
The nML Machine Description FormalismTU Berlin Computer Science Technical Report | Updated & Revised Version 1.5DRAFTMarkus Freericks29.4.91 - 1.7.93

AbstractnML is a formalism targetted for describing arbitrary single-processor computer architectures. nMLworks at the instruction set level, i.e. it hides implementation issues of the actual machine. nMLcan be used as an input language for a wide range of tools that need formal machine descriptions.Based on attribute grammars, nML is exible and reasonably easy to use.

Contents1 Introduction 21.1 Where are Machine Descriptions needed? : 21.2 Di�erent Kinds of Machine Descriptions : 21.2.1 GCC's .md format : 21.2.2 The VHDL Hardware De�nition Language : : : : : : : : : : : : : : : : : : : 31.3 General aims of nML : 41.3.1 Abstraction Level : 41.3.2 Sharing in Descriptions : 51.4 Restrictions of the Machine Model : 52 Syntax and Semantics of the nML Attribute Grammar 72.1 General Description of Attribute Grammars : 72.2 nML grammars : 73 The Pre-De�ned Attribute Set 93.1 Addressing Modes : 103.2 Type declarations : 113.3 Memory declarations : 123.4 Constants and Global Parameters : 133.5 Macros : 143.6 execs : 144 Attribute Expression Syntax and Semantics 164.1 Expressions : 164.2 The Type of Constants : 184.3 The error function : 194.4 The undefined function : 194.5 Multiple Return Values : 194.6 Standard Idioms for overowing bits : 194.7 Sequences : 204.8 Coercion rules for assignment statements : 204.9 Bit-Fields : 214.9.1 Bit Reversion using Bit-Fields : 224.9.2 The format operator and Bit �elds : 224.10 Concatenation of Values : 224.11 Assignment to Sequences of Locations : 234.12 Problems with Aliases : 241

5 Pipelines 255.1 Pipelined Execution Model : 255.2 Memory Latency : 255.3 The next Pseudo-Function : 255.4 The Pipelined image Attribute : 255.5 Default Settings : 256 The Do's and Don'ts of nML 266.1 Top-Down, Bottom-Up design : 266.2 The \inner logic" of an instruction set : 266.3 Fancy images : 266.4 Use of canonicals : 266.5 The danger of overspeci�cation : 266.6 Alias Madness : 266.7 When to use undefined : 266.8 Errors : 266.9 How do I model : : :? : 267 A complete nML description 278 Changes from Previous Versions 329 Appendix: Grammar of nML 3410 Appendix: Selected Problems 3710.1 Pipelines : 3710.2 Interrupts : 39
2

PrefaceThe nML machine description language has been changing since its inception in December, 1990.This report is a direct descendant of the �rst nML de�nition, which was printed as [1]. The 1.2version of the report was included in the SPRITE 2260 progress report [2]. The changes betweenthe di�erent versions are recorded in section 8.1 Introduction1.1 Where are Machine Descriptions needed?There are a lot of di�erent software applications where detailed formal descriptions of computerarchitectures are needed. A few of these are:� Simulators:in the development phase of an architecture, i.e. before actual hardware exists, instruction-level simulations are needed for writing the �rst actual programs and for testing compilercode generation.� Assemblers and Dissassemblers:these programs are so simple that they ought to be easily generated automatically once aformal description of the assembler syntax and binary coding of the instruction set exist.� Compiler back ends:modern compiler technology uses pattern-matched code-generation schemes. These patternsare usually written and optimized by hand and serve as \indirect" machine descriptions; therest of the knowledge about the machine (e.g. pipeline behaviour and register allocationschemes) is hand-coded into the pattern-matcher or into special allocation and optimizationpasses. It should be possible to generate code-generation pattern libraries out of \functional"machine descriptions, i.e. one that are not centered on the special needs of the code generator.A more ambitious goal would be the generation of the whole code generator.1.2 Di�erent Kinds of Machine DescriptionsMany di�erent kinds of machine descriptions are employed today. Two of the better known onesinclude:1.2.1 GCC's .md formatGCC, the GNU C compiler, can be adapted to di�erent machines by changing its machine description1 .To quote from [13]:GNU CC gets most of the information about the target machine from a machinedescription which gives an algebraic formula for each of the machine's instructions. This1At least when the machines don't derive too much from the built-in assumptions3

is a very clean way to describe the target. But when the compiler needs information thatis di�cult to express in this fashion, I have not hesitated to de�ne an ad-hoc parameterto the machine description.[...]A machine description has two parts: a �le of instruction patterns (`.md' �le) and aC header �le of macro de�nitions.The `.md' �le for a target machine contains a pattern for each instruction that thetarget machine supports (or at least each instruction that is worth telling the compilerabout).[...]Each instruction pattern contains an incomplete RTL expression, with pieces to be�lled in later, operand constraints that restrict how the pieces can be �lled in, andan output pattern or C code to generate the assembler output, all wrapped up in a`define_insn' expression.[...]Here is an actual example of an instruction pattern, for the 68000/68020.(define_insn "tstsi"[(set (cc0)(match_operand:SI 0 "general_operand" "rm"))]"""*{if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))return \"tstl %0\";return \"cmpl #0,%0\"; }")RTL is the intermediate language of the compiler. A special program transforms a machine de-scription into a C function that is used within the compiler. As can be seen in the example,the description, while being powerful { after all, any C function may be incorporated into thepattern-matching and expanding process {, is quite dependent on compiler internals and not veryintuitive.1.2.2 The VHDL Hardware De�nition LanguageVHDL is a language used for describing all kinds of digital circuits, among them processors andtheir components. A VHDL `program' describes a circuit as a box having a number of input andoutput ports either by assembling it from other, previously de�ned boxes, or by giving `the programthat executes inside' the box. When using VHDL to describe a computer architecture, usually thewhole data-path-, fetch-, decode-, load-, execute- and store-mechanism is described. In the simplestcase, the processor is seen as a black box containing a large `switch'-statement, i.e. the descriptionreally is a simulation program.There are a number of other languages similar to VHDL, most notably the \Electronic Design Inter-change Format" EDIF, which mainly describes the graphical layout of a circuit and has no `seman-tic level' aside from the information about connections between prede�ned cells, and HILARICS-2,which is mostly equivalent to a human-readable version of the `net'-part of EDIF.VHDL is described in [5], EDIF in [8, 9] and HILARICS-2 in [12]. The authors of [4] specify ahypothetical processor using VHDL. They do this by describing everything down to the timing ofthe bus signals. 4

