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Abstract 

Genome-wide association studies (GWAS) are an effective tool to map genetic regions 

contributing to multifactorial human traits and diseases and yielded a catalog of thousands of 

robust associations. The major recurring point of criticism with regards to the GWAS approach 

is that the obtained loci are of only limited value because in most cases the associations can 

neither be linked to a plausible causal gene nor provide information on the molecular 

background involved in trait development and progression. This thesis provides a detailed 

investigation of the challenges arising from this issue and proposes various evidenced-based and 

integrative computational approaches as well as a novel bioinformatics tool that enable 

comprehensive functional characterization of GWAS loci and thereby facilitate the elucidation 

of potential mechanisms underlying genotype-trait associations. 

The first part of the thesis describes three GWA studies that have been conducted during 

this work to identify and characterize specific challenges in the interpretation of GWAS results. 

The first study investigates the influence of common genetic variants and rare copy number 

variants (CNVs) on sudden infant death syndrome (SIDS). While the results showed only 

indicative evidence for weak additive effects of common variants on SIDS risk, analysis of 

CNVs revealed rare deletion syndromes as likely causes of sudden infant death for a substantial 

number (12 of 301) of the cases. Two further GWAS focused on common genetic variants 

influencing the concentration of metabolites in human blood and urine samples. Here, we 

identified and replicated more than 150 genetic loci, thus providing a large compendium of 

genomic regions implicated in the genetic control of human metabolic homeostasis. In addition 

to the central study results, I illustrate the challenges associated with the GWAS approach by 

showing the complexity of interpreting weak genetic influences on extreme disease endpoints 

such as SIDS. In the GWAS on blood metabolic traits, I then emphasize the utility of thorough 

manual annotation of genetic associations to identify the most plausible causal gene and to 

suggest a testable effect hypothesis for each identified locus. Finally, in the urine metabolomics 

GWAS, I propose a method to automate the identification of predicted causal genes using a 

straightforward evidence-based gene prioritization metric. 

To enable and facilitate automated causal gene prediction, in the second part of this thesis I 

developed an extensive data integration resource. This resource, representing the first genetic 

variant-based genome browser, allows for comprehensive annotation of the impact of genetic 

variation using evidence-based variant effect predictions. In the development process, I 

integrated, harmonized, and consolidated genome-wide annotation data from various sources 
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comprising genes, transcripts, proteins, genetic variants, regulatory elements including 

microRNA binding sites, enhancers and promoters, a set of genome- and exome-wide 

conservation and deleteriousness scores, as well as a large collection of trait annotations and 

associations for genes and genetic variants. The browser is extended by modules for the analysis, 

aggregation, and visualization of genomic annotations linked to genetic variants on a genome-

wide scale. The resource thus provides both interfaces to the collected data and semantic 

categorization of the available variant-linked evidences in logical sections, which enables direct 

hypothesis generation using the modules’ output. 

In the third and final part of the thesis, I demonstrate the value of integrative bioinformatics 

approaches by utilizing the data incorporated in this resource to shed light on the potential 

molecular consequences of genetic variants identified by GWAS from three perspectives. In the 

first study, I present the concept of biological networks by integrating genetic variants and their 

previously collected associated diseases in a directed bipartite network. Analysis of this network 

showed that identical genetic loci frequently influence several different complex diseases both in 

agonistic and antagonistic effect directions. It is a yet unsolved question if such loci are to be 

considered pleiotropic featuring conditionally distinct functions, or if they pinpoint the same 

nodes in a cellular pathway that, in dependency of further genetic and environmental 

influences, lead to diverging phenotypic endpoints. The shared association signal observed for 

melanoma and vitiligo located in the tyrosinase gene, which has a central function in skin 

pigmentation, serves as an example for the former hypothesis. Here, the allelic effects suggest 

inverse trait-specific antigenicity of the encoded TYR protein that results in skin pigmentation 

being either elevated (as in skin cancer) or depleted (as in vitiligo) depending on allelically 

determined active or inactive targeting of TYR antigens via immune surveillance. The second 

study investigates the collected target sites of microRNAs, a special class of small non-coding 

RNAs involved in post-transcriptional gene regulation, for interrelations with trait-associated 

genetic variants. I demonstrate that trait-associated variants are significantly enriched in the 3’-

untranslated region of human transcripts, which presents the major targeting region of 

microRNAs. Using the results of the blood metabolomics GWAS, I show that for a large 

fraction (>10%) of genetic loci linked to metabolic traits there is evidence for the involvement 

of genetically influenced microRNA regulation in metabolic control. The very specific 

mechanism described for genetic alteration of lipoprotein lipase-controlled lipid homeostasis by 

modulating its functioning potential via allele-dependent targeting of its transcripts by miR-410 

underlines the value of this approach. The third study explores regulatory effects of genetic 



v 

variants affecting the promoter and enhancer elements contained in the developed variant 

annotation resource. For the purpose of characterizing allele-specific effects on gene regulation, 

I used a novel clustering of cross-tissue regulatory element annotations. It is shown that the 

information aggregated within clusters can reveal direct interactions between enhancer 

elements, specific transcription factors, and the expression of more distal genes. The utility of 

the derived clusters in predicting allele-specific modifications of gene regulation is exemplified 

by a genetic locus from our blood metabolomics GWAS that is associated with alpha-

hydroxyisovalerate levels. The associated haplotype is predicted to alter the binding motif of the 

Myc/Max transcription factor complex in a distal promoter-associated enhancer, leading to 

experimentally validated allele-specific changes of lactate dehydrogenase A expression. 

Combination with additional metabolic and enzymatic evidences further indicates a potential 

pleiotropic role of the encoded dehydrogenase in aerobic branched-chain amino acid and 

anaerobic lactate metabolism. 

In summary, this thesis provides a detailed motivation for the application of large-scale 

integrative approaches in human genetic studies, illustrated using the findings of three GWA 

studies. With the implementation of a free-to-use, extensible, updatable, and programmatically 

accessible data integration resource, I introduce a novel bioinformatics platform that meets the 

requirements of integrative methods for causal gene prediction in the GWAS context in a 

comprehensive, yet user-friendly, way. In three studies covering different aspects of the 

molecular consequences introduced by genetic variation, I finally demonstrate that integrative 

methods based on this resource successfully mark novel, specific, as well as testable hypotheses 

for further investigation. 
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Zusammenfassung 

Genomweite Assoziationsstudien (GWAS) stellen eine effektive Methode zur Verknüpfung 

von genetischen Regionen mit multifaktoriellen menschlichen Merkmalen und Erkrankungen 

dar und haben eine Sammlung von mehreren tausend statistisch robusten Assoziationen 

geschaffen. Der zentrale, immer wieder aufgegriffene Kritikpunkt an der GWAS-Methode ist, 

dass die identifizierten Regionen nur von begrenztem Nutzen sind, da die Assoziationen in 

vielen Fällen weder mit einem kausalen Gen verbunden werden können, noch Rückschlüsse 

auf die molekularen Vorgänge, die der Merkmalsentwicklung und -progression zugrunde 

liegen, zulassen. Die vorgelegte Arbeit schildert die Herausforderungen, die sich aus dieser 

Problematik ergeben, im Detail und führt mehrere unterschiedliche evidenzbasierte und 

integrative computergestützte Verfahren sowie eine webbasierte bioinformatische Umgebung 

an, die die umfangreiche funktionelle Charakterisierung von GWAS-identifizierten Regionen 

erlauben und damit die Aufdeckung potentieller Mechanismen, die den Genotyp-Merkmal-

Assoziationen zugrunde liegen, unterstützen. 

Der erste Teil der vorgelegten Arbeit beschreibt drei, im Verlauf dieses Projektes 

durchgeführte GWA-Studien, um die spezifischen Herausforderungen bei der Interpretation 

von GWAS-Ergebnissen zu identifizieren und zu erläutern. Die erste Studie untersucht den 

Einfluss häufiger genetischer Varianten und seltener Kopienzahlvariationen auf den plötzlichen 

Kindstod. Während die Ergebnisse nur andeutungsweise Evidenzen für schwache additive 

Effekte häufiger Varianten auf das Risiko für den plötzlichen Kindstod zeigten, ergab die 

Analyse der Kopienzahlvariationen, dass ein durchaus substantieller Anteil der Kindstodsfälle (12 

von 301) wahrscheinlich von seltenen Deletionssyndromen verursacht wurde. Die zweite und 

dritte GWAS wendeten sich der Untersuchung von häufigen genetischen Varianten zu, die die 

Konzentrationen von Stoffwechselprodukten im menschlichen Blut und Urin beeinflussen. Mit 

über 150 genetischen Bereichen, die hier identifiziert und repliziert wurden, stellen diese 

beiden Studien eine große Sammlung von Bereichen des Genoms, die in der Steuerung des 

menschlichen Stoffwechsels involviert sind, zur Verfügung. Zusätzlich zu den zentralen 

Studienergebnissen werden in diesem Teil die Schwierigkeiten, die mit der GWAS-Methode 

assoziiert werden, anhand der Komplexität der Interpretation von schwachen genetischen 

Einflüssen auf extreme Krankheitsbilder wie dem plötzlichen Kindstod beleuchtet. In der 

GWAS zu Blutstoffwechselmerkmalen wird daraufhin die Bedeutung intensiver manueller 

Annotation genetischer Assoziationen für die Identifikation des naheliegensten kausalen Gens 

sowie für die Formulierung einer testbaren Effekthypothese für jeden der assoziierten Bereiche 
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herausgestellt. Schließlich wird im Kontext der GWAS zu Stoffwechselprodukten im Urin 

erklärt, wie die Vorhersage des kausalen Gens für einen Bereich mit einem geradlinigen 

evidenzbasierten Maß für die Gen-Priorisierung automatisiert werden kann. 

Um diese automatisierte Vorhersagemethode kausaler Gene einfach zugänglich zu machen, 

wurde im zweiten Teil dieser Arbeit eine umfangreiche Datenintegrationsplattform angelegt. 

Diese Plattform, die den ersten variantenbasierten Genom-Browser darstellt, ermöglicht die 

umfassende Annotation der Auswirkungen genetischer Variation durch die evidenzbasierte 

Vorhersage von Varianteneffekten. Im Entwicklungsprozess wurden dabei genomweite 

Annotationsdatensätze zu Genen, Transkripten, Proteinen, genetischen Varianten, 

regulatorischen Elementen einschließlich microRNA-Bindestellen, Enhancern und 

Promotoren, mehreren genom- und exomweiten Konservierungs- und Schädlichkeitsscores, 

sowie Merkmalsassoziationen und -annotationen für Gene und genetische Varianten aus 

unterschiedlichsten Quellen integriert und einheitlich zusammengeführt. Der Browser wird 

durch Module, die die Analyse, Aggregation und Visualisierung von mit genetischen Varianten 

verknüpften Annotationen auf genomweiter Ebene ermöglichen, komplettiert. Die Plattform 

stellt dadurch sowohl Schnittstellen zur Datensammlung als auch eine semantische 

Kategorisierung der für die Varianten verfügbaren Evidenzen in logische Abschnitte zur 

Verfügung, wodurch die direkte Generierung von Hypothesen aus der Ausgabe der einzelnen 

Module ermöglicht wird. 

Im dritten und letzten Teil der Arbeit wird der Nutzen integrativer bioinformatischer 

Ansätze unter Benutzung dieser Datensammlung anhand dreier Anwendungen verdeutlicht, die 

verschiedene Aspekte potentieller Auswirkungen genetischer Varianten auf molekularer Ebene 

im Kontext GWAS-identifizierter genetischer Assoziationen beleuchten. Die erste 

Untersuchung führt dazu das Konzept biologischer Netzwerke ein, wobei genetische Varianten 

und deren gesammelte Krankheitsassoziationen in einem gerichteten, bipartiten Netzwerk 

verknüpft werden. Die Analyse dieses Netzwerkes ergab, dass dieselben genetischen Bereiche 

häufig mehrere unterschiedliche komplexe Erkrankungen beeinflussen, und zwar sowohl in 

gleichgerichteten als auch in entgegengesetzten Effektrichtungen. Bis jetzt konnte die Frage 

nicht global geklärt werden, ob solche Loci als pleiotrop anzusehen sind, also konditional 

unterschiedliche Funktionen ausüben, oder ob hier derselbe Knoten eines zellulären Pfades 

betroffen ist, der in Abhängigkeit anderer genetischer und umweltbedingter Einflüsse zu 

unterschiedlichen phänotypischen Endpoints führt. Die überlappenden Assoziationssignale für 

die Bildung von Melanomen und Vitiligo am Tyrosinase-Gen, das eine zentrale Funktion in 
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der Hautpigmentierung ausübt, dient hier als Beispiel für die erste Hypothese. Die Alleleffekte 

deuten in diesem Fall eine gegensätzliche, von der jeweiligen Krankheit abhängige Antigenizität 

des kodierten TYR-Proteins an, die dazu führt, dass die Pigmentierung der Haut abhängig von 

der aktivierten oder deaktivierten Immunantwort auf TYR-Antigene entweder erhöht (bei 

Hautkrebs) oder verringert (bei Vitiligo) wird. Die zweite Studie untersucht die gesammelten 

Bindestellen von microRNAs, einer speziellen Klasse von post-transkriptional aktiven 

Molekülen, auf Beeinflussung durch merkmalsassoziierte genetische Varianten. Hier wird 

nachgewiesen, dass merkmalsassoziierte Marker in der 3‘-untranslatierten Region menschlicher 

Transkripte, welche die zentral von microRNAs anvisierten Bereiche darstellen, statistisch 

signifikant angereichert auftreten. Unter Benutzung der Ergebnisse der GWAS zu 

Blutstoffwechselmerkmalen wird gezeigt, dass es für einen großen Teil (>10%) der genetischen 

Bereiche, die mit Konzentrationsänderungen von Stoffwechselprodukten assoziiert sind, 

Hinweise auf genetisch bedingte Veränderungen der microRNA-Regulation gibt, die in der 

Steuerung des Stoffwechsels involviert sind. Mit dem sehr spezifischen Mechanismus, der für 

die genetische Veränderung der von der Lipoprotein Lipase gesteuerten Lipid-Homöostase 

beschrieben wird, nämlich ein modifiziertes Funktionspotential, das durch die allelspezifische 

Regulation der Transkripte durch miR-410 kontrolliert wird, unterstreicht die Aussagekraft des 

vorgestellten Ansatzes. Die dritte Studie beschäftigt sich mit regulatorischen Effekten 

genetischer Varianten, die die in der vorher beschriebenen Plattform enthaltenen Promoter- 

und Enhancer-Elemente beeinträchtigen. Dazu wird ein neuer Clustering-Ansatz zur 

Gruppierung von gewebeübergreifenden Annotationen regulatorischer Elemente für die 

Charakterisierung Allel-spezifischer Effekte auf die Genregulation verwendet. Wie belegt wird, 

können die in den Clustern zusammengefassten Informationen direkte Verbindungen zwischen 

Enhancer-Elementen, spezifischen Transkriptionsfaktoren und der Expression entfernterer 

Gene aufdecken. Die Anwendbarkeit der Cluster in der Vorhersage von allelspezifischen 

Modifikationen der Genregulation wird mit einer Region, die in der GWAS zu 

Blutstoffwechselmerkmalen mit der Konzentration von alpha-Hydroxyisovalerat assoziiert ist, 

belegt. Laut Vorhersage beeinträchtigt der assoziierte Haplotyp das Bindemotif des Myc/Max-

Transkriptionsfaktorkomplexes in einem distalen, Promotor-assoziierten Enhancer, was zu 

einer Allel-spezifischen, experimentell belegten Änderung des Expressionsniveaus der 

Laktatdehydrogenase A führt. Das Heranziehen weiterer Evidenzen zu Stoffwechselprodukten 

und Enzymen deutet darüber hinaus eine potentiell pleiotrope Funktion für diese 
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Dehydrogenase im aeroben Abbau der verzweigtkettigen Aminosäuren im Kontrast zur ihrer 

klassischen Funktion im anaeroben Laktatstoffwechsel an. 

Zusammengefasst liefert die vorgelegte Arbeit eine detaillierte Motivation für die 

Anwendung von umfangreichen integrativen Analyseansätzen in humangenetischen Studien, 

die Anhand der Ergebnisse dreier GWA-Studien veranschaulicht wird. Durch die 

Implementierung einer kostenlosen, erweiter- und aktualisierbaren, sowie programmatisch 

ansteuerbaren Datenintegrationsplattform wird eine neue Bioinformatik-Schnittstelle 

bereitgestellt, die die Voraussetzungen zur Entwicklung integrativer Methoden zur Vorhersage 

von kausalen Genen im GWAS-Kontext umfassend und dennoch anwenderfreundlich zur 

Verfügung stellt. In drei Studien zu verschiedenen Aspekten der molekularen Auswirkungen 

genetischer Varianz wird abschließend gezeigt, dass sich mit integrativen Methoden, die auf 

dieser Plattform aufsetzen, erfolgreich neue sowohl spezifische als auch überprüfbare 

Hypothesen zur weiteren Erforschung kennzeichnen lassen. 
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1  Introduction 

In the 21st century, applied genetics or genetic engineering can be found everywhere. The 

flowers in our backyard, the dairy cows at the neighboring farmstead, the detergents for the 

washer, or agricultural products at the supermarket – all of them are the results of breeding 

(artificial selection) or targeted genetic modifications. This goes so far that, in the context of the 

Transatlantic Trade and Investment Partnership between the European Union, the United 

States of America, and other countries, the labeling obligation of genetically modified maize and 

soybeans as such is a matter of public dispute. However, while the breeding of plants and 

animals had its beginning with the sedentariness of humans (at least 15,000 years before present 

[1]), it was not before the late 18th century that the first scientists laid the cornerstones for our 

current understanding of genetics. Until then, the prevailing view of the origin of life in the 

Western world was dictated by creationists postulating the work of a divine creator. In his 1809 

paper, JEAN-BAPTISTE LAMARCK was the first to suggest that living things had evolved over 

time:  

“EVERYTHING IN TIME UNDERGOES VARIOUS MUTATIONS, MORE OR LESS 

RAPID ACCORDING TO THE NATURE OF THE OBJECTS AND THE CONDITIONS; 

(…) IN SHORT, EVERYTHING ON THE SURFACE OF THE EARTH CHANGES ITS 

SITUATION, SHAPE, NATURE AND APPEARANCE, AND EVEN CLIMATES ARE NOT 

MORE STABLE.”  

Jean-Baptiste Lamarck, 1809 [2] 
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LAMARCK not only stated that evolution takes place via mutations, but also that it is 

influenced by several factors, including environmental conditions [2]. Although his conclusions 

were widely accepted by academics and scientists, the Christian churches as well as most 

Western states interpreted them as a threat to the social establishment. The access to existing 

evidences for evolution was very limited and this led to what is known as the creation-

evolution controversy, a heated debate about the origin of species. This dispute was put to an 

end by CHARLES ROBERT DARWIN, when he laid out his interpretation of the many evidences 

he brought back to Europe from the voyage of H.M.S Beagle during the years 1832-1836. In 

his “Origin of Species” (1859), DARWIN took LAMARCK’S realizations to the next level by 

hypothesizing that all life may have developed from one common ancestor (for a timeline of the 

following discoveries, see Figure 1). Using his enormous collection of specimens on animals and 

plants, DARWIN deduced an evolution theory by means of natural selection: he concluded that 

there are differences between individual organisms induced by random mutations and that only 

the ones increasing fitness to environmental challenges get fixed in an organism’s population 

pool (they are selected and inherited to following generations), while disadvantageous variants 

are lost by genetic drift [3]. However, DARWIN was not able to deduce a hypothesis regarding 

the mechanisms of inheritance from his natural selection theory: 

„I HAVE HITHERTO SOMETIMES SPOKEN AS IF THE VARIATIONS - SO COMMON 

AND MULTIFORM IN ORGANIC BEINGS (…) - HAD BEEN DUE TO CHANCE. THIS, 

OF COURSE, IS A WHOLLY INCORRECT EXPRESSION, BUT IT SERVES TO 

ACKNOWLEDGE PLAINLY OUR IGNORANCE OF THE CAUSE OF EACH 

PARTICULAR VARIATION.” 

Charles R. Darwin, 1859 [3] 

1.1 The beginnings of genetics 

It was the research of the Austrian monk JOHANN GREGOR MENDEL in the 1860’s that 

illustrated the mechanisms of heredity [4]. In thousands of cross-breeding experiments with pea 

plants MENDEL recorded the phenotypic outcomes. From his observations he concluded that 

there is always a pair of units of inheritance (alleles) for each trait. In gamete (germ cell) 
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formation, the two alleles segregate (are separated) so that only one allele per trait is left 

(principle of segregation). This happens for each trait independently (principle of independent 

assortment). During reproduction, the two parental alleles are recombined such that each parent 

transmits one allele for each trait to the offspring. There are dominant (A) and recessive (a) 

alleles, with a total of four possible allele combinations for each trait: AA, Aa, aA, and aa (as the 

phenotypic outcomes of the heterozygotes Aa and aA are identical, the two combinations are 

often summarized as 2Aa). On the phenotype level, the dominant trait occurs with a ratio of 

3:1, meaning that the dominant allele has full phenotypic penetrance (outmatches the recessive 

allele if present; principle of dominance). The significance of MENDEL’S findings was not 

recognized in his lifetime. It was not before the year 1900 that his work was rediscovered and 

highlighted independently by three researchers: HUGO DE VRIES [5], CARL CORRENS [6], and 

ERICH VON TSCHERMAK [7]. In addition to emphasizing the importance of MENDEL’s 

conclusions, CORRENS also claimed that the matter of inheritance has to be located in the cell 

nucleus and that segregation of alleles takes place during a “NUCLEAR DIVISION” [6]. 

That the nucleus of cells contains special molecules (discoverer FRIEDRICH MIESCHER 

called them nuclein) which were later found to consist of deoxyribonucleic acid (DNA) was 

known since 1871 [8], however, neither the identity and structure of the molecules nor that 

macromolecules consisting of DNA encode genetic information was yet discovered. Around 

1880, WALTHER FLEMMING found that nuclein was organized in densely packed threadlike 

structures during cell division [9]. As he was – in contrast to MIESCHER – not persuaded that the 

substance was specific to the nucleus, he called it chromatin because of its stainability. 

FLEMMING also observed that the threadlike structures (later called chromosomes by WILHELM 

VON WALDEYER-HARTZ [10]) were separated during cell division. As he was not familiar with 

the findings of MENDEL, he did not recognize the implications of his findings to inheritance. It 

were WALTER SUTTON and THEODOR BOVERI – the latter had already shown that 

chromosomes persist as organized and individual structures during cell division as well as that 

paternal and maternal gametes contribute an equal number of chromosomes to the embryonic 

cells [11, 12] – who finally connected the Mendelian principles of inheritance with 

chromosomes as carrier substance of hereditary factors (later called genes by WILHELM 

JOHANSSEN [13]) around 1902 [14-16]. Soon afterwards, the first human disorders were 

classified as Mendelian traits: in 1902, ARCHIBALD GARROD laid out his theory that 

biochemical disorders (he later termed such disorders inborn errors of metabolism [17])  such as 

alkaptonuria (MIM: 203500) may be recessively inherited following the Mendelian pattern [18] 
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and, three years later, WILLIAM FARABEE deduced dominant inheritance for brachydactyly 

(shortness of fingers and toes; MIM: 112500) [19]. 

In spite of the growing number of examples where MENDEL’S theories fitted evidence, still 

several principles and findings – both theoretical and observational – stood in conflict with the 

Mendelian model of heredity. 

On the observational side, WILLIAM BATESON (maybe the most passionate proponent of 

MENDEL’S ideas) together with EDITH SAUNDERS and REGINALD PUNNETT found in 1905 that 

not all pea phenotypes follow MENDEL’S principle of independent assortment but that there 

exists a “CORRELATION OR ‘COUPLING’ ” [20] of their occurrence (now called genetic linkage). 

What BATESON and colleagues failed to recognize in their experiments was that linked genetic 

factors together are again inherited in accordance to the Mendelian scheme. It was THOMAS H. 

MORGAN who achieved this result in 1910 when he investigated crossing results of a male fruit 

fly (D. melanogaster) with white instead of red eye color as seen in the wild-type [21]. 

Previously, NETTIE STEVENS [22] and EDMUND WILSON described a pair of chromosomes that, 

while paired normally in females, in males consisted of one normal-sized chromosome (the X 

chromosome) paired with one smaller “’ACCESSORY’ OR HETEROTROPIC ONE” [23] (the Y 

chromosome). Both STEVENS and WILSON correctly concluded that this chromosome pair 

determines the sex of an organism, in humans with the combination XX for females and XY for 

males. When MORGAN crossed the white-eyed male fly, the offspring (F1) was purely red-eyed. 

When inbreeding F1 flies, the second generation (F2) showed flies with both eye colors in the 

Mendelian ratio 3 (red) : 1 (white) for dominant traits. However: all white-eyed flies were males 

and, thus, the heredity factor of white eyes was shown to be linked to the sex-determining 

chromosomes. In the next experiment, MORGAN crossed the original white-eyed mutant with 

its F1 daughters, and this cross produced males and females with both red and white eyes in the 

ratio 1 (female/red) : 1 (female/white) : 1 (male/red) : 1 (male/white) [21]. Thus, MORGAN not 

only proved the existence of a recessively inherited X chromosome-linked trait, but also 

established Mendelian inheritance for linked phenotypes. In the following years, MORGAN and 

his co-workers (prominently his student ALFRED H. STURTEVANT) also identified the source of 

genetic linkage: recombination of parts of chromosomes via crossover [24]. The theory states 

that heredity factors (i.e. genes) are in fact physical objects linearly positioned on the 

chromosomes and the smaller the distance between two genes the more often they are inherited 

together. As the structure and the code encrypted in the chromosomes was still not resolved (a 

physical distance was not available), STURTEVANT defined the genetic distance between two 
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genes as the frequency of recombination events that separated the genes per 100 gamete 

formations, a measure that was later termed centiMorgan (cM) by JOHN HALDANE [25, 26]. 

On the theoretical side, it was mainly a dispute of two schools with different evolutionary 

theories: Gradualism / the biometric school (evolution happens through gradual changes based 

on the Darwinian theory of a common ancestor and natural selection; model of inheritance – 

the law of ancestral heredity – created by FRANCIS GALTON [27] and mathematically elaborated 

by KARL PEARSON [28]) and Saltationism / the Mendelian school (intra-species 

evolution/adaption takes place gradually, but new species are the result of sudden, crucial 

alterations, not natural selection; Mendelian model of inheritance). G. UNDY YULE, a 

statistician and former co-worker of PEARSON, expressed substantial points of criticism of the 

biometric school in his 1902 paper. He postulated that: firstly, if MENDEL’S principle of 

dominance should apply, the dominant alleles should at some point supersede their recessive 

counterparts if evolutionary forces are absent; and secondly, human traits as complex as body 

height that are determined by “NOT LESS THAN 50” [29] genes could only be explained by the 

Mendelian laws if they are, due to the large number of possible combinations, changed 

gradually, not saltatory. YULE concluded that Mendelian inheritance (mainly because it was 

propagated by saltationists), while holding good for some traits (in his opinion limited to some 

hybridization experiments), cannot be readily transferred to inheritance patterns in general 

populations. 

REGINALD PUNNETT was opposed to YULE’S first hypothesis [30], however, he was not 

able to derive a mathematical formula to prove YULE’S reckoning wrong. In 1908, the 

mathematician GODFREY H. HARDY and the physician WILHELM WEINBERG independently 

presented a mathematical equilibrium of allele frequencies in the absence of evolutionary forces 

(now called the Hardy-Weinberg equilibrium or HWE). While WEINBERG observed the 

equilibrium when he was studying the accumulation of twin-births in families [31], HARDY had 

read PUNNETT’S paper and, thus familiar with YULE’S calculations, found it “NOT DIFFICULT 

TO PROVE (…) THAT SUCH AN EXPECTATION WOULD BE QUITE GROUNDLESS” [32]. Based on 

the assumption of an ideal or random population (a large population consisting of individuals of 

equal fitness where mating is fully random and neither mutations, gene flow, genetic drift nor 

natural selection appear), HARDY deduced the model as follows: 

The numbers of homozygotes of the dominant allele (AA), heterozygotes (Aa), and 

homozygotes of the recessive allele (aa) are considered as � ∶ 2� ∶ �. Under random mating, the 

numbers in the next generation are  
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    �� + �	
 ∶ 2�� + �	�� + �	 ∶ �� + �	
      
or ��: 2��: ��. HARDY simply states that the condition for this distribution to be stable is �
 =��. And as, independently of the explicit values of �, �, and �, ��
 = ����, “THE DISTRIBUTION 

WILL IN ANY CASE CONTINUE UNCHANGED AFTER THE SECOND GENERATION” [32]. While 

the latter conclusion is obviously correct 

    ��� + �	�� + �		
���������������

= �� + �	
�������

�� + �	
�������  
the condition for the equilibrium is not that straightforward to see. However, transferring the 

numbers of individuals to the frequencies of the alleles, like WEINBERG did, shows that the 

concept is rather intuitive: the distribution of � ∶ 2� ∶ � is then expressed as ����
 ∶ 2�������� ∶����
 with ���� + ���� = 1 (here, obviously �
 = ��). In the next generation (under random 

mating and no selection) the relative frequencies are ����
����� + ����	
 ∶ 2��������� +����	
���� ∶ ����� + ����	
����
 and therefore ������ + ����	
 = 1
 = 1	 again ����
 ∶2�������� ∶ ����
.  

While the formulation of the Hardy-Weinberg equilibrium was substantial as it proved 

that, in a large, interbreeding population, allelic frequencies remain stable without evolutionary 

forces active, its reversion is equally interesting, because deviations from the HWE are evidence 

for either inbreeding or the presence of evolutionary pressure on alleles – something that, until 

then, was not possible. 

1.2 The foundation of population genetics 

The second point of criticism stated by YULE was highly controversial, mainly due to the 

hardened fronts between biometricians and Mendelians. It was the groundbreaking 1918 paper 

of RONALD A. FISHER that not only mathematically integrated Mendelism and biometry by 

modeling the genetic basis of quantitative traits as being determined by many Mendelian factors 

but also laid the ground for many of the principles of population genetics in place [33]. 

Although the basis for FISHER’S findings originated from many other researchers (including the 

aforementioned BATESON, MORGAN, YULE, GALTON, PEARSON, HARDY, MENDEL, and 
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DARWIN), he was the first to combine all the evidences and theories into one generalized 

mathematical framework.  

FISHER starts with the simplifying assumption that genetic factors for a complex trait (a trait 

that is determined by many genetic factors) act together additively, that is, they are not 

interacting and thus independent in the sense of MENDEL, and that the environment plays no 

role in trait variance. The statistical benefit of additivity is that, for measurements of many 

independent random variables (here: the genetic factors as causes of trait variability) with finite 

means and variance, the central limit theorem applies, stating that the arithmetic mean of such 

measurements is distributed approximately normal. Thus, the complete variance of the trait due 

to genetic factors (the environment is neglected) in the population, �
, can be calculated by 

summing up the variances ��
 contributed by each individual genetic factor � as �
 = ∑ ��
���� . 

The effect of each factor in its three forms (AA, Aa, and aa) is then calculated as the deviation 

from the “SOMATIC” [33] (phenotypic) midpoint of the two homozygous phenotypes (AA and 

aa) denoted as +� and −�, respectively. To account for potential dominant effects, the 

heterozygote can differ from the exact midpoint by a quantity ! (! = 0: no dominance; 0 < ! < �: partial dominance; ! = �: full dominance). Assuming the HWE (random mating, no 

selection), genotype frequencies are �, 2�, � with � + 2� + � = 1. The population mean for one 

single genetic factor is then $ = �� + 2�! − �� and its variance is the quadratic form �
 =��� − $	
 + 2��! − $	
 + ��� + $	
. Next, substituting +�, !, and −� with linear quantities, 

FISHER – now accounting for dominance and environmental influences leading to imperfect 

additivity of effects – splits additive genetic effects �%
	 from non-additive effects �&
	 via least 

squares, obtaining �
 = '
 + (
 with '
 = ∑ %�
����  and (
 = ∑ &�
���� . In the non-additive 

effects, deviations from linearity resulting from genetic interactions (epistasis) are also included 

due to their “SIMILAR STATISTICAL EFFECTS TO DOMINANCE” [33]. Going even more into 

complexity, the paper also derives formulae to account for assortative mating, introducing 

factors )�,* that depict deviations from HWE-defined stable allele frequencies (and the 

correlations between relatives, respectively) due to inbreeding. The same symbol is later used by 

SEWALL WRIGHT to formulate the inbreeding coefficient that, in dependency of the extent of 

assortative mating, in its simplest form gives the allele frequencies as  

   �� : ����
�1 − )	 + ����)�� : 2���������1 − )	�� : ����
�1 − )	 + ����)  
with ) = 0 for random mating, ) = 0.5 for full siblings in a random population, and ) → 1 (loss 

of heterozygosity) for individuals in closely inbred populations [34]. 
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To summarize, based on the numbers for genetic correlations between individuals in 

randomly mating populations (Table 1), FISHER establishes the analysis of variance (ANOVA) 

which is still used to disassemble the factors involved in the variability of heritable traits. Using 

the derived formulae, FISHER shows that his basic hypothesis that complex traits “ARE 

DETERMINED BY A LARGE NUMBER OF MENDELIAN FACTORS, AND THAT THE LARGE 

VARIANCE AMONG CHILDREN OF THE SAME PARENTS IS DUE TO THE SEGREGATION OF THOSE 

FACTORS IN RESPECT TO WHICH THE PARENTS ARE HETEROZYGOUS” [33] complies 

surprisingly well with population-based anthropometric data. Thus, he created a theoretical 

framework that allowed for the assessment of genetic effects on complex trait variation in the 

general population, not only in nuclear families or larger pedigrees. 

Generations Ancestral Line 
1st degree 

relatives 

2nd degree 

relatives 

3rd degree 

relatives 

4th degree 

relatives 

F0 1 1 2.  1 4.  1 8.  1 16.  
F1 

1 2.  1 4.  1 8.  1 16.  1 32.  
F2 

1 4.  1 8.  1 16.  1 32.  1 64.  
F3 

1 8.  1 16.  1 32.  1 64.  1 128.  
F4 

1 16.  1 32.  1 64.  1 128.  1 256.  
Table 1: Genetic correlations between individuals in random mating populations. 

The current notation of the different summands for the analysis of variance has changed slightly 

since FISHER and the term heritability has been introduced for the proportion of the phenotypic 

variance of complex traits contributed by the variance of genetic factors, but the statistical idea 

has remained the same. To define heritability (and, later on, models to estimate the explained 

variance), we will at this point shortly introduce the current notations for the partitioned 

variances. 

The observed phenotype ��	 is the result of unknown genetic �3	 as well as environmental 

factors �4	 acting together: � =  3 +  4, or in terms of variances:  

    �5
 = �6
 + �7
. 
As suggested by FISHER, the variance of both genetic and environmental factors can be 

separated further. The genetic variance is partitioned into the variance of additive genetic effects �8
, the variance of dominance �9
, and the variance of epistasis/genetic interactions �:
: 
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    �6
 = �8
 + �9
 + �:
. 
Similarly, environmental effects can be partitioned into environmental variance shared between 

individuals such as siblings, �;
, and the residual (individual) environmental variance including 

measurement error, �<7
 : 

    �7
 = �;
 + �<7
 . 
Because it is often not possible to determine specific environmental factors contributing to the 

environmental variance, the symbols for environmental factors and individual environmental 

factors �4 and =4	 are used interchangeably (like FISHER did). For instance, in the twin-based �>4 model that is used to estimate trait heritability, the total variance is partitioned into additive 

genetic variance ��	, shared environmental variance �>	 and individual environmental variance �4	 [35]. Further disassembly of variances to account for genotype-by-environment interactions 

or to include more complex genetic backgrounds are possible [36] but may be neglected here 

for simplification. 

The term heritability is defined for two ratios of variances: the broad-sense heritability, ?
, 

and the narrow-sense heritability, ℎ
. The former refers to the proportion of the phenotypic 

variance contributed by the variance of all genetic factors irrespective of their mode of action 

(including dominance and epistasis): 

    ?
 = ABCADC. 
The latter refers to the proportion of the phenotypic variance due to the variance introduced by 

additive genetic effects only: 

    ℎ
 = AECADC. 
Again it was FISHER who claimed in his Fundamental Theorem of Natural Selection that 

the evolutionary response to natural selection in fitness equals the additive genetic variance in 

fitness of an organism [37] (actually, FISHER only speaks of “GENETIC VARIANCE”; that he 

meant additive genetic variance has been pointed out later by his co-worker EDWARDS [38] and 

is now generally accepted [36]). In other words, due to the segregation of alleles, the phenotypic 

resemblance between relatives is mainly the result of additive genetic effects as non-additive 

genetic effects do not predictably change allele frequencies in the next generation (dominance as 

well as epistasis are not trivially predictable as both depend on two or more alleles). Therefore, if 

not stated otherwise, the term heritability most commonly refers to ℎ
. 
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Figure 1: Overview of milestones in human genetics.  

1.3 The molecularization of genetics 

The theoretical approaches introduced by FISHER disentangle sources of variance of 

complex human traits, enabling a comparison of the proportional contributions to trait variance 

attributable to additive and non-additive genetic as well as environmental factors. Of equal 

importance was his insight that inheritance patterns of quantitative/multifactorial human traits 

are not contradictory to the Mendelian principles of inheritance, thus reconciling the two 

competing camps of geneticists. After this breakthrough, new discoveries followed at a rapid 

pace, both in the field of single-gene disorders as well as in the newly founded area of 

population and quantitative genetics. Nevertheless, there are still many black spots left regarding 

our knowledge on the heredity of multifactorial human traits. And in spite of the available 

sophisticated and complex mathematical and statistical frameworks, we are still not yet able to 
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give answers to many questions concerning heritability and the extent to which it contributes to 

phenotype prevalence in human populations (see also Box 2). 

However, across the 20th and the beginning 21st century, theory has been substantiated by 

revolutionizing advances in molecular biology. In 1944, the Avery–MacLeod–McCarty 

experiment identified DNA as the substance encoding the genetic information [39]. Composite 

of the four nucleobases adenine, cytosine, guanine, and thymine (described by ALBRECHT 

KOSSEL [40-43]) linked to a backbone of phosphate and deoxyribose sugar (resolved by 

PHOEBUS LEVENE [44, 45]) and organized in a stable double-helical structure (determined by 

JAMES WATSON and FRANCIS CRICK [46]), DNA was found to be bound by special proteins 

(histones; also discovered by KOSSEL [47]) condensing it to chromatin. In his experiments, 

LEVENE also found a second class of nucleic acids with ribose sugar instead of deoxyribose in its 

backbone [44]: ribonucleic acid (RNA). RNA contains the same nucleobases as DNA except 

for thymine which is replaced by uracil (discovered by ASCOLI, OSBORNE, and HARRIS [48, 

49]). The interrelation between DNA, RNA, and proteins (termed by BERZELIUS [50]) was 

unknown, although the latter were already known to consist of amino acids, to categorize into 

several functional groups, as well as to be the main class of functionally active molecules in the 

cell [51]. It was again FRANCIS CRICK who formulated the Central Dogma of molecular 

biology [52]: genes encoded in the DNA are transcribed into RNA and the nucleic acid four 

letter code is then translated into the 20 letter amino acid code of proteins (Figure 2). The 

genetic code underlying this translation was found to work codon-based (three nucleobases = 

one codon = the code for one amino acid) [53] and only five years later, in 1966, the complete 

code was deciphered [54]. With that, it was also discovered that the genetic code is buffered 

against some mutations (single nucleotide variants or SNVs) as for all amino acids except 

tryptophan and methionine there is more than one codon available (this is called codon 

degeneracy: there are 61 codons encoding 20 amino acids). For this reason, SNVs that alter a 

gene’s DNA code but do not change the amino acid sequence of the encoded protein are called 

synonymous variants. Accordingly, SNVs altering both the DNA sequence and the amino acid 

sequence of a protein are called non-synonymous or missense variants. The first non-

synonymous variant that causes a Mendelian trait was described for sickle-cell anemia 

(MIM:603903), an autosomal-recessive disorder which, in its most common form, is caused by 

a single SNV (rs334) in the HBB gene entailing a single amino acid exchange in the hemoglobin 

subunit beta protein [55-57].  
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Figure 2: Central Dogma of molecular biology. DNA, by histones condensed to chromosomes, contains the 

genetic information. The genes encoded in the DNA are transcribed into RNA sequences that then serve 

as template for the translation into proteins via the genetic code. Numbers include all known forms of the 

entities (isoforms, transcribed pseudogenes, etc.) and are specific to humans (taken from [58]). 

Shortly afterwards, it was recognized that the processes of transcription and translation from 

DNA to RNA to protein work not as linearly as expected. Although there exist transcripts (the 

RNA products of transcription) that are translated into proteins without modifications (colinear 

transcripts), it was found that this is not the prevailing mode of operation in humans and many 

other organisms. Instead, transcripts are modified in a process called splicing where sequence 

parts of the RNA (introns) are cut out before the remaining sequence parts (exons) are translated 

[59, 60]. Further complexity is added as two transcripts of the same gene can differ based on 

differential removal of introns or skipping of exons (alternative splicing) [59, 61]. Other RNA 

molecules were, in contrast to protein-coding messenger RNA (mRNA), found to remain 

untranslated (non-coding RNAs) featuring a variety of functions: transfer RNA (tRNA) and 

ribosomal RNA (rRNA) that are involved in protein synthesis, microRNA (miRNA), small 

interfering RNA (siRNA), and PIWI-interacting RNA (piRNA) that are involved in post-
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transcriptional regulation of mRNA translation, and several others such as long non-coding 

RNA (lncRNA) with an extensive palette of additional functions (reviewed in [62]). Another 

layer of information was added when the proteins involved in the regulation of gene expression 

(active transcription of a gene) were identified. Besides the primary enzymes transcribing DNA 

into RNA – the RNA polymerases – a plethora of other proteins called transcription factors 

(TFs) were discovered to affect gene expression and its efficacy by binding to specific DNA 

sequences (promoters close to the transcription start site and more distal enhancers/repressors) 

[63]. These also include for instance the histones that are responsible for unfolding chromatin to 

make the DNA accessible for the transcription machinery.  

The breakthrough of central importance to genetics was the development of experimental 

methods to determine DNA sequences – DNA sequencing – by synthesizing DNA using the 

target sequence as template. The two first approaches applicable for larger DNA segments were 

the Maxam-Gilbert method and Sanger sequencing, each named after their inventors [64, 65]. 

Both applications involved radioactive labelling of the synthesized DNA sequences, single runs 

for each nucleotide, and manual “reading” of the sequence from X-ray films of the combined 

per-nucleotide experiments. The Sanger method could be further refined using fluorescent 

labelling with different dyes for each nucleotide which enabled sequencing of all four 

nucleotides in a single run and thus allowed for automatization of the sequencing process [66]. 

With this technology in hand, in 1990 the International Human Genome Sequencing 

Consortium was initiated and the complete human genetic material – the genome consisting of 

about 3.2 billion bases (gigabases) – was sequenced [67, 68]. Simultaneously, high-resolution 

genetic linkage maps of human chromosomes were developed for the study of human single-

gene disorders [69-71]. When the sequence of the human genome was available, the 

International Haplotype Map Project (HapMap) [72-75] was launched to obtain genetic maps 

of even higher granularity for 11 global populations using common SNVs with a frequency 

greater than five percent (referred to as single nucleotide polymorphisms or SNPs) to enable the 

study of complex multifactorial traits in genome-wide association studies (GWAS). Rapid 

advances in DNA sequencing techniques and the advent of next-generation sequencing (NGS) 

platforms facilitated the sequencing of human genomes enabling large-scale sequencing 

consortia such as the thousand genomes project (1000 genomes) to build again denser maps of 

human genetic variation [76, 77]. Other large consortia such as ENCODE (ENCyclopedia Of 

Dna Elements) and FANTOM (Functional ANnoTation Of the Mammalian genome) used the 

genome sequence to assemble catalogs of the functional elements within the human genome 
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from genes over non-coding RNAs to regulatory factors and their interactions. The compiled 

results of the two consortia published just recently showed that the majority of the 3.2 gigabases 

(Gb) of the genome are actually functional, further increasing the complexity of the functional 

interpretation of genetic and genomic studies [78-81]. 

