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ABSTRACT 1 
Bicycling is becoming more and more prevalent due to its societal and personal benefits. 2 

Consequently, understanding bicyclists’ behavior and considering bicyclists as relevant elements 3 

in transport and traffic modelling is essential. To assess operational aspects, bicyclists’ behavior 4 

at intersections is particularly important, as intersections have a large impact on overall system 5 

performance and safety. In contrast to motorized vehicles, bicyclists typically have multiple (legal 6 

and illegal) path options to travel through an intersection. This study presents a discrete choice 7 

model to predict the path on which left-turning bicyclists travel through signalized intersections. 8 

To accomplish this objective, revealed preference data from busy intersections in Munich, 9 

Germany, has been collected through video observations.  The exhibited left-turning maneuvers 10 

are categorized in three types: bicycle turn, pedestrian turn and vehicular turn. After a careful 11 

analysis of the initial set of explanatory variables, unnecessary variables are omitted from the 12 

model. For the data analysis, a multinomial logit model is developed in order to identify the 13 

influence of the individual factors. A field effect variable is examined, which reflects the influence 14 

of the choice of the peer decision-makers. The results of the study reveal that among the selected 15 

variables, seconds passed since the beginning of the red phase of the signal is the most influential 16 

parameter followed by the approaching speed of the bicyclist. Ultimately, an external validation 17 

was performed with an independent dataset from the same intersection, and the result shows 86% 18 

accuracy in the model prediction.  19 

 20 

Keywords: Bicyclists’ Behavior, Tactical Path Selection, Multinomial Logit Model, Revealed 21 

Preference   22 
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INTRODUCTION 1 
The personal and societal benefits of bicycling has captured the interest of professionals and policy 2 

makers to facilitate the bicycle commuting trips by improving the safety and convenience of 3 

bicycling (1, 2). As a result, bicycling is becoming increasingly prevalent for daily commuting 4 

trips, which has led to a heterogeneous traffic stream composition in urban areas. Microscopic 5 

traffic simulation is a widely used instrument in evaluation of the transportation and traffic control 6 

measures before their implementation. However, the reliability of these evaluations strongly 7 

depend on the realistic modelling of the road users’ attributes and dynamics (3).  8 

The existing literature on the simulation models for bicycle traffic, in contrast to motor 9 

vehicles, is scarce. Previous research in the field of bicycle transportation has mainly focused on 10 

the influential factors on the bicyclists’ route choice.  For instance, (4) have proposed a route 11 

choice model with revealed preference GPS data. Many studies have conducted a stated preference 12 

survey, which asks bicyclists to rank their preferences for different facility types (5–7). Bicyclists 13 

are difficult to capture in conventional models since they often share the rights of way with motor 14 

vehicles but their behavior is quite different due to their different physical and dynamic 15 

characteristics. Bicycles are narrower and have a greater lateral flexibility letting them to utilize 16 

the lateral space within a traffic lane and switch easily between different types of available 17 

infrastructure (8). Because of these challenges and the complexity, the majority of the available 18 

traffic simulation software on the market still lack a realistic modelling of bicyclists’ behavior, 19 

particularly the interaction of the bicyclists with other road users. Even if there is the possibility to 20 

include bicycles in the simulation, they are modeled through a simplistic approach assuming the 21 

bicycles are smaller and low-power vehicles or fast moving pedestrians (9).  22 

Nevertheless, a number of recent studies have proposed models, which take bicycles into 23 

consideration as a separate mode of travel. For instance, as one of the first attempt, Faghri and 24 

