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ABSTRACT 

The CADiSP system is an experimental software development 
environment for digital signal processing. It has been designed 
in an attempt to provide an engineering oriented tool for the 
development of algorithms and efficient code generation for 
DSP applications. Following the rules of modern software 
engineering it supports object oriented techniques and symbolic 
programming. This paper discusses the approach of using an 
interactive graphical editor for specifying systems by inter- 
connecting black boxes hierarchically on different levels of 
abstraction and then automatically translate the block diagram 
into executable code. Basic building blocks for the most 
frequently used DSP functions are supplied in a library but the 
programmer may freely define new functions using a specially 
designed new language for expressing DSP algorithms. He may 
also use the assembler language of the target processor which is 
ameliorated by graphical elements to support structured 
programming even on this level. On all levels of abstraction the 
graphical specification is complete and thus may also serve as 
documentation. Possible extensions of the system are briefly 
discussed. 

INTRODUCTION 

The design goals for a flexible and powerful development 
system covering a broad range of applications are manifold. 
First of all, the system should be based on an extensible pro- 
gramming language suitable for the notation of DSP-algorithms. 
Secondly, it must be easy and intuitive to work with so as to 
make program development a rapid process. Therefore, 
compilers for the compilation of block diagrams as well as for 
the compilation of the underlying algorithmic language, a 
graphical interface for interactive entry of block diagrams, a 
simulator and a debugger are major components. The system 
must provide mechanisms to support the efficient reuse of 
software. Finally, it must be modular in order to be easily 
extensible, e.g. to support programming of multiprocessor 
systems. 

The aim is to make program development painless even for a 
user unfamiliar with specific implementation details of the 
development system and only interested in his own application. 
We present an outline of our experimental system being 
designed following the guidelines of other systems that evolved 
in recent years [ l  ... 31 but stressing the issue of easy extension 
of functionality, integrating aspects of modem software 
engineering and in particular generating efficient code (the 
system performs code generation primarily for the DSP 56000). 

LEVELS OF ABSTRACTION 

The system is divided into three main levels of abstraction: 

a) the problem-oriented level III on which applications are built 
using powerful modules 

b) the level of primitives (level 11) on which the sophisticated 
modules available on level I11 are defined using primitives 
like multiplication, addition, etc. and 

c) the processor level I on which primitive functions are defined 
for use on level II. 

By employing the same or similar graphical methods and rules 
on three levels of abstraction, the user may seamlessly integrate 
software specific to his application into predefined modules on 
each of these levels. 

The Application-Oriented Level 111 

On the problem-oriented top level (level 111), processing 
entities may be picked from a library of powerful building 
blocks, e.g. samplers, convolvers, signal-generators or filters. 
These entities can be “plugged together” by placing a labelled 
arc between any two of them (see fig. 1). The direction of the 
arc linking two processing entities indicates the direction of the 
data-token flow. The labels of the arcs denote the data type of 
each element of the stream of data-tokens. The data flow 
conforms to the synchronous data flow model [4] which 
essentially implies that the number of data tokens processed by 
each building block on its invocation is known and fixed. 
Therefore, finite buffers between entities will suffice. The data 
types of input/output data streams of connected entities must 
match and they must be defined at compile-time, nevertheless 
generic definitions of processing entities accepting different 
kinds of input/output streams are possible. In the case of a 
generic definition, the graphical compiler will decide at compile- 
time which instance of the processing element to choose. This 
mechanism simplifies the reuse of software modules in different 
processing contexts without sacrificing the benefits of strong 
typing. 

If a user wishes, one or more of the building blocks of level I11 
may form the basis for even more powerful building blocks, the 
latter inheriting the properties of the former and thus constituing 
an even higher level of abstraction. Building blocks on all levels 
may be copied and renamed to exclude them from changes made 
to the original prototype of the class. 

An Attribute and a Specification field characterize the building 
block in full detail. If activated (“clicked on”), the attribute 
window displays parameters necessary for tailoring the function 

1077 

CH2847-2/90/0000-1077 $1.00 0 1990 IEEE 



Spec ( A t t r i b  
. .  

I 

Fig. 1: Program Generation on Level 111 

to the specific needs of the environment it is used in. All of 
these parameters may be changed upon activation of the attribute 
window. The activation of the specification window reveals the 
interconnection of level II blocks that realize the services of the 
level I11 block. This specification is depicted graphically in 
terms of the graphical data-flow language of level 11 (see fig. 2). 

Level II: Building Blocks from DSP-Primitives 

On level 11, common DSP-primitives are predefined. As was 
the case on level ID, these primitives are visualized graphically. 
Plugging together these primitives, the functionality of the 
blocks of level III is obtained (fig. 2). DSP-primitives available 
on this level are addition, multiplication, shifts, FFTs, etc. over 
predefined or user-specified data types. Obviously, the 
separation between levels I1 and I11 is not always clear cut: It 
might be argued, that an FFT is a top-level operation. However, 
if the user wishes to make this operation available on the top 
level, it may easily be “wrapped” into a building block of that 
level. 