Nowadays, there are high-throughput methods to assess almost any of the identified 

biological entities in place at large scale. In this context, the suffix –ome has been coined that 

refers to the total of a certain kind of biological entity such as the genome (the complete genetic 

material), the transcriptome (all expressed transcripts), the proteome (all present proteins), and 

the metabolome (the full set of metabolites) of an organism, a tissue, or a cell. The related suffix 

–omics is used for analyses that use high-throughput data on one of the –omes at a coverage as 

comprehensive as the available experimental platforms allow for. There are also more 

multidisciplinary fields of study that include several different assay methods. For instance, 

epigenomics (epigenetic modifiers influence gene expression) refers to the analysis of DNA 

methylation, histone modification, chromatin accessibility, and some other processes that are 

measured by very different means. These different measurements are then integrated and 

clustered to obtain a regulatory landscape on genome-wide scale. The largest available 

collection of such data has been published only recently by the NIH Roadmap epigenomics 

consortium [82].  

 

 
 

Figure 3: Timeline and marker resolution of analyses of genetic variation.   
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1.4 Analyzing genetic variation 

For the analysis of genetic variation, several applications have been developed to provide 

experimental platforms for the analysis of the genetics of human traits and diseases. The 

resolution at which genetic markers could be explored steadily increased over time with 

modern studies measuring genetic differences on a genome-wide single nucleotide resolution 

(Figure 3). However, the early approaches still co-exist and will also be briefly introduced. 

KARYOTYPING – This was the first 

experimental test for genetic aberrations 

based on visual inspection of the number of 

chromosomes and their structure – the 

karyotype. The first human karyotype was 

published in 1952, however, it contained the 

wrong number of chromosomes (48 instead 

of 46) [83]. The correct normal human 

karyotype consisting of two copies of the 22 

autosomes  and  two  sex  chromosomes  and  

 

 

 

 

 

 

 

Figure 4: Normal male human karyotype. Adapted by 

permission from Macmillan Publishers Ltd: 

Leukemia [84], copyright 2003. 

denoted by 46,XX for females and 46,XY for males (Figure 4) was determined in 1956 by JOE 

TIJO and ALBERT LEVAN [85]. Notable deviations from the normal karyotype  –  aneuploidy 

(abnormal number of chromosomes), large structural rearrangements such as translocations and 

inversions, or large copy number variants (CNVs) such as deletions or duplications – can be 

identified by karyotyping combined with special chromosome staining methods [86]. Shortly 

after the publication of an experimental protocol to retrieve human chromosomes from cell 

cultures, the first genetic disorders were linked to aneuploidies: Down syndrome, that is caused 

by an excess copy of chromosome 21 (trisomy 21; karyotype: 47,XX/XY,+21; MIM: 190685) 

[87, 88], and Klinefelter syndrome, that manifests due to  an  additional copy of the X 

chromosome in males (karyotype: 47,XXY) [89]. 

LINKAGE ANALYSIS – This study type makes use of linkage maps that contain a catalog of 

genetic markers with known chromosomal locations. The genetic markers (typically 

microsatellites or restriction fragment length polymorphisms, Figure 5) are investigated in 

pedigrees for co-segregation with the phenotype under study. To achieve that, the parental 

origin of genomic regions is traced by marker-based recombination event mapping. Regions 
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that display identical marker expression exclusively in individuals presenting the phenotype are 

said to be linked to the gene(s) causing the phenotype. Using a test statistic such as the logarithm 

of the odds (LOD) score [90], markers informative for the phenotype can be identified and 

ranked. Dependent on the size of the pedigree and the marker density in the linkage map, the 

identified regions can vary crucially in length [91].  

 
Figure 5: Analysis of genetic markers in linkage analyses. A: Gel showing the results of the analysis of a 

restriction fragment length polymorphism. The marker is informative as it shows a clearly distinguishable 

pattern for the diseased person (filled rectangle in the pedigree). B: Gel showing the results of the repeat 

count analysis of a microsatellite. This marker, too, is informative: the pattern is identical in cases (filled 

circles) and differs from controls (open circles and rectangle). Adapted by permission BMJ Publishing 

Group Ltd: Journal of Medical Genetics [92], copyright 1994. 

 

GWAS – The basis for GWAS was the common disease/common variant (CDCV) hypothesis 

stating that common traits featuring a genetic component are likely to be caused by common 

variants [93-95]. The whole concept of GWAS thus presumes a direct link between trait 

prevalence and the frequency of occurrence of the underlying genetic causes. By definition, the 

term “common variant” implies a certain minimal frequency of the alleles in a population, and, 

therefore, GWAS relies on large population-based (case/control) cohorts to achieve the 

statistical power necessary to detect significant signals.  By utilizing the data provided by 

HapMap, commercial experimental platforms (SNP arrays) were developed to genotype more 

than half a million SNPs at once. With these genotypes available, variants correlating via linkage 

disequilibrium (LD; see Box 1) can be imputed, that is, their genotype can be estimated using 

the HapMap or 1000 genomes haplotype map specific for the population under study. By this 

process, genotyping of only a fraction of the total catalogued common variants (ca. 3.1 mio in 

HapMap phase 2) can achieve almost genome-wide coverage of common markers [74]. In a 

statistical process (most commonly linear regression for quantitative and logistic regression for 

binary traits), the allele frequencies are compared with respect to case/control status or  
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Box 1 

Box 1: Linkage disequilibrium and genotype imputation  

 

Linkage disequilibrium or LD describes the 

non-random distribution of alleles in a 

locus. The phenomenon is based on co-

segregation of genetic variants that is due to 

recombination. 

In the figure on the left, the ancestral allelic 

setting is shown on the top. Along several 

generations, random mutations occur at 

certain positions (A
1
-A

4
, depicted in red) 

and are passed on to following generations. 

Random recombination events between 

markers A
2 

and A
3 

lead to many 

combinations of the mutated alleles. Some 

alleles, however, are not separated by 

recombination (A
1
/A

2
 and A

3
/A

4
, 

respectively) – they are in linkage and form 

a haplotype. This leads to a correlation 

between these alleles that deviates from the 

hypothetical random formation of the allelic 

structure.  

There are several measures that quantify the extent of LD. The most commonly used measure of LD is called �
, 

the squared correlation coefficient (coefficient of determination) of the alleles of two variants: 

�
 = ��8F − �8�F	
�8�1 − �8	�F�1 − �F	 

where �8F is the frequency of the occurrence of the major allele (the more frequent allele) at both variants and �8 

and �F is the frequency of the major allele of the first and the second variant, respectively. In the above example, 

for A
3
/A

4 
(1000

th
 gen.) this value would be �
 = 0.286, a weak correlation resulting from mutations occurring at 

both sites. LD is considered to be strong at an threshold of �
 G 0.8. 

The GWAS approach utilizes this correlation as it allows to predict the genotype of complete haplotypes by 

genotyping only a few variants per haplotype. Modern imputation algorithms use more complex approaches than 

simply imputing alleles using LD measures: Haplotypes are first phased (the haploid allele sequences as in the above 

example are predicted) and stored in weighted graphs. These weights are as simple as the count of occurrence of 

the allele sequence in a population study such as the 1000 genomes project. Haplotypes that are statistically very 

unlikely to occur are then removed from this graph in a process called pruning. This is done to minimize the 

chances for wrong haplotype predictions. Afterwards, the genotyped alleles are entered in the graph and the best-

fitting haplotype (selection is based on optimization of a summary statistic of the weights) is obtained [96, 97]. 

A secondary but equally important consequence of the haplotype structure of the human genome is the reduction 

of the number of tests for trait association necessary to yield genome-wide coverage of common markers. The 

estimated number of independent common haplotypes within the genome amounts to 1 million, defining the 

threshold for genome-wide significance at a Bonferroni-corrected association �HIJKL  to be 5.0 ∙ 10NO. 
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quantitative measures. Significant differences are then obtained by filtering for associations 

exceeding a �HIJKL  threshold adjusted for multiple testing. The large amount of both samples 

and measured genetic markers bears a high potential for false positive statistical associations. 

Therefore, scrutiny in quality control as well as in the association analysis and the interpretation 

of the results of GWAS is indispensable. Nonetheless, since the first successful GWAS published 

in 2005 [98] hundreds of studies followed yielding thousands of genetic loci linked to human 

traits, making this research method the probably most broadly applied study type in biomedical 

research to date [99, 100].  

NGS-BASED STUDIES – To identify rare variants contributing to human traits it is 

necessary to get at the single nucleotide level. Although different enhancements have made it 

feasible to analyze variants with frequencies as low as one percent in the population using 

GWAS, for even rarer variant the only detection method at hand is sequencing. Therefore, as 

sequencing costs are decreasing, NGS-based studies have become increasingly popular over the 

past few years. And this holds true not only for rare disorders but also for common multifactorial 

diseases. Using different methods of association testing for common variants (handled similarly 

to GWAS), rare variants (for instance burden tests) or for the combination of both rare and 

common variants such as sequence kernel association tests (SKATs), sequencing studies can be 

used for the full spectrum of genetic analyses from single-individual to population-based 

genetics [101]. There are three major study subtypes: whole-genome sequencing (WGS), 

whole-exome sequencing (WES), and gene panel sequencing, with the latter being mostly used 

in clinical settings. WES differs from WGS in the way that only exons are sequenced. As the 

human exome makes up only about one percent of the genome, WES is much less expensive 

than WGS and therefore often preferred, although sequencing quality and coverage is generally 

higher with WGS [102]. While NGS-based studies were heralded as the solution to all 

shortcomings associated with the GWAS approach (mainly, its ignorance of the effects of very 

rare variants and the “missing heritability” problem [103, 104], see also Box 2), the complexity 

introduced by screening for variants exome- or genome-wide has its pitfalls: sequencing, in the 

best case, reveals all existing variation, including non-functional variants, that is, variants that are 

under neutral selection and are not affecting fitness or the phenotype. This results in the most 

challenging task of ranking or filtering variants for their likeliness of being effective in the trait 

under study – a process still undergoing development given that mostly there is no background 

information on this matter available [105] – even before their functional characterization. 
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1.5 Genetics of Mendelian diseases 

Monogenic or Mendelian disorders are caused by altered functions of single genes that are 

grouped into several classes according to the location of the disease genes and their mode of 

inheritance (dominant/recessive) in which they segregate in families (Table 2) [105]. Due to the 

severity of monogenic diseases and the linked reduced reproductive fitness of affected 

individuals, these disorders individually are generally rare affecting fewer than 1 in 2,000 people 

in Europe. The exact number of Mendelian diseases is hard to report as the entry statistics of 

databases collecting Mendelian or orphan disorders such as the Online Mendelian Inheritance in 

Man (OMIM) catalogue [106] and OrphaNet [107] diverge significantly. Current estimates 

amount to 6,000–7,000 known rare genetic diseases with a comparable estimated number of 

additional, unknown phenotypes of the kind, collectively affecting millions of individuals 

worldwide [105-109]. 

Mode of inheritance Example Disease gene 

Autosomal dominant Huntington disease (MIM:143100) Huntingtin (HTT) 

Autosomal recessive Sickle-cell anemia (MIM:603903) Beta hemoglobin (HBB) 

X-linked dominant Rett syndrome (MIM:312750) Methyl-CpG-binding protein 2 (MECP2) 

X-linked recessive Hemophilia A (MIM:306700) Coagualtion factor 8 (F8) 

Y-linked SRY-related sex reversal (MIM:400044) Sex-determining region Y (SRY) 

Table 2: Examples of single-gene disorders, their modes of inheritance, and the disease-causing genes.  

The etiology of more than half of the defined Mendelian diseases could already be identified 

with OMIM listing 4,322 phenotypes with known molecular basis (as of January 12th, 2015). 

Disease genes have primarily been discovered through linkage mapping, however, the 

application of NGS led to an accelerating pace of discoveries with more than 130 novel disease 

genes reported in 2012 alone [105, 110]. As rare diseases are caused by loss-of-function (LOF) 

or gain-of-function mutations in single genes, the primary targets for therapeutic intervention 

are also known. Nonetheless, there are still far less drugs or therapies available than targets 

known [105]. This is not only due to the challenges that are per se linked to drug development 

(such as drug specificity and side-effects). Studies have also shown that, for some disorders that 

are classified as monogenic diseases, so-called modifier genes exist that, based on their allelic 

structure, affect disease presentation and severity. One example for such an oligogenic trait is 

cystic fibrosis (MIM:219700), an autosomal recessive disorder that is primarily caused by 
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mutations in the cystic fibrosis transmembrane conductance regulator (CTFR) gene. Although 

defects in CTFR almost always cause cystic fibrosis, the individual phenotypic outcome 

depends on a number of alleles in up to seven additional genes [111]. 

1.6 Genetics of complex traits 

As YULE correctly stated more than hundred years ago, multifactorial (or complex or 

common) traits such as height, type 2 diabetes, and coronary artery disease differ from mono- 

and oligogenic traits in that they have yet no clearly identified cause. Instead, they are the result 

of a complicated interplay of genetic, behavioral, and environmental factors. However, the 

estimated amount of genetic contributions to the development of complex human traits and 

diseases as derived from pedigree and twin studies is generally high (often >30% [112]).  This led 

to massive investments in genetic scans using the GWAS approach to identify the hereditary 

factors predisposing to complex traits. Applied on hundreds of traits in study cohorts of  
 

 
Figure 6: Timeline of GWAS discoveries. Shown are the number of GWAS publications and the number of 

genetic loci identified to predispose to complex traits. Data obtained from the GWAS Catalog [100]. Loci 

were determined as variants in strong LD �PQ G R. S	 with an association TUVWXY ≤ [. R ∙ \RNS. 
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(hundreds of) thousands of individuals, GWA studies – capturing most of the common (and, 

more recently, also a fair portion of the rarer) variation of the human genome – have identified 

several thousand genomic loci that add to the susceptibility to complex traits (Figure 6) [100]. In 

their 2012 review, VISSCHER and colleagues quantified the success of GWAS as a 16-fold 

increase in the number of independent loci identified to contribute to eleven complex 

autoimmune and metabolic diseases before �]J^_� = 24	 and after �]J^_� = 384	 the introduction 

of the GWAS approach [112].  

Box 2 

Box 2: Missing heritability 

There has been great controversy about the fraction of heritability explained by GWAS-identified variants. 

Explained trait heritability is defined as the ratio of known additive heritability (the variance explained by all 

significant GWAS hits combined) divided by the complete (narrow-sense) heritability of a trait: 

`LabJI��Lc = ℎd�^e�
ℎ_^*bJLfL
  . 
The explained heritability differs substantially between complex traits ranging from high (70% for type 1 diabetes 

[113]) over mediocre (20% for multiple sclerosis [112]) to low (<3% for schizophrenia [114]). Interestingly, for 

intermediate complex traits such as gene expression levels and metabolite concentrations, additive genetic effects 

are generally strong and explain a large part of the genetic variance contributing to these traits [115, 116].  This is 

thought to be a result of the more direct (that is, less confounded) effects of genetic variance on such primary 

traits. 

Different models have been proposed for the estimation of `LabJI��Lc [114], all including some background 

hypotheses such as the genetic model underlying the studied trait [36]. For the majority of complex traits, with 

these models only a minor proportion of heritability could be explained, leaving a substantial fraction of 

heritability missing. It was claimed that it may be unfeasible to identify all genetic variants contributing to trait 

predisposition, be it because of their small effect sizes or their low frequency in the population or both [103, 

117]. Conversely, it was suggested that the models used to estimate ℎ_^*bJLfL
  may be insufficient. For instance, 

an estimator was proposed including genetic interactions between loci contributing to disease risk, which 

plausibly showed that, if genetic interactions are present, ℎ_^*bJLfL
  could be overestimated to a significant 

extent, showing unexplained heritability where in fact there is none (this phenomenon was termed “phantom 

heritability” [118]). Additionally, it was suggested that individual gene-environment interactions are likely to be 

underestimated in twin- or sibling-based measures, stating that estimates of ℎ_^*bJLfL
  based on close relatives 

may be inflated [35]. Another source of error of current estimators is the transformation of observed heritability 

estimates to a liability scale (the heritability of liability [114]) that is assumed to be normally distributed. In most 

settings, this transformation leads to inflation of ℎ_^*bJLfL
  estimates if disease prevalence is lower than 25% [35]. 

Indeed, recently evidence is growing that non-additive effects such as genotype-by-genotype (GxG) and 

genotype-by-environment (GxE) interactions have been substantially underestimated while they are 

simultaneously captured in narrow-sense heritability estimates (which is contradictory) [36, 115, 119, 120]. 
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Despite the search for genetic loci has obviously been very productive, investigation of 

these loci and their effects on trait development and disease risk revealed even more intricacies 

than expected. Effect estimates of the genetic associations showed that the single loci explain 

only small proportions of the genetic variance of the associated trait and, even when combining 

the additive effects of all loci identified for a phenotype, the explained variance is substantially 

lower than the estimated heritability of the trait. Thus, a significant ratio of trait heritability 

remains missing (see Box 2) [103]. Moreover, the great majority (>90%) of GWAS signals is 

located in non-coding regions, not within protein-coding exons [100, 121]. It is assumed that 

non-coding variants affect the linked phenotypes via regulatory mechanisms, however, apart 

from a few exceptions, most of these loci still await functional characterization.  

1.7 Bioinformatics and computational genetics 

The advances in molecular biology over the past 60 years led to a large catalog of 

experimental approaches for the investigation of human traits and diseases. Many of those have 

been automatized and enhanced to high-throughput screenings, leading to an exponential 

growth of data that needs to be processed, stored, and interpreted. The research field of 

bioinformatics (also known as computational biology) was founded in the 1970s to explore 

biological information processes, that is, to accumulate the wealth of experimental data and 

utilize it to search for patterns, interactions, and dependencies, to model those as accurately as 

possible in mathematical frameworks, and, finally, to use these models to understand how cells 

and organisms function and to predict differential outcomes due to external or internal changes 

to the systems [122]. The subfield of computational genetics and genomics applies 

bioinformatics tools to model the impact of variations of the genetic material within and 

between organisms and cells. To get an idea of the complexity of this task, the amplitude of the 

various genomic entities described in the previous sections has to be considered. The human 

genome sequence in its latest release (GRCh38) contains 3,212,670,709 letters (bases). To this 

genomic sequence more than 50,000 genes have been aligned that are transcribed to over 

200,000 transcripts encoding close to 100,000 different proteins and isoforms. The combined 

output of ENCODE and FANTOM5 lists additional 1.1 million regulatory DNA elements (all 
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numbers from [58]). All these entities have to be linked and augmented with annotation and 

interaction data which significantly increases the data load.  

While studies with a limited set of genetic markers like karyotyping and candidate-gene 

linkage studies were still feasible without performant algorithms, GWAS and NGS-based studies 

cannot be realized without the power of modern computers due to the large sample sizes and 

the huge amount of data created. Recent GWAS combine genotype information of >2.5 

million genetic markers for more than 200,000 individuals each, totaling to a collection of more 

than 1.5 trillion data points that have to be analyzed [123, 124]. NGS-based studies, although 

usually encompassing a considerably lower number of individuals, are even more complex. For 

instance the study of the Cohorts for Heart Aging Research in Genetic Epidemiology that 

performed WGS for 962 persons at 6-fold average coverage producing a total of 1.85 trillion  

 
Figure 7: Outline of bioinformatics work packages involved in modern genetic analyses. High-throughput 

screens for genetic variation create a huge amount of data. Reference data from the population as well as 

genome annotations – which both are large data collections – have to be included in the analysis process. 

For efficient handling of study data, three logically separated but interlinked layers of information 

processing are needed: first, the programming backbone that provides the informatics framework to 

harmonize and consistently store the different data sets. Second, the interface layer that provides efficient 

access to the data without disclosure of the software routines in the backbone. And, third, the analytic 

layer where, depending on the study type, specific calculations are performed for data processing and 

normalization, quality control, association testing, and annotation of the identified genetic loci.  
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bases to be assembled, analyzed for variation, and then investigated for links to the trait [125]. 

After primary data analysis and association testing, the genetic association results have to be 

merged with the information backbone to retrieve hypotheses on the functional mechanisms 

linking the genetic loci to the trait or disease, which can then be tested experimentally in cell 

lines or model organisms. In the last step, it has become common practice to consolidate study 

results and put them at the scientific community’s disposal either through custom web services 

or through large deposition sites such as the database of genotypes and phenotypes (dbGaP) or 

the European genome-phenome archive (EGA). Bioinformatics provides the complex 

frameworks, interfaces, and algorithms to achieve these tasks (Figure 7) and many of them will 

be introduced throughout this work. 

1.8 Supporting the evidence for trait-associated variants 

For multifactorial traits, clear causal genetic and molecular impact factors are still largely 

absent. The inability to identify the major genetic drivers of complex traits was – by some 

researchers – perceived as a failure of GWAS [104, 112, 117, 121]. By now, GWAS has been 

increasingly replaced by large sequencing studies intended to fill the gaps revealed by association 

studies. Nonetheless, the missing heritability paradox (Box 2) has not been solved yet, as well as 

most of the essential questions that arose from the findings of GWAS still persist. 

GENETIC MODEL – One outcome of the discussion about missing heritability was the 

concept of “synthetic associations” (Box 3) [104]. The theory states that the signals detected by 

GWAS may be due to nearby rare, high penetrance variants that mediate the actual (dominant) 

effects on trait predisposition. While plausibly formulated, it was shown mathematically that 

synthetic associations are not to be considered the general rule [117]. Nonetheless, the theory 

about synthetic associations causing GWAS signals led to a controversial dispute about the 

genetic model underlying the heredity of complex traits, namely, if they are caused by (i) many 

common and rare variants with small effects (the infinitesimal model described by FISHER), (ii) 

several moderately highly penetrant rare variants, or (iii) a mixture of both of these models 

including broad-sense genetic factors (GxG and GxE interactions) as well as epigenetic effects 

such as DNA methylation patterns (the broad-sense heritability model) [117].  
 

 

Box 3 
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Box 3: Synthetic associations 

The concept of “synthetic associations” describes the phenomenon of a common variant that weakly mirrors the 

stronger effects of proximal rare causal variants and is thus detected by GWAS screens. While the concept is 

plausible to underlie a fraction of GWAS-identified signals [126], there are several reasons – besides parsimony – 

that contradict synthetic associations of being the major source of GWAS results. To be tagged by a common 

SNP, the rare variants have to correlate at least weakly with the identified variant. This correlation, naturally 

limited by the frequency of the rare variants, can be used to estimate the effect size of the assumed causal variants. 

The effects contributed by such rare variants would be significantly higher (with decreasing frequency of the 

assumed causal variants the effect increases exponentially) than that of the tagged variant (Figure 8) [127]. But: 

(i) Variants with such strong effects would most 

probably have been identified in linkage studies. 

(ii) When speaking of genetic variants, rare should be 

translatable into population-specific. Contrary to 

that, many GWAS hits from European studies could 

be replicated in other populations. 

(iii) There is a substantial difference between the 

frequencies of the assumed rare variants and the 

prevalence of common diseases. The independent 

rare variants may all affect the same loci. But: these 

would again have been detected by linkage analysis. 

(iv) The assumed rare variants would all have to be 

occurring in the same common haplotype within 

the locus to be tagged by SNPs. As GWAS markers 

have an average MAF <20%, this seems unlikely. 

The strongest argument against synthetic associations is, 

however, of a different nature. It is given by the fact that, 

although many NGS-based studies (also NGS-based studies 

of parents-child trios) have been published, there has been no 

breakthrough on this subject. On the contrary, the more data 

becomes available, the more the hypothesis of rare high-

penetrance variants causing synthetic associations falters.  Just  

 

 
Figure 8: Approximated effect size of a rare 

causal variant causing a synthetic 

association. The effect of a rare variant 

(odds ratio, ORcausal) is approximated by a 

function of the OR of the tagged 

common variant (ORtagged) and r²max, the 

maximum possible LD between the two 

variants. Assuming that the rare variant 

has an allele frequency far below 1% and 

the mean frequency of GWAS-identified 

variants is between 20-30%, r²max has to 

be <0.05. Thus, ORcausal should exceed 

ORtagged at least by factor 5-10. 

recently it has been shown for common autoimmune diseases that rare coding-region variants show “NEGLIGIBLE 

IMPACT (…) ON MISSING HERITABILITY” [128]. In another recent WGS-based study, the rationale is even more 

explicit: “WE ESTIMATE THAT COMMON VARIATION CONTRIBUTES MORE TO HERITABILITY (…) THAN RARE 

VARIATION” [125].While these findings may be specific to the studied traits, it is a validation of the theoretical 

refutation of synthetic associations being ubiquitous. Indeed, after several years of NGS-discoveries, there is only 

one report to be found in the literature of low-frequency variants with moderate effect sizes causing a synthetic 

association [129].  
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Although ample evidence on genetic associations is available, a conclusive synthesis on this topic 

could not been derived, yet. This is due to the obstacles hiding beneath each of the assumptions: 

(i) Supposing the infinitesimal model, it is close to impossible to detect all variants 

contributing to the genetic variance of a complex trait. This is due to the small effect size 

of the variants assumed in this theory. Small effects are only barely measurable when 

summarized in the global genetic variance and, additionally, they complicate any proof 

of causality as their influence on the molecular level is hardly distinguishable from 

cellular noise such as temporary effects induced by cell cycle status or environmental 

stimuli. Variants that are frequent enough and exert measurable effects can be detected 

by GWAS or NGS-based studies using SKAT analysis. For rare variants with the same 

effect sizes, however, even the largest sample sizes will not suffice to push association 

statistics into significant ranges. 

(ii) Assuming the rare variant model, penetrance of variants exerting moderately high effects 

has to be considerably less than 100%. Because the individual variants are very rare, there 

must be many such variants that are also present in apparently healthy controls to sustain 

the high heritability on population scale that is generally seen for complex traits. It 

follows that affected individuals need to carry several disease-causing variants in specific 

configurations to exceed the liability threshold to trait development. Thus, because the 

variants have to be both rare and present in the general population, their identification 

via sequencing is highly challenging, as typically rare variants present in controls are 

deliberately excluded from further analyses. 

(iii) Finally, the broad-sense heritability model requires the identification not only of the 

causal genetic markers across the whole frequency spectrum, but also of the genetic and 

environmental interactions. In addition to the decreasing statistical power that results 

from the exponential increase in the number of tests necessary to detect interactions, 

especially environmental interactions are highly prone to individualized confounders 

such as diet or smoking behavior. To achieve sufficient power as well as to exclude the 

effect of confounders, huge study populations would be needed that live under very 

controlled conditions for a substantial amount of time – a study setting that for several 

reasons besides funding and ethics seems rather unrealistic. Recent evidence indicates 

that broad-sense heritability factors may substantially contribute to missing heritability 

[36, 115, 119, 120]. However, for the mentioned reasons, neither GxG nor GxE 

interactions have been systematically investigated on a global scale, yet.  
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With that, it becomes clear that the question of how complex traits are inherited cannot be 

readily answered. Independent of the genetic model, however, these considerations lead to 

another issue: how can we use the many known genetic associations to develop new diagnostic 

and therapeutic tools, if we are unable to identify the full set of causal, genetically predisposing 

variants? 

“ULTIMATELY, THE MOST IMPORTANT GOAL FOR BIOMEDICAL RESEARCH IS 

NOT EXPLAINING HERITABILITY – THAT IS, PREDICTING PERSONALIZED 

PATIENT RISK – BUT UNDERSTANDING PATHWAYS UNDERLYING DISEASE AND 

USING THAT KNOWLEDGE TO DEVELOP STRATEGIES FOR THERAPY AND 

PREVENTION.” 

Zuk et al., 2012 [118] 

CAUSALITY – The above quotation almost perfectly mirrors the contradictions that are 

involved in the study of genetic associations for complex traits. It correctly states that in the end 

it is not relevant for therapy whether missing heritability exists or which genetic model 

underlies the inheritance of complex traits, if the molecular determinants for trait development 

and progression can be identified using the available set of associations and simultaneously can 

be targeted by (novel) therapeutics. On the other hand, one may argue that prevention of trait 

development without knowledge of the personalized patient risk is hard to achieve. And 

personalized risk prediction should require the identification of the causal risk variants, if genetic 

predisposition plays only the smallest role in trait development. 

However, as mentioned above, the molecular complexity of multifactorial traits as well as 

our incomplete understanding of the genomic landscape of genetic predisposition has severe 

implications for the identification of the causal variants. Because the direct, intermediate 

phenotypic variations introduced by most of the individual genetic components are unknown, 

the experimental validation of causality is almost impossible. Furthermore, because GWAS-

identified alleles feature only minor effects on the organismal phenotype, it is likely that there 

are several allelic configurations leading to the same trait. This means that, theoretically, the 

absence of a risk allele in an affected individual tells nothing about its potential involvement in 

trait development – as well as the presence of a predisposing allele in a healthy person’s genome 

does not necessarily allow predicting a trait endpoint. This has been impressively shown on the 

example of type 1 diabetes (T1D), a disease of high heritability with an estimated sibling 

recurrence risk of about 10-15: a genetic test using all variants associated with T1D that in 
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combination explain more than 90% of the genetic variance in the population would misclassify 

as many as 26% of T1D patients [130]. 

This does not mean that the variants incorporated in this predictor are not causal. On the 

contrary, the associations detected by GWAS are statistically robust and many of them could be 

replicated across different ethnic populations and even across species, which strongly suggests a 

true-positive causative link between the associated loci and the studied traits [131, 132]. It 

means that for complex traits (and even for some Mendelian disorders) causality of a variant does 

not translate into full penetrance on the organismal phenotypic level. Therefore, the statement 

of ZUK and colleagues is well-founded, although it may initially seem contradictory. Only the 

projection of all genetic and biochemical evidence available for each trait onto causally disturbed 

cellular pathways can enable therapy as well as prevention. This leads to the central question: is 

it possible to identify the causal molecular determinants for complex trait development using the 

available association data without knowledge of the actual causal variants?  

FROM ASSOCIATIONS TO BIOLOGY – In several cases GWAS findings actively 

furthered our understanding of molecular disease mechanisms and there are several cases where 

discoveries from GWAS were successfully translated into clinical trials [112, 121, 133, 134]. An 

impressive example is the therapeutic targeting of the interleukin-23 subunit alpha protein (IL-

23-A) in psoriasis, a common, highly heritable autoimmune disease of the skin. IL-23-A is 

active in the IL-23 complex by binding another protein, IL-12B, that, when mutated, was 

identified to be involved in psoriasis predisposition. In addition to IL-23-A, IL-12B also binds a 

second cytokine, IL-12A, to form the IL-12 complex. As the IL-23 pathway was not well 

known at the time of the identification of IL-12B as predisposing factor, it was hypothesized 

that IL-12 (the function of which was already determined) is causally involved in the 

development of psoriasis. And indeed, therapeutic targeting of IL-12B showed improvements 

of psoriasis severity in a phase I clinical trial, albeit the response rate was not as convincing as 

hoped for [135]. Therefore, the genetic predisposition landscape of psoriasis was more closely 

investigated in an association study and it was found that not only IL-12B is associated with 

psoriasis risk, but also IL-23-A, as well as the IL-23 receptor, IL-23R [136]. This led to the 

closer exploration of the IL-23 pathway that showed that this interleukin activates very different 

immune cells than IL-12.  In addition, screening of expression data showed an up-regulation of 

the expression of IL-12B and IL-23 mRNA in psoriatic lesions, but no change in IL-12A 

expression [137]. This knowledge motivated the development of an antibody specific to IL-23-
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A (tildrakizumab). The recent report of the phase I clinical trial of this antibody showed a 

success rate of 92.8% [138]. 

However, in view of the thousands of robust association results produced by GWA studies, 

such examples are still rather the exception than the rule. The main challenge in translating 

common trait-associated markers into molecular pathways results from the haplotype structure 

of the human genome [121]. High LD between frequent markers complicates the selection of 

the most plausible candidate for inference of causality out of the set of correlating variants. As 

the variants’ alleles occur together in almost all individuals, it is even possible that instead of a 

single causal variant the whole haplotype consisting of several correlating variants may affect trait 

predisposition by several separate mechanisms, for instance by affecting the expression of distinct 

genes by altering several regulatory elements. This again impedes the projection of variant 

effects on candidate genes that may be subjected to functional studies if the LD-block spans 

across multiple or no genes. And even if there is only one single gene, the possibility remains 

that the effector gene underlying the association may be located in a completely different 

genomic region if the variants affect cis- or trans-acting regulatory elements instead of the co-

located gene.  

For rare variants, on the other hand, the main challenge is to show that the individual 

variants are not neutral but indeed affect the trait. This is mostly done by predicting variant 

effects using a catalogue of genomic elements. There are several tools that provide predictions of 

functional consequences such as Annovar, the Ensemble Variant Effect Predictor, or SNPEff 

[139-141]. The most straightforward way to establish effectiveness of a variant was long 

considered to be the proof that a rare allele alters the amino acid sequence of a protein in a 

damaging way, leading to LOF or reduced activity either by functional amino acid substitutions, 

insertions of premature stop-codons or altered splicing. Therefore, the abovementioned tools all 

rely on algorithms like SIFT [142] or PolyPhen [143] that predict the extent of damage 

introduced by coding variants.  

As mentioned before, this emphasis on variants located in protein-coding genes ignores the 

majority of association results. Yet, the ability to assess regulatory effects exerted by non-coding 

variants on a large scale has been established only recently. Although expression quantitative 

trait loci (eQTLs), that is, associations of genetic markers to changed levels of transcript 

expression, have been used to infer causality almost since the beginnings of GWAS, genome-

wide datasets on the genomic localization of regulatory elements are released only since 2010. 

Due to the short timeframe since this shift of focus has taken place, there exist only few 
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examples where such regulatory variants have been thoroughly studied. Nonetheless, these 

studies show very promising results. For instance, a recent study on cis-regulatory variants 

affecting 21 autoimmune diseases was able to show strong enrichment of such variants in 

enhancer-like transcription factor binding sites (TFBSs) [144]. A related approach to underpin 

genetic loci with molecular mechanisms via an intermediate phenotype is the combination of 

GWAS with metabolomics screens (mGWAS). In inborn errors of metabolism, core enzymes of 

the human metabolism are impaired by rare mutations leading to extreme and eventually toxic 

metabolite concentrations. However, more common, less severe genetically influenced 

variations of metabolite levels can still provide valuable insights into the links between genetic 

variation and altered cellular functioning as well as global metabolic homeostasis. The first 

mGWAS was published in 2008 by GIEGER and colleagues, investigating associations between 

common SNPs and >350 metabolite concentrations [145]. Although the study had access to a 

limited number of samples (g = 284), they could still identify four significant associations 

between genetic loci and metabolite levels (metabolite quantitative trait loci, mQTLs). Several 

other mGWAS with larger sample sizes followed that could show that mQTLs can be replicated 

across cohorts, that they explain a significant fraction of the genetic variance of metabolic traits, 

and, intriguingly, that many of the identified loci harbor an enzyme that is functionally 

connected to the associated metabolic trait(s) [146]. For both eQTLs and mQTLs an 

enrichment of loci associated to clinical phenotypes became apparent, showing that the 

combination of data on different –omics can lead to further evidences usable for generation of 

hypotheses on the molecular mechanisms leading to human diseases. 

However, considering all genes and their protein products, regulatory elements, eQTLs and 

their targets, the tissues and cell types where they are active, as well as additional intermediate 

traits such as mQTLs, and using all this data to annotate variant sets on a genome-wide scale is 

complicated by the complexity of comprehensive integrative analyses. Therefore, most studies 

limit their scope with regards to the tissue of interest, a single trait or a class of traits (such as the 

mentioned autoimmune diseases), or the set of genomic data that is incorporated into the 

variant annotation. The result is that, in order to be able to reuse a successful approach for other 

traits (or even if the setting is the same but additional association data become available), similar 

data integration approaches have to be applied before the actual analyses can be performed. 

Figure 6 shows the increasing pace at which GWAS results have been published for the last 

years, and with the advent of the broad use of NGS technologies the number of variants that 

need evidence-based annotation increases even faster. Thus, the redundancy in the application 
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of integrative approaches – that is still partly done manually – is a rate-limiting step in 

biomedical discovery and its translation to clinical use.  

1.9 Objectives of this thesis 

The central goal of this thesis is to address this bottleneck by demonstrating the benefits 

offered by automatized, re-usable integrative approaches to predict molecular effects of genetic 

markers linked to human traits and diseases. Beginning with the primary task of identifying 

genetic associations to disease and intermediate traits and ending with the generation of testable 

hypotheses regarding the putative molecular mechanisms underlying the association signals, I 

describe computational data processing pipelines, ready-to-use data integration resources, as 

well as integrative analysis approaches that facilitate the study of genetic variants and their 

potential impact.  

The introductory Chapter 2 illustrates the fundamentals of data integration, its complexity, 

and the associated obstacles with focus on applications in genomic and genetic studies. The 

technical descriptions of the major data integration frameworks and basic methods for 

integrating, harmonizing, and consolidating biological data are thus dissolved from the studies 

reported in chapters 5 and 6 where I actually used the concepts. This is done in order to 

increase the accessibility of these more results-oriented chapters. 

Chapter 3 lists the data, methods, and software tools used throughout this work. It 

introduces the cohorts and datasets that are used in the GWA studies reported in chapter 4. 

Further, it describes the main features of the developed modular workflows (or pipelines) to 

automatically perform complete GWAS and CNV analyses in concordance with best-practice 

guidelines. The chapter also includes the mathematical concepts, the bioinformatics tools, and 

the software utilized to study and annotate genetic variants as well as a comprehensive list of the 

datasets and resources incorporated in the integrative analyses described in chapters 5 and 6.  

The results of three GWA studies are reported in chapter 4. The first GWAS investigates 

the sudden infant death syndrome (SIDS). Here, the process of performing a GWAS is 

introduced in detail, as is the protocol for calling CNVs using genotyping array data. The results 

of the GWAS show that SIDS is almost certainly not caused by strong complex genetic factors. 
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In an attempt to emphasize the complexity of linking genetic associations with disease traits to 

molecular mechanisms, the suggestive significant loci are annotated with the available evidences 

and we derive some plausible, albeit still speculative, hypotheses. The CNV analysis, on the 

other hand, provides evidence that for several of the included cases large deletions may have 

caused monogenic disorders resembling SIDS by leading to sudden unexpected death in infancy 

(SUDI) with inconclusive autopsy outcomes. Therefore, we suggest including cytogenetic 

screens into the standard protocol for autopsies if SIDS is considered as cause of death. The 

second and third GWAS explore the genetics of intermediate quantitative traits by searching for 

genetically influenced metabolite concentrations in human blood and urine samples. At the time 

of their publication, the studies were the largest in their fields, in combination identifying more 

than 160 genetic loci linked to metabolic traits. For both studies, it is adumbrated how 

additional data from genomic resources and text-mining can be included to support the process 

of linking biological information to genetic associations to enable the selection of the most 

plausible predicted causal genes. In the study on blood metabolites, this process was performed 

completely manually which was highly labor-intensive. In the investigation of genetic 

influences on urinary metabolic traits, we therefore developed a pipeline that performs most of 

the necessary annotation steps automatically.  

Chapter 5 presents the data integration resource SNiPA that was used to develop the 

pipeline described in chapter 4. It contains a plethora of genomic annotations that are used for 

evidence-based characterization of genetic variants. The resource comprises genome-wide 

prediction of variant effects for the complete 1000 genomes variant set. Variant annotations are 

provided in a user-friendly webserver featuring the first genetic variant-based genome browser, 

as well as several other access modules that provide entry points to the analysis steps commonly 

applied in the interpretation of results from genetic association screenings. In this chapter, we 

also give a very detailed description of the development process of such a genomic resource, 

thus substantiating the introduction to data integration given in chapter 2.  

In Chapter 6, I describe three studies that provide examples of how such an information 

basis can be used to advance our knowledge on the mechanisms underlying the genetics of 

complex human traits. In the first study, the concept of biological networks is introduced and 

applied to trait-associated variants to explore the specificity of genetic loci linked to human 

disorders. It is demonstrated that there is a substantial overlap of GWAS signals linked to distinct 

human diseases. By close investigation of the allelic structure of such overlapping genetic loci it 

is shown that there is evidence for both common pathways linking the etiology of similar 
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disorders and pleiotropic effects that, depending on the present alleles, predispose to one disease 

while protecting against another. The second study then describes the application of integrative 

analyses of the effects of genetic risk factors on specific regulatory entities by intersecting SNPs 

with miRNA target sites. It is shown that there is significant evidence for the interrelations of 

trait-linked variants and the regulatory level, indicating the complex mechanisms underlying the 

etiology of complex disorders. To investigate regulatory effects of non-coding genetic variants 

further, the third study compiles a novel clustering of gene-associated promoter and enhancer 

elements. Using chromatin immunoprecipitation DNA-sequencing (ChIP-seq) data for the 

annotation of active regulatory sites, we show that the annotations from distinct datasets on 

regulatory elements conform quite well to each other. Using eQTL data for assessing the 

applicability of these regulatory clusters in the assignment of the target genes of putative 

regulatory-acting genetic variants, we demonstrate that, to a large proportion, the correct genes 

can be predicted using the compiled set of regulatory elements.  

The scientific contributions of this thesis are then summarized, embedded in the context of 

the field, and augmented with potential future research directions in the final Chapter 7. 
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2  Data integration 

In the study of genetic variation and its effects on the phenotype, consideration of all 

biological entities possibly involved in the translation from genotype to phenotype is the key to 

identify the particular changes that lead to human disorders and that simultaneously may be 

targeted by therapeutic intervention. The collection, harmonization, consolidation, and 

provision of all data in a machine-accessible way is the task of a discipline called data integration 

that, when applied on biological data, is a subfield of computational biology. The complexity of 

the interrelations of biological elements has been adumbrated in the previous chapter and is 

detailed and illustrated further. The following also describes the process of integrating complex 

biological data without loss of information for the available knowledge to be usable by 

automated methods searching for patterns of genetic influences and how they may affect the 

development of complex traits. The introduced concepts are used in chapters 5 and 6, where 

the implementation of the single steps is described in detail. 

2.1 Data integration frameworks 

When investigating interrelations between biological entities originating from differing 

sources, it is important to ensure comparability of these sources to provide a unified view on the 
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complete data on which the global analyses are performed. In general, there are two different 

theoretical frameworks to achieve this: local-as-view (LAV) and global-as-view (GAV) [147]. 

Both frameworks consist of a global (unified) schema, source schemata (the primary data), and a 

mapping that describes the formulation of queries to the global schema by means of queries 

submitted to the source schemata. In LAV frameworks (database federations), the sources are 

integrated in the global schema by expressing each source as a view on the global schema. This 

way, the global view is logically detached of the particular sources enabling efficient extension 

by additional sources, especially if these sources are of similar format. The efficacy of querying 

the source data, however, is affected as the results provided by each source view have to be 

merged and cleansed in accordance to the assertions established via the mapping to the global 

view. In GAV frameworks (data warehouses), on the other hand, the global schema is expressed 

as views over the sources, is thus directly linked to the source schemata, and can be queried 

efficiently. Including additional sources, however, is complex as the definition of the global 

view is affected by each newly integrated source, making GAV frameworks rather inflexible 

when it comes to the integration of complex and dynamic data. 

Integration of genomic data is often solved by a hybrid of the two frameworks (database 

federations with mediated schemas) [148]. This is due to the nature of genomic data. The 

backbone of all genomic data is provided by the reference genome sequence. To this sequence, 

all other physical entities such as genes, transcripts, variants, and regulatory regions are mapped 

via a coordinate system. Secondary data such as specific annotations for, interactions between, 

and cell type specificity of these entities, are then linked to the entities either by physical 

position or via entity identifiers. While the schema of the genomic sequence and the mapping of 

entities to it is very stable (unless a new entity type is discovered that cannot be expressed as one 

of the existing entities), this data can be conveniently stored in a GAV framework. This has the 

advantage that these mappings, containing hundreds of millions of data points, can be queried 

efficiently. In addition, upgrades to the GAV are only required if there are major updates to the 

underlying data sources – such as the release of a new genome assembly. Patches of the 

reference genome or mapping updates of contained entities can be easily applied. The more 

dynamic – as accumulating with every additional experiment – secondary data can be handled 

by a LAV framework. To be extendible, the LAV framework only needs to provide generalized 

mappings for each included experiment type. As data formats reporting the results of 

experimental protocols get more and more standardized, considerably less adjustment is needed 

for the LAV to include new data sets. Using a third mapping layer (the mediated schema), the 
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LAV and GAV frameworks are then linked into an analysis platform where the integrated and 

unified data can be investigated while data sources remain adjustable, updatable, and extendible. 