Egyhaziova (10) developed a computer simulation model called BICSIM (BICycle SIMulator), 25 

which is applicable to car-bicycle, bicycle-car and bicycle-bicycle following. The higher degree 26 

of lateral flexibility of bicycles was first studied by Oketch (11), who investigated the idea of 27 

simultaneous utilization of two lanes and gradual lane changing, as opposed to an instantaneous 28 

one. These efforts have tried to integrate non-motorized vehicles into the simulation models, 29 

especially the short term decision-making. However, these models are not properly calibrated due 30 

to lack of empirical data.  31 

In most transportation studies three levels of human behavior are distinguished: strategic, 32 

tactical and operational level (12–14). In this hierarchy, expected utilities at a lower level affect 33 

choices at a higher level and choices at a higher level govern behavior at a lower level. The 34 

difference between the tactical level of behavior and the operational and strategic level is rooted 35 

in the complexity of the goal and duration of the activity. The tactical level of behavior modelling 36 

focuses on human behavior when seeking short-term goals in a time scale of seconds to minutes, 37 

while operational behavior models assume singular goals that are achieved at a time frame of one 38 

second; whereas the strategic behaviors have more complicated goals and involve decision making 39 

at more than one level (15).  For instance, in case of a bicyclist, at the operational level, one would 40 

model the obstacle avoidance ability; at the tactical level the decisions to stop or cross a red light 41 

would be modeled, and the strategic level of behavior would focus on route choices. 42 

The focus of this research is on bicyclists’ path choice behavior at the tactical level.  43 

Previous research on the tactical behavior of bicyclists has focused on topics such as red light 44 

compliance, infrastructural preferences and gap acceptance. Developing logit models based on 45 

revealed preference or stated preference surveys is the most common approach deployed by the 46 

researchers in order to find the most influential factors on these decisions. The key findings and 47 
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the methodology employed in some of these studies is discussed below and is used as the basis for 1 

selecting influential factors for this research.  2 

Several studies have been conducted to investigate the behavior characteristics and 3 

associated factors of red light violation. The results of these studies reveal that age group, gender 4 

(16, 17) and helmet use (18) as well as the duration of the red phase and the geometry of the 5 

intersection (19) have significant influence on red light violation behavior. Regarding the 6 

infrastructure selection  of bicyclists, the purpose of travel, riding skills and gender are found as 7 

the most important factors (20, 21). In another study, (22) investigated the influence of weather 8 

condition, time of day and segment characteristics in addition to socio-demographic variables on 9 

the probability of riding in bicycle lane. To the knowledge of authors, there is no previous research 10 

on the path selection at signalized intersections; however, some studies on crossing behavior of 11 

bicyclists at unsignalized intersections provide valuable insight of the problem. For instance, 12 

Huang and Wu (23) developed a fuzzy logic model to describe a bicyclist’s path planning in mixed-13 

traffic flow at an unsignalaized intersection in China. The results of this study shows that bicyclists 14 

first try to gain rough information of intersection situation and then sketch their preferred path; 15 

comfort, directness and efficiency are major criteria for path sketch.  16 

 17 

METHODOLOGY 18 
The methodology employed in this study is used to investigate bicyclists’ decision making process 19 

while approaching a signalized intersection and the translation of these parameters into an 20 

algorithm that is suitable for integration in a microscopic simulation tool. Thus, a revealed 21 

preference dataset from more than 18 hours of recorded videos from three intersections in Munich, 22 

Germany, has been created. A portion of these videos are only used to set the analysis framework 23 

and draw reasonable assumptions. This preliminary analysis is performed on five hours of video 24 

data from all three intersections, which are different in terms of geometric design and traffic 25 

volumes (FIGURE 1). This is an essential step in order to understand the choice situation. Then, 26 

the primary dataset is collected from 9 hours of video data from one of the intersections 27 

(intersection (b) in FIGURE 1) to estimate the model. The high number of bicyclists, clear 28 

overview of the area as well as availability of accurate traffic signal data are the decisive factors 29 

to select this intersection as the study site. In the second stage of data collection, six hours of video 30 

of another day from the same intersection is collected, which is called the secondary dataset, and 31 

is used to validate the model. 32 

 33 

Analysis Framework 34 
Path selection problem arises when more than one path exists to reach the destination. In general, 35 

there are many physically possible paths to turn left at an intersection, some of which are depicted 36 

in FIGURE 2. Note that for the sake of simplicity, some paths from/to vehicle lane or sidewalk are 37 

not shown in the figure. This choice set will grow even further if the type of the behavior, for 38 

example walking on the pedestrian crosswalk instead of riding or crossing against the red light, is 39 

also considered. 40 
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 1 
FIGURE 1 Observed intersections in preliminary analysis phase (a) Marsstrasse-2 

