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Abstract Being aware of mutual influences between indi-
viduals is a major requirement a robot to efficiently operate
in human populated environments. This is especially true
for the navigation among humans with its mutual avoidance
maneuvers. While humans easily manage this task, robotic
systems are still facing problems. Most of the recent ap-
proaches concentrate on predicting the motions of humans
individually and deciding afterwards. Thereby, interactivity
is mostly neglected. In this work, we go one step back and
focus on understanding the underlying principle of human
decision making in the presence of multiple humans. Non-
cooperative game theory is applied to formulate the problem
of predicting the decisions of multiple humans that inter-
act which each other during navigation. Therefore, we use
the theory of Nash equilibria in static and dynamic games
where different cost functions from literature rate the pay-
offs of the individual humans. The approach anticipates col-
lisions and additionally reasons about several avoidance ma-
neuvers of all humans. For the evaluation of the game the-
oretic approach we recorded trajectories of humans passing
each other. The evaluation shows that game theory is able to
reproduce the decision process of humans more accurately
than a decision model that predicts humans individually.
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1 Introduction

Robots have evolved immensely in the past decades, but
there is still a long way to go in terms of enabling them
to permanently operate in human populated environments.
First achievements include robots that navigate autono-
mously to unknown places [7, 53] or guide people at
fairs [62]. Apart from that, autonomous vehicles already
navigate in urban environments among human-driven vehi-
cles [81]. Other robots interact physically with humans, for
example they hand over objects [72] or assist elderly peo-
ple [63]. These applications show that the barrier between
robots and humans has been fading, which leads to a ma-
jor challenge in robotics: ensuring reliable and socially ac-
cepted motion in order to realize the human-robot coexis-
tence. A vital factor for achieving this goal is the awareness
of the mutual influence between human individuals and the
robotic systems. Modern robotic systems have to consider
that humans are interaction-aware: they reason about the
impact of possible future actions on the surrounding and
expect similar anticipation from everyone else [6, 55, 61].
Of our particular interest is the interaction-aware navigation
of humans, meaning the conditionally cooperative behavior
that leads to mutual avoidance maneuvers. Common motion
planners neglect this notion and focus on independent mo-
tion prediction of individuals. Thereby, the prediction can
be unreliable because it is indifferent to humans that might
avoid the robot. It is important, that the future trajectory of
the human depends on the motion of the surrounding hu-
mans and on the motion of the robot. Consequences are un-
necessary detours, inefficient stop and go motions, or a com-
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plete standstill if the planner fails to identify a collision-free
trajectory. The worst case is a collision with a human. Traut-
man et al [78] argue that these problems would still exist
with perfect prediction and that they could only be resolved
by anticipating the human mutual collision avoidance. This
clarifies that the individual motion prediction of humans and
a consecutive planning of the robot motion is a poor model
for human decision making. Hence, a main reason of robotic
problems lies in an insufficient model of the human deci-
sion process. That is why we model human decision mak-
ing in the presence of multiple humans during navigation.
We formulate a decision model that considers interaction-
awareness and reasoning. On top, the model can cope with
human diversity: humans decide individually (decentralized
planning) and have different preferences (e.g., speed, goal).

In this paper, the problem formulation of interaction-
aware decision making is based on game theory. Game the-
ory is “the study of mathematical models of conflict and co-
operation between intelligent rational decision-makers” [51,
p.1]. It extends the traditional optimal control theory to a
decentralized multi-agent decision problem [3, p.3]. Thus,
prediction and planning are considered simultaneously. We
specifically choose to use game theory because it is a math-
ematical formulation and incorporates reasoning about pos-
sible actions of others and consequences of interdependen-
cies, i.e. interaction-awareness. It further allows for indi-
vidual decision making and individual utility functions that
capture preferences. Its strength lies within its generalizabil-
ity. Accordingly, a variety of modeling approaches exists,
as well as diverse solution concepts that aim to predict the
decision of agents, for example which trajectory they will
take. Within this work, our focus lies on the solution con-
cept of Nash equilibria in non-cooperative games. These are
equilibria where no one gains anything by only changing the
own decision.

General Idea: Approximating the decision making of
humans during interaction-aware navigation with the the-
ory of Nash equilibria in non-cooperative games.

In the following, two possible ways to model human
navigation are presented. One model assumes simultaneous
decision making, the other one sequential decision mak-
ing. Both models are combined with cost functions from
literature. We evaluate for which of these combinations,
Nash’s theory reproduces the navigational decisions of hu-
mans best. Thereby, the evaluation is based on captured hu-
man motion data to ensure real human behavior. Addition-
ally, the game theoretic approach is compared with a com-
mon prediction based decision model. Our intention is to
draw further conclusions about human navigational behav-
ior and to highlight the potential of game theory for this
problem. Note, that the presented work focuses on humans

Fig. 1 Deciding human-like during navigation; interactivity, like mu-
tual avoidance maneuvers, needs to be considered.

and on modeling their decisions. We do not yet present a
motion prediction or motion planning algorithm for robots.
However, the derived knowledge can improve motion pre-
diction of humans and robot motion planning, as well as
the social acceptance of robots. If the behavior of a robot
is based on a human-like decision process, its intentions are
far easier to interpret and as a result, a human interaction
partner feels more secure [12, 77].

This paper is organized as follows. Sec. 2 surveys the
work related to human motion analysis and interaction-
aware navigation. The next section gives an outline of
the game theoretic method used to analyze human motion
(Sec. 3); two different models and five possible cost func-
tions are presented. The experimental setup and the evalua-
tion method are discussed in Sec. 4, followed by the results
in Sec. 5, and possible extensions in Sec. 6.

2 Related Work

The problem of modeling interaction-awareness of several
agents has been addressed in different areas including hu-
man motion analysis, computer animation and robot motion
planning. It is particularly attractive for a branch within the
latter field – the socially-aware robot navigation [39, 66].
Related experiments and motion planners that consider in-
teractivity are presented in this section. Additionally, the
section elaborates about applications of game theory in mo-
tion planning and decision making problems.

Various groups of researches have studied human colli-
sion avoidance during walking [5, 6, 15, 16, 31, 54, 55, 61].
They have been interested in when, where, as well as to
which extent humans adjust their path or velocity to avoid
a collision with another dynamic object. All studies agree
that humans anticipate the future motion of dynamic objects
and possible collisions. That means that humans include pre-
diction into their own motion planning and do not solely re-
act. However, parts of these studies neglect the interaction-
awareness of humans during walking by only considering
avoidance maneuvers with a passive, dynamic object. For
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example, the subjects of the studies by Cinelli and Patla
[15, 16] had to avoid a human-shaped doll that was mov-
ing towards them; Basili et al [5] and Huber et al [31] asked
their participants to cross paths with a non-reacting human.

In contrast are the studies from Pettré et al [61], van Bas-
ten et al [6], and Olivier et al [54, 55]. These authors told two
participants to avoid a collision, which revealed that humans
collaboratively adjust their gait. Interestingly, the amount of
adjustment was unequally distributed [55, 61]: the person
passing first had less effort because s/he mainly adopted the
velocity, whereas the one giving way adjusted both, velocity
and path. In summary, analyzing human locomotor trajecto-
ries shows up the important characteristics of human colli-
sion avoidance. This can be used to evaluate or enhance the
human-likeness of motion models. Unfortunately, it does not
reveal how to reproduce human avoidance behavior in order
to use it for motion prediction or motion planning.

Researchers have often based human motion models on
repulsive forces acting on particles. That has been especially
popular for crowd simulations: Pelechano et al [59] or
Sud et al [76] employ the social forces model [28] where
the agents are exposed to different repulsive and attractive
forces depending on their relative distances; Heı̈geas et al
[27] define forces in analogy to a spring-damper system with
varying stiffness and viscosity values; and Treuille et al [79]
use a potential field approach. However, we refrain from
elaborating this field deeper because most works are based
on reactive approaches and neglect that humans include
prediction in their motion planning. While this may be
appropriate for high density crowds, reactive approaches
struggle – according to [5, 31, 61] – with creating locally
realistic motions in low or medium density crowds.

Trautman et al [78] focus on these medium density
crowds and plan further ahead by relying on Gaussian pro-
cesses. The authors define the “Freezing Robot Problem”:
once the environment gets to crowded, the planner rates all
possible maneuvers as unsafe due to increasing prediction
uncertainty. As a result, the robot “freezes” or performs un-
necessary detours. They argue that this problem would still
exist, even without uncertainty and with perfect prediction.
It could be resolved by anticipating the human collaborative
collision avoidance. They developed a non-parametric sta-
tistical model based on Gaussian processes that estimates
crowd interaction from data. Thereby, independent Gaus-
sian processes are coupled by a repulsive force between the
agents. Experiments verified that the interactive algorithm
outperforms a merely reactive one.

An earlier approach was shown by Reynolds [65]. He
uses different steering behaviors to simulate navigating
agents. One of these behaviors – the unaligned collision
avoidance – predicts future collisions based on a constant

velocity assumption and gets the agents to adjust steering
and velocity to avoid state-time space leading to a collision.