1.3 General aims of nMLIn the following the main goals in the development of nML are presented together with the way oftheir realization.1.3.1 Abstraction LevelThe abstraction level nML aims at is that of the instruction set, i.e. the \programmer's model" ofthe processor. To program a machine, one needs to know about� the memory model,� di�erent kinds of registers,� directly supported data types,� the exact semantics of instructions (including \side-e�ects"),� addressing modes,� alignment restrictions,� condition code usage and� processor-internal data structures like pipes.One doesn't necessarily have to know about \system" programming details like exceptions andinterrupts. A machine description should be as precise as necessary, but not more. E.g., in writinga machine description for an assembler/disassembler, the semantics of instructions can be ignoredat all.nML is based on a minimal set of assumptions about the machine: a machine, when run, executes aprogram that is a series of instructions. A program counter (PC) points to the next-to-be-executedinstruction while executing the current one. A machine has state stored in memory locations. Thesole purpose of a program is to change the contents of these locations.All that instructions do is changing the values of locations. There are no inter-instruction controlow constructs; the program ow is changed by writing to the PC location. Each instruction canbe seen as a function from state to state. By composing the instructions, the semantics of thewhole program can thusly be given.2 For practical reasons, instruction semantics are not given asone function, but as a sequence of assignments of the basic formlocation = function (location : : :)A �nite set of primitive functions (arithmetic, shifting, masking) is assumed.Traditionally, such assignment sequences are known as \register transfers". One early registertransfer formalism was ISP. Variations of this formalism were used in retargetable code generation[6] and peephole optimization [7] systems.2It is not that simple because of the program counter. While a semantic function of type State ! State can begiven easily for any program, it is of no great value, because this function has to be applied iteratively until somehalting condition is reached. 5

1.3.2 Sharing in DescriptionsIn complex architectures, there may be hundreds of di�erent combinations of operations and ad-dressing modes. If instructions or addressing modes have side e�ects (e.g., setting condition codes),the semantic description of a single complete instruction may grow quite large. One goal of in thedevelopment of nML was therefore the reduction of description size by sharing as much of descriptionsas possible.To achieve this goal, the instruction set is enumerated by an attributed grammar. E.g, a machinemay have a dozen numeric instruction that share the behaviour of conditionally setting a `zero ag'.This can be modelled by a grammar fragmentmem tmp_src[1,long] \ temporary registersmem tmp_dst[1,long]\ grammar rule for binary numeric operations\ SRC and DST are addressing modes, described elsewhereop numeric_instruction(a:num_action,src:SRC,dst:DST)action={tmp_src=src;tmp_dst=dst;a.action; \ execute the numeric_actionif tmp_dst==0 \ is the result zero?then CZ=1; \ yes: set zero flagelse CZ=0; \ no: clear itendif;dst=tmp_dst;}op num_action= add | sub | ...op add()action={tmp_dst=tmp_dst+tmp_src;}The semantic action of any instruction is composed of fragments that are distributed over the wholegrammar tree. This has been compared to the \inheritance" of object-oriented languages; in theabove example, numeric instruction is an \abstract base class" for add, sub,: : : , providing all\shared behaviour" for the latter.1.4 Restrictions of the Machine ModelNo explicit provisions are made for the description of� self-modifying code 6

� i/o devices� interrupts� the underlying operating system� sub-instructions and multi-cycle-instructions.These may be described `by hand'. E.g., operation system calls may be modelled as instructions:op openfd()syntax="move #42,d0; trap 1"action={canonical("fopen",a0,a1);}Of course, much more elegant ways to describe these concepts may be added easily, but they wouldcomplicate the semantics a lot while not being very general. nML in its present form is a corelanguage that can be extended at need.

7

2 Syntax and Semantics of the nML Attribute GrammarA nML description is a �le consisting of an attributed instruction grammar3 and assorted de�nitions.2.1 General Description of Attribute GrammarsA context-free grammar G is a 4-tuple G = (N; T; P; S) consisting of nonterminals, terminals,production rules and a start symbol. A token is a terminal or a nonterminal. The set SG of Stringsin G is the set of all sequences of tokens, i.e SG = (NG[TG)?. Traditionally, �; �; : : : denote strings.N , T and P are �nite; N \ T = ;, S 2 N , P � N � SG.A string t may be derived in one step from a string s, written s 1�! t i�s � �x� ^ t � �� ^ (x;) 2 PA string t may be derived in n steps from a string s, written s n�! t, i� 9u : s 1�! u ^ u n�1�! t. tis a derivation of s (s ��! t) if it may be derived in a �nite number of steps.A string � is terminal if it consists only of terminals, i.e. i� � 2 T �. A grammar is acyclic if thereexist no nonterminal x with a derivation x ��! �x; j�j> 0.The language L(G) of a grammar G is the set f�j� 2 TG� ^ SG ��! �g.Acyclic grammars have �nite languages.An attribute grammar is a grammar in which for each nonterminal a �xed set of attributes, and foreach production a set of sematic rules is given. For a given derivation, the semantic rules determinethe values of the attributes. A theory of attribute grammars is given in [10]. 42.2 nML grammarsFor nML grammars, all nonterminals have to have derivations. There may be no cycles. As aconsequence, all strings that have no productions are terminal.A nML grammar description di�erentiates between two subsets of N , N^ and N_, and two sets ofproduction rules P^ and P_. N^ [N_ = N;N^ \N_ = ;; P^ [P_ = P; P^ \ P_ = ;.P^ is the set of production functions N^ ! TG; while P_ is the set of production relations P_ �N_ � N . P^ models and-rules, while P_ models or-rules. In an nML-grammar, there may be no`mixed' rules.Semantically, each terminal string produced by the grammar corresponds to one instruction in theinstruction set. By itself, such a string contains no useful information: the instruction's syntax andsemantics are de�ned by the string's attributes. For each attribute, its semantic function is given,i.e. the attribute declaration declares the attribute and its de�nition in one step.Textually, a production in P_ looks like3First described by Knuth[11] in 1965.4Full-edged attribute grammars know two kinds of attributes: synthesized and inherited. If both occur togetherunrestricted, attribute evaluation can become quite expensive. For nML applications, synthesized attributes shouldsu�ce, so inherited attributes are silently ignored. 8

op n0 = n1 | n2 | n3 | ...while a production in P^ looks likeop n0(p1:t1,p2:t2, ...)a1 = e1 a2 = e2 ...where each ni is a nonterminal and each ti is a token. Each ai is an attribute name, the eitheir respective de�nitions. The pi are just names for the parameters to be used in the attributede�nitions.Productions in P_ have no attribute de�nitions; Nonterminals in N_ simply pass the attributesthrough.The start symbol is �xed to be the identi�er instruction.Attributes have expressions as their de�nitions. Expressions are arbitrary C-like expressions orsequences of statements. Expressions may contain references to attributes of parameters. Anattribute reference param.attr refers to the value of the attribute attr of the parameter param.What follows is a complete, if not very interesting, nML grammar:op instruction(f:foo,g:bar)size=f.size+g.sizeop foo()size=1op bar()size=2this enumerates one `instruction' , which has the one attribute size with value 3. In contrast, thegrammarop instruction(f:foo,g:barOrbaz)size=f.size+g.sizeop foo()size=1op barOrBaz = bar | bazop bar()size=2op baz()size=3enumerates two `instructions' of sizes 3 and 4. 9