Seidlstrasse (b) Arnulfstrasse-Seidlstrasse (c) Karlstrasse-Luisenstrasse. 3 

 4 
 5 

 6 
 7 

FIGURE 2 Possible paths for turning left at intersections. 8 
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 The target group of this study is left-turning bicycles regardless of their lateral position on 1 

the road (bicycle lane, vehicle lane or sidewalk) and including those that exhibit law-breaking 2 

behaviors. The analysis framework is set based on the results of the preliminary observation on 3 

left-turning bicyclists. The main conclusions made at this step are:  4 

 Bicyclists who arrive during the green phase of the straight-through signal follow the same 5 

path. If they are in bicycle lane, first they go straight and then wait for the green light of the second 6 

signal, and if they are in the left most vehicle lane, they turn diagonally. This implies that two 7 

groups of bicyclist are confronted with two different sets of choices and have to be studied 8 

separately.  9 

 Bicyclists riding on the sidewalk as well as the red light violators are rarely observed and 10 

can therefore be neglected.  11 

 Bicyclists change their approaching lane and speed in accordance to their preferred path 12 

around 30 meters upstream the stop line. Those who want to stop at the straight-through signal 13 

smoothly reduce their speed, but other riders that want to cross the pedestrian crosswalk are less 14 

patient and ride faster to avoid two stops at the intersection. In order to address this issue in this 15 

research, left-turning path selection is defined as a sequence of actions; as the bicyclist gets closer 16 

to the stop line, starts to analyze the intersection, in particular, the traffic signals status, speed and 17 

the position of other road users.  18 

 Bicyclists assess all the available paths continuously for a short period of time and make 19 

their decision a few meters (three meters in this case) prior to the stop line. This is where they are 20 

able to observe the pedestrian signal status and have enough space to adjust their speed and lateral 21 

position in line with their decision. An “observation zone” on each segment of the intersection has 22 

been defined that is similar to the concept of “dilemma zone” which has been used for analyzing 23 

drivers’ reaction to signal change at intersections (24). Since there is not a clear view of 30 meters 24 

on all segments of the intersections, the beginning of the observation zone is considered to be 20 25 

meters upstream of the stop line; bicyclists’ speed would be recorded onset of entering the 26 

observation zone and they choose their desired path as they reach the decision making point. In 27 

case this distance is not covered by the camera, the farthest observable distance will be used.  28 

 29 

Data Collection 30 
To study bicyclists’ behavior, a collection of video data is gathered by mounting a high-definition 31 

camera in 25fps format at the top of a building that has a full view of the intersection. As the 32 

automated extraction of variables describing the tactical behavior is very difficult, the video frames 33 

are manually analyzed. The intersection of two important arterial roads, Arnulfstrasse and 34 

Seidlstrasse, in the Central Business District (CBD) of Munich close to the Central Train Station 35 

(Hauptbahnhof) create a four leg-intersection as shown in FIGURE 1b. It is a large, high-volume 36 

intersection with a fully actuated traffic signal control. Three approaches of the intersection have 37 

two vehicle lanes and a dedicated bicycle lane. The east approach does not have a bicycle lane. A 38 

tram line running through the middle of Arnulfstrasse is prioritized over the private car traffic. The 39 

duration of the cycle time varies between 70 to 90 seconds. The south approach leads to the 40 

intersection through an underpass that limits the camera view range. This causes limitations on 41 

speed measurements on this approach. For this reason a binary variable that indicates the relative 42 

speed in comparison with other bicyclists is used in place of a measures speed value.   43 
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Modelling Approach 1 
The selection of a path from a set of possible paths is a special case of discrete choice problem. 2 

The mathematical method which is by far the most commonly used approach to represent the 3 

characteristics of discrete choice problem is the logit model. Therefore, Multinomial Logit (MNL) 4 

model is deployed, which has shown to be effective in traffic simulation tools as well (25).  5 