In contrast to this rule based method are approaches
based on velocity obstacles [22], like its probabilistic ex-
tensions [37]. Van den Berg et al [9] combine a precom-
puted roadmap with so-called reciprocal velocity obstacles.
This approach is updated in [10] to the optimal reciprocal
collision avoidance that guarantees collision-free navigation
for multiple robots assuming a holonomic motion model.
Further assumptions are that each robot possesses perfect
knowledge about the shape, position and velocity of other
robots and objects in the environment. Extensions that incor-
porate kinematic and dynamic constraints exist in [1, 74].

However, Pettré et al [61] state that the works in [65]
and [9] lack to simulate the large variety of the human
behavior because they rely on near-constant anticipation-
times and on the common knowledge that all agents apply
the same avoidance strategy. Instead, they presented an
approach which produces more human-like trajectories: they
solve pairwise interactions with a geometrical model based
on the relative positions and velocities of the agents. It is
tuned with experimental data and analyzed according its
validity for crowds by Ondřej et al [56]. The authors state
to perform better, in a sense that the travel duration of the
agents is shorter, when compared to [9] or [28].

Shiomi et al [71] developed a robot that successfully
navigates within a shopping mall. It relies on an extended
social force model that includes the time to collision as a
parameter to compute an elliptic repulsion field around an
agent [85]. Mutual collision avoidance is implicitly intro-
duced by calibrating the repulsion force with human avoid-
ance trajectories. A field trial revealed that the robot using
this method was perceived as safer than if it used a time
varying dynamic window approach [70]. Nevertheless, most
of the mentioned methods assume that an agent’s behavior
can be described by a limited set of rules.

Recently, learning based approaches are becoming in-
creasingly popular. Lerner et al [43] extract trajectories
from video data to simulate human crowds. They create
a database containing example navigation behaviors that
are described by the spatio-temporal relationship between
nearby persons and objects. During the simulation the cur-
rent state of the environment is compared with the entries of
the database. The most similar entry defines the trajectory
of the agent, thus, implicitly creates reactive behavior. This
means that the variety of the behaviors is limited to the size
of the database. Moreover, all individuals need to be con-
trolled globally.

Luber et al [46] proposed an unsupervised learning ap-
proach based on clustering observed, pairwise navigation
behaviors into different motion prototypes. These proto-
types are defined by the relative distance of two agents over
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time and their approaching angle. They are used to derive a
dynamic cost map for a Theta∗ planner that generates a path
at each time step.

Apart from that, many researchers rely on inverse re-
inforcement learning techniques. Kuderer et al [40] learn
a certain navigation policy while a robot is tele-operated.
The principle of maximum entropy [88] is used to learn
the weights of the feature functions. In particular, homotopy
classes (i.e., on which side to pass an object) are consid-
ered. Kretzschmar et al [38] improve this method further;
they used a joint mixture distribution that consists on one
hand of a discrete distribution over these homotopy classes,
and on the other hand of continuous distributions over the
trajectories in each homotopy class. An experiment revealed
that the resulting trajectories are perceived as more human-
like than the one produced by their previous method [40] or
the social force model [28].

An alternative is given by Henry et al [29] who learn how
a simulated agent has to join a pedestrian flow by using the
density and average flow directions as features. Similarly,
Kim and Pineau [36] proposed to use the population density
and velocity of the surrounding objects. The effect of the dif-
ferent features in [29] and [36] were investigate by Vasquez
et al [82] and compared with social force features [28]. Re-
sults showed that the social force features perform best when
applied specifically for the learned scene, but seem to gen-
eralize worst to other scenes. The features in [29] and [36]
are more generalizable and manage similarly well.

A new approach to consider interaction-awareness is to
model the navigational decision problem with game theory.
By providing the language to formulate decision problems,
game theory has already found some ways into robotics. It
is used in robust control [4, 23, 58], for example for landing
an aircraft [23]. Also the task planning of a planetary surface
rover runs with game theoretic tools [32].

The use of game theory is also growing within the
robotic research community, in particular in the fields of
motion planning and coordination. LaValle and Hutchinson
[42] were among the first who proposed game theory for the
high-level planning of multiple robot coordination. Specific
applications are a multi-robot search for several targets [48],
the shared exploration of structured workspaces like build-
ing floors [73], or coalition formation [24]. Closely related
to these coordination tasks is the family of pursuit-evasion
problems. For example in [3, 49, 83], and can be formu-
lated as a zero-sum or differential game. Zhang et al [86] in-
troduced a control policy for a motion planner that enables
a robot to avoid static obstacles and to coordinate its mo-
tion with other robots. Their policy is based on zero-sum
games and assigning priorities to the different robots. Thus,
it eludes possible mutual avoidance maneuvers by treating
robots with a higher priority as static obstacles. The mo-

tion of multiple robots with the same priority are coordi-
nated within the work of Roozbehani et al [67]. They fo-
cused on crossings and developed cooperative strategies to
resolve conflicts among autonomous vehicles. Recently, Zhu
et al [87] discussed a game theoretic controller synthesis for
multi-robot motion planning. So far, there has been almost
no attempts to connect game theory with models for human
motion – with the exception of Hoogendoorn and Bovy [30].
They focus on simulating crowd movements and generated
promising results, especially for pedestrian flows, by formu-
lating the walking behavior as a differential game. However,
they do not solve the original problem or discuss a common
solution concept like equilibrium solutions. They eventually
transform the problem into an independent optimal control
problem based on interactive cost terms. They specifically
payed attention on reproducing human-like crowd behavior,
hence, their simulation based evaluation is qualitative and
assesses the macroscopic group behavior.

Our approach is to analyze human motion – in partic-
ular, the human avoidance behavior – from a game theo-
retic perspective. Using game theory provides several ad-
vantages over existing approaches. Compared to merely re-
active methods, the key factor of game theory is the mutual
anticipation of the influence of other agents’ possible mo-
tions on oneself and vice versa; costs (or payoffs) of own
actions can depend on decisions of others. Thus, future in-
teractions are predicted and incorporated which corresponds
to human behavior. Moreover, individual cost functions can
be assigned to each agent if desired. As a result, agents can
behave asymmetrically which overcomes the restrictions of
most of the mentioned algorithms with anticipated collisions
avoidance. Learning based methods are very promising be-
cause of their inherent usage of real, human motion data.
This is at the same time a drawback because their validity is
dependent on the versatility of the their experimental data.
In contrast, game theory offers a more general formulation
with a variety of extensions and can apply learned cost func-
tions as well.

In this paper, interaction-aware decision making is for-
mulated as a non-cooperative game, whereas a static and a
dynamic representation is proposed. Navigational decisions
are predicted by calculating Nash equilibria dependent on
alternative cost functions form literature. We further evalu-
ate which combination of model and cost function approx-
imates recorded human navigation experiment best. Note,
that we do not present an operational motion planner or pre-
diction algorithm in this paper. The presented approach is
based on our previous work [80]. We extend our analysis
by also regarding the Nash equilibria of dynamic games and
by examining four additional cost functions, which mainly
perform better than the previously used one. Further, a com-
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parison between the game theoretic decision model and a
commonly used prediction based one is conducted.

3 Analyzing Interaction-aware Navigation with Game
Theory

For a game theoretic formulation of human decision making
during navigation we consider two game formulations with
five different cost functions each. Then the solution concept
of Nash equilibria is used to predict possible outcomes of
the game. In the following, game theoretic terms and tools
are briefly explained and an illustrative example is given.

3.1 Defining Static and Dynamic Games

The two considered models are finite, non-cooperative, non-
zero-sum, perfect information games. However, one game
is static, the other one is dynamic. In the static case,
decisions are taken simultaneously, in contrast to deciding
sequentially in dynamic games. The term non-cooperative
refers to a game theoretic branch wherein all agents aim to
minimize their cost individually1. One speaks of a nonzero-
sum game if the sum of each agent’s costs can differ from
zero. Keeping that in mind, the components of the static
game are defined by:

Definition 1 (Static Game) Finite, static, non-cooperative,
nonzero-sum game [44]:

1. Finite set of N players P = {P1, . . . , PN}.
2. Finite action setA = A1×· · ·×AN , whereAi is defined

for each player Pi ∈ P . Each aji ∈ Ai is referred to as
an action of Pi, with j = {1, 2, . . . ,Mi} and Mi being
the number of actions of Pi.

3. Cost function Ji:A1×A2× · · · ×AN → R∪ {∞} for
each player Pi ∈ P .

The game is finite if the number of actions is bounded for
all players. The subscript i always refers to the addressed
player. Each player Pi has different actions aji ∈ Ai and a
cost function Ji. The superscript j refers to an action, and
aji is the jth action out of Mi actions of player Pi.

In a static game, as defined above, the players decide
once and simultaneously. Hence, navigating agents are mod-
eled as if they observe the situation first, and then decide
instinctively. This assumption of humans using default col-
lision avoidance strategies is supported by Huber et al [31].

1 Non-cooperative in contrast to cooperative/coalitional games
where the focus is set on what groups of agents – rather than individuals
– can gain by forming coalitions. In a nutshell, coalitional game theory
answers two questions: which coalition will form, and how should that
coalition divide its payoff among its members [44, p.70].