Down to and including level 11, all building blocks are strictly 
processor-independent. Nothing has been said about the 
architecture of the processor nor the language the algorithm was 
written in. Therefore, a simulation of the final application is 
easy in principle (not yet implemented) and straightforward if 
the primitives are implemented to run on the host computer of 
the development system: Apart from temporal behaviour and 
possible numerical differences due to integer arithmetic, the 
application will run on a dedicated signal processor in exactly 
the same way as on the host computer. After the algorithm 
proves to work correctly, the primitives running on the host can 
be replaced with the primitives executable on the DSP. 

Level I: Program Code 

The realization of the primitives of level I1 reveals upon 
activation of the “Spec” field (fig. 2). On the lowest level I, the 
user has access to the program code realizing the functions of 
level 11. Even on this processor-dependent level, all 
programming can be done in a way comparable to the higher 
levels but more textual entry is necessary. Block diagram and 
related graphical techniques are perfectly adequate for 
representing the interconnection of system building blocks and 
data flow, but for expressing algorithms they have not proven to 
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Fig. 2: Level 11 - DSP-Primitives 

be useful tools [5] and are certainly inferior to programming 
languages. It is possible to do all the programming graphically 
by introducing icons representing data, control flow, a register 
model of the processor and addressing modes. This does have 
advantages pertaining to readability and self documentation [6].  
However, when organizing programs this way, it tums out that 
even moderately complex programs rapidly need much more 
space than can be handled comfortably. It is more promising to 
use only a few graphical elements to indicate control flow and 
possible parallel operations (e.g. data moves) or to resort to a 
powerful programming language permitting compact notation of 
algorithms. This is the main reason why programming on this 
lowest level can be done using ImDiSP, a high-level language 
specifically designed for digital signal processing and control 
systems applications. Alternatively, the functionality of blocks 
may be specified using the assembler language of the target 
processor. As will be shown below, the introduction of 
graphical elements on the assembler level may reduce textual 
entry to a minimum. 

A) The programming language ImDiSP 

The imperative language ImDiSP has been designed with two 
goals in mink 
- The special functionality of widespread digital signal 

processor architectures should be accessible to the high- 
level language programmer. 
The language should provide constructs that permit the 
specification of typical DSP algorithms without sacrificing 
potential inherent parallelism of calculations, i.e. without 
having to sequentialize them because of constraints imposed 
by the language (as is usually the case with programs 
written in C or Pascal). 

Like every modem imperative language ImDiSP is strongly 
typed and offers all the control constructs necessary for 
structured programming (sequence, iteration, selection) as well 
as procedures and blocks as basic means for structuring 
program text. Basic data types are boolean, integer, real and 
complex. These types may be used to form arrays and records. 
The expressive power of the language is based on its set of 
operators manipulating array structures, the predominant data 
type in DSP applications. 

All standard arithmetic operators are overloaded: They do not 
only operate on integers and reals but also on complex numbers, 
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arrays, slices (sub-arrays) and matrices composed of the base 
types. A simple example is the multiplication of two vectors: Let 
a and b be vectors of the same dimension. Then, c := a*b 
multiplies these vectors element by element creating a new 
vector which is assigned to the variable c (also of type vector). 

Like in APL, it is possible to combine “inner“ and “outer“ 
operations using a dot notation. For example, the dyadic 
operator +.* applied to two vectors (as in c := a +.* b) will first 
multiply the vectors element by element and subsequently sum 
up the products to yield a result of the base type of the vectors. 
Using this technique of combining operators, an expression like 

i=O 

is easily translated into the following code segment: 

y := x [ ~  .. 01 +.* h 

where ‘IA’’ used as an array subscript denotes the upper bound 
of the array. The difference equation of a recursive filter 

v=o p=l 

with coefficient vectors a (dimension N+1) and b (dimension 
M) can be realized in just a few lines of code: 

loop 
XI^] := input; 
y[^] := a +.* x [ ~  .. 01 - b +.* y[̂  - 1 .. 01; 

delay (x, 1) ;  
delay (y, 1); 

-- get input value 
-- do the filter 
-- output result output := y[^]; 

-- shift contents of array x by one element 
-- shift contents of array y by one element 

end loop; 

where input and output are I/O port addresses. 

The standard procedure delay pushes the contents of an array 
down by an arbitrary number of elements leaving the top 
elements (high index) undefined. This procedure is normally 
applied to objects of a special one dimensional array type circular 
array that implements circular buffers of any base type. If certain 
conditions are met, the compiler makes use of the modulo-n 
addressing mode (a feature available on most signal processors) 
when delaying the array contents. This results in very low 
overhead code. Other standard procedures of the language are 
biquad, used for realizing cascade filters and the procedure 
buttelfly that implements DIT/DIF butterflies and the necessary 
address calculations. 

