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Overview

Motivation

Why Multiscale ?

all physical processes involve a synergy of multiple scales

often we can/choose to ignore finer-scales and employ coarsened

descriptions (e.g. continuum models)

in a lot of problems we cannot ignore the fine-scale and we have to work

with fine-scale or multi-scale models

Why Stochastic?

the finer the scale we consider the less we know

when we coarse-grain, we loose information and information loss leads to

uncertainty

Coarse-grained models of complex, many-body systems are
useful in at least two ways:

They enhance our understanding of the salient physical/chemical/bio

mechanisms

They enable efficient computations in multiscale/multiphysics regimes
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Molecular Dynamics

Molecular Dynamics aim to estimate numerically macroscopic
quatities

equilibrium

non-equilibrium

Atomistic Simulation is a commonly-used tool in many fields

biology

material science

chemistry a

engineering

a2013 Nobel Prize in Chemistry to Karplus & Levitt & Warshel for the “development
of multiscale models for complex chemical systems”

Mature software exists

LAMMPS, GROMACS (free)

AMBER, CHARMM
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Molecular Dynamics

If q i is the position of atom i :

Newton’s law:

mi q̈ i = f i = −
∂

∂q i

∑

j 6=i

V (q i ,q j)

For an isolated system with N atoms, the total energy is the
Hamiltonian H:

H(q, p) =
∑

i

1

2

p2
i

mi

︸ ︷︷ ︸

kinetic energy

+V (q1,q2, . . .qN)
︸ ︷︷ ︸

potential energy

where pi = mq̇ i are the momenta

Hamiltonian equations:

q̇ i =
∂H

∂pi

, pi = −
∂H

∂q i
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Molecular Dynamics

One would need only to integrate in time (chaotic, non-linear
equations):

Newtonian equations:

mi q̈ i = f i = −
∂V (q)

∂q i

Hamiltonian equations:

q̇ i =
∂H

∂pi

, pi = −
∂H

∂q i
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Molecular Dynamics

There are two + one problems with that:

The number of atoms is very large, N → 1023

The dynamics is too fast, ∆t → 10−12 − 10−15
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Molecular Dynamics

There are two + one problems with that:
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The dynamics is too fast, ∆t → 10−12 − 10−15

The evolution of MD simulations (from T. Schlick. Molecular Modeling: An

Interdisciplinary Guide, 2010)
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Molecular Dynamics

There are two + one problems with that:

The number of atoms is very large, N → 1023

The dynamics is too fast, ∆t → 10−12 − 10−15

The evolution of MD simulations (from T. Schlick. Molecular Modeling: An

Interdisciplinary Guide, 2010)

We do not know (exactly) the initial conditions i.e. there is uncertainty
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Statistical Mechanics

We do not know (exactly) the initial conditions for all DoFs

q i ,pi , i = 1, 2 . . .N.

We prescribe an initital probability density of microstates ρ0(q, p) which
is consistent with the initial macroscopic conditions

This density will evolve in time, ρ(q, p; t) 1 :

∂ρ

∂t
= −

∂H

∂p
·
∂ρ

∂q
+

∂H

∂q
·
∂ρ

∂p
(Liouville’s equation)

Is there an equilibrium/stationary distribution ρeq(q, p) = limt→∞ ρ(q, p; t)?

1R. Zwanzig, Nonequilibrium Statistical Mechanics
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Statistical Mechanics

Equilibrium Statistical Mechanics

Microcanonical ensmble (isolated system):

ρeq(q, p) ∝ δ(H(q, p)− H0)

Canonical ensemble (system in a heat bath with temperature T ):

ρeq(q, p) =
exp{− 1

kBT
H(q, p)}

Z

Grand-canonical ensemble . . .
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Statistical Mechanics

Equilibrium Statistical Mechanics

Microcanonical ensmble (isolated system):

ρeq(q, p) ∝ δ(H(q, p)− H0)

Canonical ensemble (system in a heat bath with temperature T ):

ρeq(q, p) =
exp{− 1

kBT
H(q, p)}

Z

Grand-canonical ensemble . . .

