts of simulation data, what is the
inferential uncertainty?

@ Can we be Bayesian in our coarse-graining (e.g. Espanol et al 2011,
Wright et al. 2013 ICES report 13-31)

@ Non-equilibrium statistical mechanics?
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