Other studies [55, 61] in turn state that the amount of
shared effort during the avoidance maneuvers is unequal, de-
pending on who is first. This indicates that humans observe
and react, which may be more accurately modeled by con-
sidering sequential decisions. Dynamic games model these
situations where decisions during navigation are taken se-
quentially. In this case, the property of perfect information in
games becomes important to get a complete definition of the
game. A game is a perfect information game if each player
perfectly knows about the actions of all players that hap-
pened previously. Thus for the dynamic model of naviga-
tion, it is assumed that the agents choose consecutively, and
an instant after they observe the actions of the agents acting
before them. It is unclear if the static or dynamic model is
more accurate. Both models are evaluated and compared in
this work.

A mathematical description of a dynamic game is the ex-
tensive form. This form emphasizes the sequential decision
making. The components are given by:

Definition 2 (Dynamic Game) Finite, perfect informa-
tion, dynamic, non-cooperative, nonzero-sum game [44]:

1. Finite set of N players P = {P1, . . . , PN}.
2. Finite action set A = A1 × · · · × AN .
3. Set of terminal nodes Z .
4. Cost function Ji : Z → R ∪ {∞} for each Pi ∈ P .
5. Set of choice nodesH.
6. Action function χ : H → 2A; assigns each choice node

a set of possible actions.
7. Player function ρ : H → P; assigns each choice node a

player Pi ∈ P who chooses the action at the node.
8. Successor function σ : H × A → H ∪ Z; uniquely

assigns a choice node and an action a subsequent node.

Informally speaking, a dynamic game is a (graph theoretic)
tree, in which each node depicts a decision of one of the
agents, each edge depicts an action, and each leaf depicts a
final game outcome.

3.2 Solving Games – Strategies and the Nash Equilibrium

The definitions introduced before withhold which actions
a player should choose. Game theorists introduced diverse
solution concepts that can be interpreted as an advice or
used as prediction of what is likely to happen. One of the
most famous solution concepts is the Nash equilibrium: it
is an allocation where no player can reduce the own cost
by changing the strategy if the other players stick to their
strategies. Thus, a Nash equilibrium is a best response for
everyone. It implies that agents aim to minimize their own
cost. This is corroborated by existing literature stating that
humans execute their motions by following a minimization
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principle. Accordingly, humans minimize for example the
energy consumption of their gait [47, 75], or the global
length of their paths [11]. Also psychologists claim that
even infants expect a moving agent as having goals which
it aims to achieve in a rational way, like by taking the
shortest path [19]. Because these statements bring the Nash
equilibrium into focus, we concentrate on this solution
concept. Nevertheless, another solution concept – the Pareto
optimality – is discussed and briefly evaluated in Sec. 6.1.

Before presenting a mathematical definition of a Nash
equilibrium, the notion strategy is introduced because it
differs for static and dynamic games. Similar for both types
is that each player Pi has to play a strategy sji out of
the strategy set Si. This strategy can be pure or mixed. A
pure strategy is deterministic; whenever a pure strategy is
played in a game, the same actions are chosen. If a mixed
strategy is played, a pure strategy is chosen stochastically
with a fixed probability. Thus, a game may reach different
outcomes with the same, mixed strategy. In a static game, for
a player Pi choosing a pure strategy sji ∈ Si is equivalent
to choosing an action aji ∈ Ai, hence, sji = aji . Defining
a strategy in the dynamic case is more complex because
one has to define for each choice node of a player in H
which action is to be played, whether or not the choice
node is reached during the game. Thus, the pure strategies
of a player Pi in a dynamic game consist of the Cartesian
product

∏
h∈H,ρ(h)=Pi

χ(h) [44]. For further explanation an
example is given in Sec. 3.4.

Keeping that in mind, we denote a combination of strate-
gies of each player as an allocation s = (sj1, . . . , s

j
N ). A

Nash equilibrium s∗ = (sj
∗

1 , . . . , s
j∗

N ) is marked with an
asterisk and is a best response for everyone, assuming pos-
sible strategies and cost functions are common knowledge.
It is defined by:

Definition 3 (Nash equilibrium) The N -tuple of strate-
gies (sj

∗

1 , . . . , s
j∗

N ), with sj
∗

i ∈ Si, constitutes a non-
cooperative Nash equilibrium for a N -player game if the
following N inequalities are satisfied for all sji ∈ Si:

J1(s
j∗

1 , s
j∗

2 , . . . , s
j∗

N ) ≤ J1(sj1, s
j∗

2 , s
j∗

3 . . . , sj
∗

N )

J2(s
j∗

1 , s
j∗

2 , . . . , s
j∗

N ) ≤ J2(sj
∗

1 , s
j
2, s

j∗

3 , . . . , s
j∗

N )...
JN (sj

∗

1 , s
j∗

2 , . . . , s
j∗

N ) ≤ JN (sj
∗

1 , . . . , s
j∗

N−1, s
j
N ).

(1)

Note that the existence of a Nash equilibrium is guaranteed
given that mixed strategies are allowed [52]. Choosing a
specific form for the cost function Ji even ensures the
existence of a Nash equilibrium in pure strategies (see
Sec. 3.3). Possible choices for such a Ji regarding human
navigation are discussed in the next section.

It is further important that the Nash equilibrium is
bounded to two main assumptions: common knowledge of
all players, and strictly rational behavior of all players. Com-
mon knowledge implies that all players know about the

whole action set and the cost functions. We assume that hu-
mans gain their (common) knowledge through experience
and their ability to take perspective. Humans learn in their
everyday life what alternatives exist to reach a goal and how
other people behave while walking. At the same time hu-
mans are able to view a situation from another’s point-of-
view and infer about their possible actions and intentions.
Rational behavior is defined as a behavior that maximizes an
expected utility [17] (i.e., minimize expected cost). Sec. 6.1
discusses rationality more detailed, as well as to which ex-
tent both assumptions are justified for interaction-aware de-
cision making during navigation. In case either of these as-
sumptions is violated, game theory extensions are proposed.

3.3 Determining Cost Functions for Human Navigation

The mathematical definition of a Nash equilibrium in Def. 3
demonstrates that the accuracy of the game theoretic predic-
tion is dependent on both the choice of the solution concept
and the cost function. This section presents five different
choices to rate the cost for human navigation. The evalua-
tion is presented in Sec. 4. Thereby, each cost function Ji
consists of an independent component Ĵ and an interactive
component J̃i:

Ji(a
j
1, . . . , a

j
i , . . . , a

j
N ) = Ĵ(aji ) + J̃i(a

j
1, . . . , a

j
i , . . . , a

j
N ).

(2)

Note that this partitioning clarifies that the game theoretic
formulation results in an independent set of optimal control
problems if no interaction occurs. Ĵ is only dependent on the
action aji that player Pi considers. It rates for example the
length or time of the trajectory. The interactive component
J̃i namely contains the interactive cost. It is not only
dependent on the own choice of action but also on the other
players’ actions.

Four of the considered cost functions (I − IV) assume
that humans prefer trajectories that are, above all, without
collision and otherwise minimize their cost with respect to
their free-space motion. The fifth cost function (V) contains
an additional cost term that rates how close humans pass
each other, hence, shares some characteristics with the
social force model. This cost function will be discussed
last. For the other four cost functions a common interactive
component J̃i can be defined.

Cost Function I-IV The cost functions consider a colli-
sion to be the only possible interaction.

J̃ I−IV
i (aj1, . . . , a

j
N ) :=

{
∞ if at least one collision occurs,
0 else.

(3)



Understanding Human Avoidance Behavior 7

J̃ I−IV
i becomes infinity in case that action aji leads to a

collision with the strategy of another player, otherwise the
term is zero. An action corresponds to a discrete trajectory
with the states x(t), with aji = (x(1),x(2), . . . ,x(T )). Two
trajectories collide if the Euclidean distance between two
positions is smaller than a threshold R at any time t.

By choosing a cost function in the form of Eq. (2)
with Eq. (3), the existence of a Nash equilibrium in pure
strategies is guaranteed: a player’s cost is either Ĵ(aji ) or
infinity. If it is infinity for a special allocation, all other
players with whom a collision would occur also have infinite
cost. But this is not a best response for any player (only in
case all actions of a player would result in a collision).

In the following, the choices for the independent compo-
nent Ĵ of the first four cost functions are presented. Two of
them need a trajectory as input, the other ones merely need
the path information.

Cost Function I A frequently used cost function in motion
planning [41] is the length L of the path.

Ĵ I(aji ) := L(a
j
i ). (4)

Another cost function using path input is given by Pa-
padopoulos et al [57]. They learned the parameters of a cost
function by studying the geometry of the path in free-space
and by using inverse optimal control. Their model bases on
non-holonomic motions along a path that is approximated
by line segments with the state vector x(k) = [x, y, ϕ]T at
the kth segment of the path. x and y denote positions and
ϕ the orientation. Their cost function depends only on the
shape of the path and is invariant to changes of the velocity.

x(k + 1) = x(k) + λ(k) cos(ϕ(k))

y(k + 1) = y(k) + λ(k) sin(ϕ(k))

ϕ(k + 1) = ϕ(k) + λ(k)κ(k),

(5)

with κ being the curvature and λ(k) being the length of the
kth segment. Let K be the total number of segments. Then
a possible cost function is:

Cost Function II The cost function is based on Eq. (5) and
accounts for the energy related to the curvature, and for the
distance between the current state and the goal state.