Maximum Entropy connection a

aE.T. Jaynes, Information Theory and Statistical Mechanics, 1957

Entropy increases with time t

The equilibrium density is the one that maximizes the entropy:

S = −

∫

ρeq(q, p) log ρeq(q, p) dqdp

subject to any constraints.
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Equilibrium Statistical Mechanics

The objective of equilibrium statistical mechanics is to compute
averages :

E.g.:

E [f (q, p)] =

∫

f (q, p)ρeq(q, p)dqdp

Other notations: < f (q, p) >, Eeq[f ] ....

These averages correspond to macroscopic thermodynamic quantities
e.g.:

stress,

pressure

diffusivity,

viscosity,

specific heat etc.
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Equilibrium Statistical Mechanics

The objective of equilibrium statistical mechanics is to compute
averages :

E [f (q, p)] =

∫

f (q, p)ρeq(q, p)dqdp

Deterministic methods

Generate a trajectory (q(t),p(t), x(t))
The auxiliary variables x(t) are appropriately selected to ensure states

consistent with the canonical ensemble

Typical examples: Nosé-Hoover, Nosé-Poincaré

Stochastic Methods (Monte Carlo)

Generate random samples q i ,pi or sample trajectories (q(t),p(t)) from

appropriately selected Stochastic PDEs.

Typical examples: Importance Sampling, Markov Chain Monte Carlo,

Sequential Monte Carlo

Strong convergence results, increased flexibility that can incorporate

deterministic methods.
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Equilibrium Statistical Mechanics

Some considerations for Monte Carlo samplers:

Suppose we wish to sample from:

ρeq(q, p) =
exp{− 1

kBT
H(q, p)}

Z

where H(q, p) =
∑N

i=1
1
2

p2
i

mi
+ V (q1,q2, . . .qN)

N is very large i.e. we can afford algorithms that scale O(N) but probably
not O(N2)

Correlations between q and p are strong (i.e. no random-walk scheme
would work)

Sampling p is easy (i.e. multivariate Gaussian)
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Equilibrium Statistical Mechanics

Some considerations for Monte Carlo samplers:

Suppose we wish to sample from:

ρeq(q, p) =
exp{− 1

kBT
H(q, p)}

Z

where H(q, p) =
∑N

i=1
1
2

p2
i

mi
+ V (q1,q2, . . .qN)

Techniques that employ first-order derivatives of H are generally

employed. Their cost is generally determined by the number of times
force evalautions have to be performed i.e. ∂V

∂q
.

Increasing the temperature T “flattens” the target density

ρeq is generally multi-modal. It is very difficult for usual MCMC schemes
to escape these modes.
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Equilibrium Statistical Mechanics

Some considerations for Monte Carlo samplers:

Suppose we wish to sample from:

ρeq(q, p) =
exp{− 1

kBT
H(q, p)}

Z
, H(q, p) =

N∑

i=1

1

2

p2
i

mi

+ V (q1,q2, . . .qN)

Hybrid or Hamiltonian Monte Carlo (R. Neal, 2012)

Given the current state (qold ,pold )

Draw new p̂ from multivariate Gaussian

Perform L time-integration steps with your favorite, explicit (volume-perserving,

reversible) integrator e.g. velocity Verlet:

(qold , p̂)→ . . .
q̇ = ∂H

∂p

ṗ = −∂H
∂q

. . .→

︸ ︷︷ ︸

L−steps

(qnew ,pnew )

M-H accept/reject based on: exp{− 1
kBT

(H(qnew ,pnew )− H(qold , p̂)}
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Equilibrium Statistical Mechanics

Hybrid/Hamiltonian Monte Carlo (R. Neal, 2012)

Samples of q1 for a 2-dimensional problem using Random Walk Metropolis (left) and

HMC (right)

Samples of q1 for a 100-dimensional problem using Random Walk Metropolis (left) and

HMC (right)
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Coarse-graining in Equilibrium statistical Mechanics

i = 1
i = N

l

F F

Consider a very long (N >> 1) one-dimensional chain of atoms at

equilibruim temperature T

We want to predict the macroscopic behavior of the chain i.e. the (force)
F - (length) l relation.