The first and foremost step in the estimation process of the logit model is to identify the 6 

choice set. As shown in FIGURE 2, there are an extremely large number of finite paths that can 7 

be selected by a bicyclist. In order to simplify the choice situation, left-turning maneuvers are 8 

categorized in three types:  9 

 10 

 11 
FIGURE 3 Categorization of possible alternatives for turning left at an intersection; blue 12 

paths are for bicycle lane group and red ones for the vehicle lane group of riders. 13 

 14 
The fundamental difference between two groups of bicyclists, bicycle lane and vehicle lane 15 

group, implies that a standard MNL model is not applicable for this problem, and two independent 16 

MNL models are needed. This is similar to the approach followed by Bierlaire et al. (26) to 17 

combine the results of two revealed preference  and stated preference surveys. The idea is to 18 

formulate two independent MNL models with the same explanatory variables.  19 

After identifying the choice set, the utility functions that are assigned to the alternatives should be 20 

formulated. In general, a linear in parameter function is used (27): 21 

 22 

 
k

ininkkininin XVU   23 

  Where 𝑉𝑖𝑛 is the deterministic portion of the utility, which is defined by β, a vector of k 24 

parameters influencing the utility and 𝜀𝑖𝑛 is the error term. The crucial limitation of this model is 25 

that only the observable attributes of the alternatives and characteristics of the decision maker are 26 

considered. Many psychologists and economists, however, have specifically emphasized the 27 

influence and constraints imposed by the peer group to which the decision maker belongs (28). 28 

One solution is to integrate a field effect variable into the utility function that captures the average 29 

effect of peer group choice on the probability of an alternative (29). Thus, the utility function is 30 

formulated as: 31 

 32 

ininninin FSXVU   );,(  33 

(1) 

(2) 
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Where Fin is the proportion of the people in the peer group of agent n who chose alternative 1 

i and 𝛾 is the coefficient that reflects the strength of the influence.  This choice model includes the 2 

social influence and can be estimated by conventional methods. However, it may suffer from 3 

endogeneity resulting in inconsistent estimate of the model parameters. The endogeneity arises 4 

because the effect of other decision makers is captured by both 𝜀𝑖𝑛 and Fin, and therefore, these 5 

two variables might be correlated. A correction algorithm known as BLP method has been 6 

proposed by Berry, Levinsohn and Pakes (30). This approach solves the endogeneity at a market 7 

level, which includes a group of similar decision makers that influence each other. The error term 8 

is decomposed into two portions: the endogenous-causing part and a random term. Since the 9 

endogeneity occurs at market level, the utility function is modified by considering m markets. The 10 

equation then becomes: 11 

 12 

][);,( imiminninin FSXVU
mmm

    13 

 14 

The term [𝛾𝐹𝑖𝑛 + 𝜀𝑖̈𝑛] in this equation reflects both the observable and unobservable part 15 

of the utility relevant to the decision maker’s peer group. This term will be replaced by a market 16 

constant αim which will be estimated by using a two-stage linear regression model (readers are 17 

referred to (29) for more information). The ultimate form of utility function is expressed as: 18 

 19 

iminninin mmm
SXVU   );,(  20 

 21 

It should be noted that if the estimated coefficient for this field effect variable is close to 22 

zero or statistically insignificant, then the distribution of the probability of that particular 23 

alternative is not in relation with other decision makers’ choices. In other words, it is not beneficial 24 

to integrate the social influence in the model and consequently, the traditional approach should be 25 

used. 26 

Once the model is defined, selecting the influential parameters which must be recorded 27 

during data collection phase plays an important role. A list of selected factors is given in the 28 

following table. The video data does not provide adequate information for the selection of the 29 

personal explanatory variables (i.e. age group, gender, helmet use) due to height of the camera: 30 