Ĵ II(aji ) :=
1

2

K−1∑
t=0

λ(k)(κ(k))2(1 + cT∆x2(k)), (6)

with ∆x2 = [(x(k) − x(K))2, (y(k) − y(K))2, (ϕ(k) −
ϕ(K))2]T and cT = [125, 42, 190]. The distances from the
current state to the goal state can be interpreted as space-
varying weights on the curvature [57].

Both mentioned cost functions are path and thus not
velocity dependent. Another possibility is to use trajectory
information. Consequently, we also consider the following
cost functions.

Fig. 2 Example for interaction-aware navigation of humans on a
pavement. Interaction may be a mutual avoidance maneuver. The
situation is modeled as a static game in Tab. 1 and Fig. 3 and as a
dynamic game in Fig. 4

Cost Function III The function rates the duration T needed
for the player Pi to play an action, meaning to walk along
the trajectory.

Ĵ III(aji ) := T (a
j
i ). (7)

A more complex cost function is given by Mombaur
et al [50] who studied the run of human locomotor tra-
jectories during goal-directed walking in free-space. They
state that human trajectories are optimized according to an
underlying principle which was learned with inverse opti-
mal control. In contrast to Cost Function II, they assume
the motion model to be holonomic with the state vector
x(t) = [x, y, ϕ, vforw, vang, vorth]

T and the control vector
u(t) = [uforw, uang, uorth]

T (forward, angular, orthogonal ac-
celeration).

Cost Function IV The cost function assigns a cost for the
execution time T needed (as in Eq. (7)). Additionally, it
favors sparse accelerations and the human to be oriented
towards the goal.

Ĵ IV := T (aji ) +
T (aji )∑
t=0

cTu(t)2, (8)

with u(t)2 = [u2forw, u
2
ang, u

2
orth, ψ

2]Tt , and ψ being the dif-
ference between the angular difference to the goal denoted
as z = [x(T ), y(T )]T and the human body orientation ϕ;

ψ(x(t), z) = arctan
(
y(T )−y(t)
x(T )−x(t)

)
− ϕ(t).

The parameter vector is cT = [1.2, 1.7, 0.7, 5.2] [50].

The last cost function is adopted in large parts from Pel-
legrini et al [60]. They showed that a tracking algorithm per-
forms better if it takes social interactions between pedestri-
ans into account as well as their orientation towards a goal.
Minimizing a learned cost function allowed for calculating
the next expected velocity of the tracked object. This cost
function is used here to rate a whole trajectory. A holonomic
motion model with the state vector x(t) = [x, y]T and the
control vector u(t) = [vx, vy]

T is chosen.
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Cost Function V The cost function rates if a trajectory
leads towards its goal and maintains a desired speed.
Additionally, it rewards trajectories that steer an agent
away from an expected point of closest approach to another
agent.

ĴV(aji ) :=

T (aji )∑
t=0

c1G(t) + c2V(t) (9)

J̃V
i (a

j
1, . . . , a

j
N ) :=


∞ if collision,
T (aji )∑
t=0

N∑
n 6=i

wn(t)Iin(t) else.

(10)

G(t) is dependent on the goal z = [x(T ), y(T )]T , and V(t)
depends on a desired speed vdes, with

G(t) = − (z− x(t))Tu(t)

‖z− x(t)‖‖u(t)‖
, V(t) = (vdes − ‖u(t)‖)2.

Each fellow player of Pi gets assigned a weight wn(t) de-
termined by distances and angular displacements of players
to each other2. The additional interactive cost resulting from
player Pi approaching player Pn is denoted by:

Iin(t) = exp
(
−d

2
in(t)

2σ2

)
,

where d2in(t) is the square distance between the positions
of Pi and Pn at the expected point of closest approach.
The calculation of that point is based on a constant velocity
assumption. It is similar to the social force model, but differs
in a crucial way: instead of modeling humans at their current
positions, the expected point of closest approach is predicted
and used as origin of the repulsion. This implies that humans
include prediction into the motion planning, rather than
being reactive particles [60]. The parameter vector is cT =

[c1, c2, σ] = [2.073, 2.330, 0.361] [60].

3.4 Formulating Interaction-Aware Decision Making with
Game Theory

In this section, the game theoretic tools described above
are applied to a navigational decision problem. A static
and dynamic game is set up and their Nash equilibria are
calculated. Thereby, a mapping between game theoretic
terms and navigational components is given with the aid of
an example illustrating the navigation on a pavement. The
example is depicted in Fig. 2 where two agents want to pass
each other.

First, we map the components of a static game in Def. 1
to the pavement scenario. The two agents are the players

2 For a detailed calculation please refer to [60].

P1 and P2. Choosing an action aji is equivalent to choosing
a trajectory. In the example in Fig. 2, each player can
choose one out of five trajectories, thus the action set of Pi
is Ai = {a1i , a2i , . . . , a5i }. In the static case, this mirrors
directly the set of pure strategies Si = {s1i , . . . , s5i } =

{a1i , . . . , a5i }. Fig. 3 assigns each action a trajectory and
shows the cost component Ĵ , that choosing a trajectory
entails (assuming it is collision-free). The cost is chosen
such that it is proportional to the length of the path and that
passing right is favorable to passing left. The cost Ji(s

j
1, s

j
2)

of a player depending on the allocation are written down in
a matrix as shown in Tab. 1, where each cell contains a cost
pair J1|J2.

After all components are mapped, the pure Nash equilib-
ria of the game are computed. In the static, two-player case
the inequalities in Eq. (1) reduce to:

J1(s
j∗
1 , s

j∗
2 ) = min{J1(sj1, s

j∗
2 )} ∀sj1 ∈ S1,

J2(s
j∗
1 , s

j∗
2 ) = min{J2(sj∗1 , s

j
2)} ∀s

j
2 ∈ S2.

(11)

Informally speaking, a cell in Tab. 1 (i.e., an allocation) is
a pure Nash equilibrium if a) the cost entry J1 is less or
equal than all other costs J1 in its column and b) the cost
entry J2 is less or equal than all other costs J2 in its row.
Four allocations satisfy both conditions. They are circled
in Tab. 1. For example, the allocation s∗ = (s3∗1 , s

5∗
2 ) is a

Nash equilibrium. Choosing this equilibrium means that the
players decide simultaneously to play trajectory a31 and a52,
respectively.

In case that the agents decide sequentially, the dynamic
game is used. Def. 2 is applied on the pavement situation
in Fig. 2. The dynamic game is depicted as a tree. How-
ever, its illustration gets confusing with too many branch-
offs. For that reason the example is altered by only regard-
ing three possible trajectories for each agent as shown in
Fig. 4. This leads to the action set A = A1 × A2 =

{aL1 , aM1 , aR1 , aL2 , aM2 , aR2 }. Similar to the static game, we
have two players P1 and P2. However, a player function ρ is
needed that states the agent acting first. For this example P1

is chosen. After observing one out of three actions of P1, P2

reacts by playing one of his actions in turn. This results in
the tree shown in Fig. 4. The terminal nodes – the leafs – as-
sign the cost for each player as defined by the cost function
Ji. The cost functions are the same as in the static game.

One major difference between static and dynamic games
lies in their strategy space. P1 has one choice node and three
actions, thus 31 = 3 different strategies with with S1 =

{s11, s21, s31} = {aL1 , aM1 , aR1 }. More interesting, player P2

has three choice nodes, thus already 33 = 27 strategies,
S2 = {s12, . . . , s272 } = {(aL2 , aL2 , aL2 ), (aR2 , aL2 , aL2 ), . . . }.
The number of strategies is that high because one has to
define a choice of action for each choice node. The reason
why this refinement is necessary is that a Nash equilibrium
was originally defined for static games. For the definition
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Table 1 Static game. The cells depict cost pairs J1|J2 dependent on
actions aji . Actions and corresponding cost are shown in Fig. 3. In case
of a collision the cost is infinity. Nash equilibria are circled

P1\P2 a12 a22 a32 a42 a52

a11 5|5 5|4 5|1 ∞ ∞

a21 4|5 4|4 ∞ ∞ ∞

a31 1|5 ∞ ∞ ∞ 1|3

a41 ∞ ∞ ∞ 2|2 2|3

a51 ∞ ∞ 3|1 3|2 3|3

Fig. 3 Illustration of Fig. 2 as static game. The actions of each player
and the cost of the trajectories are shown (assuming it is collision-free)

in Eq. (1) to be still valid for the dynamic game, one has
to define the strategies such that they state for each choice
node of a player which action is to be played – whether
or not the choice node is reached during the game [44].
However, this definition allows for unlikely equilibrium
solutions in a dynamic game. For example, one of the
Nash equilibria in the dynamic case is the allocation s∗ =

(aL∗1 , (aM2 , a
M
2 , a

L
2 )
∗). It fulfills the conditions in Eq. (1):

none of the players would benefit from changing only the
own strategy. However, this would be merely the case if P2

‘threatens’ to provoke a collision by playing aM2 as reaction
to aM1 , and aL2 as reaction to aR1 . Actually carrying out
this threat would yet not be the best response of P2. P1

can assume this to be an unlikely behavior and thus a non-
credible threat. Also experience proves that humans rarely
collide. They avoid collisions rather than provoking them.
This example shows that in dynamic games the notion of
a Nash equilibrium can be too weak [44]. For that reason,
the stricter subgame-perfect equilibria is used for dynamic
games in this work. Thus, equilibria that imply the threat
to provoke a collision are excluded. A Nash equilibrium is
subgame-perfect if it constitutes a Nash equilibrium in every
subgame of the complete game. An example of a subgame
is shown in Fig. 4. It consists of a node within the tree and
all its subsequent nodes. In our example, the only subgame-
perfect Nash equilibrium is s∗ = (aM∗1 , (aM2 , a

R
2 , a

M
2 )∗).