For the resource described in chapter 5, I used this hybrid to separate the more dynamic data 

from the genomic backbone, in order to enable several updatable layers. 

2.2 Data harmonization 

In the previous section, the data integration frameworks suitable for genomic data have 

been introduced. This section now describes how the data has to be harmonized for the 

annotation of genetic variants. As mentioned, genomic entities are usually aligned to the human 

reference genome sequence. This implies that there is a universally used reference genome 

which, in practice, is not the case. The Genome Reference Consortium (GRC) continues to 

decipher the complete sequence of the human genome and, during this process, patches of the 

reference sequence as well as fully-fledged new assemblies are released. This complicates the 

unification of genomic data sources as they may be mapped to different assemblies (or patches of 

assemblies) leading to inconsistencies of the mapping coordinates. 

Therefore, the first task in integrating genomic data is to obtain a mapping of the 

coordinates of all contained entities to the same version of the reference sequence. Large 

resources like Ensembl [149], the National Center for Biotechnology Information (NCBI) 

[150], or the University of California Santa Cruz (UCSC) genome browser [151] integrate 

many sources conform to the same assembly version. For custom data sets, however, this task 

resides at the researcher. There are tools available at each of these resources that map genomic 

coordinates between assemblies, but there remain some obstacles. For instance, the current 

Ensembl gene build (GENCODE 21 [152]; contains genes, transcripts, and protein sequences) is 

only available for the current genome assembly GRCh38 while many other genomic data is 

only annotated for the older GRCh37 assembly. Global mapping of coordinates between these 

assemblies is not trivial as some sequence parts present in the older assembly are missing in the 

new one and vice versa. Also, in the realignment for the GRCh38 assembly, some sequences 

from the old assembly have been mapped to different chromosomes with some break points 

splitting entities mapped to one location in the old assembly into two or more pieces. Resolving 
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such discrepancies is very complex as it is often only achievable by merging the data available for 

two (or more) assembly versions. This was one of the major obstacles in designing the data 

integration resource described in chapter 5, where I propose an approach that solves this 

problem. A similar issue is the mapping of locally aligned genomic elements to the global 

coordinate system. For instance, binding sites of RNA-binding proteins (RBPs) are often 

mapped to the processed (exonic) transcript RNA sequences. In order to project coordinates 

relative to transcript positions back to the genomic coordinate system, RNA processing has to 

be reversed without losing the information of a binding site overlapping a splice site leading to a 

pair of genomic ranges instead of a single coordinate location. Individually, these steps do not 

rely on complex algorithms, however, to be performed on genome-wide scale, each step has to 

be automated and therefore all eventualities have to be taken into account before processing the 

data. For instance, in the study on interrelations between trait-associated SNPs and miRNA 

regulation pathways (chapter 6), we used the exonic sequence of human transcripts for 

prediction of miRNA target sites which were then mapped back to genomic coordinates to 

search for genetic variants affecting the obtained targeting intervals. 

The second task is to unitize all sources containing data on genes, transcripts, and proteins 

to a single gene build. The three abovementioned resources all feature own gene builds each 

differing from the others and many further resources on genes, transcripts, and proteins are 

available. Secondary data sources on these elements are created using the gene build of the 

researcher’s choice, leading to great heterogeneity of information. This problem has been 

recognized and led to the initiation of projects such as the consensus coding sequence (CCDS) 

project [153] that aims at building a common consensus set of protein-coding genes. However, 

CCDS identifiers (and others of the kind) are still used rather unfrequently. Mapping of genes, 

transcripts, and proteins between different gene builds therefore remains a major challenge in 

large-scale genomic data integration approaches. 

The third task is the deduplication of data. Entity types such as SNVs or transcription factor 

binding motifs are, too, referred to using several distinct identifiers across resources or even 

within the same resource. To avoid ambiguity of the integrated data as well as to provide quick 

access to each unique entity, identifiers have to be merged to a single entry and, equally 

important, kept up-to-date to be able to link to the active entries of each source. To be able to 

integrate older data sources that may contain “retired” identifiers later on, building of an 

identifier mapping history is a further essential step. 
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2.3 Data consolidation 

There are different ways of how to consolidate, to merge, and to annotate integrated data. 

Depending on the data representation, the implementation of (inter)relations between entities 

requires differing amounts of programming and different means of data optimization. Here, the 

most important data representation frameworks and their strengths and weaknesses will be 

shortly introduced. 

RELATIONAL SCHEMAS – Maybe the most established data representation is the relational 

schema implemented in database management systems (DBMSs) like SQL or Oracle. All large 

data warehouses (Ensembl, UCSC, dbSNP, and others) use MySQL databases for data 

representation. In general, to store data in a relational schema, the data has to be normalized and 

transformed in order to be representable by relations. This bears the greatest benefit of relational 

databases: the data has to fulfil quality properties before it can be inserted in the schema. 

Relational storage engines display data as a set of transactions that all have to provide the ACID 

(Atomicity, Consistency, Isolation, Durability) properties as a minimal prerequisite [154, 155]. 

The most criticized weakness of relational databases is the query efficiency: to conform to the 

ACID principles, the data is normalized and split into several relations (tables) such that 

redundancies are minimized. Normalization requires that all entries in one relation contain 

comparable data, meaning that data fields have to be of identical format (numbers, characters, 

etc.). To get information on entries, the data distributed across the relations has to be rejoined 

during the query process. This is done using keys that are overlaid with index structures for 

quick access. The query performance of such indices is high if the keys are simple, such as 

unique names (identifiers) for entities. Coordinate-based queries as for genomic data, on the 

other hand, are not very efficient as the keys consist of three values (chromosome, start position, 

and end position) which complicates index construction resulting in very large (and, thus, 

inefficient) index structures. To optimize relational databases for genomic coordinate-based 

queries, chromosomes are split into smaller bins to reduce the size of the index tree. The 

disadvantage of this approach is, of course, that the inversed query, that is retrieval of the 

genomic coordinates of a specific entity, is slower because the bin structure has to be resolved 

beforehand. However, as there are by far fewer bins per chromosome than possible coordinates 

per whole chromosome, this optimization is very efficient. In summary, to use relational 

schemas for data representation, the highest workload has to be put into input data 
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normalization to obtain complete and structured data. Access to the data via queries as well as 

compliance checks with ACID properties is provided by the DBMS. Therefore, 

implementation of consistency measures or access interfaces is unnecessary. Efficiency 

optimization is query-based and can be adjusted to the use-case. 

SEMI-STRUCTURED DATA – A major drawback associated with the relational schema is 

its perceived inflexibility regarding the inclusion of unstructured data types. Although basically 

relational schemas can represent any kind of data, the rigid technical structure of the database 

schemata complicates the illustration of data in an intuitive way. Semi-structured data 

representation formats such as XML (extensible markup language) or derived formats like 

HTML (hypertext markup language; used for displaying websites) provide a backbone to 

structure per se unstructured data. This is achieved by using markup tags that encapsulate the 

data and make entities identifiable. Using metadata style sheets, tags can be bound to data types, 

but this is optional and, contrary to relational representations, violations against the style 

specifications are tolerated. Additionally, tags can be self-defined, leading to unlimited 

possibilities of designating data. However, for these reasons, checks for consistency, 

completeness, and structure of the data as well as the provision of a query language to obtain 

data has to be implemented for each representation individually. The efficiency of accessing the 

data is highly dependent on this implementation. 

One bioinformatics application of XML-like representations (e.g. GRAPHML) is the 

storage of network structures. A network is defined as a graph 3 = �h, 4	 consisting of a set of 

vertices/nodes h and a set of edges 4 connecting the vertices. If there are several distinct sets of 

nodes h = h� ∪ ⋯ ∪ hd, the resulting graph is called k-partite. In biological networks, a node is 

defined as any biological entity like a genetic variant, a gene, or a phenotype. Edges linking 

vertices therefore define some biological connection, such as interactions, correlations, genomic 

co-location, or associations. To represent such diverse data, relational schemas would require 

relations for each node and edge type. In GRAPHML, the node and edge tags can contain any 

sub-tags defining various properties without the necessity of converting the data into equal 

formats. By using or ignoring tag classes of nodes and edges, entities can be included or 

excluded in global or local analyses, making semi-structured data representations prime 

candidates for network analysis. In our study on genetic correlations between complex traits 

(chapter 6), we utilized these properties both to store complex and diverse data and to closely 

investigate network properties by selecting sub-networks by different tags. 
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In summary, semi-structured data representations allow for fast, individualized and intuitive 

description of information. The highest workload has to be put into developing interfaces to 

access the data via queries, add new entries, as well as check for data consistency. Efficiency of 

accessing the data can range from very high to very low depending on the nesting depth and 

complexity of the data structure and the implementation of information traversing. 

STRUCTURED DATA/ONTOLOGIES – As mentioned above, semi-structured data 

representations can be bound to data types using style sheets. Via extension using an ontology, 

that is including object-like attribute assignments to tags and metadata assertions that prohibit 

violations of data types and attribute specifications, semi-structured data can be converted into 

structured data representations [156]. Examples include OWL (web ontology language) or 

NoSQL (not only SQL) DBMS, however, structured data can be obtained by any assertion-

based programmatic approach. As assertions are, in contrast to the implementation in relational 

schemas, detached from the data and can be defined for any subset of the data, structured data 

representation frameworks are less rigid than relational representations. This, however, again 

leads to the need for implementing checks for consistency, completeness, and structure of the 

data as well as the provision of a query language. In the age of big data, structured data 

representations are becoming increasingly popular because of their seemingly unlimited 

flexibility. In the process of integrating mGWAS results for reporting genetic associations with 

metabolic traits described in chapter 4, we incorporated a metabolite ontology in order to be 

able to categorize metabolites into pathways and use this categories for downstream analyses. 

However, as the performance of data management, structuring, and access relies heavily on the 

implementation of the structured framework (and also because query efficiency is often 

achieved by introducing data duplicates, and thus ACID violations, on purpose), there is a 

movement towards more efficient relational schemata (so-called NewSQL systems) [157]. 

Ontologies that are very standardized by assertions and thus avoid the mentioned shortcomings 

are very useful and valuable, but due to predefined structures as inflexible as relational schemata. 

2.4 Data integration in human genetics 

The complexity of interpreting the molecular effects of genetic variants linked to human 

traits lies in the non-linear interplay between the different regulatory layers that in concert 
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consummate the translation from the genotype to the phenotype (Figure 9). Understanding the 

processing of information between these different layers is the key to enable genotype-based 

prediction of phenotypic outcomes. However, despite the growing amount of data generated 

by the different –omics fields, current studies mostly investigate interrelations between only two 

of the layers. This results from the curse of dimensionality (termed by RICHARD BELLMAN 

[158]) – the lack of statistical power to detect significant interactions between the layers due to 

the exponential growth of data dimensions when combining –omics data of different types. A 

notable exception that is becoming more and more popular is posed by analyses of Mendelian 

randomization [159] (based on MENDEL’S principle of independent assortment), where it is tried 

to identify the effect direction exerted by a variant that is associated both with a trait with effect %lm5→noI�f and a potential intermediate phenotype (e.g. expression levels of transcripts) with 

effect %lm5→��fLo*Lc�IfL. In this setting, the two effect estimates are combined, for instance using 

the Wald ratio method [160], to obtain an estimate if the variant effects only the intermediate 

phenotype that then influences trait susceptibility or if the genetic effects on the two phenotypes 

are independent. However, until now there are only few cohorts available that have been 

subjected to analyses of more than two –omics types in sufficient sample sizes to provide the 

necessary statistical power for multi-dimensional analyses, and therefore different means of 

integrating the available data on the distinct layers are needed.  

A commonly used approach is to collect the available evidence on the variants found to be 

associated with the trait under study as well as on the potentially affected genes from published 

data to formulate hypotheses on the molecular effects exerted by those variants. For instance, in 

2010 the GABRIEL consortium published a genome-wide association meta-analysis 

investigating genetic predisposition to asthma [161]. One of the findings of the study is the 

replication of a previous association between SNPs within the chromosome 17q21 locus and 

childhood-onset asthma. In their rationale, the authors refer to two eQTL analyses that detected 

significant associations between the same SNPs and the expression of two genes within 17q21, 

ORMDL3 and GSDMB. As a third study showed that changed expression levels of the yeast 

ORMDL3 homolog leads to disturbances in sphingolipid metabolism and a fourth study 

observed the involvement of sphingolipids in inflammatory processes, the authors conclude that 

the associated locus is linked to asthma via “MODULATION OF AIRWAY INFLAMMATION”  [161] 

due to an intermediate phenotype, i.e. the altered metabolism of sphingolipids. Thus, based on 

the outcome of a study on two layers (variance of the genome and asthma as part of the 
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phenome), the authors use published data to include two further layers, namely the 

transcriptome and the metabolome, in their hypothesis on the predisposing molecular effect.  

 

 
Figure 9: Schematic view of the different –omics layers from genome, epigenome, transcriptome, 

proteome to the phenome. Examples for biological entities and mechanisms are given. LOH: loss of 

heterozygosity; TFbs: transcription factor binding site; Me: methylation; CSF: cerebrospinal fluid; 

Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Genetics [162], copyright 

2015. 

The process of integrating the available data into study-specific context can be referred to as 

results integration. With the advances in –omics measurement techniques, nowadays there are 

many further possibilities to corroborate hypotheses with molecular evidence. Modelling of the 

effects of genetic variation across all available layers using results integration or directly 

combining measurements in multi-dimensional analyses is also referred to as systems genomics. 

In their recent review, RICHIE et al. describe the promises of systems genomics as follows: 

“THE REDUCTIONIST PARADIGM OF LOOKING FOR THE 'LOW-HANGING FRUIT' 

(THE SINGLE VARIABLES THAT EXPLAIN SOME PORTION OF TRAIT VARIABILITY) 

IS SLOWLY BECOMING LESS PREVALENT. NOVEL QUESTIONS WILL BE ASKED 

ABOUT THE COMPLEX INTERPLAY OF DIFFERENT TYPES OF OMIC DATA USING 

NEW STATISTICAL AND MACHINE-LEARNING APPROACHES AS MORE 
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RESEARCHERS THINK 'OUTSIDE THE BOX'. THESE EMERGING SYSTEMS 

GENOMICS APPROACHES YIELD MORE INFORMATIVE RESULTS, AND THE PACE 

OF DEVELOPMENT WILL ACCELERATE. AS THE TOOLS BECOME MORE READILY 

AVAILABLE AND AFFORDABLE, SUCH SYSTEMS GENOMICS APPROACHES WILL 

PREVAIL AS THE DOMINANT TYPE OF STUDY DESIGN AND ANALYTICAL 

STRATEGY ― THE DAYS OF STUDYING MOLECULAR DATA VARIABILITY IN 

ISOLATION ARE SLOWLY COMING TO AN END.” 

Ritchie et al., 2015 [162] 
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3  Materials and methods 

This chapter introduces the cohorts, the genotyping arrays, applied quality control 

measures, and the data sets and software tools that were used for genotype imputation, GWAS 

analyses, and CNV calling and filtering. Further, it lists the data sources incorporated into 

integrative resources utilized for variant annotation, the used software, as well as a summary of 

the most relevant mathematical and statistical concepts used in the different studies. The 

materials and methods described in this section have been partly published in our papers [58, 

116, 163-165]. 

3.1 Description of cohort data 

3.1.1 German study on sudden infant death (GeSID) 

The German study on sudden infant death (GeSID) [166] recruited 455 infants succumbed 

to sudden infant death syndrome (SIDS) in 18 study centers between 1998 and 2001. Cases 

were examined using a standardized autopsy protocol including morphological, histological, 

toxicological, and neuropathological parameters as well as microbiology and virology screens. 

For 373 cases, parents consented both to fill out a comprehensive questionnaire and to provide a 

thorough family history. Only infants suffering from sudden unexplained death where no clear 
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causes of death could be determined postmortem were classified as SIDS (g = 331). For 317 of 

those, genome-wide genotyping was performed using Illumina HumanHap660W-Quad 

BeadChips (657,366 markers). 

3.1.2 Sheffield Children’s Hospital SIDS Cohort (SCHC) 

The Sheffield Children’s Hospital recruited 121 cases of sudden unexpected death in 

infancy (SUDI) from the UK in a three-year period from 2004 to 2007 [167, 168]. SUDI cases 

underwent complete autopsy following a comparable protocol as in GeSID. Thereon, 51 infants 

were classified as succumbed to SIDS as no clear cause of death could be identified postmortem. 

Blood samples were available for 48 of these cases and were used for genome-wide genotyping 

using Illumina HumanHap660W-Quad BeadChips (657,366 markers). 

3.1.3 Kooperative Gesundheitsforschung in der Region Augsburg (KORA) 

The Kooperative Gesundheitsforschung in der Region Augsburg (KORA) [169] unites a 

set of epidemiological surveys and follow-up studies of participants from the general population 

in the region of Augsburg in southern Germany. The analyses described in this thesis include 

subsets of the data from the follow-up study KORA F4 (2006–2008) of the KORA S4 survey 

(1999/2000). As population-based controls for the study on genetics of SIDS, we used 823 

healthy individuals (425 males and 398 females) which were genotyped on the Illumina 

HumanHap550-Quad+ BeadChip (539,741 markers). Genotypes were called using Bead 

Studio. As age matching is not feasible in SIDS, we performed sex-adjusted association analysis 

as well as right-censored Cox hazards regression to include age at death as a covariate. Further, 

for the characterization of genetic influences on metabolite concentrations in blood samples, we 

included 1,768 subjects (858 males and 910 female) from the F4 study which were genotyped 

using the Affymetrix Genome-Wide Human SNP Array 6.0. Genotypes were called with 

Birdseed 2. In this study, age, sex, and body mass index (BMI) were included as covariates 

[116]. And finally, in the analysis of genetic influences on urinary metabolite concentrations, we 

included 1,691 individuals (826 males and 865 females) from the F4 study. Those are a subset of 

the above 1,768 subjects genotyped on the Affymetrix 6.0 array. Here, age and sex were 

included as covariates [165]. 

3.1.4 UK Adult Twin Registry (TwinsUK) 

In the UK Adult Twin Registry (TwinsUK), twins from the general population in the UK 

were recruited through national media campaigns [170]. Of the 6,056 samples used in the study 

on genetically influenced metabolite concentrations in human blood, 93% were female in the 
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age range of 17 to 85 years. Genotyping was performed with a combination of Illumina arrays 

(HumanHap300, HumanHap610-Quad, Human1M-Duo and Human1.2M-Duo 1M) and 

calling was performed with Bead Studio. As for KORA F4, age, sex, and BMI were included as 

covariates [116]. 

3.1.5 Study of Health In Pomerania (SHIP) 

The Study of Health In Pomerania (SHIP) [171] was planned as a cross-sectional “CLASSIC 

PREVALENCE STUDY” [172] and later expanded into a longitudinal population study comprising 

three measurement time points: the initial survey (SHIP-0; 1997-2001), a five-year follow-up 

(SHIP-1; 2002-2006), and a twelve-year follow-up (SHIP-2; started in 2008). For the study of 

genetically influenced urinary metabolite concentrations, we used 3,861 (1,901 males and 1,960 

females) individuals from the 4,308 SHIP-0 subjects for whom both genotype data (obtained 

using the Affymetrix Genome-Wide Human SNP Array 6.0 and called using Birdseed 2) and 

urine samples were available. As for KORA F4, age and sex were included as covariates [165]. 

3.1.6 Control cohort from the PopGen biobank 

The PopGen biobank [173] was launched in 2003. Recruitment between 2005 and 2007 

resulted in 1,317 study participants from the general population in Schleswig-Holstein, 

Germany. For 678 (257 males, 421 females) of those, genotype data was obtained using the 

Illumina HumanHap550-Quad+ BeadChip (539,741 markers) [174]. 

3.1.7 Metabolic profiling of KORA F4 and TwinsUK blood samples 

We used the mass spectrometry (MS)-based platform of Metabolon Inc., Durham, USA, 

for profiling of 529 plasma and serum metabolites. Of those, 333 are of known identity and fall 

into a wide range of biochemical classes: amino acids, acylcarnitines, sphingomyelins, 

glycerophospholipids, carbohydrates, vitamins, lipids, nucleotides, peptides, xenobiotics and 

steroids. The remaining metabolites are “unknowns”, meaning that they can be reproducibly 

measured but their chemical identity has not been identified yet [116]. 

3.1.8 Metabolic profiling of KORA F4 and SHIP-0 urine samples 

Overnight-fasting urine samples for KORA and non-fasting, spontaneous urine samples for 

SHIP-0 were collected and stored at -80°C until analysis. Nuclear magnetic resonance (NMR) 

spectra were acquired at the University of Greifswald, Germany, using a Bruker DRX-400 

spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) [165]. Baseline-corrected, 

Fourier-transformed spectra were manually annotated (spectral pattern matching, Chenomx 
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Worksuite 7.0, Chenomx Inc., Edmonton, Canada) to retrieve 60 compound concentrations 

(including creatinine) for targeted analysis and automated spectral alignment and feature 

extraction implemented in the FOCUS software [175] to obtain individual NMR peaks for 

non-targeted analysis. To obtain absolute concentrations, signal intensities of NMR peaks were 

normalized using trimethylsilylphosphate of which 0.5mM was added to the samples before 

measurement. To account for dilution effects, signal intensities were additionally normalized 

using creatinine concentrations [165] (it has been shown that, provided kidney function is 

normal, in absence of dilution factors creatinine concentrations in human urine are close to 

constant to a value of 1g creatinine per 20kg muscle mass per day [176]). 

3.1.9 Ethics 

All 19 centers providing SIDS case data obtained the approval of their local medical ethics 

committees. All participants in SHIP-0, TwinsUK, PopGen, and KORA have given written 

informed consent and the respective local ethics committees (SHIP: ethics committee of the 

University of Greifswald; TwinsUK: Guy’s and St. Thomas’ Hospital Ethics Committee; 

PopGen: ethics committee of the Christian-Albrechts-University in Kiel; KORA: ethics 

committee of the Bavarian Chamber of Physicians in Munich) approved the studies. 

3.2 GWAS analysis pipeline 

During the GWAS on SIDS, I developed this pipeline consisting of a modular collection of 

BASH, PERL, and R scripts covering the steps of data preprocessing, quality control (QC), 

association analysis, imputation, and GWAS meta-analysis. In the Bachelor thesis of CHRISTOF 

SCHRAMM, the modular structure of the pipeline has been used to develop an automated 

GWAS analysis workflow system utilizing the graphical user interface of the KNIME (Konstanz 

Information Miner) platform [177].  

3.2.1 Data preprocessing 

There are several prerequisites that have to be met for variant data to be subjected to 

merging of data sets as well as for imputation. For instance, to impute genotypes using reference 

panels, all alleles have to be designated by the forward or plus strand allele of the same reference 
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genome. The same holds true for merging processes of several genotype datasets to avoid 

erroneous allele counts if allele codes are ambiguous. The first module of the pipeline therefore 

performs strand mapping and simultaneously adjusts the genomic coordinates of markers (e.g. 

for results plots) using a backbone of manufacturer manifest files of different genotyping 

platforms (Illumina and Affymetrix, obtained at the manufacturers’ websites) as well as up-to-

date variant coordinate mappings obtained at dbSNP [178]. I implemented the module also to 

provide the functionality of merging data sets correctly. This is performed in three steps: first, 

the core data set is updated with correct variant positions and alleles are flipped to the plus strand 

where necessary. Second, the marker set of the data set that shall be merged is compared to the 

core set and discordant missing / monomorphic markers are identified and cached. Alleles are 

then remapped and flipped if necessary and the data sets are merged. Merging is performed using 

the PLINK software [179]. Afterwards, the variants marked for removal in the previous step are 

filtered from the merged files. 

3.2.2 Quality control 

The large study populations and the huge count of included markers in GWAS bear a large 

potential for false positives. Therefore, stringent QC is indispensable and, therefore, best 

practice guidelines for QC in GWA studies have been established [180] and implemented in the 

module. These include: 

1. Comparison of the sex predicted via the genotype data (estimated homozygosity of X-

chromosomal markers) to the assigned sex for all individuals and exclusion of individuals 

were the two values mismatch 

2. Computation of the kinship coefficient ( p̀; this is basically the correlation between 

related individuals described by FISHER) and iterative exclusion of one individual per 

pair exceeding a certain threshold for this coefficient (default is p̀ > 5%) while 

minimizing the number of excluded individuals 

3. Calculation of principal components or multidimensional scaling (MDS) dimensions for 

inclusion as covariates to account for population stratification. These can also be used to 

identify outliers by cluster analysis 

4. Removal of markers with low overall call rate (default is exclusion at call rate < 98%) 

5. Removal of individuals with low overall call rate (default is exclusion at individual call 

rate< 98%) 
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6. Removal of markers with minor allele frequencies (MAFs) which fall short of the range 

for which the study is statistically powered to detect associations (default is MAF< 5%) 

7. Removal of markers significantly violating the HWE. This value is, however, not to be 

set too strictly as markers associating with a trait also violate the HWE. Therefore, if this 

filter is applied on the whole data set (cases and controls) the �HIJKL threshold for the test 

of compliance with HWE is to be set lower than if only including controls for HWE 

filtering (default is 5 ∙ 10Nt vs. 5 ∙ 10Nu for controls only) 

As these filter steps are all implemented in PLINK, this module wraps and concatenates the 

consecutive PLINK commands. In addition, I wrote customized plotting scripts that are 

executed for steps 2 and 3 and PLINK log and statistics files are parsed and summarized in a 

single report. 

3.2.3 Association tests 

This module automatically checks if the studied trait is qualitative or quantitative and choses 

the right regression model accordingly. Covariates such as sex and MDS dimensions are 

automatically included. These can be selectively excluded as well as additional covariates can be 

included. Output �HIJKL are adjusted for multiple testing and data files for plotting of the 

association results are generated. Except for survival analysis, this is done again by wrapping 

PLINK runs. For survival analysis, I wrote custom R scripts fitting a Cox proportional hazards 

regression model for the common genetic models (additive, dominant, recessive, over-

dominant, and genotypic model) with and without covariates that can be called using PLINK 

via the Rserve connector [181, 182]. �HIJKLv for Cox regression are calculated using likelihood 

ratio tests (LRT) with one degree of freedom for additive, dominant, recessive, and over-

dominant models and two degrees of freedom for the genotypic model. Association analysis is 

always followed by customized R scripts producing plots of the results (QQ-plot, Manhattan 

plot). For significant hits, regional association plots are automatically generated. 

3.2.4 Genotype imputation 

This module performs pre-phasing of the study genotypes using SHAPEIT2 [183] followed 

by genotype imputation using IMPUTE2 [97]. For this, first markers are split into 

chromosomes and then pre-phased chromosome-wise. This can be parallelized by a built-in 

SHAPEIT2 option. In the second step, genome-wide genotype imputation is performed on 

5Mb chunks of the chromosomes with double-sided 250Kb overlaps. This can be either 

performed locally exploiting the count of CPU cores set by the user or completely parallelized 
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by batch-submission to a grid engine. Afterwards, imputation results are merged and filtered for 

the imputation quality (IMPUTE2 info score, default is info G 0.8). IMPUTE2 output is then 

converted back to PLINK format (this is done either with GTOOL [184] or PLINK v1.9 [179, 

185] using maximum likelihood genotypes) for further analysis. 

3.2.5 GWAS meta-analysis  

This is a custom R package for different approaches to GWAS meta-analysis. It implements 

the inversely weighted Z-score combination method [186] and the inversely weighted fixed 

and random effects models [187]. For more details, see section 3.6. Meta-analysis was used for 

the calculation of association statistics for X-chromosomal markers in the study of the genetics 

of SIDS (chapter 4). For this, association statistics for males and females have been computed 

separately and afterwards combined using this module. As the results showed no significant 

associations, this was omitted in the discussion of the results, in order to evade the unsolved, yet 

highly controversial, discussion about the male/female ratio seen in SIDS cases. 

3.3 Copy number variant analysis pipeline 

Copy number variant analysis requires the raw intensity data from the genotyping 

experiments. For Illumina BeadChips, intensity data comes in two IDAT-files per individual 

which each contains the intensity (red/green) measured for one of the two alleles of all markers.  

3.3.1 Preprocessing and intensity-based marker QC 

The pipeline performs conversion of IDAT-files, intensity quantile normalization, and 

removal of batch effects and array-to-array variability. For this, I used the Corrected Robust 

Linear Model with Maximum Likelihood Classification (CRLMM) R package [188] embedded 

in Bioconductor [189, 190]. Markers are filtered for the genotyping confidence score (>0.9) 

provided by CRLMM and for outliers from the normalized intensity distribution. Individuals 

are then filtered by individual call rate <95% and markers with genotyping call rate <95% are 

excluded. Furthermore, the overall signal-to-noise ratio (SNR) of all individuals are inspected 

and samples with  w]= < x�w]=	 − 2��w]=	 are excluded. A two-sample Kolmogorov-

Smirnov-Test against a normal distribution with x = x�w]=	 and � = ��w]=	 is performed. If 
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the test detects a deviation of the normal distribution, the outlier removal is repeated on the 

filtered set of SNR values until the SNR distribution is approximately normal. 

3.3.2 CNV calling 

As CNV analysis software is prone to produce false-positive calls, I use two different tools 

(PennCNV [191] and the VanillaICE R package [192]) for CNV calling. PennCNV uses the 

log R ratio (LRR), a normalized representation of the total intensity for both alleles of a marker, 

and the B allele frequency (BAF), the normalized allelic intensity ratio of the two alleles, for 

CNV calling. These summary statistics are generated using an inbuilt CRLMM function and 

stored in PennCNV input format for each marker for each individual. For data input to 

VanillaICE, CRLMM estimates the raw, allele-specific copy number for each marker per 

individual. These estimates are centered to mean 2.0 (“normal” copy number for diploidy) for 

autosomes and X-chromosomes of females, while X-chromosomal markers of males are 

centered to 1.0. Centered estimates are then passed to VanillaICE which uses a hidden Markov 

model for smoothing and segmentation of copy numbers. 

3.3.3 Quality control 

I use the output generated by PennCNV for determining QC thresholds for outlier removal 

by means of number of CNVs and ��y==	. The threshold for numbers of CNVs is determined 

as the 90% quantile of the total distribution, while samples with ��y==	 > 0.25 are excluded as 

recommended by PennCNV. The remaining CNV calls are intersected with VanillaICE calls 

and only CNVs that show at least 80% overlap between the two sets with the same copy 

number are retained for further analysis. Afterwards, CNVs overlapping with centromeric and 

immunoglobulin regions are removed. In a last step, I mark common CNVs by comparison 

with public control data from the Children’s Hospital of Philadelphia CNV database [193] and 

the Database of Genomic Variants [194]. For computation of CNV burden and additional 

filtering in the SIDS study, I had access to control CNVs from a cohort of control samples 

(HYPERGENES Consortium [195], g = 2,764) that were analyzed for CNVs using the same 

methods as described above and genotyping arrays (Illumina Human Omni1M) with very 

similar marker content (A. MACÉ and Z. KUTALIK, personal communication). CNVs are further 

scored by a scoring method developed by A. MACÉ (personal communication). 
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3.4 Genomic resources 

3.4.1 Genomic annotations and conservation/deleteriousness scores 

ENSEMBL – The Ensembl project is a resource jointly developed by the European 

Bioinformatics Institute (EBI) and the Wellcome Trust Sanger Institute (WTSI). Its database 

includes a wide range of genome-level datasets [149] and provides an established backbone of 

annotations for the human genome. For genome annotation we downloaded GENCODE gene 

data (including OMIM [106] and DECIPHER [196] disease annotations) as well as associated 

transcripts and proteins, regulatory feature clusters and transcription factor binding motif data as 

well as linked information from the public MySQL database. We also used many of the allele-

based annotations that are provided with the Variant Effect Predictor (VEP) [140] annotation, 

such as SIFT [142] and PolyPhen [143] predictions on the deleteriousness of non-synonymous 

nucleotide exchanges.  

UCSC GENOME BROWSER – The UCSC table browser [197] is a data retrieval tool that 

allows access to the genomic annotations contained in the UCSC genome browser [151]. From 

its design, the UCSC genome browser is similar to the Ensembl database. A significant 

difference is that, while Ensembl for a long time exclusively used its own gene model and only 

integrated external gene models like NCBI reference sequence (RefSeq) transcripts [198] that 

could be mapped to one of their own transcripts (this has changed since Ensembl version 80), 

the UCSC genome browser integrated different gene models and did the mapping between 

different sources and its own gene model afterwards. Therefore, we used the UCSC table 

browser for retrieval of the original RefSeq gene, transcript, and protein annotations.  

CONSERVATION SCORES: PHYLOP, PHASTCONS, AND GERP++ – Sequence 

conservation across species is an important indicator of the structural and functional importance 

of a nucleotide or sequence region. By now, many different scores have been developed that 

use different measures of conservation. In this work, three frequently used scores are utilized. 

Descriptions and interpretation guidelines of the scores are listed in Table 3.  

Positional phyloP- as well as phastCons-100way-alignment PHAST conservation scores 

[199] were retrieved from http://hgdownload.cse.ucsc.edu/goldenPath/hg19/phyloP100way/ 

hg19.100way.phyloP100way.bw and http://hgdownload.cse.ucsc.edu/goldenPath/hg19/ 

phastCons100way/hg19.100way.phastCons.bw. Further information on assemblies used in the 
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100way alignment can be obtained at http://hgdownload.cse.ucsc.edu/goldenPath/hg19/ 

phyloP100way/. GERP++ positional RS (“rejected substitutions”) scores [200] were 

downloaded at http://hgdownload.cse.ucsc.edu/gbdb/hg19/bbi/All_hg19_RS.bw.  

COMBINED ANNOTATION DEPENDENT DEPLETION (CADD) – KIRCHER et al. 

provide an annotation-aided score for genotype pathogenicity called CADD [201]. Genome-

wide CADD-Scores were obtained from http://cadd.gs.washington.edu/download and mapped 

to 1000 genomes genotypes using allele-matching. We used the PHRED-like transformation of 

the C-score for variant annotation. Score description and interpretation is given in Table 3. 

POLYA DB – The PolyA DB provides information on and the location of polyadenylation 

sites (polyA sites) for more than 25,000 human genes [202, 203]. The corresponding most 

abundant polyA signal variations are listed in [204].  

 

Table 3: Description and interpretation of nucleotide-based scoring methods. Described are three 

conservation scores (phyloP, phastCons, and GERP++) as well as one annotation-based, simulation-

derived deleteriousness score (CADD). 

MIRBASE – miRBase is a database developed by the WTSI that provides miRNA sequence 

data and annotation [205-207]. We downloaded the full set of miRNA annotation of release 

Score Description Interpretation 

phyloP phyloP is a conservation score represented 

as -log(P) of a test for neutral evolution of a 

nucleotide. 

Positive score: 

The position is predicted to be rather conserved. 

Negative score: 

The position is predicted to be rather fast-evolving. 

phastCons phastCons is a conservation score 

represented by the probability (i.e., range is 

0 to 1) for a nucleotide to belong to a 

conserved element. 

High score (max. 1): 

The position is predicted to be rather conserved. 

Low score (min. 0): 

The position is predicted to be rather fast-evolving. 

GERP++ GERP++ is a conservation score quantified 

in terms of "rejected substitutions" per 

nucleotide, defined as number of 

substitutions expected under neutrality 

minus number of substitutions observed. 

Positive score: 

The position shows a substitution deficit (it is conserved). 

Negative score: 

The position shows a substitution surplus (it is fast-

evolving). 

CADD CADD integrates multiple annotations into 

one metric by contrasting variants that 

survived natural selection with simulated 

mutations. The scaled (PHRED-like) C-

scores range from 1 to 99.  

A score ≥10 indicates that this is predicted to be one of 

the 10% most deleterious substitutions that you can do to 

the human genome, a score ≥20 indicates the 1% most 

deleterious and so on. 
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18, including miRNA genes, miRNA hairpins and extracted all canonical seed sequences for 

each of the miRNAs according to [208]. 

3.4.2 Population-based haplotype panels for genotype imputation 

We used the haplotype imputation panels of the HapMap Phase 2 release 22 containing 270 

individuals and the 1000 genomes phase 1 version 3 release containing 1,092 individuals for 

genotype imputation [74, 77]. 

3.4.3 Regulatory element annotations 

PROMOTERS & DISTAL ENHANCERS/REPRESSORS (DNaseI SCREEN) – In 

essence, THURMAN et al. [209] used DNaseI hypersensitive sites (DHSs) and mapped them to 

transcription start sites (TSSs) of human transcripts. Accessible DHSs in proximity to the TSSs 

are classified as promoters. The accessibility patterns of more distal DHSs have been correlated 

with the accessibility patterns of promoters across the analyzed cell types and are thus linked to 

the genes thought to be regulated by DHSs proximal to a TSS. After data processing, we 

obtained 412,798 distal elements (enhancers) and 23,749 promoters. 

EXPRESSED PROMOTERS & ENHANCERS/REPRESSORS (FANTOM5) – Two 

papers of the FANTOM5 consortium [79, 80] describe the properties, location and transcript 

associations of expressed regulatory elements (promoters and enhancers). These datasets are 

provided at http://fantom.gsc.riken.jp/data/  and http://enhancer.binf.ku.dk/, respectively. After 

data processing, we included 435,881 expressed promoters and 43,002 expressed enhancers and 

their links to human transcripts in SNiPA. 

STARBASE V2.0: MIRNA TARGET SITES – miRNA target sites located in RBP 

binding sites were obtained at the starBase v2.0 database (http://starbase.sysu.edu.cn/, released 

09/2013, accessed 16/01/2014) [210]. We included target predictions from five prediction tools 

(provided by starBase) at positions that are located in experimentally identified regions bound by 

RBPs (g = 606,408).  

3.4.4 eQTL associations 

THE GTEX CONSORTIUM – The GTEx consortium collected 1,641 samples from 43 

tissues of 175 donors and investigated gene-based cis-associations of RNA-sequencing-

determined expression traits with about 6.8 million common variants [211]. As a prerequisite, a 

sample count of greater than 60 was chosen as lower bound for calculation of associations. In 

release 6, eQTL data was available for 44 tissues: adrenal gland, anterior cingulate cortex, aorta, 
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atrial appendage, blood, breast, caudate basal ganglia, cerebellar hemisphere, cerebellum, 

coronary artery, cortex, EBV lymphocytes, esophagus mucosa, frontal cortex, gastroesophageal 

junction, hippocampus, hypothalamus, left ventricle, liver, lung, muscularis mucosae, nucleus 

accumbens, ovary, pancreas, pituitary, prostate, putamen, sigmoid colon, skeletal muscle, 

spleen, stomach, subcutaneous adipocytes, sun exposed skin, terminal ileum, testis, thyroid, 

tibial artery, tibial nerve, transformed fibroblasts, transverse colon, unexposed skin, uterus, 

vagina, and visceral adipocytes. The release comprises 19,103,582 significant variant/gene 

expression cis-associations. 

ZELLER ET AL. – MONOCYTES – ZELLER et al. investigated cis- and trans- associations 

of expression traits with >675,000 SNPs (Affymetrix SNP Array 6.0) in human monocytes from 

1,490 unrelated individuals using the Illumina Human HT-12 v3 BeadChip. A SQLite database 

dump containing the association results is provided by the authors at 

http://genecanvas.ecgene.net/uploads/ForReview/ghs_probe_express030510.zip. This data-base 

comprises imputed association data on >2 Mio. SNPs. Following the protocol in [212] 

associations were filtered for genome-wide significance (�HIJKL > 5.78 ∙ 10N�
). This filtered set 

was intersected with Kruskall-Wallis test (KWT) results and filtered to feature a KWT � < 10N�{ as described by ZELLER et al. [212]. SNPs were then split into cis-/trans-associations 

via distance to their associated expression target (up to 1MB apart: cis, else: trans). 

MULTIPLE TISSUE HUMAN EXPRESSION RESOURCE (MUTHER) 

CONSORTIUM – LCL, ADIPOSE AND SKIN TISSUE – The MuTHER consortium 

collected samples from 856 female twins of the TwinsUK resource in three tissues 

(lymphoblastoid cell lines or LCL, adipose tissue, skin tissue) [213]. cis-eQTL associations 

comprising >2 Mio. SNPs were calculated using the Illumina Human HT-12 v3 BeadChip. 

Results files were retrieved from http://www.muther.ac.uk/Data.html and subjected to �HIJKL 

filters as described in [213] (�J_J < 7.8 ∙ 10Nt, �Ic�b^vL < 5 ∙ 10Nt, �vd�� < 3.8 ∙ 10Nt) 

corresponding to a per-tissue false discovery rate (FDR) of 1%. 

WESTRA ET AL. – PERIPHERAL BLOOD – WESTRA et al. performed a meta-analysis 

of eQTL associations in peripheral blood samples from 5,311 individuals [214]. Genotype data 

was imputed to HapMap2 CEU genotypes (>2 Mio. SNPs), expression data from different 

Illumina platforms (Human HT-12 v3, HT-12 v4, and H8 v2 BeadChips) were harmonized by 

mapping probe sequences to Human HT-12 v3 identifiers. Association data was obtained at 

http://genenetwork.nl/bloodeqtlbrowser/. Probes specified by Illumina array address IDs were 
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mapped to Illumina probe IDs using the developer manifest file (http://www.illumina.com). 

Cis- and trans-associations were filtered to have � < 1.31 ∙ 10N| and � < 5.12 ∙ 10N}, 

respectively, corresponding to an FDR of 5%. In this study, eQTLs located less than 250 KB 

away from the probe midpoint are defined as cis while eQTLs more than 5 MB apart from the 

probe are defined as trans [214]. 

FAIRFAX ET AL. – B-CELLS AND MONOCYTES – FAIRFAX et al. investigated 

genotype associations with expression data from B-cells and monocytes from 288 individuals. 

For > 600,000 SNPs cis- (≤ 2.5 MB away from the probe) and trans-associations were 

determined at permutation (g = 1,000) � < 1 ∙ 10Nu and Bonferroni-corrected � < 1 ∙ 10N��, 

respectively. All significant associations from the online supplement [215] were mapped to 

Illumina Human HT-12 v4 probes using the genomic coordinates provided in the supplemental 

files to obtain an up-to-date mapping to the corresponding genes. For this, hg18/NCBI36 

coordinates had to be converted to hg19/GRCh37 coordinates using the UCSC liftOver tool 

[216]. Probe mapping data was retrieved from the Ensembl public SQL database [149]. 

SEEQTL DATABASE – LCL AND BRAIN – The seeQTL database [217] contains several 

eQTL association datasets. Most of these are based on samples from individuals contained in the 

HapMap populations. On the data website of the seeQTL browser (http://www.bios.unc.edu/ 

research/genomic_software/seeQTL/data_source), XIA et al. provide a meta-analysis association 

set on all HapMap-based studies which were included in SNiPA. In addition, association data 

from an eQTL study on human brain samples (MYERS et al. [218]) in the same file format is 

available and was also included. 

DIXON ET AL. – LCL – DIXON et al. investigated genotype associations with expression 

data (using Affymetrix HG-U133 Plus 2.0 chip) from LCLs of 400 individuals [219]. The 

threshold for genome-wide significance was set to be a LOD score > 6.076 (equivalent to an 

FDR of 5%). Significant associations were extracted from the online supplement [219]. 

Associations with probes mapping to multiple locations in the genomes where removed 

(g = 3,309). Associations were defined as trans if SNPs are located more than 1 MB apart from 

the probe center, and cis else. 

INNOCENTI ET AL. – HEPATOCYTES – INNOCENTI et al. investigated genotype 

associations with expression data (using Agilent 4x44K arrays) from liver tissue of 266 

individuals [220]. The threshold for genome-wide significance was described to be a Bayes 

factor of > 5. We downloaded significant cis-associations from the online supplement [220]. 
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SNiPA reports the �HIJKLv provided with the associations that, thus, may not always seem to be 

significant on a genome-wide level. 