 31 

TABLE 1 Coded Parameters 32 

 33 

Parameter 

Symbol 
Parameter Definition 

Xred 
Seconds passed since the beginning of the red phase of the signal 

 Continuous variable 

Xrs 
Pedestrian crosswalk signal status 

Dichotomous variable: 1 = green and 0 = red 

Xs 
Bicyclists’ approaching speed at the beginning of the observation zone 

Continuous variable 

Xph 
Peak-hour  

Dichotomous variable: 1 = peak-hour and 0 = non-peak 

(3) 

(4) 
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Xst 

Stop line direct accessibility (bicyclists that are already waiting at the stop line 

have blocked the direct access to the pedestrian crosswalk for other bicyclists) 

Dichotomous variable: 1 = blocked and 0 = direct access   

Xcc 
Number of the conflicting cars from the opposing traffic stream 

Continuous variable 

Xq 
Number bicyclists waiting at the stop line 

Continuous variable 

Xped 
Number of conflicting pedestrians 

Continuous variable 

Xw 

Effective width of pedestrian crosswalk (sum of the body width of present 

pedestrians is deducted from actual width of the pedestrian crosswalk and 

converted into a ratio value between 0 and 1) 

Continuous variable 

 1 

DATA ANSLYSIS 2 
 3 

Choice Distribution 4 
In total, 315 left-turning bicyclists arriving during the red phase of the straight-through signal were 5 

observed; 261 riding in bicycle lane and 54 riding in the left most vehicle lane.  No other paths 6 

apart from the ones included in the initial choice set, which were illustrated in FIGURE 3, have 7 

been observed; therefore, the universal choice set remains the same. However, among the riders in 8 

the bicycle lane group no one selected the vehicular turn, and as a result this path will be omitted 9 

from the choice set. The choice distribution for bicyclists riding in bicycle lane is almost the same 10 

on all segments of the intersection. It is likely due to the infrastructural similarities on the segments. 11 

Almost 40% of bicyclists have chosen bicycle turn and 60% have selected the pedestrian turn. 12 

However, in the vehicle lane group, the vehicular turn is more attractive than the pedestrian turn. 13 

The descriptive statistics reveals that for the bicycle lane group, 79% of those who ride faster than 14 

the average speed of the approach and 67% of peak-hour riders have selected the bicycle turn 15 

versus the bicycle turn. These values are 64% and 38% for the vehicle lane group respectively. 16 

Below, the choice distribution per segment for both group of riders is summarized: 17 

 18 

TABLE 2 Choice Distributions 19 

 20 

Approach 

Bicycle Lane Vehicle Lane 

Total  
Bicycle 

turn 

Pedestrian 

turn 
Total  

Pedestrian 

turn 

Vehicular 

turn 

North 43 17 26 18 3 15 

East 12 5 7 34 12 22 

South 131 50 81 0 0 0 

West 75 33 42 2 2 0 

Total 261 105 156 54 17 37 

  21 



Amini, Twaddle, Leonhardt   10 

 

Explanatory Variables Analysis 1 
In this section the initial set of explanatory variables is analyzed to discover which variables 2 

strongly influence the bicyclists’ choice (dependent variable) and to investigate potential 3 

correlation between the independent variables. First, the field effect variable is discussed; the value 4 

of F2n is the portion of bicyclists selecting path 2 (pedestrian turn) and is 0.61, 0.58, 0.62 and 0.56 5 

for north, east, south and west approach of the intersection respectively. The value of this variable 6 

is more or less 0.6 in all segments for the bicycle-lane group, which is a first indication that the 7 

field effect variable could be insignificant. For the vehicle-lane group, due to small sample size of 8 

each segment, it is not possible to include the field effect variable into the utility functions. 9 