3 The Pre-De�ned Attribute SetThree attributes are pre-de�ned: syntax, image and action.The syntax-attribute describes the textual (=assembler) syntax of the instruction; it has to evaluateto a string.The image-attribute describes the binary coding of the instruction, it has to evaluate to a binarystring, which is a string containing only 1s, 0s and whitespace. The latter is ignored.The action-attribute describes the semantics of an instruction; it has to evaluate to a sequence ofregister-transfer operations. The exact syntax of the latter is shown in section 4.What follows is a short grammar that is complete in regard to the three pre-de�ned attributes.type addr=card(24)type long=card(32)mem M[2**24,long]mem PC[1,addr]op instruction = jump | binopop jump(a:addr)syntax=format("jump %d",a)image=format("1000 0000 %24b",a)action={ PC=a; }mem tmp1[1,long]mem tmp2[1,long]op binop(x:binaction,a1:addr,a2:addr)syntax=format("%s %d,%d",x.syntax,a1,a2)image=format("11%6b %24b %24b",x.image,a1,a1)action= {tmp1=M[a1];tmp2=M[a2];x.action;M[a2]=tmp2;}op binaction= plus | moveop plus()syntax="add"image="00000"action={ tmp2=tmp1+tmp2; }op move()syntax="move"image="00001"action={ tmp2=tmp1; } 10

This little grammar enumerates three instructions (or better: instruction templates).The �rst of these has one terminal argument `a' of type addr, i.e. card(24). It describes theinstruction jump x, where x may be any number between 0 and 224 � 1.5 The semantics of thejump-instruction is described as the sequence containing the one assignment-statement PC=a;. Theregister PC has special semantics: it is assumed that during the execution of any instruction, PCholds the address of the instruction to be executed next. So, changing PC enables an instructionto jump somewhere else, where by default the instructions in a program are executed sequentially.This is, indeed, the only way to manipulate control ow.The other two instructions, add and move, have a common description for fetching and storing ar-guments. In the case of the move operation, there is an `unnecessary' load operation (tmp2=M[a2]),which is, however, semantically irrelevant. One can see how auxiliary registers are introduced tofacilitate code sharing. As a side-e�ect, the physical data-path is re-modeled. These auxiliaryregisters don't have any impact on the functional model of the machine, because they cannot `carrystate' from one instruction to the next { at least not in the way they are used now.3.1 Addressing ModesnML supports the concept of addressing modes. Suppose the mode declarationsmem A[8,long]mem D[8,long]mode SRC = IMMS | IMMW | IMML | REG | IND | INDOFFSETmode IMMS(n:int(8))=nsyntax=format("#%d",n)image=format("%8b",n)mode IMMW(n:int(16))=nsyntax=format("#%d",n)image=format("%16b",n)mode IMML(n:int(32))=nsyntax=format("#%d",n)image=format("%32b",n)mode REG= AREG | DREGmode AREG(n:card(3))=A[n]syntax=format("A%d",n)image =format("%3b",n)mode DREG(n:card(3))=D[n]syntax=format("D%d",n)5It is important to see that this grammar does not descibe 224 +2 � 224�2 di�erent instructions, but only three: tothe grammar, all terminals/types are equally opaque. 11

image =format("%3b",n)mode IND(R:AREG)=M[R]syntax=format("(%s)",R.syntax)image=R.imagemode INDOFFSET(R:AREG,O:DREG)=M[R+O]syntax=format("(%s,%s)",O.syntax,R.syntax)image=R.imageThis is an incomplete subset of the addressing mode grammar of a 68000. (Incomplete, becauseno way exists to distinguish between modes. In reality, special marker bits would be provided byauxiliary attributes.)One can see that the di�erence between addressing modes and `normal' grammar rules (`op' rules)is the existence of a `value'. E.g, the AREG rule has the value A[n], while the INDREG mode has the(composed) value M[A[n]]. Addressing modes are used as follows:op add(src:REG,dst:REG)action={ dst=src+dst; }Now, if src is an AREG and dst is a DREG, this is the same asaction={ D[n]=A[m]+D[n]; }for some values of n and m. That is, a parameter that stands for an addressing mode is replaced byits `value'.This can be modelled by a special attribute value. Simply imagine all mode declarations trans-formed into declarations like...op INDOFFSET(R:AREG,O:DREG)value=M[R.value+O.value]and all uses of modes into...action={ dst.value=src.value+dst.value; }3.2 Type declarationsIn addition to the instruction grammar, a nML description contains declarations for memory objects,data types, constants and macros.A data type describes a set of values, e.g. the type card(8) describes the set of numbers 0 : : :255.In the grammar, data types are used as terminals (they could as well be seen as grammar rules,i.e. card(8) could denote 256 expansions, but this would blow up the grammar without need). nMLknows about the following type constructors: 12

� int(n)is the type of n-bit signed numbers in 2s-complement representation.� card(n)is the type of n-bit unsigned numbers.� float(n,m)is the type of oating-point numbers with n bit mantissa and m bit exponent. While noprovision for NaNs and in�nities are made, a IEEE-754 representation may be assumed.� fix(n,m)is the type of signed �xed-point numbers with n bits before and m bits after the binary point.� [n..m] (where n � m)is the type of (integer or cardinal) numbers in the range of [n : : :m].� enum(id1,: : :,idi)de�nes an enumeration type, i.e. the type card(dlog2(i)e) and the constants id1=0, : : : ,idi=i� 1.� booldenotes the boolean values. Two constants true and false are pre-de�ned. If coerced to aninteger, true has the value -1, while false has the value 0. Wherever an integer is needed(essentially, only in if-expressions), a 0 will be interpreted as false, while everything elsewill be interpreted as true.A type de�nition liketype byte=card(8)de�nes a synonym for a type expression.3.3 Memory declarationsA memory declaration likemem A[8,card(32)]de�nes a memory base, i.e. a set of memory locations accessible under a name and an index. Alocation is a place where an value of a type may be stored. E.g., the above shown declarationintroduces a memory base called A that contains 8 locations, denotable as A[0]: : :A[7], whichmay be used to store numbers in the range of 0 : : :232 � 1. Memory bases and locations are notterminals of the grammar; in fact, they don't exist in the grammar at all, only in the actionattribute de�nitions.Memory declarations can have additional attributes:mem M[2**32,byte] alignment=2declares an alignment restriction (if these are supported; they are not part of the core language);13

mem A[8,int(32)]mem SP[1,card(32)] alias=A[7]declares SP to be an alias of A7, i.e. both denote the same location, but they have di�erent typeinterpretations;mem PORT1[1,byte] volatile="port1" alias=M[0xffffff84]declares a memory location to be \volatile", i.e. able to change at random. The value of thevolatile attribute may hold additional information for the entity that reads the description.There is no prede�ned attribute for marking memory bases as `temporary' { in the sense of theregisters tmp1 and tmp2 in the �rst example { , because this property can be deduced automatically.One last attribute is the program memory declaration. A declaration of the formmem M[32000] program_memorydeclares the memory base M to be the one holding programs. Per default, the largest memory baseis assumed to hold the programs.When modelling machines where memory is divided into di�erent purpose parts, one can combinethe program memory and the alias attributes:mem MEM[2**24,byte]mem PROGMEM[2**20] program_memory alias=MEM[1024]declares the PROGMEM as part of the MEM memory base, starting at the address 1024.The special memory base of size 1 pc (or PC) holds the program counter. There has to exist a PCvariable in every machine. Assignment to PC means changing the program counter and therebychoosing a di�erent next instruction. During the execution of an instruction, the PC points tothe next instruction to be executed. By writing to the memory pointed to by the PC, one couldtheoretically write self-modifying code. THIS IS NOT SUPPORTED, i.e. tools do not have tomodel this behaviour faithfully.The PC interacts with the special optional global parameter pipeline factor that determines thenumber of jump delays slots.3.4 Constants and Global ParametersA declaration likelet A=100declares a global constant A to have the value 100. Such a constant might be used in every contextits value could stand. Any constant may be de�ned only once.Constants may be used to extend nML: Any information about a machine that can be given with asingle number or string can easily be de�ned as a constant (with a default value, so that standardnMLdescriptions still work). 14