3.4.5 Variant-phenotype associations and annotations 

DRUGBANK 4.0 – SNP-DRUG INTERACTIONS – DrugBank [221] is a bioinformatics 

resource collecting data on drug interactions. We downloaded the lists on “SNP Mediated 

Adverse Drug Reactions” as well as “SNP Mediated Pharmacological Effects” from the 

GenoBrowse interface. 

GWAS CATALOG – The NHGRI-EBI GWAS catalog (original title: a catalog of published 

genome-wide association studies) [100, 222] is a text-mining resource formerly provided by the 

National Human Genome Research Institute (NHGRI) that collects the results of published 

GWAS. Before inclusion into the catalog, results are filtered and revised manually to ascertain 

several quality metrics. Although several other resources such as the HuGE Navigator [223] 

have been published, this is still the primary source for GWAS results. We downloaded the 

Catalog in tab-delimited format and retrieved trait annotations, association �HIJKLv as well as the 

source publications. Since the catalog’s move to the EBI, we retrieve the data from Ensembl. 

VARIANT-TRAIT ASSOCIATIONS FROM ENSEMBL – Ensembl includes variant-

trait annotations and associations from several important resources. Data from OMIM [106], 

HGMD [224], UniProt [225], dbGaP [226], and ClinVar [227] were fetched from the public 

MySQL database. Association numbers are given in Table 4. 

ASTHMA ASSOCIATIONS – GABRIEL CONSORTIUM – The GABRIEL (A 

Multidisciplinary Study to Identify the Genetic and Environmental Causes of Asthma in the 

European Community) Consortium performed an international genome-wide association 

meta-analysis of asthma and IgE levels in 10,365 cases and 16,110 controls recruited from 23 

studies [161]. We downloaded the association results for 567,589 markers for each single study 

and itemized by age (adult/child) from www.cng.fr/gabriel.  

Source N (unique) 

HGMD 53,420 (48,305) 

dbGaP 40,254 (28,767) 

ClinVar 156,160 (139,160) 

OMIM variation 19,878 (18,442) 

UniProt 3,484 (3,219) 

GWAS Catalog 19,950 (18,769) 

DrugBank 4.0 179 (169) 

Table 4: Disease associations and annotations of genetic variants contained in SNiPA v3. 
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3.4.6 Gene-phenotype associations and annotations 

ORPHANET – DISORDERS AND ASSOCIATED DISEASE GENES – OrphaNet 

[107] is a resource that collects information on rare diseases, associated disease genes, and orphan 

drugs. At its data repository (http://www.orphadata.org), it also offers mappings of diseases and 

disease genes to many other resources, including Ensembl. We downloaded the “Disorders with 

their associated genes”-XML file and used a PERL XML-library (XML::LiBXML) to extract 

the relevant data. Gene-trait association counts are given in Table 5. 

OMIM – DISORDERS AND ASSOCIATED DISEASE GENES – The Online 

Mendelian Inheritance in Man database [106] collects data on Mendelian disorders and the 

associated disease genes as well as the known disease causing genetic variants. More recently, 

also strong associations from GWAS are collected in OMIM in a gene-centered manner. Entries 

in OMIM are manually curated and are thus very valuable. We downloaded links from genes to 

OMIM disease entries from the Ensembl database [149]. Gene-trait association counts are given 

in Table 5. 

Source N (unique) 

DECIPHER 1,829 (1,829) 

OMIM gene 4,886 (4,882) 

OrphaNet 5,684 (5,684) 

Table 5: Disease associations and annotations of human genes contained in SNiPA v3. 

DECIPHER (DATABASE OF GENOMIC VARIATION AND PHENOTYPE IN 

HUMANS USING ENSEMBL RESOURCES) – DECIPHER [196] is an integrative 

resource of gene-disorder associations obtained by in-depth study of patients’ genomes that is 

accessible through Ensembl. We downloaded DECIPHER gene-disease annotations from the 

Ensembl database [149]. Gene-trait association counts are given in Table 5. 

GENETIC ASSOCIATION DATABASE – The genetic association database (GAD) was 

one of the first repositories for the standardized collection of genetic association results [228].  

MIRNA-PHENOTYPE ASSOCIATIONS – Altered expression patterns of miRNAs are 

associated with several disease phenotypes. Two of the major resources for such miRNA-

phenotype associations are the PhenomiR [229] and the miR2Disease [230] databases. We 

downloaded the full datasets comprising several hundred miRNAs associated with more than 

hundred human disorders. 
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3.4.7 Webservers, variant databases, and ontologies 

HAPMAP – The HapMap project catalogues common sequence variants for all major human 

populations. We used variant and LD data from HapMap phase 2 [74] and phase 3 [75] panels. 

DBSNP – The dbSNP database at NCBI is the primary reference resource for small sequence 

variants [178]. Consequently, its variant naming nomenclature (RefSNP- or rs-IDs) is 

ubiquitously used. 

1000 GENOMES PROJECT – The international 1000 genomes project is currently the 

primary resource for population-based WGS haplotype data. While in phase 1 of the project, 

the consortium sequenced the promised 1000 human genomes, as of phase 3 more than 2,500 

individual genomes are contained in the repository [77, 231].  

SNAP – The SNAP (SNP Annotation and Proxy Search) resource is a user-friendly webserver 

for retrieval of LD data, basic variant annotations, variant/gene associations, as well as plotting of 

LD and association data [232].  

DAVID – DAVID (Database for Annotation, Visualization and Integrated Discovery) is a 

bioinformatics resource for the functional annotation of gene sets [233, 234]. It provides several 

analysis modules, including gene function enrichment analysis as well as function-based gene 

clustering approaches.  

GSEA – GSEA (Gene set enrichment analysis) is a web portal for functional as well as trait-

association enrichment analysis of gene sets mainly based on altered gene expression analysis 

experiments [235]. It also provides enrichment analysis of gene ontology (GO) terms [236]. 

MESH – MeSH (Medical Subject Headings) is an ontology of organisms, traits, diseases, and 

other entities [237]. It uses a standardized vocabulary and manually curated categories. We used 

the category C (diseases) to map disease terms on the MeSH ontology tree. 

PROTEIN-PROTEIN INTERACTION DATABASES – Protein-protein interaction 

(PPI) and pathway data were retrieved from IntAct [238], CORUM [239], and the Kyoto 

Encyclopedia of Genes and Genomes, KEGG [240]. 

CHEMICAL ANNOTATION AND PATHWAY DATABASES – Chemical pathway 

data was obtained at the Edinburgh Human Metabolic Network [241], KEGG [240], Recon 2 

[242], and Reactome [243]. Additional metabolite and enzyme annotations were retrieved from 

BRENDA [244] (enzyme-metabolite relationships), the Human Metabolome Database 

(HMDB) [245], the Chemical Abstracts Service (CAS), ChEMBL [246] (drug/compound-gene 
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associations and approved drugs), and Citeline Pharmaprojects Pipeline (accessed on July 1, 

2013, http://www.citeline.com/products/pharmaprojects/). 

3.5 Software and tools 

GENEVAR – Genevar (Gene Expression Variation) is a java applet connected to eQTL 

databases developed at the WTSI [247]. Before MuTHER consortium project was finished and 

the data was available for download, Genevar was the only interface to retrieve eQTL 

associations from the project. Furthermore, Genevar enabled access to eQTL data obtained by 

association studies in HapMap samples used in section 6.2.  

CPMA – CPMA (cross-phenotype meta-analysis statistic) is an algorithm developed by the 

Cotsapas lab that allows for the inspection of an enrichment of significant association p-values 

for single variants across two or more phenotypes [248]. I used CPMA for validation of our 

network analysis approach described in section 6.1. 

LIFTOVER – liftOver is the UCSC utility to map genomic coordinates between genome 

assemblies [216]. It was incorporated in the gene and regulatory build process used in chapter 5. 

VARIANT EFFECT PREDICTOR – The Ensembl variant effect predictor is a tool to 

predict variant consequences on genomic entities [140]. It provides the baseline variant 

annotations used in the genomic resource described in chapter 5. 

NNSPLICE – NNSplice is an algorithm from the Berkeley Drosophila Genome project that 

can be used for predicting variant-based changes to existing or creation of new splice sites [249]. 

We used NNSplice to estimate the effect of allele-specific splice variants on miRNA targeting 

as described in section 6.2. 

VIENNA RNA PACKAGE – The Vienna RNA package is a toolbox that enables 2D-

folding prediction of RNA sequences [250]. We used this software to calculate allele-induced 

folding changes to human mRNAs in order to estimate allele-specificity of RBP annealing 

potential described in section 6.2. 
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GENOMEGRAPHS – The GenomeGraphs R package is a toolbox for visualization of 

genomic data [251]. I used this software to provide the Association Maps module described in 

chapter 5. 

NETWORK VISUALIZATION AND ANALYSIS TOOLS – For network visualization, 

we used the yWorks yEd graph editor (yFiles software, Tubingen, Germany) for displaying 

GRAPHML files. For the application of network analysis measures, we used the Cytoscape 

framework [252]. Both platforms were used in the analysis described in section 6.1. 

PLINK – PLINK is a whole genome association analysis toolset that covers a multitude of 

analysis steps required for GWAS [179, 185]. It was utilized in several modules in the GWAS 

analysis pipeline described previously. 

SHAPEIT2 – SHAPEIT2 is a linearly scaling method for fast but accurate genotype phasing 

[183]. I used it for haplotype phasing in the study on the genetics of SIDS. 

IMPUTE2 – IMPUTE2 is a software toolbox for genotype imputation [97]. It is compatible 

with phased haplotypes as produced by SHAPEIT2. 

QUANTO – Quanto is a tool for performing power calculations for genetic studies [253]. I 

used it in section 4.1 to estimate statistical power in dependency of the MAF. 

VCFTOOLS – VCFtools is a software package for handling and analyzing files in variant call 

format (VCF) [254]. The VCF format has been developed by the 1000 genomes consortium 

and is now one of the standard formats to store variant data. We used it for LD calculations in 

chapter 5. 

TABIX – Tabix is a software for positional indexing of block-compressed flat files containing 

genomic elements [255]. It is optimized for indexing genomic coordinates and is very fast even 

with extremely large files. As it also allows for remote file access, we used it as programmatic 

interface to the resource described in chapter 5. 

JAVASCRIPT LIBRARIES – For development of the interactive webserver described in 

chapter 5, we relied on the following JavaScript libraries: jQuery and jQueryUI (The jQuery 

Foundation, 2014. www.jquery.org), Highcharts (Highcharts JS: Interactive JavaScript charts 

for your web projects. Highsoft AS, Vik i Sogn, Norway. www.highcharts.com), DataTables 

(DataTables: table plug-in for jQuery. SpryMedia. www.datatables.net), jQuery Chained 

(jquery_chained: chained selects for jQuery and Zepto. Mika Tuupola. 
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www.appelsiini.net/projects/chained), and Modernizr (Modernizr: the feature detection library 

for HTML5/CSS3. www.modernizr.com). 

3.6 Mathematical and statistical concepts 

3.6.1 Network analysis 

The network concepts (density, centralization, and heterogeneity) which we used to compare 

network properties are defined as given in [256]: 

1.  Density = ∑ ∑ �������g�g − 1	 = $��g�k	g − 1  

where ��� = 1 if nodes � and � are connected and 0 otherwise. $��g�k	 denotes the mean 

connectivity which for a node � is defined as k� = ∑ ������ . 

2.  Centralization = gg − 2 �max�k	g − 1 − ��g�����. 
3.  Heterogeneity = ������g���k	$��g�k	 . 

To automatically distinguish the two node sets in bipartite networks, we used directed 

edges. Direction is always from one type (source) to the other (target). The distinct node degree 

distributions thus are identical to the indegree distribution and the outdegree distribution. The 

topological coefficient as a measure of modularity [257] �� of a node � is defined as: 

�� = � 0,  if ]� < 2           
avg �w��, �	]� � ,  else 

where ]� is the number of neighbors of � and w��, �	 is the number of shared neighbors of nodes � and � (undefined if � and � do not share a neighbor) plus one if � is a neighbor of �. 
Power-law functions of the form � = �I ¡ were fitted by least squares where coefficients 

are defined as ¢ = � ∑ �£¤ a¥ £¤ ¦¥	§¥¨© N∑ �£¤ a¥	§¥¨© ∑ �£¤ ¦¥	§¥¨©� ∑ �£¤ a¥	C§¥ Nª∑ £¤ a¥§¥¨© «C  and � = ∑ �£¤ ¦¥	§¥¨© N¡ ∑ �£¤ a¥	§¥¨©� . As goodness-

of-fit measure, we give the coefficient of determination 

=
 =
¬
­ g ∑  ��� − ∑  ����� ∑ ����������®g ∑  � 
���� − ª∑  ����� «
®g ∑ ��
���� − ª∑ ������ «
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for the linear transformation of the power-law functions, i.e. ln � = � + ¢ ln  . 

3.6.2 Survival analysis 

For survival analysis with right-censored data, I use Cox proportional hazards using 

regression terms of the form ±���$�, ����²�	 =  ±{ ∙ �³©∙´L�^f¦bLµ³C∙vLaµ³¶∙·9l©µ ⋯ µ³¸¹C∙·9l¸. 

Here, ��$� is the vector of follow-up dates (or times at event), ����²� contains codes for event 

(e.g. death) occurred, ��  is the vector of the gender of the individuals, and º�w� is the �f» 

MDS dimension. The genotype vector is recoded beforehand to obtain effect estimates for the 

specified genetic model (Table 6). 

Significance of association of the genotype with outcome under the selected genetic model 

is calculated using LRTs using the log-likelihood of the regression model including the 

genotype �yy¼	 and that of the model excluding the genotype vector(s) �yy{	. The test statistic 

is then determined as � = 2 ∙ �yy¼ − yy{	 which follows a ½
-distribution with one degree of 

freedom for additive, dominant, recessive, and over-dominance models and two degrees of 

freedom for the genotypic model. 

 Additive Dominant Recessive Over-dominant Genotypic 

AA 0 0 0 0 0   0 

1   0 

0   1 

Aa 1 1 0 1 

aa 2 1 1 0 

Table 6: Genotype coding for the different genetic models. Columns specify the genetic 

model, genotype conformations and their coding are denoted in the rows. As for the 

genotypic model, the genotype vector is splitted and recoded as two vectors (and thus, 

two regression variables), the test for significance has two degrees of freedom. 

3.6.3 GWAS meta-analysis 

Combined Z-scores for one variable (e.g. a variant) are computed as  

¾*LfI = ∑ ¿¥e¥¥®∑ e¥C¥  , with À� = �]�  and ¾� = ΦN� Â5¥
 Ã ∙ sign�%�	  

where ]�  is the sample size of study �, �� is the two-tailed �HIJKL of association for this variable, 

and %� is the estimated effect (the estimate retrieved by linear regression or the logarithm of the 

odds ratio yielded by logistic regression). The two-tailed �HIJKL for the meta-statistic is then 

calculated as �*LfI = 2 ∙ Φ�−|¾*LfI|	 or, in case of continuous traits where Z is in fact the t-

statistic and where only a limited number of samples is available, as �*LfI = 2 ∙ )f�−|¾*LfI|,  df = g	 where g is the number of samples minus the number of 

regressors and )f is the distribution function of the t-distribution.  
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The DerSimonian and Laird random effects model is calculated using the standard error of the 

effects as weights and therefore needs more input. First, the between-study variance '
 needs to 

be calculated. For this, the Cochran’s Q statistic [258] is calculated as  

Æ = Ç À�%�

d

��� − ª∑ À�%�d��� «

∑ À�d���  , with À� = 1w4�%�	
 

where k is the number of studies, the degrees of freedom are obtained as df = k − 1, and a 

scaling factor C is introduced as 

> = Ç À�� − ∑ À�
�∑ À��  . 
The between-study variance is then determined as 

'
 = ÈÆ − df> if  Æ > df0 if  Æ ≤ df  
and included in À�’s as À�∗ = �l7�³¥	CµÊC. Meta-statistics are then derived as  

%*LfI = ∑ À�∗%�d���∑ À�∗d���  , w4�%*LfI	 = Ë 1∑ À�∗d���  , and ¾*LfI = %*LfIw4�%*LfI	 . 
For binary traits and studies with a sufficient number of samples available, the two-tailed p-

value is again calculated as �*LfI = 2 ∙ Φ�−|¾*LfI|	 and log-scaled 95% confidence intervals 

(CI) can be obtained by >ÌÍt = �%*LfI ± 1.96 ∙ w4�%*LfI	�. For continuous traits where only a 

limited number of samples is available, the formulas are as �*LfI = 2 ∙ )f�−|¾*LfI|,  df = g	 and >ÌÍt = �%*LfI ± Æf�0.975,  df = g	 ∙ w4�%*LfI	� where g is the number of samples minus the 

number of regressors and Æf is the quantile function of the t-distribution. Meta-effects and CI 

can be transferred to the odds ratio scale using the exponential function. Further, the Q-statistic 

is used to calculate heterogeneity statistics such as the probability of heterogeneity �»Lf and the Ì
 and ? statistics [259]. The random effects model can be directly transferred into a fixed effects 

model by forcibly setting '
 = 0 which assumes that studies are comparable. Heterogeneity 

statistics are calculated in any case and results that are potentially caused by significant between-

study variance are marked, suggesting the use of the random effects model. 
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4  Genetic association studies 

The deciphering of the human genome sequence and the following successes of genetic 

studies and, in particular, of GWAS have raised hope that sooner or later medicine will be able 

to treat a patient on a personalized and not on a symptom-based level. Through the broader 

application of NGS in the clinic and the technological advances in other –omics fields, the idea 

of personalized medicine seems to have become even closer at hand. However, if we look 

below the questionable breakthroughs propagated by the media and the pharmaceutics sector, 

the truth is that we are far away from reaching this ambitious goal [260]. The complexity of the 

human organism as well as of the molecular, genetic, and environmental disturbances that lead 

to human traits and diseases is still poorly understood. While it is true that we are able to 

measure the genetic (or metabolomic or transcriptomic or proteomic) differences between 

diseased and (nominally – as based on the classical classification system of non-personalized 

medicine) healthy individuals, the translation of these differences into clinical use is progressing 

only slowly.  

The first section of this chapter is intended to introduce the methodologies for the detection 

of trait-associated genetic variants (SNVs as well as CNVs) exemplified using a genetic analysis 

of the fatal disease syndrome SIDS. Using the outcomes of this study, the challenges represented 

in the functional, biological, and medical interpretation of the identified genetic loci will be 

outlined. In the second and the third section, I will focus on the genetics of intermediate traits 

that are more closely linked to cellular functions such as gene expression levels and metabolite 
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concentrations. Here, I want to highlight the value of considering genetic influences on 

intermediate traits in linking genomic regions as directly as possible to biochemical readouts.  

Many parts of this chapter are based either on previously published data or are part of 

manuscripts in preparation. The references are given in the respective sections. 

4.1 Genetics of the sudden infant death syndrome (SIDS) 

Sudden infant death syndrome or SIDS is defined as the “SUDDEN DEATH OF AN INFANT 

UNDER ONE YEAR OF AGE WHICH REMAINS UNEXPLAINED AFTER A THOROUGH CASE 

INVESTIGATION, INCLUDING PERFORMANCE OF A COMPLETE AUTOPSY, EXAMINATION OF THE 

DEATH SCENE, AND REVIEW OF THE CLINICAL HISTORY” [261], a diagnosis per exclusionem as 

cases of sudden unexpected death in infancy of infants less than one year of age where no 

definite cause of death can be demonstrated [262]. It logically follows that SIDS etiology, 

contrary to diagnoses per definitionem, is very vaguely understood and is only defined by 

symptoms that have been observed in autopsies of SIDS victims. Nevertheless and in spite of 

these unclear conceptualizations, SIDS is still a major cause of infant death in industrialized 

countries (6.8% of all infant deaths in Germany in 2013, source: German Federal Statistical 

Office). In an attempt to formulate a generalized characterization of SIDS etiology, the triple-

risk model has been derived that, in its best known form as formulated by FILIANO and 

KINNEY, consists of “(1) A VULNERABLE INFANT; (2) A CRITICAL DEVELOPMENTAL PERIOD IN 

HOMEOSTATIC CONTROL, AND (3) AN EXOGENOUS STRESSOR(S). AN INFANT WILL DIE OF 

SIDS ONLY IF HE/SHE POSSESSES ALL THREE FACTORS; THE INFANT’S VULNERABILITY LIES 

LATENT UNTIL HE/SHE ENTERS THE CRITICAL PERIOD AND IS SUBJECT TO AN EXOGENOUS 

STRESSOR” [263]. The cause of the vulnerability of an infant to sudden unexpected death 

remains controversial. However, the available data shows that there are several potential causes 

that frequently include inherited predisposition [264, 265].  While the contribution of 

monogenic risk factors such as long-QT-syndrome and medium-chain acyl-CoA 

dehydrogenase deficiency (MIM: 201450) to SIDS is established and generally accepted, the 

importance of complex genetic predispositions is less clear. Hypotheses regarding the involved 

pathways include cardiac channelopathies, inflammatory processes, impaired serotonergic 
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signaling, bacterial and viral infections, dysfunctional immune response, decreased energy 

production, abnormalities of the brain or the central nervous system, asphyxia, inborn errors of 

metabolism, and chronic hypoxia [168, 261-270]. Many of these hypotheses have been tested in 

genetic screens and the literature lists 42 genes that are described to confer risk for SIDS 

(reviewed in [264, 270]). However, the associations could only rarely be replicated and some 

have even been shown to have no effect on SIDS risk [271]. I therefore conducted a first-stage 

GWAS of SIDS in Europeans (318 cases and 1,493 controls). Additionally, I investigated CNVs 

for potential implication in SIDS etiology. As CNV studies using genotyping arrays have a large 

potential for detection of false positive CNV calls, I used another 2,764 European control 

samples for CNV analysis. 

Most of the content of this section is still unpublished but is part of a manuscript in 

preparation and another one that has just been accepted at the International Journal of Legal 

Medicine (Fard et al., “Candidate gene variants of the immune system and Sudden Infant Death 

Syndrome”, Int J Legal Med, 2016) [272]. 

4.1.1 Methods summary 

PATIENTS & CONTROLS – The study population consisted of 365 SIDS cases with both 

autopsy information and biosamples available. 317 of those originated from GeSID, the other 48 

cases were recruited and autopsied in the UK at the Sheffield Children’s Hospital. Both GeSID 

and SCHC used a standardized autopsy protocol and only infants suffering from SUDI where 

no causes of death could be determined postmortem were classified as SIDS. As controls for the 

GWAS, I used 823 adult individuals from the KORA F4 study, as well as 678 adults from the 

PopGen study. For filtering of CNVs, I had access to control CNVs obtained in a subset of the 

HYPERGENES cohort containing 2,764 individuals. 

GWAS QUALITY CONTROL METRICS – Due to the different genotyping platforms 

used for cases and controls, I performed step-wise merging of the genotype data. GeSID and 

SCHC data, both obtained with the Illumina HumanHap660W-Quad BeadChips, could 

directly be merged. Exclusion of monomorphic and discordant missing markers resulted in 

561,490 remaining markers. Analogously, KORA and PopGen, both genotyped with Illumina 

HumanHap550-Quad+ BeadChips, could also be directly merged. The final merge of case and 

control genotypes using the same filtering steps yielded a set of 505,759 markers available in all 

four cohorts. Based on these variants, global quality control was applied: i) individuals were 

filtered for an individual call rate (ICR) < 95% (g = 48) and one sample per duplicate or pair of 
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related individuals � p̀ G 12.5%	 was removed using the ICR as filter criterion (g = 9); ii) 

subjects where the annotated sex differed from the genotypic sex (determined calculating the 

average heterozygosity of X-chromosomal markers) were excluded (g = 6); and iii) markers 

were filtered at a genotype call rate < 95%, HWE �HIJKL > 1 ⋅ 10Nt (controls only), and minor 

allele frequency < 5%. I performed all these steps using the pipeline described in section 3.2. 

 

Figure 10: Study characteristics. A. Population stratification – Plot of the first two MDS dimensions. 

Although most variance is captured by the first two MDS dimensions, ten MDS vectors were included 

as covariates in the GWAS. B. CNV QC summary – Summary plot of intensity statistics for CNV 

calling after QC. Clustering of data points and normal distribution of CNV counts are identifiable. C. 

Age distribution of SIDS cases – It is known that SIDS risk is highest around the third month of life. 

This is also seen in our data. D. MAF and power – Density distribution of the MAF (bar plot) and 

statistical power of our study in dependency thereof (lines) for effect sizes between 1.4 and 2.5 (0.1 

steps). The 80% power-threshold is denoted by the dotted line. 
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IMPUTATION AND POPULATION DATA – Genotype imputation for cases and 

controls was performed in a two-step process using SHAPEIT2 and IMPUTE2 as described in 

section 3.2. I used the haplotype imputation panel of the 1000 genomes project phase 1 version 

3 release containing 1,092 individuals for genotype imputation [77].  

CALCULATION OF ASSOCIATION STATISTICS – In addition to sex, I calculated the 

first ten multidimensional scaling dimensions for inclusion as covariates in all association statistics 

to account for population stratification (Figure 10A). For analyses excluding the SCHC set of 

cases (German-only analysis), I recalculated MDS vectors accordingly. I then used logistic 

regression analysis under the additive model. To include age in days at time of death, I 

additionally performed survival analysis using right-censored Cox-regression (proportional 

hazards). 

 Cases Controls 

 GeSID SCHC total KORA F4 PopGen total 

N by gender (m/f) 283 (171/112) 35 (26/9) 318 (197/121) 822 (424/398) 671 (255/416) 1,493 (679/814) 

male/female ratio 1.53 2.89 1.63 1.07 0.61 0.83 

Table 7: Sample statistics and covariates. SIDS exhibits an approximate 2:1 male/female ratio. As in our control 

cohorts, more females than males are contained, I included sex as a covariate in all regression models. 

CNV QUALITY CONTROL METRICS – In total, 605,701 probes had CRLMM 

genotype confidence scores (GCS) to pass QC. The filter for individuals violating the threshold 

for the signal-to-noise ratio removed 24 samples. The remaining set of SNR-values were 

normally distributed with xlm< = 40.53 and �lm< = 2.20 (test for normality was performed 

using the two-sample Kolmogorov-Smirnov-Test). I then calculated for each remaining sample 

the log R ratio, the B allele frequency, and marker-based copy number estimates for input to 

PennCNV and VanillaICE. Markers with GCS< 0.9 were excluded before CNV calling for 

each individual. After CNV calling, I retained only CNVs that were called by both algorithms 

with at least 80% overlap and contained more than five markers. The resulting set of CNVs per 

person �$�!��g = 53, $�g = 19, $�  = 297	 were used for determination of sample-based 

quality criteria (see section 3.3). 37 samples were filtered accordingly �];mÐ > 90 and/or ��y==	 > 0.25	 to retrieve the set of high-quality data (Figure 10B). Before their exclusion, 

duplicated samples (g = 3) were used as internal validation of CNV calls (concordance was > 99%). Common CNVs were then marked using the CNV calls from Children’s Hospital of 

Philadelphia CNV database [193] as well as the Database of Genomic Variants [194]. As calls of 

duplications based on SNP array data can show poor quality [273], I limited the analysis to 

CNVs with copy numbers less than two. Larger deletions >50Kb were compared to CNV calls 
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in the HYPERGENES controls and, where applicable, smaller common CNVs were tested for 

enrichment using Fisher’s test. For this analysis, I coded CNV alleles as 0 = no deletion, 1 = 

hemizygous deletion, 2 = homozygous deletion. 

4.1.2 No strong complex genetic background in SIDS 

After extensive quality control, I performed genome-wide screening for associations 

between 4,778,167 genotyped and imputed common variants and SIDS using 318 cases and 

1,493 controls. Depending on the allele frequency, our study was well powered to detect 

associations of moderate effect sizes above an odds ratio of 2.5 (I generated power calculations 

with Quanto; Figure 10D). At the threshold for genome-wide significance of � < 5.0 ∙ 10NO, I 

was not able to detect any significant associations using logistic regression under the log-additive 

model. As the age at which infants succumb to SIDS is not randomly distributed across the first 

year of life but shows an accumulation between months two and four (Figure 10C) [274], I 

additionally performed right-censored (for controls) Cox proportional hazards estimation to 

include age in days at time of death in the regression model. This analysis yielded slightly 

different results, however, significant associations could not be identified either.  

 
Figure 11: Manhattan plot of association study results. Results are shown for association analysis using logistic 

regression (top) and Cox-regression (bottom). For logistic regression, the top three loci are marked, 

while for Cox-regression loci are highlighted that show lower TUVWXYÑ as compared to the logistic 

regression results. Markers in blue have TUVWXYÑ < \. R ∙ \RN[. Overall, no variant reached genome-wide 

significance (threshold indicated by the dotted lines). 
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The most significant signal obtained by logistic regression analysis was for rs11201232 in 

chromosome 10q23.1 �Ò= = 1.63, � = 8.9 ∙ 10N}	, followed by rs13952 �Ò= = 1.61, � = 1.6 ∙10NÓ	 in the HNRNPDL (heterogeneous nuclear ribonucleoprotein D-like) gene and 

rs9880393 �Ò= = 1.59, � = 2.7 ∙ 10NÓ	 located in the promoter-containing region upstream of 

2-phosphoxylose phosphatase 1 (PXYLP1). Cox-regression showed attenuated association 

statistics for these three loci, however, it revealed four loci with smaller �HIJKLv than in the 

logistic regression, namely rs7929102 �hazard ratio �?=	 = 1.55, � = 1.9 ∙ 10NÓ	 in the 

KIAA1549L (KIAA1549-like) gene, rs12153272 �?= = 1.69, � = 2.0 ∙ 10NÓ	 in 5q34, 

rs6735450 �?= = 2.01, � = 2.1 ∙ 10NÓ	  located proximal to MTERF4 (mitochondrial 

transcription termination factor 4), and rs74012838 �?= = 2.38, � = 2.3 ∙ 10NÓ	 in the ATP8B4 

(ATPase, class I, type 8B, member 4) gene (Figure 11). 

 
Figure 12: Manhattan plot of the German-only association study results. Results are shown for association 

analysis using logistic regression (top) and Cox-regression (bottom). For logistic regression, the top three 

loci are marked. The KIAA1549L locus was again only identified using Cox-regression. Markers in 

blue have TUVWXYÑ < \. R ∙ \RN[. As for the complete GWAS, no variant reached genome-wide 

significance (threshold indicated by the dotted lines). 

To exclude the possibility that, due to potentially different country-specific case 

ascertainment criteria, associations get masked by non-SIDS cases, I performed a GWAS using 

only German cases (for an UK-specific analysis the case cohort was too small). Interestingly, 

despite the lower power (ncases=283) the German-only GWAS yielded lower �HIJKLv for the top 
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associated SNPs at 10q23.1 �Ò= = 1.73, � = 1.4 ∙ 10N}	 and PXYLP1 �Ò= = 1.68, � = 4.6 ∙10N}	. The third-best association signal was a locus that did not show up in the complete 

GWAS, rs11252055 �Ò= = 1.61, � = 2.8 ∙ 10NÓ	 downstream of the Kruppel-like factor 6 

(KLF6) gene (Figure 12). Cox-regression showed weaker attenuation of the signals at both 

10q23.1 �?= = 1.56, � = 5.7 ∙ 10N}	 and PXYLP1 �?= = 1.57, � = 7.7 ∙ 10N}	, as well as a 

stronger association at the KIAA1549L locus �?= = 1.60, � = 1.5 ∙ 10NÓ	. 

4.1.3 Interpretation of suggestive significant GWAS loci 

Before I attempt here to interpret the loci that might hold genome-wide significance in 

studies with larger sample sizes than ours, I want to point out that the central finding of this 

analysis is that SIDS cannot be attributed to strong complex genetic risk factors (i.e. common 

markers detectable by the GWAS approach at effect sizes our study is well powered to detect). 

However, in order to provide insights into the general approach that is used to annotated 

GWAS-identified genetic loci, I want to elucidate the loci emphasized in the Manhattan plots 

(Figures 11 and 12). First, it is noteworthy that the strongest association signal at chromosome 

10q23.1 is located in a gene desert (as is the locus at chromosome 5q34), which does not allow 

for sound hypotheses regarding potential molecular mechanisms that might affect the risk 

contribution to SIDS. 

The PXYLP1-locus on the other hand may indeed be a promising target for further 

investigation. PXYLP1 encodes a protein that functions as a phosphatase, dephosphorylating 

xylose residues in the linker region for glycosaminoglycan chains, enabling the polymerization 

of these molecules on the surface of proteoglycans [275]. This is a rate-limiting step in the post-

translational modification and, thus, activation of this kind of proteins. Proteoglycans are a 

family of proteins with a large portfolio of cellular functions, including the control of the 

bioactivity of several inflammatory mediators as well as response to bacterial toxins and tissue 

repair [276]. Altered expression levels of PXYLP1 due to risk variants in its promoter region 

may thus increase infant vulnerability to external stressors such as bacterial infections, which 

would be in line with the triple-risk model for SIDS. 

The second best hit in the complete GWAS was for the variant located in 

HNRNPDL. This gene has been implicated in a neuromuscular disease that is inherited 

following the autosomal dominant pattern (limb-girdle muscular dystrophy (LGMD), type 1G; 

MIM: 609115) [277]. Equally to SIDS, sleep apnea and failed arousal from sleep are thought to 

be one of the predominantly contributing factors to mortality in the disease and seem to be 

independent from disease severity [278-280]. Because dominant forms of LGMDs are very rare 
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and usually show a late-onset of disease symptoms, a relationship between the association found 

in our study and the accumulation of hypoxia in SIDS victims is highly speculative. 

Nevertheless, as therapy may be as simple as bi-level positive airway pressure administered using 

a nasal mask during sleep hours [281], this hypothesis, if verified, could be implemented in 

clinical practice. 

As to the loci showing stronger association statistics in the Cox-regression analysis, 

MTERF4 seems to be the most promising target for further studies. The protein product of the 

gene directs the biogenesis of mitochondrial ribosomes and thus represents an important factor 

for translational activity. In mice, complete loss of MTERF4 was shown to be embryonically 

lethal, while its targeted knockout in cardiac tissue significantly shortened life span [282]. Less 

severe effects on the activity of the gene via regulatory variants tagging the genetic signal 

outlined in my findings may still implicate affected energy homeostasis through reduced 

functioning of the mitochondrial translation machinery, a process that has been hypothesized to 

contribute to the susceptibility to SIDS. KIAA1549L and ATP8B4 are both only poorly 

annotated regarding their molecular functions, although it should be mentioned that the genetic 

locus containing KIAA1549L (which is also linked via eQTL associations in blood and 

adipocytes) has been associated with heart rate traits (dbGaP analysis pha003053) and body 

height (dbGaP analyses pha003010 and pha003011). The KLF6  locus, that only showed 

suggestive significance in the German-only GWAS, is also associated with heart rate traits (more 

specifically, with recovery of the heart rate after exercise) as well as with HDL-cholesterol levels 

(dbGaP analyses pha001678, pha000515, and pha000517). These findings support the general 

hypothesis of heart traits being linked to SIDS, but, based on the non-significant association 

statistics in our study, stay very hypothetical. 

4.1.4 Genetic deletion syndromes may contribute to SIDS numbers 

The analysis of rare CNVs detected large (>1Mb) hemizygous deletions in 10 of the 301 

cases (3.3%) that passed quality control criteria (Table 8). Of those, at least three are pathogenic 

causing genetic disorders. The first is a 2.6Mb deletion at chromosome 22q11.21 comprising 

the DiGeorge/velocardiofacial syndrome (DGS/VCFS) interval (MIMs: 188400, 192430). In 

more than 70% of the cases, this deletion causes cardiovascular defects and immune deficiency 

leading to recurrent infections in an autosomal dominant pattern of inheritance, while almost 

one third of cases show no visible abnormalities (see [283], table 1; I detected the proximal A-D 

deletion). The second and third pathogenic CNVs are identical ~1.4Mb deletions on 

chromosome 7q11.23 in two of our cases, stretching across the region deleted in 95% of patients 
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with Williams-Beuren syndrome (WBS; MIM: 194050). WBS is an autosomal dominant 

multisystem disorder that includes cardiovascular, endocrine, and neurodevelopmental 

abnormalities and shows increased occurrence of sleep dysregulation and recurrent infections, 

symptoms that are also attributed to SIDS [284]. The prevalence of WBS has been estimated to 

1 in 7,500 [285], whereas I find the typical microdeletion in 2 out of 301 cases.  

coordinates length band NSNP Ngenes phenotype candidate 

chr3:2,856,134-4,168,500 1,312,366 3p26.3-.2 501 5 - 

chr4:189,745,232-191,146,121 1,400,889 4q35.2 268 6 - 

chr5:4,429,717-7,950,191 3,520,474 5p15.32-31 988 >10 Cri-du-chat syndrome (MIM: 123450) 

chr5:10,585,639-11,923,554 1,337,915 5p15.2 472 3 Cri-du-chat syndrome (MIM: 123450) 

chr5:158,185,817-163,691,759 5,505,942 5q33.3-q34 976 >20 GEFS (MIM: 611277) 

chr7:72,360,917-73,777,987 1,417,070 7q11.23 79 >20 Williams-Beuren syndrome (MIM: 194050) 

chr7:72,360,917-73,777,987 1,417,070 7q11.23 91 >20 Williams-Beuren syndrome (MIM: 194050) 

chr10:45,938,621-51,406,960 5,468,339 10q11.21-23 688 >20 HHT (MIM: 615506) 

chr18:2,246,904-4,459,918 2,213,014 18p11.32-31 570 >10 Holoprosencephaly (MIM: 142946) 

chr22:17,175,037-19,796,478 2,621,441 22q11.21 572 >20 DGS/VCFS (MIMs: 188400, 192430) 

Table 8: The ten rare large hemizygous deletions found in SIDS cases. Given are the 10 deletions with sizes 

greater than 1Mb and candidate phenotype where available. Genomic coordinates are given with respect 

to genome assembly NCBI36/hg18. NSNP: number of markers within call; Ngenes: number of genes 

contained in the deletion. GEFS: Generalized epilepsy with febrile seizures; HHT: Hereditary 

hemorrhagic telangiectasia; DGS/VCFS: DiGeorge/velocardiofacial syndrome. 

Of the remaining seven large hemizygous deletions, another three regions are implicated in 

severe disease phenotypes. The largest (~5.5Mb) is located on chromosome 5q33.3-34 and 

contains more than 20 genes, including the known disease genes IL12B, GABRA1, GABRG2, 

and HMMR. Autosomal dominant disorders linked to these genes are generalized epilepsy with 

febrile seizures including familial febrile seizures (MIM: 611277), as well as susceptibility to 

other forms of epilepsy (MIMs: 611136, 607681). Febrile seizures can occur very early in life 

and in most cases progress without life-threatening course [286]. However, the case history 

describing the infant with this deletion as cyanotic with foam at mouth and nose when found by 

the mother and autopsy detecting gliosis in the thalamus (which can result from seizures [287]) 

may be indicative for recurrent febrile epileptic seizures leading to hypoxia, heart failure, and 

death. Another large (~5.47Mb) deletion was found to be located on chromosome 10q11.21-23 

that contains more than 20 genes and includes six known disease genes. One of them, GDF2, is 

causative for hereditary hemorrhagic telangiectasia (MIM: 615506). The disease often manifests 

with arteriovenous malformations in lungs and brain that can lead to fatal hemorrhage and 

stroke [288].  Also, in a patient with Bohring-Opitz syndrome showing recurrent infections in 

the chest as well as generalized seizures, the same region was found to be deleted on the 
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maternally inherited chromosome [289]. The third likely pathogenic deletion (~2.2Mb) is 

located on chromosome 18p11.32-31 and comprises more than 10 genes including the known 

disease genes SMCHD1, LPIN2, and TGIF1. TGIF1 causes autosomal dominant 

holoprosencephaly (MIM: 142946) that can lead to medical problems including abnormal heart 

and respiration rates and impaired organ growth even if brain structure seems normal [290]. The 

infant with this deletion showed edematous brain swelling and pericardial abnormalities that 

were attributed to the resuscitation attempts, but may be in line with active disease. However, 

this remains speculative as the brain of the infant was not investigated in more detail in the 

autopsy. The remaining four large deletions cannot be directly linked to a disease phenotype, 

however, due to their size it seems likely that they may have contributed to the infants’ 

vulnerability to a life-threatening event causing sudden death. 

To estimate the contribution of smaller CNVs to SIDS risk, I filtered CNV calls using 

additional criteria and excluded CNVs if they i) were called based on less than 10 markers, ii) 

had a CNV QC score less than 90%, iii) did not change the amino acid sequence of a known 

disease gene, iv) showed copy number changes not fitting the mode of inheritance of the disease 

linked to the affected protein (if available), and v) were found in equal proportions in the 2,764 

control samples (Fisher’s � > 0.05). This resulted in only two hemizygous deletions (260Kb and 

81.5Kb in size) in two cases (one per case), both located in the catenin (cadherin-associated 

protein), alpha 3 (CTNNA3) gene that, when mutated, is suspected to be causally linked to 

autosomal dominant arrhythmogenic right ventricular dysplasia (ARVD; MIM: 615616). 

ARVD is a developmental disorder of the right ventricle of the heart and as such is a major 

cause of juvenile sudden death [291]. The significance of CTNNA3 mutations in ARVD has 

yet to be conclusively resolved. However, both deletions detected in our study erase two 

complete exons which – provided that a causal relationship between mutated CTNNA3 and 

ARVD can be proven – may explain the sudden death of these two respective cases. 

4.1.5 Concluding remarks 

The most important finding of this study is that there are no strong common genetic risk 

factors influencing the susceptibility to SIDS. This study is powered to detect associations with 

global effect sizes greater than 2.5 (Figure 10D) at the complete allele frequency spectrum 

addressed and thus is underpowered to detect associations with effect sizes typically seen in 

GWASs of complex traits. However, SIDS is a fatal syndrome which, if there is a common 

genetic predisposition, should show larger effect sizes than genetic influences on heterogeneous 

trait endpoints. And even if this assumption should be incorrect, there are many examples of 
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GWAS-identified loci with effect sizes larger than our detection limit, for complex traits as 

diverse as autoimmune diseases, Acne vulgaris, and coronary heart disease [222]. The fact that I 

fail to detect any significant associations permits only two settings. Either vulnerability to SIDS 

is solely caused by environmental circumstances/triggers. Or it is caused by rare de novo variants 

with moderate to large effect sizes that are unlikely to be detected using the GWAS approach. 

The identified rare deletions in twelve SIDS cases (almost 4%) support this hypothesis, which 

could also be the reason why I was not able to replicate any of the genetic loci previously 

implicated in SIDS pathogenesis. It may well be that I have identified even more copy number 

changes that are involved in SIDS predisposition. However, CNV analysis performed with 

genotyping arrays results in numerous calls and their pathogenicity is hard to estimate, especially 

if CNV status of the cases’ parents is unknown (as in the presented study). The interpretation of 

smaller CNVs is a difficult task and should be handled with caution. Therefore, I used very strict 

measures to exclude spurious calls in the analysis.  

To conclude, I was able to rule out a strong common genetic background of SIDS. While 

my results may indicate that specific mechanisms including heart function, energy homeostasis, 

as well as efficacy of the immune system may influence predisposition to SIDS, this can only be 

conclusively elucidated using whole-genome sequencing. And as genetic deletion syndromes 

often show severe developmental and skeletal abnormalities that must be detected in the 

autopsy, it is not to be expected that the numbers of SIDS cases due to such syndromes are 

significantly higher than in our case cohort. Nevertheless, as the death of a child is a traumatic 

event in the life of the parents, I suggest that cytogenetic screening for large deletions should be 

included in the standard autopsy protocol for infants suffering from sudden unexpected and 

unexplained death.  

4.2 Genetic influences on human blood metabolites 

As adumbrated in section 1.8, metabolic homeostasis is a crucial prerequisite for human 

health. The great success of GWAS has provided us with hundreds of associations between 

genetic loci and complex human traits. However, the functional interpretation of these 

associations and their mode of action by which they affect trait predisposition, development, 
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and progress on the molecular level is still very limited for the great majority of GWAS results. 