From now on, we will slightly abuse the notation of
strategies in dynamic games. Instead of giving a combina-
tion of actions for each choice node, only the best response
trajectory of the second player to the first player’s decision
is stated. For example the subgame-perfect equilibrium re-
duces to s∗ = (aM∗1 , aR∗2 ) = (sM∗1 , sR∗2 ), where aR2 it the
best response to aM1 (circled cost pair in Fig. 4).

Fig. 4 Dynamic representation of the pavement example in Fig. 2.
The upper part shows the actions of the players with its corresponding
cost without collision. The lower part is the tree representation of the
dynamic game with the cost pairs J1|J2 at the leafs (the first entry
refers to P1, the second to P2, respectively). The subgame-perfect
Nash equilibrium is circled

In this context we want to discuss the link between
game theory and optimal control. As mentioned before,
the problem formulation of game theory results in a set of
coupled optimal control problems. Nevertheless, the specific
combination of a dynamic game that contains only the
binary component J̃ I−IV

i in Eq. (3) as interactive part can
also be reformulated by several independent optimal control
problems. Therefore, all actions of the agent choosing first
that inevitably lead to a collision with a following agent are
removed. After that, it is sufficient that the agent choosing
first only minimizes its independent cost component Ĵ I−IV,
which is independent of the actions of the other agents. The
agents acting afterwards choose their trajectory based on
independent optimizations with the already played actions
as constraints.

4 Evaluation Method

We evaluate if the Nash equilibria in either of the proposed
game setups sufficiently reproduce the decision process dur-
ing human navigation. Or differently phrased: we are inter-
ested in whether or not Nash’s solution mirrors a human-like
navigation behavior. We consider a Nash equilibrium alloca-
tion to be human-like if it proposes the same – or at least an
alike – solution as a human would choose. The validity of
the Nash solution is assessed separately for both game mod-
els, each in combination with one of the five cost functions.

This section presents the experimental setup used to cap-
ture the motion data, the game setup, and the statistical anal-
ysis used to test the presented approach. The steps with their
inputs and outputs are shown in Fig. 9. It illustrates that the
purpose of the experiment is to capture human trajectories
which can be used as action sets for the game setup. Impor-
tantly, the validation is based entirely on human motion data
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Fig. 5 Experimental setup; colored papers marked possible start/goal
positions, markers were put on the subjects and their positions over
time was recorded

to ensure that the action set contains valid human behav-
ior. The next step – the game theoretic analysis – calculates
all allocations that constitute a Nash equilibrium. Then the
validity of the Nash solution is tested by comparing their
similarity to human solutions by applying a Bootstrap test.

At the end of this section, an alternative decision model
to game theory based on independent prediction is intro-
duced. It serves as a further baseline for the performance
evaluation of the proposed decision model.

4.1 Experimental Setup

In order to acquire a set of human walking trajectories, we
repeatedly recorded the motion of two persons passing each
other. Thereby, the start and goal positions changed partly.
As preparation three possible start and end positions were
marked with colored DinA4 papers on the floor and at eye
level. The setup of the papers as well as the dimensions of
the recording area is shown in Fig. 5 and Fig. 6. The distance
between the edges of the papers was chosen to be 0.4 m.

During the experiment two participants facing each
other were advised to walk over previously selected start and
goal positions. Thereby, they started one meter in front of
the actual starting marker such that the acceleration phase
was beyond the recorded area (compare Fig. 6). Start and
goal positions were known to both participants. Overall, 17
different start/goal configurations were chosen such that the
covered distance in a whole was the same for each person.
Thereby, the paths crossed in 10 out of 17 cases. All chosen
configurations are listed in Fig. 10. Here, a configuration of
start/goal positions including the two recorded trajectories
is called scene and named according to the start and goal
positions. For example, the scene shown in Fig. 6 on the
left is scene 1C-A3. In our previous work [80], we already
showed the existence of interaction in most of these scenes
by comparing them to free-space motions.

In order to create our database, eight healthy subjects
(mean age ± SD: 27 ± 2.7 years) were recorded. Each
of the 17 scenes was repeated ten times for two pairs of
subjects, and five times for the other pairs leading to (in
total: (4·10·17)+(4·5·17)) 1020 trajectories. The sequence
of scenes was randomized differently for all subjects.

Fig. 6 Experimental setup of a navigation scene. Both pictures show
scene 1C-A3 wherein the subjects were repeatedly asked to walk over
field ‘1’ to ‘C’, and over field ‘A’ to ‘3’, respectively. A subset of the
recorded trajectories is drawn into the picture on the right

The human motion was recorded with the vision based
motion capture system Qualisys3. Thereby, reflective mark-
ers were put on each person and the positions of these mark-
ers were recorded over time (at 204 Hz). After that, the mean
position of the markers was calculated at each time step for
each person and smoothed with a Butterworth filter (4th or-
der, 0.01 cutoff frequency [50]) in order to filter the torso
oscillations caused by the steps. The distribution of the five
markers is shown in Fig. 5. It was chosen by following the
setup in [50]. However, we neglected the markers on the
knee and feet such that the mean constitutes approximately
the center of mass of the torso. The resulting discrete tra-
jectories constitute the actions in the game theoretic setup.

4.2 Game Theoretic Setup

Each of the 17 scenes with different start/end configurations
can be represented as an individual game. They differ from
each other by the action sets. In the following, the game
setup is shown by the example of game 1C-A3 (Fig. 6). First,
the static game is discussed. A bi-matrix is set up (Tab. 2)
and the components in Def. 1 are mapped:

1. The player set P consists of the two subjects.
2. The action setA consists of the action setA1 andA2. In

the game 1C-A1, A1 contains all trajectories aj,1C
1 that

P1 walked during the experiment starting at ‘1’ going
to ‘C’ – not just the trajectories of all scenes 1C-A3.
For a better understanding compare with Fig. 7 and the
corresponding bi-matrix in Tab. 2. Here a subset of A1

is drawn as solid lines in green (left, scenes 1C-A3)
and black (middle, scenes 1C-A2). This means, all the
trajectories of other scenes with ’1C’, as 1C-A2 or 1C-
B1, are also part of the action set because they constitute
valid ways to get from ‘1’ to ‘C’.
Likewise, the action setA2 contains all trajectories aj,A3

2

that were captured while P2 was walking from ‘A’ to ‘3’.
They are drawn as solid lines in green (left, scenes 1C-
A3) and black (right, scenes 2B-A3).

3. Each allocation s = (sj1, s
j
2) = (aj,1C

1 , aj,A3
2 ) is rated

with a cost function as in Eq. (2) for each player. The

3 http://www.qualisys.com/
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Fig. 7 Illustration of the actions of game 1C-A3. Actions that are
incorporated into action set A are drawn solid, others are dashed. All
trajectories going from 1 to C out of the scenes 1C-A3 and 1C-A2
constitute A1. The set A2 consists of all trajectories going from A to
3 out of the scenes 1C-A3 and 2B-A3. Tab. 2 shows the corresponding
bi-matrix, the grey area maps actions to entries in the matrix

bi-matrix in Tab. 2 is constructed by using Cost Func-
tion IV. The collision radius R is chosen individually
for each pair of subjects by identifying the minimum
recorded distance from all simultaneous walks.

Second, we model the game 1C-A3 dynamically (Def. 2).
The players, action sets and cost functions remain the same
as for the static game. In contrast, the strategy space changes
because dynamic games can have a sequence of actions.
However, this sequence needs to be defined beforehand. Ac-
cording to the human avoidance studies in [55, 61], the agent
coming first adopts the trajectory less. This indicates that
this agent chooses first while the other one reacts. Thus, we
determine for each scene and each pair of subjects which
subject was more often the one entering the recorded area
first. In Sec. 5, both options, that this player acts either first
or second, are evaluated.

After setting up the game, the Nash equilibria are calcu-
lated. In Tab. 2 the bi-matrix of the game 1C-A3 is shown,
for clarity the action set is reduced. The only Nash equilib-
rium of the (reduced) static game is circled: it is the allo-
cation s∗ = (a4∗,1C

1 , a2∗,A3
2 ). This corresponds to a pair of

trajectories, one trajectory for P1 and one trajectory for P2,
respectively. It is denoted as equilibrium trajectory pair.