Suppose we fix q1 ≡ 0 and l = l(q) = qN .

qN ≡ l

F micro(q) F F = − < F micro >qN=l=<
∂V (q)
∂qN

>qN=l

=
∫ ∂V (q)

∂qN
ρeq(q|qN = l) dq

What is ρeq(q|qN = l)?

Let:

Z (l) =

∫

ρeq(q)δ(l − qN) dq

i.e. the probability that the length of chain is l .
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Coarse-graining in Equilibrium statistical Mechanics

Then:

ρeq(q|qN = l) =
1

Z (l)
ρeq(q)δ(l − qN) =

1

Z (l)
e−βV (q)δ(l − qN)

Note that:
F =

∫ ∂V (q)
∂qN

ρeq(q|qN = l) dq

=
∫ ∂V (q)

∂qN

e−βV (q)δ(l−qN)
Z (l) dq

= ∂
∂qN

(

− 1
β log Z (l)

)

(β = 1
kBT

)

The quantity:

A(l) = −
1

β
log Z (l) = −

1

β
log

∫

e−βV (q)δ(l − qN)dq

is called Helmholtz Free Energy.
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Coarse-graining in Equilibrium statistical Mechanics

Helmholtz Free Energy

A(l) = −
1

β
log Z (l) = −

1

β
log

∫

e−βV (q)δ(l − qN)dq

Note that:

e−βA(l) = Z (l) ≡ probability that the length of chain is l

Hence A(l) is the effective potential for the marginal distribution of the
macroscopic variable l .

Since A(l) gives the exact marginal of l , there is no coarse-graining error
i.e. we do not lose any information by “integrating out” the atomistic
degreees of freedom.

One can, in principle, compute free energies w.r.t to any macroscopic

variables Q = ξ(q) (e.g. strain) i.e.:

A(Q) = −
1

β
log

∫

δ(Q − ξ(q)) e−βV (q) dq

in order to perfectly coarse-grain any atomistic ensemble!
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Coarse-graining in Equilibrium statistical Mechanics

Free Energy comprises contributions from:

Energy/Potential

Entropy

Energetic contributions

Suppose:

V (q) = W (qN) + V̂ (q1, . . . , qN−1)

Then for Q = qN :

A(Q) = − 1
β log

∫
e−βV (q)δ(Q − qN) dq

= − 1
β log e−βW (Q)

∫
e−βV̂ (q1,...,qN−1)) dq1 . . .dqN−1

= W (Q)
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Coarse-graining in Equilibrium statistical Mechanics

Free Energy comprises contributions from:

Energy/Potential

Entropy

Entropic contributions

Suppose V (x , y) is 0 inside the box and +∞ outside. For Q = x :

(a) V (x , y) (b) A(x)

From Lelievre et al. 2010. Free Energy Computations: A mathematical

perspective
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Free Energy in Equilibrium statistical Mechanics

Some considerations:

A(Q) = −
1

β
log

∫

δ(Q − ξ(q)) e−βV (q) dq

The Helmholtz Free Energy A(Q) provides a principled and exact
representation of the equilibrium atomistic ensemble w.r.t the reduced
coordinates Q = ξ(q).

If A(Q) is known we can reproduce exactly any macroscopic property

depending on Q.

A(Q) is really A(Q, β) i.e. it depends on the temperature

Free energy differences are of interest.
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Coarse-graining in Equilibrium statistical Mechanics

Helmholtz Free energy A(Q):

A(Q) = −
1

β
log

∫

δ(Q − ξ(q)) e−βV (q) dq

How can one estimate A(Q)?

Suppose Q ≡ q1 and ρeq(q1, q2) is bimodal.