To address this issue, studies on genetic influences on intermediate phenotypes from –omics-

levels closer (in terms of regulatory layers) linked to the genome are performed and correlations 

between genetic markers and epigenetic marks, transcript levels, protein levels, as well as 

metabolite concentrations gain more and more attention. In this section, I describe the key 

results of our mGWAS on human blood metabolite levels published in Nature genetics [116]. 

In addition to the report of 145 significant associations, we provide an extensive set of 

annotations on the biological relationship between the genetic loci and the linked metabolic 

phenotypes (metabotypes). Moreover, to support downstream analyses, I created a set of web 

resources that contain all information on the genetically influenced metabotypes (GIMs) 

collected in our study.  

4.2.1 Methods summary 

SAMPLES AND GENOTYPES – For the characterization of genetic influences on 

metabolite concentrations in blood samples, we included 7,824 individuals [116]. 1,768 of those 

originate from the KORA F4 study [169], the remaining 6,056 individuals were recruited by 

the UK Adult Twin Registry [170]. Further information on included individuals and covariates 

is listed in Table 9. After quality control and imputation, about 2.1 million SNPs were available 

for both KORA F4 and TwinsUK. 

 

Study N by gender (m/f) Age [years] (mean±SD) BMI [kg/m²] (mean±SD) 

TwinsUK 6,056 (433/5,623) 53.4 ± 14.0 26.1 ± 4.9 

KORA F4 1,768 (858/910) 60.8 ± 8.8 28.2 ± 4.8 

total 7,824 (1,291/6,533) 55.1 ± 12.9 26.6 ± 4.9 

Table 9: Sample statistics and covariates. 

QUALITY CONTROL METRICS – SNPs were filtered based on HWE and call rate. 

Metabolomics raw data was normalized to the run-day median and proportional adjustment of 

each data point to account for variation due to instrument tuning differences. Metabolite 

concentrations were then log-transformed with base 10 and data points deviating more than 

four standard deviations from the mean were excluded. More details are given in [116]. 

ADDITIONAL DATASETS – The databases and resources used for the manual annotation 

of the identified loci are described in section 3.4.  
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DATA PROVISION – In addition to the extensive supplementary material provided at the 

publisher’s website, I integrated all association and annotation data in two distinct web resources 

to enable convenient access to the results of this study. 

First, an online supplement website (www.gwas.eu/si) that comprises all genome-wide 

significant genetic loci, the obtained metabolite-locus network, as well as all additional 

annotations including regional association plots for most significant metabotype. Entry point is a 

graphical genome atlas of the genetic loci (Figure 13).  

Second, I developed a web resource for variant-based retrieval of variant-metabolite 

associations, the Metabolomics GWAS Server (www.gwas.eu). The database underlying the 

resource contains the full set of HapMap2-determined variants linked via LD data [74] as well as 

gene annotations from GENCODE v.14 [152] and metabolite associations from this and one 

additional publication [292]. Metabolites were linked to three external resources (The Human 

Metabolome Database, HMDB [245]; Kyoto Encyclopedia of Genes and Genomes, KEGG 

[240]; Chemical Abstracts Service, CAS) to provide further information on their properties. 

4.2.2 Eighty-one newly discovered genetically influenced blood metabotypes 

Genome-wide association analysis was performed for 529 metabolite profiles and the 

pairwise ratios thereof (for the ratio concept, see [145]). We identified a total of 299 significant 

mQTLs grouping into 145 statistically independent loci. Of those, 81 have not been reported 

previous to the publication of our study while the other 64 were observed before [145, 292-

296]. Several of these known loci have been identified using tissues or fluids other than blood 

and/or different metabolite profiling platforms, suggesting that many GIMs are robust across 

platforms and tissues. In cases of associations with metabolite ratios, we were able to replicate 

the findings of previous studies [145, 292] that ratios can indicate changes in reactional activity 

(11 loci), substrate or product selectivity (five loci), or have normalizing statistical effects (seven 

loci). 

4.2.3 Allelic architecture of metabolic loci 

As described in Box 2, it has been observed that genetic variants associated with molecular 

traits such as metabolite concentrations on average explain more of the trait variance as 

compared to markers linked to complex trait endpoints [294]. Using the twin structure of the 

TwinsUK cohort, we applied the classical �>4 twin model to estimate the heritability (see 

section 1.2) of metabolite concentrations. The variance explained by the mQTLs identified in 

our study was generally high (1-62% with a median of 6.9%). For 10% of the metabolites, the 
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explained heritability exceeded 20% and for four metabolites the identified associations 

accounted for more than half of the additive genetic variance (Figure 14). This is further proof 

that molecular (endo)phenotypes are more directly affected by variation of the genome 

sequence, leading to a greater statistical power to detect such associations. 

 

 
Figure 13: Entry site for the Online Supplement of the study. The association map at www.gwas.eu/si shows 

an ideogram augmented with the location of the 145 GIMs identified in our study. The color of a GIM 

shows the pathway of the associated metabolite (legend on the right). The figure is an image map, 

clicking on one locus leads to a detailed view of study results and biological annotations for this locus. 

I have already discussed the potential of genetic interactions to inflate heritability estimates 

(Box 2, section 1.2). In this study, we conducted analysis of epistasis between all pairs of SNPs 

(g = 106) that were found to be significantly associated with the same metabolites (g = 51). We 
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detected only one significant interaction between the NAT8 and the PYROXD2  loci for the 

unknown metabolite X-12093 after Bonferroni-correction for 106 tests. As expected, including 

the interaction into the estimate of explained variance showed a slight increase compared to the 

purely additive model (15.6% versus 14.4% in TwinsUK and 27.7% versus 24.2% in KORA, 

respectively).  

 
Figure 14: Polar plot showing estimates for heritability and explained variance for metabolite 

concentrations. Variances are partitioned into narrow-sense heritability and common and individual 

environmental factors as derived by the twin-based ACE model. For the numeric values, check the 

online supplement or the supplementary website at www.gwas.eu/si. Figure taken from [116]. 

In order to include even more molecular information into our study, we performed 

Mendelian randomization analysis (see section 2.4) of mQTLs and eQTLs obtained for a subset 

of 484 individuals of the TwinsUK cohort. We could identify two loci,THEM4 and CYP3A5, 

where, depending on the present allele, increased metabolite levels were significantly associated 
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with decreased expression levels of the genes and vice versa (see Figure 4 in [116]). This shows 

the great value of including several –omics-levels into one analysis. 

4.2.4 Relevance to biology, pharmacology, and disease 

One of the central problems in GWAS interpretation is the projection of genetic variants to 

the causal gene underlying the disturbed mechanism which leads to the association. One benefit 

of mGWAS is that the molecular phenotype can be used to compare gene function to the 

observed outcome (provided that both the metabolite and the gene function are known). In this 

study, we used a multi-step approach to predict the genes that are most likely to be causal in the 

context of the observed associations. For this, we first extracted genes in a 500kb distance to the 

lead SNP of each association. The genes were then checked in pathway databases (KEGG, 

EHMN; for a description of utilized resources see section 3.4) for potential interrelations with 

the production or uptake of the associated metabolite. Co-occurrences of pairs of genes and 

metabolites in PubMed abstracts were mined to further establish the connection between. Based 

on the thus obtained evidences and a review using the enzyme resource BRENDA, the most 

functionally plausible gene was selected as predicted causal gene. This process was successful for 

almost two-thirds (94 of 145) of the identified loci. For another seven loci, we could assign 

biochemical functions not obviously connected to the associated metabolite (mostly, this is due 

to the metabolite being an unknown substance). These results are of great importance, as they 

present a validation of the functional annotation of the predicted causal genes as well as of the 

available metabolic reaction pathways. 

It has been shown that genetic associations with complex traits often collocate with 

Mendelian disease genes [297], which led to the speculation that complex phenotypes may be 

milder forms of monogenic diseases caused by variants in the same genes but with smaller 

pathogenic effects. The same has been suggested for complex genetic influences on metabolic 

homeostasis [298], with inborn errors of metabolism being the monogenic counterparts of 

complex genetic factors modestly influencing metabolite concentrations. Therefore, we 

checked the 94 predicted causal genes for overlaps with the OrphaNet database (see section 3.4) 

which inter alia contains the known causal genes for inborn errors of metabolism. In 26 cases, 

our predicted causal genes are also causative for monogenic metabolic diseases, including CPS1 

(carbamoylphosphate synthetase I deficiency, MIM: 237300), UGT1A1 (several recessive 

disorders linked to bilirubin levels, MIMs: 143500, 218800, 237900, 606785), CBS 

(homocystinuria due to cystathionine beta-synthase deficiency, MIM: 236200), and others. In 

addition to these 26 monogenic disease loci, I also annotated the 145 lead SNPs for overlaps 
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with genetic markers for complex traits as listed in the GWAS Catalog (see section 3.4). For 

almost one third of all reported loci (g = 41), we found associations to complex diseases or drug 

response endpoints. For instance, SNPs which are significantly associated with the 

concentration of several fatty acids in our study at both the FADS1 and the SLCO1B1 locus 

have been previously linked to response to therapy with lipid-lowering drugs (statins): the 

former with the efficacy of statins [299], the latter as risk factor for statin-induced myopathy 

[300]. In order to elucidate the relevance of GIMs to pharmacogenomics further, we collected 

data on genes that are involved in pharmacological targeting. To this end, we found evidence 

that more than 40% of our predicted causal genes are either targets (g = 24), metabolizing 

enzymes (g = 11), or transporters (g = 3) of approved drugs. An additional 11 genes are targets 

of drugs in preclinical or clinical trials. 

 
Figure 15: Supplementary online resources for convenient access to the study data. The upper part of the 

figure shows the content of the locus pages accessible through the online supplement at www.gwas.eu/si. 

Clicking on a GIM, e.g. the NAT8-locus, in the ideogram shown in Figure 13 directs the user to a 

detailed description of the locus comprising the information listed on the upper right part of the figure. 

Access to the full set of associations up to a Pvalue<0.0001 is provided through the Metabolomics GWAS 

server available at www.gwas.eu (lower part of the figure). The database also contains additional 

annotations including a mapping to GENCODE genes, URLs to locus views at dbSNP and Ensembl, 

metabolite annotations at three different resources, as well as links to PubMed articles that describe 

phenotype associations for the query SNP where available. 
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Combining all these results, we were able to obtain gene sets defined by GIMs that are 

either i) associated with complex traits or diseases or drug response endpoints, ii) causative for 

inborn errors of metabolism, or iii) targets, metabolizers, or transporters of drugs that are 

approved or under development. Intriguingly, these gene sets are not distinct but overlap (see 

Figure 5 in [116]), with genes that are listed in two (ni) + ii)=4, ni) + iii)=6, nii) + iii)=4) or even all 

three categories (n=3; CPS1, SLC7A9, and UGT1A1). These newly derived connections can 

not only be used to advance studies on the molecular background of complex diseases, they also 

identify potential targets for drug repositioning, development, and adjusted indications. 

4.2.5 An online atlas of genetic influences on human blood metabolites 

The scope of scientific publications on results obtained by large genome-wide screens of 

phenotype-SNP associations in print journals is space-limited to the description of only a few 

central findings. To allow for full exploitation of GWAS results (and especially of mGWAS 

results where many molecular traits (here >500) are tested for genetic associations), it has 

become common practice to provide access to the full association data sets through data 

deposition servers such as GEO, EGA and dbGaP. However, in order to enable access to the 

wealth of annotations for metabolite loci collected in our study, we decided to provide two 

supplementary webresources for convenient browsing of our study’s results. 

First, I reformatted many of the supplementary tables deposited at the online version of our 

article to be accessible through an online supplemental website (www.gwas.eu/si). Here, the 

entry point is an ideogram showing all autosomes annotated with the detected GIMs (Figure 

13). Clicking on a GIM directs the user to a detailed description of the locus, augmented with 

the annotations for SNPs and metabolites defining the GIM as well as for the predicted causal 

gene. These locus pages are grouped into summary statistics of the meta-association analysis, 

biological annotations, pharmacological information, and locus information/regional association 

plots. Implementation of the resource is based on a PHP-framework nested with JavaScript 

elements for access to details such as heritability estimates that are hidden from the baseline 

information to preserve the clear and comparable structure of locus pages. I implemented the 

search interface on top of the website as exact full-text search of all included information 

obtained by indexing the complete data that shows a response time for any query in the range of 

5ms. 

Second, I developed a webresource for accessing mQTL data including associations not 

reaching genome-wide significance. As of now, the database lists association results from this 
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study as well as of two further mGWAS [165, 292]. Association data can be accessed through 

one of three query forms: 

i) The “Quick search”: a very simplistic query form where all associations contained 

in the database can be searched by entering a gene symbol, a metabolite name, or a 

SNP rs-number. When querying a SNP, a user-specified LD threshold can be used 

to expand the search to correlating markers (minimum correlation is �
 = 0.5). 

ii) The “Advanced search”: as for some loci the quick search can produce a very long 

list of results, the advanced search can be used to limit the association results. In 

addition to selecting only associations from a single study or one of the included 

cohorts (where applicable), queries on associations with metabolites and ratios can 

be separated. 

iii) The “Batch query”: The batch query interface allows for batch annotation of large 

lists of SNP identifiers with mQTL results. For performance reasons, the interface is 

built similar to the advanced search and only specific datasets can be queried. 

Output is formatted as tab-delimited text, ordered by ascending �HIJKL, and contains 

additional information such as metabolite resource entry identifiers. 

Additionally, I provide bulk download for filtered associations (�HIJKL < 1.0 ∙ 10N|) as well as for 

the complete meta-analysis output. 

When using the quick or advanced search, query results are listed in tabular format 

containing basic information including SNP position, alleles, allele frequency, effect allele, the 

association type (metabolite or ratio), the association source, and the minimal association �HIJKL. 

If LD-expansion is used, the results for the query SNP and its proxies are listed in separate 

tables. For each SNP, the details for associations can be displayed in so-called SNP reports. 

These contain additional data on the SNP, a mapping to GENCODE genes, all metabolite/ratio 

associations from the selected study, and phenotype associations as contained in the GWAS 

catalog, including URLs to dbSNP, Ensembl, metabolite entries at HMDB, KEGG, and 

ChemIDplus / the CAS registry, and PubMed articles describing the SNP-phenotype 

associations. 

4.2.6 Concluding remarks 

Here, I give only a short report of our findings. However, as we put much work into the 

provision of all data and its interpretation, I would like to point the attention of the reader to 

the original publication and the wealth of additional information provided in its supplement and 

the online resources. 
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When published, this study comprised the most comprehensive scan for genetically 

influenced concentrations of human blood metabolites. The multiple downstream analyses that 

we conducted in order to shed light on the relationships between the observed 145 GIMs, the 

genetics of other complex human phenotypes, and possible therapeutic interventions using 

drugs both approved and under development, as well as the systematic investigation of the allelic 

architecture of GIMs furthered our knowledge on several levels of biomedical research. To 

enable the convenient use of our study results, I developed two webservers that allow for 

browsing of all annotations that were collected and manually curated in our study. This 

combination of descriptive interpretations of metabolite loci with free full access to the 

complete association data is already widely used by the scientific community and facilitates the 

deeper functional investigation of the new hypotheses generated by our analysis.  

4.3 Genetic influences on human urinary metabolites 

In the last section, I described GIMs identified using plasma and serum metabolite levels. As 

mentioned, previous studies showed that genetic influences on metabolites seem to be robust 

across tissues, fluids, and measurement platforms. To investigate this matter further, we 

performed another large-scale discovery mGWAS in participants of the SHIP-0 cohort, but this 

time we used targeted and non-targeted proton nuclear magnetic resonance spectroscopy (1H 

NMR) analysis of urine samples. Replication was performed using subjects from the KORA F4 

cohort. In this section, I describe the key results of this study [165] which comprises the largest 

mGWAS on urinary metabolic traits to date, reporting 15 new urinary GIMs and replicating 

another seven previously identified loci. Intriguingly, 14 of all 22 identified GIMs (64%) also 

show associations with blood metabolite levels, enabling the study of the regulatory relationship 

between urinary excretion of metabolites and metabolic homeostasis in blood. 

4.3.1 Methods summary 

SAMPLES AND GENOTYPES – For the analysis of genetic influences on metabolite 

concentrations in urine, we performed a two-stage mGWAS including a discovery sample of 

3,861 individuals from SHIP-0 and a replication sample of 1,691 subjects. Further information 
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on included individuals and covariates is listed in Table 10. Genotyping followed by pre-

phasing and imputation yielded a final set of 15.9 million high-quality genotypes. 

QUALITY CONTROL METRICS – SNPs were filtered based on HWE �� > 1.0 ∙ 10NÓ	, 

MAF ≥ 5%, and genotype call rate ≥ 95%. Before genotype imputation, 620,456 and 593,830 

autosomal SNPs passed QC filters for SHIP-0 and KORA F4, respectively. Imputed genotypes 

were filtered for imputation quality score (IMPUTE info-score) ≥ 0.8 and MAF/HWE as for 

genotyped variants. Normalized metabolic traits were limited to compounds with at least 300 

data points available for SHIP-0 and 100 data points available for KORA F4, respectively. 

Metabolite concentrations in the non-targeted analysis were log-transformed with base 10 and 

data points more than four standard deviations from the mean were removed, while in the 

targeted analysis outliers surpassing three standard deviations from the mean were excluded. The 

final dataset of urinary metabolic traits comprised 1,518 entries in the targeted analysis (55 

metabolites and 1,463 ratios) and 13,861 entries in the non-targeted analysis (166 NMR peaks 

and 13,695 ratios). 

 

Study N by gender (m/f) Age [years] (mean±SD) 

SHIP-0 (discovery sample) 3,861 (1,901/1,960) 49.5 ± 16.2 

KORA F4 (replication sample) 1,691 (826/865) 60.8 ± 8.8 

total 5,552 (2,727/2,825) 53.1 ± 15.2 

Table 10: Sample statistics and covariates. 

REPLICATION OF ASSOCIATIONS – Replication in KORA F4 was performed for each 

locus significantly associated with metabolic traits in SHIP-0 in a stepwise manner, first trying to 

replicate the SNP/trait pair with the lowest association �HIJKL. If this pair could not be 

replicated, we used the second best hit and so on.  

METABOMATCHING – In order to obtain hints at the potential identity of non-targeted 

NMR peaks, we applied the metabomatching [301] annotation method. As reference set, we 

used the urine metabolome database [302], a subset of HMDB (see section 3.4). Final candidates 

as listed by metabomatching were manually curated. 

4.3.2 Fifteen newly discovered genetically influenced urinary metabotypes 

In order to reduce the computational burden, we first analyzed genotyped autosomal SNPs 

(n=620,456 after QC) for associations with metabolic traits in SHIP-0 at the classical threshold 

for genome-wide significance of 5.0 ∙ 10NO. In this step, we identified 499 mQTLs at 54 

chromosomal regions (defined as 2Mb intervals centered to the lead SNPs). We then used all 
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genotyped and imputed variants within these regions for association analysis with all metabolic 

traits (targeted and non-targeted) below the significance level Bonferroni-corrected for the 

number of traits ��HIJKL < 3.25 ∙ 10N�
	. 2,882 variants within 23 distinct genetic loci were 

found to be significantly linked to one or more metabolic traits. For ratios, we additionally 

required a P-gain defined as min ���º� 	/��º� ⁄ º
 	 , ��º
 	/��º� ⁄ º
 		 ten times the 

number of tested metabolic traits (15,180 in the targeted and 138,610 in the non-targeted 

analysis, respectively) for genome-wide significance [303]. Replication in the KORA F4 

samples was successful for 22 of the loci, 15 of which (HIBCH, CPS1, AGXT, XYLB, TKT, 

ETNPPL, SLC6A19, DMGDH, SLC36A2, GLDC, SLC6A13, ACSM3, SLC5A11, PNMT, 

and SLC13A3) have not been reported as associated to urinary metabolite concentrations 

before. The remaining seven loci were described in previous mGWAS in urine [296, 301, 304] 

and are replicated in our study with respect to both the associated metabolic traits and the 

direction of allele-specific effect estimates (for all loci and the collected annotations, see Table 3 

in [165]). 

4.3.3 From urinary GIMs to functional hypotheses 

Consistent with the results described in section 4.2, we were again able to establish plausible 

biochemical relationships between the associated metabolic traits and the predicted causal genes 

for the majority of loci (15 of 22; 68%). To elucidate the functional relationship between 

metabolites as intermediate phenotypes and complex trait endpoints further, we again annotated 

all 22 GIMs with a large set of genotype-phenotype association and annotation databases as 

contained in the SNiPA webserver [58]: the GWAS catalog, OMIM variation, ClinVar, 

HGMD, and dbGaP (all described in section 3.4). Further annotations for the predicted target 

genes were retrieved from specialized databases and manual text mining. This integration of 

additional data led us to several plausible hypotheses that again show the benefit of including 

multiple omics-levels into analysis. 

For instance, we identified a significant association of ethanolamine with variants upstream 

of the ethanolaminephosphate-phospholyase (ETNPPL) gene. It has been speculated that 

dysregulated homeostasis of its substrate, ethanolaminephosphate, which is the phosphorylated 

form of ethanolamine (EC 2.7.1.28) and which is degraded by ETNPPL, may contribute to 

psychiatric disorders such as schizophrenia [305]. This hypothesis is strengthened by differential 

gene expression analysis which yielded evidence for altered gene expression levels of ETNPPL 

in schizophrenia patients compared to control samples [306]. Proteomics data available at the 

Human Protein Atlas [307] shows that the protein product of ETNPPL is found in high levels 
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in the cerebral cortex and the kidneys, which labels these two tissues potential hotspots of 

ethanolaminephosphate degradation. The association found in our study indicates that 

accumulation of ethanolamine in urine may point towards a genetically reduced enzymatic 

velocity of ethanolaminephosphate degradation which could serve as a marker for predisposition 

to brain disorders. 

4.3.4 Integration of mGWAS results in urine with blood GIMs 

In order to compare our results to those of published blood mGWAS, we included mQTLs 

and their proxies in strong LD ��
 G 0.8	 from the metabolomics GWAS server (see section 

4.2) and studies included in the GWAS catalog with an association �HIJKL < 5.0 ∙ 10NO. Eight 

of the urinary metabolite loci reported in our study seem to be urine-specific. However, the 

other 14 loci also comprise mQTLs in blood. Six of those (CPS1, AGXT2, DMGDH, 

SLC6A13, HPD, and SLC5A11) affect the same metabolite concentrations in both fluids with 

the same direction of effects in all but one (SLC5A11) of the six cases. In another five cases, the 

associated metabolic traits in blood and urine are biochemically linked i) via an enzymatic 

reaction (e.g. trimethylamine EC �.t.O.
ØÙÙÙÙÚ dimethylamine), ii) the enzymatic function of the 

predicted causal gene (e.g. NAT8 which encodes an protein similar to N-acetyltransferases and 

is associated with different N-acetylated compounds in blood and urine), or iii) belong to the 

same molecular class (e.g. gluconate and erythronate are aldonates). For the remaining three 

loci, the metabolic traits in both media have no obvious connection. 

The SLC5A11 locus, which in this study is linked to increased urinary myo-inositol 

concentrations per copy of the T-allele of SNP rs17702912, was associated with lowered levels 

of the same metabolite in blood with the same allele in the mGWAS described in section 4.2. 

The solute carrier family 5 (sodium/inositol cotransporter), member 11 (SLC5A11) transports 

inositol in concert with sodium [308]. The reversed genetic effects on myo-inositol 

concentrations seen in blood and urine suggest that SLC5A11 may be implicated in the re-

absorption of myo-inositol in the proximal tubule of the kidney as has been previously 

hypothesized [309]. To follow up on this theory, we calculated the association of rs17702912 

and the ratio of blood and urinary myo-inositol levels for the KORA F4 subjects from the 

replication sample of this study using the blood concentration measurements (normalized to 

circulating creatinine) of the same individuals contained in the study described in section 4.2. 

The association shows an increase in strength (by means of the �HIJKL) of seven orders of 

magnitude ��Ko��L < 1.95 ∙ 10N
|, �¡J^^c < 1.50 ∙ 10N|, �oIf�^ < 2.43 ∙ 10Nu�	 as compared to the 

association in urine alone. This may indicate a direct relationship between the opposite genetic 
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effects on myo-inositol concentrations in the two fluids caused by altered function of SLC5A11 

that indeed would be in line with a reduced re-absorption rate in carriers of the effect allele. 

4.3.5 An automated approach for assigning predicted causal genes 

In the study on genetic influences on human blood metabolites (section 4.2), we put major 

effort into the assignment of the predicted causal gene for each locus, using manifold means of 

manual annotation. The objective, data-driven projection of the effects of genetic markers onto 

candidate genes, however, is one of the major challenges in current genetic analyses. In this 

study, I have developed such an evidence-based method for the detection of the most plausible 

predicted causal genes. 

As the first step in candidate gene selection, we assigned the significantly associated SNPs to 

distinct loci using a physical distance threshold of 1Mb. Assigning variants within a locus to one 

of the covered genes based only on proximity or plausibility ignores haploblock structure and 

existing regulatory information for the SNPs such as eQTL associations. To take such 

information into account and to achieve an unbiased selection of candidate genes, I collected 

evidence for each significantly associated SNP and its proxies in strong LD ��
 G 0.8	. I 

received a list of candidate genes that are linked to any of these variants (including LD-proxies) 

via the following criteria to identify candidate genes: i) Genomic proximity: genes that harbor 

or are in close proximity (<5Kb) to any of the variants. ii) eQTL association (eQTL datasets are 

listed in section 3.4.3): genes where altered expression levels have been discovered to associate 

with any of the variants. iii) Regulatory elements (ENCODE and FANTOM5, see section 

3.4.2): potentially regulated genes that are associated with a promoter/enhancer/repressor 

element containing one of the variants. Further evidence for potential involvement of a gene 

was assumed if iv) the variants contain a missense variant for a protein product of this gene and 

v) if an intragenic variant is annotated as pathogenic in one of the available phenotype databases 

(see section 3.4.4). For each gene, I counted how many of the aforementioned criteria are met. 

I then finally assigned the locus to the gene with the strongest functional evidence (i.e., the gene 

showing the highest number of different types of evidences (max. 5) among the candidate 

genes). In case of ambiguous assignments, the gene with the most plausible biological function 

as determined by manual text mining was chosen. 

As an example, one locus on chromosome 2p13.1 contains a high number of SNPs with 

strong associations with non-targeted traits corresponding to N-acetylated compounds. These 

SNPs are distributed over 12 different genes. The gene covered by the highest number of SNPs 

is ALMS1. However, there are 3 more genes in this locus with the same functional evidence 
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count as ALMS1. One of these genes is NAT8, which encodes an N-acetyltransferase. Since 

there is a biologically meaningful link between the function of the NAT8  gene product and the 

associated metabolic traits, I annotated this locus with NAT8 as the most likely candidate gene. 

Interestingly, in the Shin et al. study, we manually selected the same gene for the overlapping 

blood GIM, a decision also based on the identity of the associated metabolic trait (which again 

was an N-acetylated compound) [116]. For the whole list of evidences collected for all loci, see 

supplementary table S3 in [165]. 

4.3.6 Concluding remarks 

As I have shown in the previous section, the identification of genetic effects on intermediate 

phenotypes such as metabolite concentrations is a valuable tool to gain insights on the cellular 

disturbances possibly predisposing to human trait endpoints. However, it is not obvious if the 

findings obtained in one tissue or body fluid can mirror the effects taking place in the primary 

affected tissue. Here, I shift the focus from GIMs detected in blood to genetic variants 

modulating urinary metabolite concentrations. Although we also find some GIMs that seem to 

be specific to one fluid, we were able to show that, to the larger fraction, GIMs in both media 

are co-located. With the example of SLC5A11, we show that the combination of the genetic 

effects across different biological samples can even yield new hypotheses regarding the 

functional mechanisms underlying a genetic signal. For further downstream analyses, I have 

again made all association data available at the metabolomics GWAS server (www.gwas.eu; see 

section 4.2). 

4.4 Summary 

In this chapter, I described the process of how genetic associations with complex human 

traits can be investigated. In the first section on the genetics of the sudden infant death 

syndrome, I gave a detailed outline on the methodological challenges of GWAS and SNP array-

based CNV analysis, discussed how best-practice quality control measures are to be applied to 

the primary data, and exemplified how genetic loci that show association to a trait can be 

interpreted functionally. In the following two sections, this matter was elucidated further in the 

context of metabolomics GWAS within and across the respective studied body fluid. Here, I 
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put emphasis on more specialized approaches (evidence-based locus to gene assignment) and 

outcomes (explained variance). Additionally, I underlined the importance to provide access to 

the results of biomedical studies in order to allow for further downstream analyses. In the next 

chapter, I will show how these results can be integrated and combined with the results from 

other studies, enabling the investigation of new relationships between genetic information and 

complex human traits. 
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5  Annotating the variome 

The biological interpretation of genetic loci (as defined by variants in LD) and their effect 

on associated traits and diseases relies on the annotations available for the respective genetic 

region and the respective variants, as well as on the knowledge about the molecular pathways 

involved in the expression of the trait or disease phenotype. If there is no other information 

available, trait associations for a locus can per se be used to more closely characterize the 

biological mechanisms linked to both the genetic region and the trait. In the last chapter, I 

outlined the workflow of how genetic associations to human traits are obtained and gave an 

introduction to the methods of how these associations can be projected on candidate genes. 

Specifically, I described an automated approach to this task that uses a simple evidence-based 

metric to assign a target gene to a GWAS-identified genetic locus. This approach is based on a 

large, integrative data collection accessible through a user-friendly webserver called SNiPA that 

we developed in order to support scientists in the inspection of the potential functional 

implications underlying a genetic association signal. This chapter presents this resource, the 

integrative approaches we applied to obtain its data basis, and the data harmonization and 

consolidation methods we used, thus substantiating the introductory chapter 2 on data 

integration with a practical implementation. The following is based on and extends our 

application note on the resource published in Bioinformatics [58]. As I designed the resource to 

be both automatically updatable and easily extendible, the presented methods as well as the 

contained data sources for the current SNiPA version differ in part from what we have 

described in the original publication. 
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5.1 Methodological aspects 

Development of large integrative genomic resources is an interdisciplinary task. First, the 

desired content, access interfaces, as well as the potential downstream applications and use-cases 

have to be determined. In the second step, datasets that fit the purpose of the specified focus of 

the resource have to be collected and integrated. In the third step, the integrated data has to be 

consolidated in an aggregated or mediated view that is optimized to be queried from the 

intended interfaces. Finally, the interfaces have to be related to data access points implemented 

in a technical platform that allows for interaction with requests by the end-user. This section 

will describe these process layers as we have designed them for the SNiPA web server. 

5.1.1 Specification of requirements 

The basic aim of the resource was to facilitate the annotation of genetic loci defined by the 

contained elements such as genes and regulatory elements with evidences for functional effects 

possibly exerted by genetic variation. We therefore conceptualized the standard approach for 

mechanistically annotating genetic variants: 

1. Definition of the genetic variation. For SNVs, this includes the extraction of correlating 

variants via LD. For CNVs, this means the exact determination of the break points. 

2. Annotation of the genetic variation with the available catalog of variant-linked 

information such as trait associations or conservation or deleteriousness scores. 

3. Retrieval of potentially affected genes via a weighted combination of genomic 

proximity to the genetic variation, eQTL associations, and gene-associated regulatory 

elements (this is basically the approach described in the previous chapter). 

4. Collection of further evidence that corroborate the relation between the genetic 

variation and the candidate genes (amino acid exchange, pathogenicity). 

5. Basic annotation of the affected genes (disease associated, monogenic disease genes). 

As further annotation of candidate genes is often context-specific (protein-protein interactions, 

metabolic or signaling pathway, information from knockout models, etc.), we decided to 

exclude more specialized gene annotations from the database. Also, we decided to put our focus 

on single nucleotide variants that are the most frequent (>99.9%) form of genetic variation in 

the human genome [231]. Also, for larger CNVs there are very good annotation tools and 

databases available (including the aforementioned Database of Genomic Variants [194]). This led 

to the definition of the desired content: 
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1. A background set of SNVs, including their frequency in the general population, their 

genomic location, and their correlations in terms of LD. 

2. Data on variant-linked information, including conservation and deleteriousness scores, 

pathogenicity, eQTL associations, trait associations, as well as effects on gene, transcript, 

and protein sequences. 

3. A basic genomic backbone consisting of up-to-date gene, transcript, and protein 

annotations and regulatory elements. This includes a mapping between the 

oligonucleotide probes used for eQTL analyses and the gene/transcript annotation. 

4. Annotation of genes with trait associations and monogenic disorders. 

For access to the data, we wanted to provide query interfaces to all tasks involving genetic 

variants. These we defined as: 

1. An interface to define the genetic variants which, as mentioned before, for SNVs means 

retrieval of correlating variants. 

2. An interface to retrieve variant-linked data as well as their evidence-based effect 

annotation. 

3. An interface to retrieve combined annotations for a set of variants, defined either based 

on the results of a genetic association study, their correlation via LD, or their genomic 

position. 

4. A graphical user interface to inspect LD-based genetic loci. 

5. A graphical user interface to visualize results from genetic association studies 

a. in the locus context. 

b. across the whole genome. 

6. A graphical user interface to screen the variant content in a genomic region. 

5.1.2 Data integration and harmonization workflow 

The first decisions in the design of the data integration workflow regarded the source for 

genome annotations and the background variant set. For the former, I chose the Ensembl 

database [149] as backbone for genomic data including gene, transcript, and protein data as well 

as basic regulatory element annotations, because the Ensembl development team closely 

collaborates with the ENCODE project consortium [78, 81] which is the major source of 

functional annotations for the human genome. For the variant set, I relied on the SNV data 

released by the 1000 genomes project [77, 231] which is the largest international sequencing 

project of population-based reference genomes. Although it has to be mentioned that, in non-

coding regions, only low-coverage sequencing was used to generate the 1000 genomes data, the 
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consortium applied a whole set of quality control measures (including validation via deep 

sequencing in 10% of the individuals) that make this variant set unique in its form. To filter out 

further potential artifacts resulting from low sequencing coverage, I installed additional quality 

criteria (only bi-allelic variants; no short insertions and deletions; unique mapping by dbSNP 

[178] to two genome assembly versions). When I started collecting the data basis for the 

resource in autumn 2013, the current genome assembly was GRCh37 to which all of 

annotations from Ensembl and other data sources were aligned. The SNV data from 1000 

genomes was also mapped against GRCh37 and, therefore, we could directly annotate variants 

with functional evidences using the respective genomic coordinates. This, however, changed in 

2014 when the Ensembl database was converted to include the latest genome assembly, 

GRCh38. Afterwards, the data from Ensembl was conform to the new assembly, while all other 

annotation sources as well as 1000 genomes still used GRCh37 coordinates. To resolve this 

conflict, I had to apply several mappings between the two assemblies. For gene, transcript, and 

protein sequences as well as ENCODE regulatory feature clusters, I obtained the set of entities 

that could be unambiguously projected between the two assemblies using the UCSC liftOver 

tool [216]. For SNVs, I used the dbSNP database [178] that realigns all submitted variants 

(including those from the 1000 genomes project) to every genome assembly to retrieve the set 

of variants that can be mapped to both assemblies. These sets were used as whitelists in all 

further annotation steps, while entities not contained in the lists were excluded during the SNV 

annotation process. As up-to-date sequence mappings were only available for GRCh38, I 

further had to separate the annotation of effects on genes, transcripts, proteins, and regulatory 

feature clusters from the annotations aligned to GRCh37 (Table 11). Integration of the datasets 

is also differently handled for dynamic (i.e. regularly updated) and static datasets.  

The dynamic data comprises primarily the gene, transcript, and protein alignments, as well 

as regulatory elements, mappings of gene-associated promoters and enhancers, eQTL probes, 

and miRNA target sites to the gene set, deleteriousness scores for amino acid exchanges, and 

trait associations for variants and genes. Datasets that are not as frequently updated, but still 

require the implementation of update routines include the variant background set from 1000 

genomes (which can, except for LD calculations, be performed incrementally and, thus, is 

comparably trivial), realignments of the variants from dbSNP (which may affect the set of 

variants that can be mapped to both genome assemblies), dbSNP identifier history (contained in 

the dbSNP RsMergeArch table [178]), and genome-wide conservation scores (in case that 

additional mammalian genomes are included in the multiple sequence alignment).  
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As gene-, transcript-, and protein-linked annotations are dependent on the gene build, 

gene information (stable gene identifier (ID), gene symbol, genomic coordinates, size, strand, 

accession numbers, synonyms, biotype and full gene name) is gathered as first integration step 

via querying the latest release of the Ensembl MySQL database on the fly. The obtained gene set 

is annotated with transcript and protein information as well as trait associations and annotations 

from DECIPHER [196], OMIM [106], and OrphaNet [107]. Then, the bidirectional mapping 

between GRCh37 and GRCh38 is performed to obtain the final set of genes. This is followed 

by fetching the Ensembl regulatory build from the Ensembl MySQL database and again the final 

set of elements is derived using the bidirectional mapping between the assemblies. Next, the 

mapping of microarray probe sets (for eQTL mapping) and of gene-associated promoters and 

enhancers to the genes in the final list is obtained. Finally, variant-trait associations are 

downloaded from the different sources (DrugBank [221], dbGaP [226], ClinVar [227], GWAS 

Catalog [100, 222], HGMD [224], OMIM variation [106], UniProt [225], and the 

metabolomics GWAS server; see chapter 3), and deposited in standardized data files. As these 

data sources are more frequently updated than the Ensembl database, variant-trait associations 

can also be added to the existing annotation compendium without the need to complete the 

whole integration cycle. 

Data type NEntities Assembly NSources Mapping strategy 

Genes 59,413 GRCh38 1 position-based 

Regulatory feature clusters 406,822 GRCh38 1 position-based 

AAE deleteriousness scores e.w. GRCh38 2 position-based 

Bi-allelic single nucleotide variants 78.2 Mio. both 1 position-based 

Gene-associated promoters and enhancers 1,064,990 GRCh37 3 position-based 

miRNA target sites 606,059 GRCh37 5 position-based 

Conservation scores g.w. GRCh37 3 position-based 

Deleteriousness scores g.w. GRCh37 3 position-based 

eQTL associations 20,855,118 - 9 ID-based 

Variant-trait associations 408,325 - 9 ID-based 

Gene-trait annotations/associations 11,658 - 3 ID-based 

Table 11: Data integrated in the SNiPA resource. The primary datasets and sources are listed in chapter 3. The 

annotation sets mapped to the older GRCh37 assembly clearly outnumber the annotations aligned to 

GRCh38. Therefore, I used the GRCh37 assembly as backbone. ID-based mappings are updated 

regularly to ensure full compatibility of ID-lists. Abbreviations: AAE – amino acid exchange; e.w. – 

exome-wide; g.w. – genome-wide. 

SNV data is obtained from the 1000 genomes and filtered for bi-allelic variants in order to 

provide globally valid, allele-specific variant annotations. Variants are then mapped to the 

current dbSNP release and aligned to both genome assembly versions. Simultaneously, the 
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dbSNP ID-alias mapping is updated. Variants in the final SNV mapping are then stored in a 

database. LD calculations are performed on the 1000 genomes genotype data in full 

parallelization, meaning that the genome is split into 1Mb chunks with pairwise overlaps of 

250Kb and LD-values are computed in 500Kb windows centered to the respective variants 

down to a threshold of �
 G 0.1. After completion, the chunks are rejoined chromosome-wise. 

Genome-wide conservation scores (GERP++ [200], PhastCons, and phyloP [199]) are only 

available in compressed and indexed bigWig format. Despite the index structure, access to the 

data in these files was not very performant which is due to the large file sizes leading to 

inefficient index structures. I therefore split the data chromosome-wise and used Tabix [255] 

for indexing which performed better than bigWig indexing.  

The static datasets contain stable information from published studies. As of now, this applies 

only to eQTL association data, which are preprocessed (for details see chapter 3) and then stored 

in standardized formats, and the genome-wide CADD scores [201] (which per se needs not to 

be updated but only to be filtered to comply with the alleles of the latest variant mapping). As 

for the conservation scores, for performance reasons CADD scores were also split into single 

chromosomes to enable faster data retrieval. 

5.1.3 Data consolidation 

After all data sources have been integrated and harmonized, ID-mappings and the variant 

set as well as its mapping to both assemblies are available, the actual annotation of variants is 

performed (Figure 16). This is done in a slimmed version for the GRCh38 assembly to retrieve 

gene, transcript, and protein effects and associated deleteriousness scores as well as the Ensembl 

regulatory build comprising Encode ChIP-Seq clusters and TF binding motifs using the 

Ensembl VEP tool [140]. The same is done for the GRCh37 assembly, but here also the 

additional position-based datasets conform to the assembly (miRNA target sites, gene-associated 

promoters and enhancers, and the GERP++, phyloP, phastCons and CADD scores) are 

included in VEP annotation. For subsequent processing of the data and further annotation of 

variants, genes, transcripts, and regulatory elements that is not contained in VEP output, I have 

written a modular Perl program that combines the results from VEP with the additional data 

collected, as well as conflates the information to a consistent collection expressed and confined 

to the SNiPA variant, gene, and regulatory builds. The annotation software is controlled by a 

configuration file that can be adjusted to fit the collected data basis at time of build. This enables 

also partial updates to the variant annotations, for instance via adding entries for new eQTL or 

trait association data sets. The configuration almost completely determines the annotation 
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procedure, and is only adjusted by setting a special annotation mode (--slim for the slimmed 

annotation of VEP GRCh38 results and --merge for combining the slimmed annotation results 

with VEP GRCh37 results and the additional data specified in the configuration) at program 

execution. When executed, the program loads the Filehandle module that contains functions 

for handling all data formats as we have specified them in the data integration workflow and 

reads in the data sets listed in the configuration file. Afterwards, the user-specified annotation 

process module is loaded and performs variant annotation. 

 
Figure 16: Updatable data integration and consolidation workflow of the SNiPA resource. The data basis of 

the resource is separated on five independent distributed systems: The gene build, the regulatory build, the 

variant annotation build, the variant maps, and LD data. Although stored in a distributed way, the 

production process of the single builds is interdependent. The pipeline starts simultaneously at two points: 

integration of 1000 genomes SNV data (top) and the Data integration node (right). The variant set is 

obtained by bidirectional mapping of variants over the two genome assemblies GRCh37 and GRCh38 

using probe alignments and ID-alias mapping from dbSNP. Consecutively, LD calculations as well as the 

variant maps can be independently calculated across the whole genome. Data integration starts with 

producing the gene and regulatory builds also applying a bidirectional mapping between genome 

assemblies using the UCSC liftOver tool. Afterwards, the annotation data sets for variant effect prediction 

are harmonized to the gene and regulatory builds. As up-to-date gene mappings from Ensembl are only 

available for GRCh38 but the majority of annotations used by SNiPA are conform to GRCh37 

coordinates, effect predictions on gene, transcript, and protein sequences as well as annotation with the 

corresponding deleteriousness scores is performed separately on GRCh38 (slim annotation mode). This 

annotation is then merged with the annotation data conform to GRCh37 using the variant mapping 

between the assemblies. Annotations that are in conflict with the gene or regulatory build are filtered out. 
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In default mode, the annotation is performed linearly, using the VEP output as input, 

performing additional data annotation, and creating output files that are formatted such that 

they can be used by the SNiPA web interface, which includes encoding of data arrays, bgzip 

compression, and Tabix-indexing of the results files. As VEP prints out one line per entity 

altered by one allele of the variant (which means that for the same variant there can be several 

lines), the input is read consecutively and checked for the variant of the current line being equal 

to the variant in the line before. If this is the case, the information contained in the current line 

is further annotated and added to the complete annotation of the variant. If not, the variant 

annotation of the previous variant is printed to the output file and cleared from the memory and 

a new structure for the current variant is created. Annotation is completely ID-based, as the 

VEP includes only very basic information in its output (e.g. the ID of the regulatory element hit 

by the variant, but no information on the activity of the regulatory element across cell types or 

its associated genes). Therefore, the whole gene and regulatory builds obtained before are 

loaded into hashes held in the memory, as are eQTL probe mappings, trait and eQTL 

associations, and the updated ID-mappings. For performance reasons as well as to enable the 

parallelized computation of variant annotations, all datasets are split into single chromosomes. 