Processor features directly accessible to the ImDiSP 
programmer are saturation arithmetic which may be turned on 
and off before and after any instruction by means of a pragma 
(metacommand) and hardware do-loops. Bit-reversed 
addressing of array elements is possible. Operators are provided 
that permit the uniform application of a certain operation to all 
elements of an array, the extraction of matrix diagonals and the 
determination of the smallest or greatest element of an array. 

To allow procedures to have state, all variables declared local to 
a procedure are static by default, i.e. their value does not change 
between calls. A pragrna exists that can make them volatile 
which means that they become undefined upon exit of the 
procedure. Volatile variables can be held in registers which 
removes the need for memory fetches thus making execution 
much faster. 

A future extension of the language will be representation clauses 
of data types that direct the compiler to internally represent data 
types according to the specification of the programmer. If it 
turns out to be necessary, pointer types and associated operators 
will be added to the language. It is not intended to introduce 
language constructs supporting programming in the large 
(module, import, export statements, etc.). As ImDiSP is 
primarily intended for defining algorithms “behind” level I1 
building blocks, program size should always remain on a 
relatively small scale and procedures are sufficient for 
structuring the program. All aspects of modularization and 
information hiding are realized by the higher CADiSP levels. 

Using ImDiSP, it is possible to specify algorithms involving 
structured data in a very compact form leaving it to the compiler 
to serialize the code as far as necessary. This way it is obviously 
much easier to generate efficient code than based on a notation 
that forces the programmer to write down sequential steps and 
then try to re-parallelize them. 

B )  Structured Assembler 

The basic routines of the CADiSP library are based on standard 
subroutines as furnished by the manufacturer of the processor. 
Combining them on levels I1 and 111 and adding user-supplied 
routines written in ImDiSP where necessary should cover most 
potential applications. Nevertheless, when a user needs a certain 
function not available in the library and hard limits are imposed 
on the execution time, he may wish to implement his own 
routine in assembler. To facilitate this task, graphical elements 
resembling those of flow charts are used. The purpose of these 
elements is twofold They are used to express control flow and 
force the programmer to declare which resources of the machine 
are used by his routine in a structured way. 

A sample program composed of these graphical elements 
available on this level is shown in fig. 3: Each of the blocks 
contains an instruction; control flows along the lines. Lines may 
be drawn that are expanded to unconditional jumps auto- 
matically. Loops are denoted by arrows and a loop count. When 
programming, the user picks instructions from a menu of 
available instructions and then is prompted for the operands. 
Upon completion of programming the procedure he must enter 
all the information required by scheduler (registers used, 
entry/exit/main procedure names, amount of buffer memory, 
etc.) into a predefined table (not shown in fig. 3). 

Our experiments exploring the benefits of this support of 
assembler programming are still of a very preliminary nature. 
However, the experiments indicate that it may be of some help 
for the novice programmer, certainly improves clarity of 
documentation and helps to prevent unstructured coding. 

1079 



1- 

MOVE 'INP-A, RO 

MOVE 'INP-B, R 4  

MOVE 'INP-C-I, R I  

MOVE 

n O V E  

(RO),XI (R4),VO 

( R l ) , A  

MOVE *INP-A,RO 

MOVE *INP_B,R4 

MOVE *INP-C,RI 

(RO)+,XO MOVE 

I D i n  I I n p v  XO,XI,A I I I 

(R4)t.VO 

A A R  1 )+ 

MPVR X0,VO.A (RO)+,XO 

SCHEDULING 
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Scheduling, i.e. the determination of the order and frequency in 
which subroutines representing building blocks are called, is 
done completely at compile time. No dynamic scheduling, as 
necessary with asynchronous data flow models, takes place. 
The approach we have taken is simple: The scheduler examines 
the topography of the network and the number of data tokens 
that are produced/consumed on invocation of each block. Based 
on this input it creates a calling scheme for the subroutines and 
allocates memory space for circular buffers if necessary. 
InpuUOutput will be interrupt or event driven in most cases; no 
scheduling is necessary here. 
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CONCLUSION 
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We have outlined a system for programming DSP applications. 
With this system, most of the programming can be done 
graphically, the user may fully concentrate on the solution of his 
problem. He will not find himself fiddling around with 
parameter passing mechanisms, register allocation schemes and 
other issues not related to his signal processing problem. 
Moreover, this approach results in a natural way of mo- 
dularization: All building blocks of level III and all primitives of 
level 11 are completely isolated from each other. Each of these 
instances has its own data-space, there are no common variables 
and consequently no undesired side-effects. Data and code of 
the instances are firmly encapsulated within the module with no 
access possible from the outside. 
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Fig. 3: Level I - Programming 
the processor 

The graphic layout provides for complete documentation: It 
represents specification, program and comments, all rolled into 
a single compact document. Possible future extensions of the 
system are better scheduling algorithms, a postoptimizer to 
improve efficiency of the generated code, placement of 
processes on multiprocessor networks, addition of simulation 
facilities and the integration of a debugger. 
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