(a)
ρeq(q1, q2)

Convergence is very, very slow - q1 is the slow variable
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(c) Metastability

Convergence is very, very slow - q1 is the slow variable
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Convergence is very, very slow - q1 is the slow variable
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Free Energy Computations

Coarse-grained variables Q = ξ(q):

Other names: relevant variables, macrostates, macroscopic variables,
collective variables, reaction coordinates, internal variables, order

parameters etc.

How does one find the most appropriate coarse-grained variables Q a?

based on the macroscopic prediction objectives.

based on physical insight

based on (principled) processing of computational data (machine learnining)

In the following we will assume that Q = ξ(q) is given.

aRohrdanz et al. 2013 Discovering mountain passes via torchlight: methods for the
definition of reaction coordinates and pathways in complex macromolecular reactions
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Free Energy Computations

Given good Q = ξ(q) the compuation of free energy
(differences) A(Q) amounts to:

sampling efficiently a multi-modal density

computing the marginal w.r.t. Q.

Some techniques:

Thermodynamic integration (Kirkwood 1935)

Equilibrium methods

Nonequilibrium methods (Jarzynski 1997)

Adaptive Biasing Potential (ABP) or Force (ABF) methods (Wang-Landau

2001)

Keep in mind that a lot of these techniques can be used in completeley
different contexts in UQ e.g. Bayesian inference (Chopin et al. 2012)
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A unifying ABP framework for Free Energy

Computations

Recall that the marginal ρQ(Q) w.r.t the coarse-grained variables
Q = ξ(q) is:

ρQ(Q) ∝ e−βA(Q) =

∫

e−βV (q)δ(Q − ξ(q)) dq

Define an auxiliary density ρ̂(q) as:

ρ̂(q) =
e−β(V (q)−Â(ξ(q);φ))

Z (φ)

where Â(Q;φ) is a function of the coarse-grained variables Q that is
parameterized by φ.

The corresponding marginal ρ̂Q(Q) will be:

ρ̂Q(Q) =
∫
ρ̂(q)δ(Q − ξ(q)) dq

= e−β(A(Q)−Â(Q;φ))

Z (φ)
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A unifying ABP framework for Free Energy

Computations

Note that if A(Q) = Â(Q;φ)) + constant then:

ρ̂Q(Q) =
e−β(A(Q)−Â(Q;φ))

Z (φ)
≡ (uniform)

In practice we define a (small or large) subset of Q-values, say D, that is
of interest. Let π(Q) ∝ 1D(Q) be the uniform on D

Hence the optimal free energy approximation Â(Q;φ)) is found by:

φopt = arg min
φ

f (φ) = DISTANCE( π(Q)
︸ ︷︷ ︸

uniform on D

, ρ̂Q(Q))

We propose using the Kullback-Leibler divergence to measure the
distance between densities i.e.:

f (φ) = KL(π(Q)||ρ̂Q(Q)) = −
∫
π(Q) log

ρ̂Q (Q)

π(Q)
dQ

= −
∫
π(Q)

(

−β(A(Q)− Â(Q;φ)
)

dQ + log Z (φ) + . . .
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Note that if A(Q) = Â(Q;φ)) + constant then:

ρ̂Q(Q) =
e−β(A(Q)−Â(Q;φ))
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+ log Z (φ)
︸ ︷︷ ︸

difficult
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A unifying ABP framework for Free Energy

Computations

Objective:

min
φ

f (φ) = −β

∫

π(Q)Â(Q;φ) dQ + log Z (φ)

Suppose one expresses:

Â(Q;φ) =

M∑

i=1

φiKi(Q)

where Ki(Q) are some given basis/kernel functions 2.