This excludes eQTL probe mappings and the gene build as trans-eQTL datasets can contain 

associations to genes on other chromosomes. The cashed hashes are formatted such that the 

contained information can be directly used in the serialized output which makes the annotation 

per se very efficient as it only comprises obtaining of the information for the ID and its aliases 

from the hash. Complete processing of chromosome 1 containing approximately six million 

SNVs takes about 75 minutes. The output of the program is a hybrid of compressed annotation 

data and fields that are used for display of the data in a web interface. It contains the 

chromosome and position of the SNV (which are used for Tabix-indexing), the variant’s 

current dbSNP ID, integer codes for plotting of the most severe effect annotation, disease 

association, and the information if there are several deviating annotations available for the 

variant, the HTML-code for the tooltip containing condensed annotation data (Figure 18), the 

encoded annotation array, and a comma-separated list of the effect categories annotated for this 

variant. As the variants subjected to VEP annotation are sorted with respect to their genomic 

position, VEP output and thus the output of the annotation program is also sorted, which allows 

for direct compression of the output using bgzip followed by position-based indexing of the 

output. 
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Figure 17: Data integration frameworks for production database (A) and stable but updatable releases 

(B). In order to be easily updatable and extendible, ID-based annotation datasets are stored in a LAV 

framework that is linked to the annotator software via up-to-date ID mappings. Data that is less frequently 

updated is stored in a data warehouse. On update of this GAV-stored data, position-based data is 

converted to ID-based data using the VEP tool and consolidated in a mediated view using a projection of 

evidences to variant effect predictions. The thus obtained variant annotation build is deployed to the stable 

data release server and combined with the position-based data of the backbone of genomic annotations. 
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In slim mode, the input from VEP is only reformatted to be more efficiently accessible in 

the downstream merge mode annotation. This is performed using compression of variant 

annotations in JavaScript object notation (JSON) arrays that can be conveniently converted into 

Perl hashes, leading to constant accession times as soon as the data is loaded to the memory. In 

addition, the mapping between the assemblies is applied here. Thus, the slim annotation data is 

saved with GRCh37 coordinates. As variant annotation is performed separately for each 

chromosome, this mapping step resolves the issue of genome locations that are aligned to a 

different chromosome in the GRCh38 assembly. 

In merge mode, in addition to the full set of (chromosome-wise) annotations the slimmed 

annotation data obtained for GRCh38 is loaded into the memory. For the larger chromosomes, 

this leads to a quite large consumption of memory: the slimmed annotation for chromosome 2 

has a file size of 6.2 GB of data, translating to more than 31GB of memory consumption. 

However, when using a machine with enough working memory, this results in equal run times 

for the merge mode and the linear default annotation mode as the preprocessing of variant 

effects on genes, transcripts, and proteins compensates for the quite extensive process of reading 

the slimmed annotation into memory.  

5.1.4 Integration framework and data representation 

As mentioned before, the data basis for the SNiPA resource consists of different types of 

information with some data being stable, sometimes updated, or regularly updated. To be able 

to account for this different nature of the data sources, I split the integration of the sources into 

different frameworks, as well as we separated the deployed stable releases from the production 

database. Although it is of course favorable to provide the latest data basis to the user, for large 

databases this is not feasible. Therefore, almost all large genomic resources (e.g. Ensembl, 

dbSNP, NCBI, and UCSC) use stable releases in data warehouse frameworks. Although in 

general we also follow this approach, we wanted to be able to both include new datasets at any 

time and update information from resources with very frequent update cycles dissolved from the 

whole annotation build cycle. 

As I use the Ensembl database as backbone for genomic annotations, the major datasets in 

our resource follow the update cycle of Ensembl which is released quarterly. The information 

from Ensembl is integrated within a GAV framework in the production database. It consists of a 

cached and compressed flat file version of the VEP annotation database and is combined with 

our custom additional datasets with stable positional data (Figure 17). This additional data is 

stored in compressed and Tabix-indexed flat files. Although it would of course be possible to 
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dump the whole data into a database, the aforementioned performance reasons (see chapter 2) as 

well as the necessity to provide an additional interface between the database and the VEP tool 

disposed us to use this solution as VEP has an inbuilt interface for compressed and indexed flat 

files. Also, this allowed us to reduce the required disk space by a factor of almost 7 to 273GB. 

ID-based data (e.g. eQTL or trait associations, and gene annotations) on the other hand was 

integrated in an LAV framework, using standardized data formats implemented in the 

Filehandle module of our annotator program. Thus, additional data sources can be integrated in 

the annotation process by simply reformatting the results files from a given study to fit my 

internal file type conventions. Mapping to the mediated view that, in the production database, 

consists of the variant-projected conversion of annotation data to variant effect predictions, is 

then automatically performed by the annotator software after the configuration has been 

adjusted. This also enables the dissolved update of phenotype association data that is more 

frequently updated than the Ensembl database. An important issue in this case is the update of 

ID mapping tables to fit the Ensembl release in use. This is, therefore, realized in independent 

processes incorporated in the finalization procedure of the gene, variant, and regulatory build 

cycle which are only executed if a new Ensembl release becomes available. 

The deployed stable releases are also split into two frameworks. Similar to the above, this is 

mainly done because variant annotation data is more variable than the annotations contained in 

gene, regulatory, and variant builds. Therefore, the latter are stored in a GAV framework 

implemented in a MySQL-based data warehouse. However, after data integration and 

calculation of variant-based statistics, the disk space requirements exceeded ranges that can be 

conveniently handled in MySQL systems (uncompressed size ca. 4.1TB) without extensive 

normalization and optimization. Variant annotations and population-specific variant statistics 

(such as allele frequencies and LD data) were therefore stored in compressed and Tabix-indexed 

files (reducing the complete size of annotations plus MySQL warehouse to about 635GB) that 

are accessed via the variant build stored in the MySQL database. Thus, we ascertain ACID 

requirements and nevertheless escape the rigidity and the performance limitations of the 

relational schema. Using position-based queries, the variant annotation data is again 

consolidated with genomic datasets (i.e. the gene and regulatory builds) in a genomic 

coordinate-based mediated view. 
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5.2 Accessing variant annotations 

In order to provide access to the extensive set of genome-wide annotations I have 

collected, we implemented user-friendly starting points for all the interfaces described in the 

previous section: i) a variant-centered implementation of a genome browser (“Variant 

Browser”); ii) “Association Maps” for browsing through GWAS results; iii) an interface for 

batch retrieval of variant annotations via ID-list, gene ID, or genomic coordinates (“Variant 

Annotation”); iv) a combined listing of annotations across a set of variants within LD blocks or 

chromosomal regions (“Block Annotation”); v) “Regional Association Plot” and “Linkage 

Disequilibrium Plot” that combine publication-ready plotting of association results and LD 

values, respectively, with the interactive interface of the “Variant Browser”; vi) “Proxy Search” 

and “Pairwise LD” that allow querying pre-calculated LD values augmented with variant 

annotations. The following gives a more detailed description of the individual interfaces. 

5.2.1 The variant browser 

The SNiPA Variant Browser is our version of a genome browser with a variant-centered 

point of view (Figure 18A). Our main focus was to enable the user to visually assess how well 

the variants in a locus are characterized by evidences. To achieve that, variants are plotted 

according to their highest effect category meaning that the higher a variant is located in the plot, 

the more evidence exists for it to feature strong effects. Variants that are assigned to more than 

one effect category are highlighted in green, while variants that have trait annotations available 

are highlighted in blue. Here, the symbols used for the variants and their location in the plot are 

redundant information. This is because the two other interactive plotting modules of SNiPA 

(LD plot and regional association plot) implement the interface of the browser and use other 

means of variant positioning, and there the used symbol is the only visual hint at the assigned 

effect categories. An additional feature of the browser (and of all visualizations implementing the 

browser’s interface) is that the display can be exported as vector image, PDF, or PNG. Also, the 

browser is fully interactive, meaning that hovering over an element in the browser display will 

show a tooltip with further information on the selected element. This was implemented using 

the plotting library Highcharts and extension of interactivity by adding jQuery and the 

jQueryUI JavaScript environments (see chapter 3). Clicking on genes or regulatory feature 

clusters link to the elements’ entry in the Ensembl database, promoters are linked to 

FANTOM5 promoter annotations, and enhancers as well as ENCODE promoter elements link 
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to the Ensembl genome browser for further inspection of the genomic context. Variants, on the 

other hand, are linked to the full set of annotations presented as “SNiPA cards” grouping 

information into semantic sections. All annotations therein are linked to their primary sources 

and to the Ensembl genome browser. 

5.2.2 Association maps 

To inspect variants or sets of variants that are associated with a specific trait (or a set of 

traits), I have implemented this module that allows for access to the data in SNiPA for variants 

with published associations (Figure 18C). “SNiPA cards” of the variants can be directly accessed 

from the karyogram. Furthermore, variants can be added to the Variant clipboard (which is 

similar to a shopping cart) and then be pasted from the clipboard into other modules such as the 

linkage disequilibrium plot for an LD-based locus inspection, the LD-based block annotation to 

get a summary of annotations for all correlating variants, the proxy search to retrieve a table of 

these variants with or without dense annotations, or the variant browser for further inspection 

of flanking regions of the locus. As it is a nice feature to plot genome-wide association results in 

a karyogram, I also provide the possibility to create own association maps via uploading ID-lists 

of variants. 

5.2.3 Variant and block annotation 

The Variant Annotation module provides direct access to variant annotations contained in 

SNiPA. Given a user-specified list of dbSNP identifiers, SNiPA returns a list of “SNiPA cards”. 

The Block Annotation module enables retrieval of merged annotations of a set of variants that 

can be specified by four different ways: a list of dbSNP identifiers, one dbSNP identifier that is 

first used to obtain a list of correlating variants via a user-specified LD-threshold, a gene 

identifier, or a chromosomal region. Currently, only variants located on the same chromosome 

can be processed by block annotation. The merged annotation can be used to characterize a 

whole locus which can for instance be used to obtain evidence-based variant-to-gene 

projections as described in section 4.3. 

5.2.4 Regional association plot 

This is the classical plot for visualizing locus-based association results in a regional 

Manhattan plot. Input is a user-specified list of variant/association p-value pairs. Variants are 

plotted by their position on the x-axis and –log10(�HIJKL) on the y-axis. In addition, variants are 

colored by their correlation with the sentinel variant (by default, this is the variant with the 

lowest �HIJKL but optionally it can also be specified by the user). This plot implements the 
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interface of the variant browser, meaning that all functionalities of the variant browser are 

provided except for navigating to other loci. 

5.2.5 Linkage disequilibrium plot 

This plot is very useful for instance to inspect a published GWAS hit. It is common practice 

to select a single variant (e.g. the one with the lowest �HIJKL) as published representative for an 

association signal. LD data can be used to reproduce the reported locus albeit there always will 

be differences as the study populations will not be perfectly resembled by 1000 genomes 

individuals. Input is a single dbSNP identifier. Variants are plotted by their position on the x-

axis and their correlation (�
) to the specified variant on the y-axis. This plot implements the 

interface of the variant browser, meaning that all functionalities of the variant browser are 

provided except for navigating to other loci. Instead, the plot can be updated by selecting any 

contained variant as locus representative. 

An additional feature is that variants of special interest can be highlighted. The respective 

variants have to be entered in addition to the sentinel variant and the visualization type can then 

be specified. There are two options: either, the full plot is generated containing all variants 

showing any correlation with the sentinel, but variants that are not listed in the highlighting list 

are faded out (Figure 18B); or, the plot is restricted to the variants in the highlighting list. This 

plot basically presents a visual representation of the Pairwise LD module limited to LD 

correlations to the sentinel variant. 

5.2.6 Proxy search and pairwise LD 

The Proxy Search module allows for tabular retrieval of variants in LD with input variants 

(Figure 18D). In addition to the list of correlating variants, dense annotation of the resulting 

variant set is possible. Another common challenge of association studies is to find out if one 

locus contains more than one association signal. One possible (albeit not the optimal) approach 

to do so is to check the pairwise LD statistics of the variants contained in the locus which can be 

done using the Pairwise LD module. Input is a list of variants that are output with their LD 

statistics. Again, compressed annotation of the variants is provided as an optional feature. 

5.2.7 Data downloads and programmatic access 

Results tables from the Block Annotation, Proxy Search and Pairwise LD modules can be 

downloaded as is, thus providing batch retrieval of LD statistics as well as condensed top-level 

annotations. These include the set of genes linked to the variants via genomic proximity, eQTL 

associations, and gene-associated promoter and enhancer elements. For detailed variant 
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annotations, I have implemented a PDF-conversion of the “SNiPA cards” such that the user 

can collect annotations of variants of interest. The PDFs are interactive, meaning that the links 

to the data sources are active in the documents and can be used from within the PDF without 

having to take the indirect route over our server. 

 

Figure 18: Screenshots of SNiPA modules. A: The SNiPA Variant Browser (query SNP rs174583 on 

chromosome 11) shows variants (top), genes (center in green), and regulatory regions (bottom in blue). 

Variant symbols reflect the most severe effect determined by SNiPA. Top-level information is available 

in mouse-over tooltips for all plot elements as shown here for the query SNP. The example highlights 

the value of variant-centered accumulation of annotations: rs174583 is associated with the 

concentration of a lipid metabolite as well as with the expression levels of two genes encoding enzymes 

involved in lipid metabolism (FADS1/2) and the gene coding for LDL receptor, a major regulator of 

cholesterol homeostasis. Furthermore, the variant has been linked to the response to lipid lowering 

drugs (statins), levels of trans-fatty acids, and the QT interval (information retrieved from the “SNiPA 

card” of the variant). Statins target HMG-CoA reductase that, among others, is again regulated by the 

LDL receptor. B: Linkage disequilibrium plot for rs174583 with variants in strong LD �PQ G R. S	 

highlighted. As illustrated for FADS2, basic annotations for genes and regulatory elements are also 

accessible by hovering over the elements. C: Association maps visualize published GWAS results for 

one or several traits. Variants can be selected here and further inspected using all other features of 

SNiPA while “SNiPA cards” can be directly accessed. D: Condensed tabular information for variants 

in this locus can be retrieved via the Proxy Search and other modules. The tables can be sorted, 

searched, and filtered online or downloaded for further offline processing.  
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We also decided to make all data used by the SNiPA webserver available for download. 

Because some datasets in our resource are very large (e.g. compressed LD-data for the latest 

1000 genomes release sizes to 613GB), full downloads may be rather unfavorable. However, as 

we use the free Tabix software to retrieve variant annotations from the compressed and indexed 

chromosome files and as Tabix enables remote access to such files without the need to 

download the whole data but only the index files (which are generally very small), this 

deposition of our data simultaneously provides a programmatic access interface via Tabix.  

5.3 Summary 

SNiPA combines a comprehensive set of genomic and experimental data to simplify the 

task of comprehensive variant annotation. I include molecular evidences and mappings from 81 

different datasets for annotation of each autosome (chromosome X is annotated to a lesser 

extent), summing up to more than 1,400 distinct annotation files. Of a total of 78,471,927 

SNVs contained in the resource (Table 12), more than two thirds (68%) are annotated in at least 

one of our five effect categories direct effect on transcript (change of protein sequences), direct 

effect on transcript regulation (eQTLs), putative effect on transcript regulation (variants in 

regulatory regions, and TF binding sites), putative effect on transcript (change of transcript or 

gene sequences), and very close (±5Kb) proximity to a transcript. Of the annotated variants, 

more than ten million SNVs (19%) are located in intergenic regions which emphasizes the 

profits offered by my approach to include an extensive catalog of regulatory information in 

addition to effect annotations based only on gene, transcript or protein sequences. For more 

than half of the annotated variants and a substantial fraction of non-coding transcript-associated 

variants, I was able to predict regulatory effects. 

Large genomic resources (e.g. Ensembl, UCSC, NCBI, etc.) aim at providing genome-

wide genome-level annotation tracks from an extensive set of resources. This makes retrieving 

statistical and functional annotation relevant at the single nucleotide level remains difficult. For 

instance, common genome browsers often display SNVs as thin bars that trail away in the 

wealth of other annotation tracks and are even less prepared to display statistics such as LD 

relationships between variants. This limits visual distinction of relevant variants from those 
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without relevant annotations and leaves the complex task of aggregating position-based data to 

the researcher. Variant-centered resources, on the other hand, typically concentrate on specific 

types of data such as amino acid changes (e.g. SIFT [142] or PolyPhen [143]), eQTLs (e.g. 

seeQTL database [217] or GTEx Browser [211]), or regulatory effect predictions (e.g. 

RegulomeDB [310]). Moreover, these annotations are often presented in resource-specific data 

structures. And those variant-centered resources that indeed contain several distinct datatypes 

mostly lack a graphical representation of the data (e.g. GRASP [311] or GwasDB [312]). For 

individual inspection of single variants, both resource types are extremely valuable. However, 

for simultaneous processing of larger variant sets, collection and examination of annotations 

from different data sources quickly becomes cumbersome. This presents a major bottleneck in 

genome-wide scans of genetic influences on human traits since the collection of such evidences 

is the key to understanding the effects of phenotype-linked genetic variants. SNiPA on the 

other hand combines a large collection of evidences with data retrieval interfaces that allow for 

convenient access to single variant annotations, variant-centered genome browsing, and 

interactive visualization tools tailored for easy inspection of many variants in their locus context.  
 

All variants count percentage 

bi-alleleic variant set (GRCh37) 78,471,927 100.00% 

integrated GRCh37/38 variant set 78,181,370 99.63% 

intergenic variants 35,089,795 44.88%* 

Variants with annotation 52,993,017 67.78%* 

Annotated variants   

transcript variants 43,091,575 80.87% 

regulatory variants 27,441,207 51.50% 

intergenic variants 10,191,999 19.13% 

regulatory transcript variants† 8,279,232 15.54% 

eQTLs 1,889,879 3.55% 

eQTLs in regulatory regions 958,368 1.80% 

missense variants 634,460 1.19% 

trait-associated variants 181,442 0.34% 

trait-associated eQTLs 58,090 0.11% 

trait-associated missense variants 16,506 0.03% 

Table 12: Statistics of variant annotations for the SNiPA release v3.1. Given are the variant counts and 

percentages to the respective reference set for different variant stratification sets. Of the GRCh37 set of 

bi-allelic 1000 genomes SNVs, 99.6% could be mapped between genome assemblies. Of those, almost 

70% could be annotated with an evidence-based effect prediction. The number for intergenic variants, 

which is lower than for transcript-associated variants, originates from the experimental design of the 

1000 genomes project (low-coverage WGS vs. deep WES). eQTL and trait associations are reported as 

contained in the primary datasets. LD extension of associations leads to a large increase of these numbers 

(not shown here). * – w.r.t. the integrated variant set; † – excluding missense variants. 
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To conclude, in this chapter I addressed many of the challenges that are associated with the 

evidence-based functional annotation of trait-linked genetic variants. I showed how data 

integration can be used to provide a bioinformatics resource that simplifies the practical 

challenges posed by the biological interpretation of the results of genetic association studies. To 

sustain its value, I implemented SNiPA to be both automatically updatable and easily extendable 

by additional datasets. Accordingly, since its launch we have performed several substantial 

updates of SNiPA’s data basis both on genome- and variome-wide level and integrated further 

datasets, such as the latest release of the GTEx portal (V6) covering >17 million new eQTL 

associations obtained from 44 tissues. With more and more data concerning other –omics layers 

becoming available, at some point this might enable tracking the translation of genetic variation 

from layer to layer, following the course of effects leading to phenotypic variance, trait 

endpoints, and, eventually, personalized medicine. 
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6  From evidence to biology 

In the previous chapters, I have described the process of detecting associations between 

genetic variants and quantitative as well as binary human traits, how these associations are 

generally projected to the underlying predicted causal gene, and described a data integration 

resource that is intended to support this process on a genome-wide scale. However, although 

we put major efforts into designing SNiPA as an intuitively usable web server, it may not be 

immediately apparent how the genome-wide collection of more and more evidences for variant 

annotation can be utilized to gain new insights. Even worse, in some cases this accumulation of 

data leads to another challenge: while missing evidences for annotating genetic variants with 

potentially affected molecular pathways make it generally impossible to use genetic information 

for prognosis, diagnosis, and therapy, the opposite, i.e. too much available data, raises the 

difficulty of being forced to separate relevant from potentially irrelevant information. 

Furthermore, the large fraction of variants that are annotated as being active regulatory and not 

directly affecting gene, transcript, or protein sequences contradicts the lessons learned from the 

field of monogenic diseases. 

The purpose of this chapter is therefore threefold: the first part describes the potential of a 

rather simple integrative analysis of genetic association signals that are shared between complex 

diseases to define and illuminate the presence and extent of pleiotropy in common disorders. 

This section is based on our 2012 BMC Genomics paper [164]. In the second part, I report a 

study correlating association signals with a very specific class of regulatory elements, namely 

miRNA target sites. This section is based on our 2012 PLoS ONE publication [163]. In the 
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final part, which is also focusing on the investigation of regulatory genetic variation, I want to 

illustrate an example of a genetic association were the available data are so manifold that 

evidence-based interpretation seems impossible. Using an integrative approach on the large 

collection of regulatory element data contained in SNiPA, I will illustrate the process of 

deriving a functional hypothesis using conclusive combination of the available evidences. This 

section is part of a paper in preparation. 

6.1 Shared genetic features across complex diseases 

As mentioned before, GWAS have provided a large set of genetic loci influencing the risk 

for many common diseases. Intriguingly, although published individual GWA studiess are 

usually carried out for one trait at a time, a significant overlap in the associations of several 

complex diseases becomes apparent [313]. Besides effects on a specific phenotype, loci and 

single SNPs thus may also exert pleiotropic effects by contributing to a variety of traits. While it 

is not surprising that susceptibility genes for closely related traits should be shared, multi-

functionality of a gene in phenotype presentation, i.e. pleiotropy, sensu stricto refers to 

seemingly unrelated and distinct traits [314]. Loci or variants affecting several traits might have 

small effects on each specific trait, but may be of major biological interest while indicating 

shared or branching etiological mechanisms. In principle, the influence of such loci can be 

agonistic or antagonistic, i.e. involve concurrent similar or opposite effects of the same variant 

for different traits. So far, few studies attempted to study such loci in a systemic fashion and 

rather focused on shared risk variants in closely related traits like autoimmune diseases [248, 315, 

316], heart diseases [317], or cancer [318]. In order to identify shared or branching pathways of 

related as well as diverse (i.e. medically and phenotypically distinct) diseases, we performed a 

systematic comparative analysis of genetic commonalities and differences across traditionally 

defined traits using the available repository of GWAS results that complements previous work 

on the topic such as the “Diseasome” concept introduced by GOH and colleagues [319]. For this 

variant-based approach we manually curated a high-quality data set to construct a network 

extending the knowledge on genetic overlaps between diseases as provided by GWA studies. 
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6.1.1 Methods summary 

I obtained the core list of candidate sentinel SNPs from the GWAS Catalog. Additional 

associations were retrieved from HuGE Navigator and manually tested on compliance with the 

inclusion criteria of the GWAS Catalog before insertion in the candidate list. We then semi-

automatically translated trait descriptions to the official terms in the Medical Subject Headings 

(MeSH). In this process, associations with quantitative and non-disease traits were eliminated.  

For the construction of the locus-based data representation, we defined an associated locus 

as the whole genomic region captured by SNPs in strong LD, �
 G 0.8, with the marker 

originally reported in a GWAS contained in our data set. The locus is then characterized as all 

genes located within this genomic region (referred to as “gene locus”). If the region contains no 

genes, the locus is assigned to its chromosomal location (referred to as “intergenic locus”). LD 

data and gene information were obtained with the SNAP tool. After locus assignment, our final 

data set consisted of 111 different traits linked via 1,120 SNPs to 508 gene loci and 226 

intergenic loci. Removal of isolated traits, i.e. traits which share no associated locus with 

another trait (g = 27), and cutting out loci which are associated with only one trait (g = 577), I 

retrieved a bipartite network (“shared locus network” or SLN) of diseases and loci potentially 

linked via genetic correlations. 

To obtain a variant-based representation of the data, I performed network generation on 

marker scale by utilizing the set of variants associated with more than one distinct trait. For this, 

I used the LD data to mutually assign the associated traits of sentinel SNPs in pairwise LD if not 

already present. In other words, each variant is, in addition to its own associated traits, assigned 

the traits associated with all correlated SNPs. This set consists of 175 SNPs located in 94 loci and 

associated with 55 diseases. In the resulting bipartite network (later referred to as “shared variant 

network”), a trait and a locus are linked if the locus contains a variant which comprises 

associations with this and at least one other trait. Here, the allele information was included in 

the graph visualization by coloring of the edges (Figure 19). 

DETERMINATION OF AGONISTIC AND ANTAGONISTIC EFFECTS – For all 

variants associated with more than one trait, I manually extracted the risk alleles (OR > 1, 

independently of major or minor allele status) and odds ratios from the reporting studies. The 

alleles were mapped to the forward DNA strand according to dbSNP. The same procedure was 

applied to markers which were indirectly associated with a trait over LD. If for all traits the same 

associated risk allele (and correlating allele, respectively) was reported, the SNP was classified as 
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agonistic. If the risk alleles of a SNP were opposed in the associated diseases, the variant was 

classified as antagonistic. 

GENETIC CLUSTERING – I applied complete-linkage hierarchical clustering to identify 

groups of traits genetically overlapping with respect to agonistic signals. Normalization was 

performed using the linear Pearson correlation coefficient (PCC) defined as ÛÜ,Ý = Þßà�Ü,Ý	AáAâ  

where the input are the vectors of the variant-based agonistic overlap of two distinct diseases X 

and Y to all other diseases. Thus, disorders which are clustered together show a homogeneous 

association overlap pattern to all other diseases, while diseases which are not clearly assigned to a 

cluster present a more heterogeneous pattern relatively unique in the SNP data. For cluster 

definition, I used a Euclidian distance threshold of 1.71. This threshold was determined as the 

maximal distance at which the six traits not or only weakly correlating with other diseases 

(Figure 20, bottom right) remain non-clustered. 

CALCULATION OF THE CPMA STATISTIC FOR AUTOIMMUNE LOCI – I 

downloaded the dataset S1 from [248] and extracted the information on autoimmune-linked 

SNPs contained in the SVN. I used the Z-scores given in the file to compute two-sided 

association �HIJKL for all seven GWAS. Using the CPMA (the cross-phenotype meta-analysis 

statistic) code provided on http://www.cotsapaslab.info/index.php/software/cpma/ I calculated 

the CPMA �HIJKLv as described by Cotsapas and colleagues. 

6.1.2 The shared variant network 

To provide a comprehensive base for the analysis of potentially multi-functional loci and 

variants, respectively, I compiled a network representation of the information made available by 

GWA studies which we called “shared variant network” (SVN, Figure 19A). Its degree 

distribution attributes the SVN a scale-free network, i.e. it approximates a power-law 

(��k	~kNä;  æ = 1.32; =
 = 0.69). Interestingly, also when considering the two node types 

separately, disease nodes (æ = 0.97; =
 = 0.71) as well as locus nodes (æ = 2.98; =
 = 0.93) 

show scale-free degree distributions. The scale-free property classifies the network (and its two 

sets of node types, respectively) as structured, i.e. non-random [320]. It has to be considered 

that the limited size of the SVN leads to inaccuracies in distribution fitting and thus reduces the 

explanatory value of this observation. However, as clinically related diseases (i.e. diseases which 

present similar symptoms) should present a higher genetic overlap than unrelated disorders, this 

finding meets expectations. 
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We then tried to replicate the content of the SVN by comparing it to other variant-based 

approaches assessing the genetic overlap between traits. Recently, a statistic to identify SNPs 

with effects across phenotypes (CPMA) was proposed by Cotsapas et al. [248]. It compares the 

distribution of association Pvalues of a SNP across seven GWAS on distinct autoimmune diseases 

to the exponential distribution (�Na, i.e. ± = 1) representing the expected decay rate of 

association Pvalues. As in our approach we use pre-filtered associations, this method cannot be 

readily employed on our data. However, using the data provided by Cotsapas and colleagues on 

autoimmune loci in the SVN, I retrieved CPMA �HIJKLv on 30 SNPs (~17%) corresponding to 

28 loci (~30%) in our data. The CPMA classified all SNPs as significantly effective across 

diseases �� < 0.05	. Thus, I was able to validate nearly one third of the loci contained in the 

SVN by an independent approach, which extrinsically validates at least in part the generation 

process of the network.  

The SVN also shows no artificial character with regards to its topology. Both locus and 

disease node sets comprise hubs, here defined as nodes with a degree >3, which form the central 

elements in the network. As in each GWAS multiple markers are associated with a single 

disease, one would expect hubs to be constituted mostly of disease nodes. In line with that, 74% 

of the hubs in our network are disease nodes. The remaining 26% are loci hubs (seven gene loci 

and three intergenic loci). Several of these loci have been previously identified as influencing 

susceptibility to multiple diseases like the HLA region on chromosome 6 [321], a cancer locus at 

chromosome 8q24 [318], and a coronary artery disease locus at chromosome 9p21 [317]. 

Further hub loci are PTPN22, a known player across several autoimmunity disorders [322], and 

IL23R, which has been shown to direct inflammatory processes [323]. In addition, we observed 

hubs which have not yet been described as predisposing to a whole group of diseases, such as 

TNPO3 which appears to predispose to various autoimmune diseases like systemic lupus 

erythematosus, systemic scleroderma, and rheumatoid arthritis [324-326], or TNFSF15, which 

shows associations with several inflammatory diseases [327-330]. As expected, in the majority of 

cases the traits linked to one hub can be assigned to the same disease group and, further, diseases 

which are not obviously related to other disorders linked to the respective hub are mostly 

associated with antagonistic signals. For instance, in a four-gene locus at chromosome 17q12 

(GSDML/IKZF3/ORMDL3/ZPBP2), four autoimmune diseases are associated with the same 

risk allele that in turn has opposite effects on asthma [161, 326, 327, 331]. Thus, our results 

indicate that loci associated with several diseases have an effect specific to a certain disease group 
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rather than effects on unrelated diseases, and that, if there is an effect on an unrelated disease, it 

can often be distinguished by the direction of the effect.  

 

Figure 19: A: The shared variant network (SVN). A trait and a locus are linked if the locus contains a variant 

showing association with this and at least one other trait. The network consists of 175 SNPs located in 94 

loci that are associated with 55 diseases. The colors of the disease nodes correspond to disease classes 

according to the MeSH ontology, multi-colored nodes indicate an association with different disease 

classes. Loci are depicted as transparent, diamond-shaped nodes. The node size reflects the number of loci 

a disease is associated with. The edge color reflects the allelic information: gray indicates agonistic 

variant(s), red corresponds to antagonistic variant(s), and blue marks both agonistic and antagonistic 

signals. B: Examples of antagonistic loci. For clearer accessibility, examples discussed in the text have 

been extracted from the whole network. Figure and caption adapted from [164]. 
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6.1.3 Estimation of errors induced by naïve variant-to-gene projections 

In the previous chapters, I have already indicated the difficulties in assigning predicted 

causal genes to trait-associated genetic variants, especially when only few evidences are 

available. Using established network property measures on the SLN and the SVN, I tried to 

quantify the amount of information loss and of misleading variant/gene assignments. Despite the 

size difference, the SLN shows greater network heterogeneity (wy] = 1.30, wh] = 1.17) and 

lower centralization (wy] = 0.175, wh] = 0.205) and density (wy] = 0.014, wh] = 0.021) 

values than the SVN. Furthermore, the intersection between the SVN and the SLN lacks not 

only 5% of the nodes but also 10% of the edges of the SVN. These numbers imply that the 

process of translating LD data into locus information is at least partly inconsistent. Analysis of the 

structure of the assigned LD blocks showed two error sources in shared locus analysis. First, 

variants in two independent LD blocks are assigned the same locus but are not in LD. Thus, 

shared loci are found that are not reflected in the variant based data. Second, if two SNPs are in 

strong LD but the individual LD patterns of the SNPs diverge (e.g. the LD block of one SNP 

covers a greater area at the given �
-threshold), a second type of assignment error occurs. In this 

case the two SNPs are assigned to different loci (in the example above, this is due to the 

different sizes of their LD blocks which may contain distinct gene sets) and their LD connection 

is lost. These observations suggest that i) the SLN contains loci which overlap between traits but 

the associated markers are not in strong LD, ii) there are several traits which are connected to 

the SLN via a single, potentially misleading link (as not mirrored in the variant-based data), and 

iii) a locus assignment approach using only LD data is unable to identify all shared associations 

(g = 25 or 27% of unidentified loci, based on the second type of assignment error). This limited 

sensitivity and specificity in detecting LD-based correlations between the reported markers on 

locus scale shows the uncertainty in naïve automated variant/gene projections, which in this 

study prompted us to use the variant-based SVN for all further analyses. 

6.1.4 Genetic correlations identify prevalence of frequent comorbidities 

To identify shared and branching mechanisms I split the SNP association data into agonistic 

and antagonistic variants. Since in most cases there is no solid and comprehensive basis of 

experimental data that would allow for a more sensitive classification, we suggest that the best 

available indication of distinct effects of a variant on two diseases is the signal itself being 

different. Therefore, we define a SNP to be agonistic if all disorders are associated with the same 

risk allele of the SNP. Conversely, we consider a SNP antagonistic if the associated risk alleles 
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differ between diseases. Accordingly, in the analysis of genetic overlaps and correlations as a 

measure of trait similarity, only agonistic variants were included. 

 
Figure 20: Clustering of diseases based on genetic correlations. We applied complete-linkage hierarchical 

clustering to identify groups of diseases that show homogeneous patterns of genetic overlap to other 

disorders. Disease clusters are illustrated by boxes and alternating font colors. The distance threshold for 

cluster definition was defined as the maximum distance at which the six diseases showing no or only 

very weak genetic correlations to any other disease remain unclustered (disease names in grey). Positive 

correlations that are significant are marked by plus signes for Bonferroni-corrected significance and by 

open circles for significance at an uncorrected TUVWXY < R. R[. 

As similar diseases are more likely to share associations than diseases in distinct classes, we 

expected the SVN to be organized in a modular fashion. This was confirmed by the decrease of 

the degree distribution of the topological coefficient with the number of links per node. To 

retrieve these modules, we applied a hierarchical clustering approach. The SVN contains two 
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node types (loci and traits). As we wanted to directly assess variant-based disease relatedness, I 

performed a disease-centric projection of the adjacency matrix of the SVN for hierarchical 

correlation clustering. Genetic correlations were obtained by calculating the PCC for all pairs of 

diseases based on their genetic agonistic overlap with all other diseases. The clustering returned 

15 disease clusters (Figure 20) and six diseases which show no or only weak correlation with any 

other disease. With the exception of one heterogeneous cluster (hypertriglyceridemia, ovarian 

neoplasms, lymphoid leukemia, and atopic dermatitis), the clusters mostly contain related 

diseases. Although some clusters also contain single traits unrelated to the other phenotypes, 

such as schizophrenia which is clustered together with four autoimmune diseases, this indicates 

that clinical disease classifications appear in general to be reflected on the genetic level. Notably, 

several small clusters contain diseases which are also linked through common environmental risk 

factors – like smoking for lung neoplasms, peripheral vascular diseases, and chronic obstructive 

pulmonary disease – or present high frequencies of comorbidity, e.g. type 2 diabetes and 

obesity. To get an insight into the overall extent of reported comorbidities of the diseases within 

the 15 clusters, I used publicly available resources [332, 333] and literature mining. The within-

cluster fraction of disease co-occurrence ranged from 75% to 100% (x = 95.89%, � = 8.66%) 

which provides empirical evidence of the epidemiological interrelation of diseases clustered 

together by genetic information. Clusters containing diseases that present high ratios of 

comorbidity may thus indicate potential artifacts due to “contaminated” disease cohorts 

including a substantial number of comorbid cases. The unbiased search for associations of 

genetic markers to a disease phenotype as performed in GWAS does not distinguish between 

markers for a primary or related secondary (comorbid) disease. For instance, in our approach 

pancreatic neoplasms and venous thromboembolism (VTE) are clustered together. While there 

is no direct molecular connection known between cancer and VTE, with incidence reports 

ranging from 17% to 57% pancreatic cancer is one of the cancer types most strongly associated 

with VTE complications [334-336]. Although the presence of independently shared etiological 

mechanisms can naturally not be ruled out in general, these results suggest that the potential of 

frequent comorbidities leading to spurious associations may have been underestimated in some 

studies. 

6.1.5 Antagonistic markers suggest pleiotropic effects 

We next searched for evidence that antagonistic signals represent genetic indicators of 

branching points in the etiologies of two diseases or disease groups. For the assessment of 

potentially multifunctional variants we therefore focused on markers with inverse effects. I 
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identified 44 such variants, which represent almost 4% of the original association data analyzed 

and about 25% of the SNPs associated with more than one disease. Of those 44 variants, about 

one fifth (g = 9) are located in the HLA region. SNP-markers in that region are known to differ 

in their ability to capture the classical HLA-alleles [337] and therefore were not considered 

further in the present analysis. 

For cases where the function of the harboring genes is known, I was able to identify 

conclusive models (Figure 19B). For instance, rs2736100 in the telomerase reverse transcriptase 

(TERT) gene was reported to exert antagonistic effects in idiopathic pulmonary fibrosis (IPF) 

and testicular germ cell tumor (TGCT) and two other cancer traits [338-344]. Whereas 

telomerase activity is generally upregulated in tumors sustaining proliferation and potentiating 

mutagenesis and transformation of cancer cells [345], in IPF limited cell division due to 

decreased telomerase activity is thought to contribute to the phenomenon of high percentages 

of apoptotic cells in fibroblasts [346]. Consistent with that observation, disturbed telomerase 

activity in TGCT is believed to form a distinct mechanism of cancerogenesis in this tumor type 

[344]. This distinction from other cancer traits is believed to be based on the fact that testicular 

germ cells are the only adult cell type with high telomerase expression [347]. Another example 

is the telomerase RNA component (TERC), which is essential for TERT functioning. 

Opposite alleles of SNP rs10936599 are associated with celiac disease (CeD) and colorectal 

cancer (CRC) [348, 349]. Jones et al. showed that rs2293607, a variant tagged by rs10936599 

(�
 = 0.99), alone is sufficient to modulate TERC expression [350]. While in CRC this leads to 

TERC overexpression and longer telomeres, the opposite might apply to CeD, which exhibits 

telomere reduction and genomic instability [350, 351]. The observation that both constituents 

of the telomerase complex contain independent antagonistic variants is an intriguing finding. It 

suggests parallel, autonomous evolution of two functionally interacting loci gone to fixation at a 

trade-off between early cell senescence or increased apoptosis rates (as in IPF and CeD) and 

oncogenesis. 

A further example is rs1393350 in the tyrosinase (TYR) gene where the opposite alleles are 

linked to vitiligo and melanoma [352, 353], potentially mirroring the inverse correlation 

observed for the two traits. The phenomenon is based on the presentation of TYR (self-) 

antigens on the cell surface of melanocytes. It is hypothesized that in vitiligo the immune system 

is hypersensitive towards TYR antigens, which are overexpressed in melanoma cells [354]. A 

possible explanation is that opposite alleles differentially influence the antigenicity of the TYR 

protein, possibly via the strongly ��
 = 0.95	 correlated TYR missense variant rs1126809, 
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thereby conferring protection from melanoma but susceptibility to vitiligo through immune 

surveillance and vice versa. 

6.1.6 Concluding remarks 

In this study, we identified overlapping genetic associations and their corresponding loci 

with analogous or contrasting effects on different diseases. Associations formally implicate 

genomic regions which are captured via tagging SNPs representing haplotype blocks. By using 

the population-specific LD-based haplotype data provided by the HapMap project or the 1000 

genomes project, SNP arrays are constructed aiming at a high coverage of the total genome 

variation, but without considering biologically functional aspects. The advantage of GWAS as a 

method is its unbiased approach to identify genomic regions compromised in a disease; a major 

drawback is that the association of markers without knowledge of the causal variants and their 

effects does not allow for a straightforward biological interpretation. 

As I show, the reliability of an automated assignment of LD-based loci to the trait-

associated variants is strongly context-dependent. Especially in cases of high gene density or, 

conversely, in intergenic regions/gene deserts, assigning predicted causal genes to GWAS signals 

is not possible without further evidence. Simplifications such as even more basic locus 

assignment approaches which neglect the LD structure of the genome (e.g. classifying a SNP as 

affecting only the most proximal gene) may seem more intuitive, might facilitate analyses and 

could be useful to identify causal disease-gene associations. These correct associations of genes 

which are detected through significant enrichment of a harbored tagging variant in a patient 

cohort may not be discovered when incorporating LD data in cases where the LD block of the 

respective variant spans across several genes. However, such approaches disregard a basic 

principle defining the GWAS paradigm, namely the use of LD information in the design of 

genotyping arrays to achieve the genome-wide coverage of common variants.  

Accordingly, we decided to use variant-based methods and concentrated on strong gene 

candidates identified via the gene function of single-gene loci whenever suggesting potential 

biological effects of the considered variants. In the analysis of genetic overlaps we followed the 

hypothesis that the effects of variants shared across several diseases correspond to the reported 

risk alleles. If the risk allele is the same in all associated diseases, we assume the effect to be the 

same, i.e. that there is a common underlying etiology. For closely related diseases a positive 

correlation is not surprising. For instance, a GWAS on psoriatic arthritis (PSA) will also detect 

agonistic variants such as rs33980500 that are also associated with psoriasis (PS) [355, 356], 

leading to a highly significant �ç = 0.765, �HIJKL = 1.1 ∙ 10N��	 genetic correlation between the 
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two diseases in our data. Indeed, the vast majority of agonistic variants in our data set links 

groups of related diseases and thus may mark interesting target regions for closer investigation. 

However, I also found a few agonistic signals connecting apparently unrelated diseases, e.g. 

rs6010620 which exerts susceptibility for both glioma and atopic dermatitis [342, 343, 357, 

358]. If our hypothesis is correct, an endophenotype influencing both diseases may be present 

which has yet to be identified. For antagonistic SNPs, on the other hand, we describe plausible 

mechanisms that may render variants protective against one trait and predisposing to another, 

labeling the affected genes/loci as pleiotropic. If pleiotropic effects are as frequent as 

evolutionary modelers postulate [359, 360] and these effects can be identified by analyses based 

on GWAS, this could point out interesting implications for the development and use of 

therapeutics because it would enable avoidance of potential side effects when targeting such 

loci. Already, there are several genotype/drug interactions known for which therapeutic dosing 

recommendations are available [361]. 

IBD 2nd disease è Pvalue 

Crohn's disease sclerosing cholangitis 0.75 5.1E-11 

Crohn's disease leprosy 0.65 9.1E-08 

Crohn's disease ankylosing spondylitis 0.64 1.3E-07 

Crohn's disease ovarian neoplasms 0.63 3.2E-07 

Crohn's disease membranous glomerulonephritis 0.54 2.1E-05 

Crohn's disease biliary liver cirrhosis 0.51 6.6E-05 

Crohn's disease hypertriglyceridemia 0.46 3.8E-04 

Crohn's disease lymphoid leukemia 0.46 3.8E-04 

inflammatory bowel diseases leprosy 0.77 5.3E-12 

inflammatory bowel diseases membranous glomerulonephritis 0.73 3.4E-10 

inflammatory bowel diseases ankylosing spondylitis 0.70 3.2E-09 

ulcerative colitis sclerosing cholangitis 0.80 2.6E-13 

ulcerative colitis ankylosing spondylitis 0.75 5.6E-11 

ulcerative colitis biliary liver cirrhosis 0.59 2.0E-06 

Crohn's disease  ulcerative colitis 0.83 3.1E-15 

Crohn's disease inflammatory bowel diseases 0.72 4.5E-10 

ulcerative colitis inflammatory bowel diseases 0.57 7.0E-06 

Table 13: Genetic correlations of IBDs to other diseases. Shown are IBDs and diseases linked via significant 

(P<0.0009) genetic correlations in our analysis. On the bottom in italic, the genetic correlations between 

IBD types contained in our study are given. Pvalues are unadjusted. è – correlation coefficient.  