We assume that human interaction-aware decision mak-
ing during navigation can be approximated with the Nash
equilibrium solutions from game theory. This is only true
if these equilibrium trajectory pairs constitute a provable
human-like solution. In order to test the assumption, real
human solution pairs are needed to serve as ground truth
to which the equilibrium pairs are compared. Such pairs
will be called reference trajectory pairs. They are the si-
multaneously recorded trajectories of a scene. For exam-
ple, the subjects were asked to walk from ’1’ to ’C’ and
from ’A’ to ’3’, respectively. This leads to a captured tra-
jectory pair (ãj,1C

1 , ãj,A3
2 ). This trajectory pair can be used

as ground truth for game 1C-A3. In the following, ref-

Table 2 Reduced bi-matrix of the game 1C-A3 (Fig. 7). Reference
trajectory allocations are marked bold, the Nash equilibrium is circled

P1\P2
a1,A3
2 a2,A3

2 a3,A3
2 a4,A3

2 a5,A3
2 a6,A3

2

a1,1C
1 41|50 41|49 41|51 ∞ 41|53 41|54

a2,1C
2 42|50 42|49 42|51 42|53 42|53 42|54

a3,1C
2 43|50 43|49 43|51 ∞ 43|53 43|54

a4,1C
2 40|50 40|49 40|51 ∞ 40|53 40|54

a5,1C
2 42|50 42|49 42|51 ∞ 42|53 42|54

a6,1C
2 44|50 44|49 44|51 ∞ 44|53 44|54

sc
en

es
1C

-A
3

sc
en

es
1C

-A
2

scenes 1C-A3 scenes 2B-A3

erence trajectory pairs are tagged with a tilde. As each
scene was repeatedly captured during the experiment, sev-
eral reference trajectory pairs exist for each game. The
set containing all reference trajectory pairs (ãj,1C

1 , ãj,A3
2 )

is denoted as R1C-A3. The elements of its complement
R1C-A3

are (aj,1C
1 , aj,A3

2 ). Additionally, the set E1C-A3 is de-
fined that contains all equilibrium pairs (aj∗,1C

1 , aj∗,A3
2 ) of

a game. Its elements can be elements of both R1C-A3 and
R1C-A3

. By applying this to our example in Tab. 2, the sets
are R1C-A3 = {(ã1,1C

1 , ã1,A3
2 ), (ã2,1C

1 , ã2,A3
2 ), (ã3,1C

1 , ã3,A3
2 )}

(bold pairs) and E1C-A3 = {(a4∗,1C
1 , a2∗,A3

2 )} (circled).
For further illustration, the recorded trajectories (i.e., ac-

tions) of another game (1C-B2) are drawn in Fig. 8. The ac-
tions are assigned different colors that represent the different
trajectory pair sets. In this example one equilibrium trajec-
tory pair exists (drawn in violet). The reference trajectories
are green and the remaining trajectories are black.

4.3 Similarity Measurement

In order to test the proposed approach, we check if the
equilibrium trajectory pairs in E1C-A3 are more similar to
the reference pairs in R1C-A3 than the other pairs in R1C-A3

.
The similarity is measured with the Dynamic Time Warping
distance δ. The distance δ is zero if two time series are
identical, hence, the smaller the value of the distance the
more similar they are. The algorithm is used because it
can compare trajectories that differ in the number of time
steps. Gillian et al [25] explain how to apply it for multi-
dimensional time series (e.g., trajectories).

The Dynamic Time Warping distance between two tra-
jectories is denoted as δ(ãli, a

j
i ), where ãli is the tested refer-

ence trajectory and aji the one that is tested against. In order
to compare a reference trajectory pair to another pair of tra-
jectories, the two Dynamic Time Warping distances are cal-
culated separately and summed up. This leads to a trajectory
pair distance d:

d = δ(ãl,1C
1 , aj,1C

1 ) + δ(ãl,A3
2 , aj,A3

2 ). (12)
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Note that only trajectories of the same player are compared.
All trajectory pair distances between the elements ofR1C-A3

and E1C-A3, R1C-A3 and R1C-A3
are calculated respectively,

leading to two additional sets. They are the output of the
similarity measurement step (compare Fig. 9):

– Set D1C-A3
E ; contains all trajectory pair distances d of the

possible comparison between the elements of E1C-A3 and
R1C-A3.

– Set D1C-A3
R ; contains all trajectory pair distances d of

the possible comparison between the elements ofR1C-A3

andR1C-A3.

As mentioned above, only one pair of subjects has been
considered so far. Considering all pairs of subjects is done
by repeating the game setup and similarity measurement
step for each pair of subjects. The resulting distance sets
are merged. For simplicity we denoted the merged sets as
D1C-A3
E and D1C-A3

R , too.

4.4 Statistical Validation Method

After calculating the sets D1C-A3
E and D1C-A3

R , we are inter-
ested in whether or not the values inD1C-A3

E are mostly smal-
ler than the values in D1C-A3

R . Therefore, the null hypothesis
H0 is defined to be:

Null hypothesis H0: The median values of the distribu-
tions from which the two samples DE and DR are obtained
are the same.

We test against this null hypothesis by computing the
p-value with a one-sided Bootstrap test [21] using a 5%

significance level. We use Bootstrap, a resampling method
widely used in statistical inference, because the true dis-
tributions are unknown and the considered sample sizes of
some scenes are too small (in some cases < 30) for infer-
ence based on the t-distribution.

Since 17 different scenes are regarded, 17 Bootstrap tests
are necessary. In order to overcome the multiple testing
problem, the Benjamini-Hochberg procedure [8] was used
to adjust the significance level of the p-values.

4.5 Baseline Comparison: Prediction Based Decision

In order to further evaluate the game theoretic approach, its
performance is compared to the performance of a predic-
tion based decision model. Therefore, a model is used where
each agent independently predicts the future motions of sur-
rounding agents first and decides afterwards which trajec-
tory to take based on the prediction. It is a model that – like

Fig. 8 Illustration of the recorded trajectories and sets used to analyze
the game 1C-B2 for one of the subject pairs

the presented one – anticipates collisions and assumes hu-
mans to be more than merely reacting particles. However, it
omits the reasoning about possible other motions of agents.

For the experimental setup of two persons passing each
other, the prediction based decision model is realized as fol-
lows. Again the setup of the game 1C-A3 is used as exam-
ple. Both persons know the current position, velocity and
goal of the other person. Based on this knowledge and the
assumption that persons move with constant velocity to their
goal, person P1 predicts the future trajectory of P2, and vice
versa. Note, that this differs from a merely constant veloc-
ity approach because the goal is known. Only the way to
the goal is predicted. The predictions are denoted as a1C,pred

1

and aA3,pred
2 . Then P1 chooses a trajectory that minimizes

the cost function min
(
J1(a

j,1C
1 , aA3,pred

2 )
)

, ∀aj,1C
1 ∈ A1. P2

does likewise for min
(
J2(a

1C,pred
1 , aj,A3

2 )
)

, ∀aj,A3
2 ∈ A2.

The output will be the trajectory pair (aj
∗,1C

1 , aj
∗,A3

2 ). The
human-likeness of this decision is validated with the same
approach as for the equilibrium trajectory pairs as illustrated
in Fig. 9. The only difference is that, instead of using game
theory to decide on which trajectory pair to take, the predic-
tion based decision models is used.
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Fig. 9 Pipeline of the evaluation showing the inputs and outputs of each step for the analysis of the game 1C-A3. In favor of clarity, the superscripts
of the sets that index the game (e.g., E1C-A3) are omitted

5 Results

The results of the statistical validation with the Bootstrap
tests will be presented in this section. It is followed by the
results of the alternative prediction based decision model
and a discussion and potential shortcomings.

5.1 Static Game Model

First, the results of the evaluation of the Nash equilibria
in static games are presented. Tab. 3 shows for how many
tests (out of 17) the null hypothesis (see Sec. 4.4) was
rejected after using the Benjamini-Hochberg procedure. All
five choices of the cost function Ji are listed. Additionally,
the corresponding p-values are shown in Tab. 6.

The best result was achieved using J I
i , the length of a

trajectory. In this case, the equilibrium pairs are more similar
to the reference pairs than other possible solutions for all
17 tests. All median values of the trajectory pair distances
related to the equilibrium pairs are significantly smaller.
For illustration, the confidence intervals of the medians are
shown in Fig. 10. They are also calculated with a Bootstrap
test using a 5% significance level. Note that none of the
confidence intervals overlap. This means, that the theory of
Nash equilibria in static games using J I

i is indeed suitable to
approximate the decision process behind human avoidance
maneuvers because it chooses the same, or at least similar,
trajectories as the subjects did. Almost as good performed
the other path based cost function J II

i rating curvature; the
null hypothesis was rejected in 16 cases.

Tab. 3 further reveals that the two cost functions regard-
ing the path seem to represent the human behavior more
accurately than the ones regarding trajectory cost. More-
over, the elemental cost functions – i.e. cost for length J I

i

or time J III
i – tend to achieve better results than the respec-

tive learning based cost functions J II
i , J IV

i . Since they were
learned in free-space, these functions may be too specific
for the direct usage in an environment populated by humans.
Both learned cost functions include either a cost for time or
length, however, also add a goal dependent cost. For exam-

Table 3 Evaluation results for static game modeling. Tab. 6 lists the
p-values of all 17 tests in detail (left column)

Input Cost function Ji H0 rejected (out of 17)

Path JI
i (Length) 17 (100%)

JII
i (Papadopoulos et al [57]) 16 (94%)

Trajectory JIII
i (Time) 14 (82%)

JIV
i (Mombaur et al [50]) 13 (76%)

JV
i (Pellegrini et al [60]) 10 (59%)

ple, J IV
i charges an additional cost if the agent is not facing

the goal. One could argue that this goal driven behavior be-
comes less important in such environments while minimiz-
ing time/length is still a prevalent aim of humans.