In core nML, there is just one such constant (or \global parameter").This is the pipeline_factor. On machines with an instruction pipeline visible to the programmer,there are delay slots whenever a jump occurs. Usually, there is one such slot, but two are notunheard of. A declarationlet pipeline_factor=1introduces one delay slot after each instruction that changes the program counter. The defaultvalue is 0.3.5 MacrosA macro-de�nition likemacro max(A,B)= if (A)>(B) then A else B endifde�nes a pseudo-function. Macros may not introduce circularities, neither direct nor indirect! Theyare of no further interest, because a simple syntactic expansion can remove them painlessly.3.6 execsAn optional functionality introduced in version 1.3 is that of execs. An exec is a memory locationthat stores not a run-time value, but a behaviour { an exec variables holds as its value a sequence.Execs make it possible to model pipelining behaviour, delayed writes, and other unpleasant aspectsof architectures of the more crufty persuasion.The only operations de�ned on exec values (i.e. sequence) are store, fetch, and execute (a newprimitive function) { hence the name. Exec locations are assignment-incompatible with non-execlocations. Exec locations have no size. An example: delayed branch:mem branch_slot[1,exec] init = {}...op instruction(a:rest_op)action = { exec(branch_slot);branch_slot={}a.action;}...op branch(dst:word)action={branch_slot={PC = dst}}i.e., the PC will be re-set as part of the next instruction. To make this well-de�ned, an initialsetting of the branch slot with a no-op ({}) has to be done.15

The value stored in the exec location has to encode two informations: the action to be performedand the formal parameter values (in this case, the value of \a"). In this respect, an exec value islike a function closure.Since execs are not suited for code generation, memory latency annotations have beenintroduced in version 1.5. From then on, execs are considered as \optional feature"that is not part of \standard" nML!

16

4 Attribute Expression Syntax and SemanticsAn expression is a term that can be evaluated to a value. A value is either a logic value, a number, ora string. Expressions are used both to compute values of attributes and as parts of register transfersequences in action attribute values. These really are two di�erent uses of the same expressionsyntax and semantics; this dual use leads to restrictions in the set of expressions allowed as directvalues of attributes.4.1 ExpressionsAn expression is either� a constant like 13 or "add %s,%4d". Numeric constants may be written to base 2 or base 16,as in 0b00100010 and 0x12ab,� an attribute reference like arg1.syntax,� a memory location like PC or M[12] or A[D[x-1]+4], containing the name of a memory baseand an arbitrary indexing expression (Location bases of size 1 can be accessed without anindex. Examples are the program counter and single condition bits.),� a function call like a+b or format("%s",a.x),� a macro application like MAX(a,b) where MAX is de�ned by a macro de�nition likemacro MAX(A,B) = if (A)>(B) then A else B endifSuch a macro application can be evaluated by replacing it textually by its de�nition in the`obvious' way.� a conditional like if a>b then x else y endif, which returns the value of the evaluatedexpression,� a switch expression likeswitch x {case 0: "load"case 1: "store"default:"move"}that evaluates to the one selected value (the selection has to be exhaustive!).There is a list of prede�ned functions and operators:� +,-these are the usual arithmetic functions. Applied to two numbers of type X , they return typeX . In the case of Integer(N) or Cardinal(N) arguments, all functions are de�ned modulo 2N .Applied to Integer(N) and Integer(M) arguments, the result is Integer(max(N,M)). The sameapplies for di�erent-sized Cardinal arguments. In the case of Cardinal(M) and Integer(N)17

arguments, the result is of type Integer(max(N,M))6. In the case of oating point or �xedpoint arguments, both argument types have to be the same.� *,/,%these are the usual multiplication, division and remainder functions. In the case of Integeror Cardinal arguments, the same rules apply as for + and -. In the case of oating point or�xed point arguments, mixing with integers and cardinals is allowed, the result type beingthat of the oat or �x argument.� **is the integer exponentiation function. The second argument has to be a constant.� >,<,>=,<=,==,!=The standard numeric comparison functions. These may be applied to all kinds of numbers.They return a boolean value, which is equivalent to either -1 (true) or 0 (false).� <<, >>, &, |, ^the binary shift and mask functions from C. These may be applied to Integer, Fixpoint andCardinal values, only. If applied to a Fixpoint(n,m), the latter is seen as a Integer(n+m), i.e.no shifting is done.� <<<, >>>Rotate right and left, de�ned on cardinals and integers.� |mant|, expSelect the mantissa and exponent of a oating point number. These are represented asintegers of su�cient size, i.e. a bias-128 exponent will be represented as 8-bit integer.� |mkoat|Create a oating point number from a mantissa and an exponent.� notThe logical not. Delivered to any non-oating point value, returns -17 if the value is 0 and0 if its non-zero. The result type is the same as the argument type.� &&, ||The logic functions from C. They accept locic values and integers (0 is false) and deliverlogic values.� ~ The binary complement. Delivered to any non-oating point value, returns a number ofthe same type that has all bits reverted.� &, |, ^The binary functions from C. They accept non-oating point values as arguments. Theresult type has the type of the longer argument; the shorter argument is �lled up with zerosor sign-extended, respectively.� coerce(type-expr,value)this function, when applied to any numeric value, delivers the \best approximation" of6An overow is possible. 2s-complement is assumed.72s-complement for `all 1s'. 18

the value in the type to be coerced to. When coercing signed to unsigned, 2s-complementrepresentation is assumed. When coercing from oating or �xed point numbers to integer,everything behind the binary dot is cut o�.� cast(type-expr,value)Re-Interprets the value as an object of type typename. The original type of value has to beof the same bit width as typename.� bits(value) Returns the number of bits of the type of value. The return type is a suitablylarge cardinal (say, 8 or 16).� canonical(string,args: : :)or"string"(args: : :)this function applies a function of unknown semantics. It may be used in action attributede�nitions only. To give an example of its use: a machine that directly implements trigono-metric functions will need a register transfer likedst=canonical("sin",src)It is assumed that the entity that reads the description knows what is meant by the canonicalfunction. Canonical functions may only be used as 'objects' in semantic attributes; they mustnot be used in computing the attributes themselves!The quote-syntax has been introduced in version 1.5.� format(format-string,args: : :)This function is used to put together the string values of the syntax and image attributes.The format string is a variation of the printf format string well known from C. It maycontain alphanumeric characters, blanks, tabs (`\t'), newlines (`\n'), and format directives ofthe form %nC, where n is an optional �eld size and C is one of the following characters:{ dThis takes an Integer or Cardinal argument from the argument list and formats it as adecimal number.{ bThis takes a Cardinal argument and formats it as a binary number. It may also take abinary string, i.e. a string containing only 1s, 0s and (ignored) whitespace.{ xThis takes a Cardinal argument and formats it as a sedecimal number.{ sThis takes a string argument and incorporates it as a whole.4.2 The Type of ConstantsThe type of a constant is assumed to be \of in�nite precision". E.g., the constant 3 denotes the\ideal" cardinal 3. Operations on constants preserve this. E.g., the result of 1/3 is the `ideal' value1=3. In a situation likeA0 = D0 * (1/3) + D1 * (2/3)(which is quite unlikely to occur), the intermediate computation is ideal, i.e. only on storing to A0is any rounding done. 19