Derivatives:

∂f
∂φi

= −βEπ[
∂Â(Q;φ)

∂φi
] + d log Z (φ)

∂φi

= −β (Eπ[Ki(Q)]− Eρ̂Q
[Ki(Q)]) , ρ̂Q(Q) = e−β(A(Q)−Â(Q;φ))

Z (φ)

∂2f
∂φi∂φj

= β2Covρ̂Q
[Ki(Q),Kj(Q)] > 0 −→ CONVEX

2You will ask how did you pick Ki and how do you know how many M you must use?
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A unifying ABP framework for Free Energy

Computations

∂f
∂φi

= −β (Eπ[Ki(Q)]− Eρ̂Q
[Ki(Q)]) , ρ̂Q(Q) = e−β(A(Q)−Â(Q;φ))

Z (φ)

Q: But one does not know ρ̂Q(Q), after all, isn’t A(Q) is what we are looking for?

A: We will use the auxiliary (joint) density ρ̂(q) of which ρ̂Q(Q) is the marginal:

ρ̂(q) =
e−β(V (q)−Â(ξ(q);φ))

Z (φ)

Q: Even if you do Monte Carlo for ρ̂(q) you will get a very poor estimates

(especially in the begining i.e. when Â ≡ 0)?

A: Stochastic Approximation (Robbins-Monro, 1951)

φ
(m+1) = φ

(m) − ηm
˜∇f (φ(m))

It is OK if ˜∇f (φ(m)) is a noisy estimate of ∇f (φ(m)) as long as
∑

∞

m=0 ηm = +∞,
∑

∞

m=0 η
2
m < +∞
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A unifying ABP framework for Free Energy

Computations

Enforcing Sparsity - Greedy addition of kernels (Berger et al 1996. A

Maximum Entropy Approach to Natural Language)

Â(Q;φ) =

M∑

i=1

φiKi(Q)

Let Â(Q)(M) the approximation with M basis/kernel functions

If

ρ̂(q) =
e−β(V (q)−Â(M)(ξ(q);φ))

Z (φ)

is the corresponding auxiliary density, then select KM+1(Q) such as:

KM+1(Q) = arg max
K (Q)∈K

(Eπ[K (Q)]− Eρ̂Q
[K (Q)])2
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A unifying ABP framework for Free Energy

Computations

Example: Bimodality

V (q1, q2) ρeq(q1, q2) ∝ e−βV (q1,q2)
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A unifying ABP framework for Free Energy

Computations

Example: Bimodality
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A unifying ABP framework for Free Energy

Computations

LJ38: Two reaction coordinates

Q1 = 0.01

(icosahedron)

Q1 = 0.19

(octahedron)
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(b) T = 0.17.
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(c) T = 0.14.
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(d) T = 0.11.

Free energy contours A(Q1,Q2) at various temperatures.
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Pseudo-Molecular Coarse-Graining

q Q

Q = ξ(q)

From Noid et al. 2008
CG of water moleculers. (from Bilionis

et al. 2013)

e.g. define pseudoatoms I such that for all atoms i ∈ I:

QI =

∑

i∈I miq i
∑

i∈I mi

Is there an optimal CG-description? How should two alternative

CG-coordinate systems be compared?
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Pseudo-Molecular Coarse-Graining

If V (q) is the refeqrence potential and ρeq(q):

ρeq(q) =
e−βV (q)

Z

the equilibrium distribution.

The exact coarse-graining w.r.t. to Q = ξ(q) requires the compuation of
the corresponding Helmholtz free energy A(Q):

A(Q) = −
1

β
log

∫
e−βV (q)

Z
δ(Q − ξ(q)) dq

In principle any of the Free Energy computational techniques can be
employed.

The problem is that all of them are applicable to low-dimensional Q (e.g.

dim(Q) < 5or10)

When dim(Q) >> 1, physical insight is necessary.
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Pseudo-Molecular Coarse-Graining

Let an approximation to the true free energy A(Q) be:

Â(Q;φ) → ρ̂(Q) =
e−βÂ(Q;φ)

Z (φ)

that depends on some parameters φ .E.g.:

Â(Q;φ) =
∑

I<J V (|QI − QJ |;φ)
︸ ︷︷ ︸

pairwise−potential

V (r ;φ) =
∑M

i=1 φi ψi(r)
︸ ︷︷ ︸

known







→
Â(Q;φ) =

∑M
i=1 φi(

∑

I<J ψi(|QI − QJ |))

=
∑M

i=1 φi Ki(Q)

What is the optimal φopt ?