The worst result was achieved for JV
i , which shares

characteristics with the social force model. This cost func-
tion often leads to equilibrium pairs that are further apart
than the respective pairs of the cost functions that merely
consider collisions in the interactive component. Appar-
ently, JV

i sets to much emphasis on proximity when applied
in a game theoretic setup for the presented scenario.

5.2 Dynamic Game Model

If a scene is modeled as a dynamic game, we assume that
the subject who was more often the first one to enter the
recorded area is allowed to choose first. In the tables this
player will be marked with a circled one, hence, P 1

i . In
order to assess if our assumption holds and if the order
makes a difference, each dynamic game is played twice;
ones with the player P 1

i choosing first and ones with
P 1

i choosing second. After that, the human-likeness of the
Nash solution is validated as described previously. Tab. 4
summarizes the results and the corresponding p-values are
listed in detail in Tab. 6.

The null hypothesis is rejected for the majority of the
tests if P 1

i chooses first. The sequence of which cost
performs best is similar to the static model, however, the
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Table 4 Evaluation results for dynamic game modeling. Tab. 6 lists
the p-values of all 17 tests in detail (center and right column)

Input Cost function Ji H0 rejected (out of 17)

P
1

i 1st P
1

i 2nd

Path JI
i (Length) 13 (76%) 10 (59%)

JII
i (Papadopoulos et al [57]) 12 (71%) 12 (71%)

Trajectory JIII
i (Time) 12 (71%) 13 (76%)

JIII
i (Mombaur et al [50]) 12 (71%) 11 (65%)

JV
i (Pellegrini et al [60]) 10 (59%) 7 (41%)

Table 5 Evaluation results for prediction based decision model.

Input Cost function Ji H0 rejected (out of 17)

Path JI
i (Length) 10 (59%)

JII
i (Papadopoulos et al [57]) 10 (59%)

Trajectory JIII
i (Time) 8 (47%)

JIV
i (Mombaur et al [50]) 8 (47%)

JV
i (Pellegrini et al [60]) 2 (12%)

number of rejected null hypothesis is lower in each case.
Only JV

i performs similarly well in the static and dynamic
setup, but is still the weakest. The best result was again
achieved with cost function J I

i (Length). Additionally, the
results indicate that games with J I

i are the ones being the
most affected by changing the playing order. This result
is in line with the studies from Pettré et al [61] which
state that the person giving way needs to make a larger
avoidance maneuver. Opposed to that is cost function J III

i ;
here the number of rejected hypotheses slightly increases if
P 1

i chooses second.

5.3 Prediction Based Decision Model

The results for the validation of the decision model based
on constant velocity to the goal prediction is summarized
in Tab. 5. Similar to the static game, the path based cost
functions perform better than the trajectory based ones,
however, all cost functions perform clearly worse than
within the static or dynamic model. Especially clear is the
difference for JV

i : only for 2 scenes, out of 17, the suggested
trajectory pairs are more similar to the reference pairs than
a randomly picked pair.

5.4 Discussion

The result that the prediction based decision model per-
formed worse than the game theoretic decision model is in

line with Trautman et al [78]: it indicates that it is insuffi-
cient to merely include prediction, even if the goal of the
surrounding person is known. It is advantageous and more
human-like to consider interaction-awareness. Game theory
is a suitable way to formulate the reasoning about possible
interaction of actions and approximates the human decision
process during navigation more accurately than the predic-
tion based model.

The numbers in Tab. 3 and 4 further imply that the static
game is more accurate than the dynamic one. Nevertheless,
there is no significant difference between any of the medians
of the two DE sets in the static and dynamic case, respec-
tively. A reason why the null hypothesis was less rejected
in the dynamic case may be that the set E is smaller if only
the sub-game perfect Nash equilibria are considered. This
results in a smaller sample size and thus in a lower confi-
dence by determining the median. This may be resolved by
recording more subjects.

Notwithstanding the above, another reason why the
dynamic model is less accurate may be the policy for
evaluating P 1

i . It may be too restricted in cases where
the player choosing first is not fixed but swaps repeatedly,
thus is independent from the scene. This is omitted in the
current validation method. On the one hand, P 1

i is merely
the subject who was more often the first within the recorded
area, but not always. On the other hand, the equilibrium
trajectory pairs in E are compared to all reference pairs in
R of a game. This issue can be addressed by reducing the
set R such that it only contains the trajectory pairs of a
scene wherein the player choosing first is indeed the one
who entered the recorded area first. We yet refrained from
doing so because for some tests the sample size would shrink
too much to make a reliable statement.

Surprisingly, the performance of the only cost function
that includes proximity cost, i.e. social cost, is always the
weakest. As mentioned above, this is probably because it fa-
vors trajectories that are too far apart. However, social force
features in cost functions are still worth to be considered. As
mentioned in Sec. 2, Vasquez et al [82] investigated different
cost features. They concluded that social forces showed the
best results for the learned scenes while being at the same
time the ones generalizing worst for unknown scenes. This
may have also happened for the used data set.

Finally, a number of potential shortcomings need to
be considered. First, the study was limited to two person
games. Extending it to several persons should still maintain
the results because more persons means less collision-free
trajectories. Only those are chosen as Nash equilibrium and
are hence more similar to the ground truth. Second, the
presented models assume that humans only decide ones and,
thus, a sequence of decisions or changing a decision is not
captured in the model yet. An exact model should always
choose one the reference pairs. However, building an exact
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Fig. 10 Static game modeling. The 95% confidence intervals of the
medians of the trajectory pair distances are shown for cost function
JI
i (Length) (compare Tab. 3). DE referes to the similarity of the Nash

equilibrium trajectory pairs to the ground truth, DR referes to the set of
remaining possible trajectory pairs, respectively. If they do not overlap
the difference is significant and H0 is rejected.

model would only work if every detail of decision making
during navigation is known and included. A game may also
have several equilibria and the theory of Nash is indifferent
towards the question which equilibrium the players should
choose eventually. Therefore, the accuracy of the model can
be further enhanced and potential extensions are discussed
in the next section.

6 Extensions and Applications

The following section looks beyond the horizon of the pre-
sented method. The first part of the section calls attention
to possible extensions of the presented game theoretic mod-
els. The second part discusses if the results can be further
applied to robots since the evaluation focuses on humans.

6.1 Further Analysis and Potential Extensions

Apart from comparing static and dynamic games, we addi-
tionally looked into another game theoretic solution concept
for static games, the Pareto optimality [44]. A Pareto opti-
mal outcome is an allocation in which it is impossible to re-
duce the cost of any player without raising the cost of at least

one other player. Thus, Pareto optimality has some notion
of ‘fairness’, while the Nash concept assumes rational play-
ers, which merely minimize their own cost. Nash equilibria
are mostly Pareto inefficient [34]. However, choosing a cost
function of the form as in Eq. (2) with Eq. (3) results in the
set of Pareto optimal allocations being a subset of the Nash
equilibrium allocations. For example, in the game in Tab. 1
the cost of the Pareto optimal allocations are (3|1), (2|2) and
(1|3). As a consequence, the statistical comparison between
the two sets of trajectory pair distances – one set using the
Nash concept, and one set using Pareto optimality – revealed
no significant results for the four cost function using the
interactive component as defined in Eq. (3). Nevertheless,
Pareto optimality is worth to be considered if further inter-
active components are added to the cost function (e.g., keep-
ing a comfortable distance). In this case the Nash equilibria
and Pareto optimal allocations coincide less and a compari-
son is more expressive. Accordingly, additional tests reveal
that the performance increases for JV

i if Pareto efficiency is
used as solution concept: in 15 cases the null hypothesis can
be rejected (instead of 10 cases with Nash, see Tab. 3).

A consequence of the presented model is that players
need to coordinate their choices and “agree upon” an equi-
librium. Rules on how humans come to an agreement are
studied in coordination games [18]. The agreement can be
based on facts like in cases where one of the equilibria is
payoff superior or less risky, but also on social rules. An
especially interesting extension for navigation is to include
traffic rules into the formulation.

The mentioned models and extensions all assume that
the agents behave rationally in a sense that they minimize
their expected cost. They also imply common knowledge
(see Sec. 3.2). Researchers within different sub-fields of
game theory yet argue that the common knowledge assump-
tion and the conventionally defined rationality “is not char-
acteristic of human social interaction in general” [17]. An
apparent case where common knowledge is hard to imply
is if the number of agents is too large. The conditions may
also be violated if it is required to plan far ahead in the fu-
ture or if the problem is complex (e.g., for games like Chess
or Go). These are different facets of bounded rationality,
which is deliberately omitted in this work. So far we fo-
cus on well-known and studied game theoretic approaches.
They are evaluated for the presented task and compared
among each other and to prior work. Thinking at the ap-
plication of navigating humans in populated environments,
we assume the number of potential players to be uncriti-
cal. Also the planning horizon while walking is within sec-
onds rather than minutes. Nevertheless, game theoretic ap-
proaches that consider bounded rationality may further im-
prove our model and are highly applicable for crowd simula-
tions. For an overview see [68]. Other relevant concerns are
raised by behavioral/psychological game theorists [2, 13].
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Table 6 Table lists the p-values of each test. The p-value was calculated with a one-sided Bootstrap test on a 5% significance level. All p-values
which are greater than the significance level as fixed with the Benjamini-Hochberg procedure are marked bold (Tab. 3 and Tab. 4 summarize this
table). Values which are smaller than 0.001 are depicted by the symbol ε.