4.3 The error functionThe pseudo-function \error" models the behaviour of the machine on encountering an illegalstate. Calling error (with an optional string argument that describes the error) results in a totallyunspeci�ed machine state. A simulator should abort the execution upon encountering error; acompiler should try to avoid generating code that calls error.4.4 The undefined functionThe pseudo-function \undefind" creates an unde�ned value. Applying the function to a type willcreate a unde�ned value of this type. Using undefind, nondeterministic behaviour can be modelled,as in:action={...if (undefined(bool)) then ...else}The creation of an unde�ned value does not constitute an error!4.5 Multiple Return ValuesAs of version 1.5, canonicals can have multiple return values. An example of the syntax ismem Ci[1,bool]mem Co[1,bool]mem R[16,int(16)]action={...(R[1],Co) = "addc"(R[0],R[1],Ci)...}4.6 Standard Idioms for overowing bitsOne problem often encountered is that of overowing bits, i.e. operations that \push out" bits onthe \border". The standard idiom to represent these bits employs the bit-concatenation operator(\::"). For example, to catch a bit that has been \shifted out" of a word, one could write:mem X[1,bool]mem R[16,int(16)]action={...X::R[0] = R[1]<<1...}In this context, the shift-right operator will generate a 17-bit result, which is then splitted into asingle bit and the 16-bit main result. 20

4.7 SequencesThe action attribute has register-transfer sequences as value. Such a sequence is built up fromstatements. Textually, a sequence is enclosed by braces (f and g); each statement in a sequence isdelimited by a semi-colon (;).A statement is either� an assignment like a=b+c, where the result of an arbitrary expression is assigned to a location.� a conditional statement, which looks like a conditional expression, but which contains twosequences instead of two expressions,� a switch statement, which looks like a switch expression, but which contains sequences insteadof expressions.Sequences may contain calls to canonical function. Expressions occuring in sequences may refer tolocations.4.8 Coercion rules for assignment statementsThe only kind of action done by a register transfer sequence is that of assigning values to locations.nML provides coercing rules for assignments between locations of di�erent types.There is one main rule: assignment between locations of equal size is a direct, un-coerced operation.Assignment between locations of di�erent size is either done with a coercion, if the types arecompatible, or not allowed.Assume the de�nitionstype byte=card(8)type sbyte=int(8)type long=card(32)type slong=int(32)type float32=float(24,8) \ 24 bit mant., 8 bit exp.mem M[2**32,byte]mem D[8,long]mem F[8,float32]in which �ve data types and three memory bases are de�ned. Let's look at some statements usingthese de�nitions:M[100]=M[101];This simplest possible case moves a `byte' from one location to another. No coercion or castingtakes place.D[0]=F[0]; 21

Here, a `oat32' value is moved into a location that is tagged as `long'. Since both locations havethe same size (32 bits), the value is moved regardless of the incompatibility of types.D[0]=M[100];Here, a `byte' is taken and put into a `long' register. An implicit coercion takes place, i.e. whatreally happens is:D[0]=coerce(long,M[100]);In the case of coercion between signed and unsigned values, as inmem SB[1,sbyte]...D[0]=SB[0];presumably sign-extension is done. This is not guaranteed! To have guaranteed sign extension, usemem SB[1,sbyte]...D[0]=coerce(slong,SB[0]);Here, a signed byte is coerced (=extended) to a signed long; then the \equal size" rule takes chargeand puts the value unchanged into the unsigned location.Lastly, something likeF[0]=M[100];is not allowed.4.9 Bit-FieldsTo address a sub-�eld within a memory location, the syntax location<left..right> may be used. Forexample, to shift a 32-bit register on bit to the left, with the lsb staying the same, one can useR[0]<1..31> = R[0]<0..30>Sub�eld selection within an expression (i.e., on the \right side" of an assignment) returns an integerof the given size. Applied on the right side of an expression, a sub�eld speci�es a cardinal locationof the indicated size. The part of the register that is not speci�ed in the selection (in the example,bit 0) stays unchanged.The index 0 means the lsb, i.e., in integer numbers, the bit with the value of 1. Negative indicesand indices that are bigger than the �eld are forbidden.22

4.9.1 Bit Reversion using Bit-FieldsThe normal order of the indices is <lsb..msb>. But, one can assume that the intuitive semantics ofR[0]<0..31> = R[0]<31..0>is that of bit reversal.4.9.2 The format operator and Bit �eldsOne can combine bit �elds with the format operator. For example, to switch the byte ordering ofa long number from \1234" to \4321", one can sayR[0] = format("%b%b%b%b",R[0]<24..31>,R[0]<16..23>,R[0]<8..15>,R[0]<0..7>,)The format operator, used for bit strings only, returns a string that can be interpreted as a number.This usage is the reason for de�ning \Integer" as the return type of bitstring selection, so that, e.g,a \16-bit sign-expand to 32-bit" can be written down atR[0]<0..31> = format("%32b",R[0]<0..23>)(Which could, otherwise, have been written asR[0]<24..38> = format("%8b",R[0]<23..23>)or, quite simple (and tricky),R[0] = R[0]<0..32>)4.10 Concatenation of ValuesThe :: operator allows the concatenation of arbitrary expressions; it is de�ned on the left side ofassignments, too (if the expressions denote memory locations only, of course). For example,M[0] :: M[1] = R[4]assigns the value of R[4] to the locations M[0] and M[1]. The order is the same as used in sequencesof locations, i.e., essentially unde�ned. 23

4.11 Assignment to Sequences of LocationsOn most machines, addressing is per byte, while registers hold multi-byte values. Under declarationsmem M[2**32,byte]mem D[16,long]an assignment likeM[100]=D[0];means to store the (long) value of D0 into the sequence of byte locations M[100]: : :M[103]. Whilethe above sequence is not allowed in pure nML, a simple extension could be de�ned as follows: whena global constant byte order is set to one of the strings "big" or "little", the above statementis de�ned when the size of the destination is a multiple of the size of the source (It is still ill-de�nedto store a 30-bit value into a byte array). The semantics is that the source value is split up anddistributed over the indices (in this case, 100 : : :103). The order is `big-endian' (most signi�cantbyte �rst), if byte order is set to \big", and `little endian' otherwise.A �rst problem arises: The semantics ofD[0]=M[100]should now be changed in a symmetrical way to be that ofD[0]=M[100..103](which is, of course, unsyntactical). To load a byte into a long location under this changed seman-tics, a temporary must be introduced:mem TMPBYTE[1,byte]TMPBYTE=M[100];D[0]=TMPBYTE;A second problem is that of bounds: lets assume an assignment to the top of memory:M[2**32-2]=D[0]On most machines, this will `swap over' to addresses 0 and 1. What happens if the memory has asize di�erent then 2N? Assumemem X[1200]X[1198]=D[0]This could cause a trap or wrap around into some totally unexpected place.A third problem is that of alignment: on aligned machines, the machine description has to providethe information that an instruction like 24