The observation that a surprisingly high fraction (>15%) of the SNPs considered in our 

study are associated both agonistically and antagonistically with related as well as unrelated 

disorders indicates that the molecular mechanisms influencing causes and progress of human 

diseases may in part be interrelated. Genetic overlaps between two diseases also suggest the 
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importance of the affected entities in the specific pathogenic pathways. Although these may be 

secondary, such as genes involved in inflammatory responses related to T2D as well as cancer 

[362, 363], they should nonetheless be investigated further. The findings presented however 

also demonstrate the need to clarify the relations of phenotypes linked to agonistically associated 

markers. For directly interrelated diseases such as PS and PSA, often PS patients without present 

arthritis or arthritis in the past are used as additional control group. Associations are then 

interpreted as PSA-specific if not as strongly associated with PS [364, 365]. Comparable 

procedures or direct adjustment of regression models in association testing may proof useful in 

frequently co-occurring diseases genetically linked by agonistic variants. For instance, 

inflammatory bowel diseases (IBDs) are associated with several frequently occurring extra-

intestinal manifestations [366, 367]. Consistent with the epidemiological data, I found highly 

significant genetic correlations between IBDs and seven other diseases as well as with leprosy 

which is caused by infections with Mycobacterium leprae or M. lepromatosis (Table 13). The 

connections between the diseases, although in part assumed to be influenced by shared genetic 

factors, remain largely unknown [367], while infections with mycobacteria have been proposed 

as a cause of IBD [368]. Using our results for careful case stratification and inclusion of suitable 

covariates in the genetic analyses may provide deeper insights into these relationships. 

Pleiotropic genetic effects, on the other hand, that are harbored in the same locus may 

trigger different mechanisms interfering with the genetic or environmental background. The 

detailed examination of antagonistically associated loci may thus lead to first insights into the 

mechanism of the various types of pleiotropy implicated in complex human diseases.  

6.2 Cis-acting polymorphisms: miRNAs as disease mediators 

In recent years, more and more evidence is emerging that microRNAs, a class of small non-

coding RNAs, play an important role in the development of human traits. Databases collecting 

information on miRNAs mediating human disease such as miR2Disease or PhenomiR list 

several hundred miRNAs with established roles in way above 100 human diseases. miRNAs are 

key posttranscriptional regulators of most known cellular processes and have been associated 

with cell fate decision, development, and stress response. Additionally, miRNAs have been 
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identified to be usable as biomarkers for human diseases [369-372]. With growing knowledge 

on their targets, which are believed to make up more than 60% of all protein-coding genes 

[373], new regulatory and disease-mediating gene networks were discovered [374-377]. 

Because single miRNAs are able to regulate not only one but up to several hundred genes, they 

depict promising therapeutic targets for disease pathways involving multiple genes. With the 

advances of the crosslinking immunoprecipitation (CLIP) technology, it has become feasible to 

experimentally determine miRNA-target interactions and the exact binding sites of the RNA-

binding proteins (RBPs) on transcriptome scale [378-381]. 

In order to investigate the role of miRNA functioning in human health more closely, 

approaches with the objective to identify potential interrelations of miRNA dysregulation and 

genetic variation were attempted. In these earlier studies, however, neither the data on trait-

associated polymorphisms nor experimentally verified miRNA targeting information provided a 

sufficient basis for genome-wide integrative analyses of both entities. Genetic variants located in 

3’-untranslated regions (3’-UTR) of human transcripts, the major target of miRNA-mediated 

regulation, were rarely reported in rationales of genetic association studies, as functional 

interpretation of such non-coding variants was challenging without available evidence for 

functional implications (such as miRNA target sites). Large-scale high-quality experimental data 

validating miRNA target site predictions, however, became available only in 2010. 

Consequently, at the time this study was conducted, only few particular examples of SNPs 

affecting miRNA regulation pathways had been identified [382, 383], and studies were mostly 

limited to effects on predicted miRNA target sites [383, 384]. 

It is important to mention that the 3’-UTR harbors several other functional elements 

besides miRNA target sites which may, if affected, also mediate disruption of miRNA 

regulation pathways. It has been assumed, for instance, that the loss of a polyadenylation (polyA) 

signal can cause genetic diseases by non-specific degradation of the mRNA [385]. Recent 

experiments suggest that this effect may be based on a functional connection between polyA 

signal efficiency and miRNA-mediated translational repression [386]. Further, the structural 

accessibility of an RNA region is an important feature for the binding affinity of RNA-induced 

silencing complex (RISC) target sites [387]. It has been shown that mutations in RNAs have 

large local as well as global structural effects [388] and that altered target accessibility can reduce 

miRNA-mediated posttranscriptional repression to a scale comparable to that of mutations 

disrupting miRNA recognition element (MRE) sequence complementarity [389]. Finally, 

polymorphisms affecting splice sites can lead to radical sequence changes increasing susceptibility 
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to diseases, an effect which is suspected to be partly due to altered translation efficiency of the 

affected mRNA [390] - which is characteristic for miRNA functioning. 

The success of GWAS in identifying genetic loci involved in the susceptibility to common 

diseases has been repeatedly discussed in this thesis. I have also introduced the challenges 

associated with the prediction of causal genes for GWAS loci as well as with deriving hypotheses 

regarding the functional mechanisms underlying observed association signals. In this study, we 

concentrate on the influence of GWAS-identified variants on miRNA-mediated cis-acting 

regulatory effects as an example of predicted regulatory genetic variation. More specifically, we 

assess potential posttranscriptional effects exerted by trait-associated variants by systematically 

investigating SNPs located within the 3’-UTR of human transcripts for interference with polyA 

signals, 3’-UTR splicing, 3’-UTR secondary structure changes and MREs. 

6.2.1 Methods summary 

SNP DATA SETS – The core list of sentinel trait-associated SNPs (referred to as GWAS-

SNPs) was again obtained from the GWAS Catalog, which at the time of this study included 

information about 5,101 unique SNP-trait associations with a �HIJKL < 1.0 ∙ 10Nt. The GWAS-

SNP set was extended by highly correlating SNPs in strong LD �
 G 0.8 in the HapMap3 CEU 

panel. This set, further referred to as extended GWAS-SNPs, contains 18,884 variants retrieved 

using the SNAP tool. As background distribution for localization enrichment I used the 

complete set of 2.79 million SNPs from the CEU panel of the joint HapMap Phases I, II and III 

(release 27, referred to as HapMap-SNPs) for which genotype information was available. For 

background distributions of variant properties (see below), I randomly selected 5,101 SNPs 

from the HapMap-SNP set a 1,000 times and extended these set, analogous as for the GWAS-

SNPs, with SNPs in strong LD. 

ANNOTATION OF GENOMIC VARIANT PROPERTIES – I mapped all HapMap-

SNPs on genomic locations of protein-coding genes and miRNA hairpin sequences from 

miRBase (release 18). The localization of SNPs was then categorized into five classes: 

intergenic, intronic, 5’-UTR, coding sequence (CDS), and 3’-UTR. For stratification of 

variants according to MAF and LD (�
), SNPs were binned in 10% intervals for MAF and 5% 

intervals for LD. Genome-wide LD-based SNP binning was performed using an all-vs.-all �
 G 0.8. The localization of the LD bins was defined as the localizations of the SNPs contained 

in the respective bin. Variant conservation was determined using phastCons (see Table 3) and 

considered as conserved sites at values greater than 0.57 or not conserved else [391]. 
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ANNOTATION OF 3’-UTR VARIANTS – We included RISC target sites for the RBPs 

Argonaute and TNRC6 as provided by the starBase database that mapped to protein-coding 

genes (139,254 target sites in 24,442 transcripts; 48% of sites were located within a 3’-UTR). 

MREs were defined as complementary sites for canonical miRNA seed sequences [208] within 

21 nucleotides to the center of a RISC target site in 3’-UTRs for both alleles of 3’-UTR SNPs. 

Additional filtering for miRNAs with MREs significantly overrepresented in RISC target sites 

(yÒ= > 0, �éC < 0.05) retrieved the final set of 258 and 324 miRNAs with affected and 

enhanced mRNA:miRNA hybrid formation, respectively. For examination of polyA signals, I 

integrated the PolyA DB for mRNA polyadenylation sites. The position of polyA sites is 

described to be located 10-30 bases downstream of the polyA signals [203, 204]. Therefore, I 

determined SNPs within this range, extracted 11 nucleotides long mRNA sequences centered 

around 3’-UTR SNPs, and examined the sequences for the most abundant polyA signal variants 

according to [204]. A SNP was classified as affecting a polyA signal if its non-reference allele 

either created a new polyA signal sequence or eliminated an existing signal. Synonymous 

variants (i.e. substitution of one polyA signal by another) were not considered as damaging. 

Changes to the splice site structure of mRNA products (loss/gain and increase/decrease of 

likelihood at cut-off 0.5) were predicted using the NNSplice algorithm [249]. RNA structural 

changes caused by SNPs were predicted with the RNAfold algorithm from the Vienna RNA 

Package. For this, using the 1,000 randomly created SNP sets we empirically determined a 

correlation coefficient of 0.55 between the structure predictions of reference to non-reference 

alleles as having a probability of less than 5% for a type I error and only assumed an effect for 

SNPs showing values above this threshold. 

6.2.2 Trait-associated variants are significantly enriched in 3’-UTRs 

I compared the amount of trait-associated variants within the predefined five localization 

categories of SNPs (intergenic, intronic, 5’-UTR, CDS, and 3’-UTR) to examine a potential 

location trend of these markers. Of 18,884 SNPs contained in the extended GWAS-SNP set, I 

found 436 to be located in the 3’-UTR of 326 human genes (Ò= = 2.331, � < 10Nt
; 

enrichment of trait-associated SNPs located in human 3’UTRs vs. the background of all 

variants contained in HapMap). This is a higher enrichment than for sentinel SNPs only 

(Ò= = 2.059, � < 10N�{). Using 1,000 random subsets of HapMap-SNPs of comparable size 

and properties confirmed significance of the enrichment (� < 1.1 ∙ 10N}). I further characterized 

dependencies between this enrichment and the MAF and the LD-based marker extension by 

stratification of SNP sets according to both measures. Stratification for �
 in the extension of 
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GWAS-SNPs showed that the distribution of ORs locally stabilizes around a threshold of �
 = 0.8 (Figure 21G). In order to identify a potential bias induced by correlating SNPs in the 

same 3’-UTRs (SNP-gene ratio was ~1.34) I binned the complete HapMap-SNPs into blocks 

with an all-vs.-all �
 G 0.8. More than one million HapMap SNPs were binned together in 

about 371,000 blocks containing more than two SNPs. The remaining SNPs only showed 

pairwise or no LD at the chosen threshold. When I included all SNPs after binning, the OR for 

3’-UTR enrichment was even more significant than without binning (Ò= = 4.27, >ÌÍt% =�3.84 − 4.74� , � < 10N��|). This eliminates LD-based extension of association signals as a 

source of bias. An interesting finding is that the size of LD blocks depends on the location of the 

SNPs. While intronic and intergenic SNPs are reduced to less than 35% (block-SNP ratio) by 

binning, SNPs in exonic regions present less extensive LD patterns (reduction only to about 

81%). In total, binning reduced the HapMap SNP set to about 2.04 million tag regions 

translating to a genome-wide significance threshold for association testing of 2.45 ∙ 10NO. 

However, as an all-vs.-all �
 G 0.8 is a very strict binning criterion, this is an implicit validation 

of the globally used threshold of 5.0 ∙ 10NO for genome-wide significance. 

When stratifying variants according to their MAF, I found the extended GWAS-SNPs to 

hold a commonly higher MAF than HapMap-SNPs in general, regardless of their assigned 

localization category. However, 3’-UTR SNP enrichment values remain highly significant for 

all MAF intervals (at least for the limited MAF spectrum accessible using HapMap and GWAS 

data) with comparable ORs, indicating that the MAF has negligible impact on the presented 

results (Figure 21H). 

6.2.3 Evidence for impact on miRNA-mediated regulation 

The efficacy of a miRNA to control target mRNA translation relies, among others, on 

three sequence-based features: correct mRNA processing, presence of a functional MRE, and 

accessibility of the RISC binding site. To find out to which extent trait-associated SNPs in 3’-

UTRs affect miRNA functioning, we examined four mechanisms potentially compromising 

these features (Figure 21). This analysis was limited to transcripts featuring both 3’-UTR SNPs 

and validated RISC target sites. The according data set contained 288 SNPs on 409 transcripts 

and 219 genes, respectively. 

First, I investigated allele-specific effects of SNPs on mRNA processing by interfering with 

polyA signals which yielded four SNPs affecting hexamers with a sequence characteristic for 

polyA signals. However, none of these hexamers were located near a validated polyA site and, 

thus, a functional effect of those variants on mRNA processing seems unlikely. 
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Figure 21: Mechanisms of 3’-UTR SNPs affecting miRNA targeting, and impact of stratification 

analysis on 3’-UTR enrichment. A: A microRNA-directed RISC regularly binds to the mRNA. 

The RISC binding region within the mRNA, the so-called footprint, is colored orange. B: Binding of 

the RISC and, thus, miRNA-mediated silencing is inhibited by a change in RNA secondary structure. 

C: A mutation within the MRE seed site disrupts the ability of a certain miRNA to target a transcript. 

Here, the opposite effect can occur, i.e. a new MRE seed site is formed by a polymorphism which 

enables targeting by a miRNA usually not controlling the respective transcript. D and E: Altered 

splicing by acceptor or donor splice site gain. The normally existing splice variants (I and II) are 

extended by additional splice variants introduced by a variant: (III) A present acceptor site (A1) is 

substituted by a new acceptor site (Amut), and (IV) a naturally occurring donor site (D2) is replaced by a 

new donor site (Dmut). Both effects may lead to a considerable loss of exon sequence (displayed in red) 

and, thus, RISC binding sites. F: The percentages of classified SNPs mediating the single mechanisms. 

The greatest amount of functionally annotated 3'-UTR SNPs directly affect MRE sequences, followed 

by SNPs changing the RNA secondary structure and SNPs with an predicted effect on 3'-UTR 

splicing. G: SNP enrichment in the 3'-UTR in dependency of different LD thresholds. Displayed are 

the ORs and confidence intervals for five cut-offs. Accumulative 3'-UTR SNP sets were calculated. 

The fitted distribution (dashed line) points out the stabilization of the OR around a threshold of 0.8. 

H: SNP enrichment in the 3'-UTR in dependency of the minor allele frequency. Displayed are the 

ORs and confidence intervals for the 5 different MAF bins. SNP counts were compared within the 

respective bins. Figure and caption adapted from [163]. 

Second, we analyzed the predicted impact of 3’-UTR variants on mRNA splicing and 

identified seven SNPs (~2.4%) predicted to interfere with RNA splice sites (Figure 21D and E). 

Six of those are predicted to create new acceptor sites and one to create a new donor site. The 

probability to observe such an effect by chance was  � = 1.78 ∙ 10N
 for acceptor sites and � = 1.41 ∙ 10N
 for donor sites. In all seven cases, the predicted gain of splice sites results in exon 

shortening, leading to a noticeable loss (46% on average) of RISC binding sites on the respective 
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transcript sequences. SNPs interfering with splice sites located at an exon/intron or intron/exon 

border were not found. 

Third, we searched for SNPs which may affect the secondary structure of the 3’-UTR 

proximal to a validated RISC binding site causing an altered accessibility of the region. This 

resulted in 14 SNPs (~4.9%) predicted to affect the binding affinity of the RISC through 

changed secondary structure of the 3’-UTR (Figure 21B). 

Finally, we examined direct effects of SNPs on MREs located in validated RISC target 

sites. We found 22 SNPs (~7.6%) disrupting MREs, and 28 SNPs (~9.7%) creating new MREs 

(Figure 21C). The overlap between the SNP sets creating and disrupting MREs, i.e. SNPs 

substituting the MRE of one miRNA by a MRE of another miRNA, amounts to 13 variants. 

Accordingly, a total of 37 unique SNPs (~12.8%) directly affect MREs. The probability of 

obtaining these amounts of SNPs affecting MREs randomly was � = 1.27 ∙ 10N
 (disruption) 

and � = 8.76 ∙ 10N| (creation). Additionally, we found that only 11% of SNPs enhancing (i.e. 

extending an already existing seed match) or creating a MRE were conserved across mammals 

which was a lower fraction than for SNPs causing one of the other effects (folding=29%, 

splicing=29%, MRE disruption=27%). 

6.2.4 Replication of results using 1000 genomes variants as background 

The results described above have been compiled on the variant set of HapMap and in the 

meantime, the much denser backbone provided by the 1000 genomes project became available. 

It can be hypothesized that the limited variant background set as given in HapMap may, in 

contrast to the MAF and the LD-extension approach which have been excluded as sources of 

potential biases, have large effects on the study outcome. As mentioned before, the SNiPA 

resource (here I used version 3.1) also contains an updated set of StarBase miRNA target sites 

investigated in the initial study and, therefore, I attempted to replicate our results on the larger 

1000 genomes project background set. As a complete revision of the results would include 

computationally very expensive calculations, this analysis was limited to very basic analyses 

which, nonetheless, underline the validity of the presented findings. The analysis includes 

enrichment analysis of trait-associated variants from the GWAS Catalog in the 3’-UTR and in 

miRNA target sites, extension to all variant-trait associations contained in SNiPA (including 

non-significant findings) as well as enrichment of eQTL markers in miRNA target sites. LD-

extension of GWAS sentinel SNPs or eQTL associations was omitted here, as was LD-based 

genome-wide binning of variants. 
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The analysis yielded almost identical results to the approach using HapMap data. 

Enrichment of GWAS sentinels in the 3’-UTR was again highly significant (Ò= = 2.15,>ÌÍt% = �1.96 − 2.35�, � = 2.3 ∙ 10Nt{) and variants within miRNA target sites were two times 

as likely to be associated with a trait in the GWAS catalog than other variants (Ò= =2.06, >ÌÍt% = �1.67 − 2.50�, � = 9.7 ∙ 10N��). Even when including non-significant trait 

associations (e.g. from dbGaP and the metabolomics GWAS server), the enrichment for trait-

associated variants affecting miRNA target sites holds significance (Ò= = 1.41, >ÌÍt% =�1.31 − 1.51�, � = 7.2 ∙ 10N�Í). When intersecting the large catalog of eQTL associations 

contained in SNiPA with variants located in miRNA target sites, again a highly significant 

overrepresentation became apparent (Ò= = 2.16, >ÌÍt% = �2.08 − 2.16�, � < 4.9 ∙ 10Nu
|). As 

RISC targeting is thought to affect mRNA expression levels via miRNA-mediated transcript 

degradation, this finding confirms expectations. In summary, this shows that the findings 

obtained using the HapMap variant set can be transferred to the 1000 genomes variant set which 

further emphasizes the importance of the reported findings: the incorporated 1000 genomes 

release contains >99% of all SNPs with MAFs >1% for five super-populations [231].  

6.2.5 Models of allele-specific miRNA-mediated metabolic control 

Analysis of cis-acting regulatory genetic variants is a difficult task. For instance, as useful as 

eQTL associations are in the interpretation of potential effects exerted by genetic variants, the 

information provided are again only associations. This means that, although it is known that the 

expression of a transcript is linked to a genetic variant, the mechanism behind this association, 

such as affected TF binding sites, have to be obtained in an additional data integration step (this 

is further discussed in section 6.3). Combining eQTL data with affected miRNA target sites, on 

the other hand, directly gives a hint on the underlying mechanism by which the transcript’s 

expression levels may be affected. 

In the original study, overall I found lipid concentration traits to be enriched in 3’-UTR 

SNPs (� < 1.3 ∙ 10Nu) which agrees with the established involvement of miRNAs in the 

regulation of lipid metabolism [392]. In line with that, the 1000 genomes analysis also yielded 

several cases of putative miRNA involvement in lipid homeostasis. For instance, the non-

reference C-allele of the 3’-UTR variant rs13702, located in the lipoprotein lipase (LPL) gene 

and associated with levels of HDL cholesterol and triglycerides [393-397], was found to disrupt 

a RISC binding site containing MREs for the miRNAs miR-495 and miR-410. Checking the 

SNiPA variant annotation of rs13702 additionally showed that the variant is associated with LPL 

expression levels in human blood and monocytes [214, 215], as well as that the LPL gene is 
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associated with hyperlipidemia and lipoprotein lipase deficiency (MIMs: 144250, 238600; 

OrphaNet: 70470, 309015). Combination of these evidences suggests that rs13702 may be the 

functional variant within its LD-block that, by disrupting the MREs for the two miRNAs, 

alters gene expression of LPL. According to UniProt (entry P06858), the “PRIMARY FUNCTION 

OF THIS LIPASE IS THE HYDROLYSIS OF TRIGLYCERIDES OF CIRCULATING CHYLOMICRONS AND 

VERY LOW DENSITY LIPOPROTEINS” [225], which thus has a direct enzymatic link to the 

phenotypes associated with rs13702. Interestingly, in a functional experiment, RICHARDSON 

and colleagues showed that indeed miR-410 is actively downregulating LPL transcript levels, an 

effect that is completely abolished in the presence of the minor C-allele of rs13702 [398]. 

gene SNP metabolic trait NeQTL targeting miRNA(s) metabolic function 

ACADM rs8763 hexanoylcarnitine 9 miR-203a - 

THEM4 rs13320 5-dodecenoate  20 miR-101 - 

SLC5A6 rs7081 mannose - miR-128 energy homeostasis [399] 

RAB3GAP1 rs4954221 1,5-anhydroglucitol 1 miR-22, miR-490 gluconeogenesis [400] 

CPS1 rs715 glycine - miR-432, miR-496 - 

NT5E rs6922 inosine 1 miR-518f, miR-218, miR-134 - 

SLC16A10 rs14399 tyrosine - miR-214, miR-503 
lipid homeostasis [401], 

gluconeogenesis [402] 

CCBL1 rs10988134 indolelactate 2 
miR-30c, miR-30d, miR-30a, 

miR-30e, miR-30b 
lipid homeostasis [403] 

ALDH18A1 rs4037  citrulline 6 
miR-376b, miR-377, miR-

376a, miR-381, miR-300 
- 

ABCC4  rs3742106  indoleacetate - miR-320a response to glucose [404] 

IVD  rs7207  isovalerylcarnitine 1 miR-23a, miR-23b glutamine metabolism [405] 

LACTB  rs8468  succinylcarnitine 9 

miR-181c, miR-544a, 

miR-181a, miR-217, miR-98, 

miR-33b, miR-33a 

lipid homeostasis [406, 407] 

PDXDC1  rs6498540 dihomo-linolenate  2 miR-34a 
lipid, cholesterol, and 

energy homeostasis [407] 

SLC7A5 rs1060253 kynurenine - 
miR-301a*, miR-130b*,†, 

miR-130a*,† 

* energy homeostasis [399] 
† 

 lipid homeostasis [408] 

GCDH rs8012 glutaroyl carnitine 22 miR-873 - 

Table 14: Fifteen blood GIMs potentially influenced by genotype-dependent miRNA regulation. Shown 

are predicted causal genes from our blood mGWAS (see section 4.2) that harbour a SNP within a RISC 

binding site. Further, the metabolic traits associated with the variants, the count of tissues with identified 

eQTL associations (NeQTL) of the variant or a LD proxy (PQ G R. S) and the respective gene, as well as the 

miRNAs with MREs in the RISC binding site are listed. miRNAs with implications in metabolic 

processes, as given in the last column, are highlighted in italic. 

To investigate the impact of genetically influenced miRNA regulation pathways in human 

metabolism further, I used the results from our blood mGWAS study described before (section 

4.2), as this data is already contained in SNiPA’s annotations. Interestingly, for 15 of our 145 

loci (10.3%), I found an mQTL to be located in a miRNA target site within the predicted causal 
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gene. Of the 37 miRNAs predicted to target these genes, at least 14 (37.8%) have been 

previously described to affect metabolic homeostasis (Table 14). In the following investigation 

of the metabolic traits associated with the SNPs located in miRNA target sites for compliance 

with the described metabolic effects of the respective miRNAs, a functional relationship to the 

genotypic effects became apparent. For instance, rs4954221, located in a binding site of miR-

22-3p in the RAB3GAP1 gene, is significantly associated with 1,5-anhydroglucitol, which is a 

long-established marker for glycemic control [409-411]. In a functional assay, KAUR and 

colleagues showed that the same miRNA is a critical regulator of hepatic gluconeogenesis [400], 

which is directly linked to the glycemic status. Another example is rs6498540 located within a 

RISC binding site on the PDXDC1 gene containing the MRE of miR-34a. The variant is 

significantly associated with a fatty acid (dihomo-linolenate), while the miRNA has been 

described to affect cholesterol, lipid, and energy homeostasis via a complex regulatory network 

[407]. If our underlying hypothesis is correct that the allele-specific alterations of blood 

metabolite concentrations is due to disturbed miRNA targeting of the predicted causal genes, 

this would indicate a widespread functioning of genetic variance in human metabolism through 

miRNA-mediated regulatory pathways. 

Intriguingly, our approach can also be used to identify plausible causal genes for mQTL 

associations not reaching genome-wide significance. For instance, I found rs7942396  that is 

suggestively associated with lathosterol levels (�HIJKL = 7.68 ∙ 10NO) to be located in a RISC 

binding site within the 3’-UTR of the sterol-C5-desaturase (SC5D) gene. The encoded 

protein, lathosterol oxidase, catalyzes the conversion of lathosterol to 7-dehydrocholesterol (EC 

1.14.19.20) [412]. In rare cases, both copies of SC5D are mutated and dysfunctional, leading to 

lathosterol accumulation, or lathosterolosis, which is an inborn error of metabolism (MIM: 

607330). When SC5D is functional, lathosterol levels can be used as marker for cholesterol 

synthesis and have been shown to correlate with BMI, blood pressure, atherosclerosis, aortic 

stenosis, and coronary artery disease severity [413, 414]. The RISC binding site affected by 

rs7942396 is targeted by two miRNAs. One of them, miR-499, has been shown to feature 

cardioprotective properties [415]. Following our hypothesis, in addition to the previously 

proposed mechanism of preventing cardiomyocyte apoptosis, this may result from confined 

cholesterol synthesis by downregulation of SC5D expression by miR-499. The allele-specific 

efficiency of miRNA-mediated silencing of SC5D expression may thus explain the association 

of rs7942396 with lathosterol levels, although it was not genome-wide significant in the 

mGWAS due to the multiple testing burden. 



6.2 CIS-ACTING POLYMORPHISMS: MIRNAS AS DISEASE MEDIATORS  135 

6.2.6 Concluding remarks 

In this study, we investigated if trait-associated variants in the 3’-UTR may exert 

regulatory effects that, to differing extent, affect trait development by interfering with miRNA 

targeting pathways. There is no evidence for considerable direct mutational disturbance of 

miRNA processing: only one SNP (rs2168518) is located in the hairpin sequence of mir-4513. 

However, our results uncover several lines of evidence on miRNA involvement in genetically 

influenced posttranscriptional trait emergence. The observed highly significant enrichment of 

trait-associated SNPs in the 3’-UTR strongly suggests a functional coherence between genetic 

variants and miRNA regulation pathways in cis. 

 In this context, the investigation of specific variant effects on functional elements in the 3’-

UTR revealed several potential mechanisms of allele-specific miRNA-mediated regulation. 

The smallest fraction of predicted functional 3’-UTR SNPs affects 3’-UTR splicing. These 

variants are predicted to mediate miRNA target site loss, mostly through the gain of acceptor 

splice sites, resulting in shortened 3’-UTR sequences. The strong impact of alternative splice 

variants on miRNA targeting, manifesting in a high fraction of target site loss (46% on average) 

in the affected transcripts, could explain that altered splicing is rarely caused by common 

variants. The second most common genetic effect we observed is the SNP-mediated alteration 

of RNA secondary structure of a RISC binding region. The impact of RNA folding on the 

binding affinity of RBPs has already been described [387, 389]. However, the extent to which 

this phenomenon translates into miRNAs mediating human trait development is unknown. 

With our results, we provide a first data basis on RNA structural changes leading to phenotypic 

variability which may serve as a starting point to investigate this matter further. The most 

abundant mechanism in our study is the direct alteration of MRE sequences. We find not only 

that GWAS-identified markers in the 3’-UTR show a significant enrichment within MREs, 

but also identify a novel scenario of how miRNA dysregulation may take effect: the substitution 

of the recognition element of one miRNA by that of another miRNA. While a disruption (or 

creation, respectively) of a MRE enables a rather straightforward rationale, that is the tissue-

specific repression (or enhancement, respectively) of miRNA regulation, this scenario makes 

interpretation rather complex. Such a substitution may imply concurrent but simultaneously 

diverging effects in different tissues, depending on the respective expression patterns of the two 

miRNAs, possibly leading to systemic disturbances of several cell types. The overlap between 

the two sets of SNPs which disrupt and create MREs amounts to 13 polymorphisms and 

constitutes more than one third of the set of variants affecting MREs - which is a surprisingly 
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high number. We believe that the transcripts affected by a SNP mediating this effect may 

present quite interesting targets for further studies. Moreover, a large fraction (39%) of 3’-UTR 

SNPs predicted to be effective shows a low conservation indicating that the creation of a MRE 

may be an abundant process of functional SNPs. 

One shortcoming of our initial study was the limited variant set provided by the HapMap 

consortium. The final release of the 1000 genomes project as contained in SNiPA holds data on 

more than 78 million genetic variants, while the joint data of the HapMap release I, II, and III 

only lists 2.8 million variants. In order to find out if our results still hold true given this large 

increase in genetic data, I performed a reduced re-analysis of the original approach on the 1000 

genomes variant set. Intriguingly, although this analysis was performed on 28 times the number 

of variants, enrichment statistics only changed marginally with respect to both enrichment and 

significance. This is especially interesting because 1000 genomes data is believed to contain 

virtually all existing genetic variants with MAF>1% in the large human populations, 

emphasizing the applicability and transferability of bioinformatics approaches in genetic analyses. 

In the next part, I followed up on the finding in our original study that 3’-UTR SNPs are 

significantly enriched for influencing lipid homeostasis, which I replicated on 1000 genomes 

data and exemplified with the hypothesis on allele-specific regulation of LPL. I then used the 

large catalog of mGWAS results contained in SNiPA to annotate mQTLs with potential 

involvement in miRNA-mediated regulation of human metabolic homeostasis. This revealed a 

significant overlap of variants located in RISC binding sites and mQTL signals. More 

specifically, I was able to re-identify more than 10% of the predicted causal genes of our blood 

mGWAS using this approach. Further, I found conclusive evidence for mQTL interactions 

with miRNA targeting above the traditional threshold for genome-wide significance. In case of 

SC5D, the �HIJKL is only narrowly falling short of the classical threshold of 5.0 ∙ 10NO. However, 

I also found other examples where insignificant mQTL associations have a large biological 

support. For instance, rs1683787 is an mQTL for 1-palmitoylglycerophosphocholine (lysoPC a 

C16:0) levels with � = 4.12 ∙ 10Nt. It is located in a binding site of miR-216a in the acyl-CoA 

dehydrogenase family, member 9 (ACAD9) gene. ACAD9  is highly expressed in the liver and, 

besides mediating the assembly of the mitochondrial respiratory chain Complex I, has 

dehydrogenase activity for palmitoyl-coenzyme A (C16:0) [416, 417]. ACAD9 deficiency is an 

inborn error of metabolism (MIM: 611126, OrphaNet: 99901) that manifests with failure to 

thrive, cardiomyopathy, exercise intolerance, liver disease and mild to severe neurological 

dysfunction. Expression levels of miR-216a have been demonstrated to correlate positively 
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with LDL cholesterol levels and negatively with left ventricular ejection fraction and are 

strongly upregulated in ischemic heart failure [418, 419]. In summary, the metabolite associated 

with rs1683787  is a close match to the substrate of ACAD9, which I predict to be targeted in 

allele-dependent efficacy by miR-216a, a miRNA that is implicated in symptoms and disease 

phenotypes connected to ACAD9 deficiency. 

This and the other proposed hypotheses clearly show the benefits posed by including more 

evidences (in this case, miRNA targeting information) into the molecular, functional 

interpretation of GWAS findings. The examples provide not only a superficial connection 

between molecular traits and genes based on genetic proximity of variants and genes, but 

include clearly accessible mechanisms by which genetic variation can contribute to trait 

variability. Of course, these hypotheses are still limited to co-located genes and do not allow for 

hypotheses regarding intergenic variants.  

6.3 Predicting eQTLs via cross-tissue regulatory clusters 

The major challenge in studying genetic associations with human traits is the identification 

of the causal genes that are responsible for the observed association signals. As the majority of 

identified trait-linked genetic variants are located in non-coding segments of DNA, 

investigating regulatory disturbances as possible molecular causes of complex diseases is a still a 

central bottleneck in genetic studies. In this context, I developed an automated approach for 

assigning predicted causal genes to the loci identified by our mGWAS on urinary metabolic 

traits (section 4.3). Interestingly, while our paper was under review, SPAIN and BARRET 

proposed a workflow for automated target gene identification that was very similar to my 

approach (Figure 22) [420]. In their workflow, markers are prioritized using fine-mapping and 

scoring methods to select the likely causal variants. These variants are then split into coding and 

non-coding variants. For coding variants, the selection of the target genes is naturally very 

straightforward. Additional data for downstream annotations can be retrieved using scoring 

systems such as PolyPhen2 and SIFT that estimate the deleteriousness of the sequence alteration 

to protein funcioning, while protein databases such as UniProt can be inspected for functional 

and domain-specific information. For non-coding variants, the authors recommend the 
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integration of various additional datasets. The classical approach of selecting target genes via 

genetic proximity (that in the beginnings of GWAS was without alternative due to the 

unavailability of regulatory element annotations) is then substituted by linking target genes via 

eQTL data or affected regulatory elements as provided by ENCODE, FANTOM5, or the NIH 

Roadmap project. 

 
Figure 22:Workflow proposed by Spain and Barret illustrating the annotations to be included into the 

assignment of genes to genetic variants. Our SNiPA resource contains almost any of the listed data 

sources as well as hyperlinks to the databases suggested for post-processing (such as UniProt and 

PubMed). TFBM: transcription factor binding motif. Reprinted by permission from Oxford University 

Press: Human Molecular Genetics [420], copyright 2015. 

Variants linked to multifactorial disorders have been found to substantially overlap with 

eQTLs. However, eQTL data, that can give direct hints on genes affected by a variant through 

regulatory mechanisms, have until very recently been only available for a limited set of tissues 

and cell types. And although the V6 release of the GTEx project [211] boosted the number of 

tissue types covered by eQTL studies, SNiPA (integrating GTEx V6 and several other eQTL 

datasets) contains eQTL data for only 50 tissues and cell types. eQTLs for tissues that are hard to 

access (e.g. brain) or rapidly disintegrate (e.g. kidney) are still underrepresented or even 

unavailable. Nonetheless, enrichment analysis performed on SNiPA’s annotations shows that a 

variant contained in the GWAS catalog is almost 30 times as likely to be an eQTL as variants 

contained in 1000 genomes without a trait association �Ò= = 27.56, >ÌÍt% = �26.73 −
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28.47�, � < 4.9 ∙ 10Nu
|	. Including associations that are not genome-wide significant (covering 

dbGaP and the metabolomics GWAS server) decreases the OR, but still shows almost 20-fold 

enrichment for eQTLs �Ò= = 19.58, >ÌÍt% = �19.39 − 19.78�, � < 4.9 ∙ 10Nu
|	. 

Despite these impressive numbers, looking at the total variant counts, only 40.5% of GWAS 

catalog variants and 32.0% of all trait-associated variants contained in SNiPA, respectively, can 

be linked to candidate genes via eQTL data. As both eQTL analyses and GWA studies use the 

same background set of genotypes, obtained by commonly used genotyping arrays and 

imputation to the same haplotype maps (HapMap2 or 1000 genomes), this is noteworthy. It has 

been frequently described (also by us [163]) that the frequency of GWAS markers with 

significant associations is skewed towards higher MAFs (>10%), which at least partially 

originates from the higher statistical power to detect associations using more frequently 

occurring alleles (see Figure 10D). Therefore, if GWAS-identified variants mainly affect 

regulatory mechanisms, the coverage by eQTL data should be in ranges equal to the proportion 

of non-coding variants, which, according to SNiPA v3.1, is >90%. However, most eQTL 

studies limit analyses to cis-effects at an arbitrary distance threshold (usually +-1Mb) in order to 

restrict the multiple testing problem. This leads to a limited number of eQTLs identified to 

affect the expression of genes located outside these fixed intervals. To find those as well as 

weaker cis-eQTLs, larger study populations would be needed. Especially for tissues that are not 

easily accessible for genetic and transcriptomic analyses, this holds not only major logistical and 

analytical challenges, but also a large cost burden. 

The aforementioned consortia, however, have provided a great amount of data on 

regulatory regions across hundreds of cell types. And although mapping genetic variants to such 

regulatory elements as well as identifying the genes affected by changes to these elements 

remains difficult, predicting variant-gene associations utilizing these resources would abolish the 

issues linked to large-scale screens of cross-tissue eQTL analyses. In this study, I therefore used 

the data on regulatory DNA segments from these sources to build a new catalog of functional 

regulatory elements augmented with protein-DNA interaction data and target gene 

information. To this end, we combined ChIP-seq data clusters from ENCODE with 

ENCODE DNase I hypersensitive sites classified as promoters and enhancers and promoter 

upstream antisense RNA (uaRNA) and enhancer RNA (eRNA) mappings from FANTOM5 

across several hundred tissues to retrieve a set of clustered enhancer and promoter regions. 

Using gene associations of elements clustered together, we assessed the compatibility of 

ENCODE and FANTOM5 with respect to promoter and enhancer annotations. Finally, we 
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used eQTLs located within the obtained clusters as benchmark for predicting regulatory 

variant-gene associations. The benchmark statistics given here have been mostly calculated by 

Nick Lehner in his Bachelor thesis [421]. 

6.3.1 Methods summary 

DATA – For this analysis, I incorporated the data contained in version 2 of the SNiPA 

database, comprising 1,127,033 regulatory elements (defined as either DNAse accessible, 

transcribed regulatory, or TF-bound DNA) and 522,298 eQTL associations. eQTL data were 

extended to proxies in strong LD ��
 G 0.8	 using phase 3 version 5 data of the 1000 genomes 

project (contained in SNiPA), leading to a final set of 1,856,015 variants with eQTL 

associations. The datasets and entity numbers are given in Table 15.  

Dataset Nentries 

ENCODE ChIP-Seq clusters 406,631 

ENCODE DNase1 hypersensitive promoters 56,493 

ENCODE DNase1 hypersensitive enhancers 538,515 

FANTOM5 expressed promoters 82,419 

FANTOM5 expressed enhancers 42,975 

eQTL associations (from 8 tissues) 522,298 

eQTL associations (LD extended PQ G R. S) 1,856,015 

Table 15: Datasets and entry statistics for sources included in cross-tissue regulatory cluster generation. 

CLUSTERING OF CROSS-TISSUE REGULATORY ELEMENTS – Regulatory 

feature clusters from ENCODE as contained in the Ensembl database are split into several 

different categories. More specifically, this means that ChIP-seq clusters for predicted 

enhancers, promoters, promoter flanking regions, etc. can overlap but are separate entities. The 

same applies for promoter and enhancer annotations for different tissues/cell types in 

FANTOM5. As we wanted to assess tissue-general effects this data representation was 

undesirable, albeit biologically meaningful. I therefore first determined the genetic ranges of 

regulatory segments using a dynamic programming approach, extending single elements up- 

and downstream according to the overlapping elements from all sources, simultaneously 

sustaining all annotation data of the single elements for later use. The final clusters are then 

classified as promoter, enhancer, or both based on the annotation of the included elements. 

After intersection of the clusters with the extended set of eQTLs, the associated annotations 

comprise tissue-specific ChIP-seq binding data, gene associations (as reported by ENCODE 

and FANTOM5) separated by enhancers and promoters as well as by data source, and eQTL-
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associated genes including tissue information. Where available, I also overlaid the clusters with 

TF binding motifs affected by a variant �gf^fIJ = 124,142	. 

6.3.2 Construction of cross-tissue regulatory clusters (CTRCs) 

When investigating variant effects in SNiPA’s variant browser, a stack-like accumulation of 

regulatory elements originating from different sources becomes evident (Figure 23). Visual 

investigation of these stacks often shows concordant annotations between ENCODE and 

FANTOM5. As variant effect predictions typically require a positional overlap between variant 

and an affected genomic entity, the information from the different sources is not readily 

available for the individual variants. In order to provide support for the interrelations of eQTLs, 

trait-associations, and regulatory elements, I assessed if there is enrichment for overlaps of these 

three entities. The results showed that trait-associated variants have a tendency to hit regulatory 

elements compared to all other 1000 genomes variants �Ò= = 1.38, >ÌÍt% = �1.37 − 1.40�, � <4.9 ∙ 10Nu
|	. Intriguingly, the enrichment of reported-only eQTLs (i.e. without LD proxies) in 

regulatory sequences was almost identical to that of trait-linked markers �Ò= = 1.37, >ÌÍt% =�1.36 − 1.37�, � < 1.0 ∙ 10Nu
|	. As the ENCODE ChIP-seq feature clusters are generally larger 

than enhancers and promoters, we additionally checked for differences in the enrichment values 

for FANTOM5 elements. Surprisingly, although FANTOM5 annotations contain fewer 

elements that, additionally, are significantly smaller than ChIP-seq clusters, GWAS catalog 

variants showed a higher enrichment �Ò= = 2.30, >ÌÍt% = �1.84 − 2.85�, � = 1.2 ∙ 10N��	. 

When using all trait associations contained in SNiPA, the enrichment was even stronger �Ò= = 5.35, >ÌÍt% = �5.12 − 5.58�, � < 4.9 ∙ 10Nu
|	. These results indicate that trait-linked 

genetic variants are more frequently affecting actively expressed regulatory sequences rather 

than ChIP-seq-identified signals. This may seem contradictory, because expressed sequences 

should also be detected by ChIP-seq screens (for instance for polymerase activity). However, as 

both uaRNAs and eRNAs are very short and unstable, the transcription complex quickly 

detaches from the DNA and may thus be missed in ChIP-seq settings [79, 80]. 

As simple enrichment analysis already supported the hypothesis that clustering of these 

datasets may provide further insights, I performed a position-based clustering using a dynamic 

programming approach. The 1,127,033 input elements could be clustered in 167,985 cross-

tissue regulatory clusters (CTRCs), with 138,060 clusters (82%) containing ChIP-seq and 

promoter/enhancer annotations from ENCODE or FANTOM5 and 29,925 clusters (18%) with 

annotations from all three data sources. Our CTRCs covered 51.8% of ChIP-seq feature 

clusters, 51.1% and 37.5% of ENCODE promoters and enhancers, respectively, and 63.3% and 
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61.5% of FANTOM5 promoters and enhancers, respectively. Intersecting CTRCs with LD-

extended eQTL data, I obtained 68,190 clusters (41%) for which variant-linked expression 

changes where available.  

 

Figure 23: Illustration of the stack-like accumulation of unclustered regulatory element annotations in 

SNiPA for the FADS3 locus. The sources of regulatory element annotations are color-coded. 

ENCODE ChIP-seq feature clusters are shown in blue, FANTOM5 promoters and enhancers in red, 

and ENCODE DHSs calssified as promoters and enhancers are in green. Manual clustering of the single 

elements into functional CTRCs would retrieve a core promoter cluster (red box), alternative promoters 

(blue box), and an enhancer element that interacts with the core promoter (green box). To demonstrate 

that alternative promoters actually control the expression of different isoforms of one gene, five transcript 

models from GENCODE are displayed. The canonical transcript with CCDS entry 

(ENST00000278829) is highlighted in light green. The screenshot shows SNiPA version 3 annotations. 

DHS: DNase hypersensitive site. FADS3: fatty acid desaturase 3.  