Game Static game model Dynamic game model
P

1
i 1st

Dynamic game model
P

1
i 2nd

JI
i JII

i JIII
i JIV

i JV
i JI

i JII
i JIII

i JIV
i JV

i JI
i JII

i JIII
i JIV

i JV
i

1: 2B-B2 ε ε ε ε ε ε ε ε ε ε .002 ε ε ε ε
2: 2B-A3 ε ε ε ε .086 .001 .007 ε 1 .032 .004 .999 ε 1 .058

3: 3A-B2 ε ε .010 .011 .165 ε .072 .012 .011 .782 .717 ε ε ε .323

4: 2B-A2 ε ε ε ε .034 ε ε .001 .001 .032 ε ε ε ε .092

5: 3B-B2 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε

6: 1C-A3 .045 .006 .416 .267 .900 .317 .054 .730 .804 .993 .274 .962 .420 1 .917

7: 3A-C1 .001 ε .002 .003 .001 .019 ε .004 .006 .001 .016 ε .002 .003 .835

8: 3A-B1 ε ε .203 .211 .495 ε .090 .117 .114 .961 .042 .084 .402 .415 .497

9: 1B-A3 .002 .002 .031 .069 .006 ε .001 .066 .060 .007 .001 .002 0.32 .042 .006

10: 2A-B1 ε ε ε ε ε .124 ε ε ε ε .006 ε ε ε ε

11: 1B-A2 .004 ε .001 ε .004 .004 .005 .238 .015 .004 .275 ε .016 .016 .033

12: 1A-A2 .001 ε .008 ε ε .001 ε .006 .001 ε .001 ε .008 ε .007

13: 3B-C3 ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε
14: 3B-C1 .001 ε ε ε .012 .258 .002 .007 ε .897 .657 .114 .070 ε .988

15: 1C-A2 .004 .177 .386 .002 .227 .006 .409 .396 .001 .980 .290 .488 .386 .897 .223

16: 1C-B1 .002 ε ε .227 .195 .007 .068 .002 .281 .352 .022 ε ε .232 .282

17: 2C-C1 .006 .021 .001 .022 .008 .065 .023 .026 .021 .007 .063 .023 .026 .021 .008

They refer to various experimental results wherein people
seemingly do not decide rational, meaning act differently
as predicted by the theory of Nash. The rationality assump-
tion is often questioned in social decision problems wherein
prior beliefs or emotions influence the decision. Both are
hard to pin down in utility functions since in the world we
can usually only measure pecuniary payoffs or cost [17]. It
is one of the greatest challenges to define a perfectly cor-
rect analytic model of the human decision process. Camerer
yet comments in [17] that “many weaknesses of game the-
ory are cured by new models that embody simple cognitive
principles, while maintaining the formalism and generality
that make game theory useful”. We want to introduce game
theory as an effective method to model interactivity during
navigation, doing so by starting with elementary game mod-
els that are step-wise refined in future work, among others
with approaches from behavioral game theory. A promising
next step is for example the fairness equilibrium [13] that
namely includes human sense of fairness into the utilities.

6.2 Relevance for Robot Motion Planning among Humans

This paper focuses on how humans navigate among humans,
yet with the intent to apply gained insights to improve the
navigation of robots among humans. It needs to be investi-

gated if the results of this work can be directly applied to the
robot navigation problem in populated environments since
humans may react differently towards a robot than towards
a human. Nevertheless, existing literature indicates that hu-
mans perceive and treat robots similar as humans to some
extent. Accordingly, humans already associate human fea-
tures with inanimate devices. For example, they attribute
emotions with robot motion patterns [69] and ascribe in-
tentions to moving objects, even if they are merely geomet-
ric shapes [14, 26, 33]. Intriguingly, researches also exposed
that a robot action is represented in a similar manner within
the human brain as the respective human action, if only for
hand gestures and humanoid grippers [84]. But even if a
robot resembles a human only to some degree, human-like
behaviors or features are still advantageous. Thus, the Me-
dia Equation Theory [64] and the associated research field
of social robotics show that the performance of human-robot
collaboration is enhanced when robots employ human-like
behaviors [12, 20, 35, 45, 77]. Thus, we are confident that
our conclusions can enhance the human-robot cooperation
during navigation.
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7 Conclusion

The understanding and correct modeling of interaction-
aware decision making of humans during navigation is
crucial to further evolve robotic systems that operate in
human populated workspaces. This paper introduces non-
cooperative game theory and the Nash equilibrium as a
framework to model the decision process behind human
interaction-aware behavior. A condition for the suitability
of Nash’s theory is that humans behave rationally in a sense
that they aim to minimize their own cost. In this work, this
assumption was implicitly validated for five different cost
functions. The game theoretic approach was first proposed
formally and was then applied and validated for the problem
of predicting the decision of multiple agents passing each
other. We showed that the solution concept of Nash equi-
libria in games picks trajectories that are similar to the hu-
mans’ choice of trajectories. Thereby, the best results were
achieved with a static game model in combination with a
length based cost function. Moreover, using elemental cost
functions – based solely on the length of the trajectory or the
time needed – tended to be more accurate than the respec-
tive learning based cost functions. The game theoretic ap-
proach was additionally compared with a prediction based
decision model. It anticipates collisions but omits the rea-
soning about possible other motions of persons, i.e. the
interaction-awareness. The results show that both presented
game theoretic models outperform the prediction based de-
cision model. This further highlights the need to include
interaction-awareness into the decision modeling.

The derived knowledge is helpful for a variety of robotic
systems, like future service robots that need to predict hu-
man motion more accurately or that need to move in a
human-like way. It is equally usable for the autonomous au-
tomobile navigation or for modeling the interaction during
arm movement coordination tasks.

Future work includes improving the results by using
a cost function that considers further interaction parame-
ters like social or traffic rules. Thus, other solution con-
cepts (Pareto optimality, fairness equilibrium) can be vali-
dated and compared to the Nash equilibrium. Additionally,
one has to analyze if humans converge mainly to a specific
equilibrium. Coordination games would supply a promising
framework for this analysis. In order to consider uncertain-
ties in the game formulation (e.g., the cost function of the
players or their goals) we plan to apply Bayesian games and
run experiments in which the players do have imperfect in-
formation about the intentions of the other players. More-
over, we intend to implement a game theory based motion
planner and to conduct human-human/human-robot exper-
iments. They further evaluate the future approach and the
question on how humans perceive robots during navigation.
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31. Huber M, Su YH, Krüger M, Faschian K, Glasauer S,
Hermsdörfer J (2014) Adjustments of speed and path
when avoiding collisions with another pedestrian. PloS
One 9(2):e89,589

32. Huntsberger T, Sengupta A (2006) Game theory basis
for control of long-lived lunar/planetary surface robots.
Auton Robots 20(2):85–95

33. Johnson S (2003) Detecting agents. Philosophical
Transactions of the Royal Society B: Biological Sci-
ences 358(1431):549–559

34. Kameda H, Altman E, Touati C, Legrand A (2012)
Nash equilibrium based fairness. Math Meth Oper Res
76(1):43–65

35. Kato Y, Kanda T, Ishiguro H (2015) May i help you?:
Design of human-like polite approaching behavior. In:
Proc ACM/IEEE Int Conf on Human-Robot Interaction,
pp 35–42

36. Kim B, Pineau J (2013) Human-like navigation: So-
cially adaptive path planning in dynamic environments.
In: RSS Workshop on Inverse Optimal Control & Robot
Learning from Demonstrations

37. Kluge B, Prassler E (2004) Reflective navigation: Indi-
vidual behaviors and group behaviors. In: Pro IEEE Int
Conf on Robotics and Automation, pp 4172–4177

38. Kretzschmar H, Kuderer M, Burgard W (2014) Learn-
ing to predict trajectories of cooperatively navigating
agents. In: Proc IEEE Int Conf on Robotics and Au-
tomation, pp 4015–4020

39. Kruse T, Pandey A, Alami R, Kirsch A (2013) Human-
aware robot navigation: A survey. Rob Auton Syst
61(12):1726–1743

40. Kuderer M, Kretzschmar H, Burgard W (2013) Teach-
ing mobile robots to cooperatively navigate in popu-
lated environments. In: Proc IEEE/RSJ Int Conf on In-
telligent Robots and Systems, pp 3138–3143

41. LaValle S (2006) Planning Algorithms. Cambridge Uni-
versity Press

42. LaValle S, Hutchinson S (1993) Game theory as a
unifying structure for a variety of robot tasks. In: Proc
IEEE Int Symp on Intelligent Control, pp 429 –434

43. Lerner A, Chrysanthou Y, Lischinski D (2007) Crowds
by example. Comput Graph Forum 26(3):655–664

44. Leyton-Brown K, Shoham Y (2009) Essentials of game
theory: A concise multidisciplinary introduction. Mor-



Understanding Human Avoidance Behavior 19

gan & Claypool
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