M[1]=D[0]will cause an alignment exception. This information can be given as a memory attribute likemem M[2**32,byte] alignment=2Or, when di�erent sizes have di�erent alignments:mem M[2**32,byte] alignment=truewhich could de�ne that values of size 2N�8 are aligned on addresses that have the last N � 1 bitcleared. The latter would, as a side e�ect, solve the problem of wrap around at the end of memory(when the memory is of an aligned size, but any architecture missing this constraint would be trulyweird!).As said before: multi-word memory access is not part of the core nML language.4.12 Problems with AliasesOriginally, aliases were only introduced to be able to have \symbolic names" for registers (PC,SP)or parts of memory (ZEROPAGE,INTERRUPTVECTORS). Later, the esteemed �rst tester introduced thetrick of mapping a register to a bit array to get at the msb and lsb directly. Now, while this was notintended, it proved to be good, so it was not explicitely forbidden in later versions of this report.But problems still exist. The main one is the order of bits in memory (just the same problem aswith multi-word memory access, really): given declarations likemem M[2**10,long]mem MBITS[bits(long)*(2**10),bool]what will an action likeM[0] = 0x789aMBITS[0]=MBITS[1]result in? In di�erent machines, 789a may be represented in memory directly, or as 9a78, or asa987, or as 87a9.As it stands now, the above given action sequence is not well de�ned. And this is, in my opinion,the best way. It is trivial to introduce ad-hoc parameters likelet byte_order = "3412"to cope with any such problem when it occurs, but there is no simple general way to solve thisnasty little problem. It will usually be much simpler to just avoid any such ambiguities by writingclean de�nitions. 25

5 PipelinesIn version 1.5, the pipelining model { which consisted of the sole pipeline_factor in previousversions { has been extended and speci�ed.5.1 Pipelined Execution Model5.2 Memory Latency5.3 The next Pseudo-Function5.4 The Pipelined image Attribute5.5 Default Settings

26

6 The Do's and Don'ts of nMLPractice has shown how easy it is to write machine speci�cations that are hard to understandboth for a human reader and for an analysis program. The following section shall establish a fewguidelines for writing nML descriptions.6.1 Top-Down, Bottom-Up design6.2 The \inner logic" of an instruction set6.3 Fancy images6.4 Use of canonicals6.5 The danger of overspeci�cation6.6 Alias Madnessdie von georg gebauten konstruktionen....alias auf alias auf alias -> ideal: alias nur von groesserenauf kleinere; keine element-uebergreifenden aliase6.7 When to use undefined6.8 Errors6.9 How do I model : : :?

27

7 A complete nML descriptionIn the following, a complete nML description of a simple RISC-like machine is given. While beingquite small, additional complexity is introduced through complex addressing-modes.\ small.m --- description of a small, fictional machinelet REGS=4 \ 2^4 registerstype word=card(16)type long=card(32)type index=card(REGS) \ register index typemem M[2**32,long] \ main memorymem R[2**REGS,long] \ registersmem CZ[1,bool] \ condition codemem CN[1,bool] \ bitsmem PC[1,long] \ program counter\ 2 kinds of addressing modes: short (5 bit) and long (7 bit)\ short:\ name Image Syntax\ MEM 0nnnn (Rn)\ REG 1nnnn Rn\ long:\ 00<short>\ IMM 1iiiiii #x ,in the range -32...31\ INC 010nnnn (Rn)+\ DEC 011nnnn -(Rn)\ post-increment and pre-decrement are modelled by attributesmode MEM(i:index)=M[R[i]]syntax=format("(R%d)",i)image=format("0%4b",i)mode REG(i:index)=R[i]syntax=format("R%d",i)image=format("1%4b",i)mode SHORT = MEM | REGmode LSHORT(s:SHORT) = ssyntax=s.syntaximage=format("00%b",s.image)pre={} \ these dummies have to be inserted to28

post={} \ make the attributes defined for all LONGsmode IMM(n:int(6))=nsyntax=format("#%d",n)image=format("1%6b",n)pre={}post={}mode PRE(r:MEM)=rsyntax=format("-%s",r.syntax)image=format("010%4b",r.image&0b1111) \ remove tag bit\ the removal uses the fact that bit strings are just\ numbers with a field size, so arithmetic operations\ like masking can be used on thempre={ r=r-1; }post={ }mode POST(r:MEM)=rsyntax=format("%s+",r.syntax)image=format("011%4b",r.image&0b1111) \ remove tag bitpre={ }post={ r=r+1; }mode LONG = LSHORT | IMM | PRE | POSTop instruction(x:instr_action)action={ \ these are the actions done in\ each instructionR[0]=0; \ R0 holds 0 constantlyx.action; \ here the different actions are inserted}syntax=x.syntaximage=x.imageop instr_action = control_op | alu_op | move_opop control_op = test_op | branch_op| jsr_op | rts_opop test_op(src1:LONG,src2:SHORT)action={src1.pre;CZ=src1==src2;CN=src1<src2;src1.post;}syntax=format("cmp %s,%s",src1.syntax,src2.syntax)29

image =format("0000 %b %b",src1.image,src2.image)type testcode = enum(tr, \ truezc,zs, \ CZ clr/setnc,ns) \ CN clr/setop branch_op(newpc:LONG,code:testcode)action={newpc.pre;if code==tr||(code==zc && CZ==0)||(code==zs && CZ!=0)||(code==nc && CN==0)||(code==ns && CN!=0)then PC=newpc;endif;newpc.post;}syntax=format("b%s (%s)",switch(code){case tr: "ra"case zc: "eq"case zs: "ne"case nc: "mi"case ns: "pl"},newpc.syntax)image =format("0001 0%3b %b",code,newpc.image)op jsr_op(nextpc:LONG,link:SHORT)action={nextpc.pre;link=PC;PC=nextpc;nextpc.post;}syntax=format("jsr (%s),%s",nextpc.syntax,link.syntax)image =format("0110 %b %b",nextpc.image,link.image)op rts_op(link:LONG)action={link.pre;PC=link;link.post;}syntax=format("rts (%s)",link.syntax)image =format("0111 %b",link.image)mem SRC1[1,long] \ temporary registers30

mem SRC2[1,long]mem DST[1,long]op alu_op(src:LONG,dst:SHORT,aa:alu_action)action={src.pre;SRC1=src;SRC2=dst;aa.action;dst=DST;src.post;}syntax=format("%s %s,%s",aa.syntax,src.syntax,dst.syntax)image =format("1%b %b %b",aa.image,src.image,dst.image)op alu_action= a_add | a_sub | a_and | a_or | a_mult | a_div | a_remop a_add()action={ DST = SRC1 + SRC2; }syntax="add"image="000"op a_sub()action={ DST = SRC1 - SRC2; }syntax="sub"image="001"op a_and()action={ DST = SRC1 & SRC2; }syntax="and"image="010"op a_or()action={ DST = SRC1 | SRC2; }syntax="or"image="011"op a_mult()action={ DST = SRC1 * SRC2; }syntax="mult"image="100"op a_div()action={ DST = SRC1 / SRC2; }syntax="div"image="101" 31

op a_rem()action={ DST = SRC1 % SRC2; }syntax="rem"image="110"op move_op = move | store | lconst | sconstop move(src:LONG,dst:SHORT)action={dst=src;}syntax=format("move %s,%s",src.syntax,dst.syntax)image =format("0010 %b %b",dst.image,src.image)op store(src:SHORT,dst:LONG)action={dst=src;}syntax=format("move %s,%s",src.syntax,dst.syntax)image =format("0011 %b %b",src.image,dst.image)op lconst(dst:REG,value:long) \ the only >1-word-instructionaction={dst=value;}syntax=format("move #%d,%s",value,dst.syntax)image =format("0100 %b 0000000 %b",dst.image,value)op sconst(dst:SHORT,value:int(7))action={dst=coerce(int(32),value);}syntax=format("moveq #%d,%s",value,dst.syntax)image =format("0101 %b %b",dst.image,value)
32