6.3.3 Evaluation of compliance of within-CTRC annotations 

It is common practice to include as many datasets as possible into effect prediction of non-

coding variants to yield maximal coverage of the human genome sequence. However, it has 

never been empirically shown that datasets on regulatory elements are comparable, neither is 

known to which extent the results of different experiment types conform to each other. In this 

study, we used annotation data from four different experiment types: ChIP-seq signal peaks, 

DNase1 hypersensitivity screens, CAGE-based sequencing of uaRNAs and eRNAs, and eQTL 
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associations obtained by different gene expression microarrays. An important aspect of such 

integrative approaches is to determine the validity of the data consolidation approach. However, 

as a functional relationship between regulatory elements and the predicted target genes can only 

be verified in very targeted and controlled experiments, the catalog of such validated 

interactions is rather small. As for the proof of allele-specific effects of a genetic variant located 

within such a regulatory site has to be again experimentally tested, there is currently no 

possibility of deriving a large-scale reference set of true positive disturbances of gene expression 

via genetic variation of regulatory sequences. 

Since there is no complete gold-standard available, we used benchmark statistics that are 

utilized in the assessment of the performance of machine learning applications. Simply put, we 

used one set of gene-associated elements (ENCODE enhancers and promoters; FANTOM5 

enhancers and promoters; eQTL associations) as Criterion Standard and tested the performance 

of the other sets within each CTRC against it. Summing up the individual numbers for true 

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN), we then 

derived global performance scores for the respective tested set. As commonly occurring in 

benchmarks applied on genome-wide (or other large-scale) annotations, we also observed 

extremely large numbers of TNs, which in our case are the genes that are neither predicted (in 

the test set) nor annotated as being regulated (in the Criterion Standard) by a CTRC. 

Consequently, we could not use performance measures that make use of TN counts, which 

unfortunately also includes the specificity. We therefore decided to use the F1-measure that 

calculates the harmonic mean of the sensitivity and the precision and thus quantifies the 

effectiveness of a predictor (or, in our case, the respective tested set) in a single value [422].  

When applied to the two promoter sets from ENCODE and FANTOM5, the F1-measure 

showed excellent performance (ê� = 90.3% for ENCODE and ê� = 90.4% for FANTOM5). 

This can be considered a proof of concept for the application of the F1-measure, as the 

annotation of promoters is methodologically biased in the ENCODE set, but not the 

FANTOM5 set. For ENCODE, DHSs in close proximity to transcription start sites (TSSs) are 

classified as promoter-associated. From a biological point of view, this approach is intuitive. 

However, such a basic hypothesis cannot be expected to hold true for all segments proximal to a 

TSS that are accessible to DNase1. FANTOM5 promoters on the other hand are measured as 

uaRNAs strongly correlating with the simultaneous expression of the target transcript, which is 

a methodologically sound approach. Therefore, the missing 10% in means of F1 shows that the 

estimator well captures the differences between the two sets, while it also implies that promoters 
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are in general active across tissues. Using ChIP-seq feature clusters as classifier for actually active 

promoters (that is, using only CTRC with ChIP-seq binding annotations available), this has 

virtually no effect on the F1-measure for FANTOM5 promoters. For ENCODE, however, it 

shows a significant increase to ê� = 95.1% which can be interpreted as evidence that such rather 

basic approaches can be refined using additional annotations. 

The benchmark of enhancer annotations produced only mediocre statistics: ê� = 25.3% and ê� = 31.8% for ENCODE and FANTOM5 enhancers, respectively. However, considering the 

experimental uncertainties in enhancer determination, this outcome is plausible. For 

ENCODE, cross-tissue correlations between the accessibility patterns of DHSs are used to link 

promoter-associated DHSs with distal DHSs. In case of FANTOM5, the same approach is used 

correlating co-expression of eRNAs and gene transcripts. In both studies the simultaneous 

activity of independently regulated genes cannot be separated from those that are actually linked 

to the regulatory site, naturally inflating FP counts while decreasing TP numbers. Interestingly, 

when again using ChIP-seq peaks as a prerequisite for CTRC classification as active enhancers, 

F1-measures are more than doubled for both sets (ê� = 54.6% for ENCODE and ê� = 69.0% 

for FANTOM5). This is direct evidence that, independent of the experimental setting, the 

combination of data on both accessible/expressed DNA and protein binding strongly increases 

the agreement of diverse annotations. 

6.3.4 Performance of CTRCs in regulatory variant effect prediction 

The central aim of this study was to find out if it is possible to predict the correct target 

genes of putative regulatory-acting genetic variants for which no eQTL associations are 

available using only regulatory element annotations. For this, we actually had a concrete 

Criterion Standard available, namely the large catalog of eQTL associations contained in 

SNiPA. The highly significant enrichment of eQTLs (including LD proxies) within CTRCs �Ò= = 1.53, >ÌÍt% = �1.52 − 1.54�, � < 4.9 ∙ 10Nu
|	 shows a clear connection between CTRC 

regions and genetic control of gene expression via allele-specific alteration of functional 

regulatory elements. As annotation agreement was highest for CTRCs combining gene-

associated elements with ChIP-seq peaks, for this analysis we pruned the CTRC set 

accordingly.  The global benchmark (tested set: ChIP-Seq peaks plus enhancers and promoters 

from both ENCODE and FANTOM5) resulted in an ê� = 26.0%, meaning that without 

distinction between enhancer and promoter CTRCs, the predicted positive target gene for a 

putative regulatory variant would be correct in more than one out of four cases. The 

corresponding values of the sensitivity (43%) and of the precision (19%) further reveal that for 
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almost half of the genetic variants the correct target genes are contained in CTRC annotations. 

The lower precision indicates that CTRCs list more genes via gene-associated promoters and 

enhancers than are available in the eQTL association data. As in this analysis, we included 

eQTLs from only 8 tissues while enhancers and promoters from ENCODE and FANTOM5 

have been obtained from several hundred cell types, it can be expected that the actual precision 

(and F1-measure) is higher. 

We next assessed the performance of the predictions separately by CTRC type, which 

showed that promoters performed significantly better than enhancers (ê� = 36.0% vs. ê� =22.8%). While the corresponding sensitivity values were almost equal at 46.2% and 41.1%, the 

precision of promoters (29.6%) was almost double that of enhancers (15.8%). When we 

dissected element annotations further, we observed that ChIP-seq paired FANTOM5 

annotations globally outperform ChIP-seq paired ENCODE annotations (Table 16). We 

hypothesize that this is a result of the more sophisticated experimental design in the FANTOM5 

study, as here active expression is measured and correlated with active expression of regulatory 

regions. Active expression may thus be a better predictor of regulatory element activity than 

DNA accessibility only. Globally, using ChIP-seq paired FANTOM5 annotations result in 

41.3% correct positive target genes, which shows that this approach presents a highly valuable 

addition to traditional variant effect predictions. With close to 11.4 million genetic variants in 

SNiPA located in regulatory elements compared to only about 1.9 million eQTLs, this has also 

a large practical value. 

tested set measure global promoters enhancers 

FANTOM5 

F1 41.3% 49.4% 30.0% 

sensitivity 43.6% 47.2% 37.1% 

precision 39.2% 51.8% 25.2% 

ENCODE 

F1 22.2% 31.7% 21.1% 

sensitivity 34.4% 24.6% 37.0% 

precision 16.4% 44.8% 14.8% 

Table 16: Benchmark statistics of gene-associated regulatory elements located in ChIP-seq peak clusters 

in the prediction of variant-gene associations. Given are the values for the F1-measure, sensitivity, 

and precision for the performance of FANTOM5 and ENCODE gene-associated elements in eQTL 

prediction globally and splitted by type of element, i.e. promoters and enhancers. FANTOM5 

outperforms the ENCODE set in all instances which is probably due to its more sophisticated 

experimental and analytical design. 

6.3.5 From evidence to biology: a case-study 

As mentioned before, in our blood mGWAS (section 4.2), we performed manual 

annotation of loci influencing metabolic traits. This was very successful for some loci, however, 
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although we included many databases and annotations in this search for genetic links between 

the association signals and the predicted causal genes, for some loci this process did not result in 

a convincing hypothesis including a plausible target gene. For instance, on chromosome 11, we 

found an association signal clearly defined by recombination events (chr11:18.27-18.39 Mb) 

with alpha-hydroxyisovalerate (lead SNP rs2403254, � = 1.26 ∙ 10Nu{; Figure 24A). 

Neglecting non-coding genes, the locus contains only three candidates: serum amyloid A1 

(SAA1), Hermansky-Pudlak syndrome 5 (HPS5), and the general transcription factor IIH 

subunit 1 (GTF2H1). Alpha-hydroxyisovalerate is a product of energy production by branched 

chain amino acid (BCAA) degradation, a process that is located to several tissues, including 

skeletal muscle, liver, kidney, heart, and brain [423]. More specifically, alpha-

hydroxyisovalerate is produced by hydrogenation of alpha-oxoisovalerate [424], the first 

product of valine degradation. As we could not link any of the three genes in this locus to a 

molecular function interfering with alpha-hydroxyisovalerate levels, we selected HPS5 as 

candidate as it contained the (intronic, i.e. non-coding) lead SNP. After we had finished the 

development of the SNiPA resource, I revisited the locus annotations for our blood mGWAS 

using SNiPA’s Block Annotation feature similar to the automated approach in our urine 

mGWAS. In case of the HPS5 locus, it revealed eQTL evidence implicating not only the three 

genes within the locus but one additional gene outside of it: lactate dehydrogenase A (LDHA). 

Trait annotations showed implication in Mendelian disorders for three of the four genes (SAA1, 

HPS5, and LDHA), as well as an additional GWAS trait association with amyloid A serum levels 

[425]. Furthermore, several regulatory elements were displayed as being affected by variants 

significantly associated with alpha-hydroxyisovalerate levels. Using the data stored in SNiPA, I 

then characterized the locus further in order to retrieve the most likely candidate gene for 

causing our association signal. Inspection of the genetic locus linked to serum amyloid A levels 

using SNiPA’s LD Plot showed a clear distinction from our association signal (Figure 24B) with 

the signal being located in the promoter-containing region of SAA1. This gene is implicated in 

a rare recessive disorder, secondary amyloidosis (OrphaNet: 85445, MIM: 104750), and is 

primarily expressed and translated in adipocytes [307]. This agrees with eQTL association data 

showing significant associations only in adipocytes. According to OrphaNet, secondary or 

inflammatory amyloidosis manifests with accumulation of amyloid fibrils consisting of serum 

amyloid A protein, which is consistent with the GWAS association. It has been shown that 

expression changes of monogenic disease genes can mimic some of the symptoms even of 

recessive disorders [297], a phenomenon which seems to be true also for SAA1. As the most 
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strongly associated variants for this trait, however, were not significantly associated with our 

metabolite, I excluded SAA1 as candidate gene. 

 
Figure 24: Collection of evidences that support the identification of the predicted causal gene for the 

HPS5 locus on chromosome 11 detected in our blood mGWAS. A: SNiPA regional association 

plot of the association with alpha-hydroxyisovalerate. The lead SNP rs2403254 is highlighted in blue. B: 

SNiPA linkage disequilibrium plot for one of the lead SNPs of the association with serum amyloid A 

levels. It clearly differs from our association signal. C: Blood concentration distribution of lactate and 

alpha-hydroxyisovalerate from the HuMet study across seven challenges and 56 time points, respectively. 

The course of concentration changes indicates antagonistic pathways for both metabolites. D: Allele-

specific effects of rs2403254 in the eQTL (top in blue) and mQTL (bottom in yellow) data. The variant 

shows additive effects for both intermediate phenotypes. OGT: oral glucose test. Liquid: liquid diet. 

Homo Ref: homozygotes for reference allele of rs2403254. Het: heterozygotes. Homo Alt: homozygotes 

for the alternative allele.  
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Looking into the annotation for HPS5 showed that the Mendelian syndrome (HPS5; 

MIMs: 614074, 203300; OrphaNet: 231512) linked to it is a very rare recessive disorder with 

often mild symptoms that is associated with impaired platelet formation, decreased immune 

function, and lung involvement. The symptoms again coincide with eQTL data listing 

significant associations in blood, monocytes, and lung tissue. However, Hermansky-Pudlak 

syndrome has never been linked to dysfunction of energy metabolism and, therefore, HPS5 

seems to be an unlikely candidate for causing the association with alpha-hydroxyisovalerate. 

The third gene, GTF2H1 is highly expressed in every measured tissue. Its protein product is 

involved in the general transcription complexes of RNA polymerases I and II and acts both as 

helicase in the transcription initiation complex and as enzyme in nucleotide excision repair 

[426, 427]. While for some mGWAS loci we detected a range of metabolic trait associations, 

the locus on chromosome 11 is specifically associated only with alpha-hydroxyisovalerate 

(ignoring ratios with alpha-hydroxyisovalerate). Such a specific association, however, is unlikely 

to be caused by a gene with such essential, vital functions.  

Lactate dehydrogenase A, on the other hand, is a gene that by its function is directly 

involved in energy metabolism. In a recessive phenotype, it causes an inborn error of 

metabolism (glycogen storage disease; MIM: 612933; OrphaNet: 284426) associated with 

disturbed energy homeostasis and manifesting with increased levels of its primary pro- and 

educts, namely lactate and pyruvate, that are involved in anaerobic energy supply. Further 

investigation showed that the gene is only highly expressed in skeletal muscle [307] which is 

consistent with eQTL data. However, because of the aforementioned clear definition of the 

locus via recombination events and as LDHA lies outside of it, the genetic link between our 

association signal and LDHA seemed not very solid. I therefore examined the affected 

regulatory elements which listed an ENCODE enhancer element linked to the core promoter 

region of LDHA. Inspection of the annotation of the corresponding CTRC showed that it is 

located in the peak region of our association signal. Further, it contains a transcription factor 

binding motif of the Myc/Max complex which is altered by the minor allele of rs3825025 that is 

significantly associated with decreased alpha-hydroxyisovalerate. Querying pathway databases 

revealed that the only gene within the whole locus that is actively regulated by this complex is 

LDHA [428]. To identify a potential link between alpha-hydroxyisovalerate and LDHA, I next 

investigated the allelic effects on LDHA expression and alpha-hydroxyisovalerate levels which 

showed that the effect directions are commutated (Figure 24D).  This led me to the hypothesis 

that lactate dehydrogenase A might be able to produce alpha-hydroxyvalerate in the aerobic 
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valine degradation pathway if it is not occupied by lactate in its function in anaerobic energy 

supply. 

When I checked the literature for this hypothesis, I found that HEEMSKERK and colleagues 

actually validated this hypothesis in an in vitro assay [429]. In contrast to my hypothesis, the 

authors speculated that LDHA produces alpha-hydroxyisovalerate during anaerobic energy 

consumption, which seems contradictory to their results where they show a specificity constant 

of LDHA for the conversion of alpha-hydroxyisovalerate 3000 times lower than for that of 

lactate [429]. To resolve this issue, I checked the results of the HuMet study where 15 healthy 

adults were metabolically screened across several challenges making up almost 60 measurement 

points [430]. Following the concentrations of the two metabolites over time indicated evidence 

for my hypothesis, namely opposite functions for LDHA in aerobic and anaerobic energy 

production, depicted by antagonistic patterns of concentrations of lactate and alpha-

hydroxyisovalerate (Figure 24C). This alpha-hydroxycarboxylic acid could therefore be a 

marker of excess aerobic degradation of BCAAs. The example of maple syrup urine disease 

(MSUD; MIM: 248600), an inborn error of metabolism with loss of function of the branched-

chain alpha-keto acid dehydrogenase complex that catalyzes the aerobic catabolism of alpha-

keto acids coming from BCAA degradation (including alpha-oxoisovalerate), which 

HEEMSKERK et al. use to support their theory, is also rather evidence for my hypothesis, because 

the aggregation of alpha-hydroxyisovalerate in urine of MSUD patients is independent of 

physical activity [431]. In summary, taking into consideration all the available evidence and 

dissecting the information identifies LDHA as the most plausible candidate causing the 

association with alpha-hydroxyisovalerate. It also shows that the evidences point towards a 

pleiotropic function of lactate dehydrogenase which was verified experimentally and is 

supported by time-course data. 

6.3.6 Concluding remarks 

The central finding of this study is that, using CTRCs for variant effect prediction, we can 

obtain the correct target gene(s) in half of all cases for promoters and in one third of all cases for 

enhancers when comparing the predictions with the available eQTL associations. In case of 

enhancers, the sensitivity with close to 40% is much larger than the precision of the predictions, 

meaning that the correct target gene is listed along with several false positives in the annotations 

in four out of ten cases. Additionally, with the example on LDHA, I show how CTRC 

annotations can be used to dissect the evidences available for a genetic association signal leading 

to a sound hypothesis regarding the putative causal gene. This example also shows that data 
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integration can indeed support the geneticist in identifying the molecular mechanism 

underlying a genetic association signal and illustrates the whole process of categorizing the 

different evidence types into information relevant to the trait under study, deriving a functional 

hypothesis based on the combination of intermediate phenotypes (eQTL and mQTL data), and 

supporting it with additional evidences from independent studies. Of course, in the 

characterization of our association with alpha-hydroxyisovalerate, I neglect the evidence 

pointing towards further pleiotropy of the locus which is indicated by the strong eQTL 

associations linking our signal to the HPS5 gene. However, if we look at associations with 

metabolite ratios, we see that the strongest signal for our lead SNP is that for the ratio of alpha-

hydroxyisovalerate and 3-(4-hydroxyphenyl)lactate, a degradation product of tyrosine. One 

major symptom of Hermansky-Pudlak syndrome 5 is oculocutaneous albinism which is another 

recessive disorder that, in its most frequent form, is caused by homozygous mutations in the 

tyrosinase gene (MIM: 203100). Tyrosinase encodes a protein that is essential to produce the 

skin pigment melanin by catalyzing the conversion of tyrosine to L-Dopa. Degradation of 

tyrosine to either L-Dopa or 3-(4-hydroxyphenyl)lactate are distinct, mutually exclusive 

pathways. In my LDHA hypothesis, I assume that the primary enzymatic function of the locus is 

determined by LDHA’s potential to produce alpha-hydroxyisovalerate. When adjusting the 

regression model for this function by including alpha-hydroxyisovalerate as denominator in the 

ratio, the insignificant association of rs2403254 with 3-(4-hydroxyphenyl)lactate (� = 0.44) is 

boosted to � = 4.0 ∙ 10NuÍ with a highly significant P-gain of 3.15 ∙ 10O. This may indicate a 

metabolic link between HPS5, LDHA, and disturbed tyrosine metabolism. Interestingly, 3-(4-

hydroxyphenyl)lactate is produced from 3-(4-hydroxyphenyl)pyruvate, a direct degradation 

product of tyrosine, by the same enzymatic reaction that converts pyruvate to lactate. And this 

latter reaction is catalyzed by LDHA. Of course, hypotheses on such effects in trans are very 

speculative, and it may well be that the fitting reaction type is sheer coincidence. With their 

large hydroxyphenyl groups, 3-(4-hydroxyphenyl)pyruvate and 3-(4-hydroxyphenyl)lactate are 

unlikely substrates of lactate dehydrogenase. On the other hand, a dehydrogenase specific for 

hydroxyphenyllactate was not yet found in human. 

In conclusion, currently, a major focus in computational genetics is the development of 

variant effect prediction algorithms that are able to functionally characterize non-coding 

variants. In this context many datasets are included to yield maximal coverage of the human 

genome. However, the accordance of different sources of regulatory element annotations has 

never been investigated on a large scale. In this study, we combine regulatory evidences from 
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several experimental assays in cross-tissue regulatory clusters and demonstrate that the 

concordance between these datasets is surprisingly high. In fact, benchmark statistics for 

promoter and enhancer annotations are higher in CTRCs containing ChIP-seq data as 

compared to clusters without TF binding information. The validation of the clustering of 

regulatory elements via eQTL associations provides further evidence that our approach is highly 

valuable, while the use of eQTLs for validation is again justified by the strong enrichment of 

eQTLs within CTRCs. Additionally, our results underline the validity of using eQTL 

associations for candidate gene selection by supporting eQTL associations with regulatory 

element annotations. Our CTRCs thus enable further possibilities to select and prioritize 

candidate genes for trait-associated, non-coding, and potentially regulatory-acting genetic 

variants. 

6.4 Summary 

The major recurring point of criticism with regards to the GWAS approach is that the loci 

obtained by screenings for genetic trait associations are of only limited value because in most 

cases the associations can neither be linked to a plausible causal genetic variant nor provide 

information on the molecular mechanisms involved in trait development and progression. In 

this chapter, I describe three different approaches that are intended to support the process of 

prioritizing likely causal genes as well as of translating GWAS signals into relevant biochemical 

pathways. 

The first study uses a comparably simple approach to select putative pathological variants 

using overlapping genetic signals for different traits. Using both agonistic and antagonistic 

signals, I investigate the genetic correlation between complex diseases as well as potentially 

pleiotropic mechanisms separating the development process of diseases on the molecular level. 

The genetic correlations clearly show that traits related on the symptom level also show overlaps 

in their genetic predisposition landscape. However, I also note that it is likely that a substantial 

part of these correlations may be due to biased covariate sampling or misclassification of 

(comorbid) cases. In a recent analysis, BULIK-SULLIVAN and colleagues proposed a novel 

approach for the identification of genetic correlations [432]. While they limit their rationale to 
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epidemiological aspects, they suggest that it would be an interesting research direction to 

characterize genetic correlation networks in a way similar to Mendelian randomization analyses 

where the objective is to identify the direction of causation for genetically correlated diseases. 

This would actually be a valuable addition to the available data, because it would allow for 

pruning genetic overlaps that are due to confounding by comorbidities. In our study, we used 

only summary statistics of published GWAS. Nevertheless, by inspection of their effect size we 

found evidence for SNPs appearing to be primarily associated with one disease which in turn 

represents a risk factor for another associated disorder. For instance, rs2200733 on chromosome 

4q25 is linked to atrial fibrillation (AF) with a higher effect size (OR=1.72) than to stroke 

(OR=1.26), for which AF is a major risk factor [433-435]. Interestingly, five variants in perfect 

LD with rs2200733 are affecting an enhancer CTRC that is linked to paired-like homeodomain 

2 (PITX2), a gene that, in case of homozygous LOF, is causing familial AF (OrphaNet: 334). 

Another example is rs964184 which is located proximal to the apolipoprotein gene cluster on 

chromosome 11q23 which is associated with hypertriglyceridemia with a markedly higher OR 

(OR=3.28) than to coronary heart disease (OR=1.13) [436, 437], which are again two diseases 

with a known connection. rs964184 is in moderate LD (�
 = 0.37) with rs3135506, a missense 

variant in the apolipoprotein A-V (APOA5) gene that has been previously linked to 

hypertriglyceridemia (MIM: 606368). The lower effects of the markers on the hypothesized 

“secondary sequels” may be explained by the fact that these are caused by the primary diseases, 

but with less than 100% penetrance. Intriguingly, in neither of the two examples above the risk 

factors (AF and hypertriglyceridemia) were included as covariates. Thus, it is also possible that 

the associations to coronary heart disease and stroke would vanish in the adjusted regression 

models, similar to what has been observed for the association of type 2 diabetes and the FTO 

locus when correcting for BMI [363]. On the side of putative pleiotropic genetic overlaps, we 

identify several loci that are interesting candidates for further studies. In this context, the 

interacting TERC and TERT  loci may be of special interest. When studying the genetic 

overlaps between Mendelian and complex diseases, BLAIR and colleagues also report evidence 

for potential multi-functionality of the TERT locus [297]. TERC may thus also be a valuable 

target for more detailed exploration, especially as recent research on a wide range of non-

coding RNAs such as TERC has demonstrated their potential to affect human diseases [438]. 

This topic is also the focus of the second study described in this chapter, where we 

investigate genetic influences on non-coding RNA functioning in the context of complex 

human phenotypes. Using a large catalog of experimentally supported miRNA binding sites, we 
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map trait-associated variants onto regulatory pathways to identify functional relationships 

between the genetic predisposition to human traits and the molecular level. Focusing on genetic 

influences on human blood metabolites, I detect a significant overlap between miRNA-

mediated regulation and human metabolism. That miRNAs are involved in metabolic 

homeostasis has been shown previously [399, 400, 406, 407]. With our study, we demonstrate 

that there is ample evidence for genetic effects on miRNA-controlled metabolic pathways. 

Additionally, our approach provides another method to prioritize candidate genes for GWAS-

identified association signals that can be used to combine evidences obtained in independent 

experiments. As we show for LPL-controlled lipid homeostasis, such a hypothesis-free 

approach can reveal molecular mechanisms for genetically influenced miRNA regulation 

pathways by connecting evidences from GWAS, miRNA screens, and enzymatic annotations of 

human genes. With examples on suggestive significant associations such as that with lathosterol 

from our blood mGWAS (section 4.2) that can be linked to genetically controlled, miRNA-

mediated downregulation of lathosterol oxidase protein levels which furthermore may have 

pathophysiologically relevant downstream effects, we proof that our approach is not only very 

sensitive but also provides evidence-based support for genetic associations that fall short of the 

conservative significance threshold applied in GWAS. 

In the third study, I extend this investigation of genetic influences on regulatory 

mechanisms to the classical elements involved in gene regulation, namely promoters and 

enhancers. Using over one million regions from several genome-wide datasets on regulatory 

elements, we were able to derive two important findings. First, we provide the first empirical 

analysis on the comparability of regulatory element annotations derived by different 

experimental assays. And while we find that more sophisticated experimental methods perform 

better (which could be expected), we also find that using ChIP-seq data as prerequisite for 

annotating active CTRCs removes a lot of putative false-positives, thus significantly increasing 

performance measures. Second, using available eQTL data, we demonstrate that CTRCs can be 

efficiently used to predict candidate genes linked to genetic variants. And although the numbers 

for the F1-measure seem not too impressive, this is a highly valuable addition to the catalog of 

genomic annotations if used to predict the effects of variants for which no other annotations are 

available. Furthermore, the example on LDHA also shows that CTRCs can be very useful to 

dissect the evidences of highly annotated loci to find the most plausible predicted target gene for 

a GWAS-identified trait association. The aggregated regulatory annotations revealed a clear 
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connection between the well-defined association peak for alpha-hydroxyisovalerate and the 

more distal LDHA gene, a link that we missed in the manual annotation of the locus. 
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7  Discussion and outlook 

Across the last two decades, the study of the genetics of human phenotypes has undergone 

unprecedented advances. The human genome sequence has been deciphered, ever-denser 

haplotype maps of the major populations became available, and GWA and sequencing studies 

have provided a catalog of several thousands of variants that influence trait predisposition and 

development [100, 222]. Population-based sequencing consortia have provided us with 

genomic and exomic sequences of ten thousands of individuals [231, 439]. By 2020, it is 

estimated that the genomes of about five million individuals will have been sequenced 

worldwide [440]. Other consortia obtained epigenetics and regulatory data for hundreds of 

human cell types [78, 82]. And with novel genome-editing techniques it became feasible to 

perform knock-out studies on human cell lines to identify sets of essential genes, something that 

previously was only possible in model systems like yeast [441, 442].  

It seems paradoxical that, in spite of these impressive achievements and the rapidly growing 

compendium of data, current cost estimates for the development of new drugs are at 2.6 billion 

US dollars [443] – a number that more than triples the estimates from the beginning of the 21st 

century [444] – with an estimated success rate of less than 10%. However, it is an established fact 

that the translation of the information on disease-linked genetic variation into clinical use still 

follows at a much slower pace than new genetic data is produced. And although phenomena 

like the missing heritability problem are recognized and discussed, there are very few 

methodological advances developed to address these issues convincingly. Interestingly, this is 

not a new trend. During the Human Genome Project in the mid-1990s, the first large-scale 
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DNA sequences were accumulating and led some to generally question the classical theories in 

human genetics. But, in the words of KENNETH M. WEISS, “IN MANY WAYS THESE ISSUES 

FADED WITHOUT RESOLUTION. IT WAS EASIER TO GENERATE EVEN MORE NEW DATA” [445].  

In this context, the demand to globally collect genotype-phenotype data in order to 

enhance exploitation of the available findings in a more expedient way receives increasing 

attention. GWAS, for instance, have provided a plethora of genetic associations with complex 

traits, however, most of the identified loci are still awaiting mechanistic characterization. For 

traits that are due to low-frequency or even rare genetic causes, sequencing can be used to 

obtain candidate variants for further investigation. However, this again holds several challenges, 

as “EVEN AFTER EXTENSIVE BIOCOMPUTING AND FILTERING, THE MAIN RESULT IS TYPICALLY 

A LONG LIST OF VARIANTS OF UNKNOWN SIGNIFICANCE” [446]. 

In this thesis, these obstacles are investigated from a bioinformatics perspective. We begin 

with the description of the standard GWAS approach utilized to detect genetic associations with 

the sudden infant death syndrome. Complemented by analysis of rare CNVs, we show the 

difficulties in the interpretation of the results of genetic association studies on trait endpoints. 

The focus is then shifted to the identification of genetic influences on intermediate phenotypes. 

Using the results of two large GWA studies on metabolic traits in human blood and urine, we 

demonstrate the great benefit posed by the investigation of molecular traits for the interpretation 

of genetic links to complex phenotypes. In this context, we further elaborate the utility of an 

integrative annotation of the identified genetic loci and exemplify how the identification of the 

predicted causal genes can be automated using a simple evidence-based gene prioritization 

metric. In order to provide this method to the scientific community, we developed the first 

genetic variant-centric annotation browser that, in addition to simple data retrieval, features 

several convenient tools for the analysis, aggregation, and visualization of genomic annotations 

linked to genetic variants on a genome-wide scale. To demonstrate the value of integrative 

analyses in the context of GWAS-identified genetic trait associations further, we then shed light 

on different aspects of the potential molecular consequences mediated by trait-linked genetic 

variants. First, we investigate the nature of genetic loci that show overlapping effects in a large 

set of common diseases and estimate the extent of pleiotropy for complex trait loci. Second, we 

examine trait-linked genetic influences on miRNA targeting and, using the previously obtained 

associations with metabolic traits, show that there is ample evidence for allele-specific 

modification of gene-regulatory mechanisms influencing energy homeostasis. To investigate 

this matter further, we thirdly inspect the value of genome-wide datasets on regulatory element 
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annotations in the prediction of regulatory effects exerted by genetic variants and provide the 

first empirical evidence on the performance of such predictions. In the following, these 

scientific contributions are summarized and potential future directions as well as links to the 

current emphases in the study of human genetics are discussed. 

• The genetic analysis of the sudden infant death syndrome revealed that, at least in our 

cases and assuming the standard GWAS log-additive mode of inheritance, there are no 

major complex genetic risk factors determining susceptibility to SIDS. While we 

identified several suggestive significant loci, the resulting effect sizes are too small to be 

likely to lead to a significantly increased vulnerability of an infant to succumb to an 

external stressor. However, CNV analysis provided evidence that, for a quite substantial 

amount of our cases (12 of 301), rare monogenic disorders may have caused sudden 

death. To verify this finding, cytogenetic validation of the detected deletions is needed. 

Based on the very strict quality control measures applied to our data, we are confident 

that at least some of the CNVs called in our study are true positives. We therefore 

suggest including cytogenetic screens for chromosomal aberrations in the standard 

autopsy protocol of cases where SIDS is suspected as cause of death. Taking this 

outcome into consideration, examination of common recessive genetic causes of SIDS 

will be a valuable next step. Due to screening for recessive risk factors having lower 

detection power, we are currently extending our case cohort by additional cases from 

the Hannover SIDS cohort in collaboration with Thilo Dörk-Bousset. One promising 

target that already shows suggestive significant results for recessive effects �Ò= = 4.40,� = 8.45 ∙ 10NO	 in our cohort is the acyl-CoA dehydrogenase, short-chain (ACADS) 

gene locus. ACADS, like ACADM (that has been previously linked to SIDS 

pathogenesis), causes an inborn error of metabolism that can show infantile onset of 

acidosis and muscle weakness (MIM: 201470). With further candidates missing, 

thorough genetic characterization of SIDS will only be possible using sequencing. 

However, based on our study (which is, according to the literature, the first GWAS on 

SIDS) and the information available in the literature, prominently the success of the 

Back-to-sleep campaign, SIDS seems to be a highly heterogeneous phenotype that is 

predominantly caused by environmental factors. 

• With our mGWAS on metabolic traits in human blood, we performed the largest 

mGWAS to date, detecting and replicating 145 blood GIMs. In addition to extending 

the catalog of variant-metabotype associations reported in earlier studies, we provide a 
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collection of downstream analyses that, in this depth, was a novelty. We give estimates 

on the heritability, explained variance, and environmental influence on 310 metabolites 

and examine epistasis between loci significantly associated with the same metabolic trait. 

We performed large-scale Mendelian randomization analyses of the direction of 

causation comparing the primary effects on gene expression versus metabolite 

concentrations identifying two loci where metabolic control is genetically modified by 

altered gene regulation. We provide a data-driven reconstruction of a metabolic 

network, augmented with the genetic loci that affect the pathways. Further, we 

annotated all loci integrating several genomic, phenotypic, chemical, and 

pharmacological databases, showing a substantial association between our GIMs and 

genes that are either drug targets, involved in drug uptake or metabolism, implicated in 

complex diseases, or causing inborn errors of metabolism. Finally, we compiled two 

comprehensive web resources to access the study data: first, a searchable supplemental 

website that enables browsing of all major results of our analyses and of the annotation of 

the detected GIMs, embedded in the reconstructed metabolic network; and, second, the 

metabolomics GWAS server that contains the complete set of variants and association 

statistics provided via a set of access and search interfaces and interlinked with several 

other specialized resources to enable further downstream analyses using our data. 

The mGWAS on urinary metabolic traits, which is also the largest of its kind, 

complements the blood mGWA study on a second body fluid. Here, we established 

several methodological advances. First, we use non-targeted NMR spectra as 

phenotypic traits as proxy for unidentified metabolite profiles on a large scale that, 

coupled with the Metabomatching approach, can be used to more comprehensively 

exploit NMR data. And second, I developed a metric for automated evidence-based 

prioritization of predicted causal genes that, as this step is one of the major bottlenecks in 

large genetic association screens, constitutes a significant speedup in the annotation and 

interpretation of GWAS results. Furthermore, we integrate blood and urine metabolic 

traits in hypothesis generation which can provide deeper insights into allele-specific 

effects on metabolic homeostasis, as we show on the example of SLC5A11. Following 

the approach of the blood mGWAS, we again made all results publicly available by 

integrating and interlinking the association results genome-wide into the metabolomics 

GWAS server. 
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The finding that mGWAS-identified loci often contain enzymes that are functionally 

linked to the associated metabolic trait is an important one, as it shows that for GWAS of 

intermediate traits locus annotation and interpretation can in some cases be quite 

straightforward. However, a link between a gene and a metabolite in one of the 

metabolic pathway databases is not a proof of causality, and, therefore, causality has to be 

established in experiments. Nonetheless, the derived hypotheses are often biologically 

plausible and provide a valuable addition to the compendium of genetic annotations. To 

further elucidate genetically influenced metabolic control across tissues, in collaboration 

with the University Medicine Department in Greifswald we are currently performing an 

mGWAS study across human blood, urine, and saliva samples in the SHIP cohort. 

Another important step to characterize the genotype-metabotype relationship in more 

detail is the integration of as many available mGWAS datasets as possible. The current 

version of the metabolomics GWAS server was not intended to hold such amounts of 

data and we are therefore working on a relaunch of the resource that includes not only 

better-suited data access options but also data visualization modules that can cope with 

the multidimensionality of metabolomics data. We also plan on integrating the 

metabolomics GWAS server into the SNiPA resource to enable access to SNiPA’s large 

catalog of annotations while inspecting mQTLs. Additional extensions via integrative 

approaches, such as the investigation of genetically disturbed, miRNA-mediated 

metabolic control and genetic effects of GIMs on more distal enzymes, will be discussed 

in more detail below. Finally, NGS-based analyses of metabolic traits can provide 

further insights. It has already been shown for some examples that rare missense or LOF 

variants can push the metabolic profile of an individual to the extremes of the 

concentration distributions [125]. Identifying such variants on a large scale will help to 

identify key enzymes involved in metabolic homeostasis.  

• With SNiPA, we developed a resource that, both from the integrated data and the 

provided data access and visualization modules, constitutes a universal starting point in 

the task of annotating genetic loci defined by single nucleotide variants. It contains LD 

information and functional annotations for almost all variants of the latest 1000 genomes 

project release and is extensible to include both larger variant sets and additional 

annotation data. Its current catalog contains, to the best of our knowledge, the largest 

available compilation of eQTL datasets, regulatory elements including miRNA target 

sites from CLIP-seq experiments, associations to complex, metabolic, as well as 
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pharmacogenomics traits from resources such as dbGaP, DrugBank, and the NHGRI-

EBI GWAS catalog, annotations of missense variants from ClinVar, OMIM, and 

UniProt, monogenic disease gene annotations, and several genome-wide conservation 

(phastCons, phyloP, GERP++) and deleteriousness (PolyPhen, SIFT, CADD) scores. 

The block annotation module of the resource that enables an aggregated annotation of a 

complete association signal is currently unique in its form. And its variant-centered 

visualization methods provided a novelty that has already inspired others to follow our 

approach [447]. To maintain SNiPA’s value, we regularly update its data basis (current 

version is v3.1) with the latest releases of the included resources. For each major update, 

we sustain freezes of the annotations in order to enable citing a specific version of the 

database. Since January 2015, access statistics show that we have about 3,000 regular 

users that have accessed or downloaded more than 13 TB of data through almost 

300,000 requests, which shows that the resource is broadly used by the scientific 

community. Future directions for the resource will include the incorporation of 

additional –omics layers that are now only scarcely represented in the data. For instance, 

protein quantitative trait loci (pQTLs) have until now been available in only small 

amounts. However, combining eQTL associations and predicted regulatory variants 

with this additional layer will enable to trace genetic effects from the genome across the 

transcriptome to the proteome. Additionally, further regulatory data sets, such as the 

epigenetic classifications from the NIH Roadmap Epigenomics Project, will enable 

categorization of non-coding genetic variants that are currently lacking annotation. 

Integrating the metabolomics GWAS server completely into SNiPA will add a further –

omics layer. Finally, phenotypic ontologies as well as disease-symptom mappings can be 

used to extend the current trait annotation compendium of SNiPA. Listing all these data 

in the structured SNiPA cards will then enable to follow the effect of a genetic variant 

across the different –omics layers to the symptom-resolved phenotype.  

• The integrative analyses in chapter 6 demonstrate the value of integrating different 

datasets by combining several layers of information in order to characterize the landscape 

of genetic trait predispositions more closely. 

The study on genetic overlaps between complex diseases applies a very straightforward 

approach and, based on the catalog of genetic associations selects those variants that are 

linked to more than one disease. Nevertheless, as we show, linking phenotypes over 

genetic associations can reveal interesting insights. On the one hand, we show that 
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almost 25% of all variants that are associated with two or more traits show pleiotropic 

signals. Investigating those loci, we generate several plausible hypotheses of branching 

disease etiologies. On the other hand, we show that agonistic associations across 

complex diseases not only mirror symptom-based trait similarity, but also identify 

potential comorbidities within the study cohorts. Using only the effect size of these 

associations without information on the individual phenotype or genotype, we are able 

to derive plausible hypotheses on the direction of causation if confounders have not 

inflated the association statistics and else to identify those confounders. In the Bachelor 

thesis of Niklas de Andrade Krätzig, we extended this approach by integrating GWAS-

identified disease loci with proteinaceous biomarkers and detected that GWAS variants 

are twice as likely to be located in a gene encoding a biomarker (Ò= = 1.97, >ÌÍt% =�1.74 − 2.24�, � = 1.1 ∙ 10N
|) [448]. Intriguingly, NELSON et al. recently found out that 

the same is true for drug targets [449]. Taking into consideration that GWAS hits are 

also enriched in Mendelian disease genes [297], it would be highly interesting to include 

all these datasets into one network representation to identify potential clusters defining 

disease pathways that may be druggable with existing substances not indicated in this 

context or present promising targets for the targeted development of new drugs. Using 

only their data, NELSON et al. already estimate a significant simplification and speed up 

of drug development that could be furthered by the combination with additional 

information. 

Using CLIP-seq supported miRNA target sites co-localized with trait-associated 

variants, we then turn to investigate the influence of genetic variants on regulatory 

mechanisms. We establish a significant link between genetic variation and miRNA-

mediated gene regulation by investigating the major functional elements within the 3’-

UTR of human genes. While there is also evidence for disturbance of regulatory 

processes via affected splicing and changed RNA folding, we demonstrate that the 

predominant effect of trait-associated variants is the direct alteration of miRNA 

recognition elements. We also show that the efficacy of the control of metabolic 

homeostasis by miRNAs seems to be frequently dependent on the individual allelic 

configuration, which further emphasizes the importance of our findings. Conclusive 

examples such as that of LPL could be promising targets for siRNA-based drug 

development and should be examined further in functional assays. In order to extend 

these hypotheses by additional evidences, it would be a highly interesting approach to 



162  7  DISCUSSION AND OUTLOOK 

 

include genotypes and miRNA and gene expression data from the same time points and 

individuals into one analysis. If our hypothesis is correct and efficacy of miRNA 

targeting is indeed individually affected by the allelic configuration this should result in 

patterns that can be identified using longitudinal data. Another future application of our 

approach will be enabled via including pQTL datasets into SNiPA. miRNAs are 

regulating gene expression on the posttranscriptional level via different mechanisms 

[450]. In addition to miRNA-mediated degradation of mRNA transcripts, transcripts 

can also be withheld from translation at different rates. Therefore, analyses on disturbed 

miRNA regulation pathways including proteomic data may show even further aspects 

that are missed using only gene expression data.  

Further characterization of allele-specific effects on gene regulation is then obtained 

using a novel clustering of cross-tissue regulatory element annotations. Aside from 

showing that the individual annotation datasets originating from the different 

experimental assays conform well to each other, we demonstrate that using TF binding 

data as criterion for active regulatory elements increases the performance of the genomic 

annotations. Using the available eQTL data, we then examine the utility of our clusters 

in predicting allele-specific modifications of gene regulation and show that the 

combined cluster annotations are highly valuable in characterizing the molecular effects 

of non-coding variants. The aggregated information can reveal direct interactions 

between enhancer elements, specific transcription factors, and the expression of more 

distal genes, which we exemplify in detail by connecting our blood mQTL with alpha-

hydroxyisovalerate to the LDHA gene. Other examples include PITX2 that we 

identified in the re-analysis of our network of loci overlapping across complex diseases. 

For this analysis, there are several future directions. First, inclusion of the NIH 

Roadmap Epigenomics data will extend the ChIP-seq profiles for which previously only 

ENCODE data was available. Roadmap also provides genome-wide classification of 

DNA states based on dozens of ChIP-seq experiments for more than 100 tissue types 

which can be incorporated to refine our clustering approach. Using the additional 20 

million eQTL associations provided by the GTEx consortium, we can then recalculate 

the performance measures for predicting eQTLs in a step-wise manner to identify the 

most valuable datasets for CTRC generation. The extension of cross-tissue clusters with 

a weighting scheme for the tissues where the cluster is most probably active would be a 



7  DISCUSSION AND OUTLOOK   163 

further improvement. To obtain this, tissue and cell type ontologies could be included 

to dissect globally active elements from the cell type-specific activity states. 

Conclusion 

In this thesis, I investigated the genetics of human phenotypes on several distinct layers. In 

three genome-wide association studies we provide further insights on genetic loci involved in 

the presentation of human phenotypes with a focus on genetically controlled metabolic 

homeostasis. To address the challenge of interpreting genetic association signals on the 

molecular level, we developed a freely accessible web-based data integration resource that 

enables the thorough investigation of potential effects of the almost complete set of human 

genetic variation. Using the aggregated output of the block annotation module of this resource, 

we developed an automated approach to prioritize and weight candidate genes for association 

signals in order to facilitate the prediction of the causal genes. In three additional studies, we 

then used integrative analyses demonstrating the value of combining genomic and genetic data 

under different aspects, each generating new hypotheses that can be followed up experimentally 

to advance our understanding of the complex mechanisms that translate genetic variation into 

phenotypic variability. We expect that the future extension of these approaches with additional 

data, especially on genetic interactions and the modulating effects of environmental and 

behavioral factors, will further enhance the capabilities of bioinformatics approaches in 

supporting the interpretation of genetic association data. 
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