The Relative Entopy method 3

φ
opt = arg min

φ
f (φ) = KL(ρeq(Q)||ρ̂(Q))

3Shell et al 2008, Bilionis et al. 2013
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Pseudo-Molecular Coarse-Graining

Relative Entropy method

φopt = arg min
φ

f (φ) = KL(ρeq(Q)||ρ̂(Q))

Alternatives

Inversion based methods. E.g. Boltzman Inversion (Tchöp et al. 1998),

Iterative Boltzmann Inversion (Reith et al. (2003), Inverse Monte Carlo
[Lyubartsev et al. 1995, Soper 1996).

Variational methods. E.g. Force Matching (Ercolessi et al. 1994, Izvekov
et al. 2005, Noid et al. 2007).
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Pseudo-Molecular Coarse-Graining

Relative Entropy method

f (φ) = KL(ρeq(Q)||ρ̂(Q))

= −
∫
ρeq(Q) log

e−βÂ(Q;φ)/Z (φ)
ρeq(Q)

= β
∫

Â(Q;φ)ρeq(Q) dQ + log Z (φ) + . . .

= Eρeq
[Â(Q;φ)] + log Z (φ)

Derivatives (If Â(Q;φ) =
∑M

i=1 φiKi(Q)):

∂f

∂φi

= β(Eρeq
[Ki(Q)]− Eρ̂[Ki(Q)])a

∂2f

∂φi∂φj

= β2Covρ̂[Ki(Q),Kj(Q)] > 0 −→ CONVEX

aThis is exactly what one would get with MAXENT
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Pseudo-Molecular Coarse-Graining

Relative Entropy method

∂f

∂φi

= β(Eρeq
[Ki(Q)]− Eρ̂[Ki(Q)])

Q: How can one estimate Eρeq
[Ki(Q)]?

A: All existing methods assume that a very long MCMC run of ρeq(q) is

available and:

Eρeq
[Ki(Q)] ≈

1

N

N∑

j=1

Ki(ξ(q
(j)))]

As we have seen this is not always straightforward.

Q: How can one estimate Eρ̂[Ki(Q)] where ρ̂(Q) ∝ e−βÂ(Q;φ)

A: With ones favorite MCMC sampler (sampling in the reduced
coordinates)

Both estimates will be noisy −→ Stochastic Approximations are needed.
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Pseudo-Molecular Coarse-Graining

Example (Bilionis et al. 2013):

Full-order system: 2180 water molecules (i.e. dim(q) > 19620)

T = 300K , SPC/E water model (Kusalik et al. 1994)

220ns in total are simulated with a time step of 0.002ps (Gromacs)

5hrs on 240 CPUs!

N = 105 samples are used to estimate expectations w.r.t ρeq(q)

Coarse-grained model with dim(Q) = 6540

Cubic splines were used as the basis functions φi(r) in the pairwise
coarse-grained potential
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Pseudo-Molecular Coarse-Graining

Example (Bilionis et al. 2013):

(a) (b)

(c) (d)

Learned pairwise coarse-grained potential (Bilionis et al. 2013)
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Conclusions & Outlook

What is the best set of coarse-grained coordinates Q?

How does this change depending on the prediction objectives?

Is there a way to learn a hierarchy of coarse-grained coordinates

Q1 = ξ1(Q2) = ξ1 ◦ ξ2(Q3) = . . . = ξ1 ◦ ξ2 . . . ◦ ξs(q)?

Is there a way to learn this exclusively from (short bursts of) simulation
data?

How can one learn free-energy surfaces in high-dimensions?

Since we are learning from finite amounts of simulation data, what is the
inferential uncertainty?

Can we be Bayesian in our coarse-graining (e.g. Español et al 2011,

Wright et al. 2013 ICES report 13-31)

Non-equilibrium statistical mechanics?
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