8 Changes from Previous VersionsChanges between version 2.0 and version 1.5:This version introduces the hardware modelling cell (HMC) grammar and its related concepts.� (TODO) HMC grammar: cell keyword, opr keyword� (TODO) Introduction of the activate attribute� (TODO) Pipelining semantics; re-de�nition of pipeline_factor.� (TODO)Changes between version 1.5 and version 1.2:� (TODO, Andi meint, es waer \verworfen") new operator sign. Takes one argument, givesthe sign (0=positive, 1=negative)� (TODO) syntax-change: switch ... [case ...] default ... end� (TODO) syntax-change if ... then ... else ... end� (TODO) syntax-change: \coerce(type,expr)" can now be written as \type(expr)" werden� (TODO) Clari�cation: \mem[addr]<from..to>" is the same as \mem[addr]<to..from>"� (TODO) Extension: \mem[addr]<from..to>" with from and/or to negative: addresses fromthe front. -1 is the MSB, -2 the second-most signi�cant bit, -(wordlength) the LSB.� (TODO) removed: delayed evaluation via exec locations. (Too complex)� (TODO) pipelining model that employs latency annotations for memory locations.� (?) multi-cycle instructions via next(); canonical� (?) new image separator ; to indicate load latencies� (TODO) more precise semantic de�nition for \+", \-", *", \/", \%", \<<", \>>"� (TODO) de�nition of standard idioms for carry and overow extraction� new pseudo-functions: undefined(type), error()� new operators: \>>>" (rotate right), \<<<" (rotate left)� new oating-point operators: \mant", \exp", \mkfloat"� (?) operator attributes� (?) statement attributes� (?) optional net list declarations 33

� (?) timing declarations as attributes to net list identities� (?) simpli�cation of casting system (cast/coerce and explicit/implicit rules); bit alignment� introduction of \encoding" attribute for types. introduction of encoding-cast rules etc.� (?) general boolean primitives speci�ed as tables� (?) general bit-connect primitives speci�ed as tables� (?) new literal type: prede�ned lookup-table� (?) extra-nML: convention for de�ning the semantics of canonicals as a C library intra-nML:canonical attributes?� simpli�ed syntax for canonicals ("sin"(x) instead of canonical("sin",x)The following will be probably be part of the version 2.0:� (?) multiple-output operations� (?) idioms for multiple-sized processors (byte/word/long instructions)Changes between version 1.3 and version 1.2:� Delayed evaluation via exec locations.� new operator: concat (\verb|::|") both as left- and right-value� new operator: sub�eld \verb|<from...to>|" both as left and right-valueChanges between version 1.2 and version 1.0 (Version 1.1 was internal):� new unary operator \-" (needed for IEEE oating point since �0 6= 0� 0)� changed \^" to **"� new binary operators \^" (exclusive-or) and \^^" (logical exclusive-or)� numerous typo �xes
34

9 Appendix: Grammar of nMLWhat follows is a kind of typed EBNF grammar. An annotation like foo bar means that \foo" is oftype \bar". (X)� means \a sequence of 0 or more Xs". X j Y means \either X or Y ". [X] means\one X or nothing".machine-description)(memory-specj type-specj mode-specj op-rulej let-defj macro-def)�memory-spec)mem namemem type [expr card , name type] (mem-attribute)�mem-attribute)volatile = expr stringj alias = locationtype-spec)type name typespec = expr typespecexpr typespec)boolj int(expr card)j card(expr card)j fix(expr card,expr card)j float(expr card,expr card)j [expr int .. expr int]j enum(i card: : :i card)expr type)const typej location typej function-application typej if expr bool then expr type else expr type endifj param-name.attrib-namej switch(expr select�type)f ((case const select�type j default) : expr type)�gfunction-application type)name type1;:::;typen! type (expr type1, : : :, expr typen)j expr type1 name type1;type2!type expr type2 35

location type)namemem type[expr card]j namemem type 8name int;int! int)+ j - j * j div j modname card;card! card)& j | j ^ j >> j << j **name bool;bool! bool)&& j ||name bool! bool)notname type;type! bool)>= j > j <= j < j == j !=name format�string;type;:::;type! string)formatname type�specifier;type! specified type)coerceop-rule)and-rulej or-ruleor-rule)op name op = id op | : : :| id opand-rule)op name op (id param : name typespec ,: : :, id param : name typespec)9(attribute-def)�mode-spec)mode-and-rulej mode-or-rulemode-or-rule)mode namemode = id mode | : : :| id mode8This abbreviation (x � x[0]) is only valid if x denotes a memory base of size 1.9The parameter list may have length 0. 36

mode-and-rule)mode namemode (id param : name typespec ,: : :, id param : name typespec) [=expr](attribute-def)�attribute-def)name attr = (expr j sequence)sequence)(statement;)�statement)location type1=expr type2j if expr bool then sequence [else sequence] endifj switch(expr select�type)f ((case const select�type j default) : actions)�glet-def)let name type=expr typemacro-def)macro namemacro(param ,: : :, param) = expr

37

10 Appendix: Selected ProblemsThis appendix shall show how concepts like data pipelining and interrupts, which are not directlysupported, can be modelled by adding constant preambles and postludes to each instruction, i.e.by giving the root of the instruction tree an extra preamble (and/or epilogue) that contains adescription of the `additional machinery' that `runs parallel' to the machine.10.1 PipelinesConsider a machine with a 3-cycle multiplication. How may this be modelled? Lets assume a 16bit * 16 bit multiplication with a 32-bit result in a register pair. This is written down asmult D1,D2,D3and has the semantics \compute D1*D2 and put the result into the register-pair D3/D4". Thestoring of the result shall occur 3 cycles later, i.e. in the programmove #1,D3move #2,D4mult D1,D2,D3 \ start multiplication...add #1,D3 \move D3,D1 \ D1=1move D4,D2 \ D2=2\ now the multiplication results are transferred to D3,D4move D3,D0 \ move the high word of D1*D2 to D0So two tasks have to be modelled: �rst the computing over a time of 3 cycles, and then the storing.Assuming that the multiplication is fully pipelined, one could write something likemem D[16,word] \ a few registersmem mult_dst0[1,card(4)]mem mult_dst1[1,card(4)]mem mult_dst2[1,card(4)]mem mult_dst3[1,card(4)]mem mult_flag0[1,bool]mem mult_flag1[1,bool]mem mult_flag2[1,bool]mem mult_flag3[1,bool]mem mult_output0[1,long]mem mult_output1[1,long]mem mult_output2[1,long]mem mult_output3[1,long] 38

op instruction(i:rest_instruction) \ root of the instruction treeaction={mult_flag0=0; \ no multiplication startedi.action;if mult_flag3 thenD[mult_dst3]=mult_output3 >>16; \ high wordD[mult_dst3+1]=mult_output3 & 0xffff; \ low wordendif;mult_output3= mult_output2; \ advance pipelinemult_dst3 = mult_dst2;mult_flag3 = mult_flag2;mult_output2= mult_output1;mult_dst2 = mult_dst1;mult_flag2 = mult_flag1;mult_output1= mult_output0;mult_dst1 = mult_dst0;mult_flag1 = mult_flag0;}op rest_instruction = ... | mult | ... \ many different operations,\ amongst them multop mult(x:card(4),y:card(4),dst:card(3))action={mult_output0=D[x]*D[y];mult_dst0=dst;mult_flag0=true;}How does it work? The pipeline is modelled by 3 sets of registers: one modelling the data partof the pipeline, the second one remembers the destination register, the third one ags whethera multiplication is going on at all. The `mult' operation multiplies the contents of the registers,inserts the result into the �rst step of the pipeline, stores the destination register, and sets theag. Now, at the beginning of each instruction, the multiplication pipeline is advanced one step(regardless of whether it is �lled or not). So, the cycles go as follows:mult D1,D2,D3 mult_output0=D1*D2;mult_output1=mult_output0--add #1,D3 mult_output2=mult_output1--move D3,D1 mult_output3=mult_output2--move D4,D2 D3,D4=mult_output3--move D3,D0 39

How does one model a not-pipelined multi-cycle operation? One way is to use a counter instead ofa pipeline structure:mem D[16,word]mem mult_reg[1,long]mem mult_cnt[1,card(3)]mem mult_dst[1,card(4)]op instruction(i:rest_instruction)action={i.action;if mult_cnt==1 thenD[mult_dst]=mult_reg >> 16; \ high wordD[mult_dst]=mult_reg & 0xffff; \ low wordendif;if mult_cnt>0then mult_cnt=mult_cnt-1endif;}op rest_instruction = ... | mult | ...op mult(x:card(4),y:card(4),dst:card(3))action={mult_cnt=4;mult_reg=x*y;mult_dst=dst;}Here, a mult cnt of 0 marks an inactive pipeline. If the pipeline is active and the count is on 1,the value is stored.10.2 InterruptsOne can model interrupts in about the same way as pipelines. Assume an interrupt register thatmay hold a value of 0 or an interrupt number that serves as index into some vector array stored ataddress 256.mem interrupt_register[1,card(4)] volatile="irq"op instruction(i:rest_instruction)action={i.action;if interrupt_register!=0then STORED_PC=PC;PC=M[interrupt_register<<2+0x100];40

interrupt_register=0;endif;}The interrupt-register is marked as \volatile", i.e. \changing its value". If some non-0 valueappears, the PC is stored in some intermediate location (or put on the stack or whatever) andchanged to the address found at the index. Of course, on a real machine much more happens: thecurrent CPU state is stored, special mode bits are set, interrupts may be masked, etc.

41

Indexbyte order(not core), 24instruction, 38action, 10adressing modes, 11example of, 11alias, 13aliasesproblems with them, 25alignment, 13assignment, 21coercion rules, 21of sequences, 15to exec locations, 15to sequences (not core), 24attributesprede�ned, 10action, 10image, 10syntax, 10value, 12bit �elds, 22codeself-modifying, 6coercion rules, 21conditional statement, 21constants, 14Exec, 15extensionby introducing constants, 14functionsprede�ned, \18&, 18&&, 18<<, >>, &, ^, 18<<<, >>, 18^, 18bits, 19canonical, 19cast, 19coerce, 18

error, 20format, 19mant, exp, 18mkfloat, 18not, 18undefined, 20~, 18**, 18*,/, 18+,-, 17::, 23<x..y>, 23Bit-Fields, 23exec, 15global constants, 14global parameters, 14global paremetersbyte order(not core), 24i/o devices, 7Index, 13instructionsjump, 11multi-cycle, 7interrupts, 7, 40Location, 13Machine ModelRestrictions of, 6macros, 15marker bits, 12MemoryBase, 13Location, 13memoryattributes, 13alias, 13alignment (not core), 13program memory, 14volatile, 14declaration, 13operating systemsupport for, 742

parameterspipeline factor, 14, 15PC, 14PC register, 11pipelines, 38program memory, 14register-transfer operations, 10rulesfor coercion, 21selectionof Bits within a Location, 22sequences, 21assignment of, 15special opsinstruction, 9statementif, 21switch, 21switch statement, 21tag bits, 12typebool (= bit), 13card, 13declarations, 12de�nition, 13enum, 13�x, 13oat, 13int, 13subrange, 13typesopacity of, 11volatile, 14
43

References[1] Markus Freericks:The nML Machine Description Formalism,Forschungsberichte des Fachbereichs Informatik Nr.91-15[2] Markus Freericks:The nML Machine Description Formalism (updated Version 1.2),in: ESPRIT-II Project 2260 SPRITE Progress Report (Incl. Addendum 2 to T.A. 3) for PeriodJune 1992-November 1992, Report No. PR-4.2, 1. Dec. 1992, Author: SPRITE Consortium,Editor: Patrick Pype (Project Manager)[3] A. Fauth, M. Freericks, A. Knoll:Generation of Hardware Machine Models from Instruction Set Descriptions,in: VLSI Signal Processing, VI, Eggermont et.al. (eds), IEEE Signal Processing Society, 1993[4] Peter J. Ashenden:The VHDL CookbookFirst Edition, July 1990Dept. Computer Science, Univ. of Adelaide, South Australia[5] CAD Language Systems Inc:VHDL Language Reference ManualDraft Standard 1076/A, 31 December 1986[6] R.G.G. Cattell:Automatic Derivation of Code Generators from Machine Descriptions, in: ACM Transactionson Programming Languages and Systems 2(2), April 1980, pp. 173-190[7] J.W. Davidson and C.W. Fraser:The Design and Application of a Retargetable Peephole Optimizer, in: ACM Transactions onProgramming Languages and Systems 2(2), April 1980, pp. 191-202[8] Edif Steering Committee:EDIF Speci�cation Version 1.1.1June 1986[9] Edif Steering Committee:EDIF Electronic Design Interchange Format Version 2.0.0 DraftDecember 1986[10] Gilberto File:Theory of Attribute GrammarsPh.D. thesis, Technische Hogeschool Twente, 1983[11] D. Knuth:(Knuths attribute grammar paper. CACM anno '65, it was, i think.)[12] Robert Severyns, Eric Willems:HILARICS-2: The LanguageDecember 7, 1989, Preliminary Release V1.044

[13] Richard M. Stallman:Using and Porting GNU CCversion tagged as \last updated 12 September 1989, for version 1.36"

45