Pearson’s correlation coefficient is computed for each pair of independent variables in 10 

order to investigate their linear correlation. High values of correlation coefficient (e.g. 0.8 or 0.9) 11 

indicates a strong linear correlation, and thus, only one of the two intercorrelated variables should 12 

be kept in the model. Developing the correlation matrix, reveals that the queue length (𝑋𝑞) is 13 

strongly correlated to a number of independent variables like 𝑋𝑟𝑒𝑑, 𝑋𝑐𝑐, 𝑋𝑠𝑡. Thus, 𝑋𝑞is removed 14 

from the model and 𝑋𝑠𝑡 (the stop line accessibility) is used to reflect the influence of the waiting 15 

bicyclists in the model. Furthermore, including 𝑋𝑐𝑐  in the bicycle-lane model is not necessary as 16 

none of the bicyclist selected the vehicular turn.  17 

In addition to the statistical analysis, observational conclusions have been made to add or 18 

drop some variables from the utility functions. Conflicts with pedestrians mostly occur on the north 19 

crossing, and additionally, in most cases even if there is a huge crowd walking across the 20 

crosswalk, bicyclists do not change their path, but try to slightly adjust their trajectory to avoid 21 

collision with the crowd. Therefore, 𝑋𝑝𝑒𝑑  and 𝑋𝑤 will be discarded from the model.  22 

To conclude the findings of the descriptive statistics, the models which will be estimated in the 23 

next section are formulated below: 24 

 Bicycle lane model (including the social influence): 25 

Choice set = {bicycle turn (path 1), pedestrian turn (path 2)} 26 

mmm

mmm

phphststssrsrs

redred

XXXXU

XU

222

111













 27 

 28 

If the field effect variable is statistically insignificant or close to zero, the standard format of the 29 

model will be used, which includes the Alternative Specific Constants (ASC) as well: 30 

222

111









phphststssrsrs

redred

XXXXASCU

XASCU
 31 

 32 

 Vehicle lane model: 33 

Choice set = {pedestrian turn (path 2), vehicular turn (path 3)} 34 

333

222









ccccredred

ststssrsrs

XXASCU

XXXASCU
 35 

 36 

It is worth to note that these are not the final form of the functions; the ultimate model will 37 

be obtained after conducting the necessary statistical tests, external validation and refining the 38 

explanatory variables to reach the best fit model.  39 

(5-1) 

(6-1) 

(7-1) 

(5-2) 

(6-2) 

(7-2) 
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Logit Model Estimation  1 
In this section, first a logit model would be estimated using BIOGEME freeware (31) and then, 2 

the backward approach is employed to remove the insignificant variables from the model. More 3 

specifically, variables with lower p-value will be omitted stepwise until all p-values are smaller 4 

than the defined threshold. Even though modern models criticize the usefulness of hypothesis 5 

testing approaches (32), for this specific case study due to limited number of explanatory variables 6 

these methods are simple and useful. The outcome of the estimation are assessed by three criteria:  7 

1. Model performance: it is evaluated based on rho-squared and adjusted rho-squared values 8 

which is a measure for goodness of fit. 9 

2. Model significance: this measure analyzes the significance of the coefficients. This is done 10 

via t-test at 95% confidence interval, which means the value of t-test must be equal or higher than 11 

1.96 to be able to reject the null hypothesis. 12 

3. Model correctness: correctness of the coefficients is the last measure to check if the sign 13 

of the coefficients are the same as the expected sign.  14 

The bicycle-lane model was estimated first with consideration of the field effect variable. 15 

However, the t-test value for all the market specific constants shows they are insignificant at the 16 

90% interval. Consequently, the field effect variable is excluded and the model is estimated 17 

without considering social influence. 18 

At this step, the model is estimated by considering the utility functions as formulated in 19 

Equations (6-1) and (6-2). Then, the model is refined by employing the backward elimination 20 

procedure, in which the less significant coefficients are omitted one by one to see if the 21 

performance of the model decreases considerably. For the bicycle lane model, 𝛽𝑝ℎ and 𝛽𝑠𝑡 have 22 

the greatest p-value and despite the fact that they both have the expected sign, they should be 23 

discarded stepwise (model significance criterion is violated). Ultimately, a likelihood ratio test, 24 

which is a useful test to compare a full model with a restricted model, was conducted to select the 25 

best model. The following table summarizes the results of the parameter estimation:  26 

 27 

TABLE 3 Estimation Results for the Bicycle Lane Model 28 

 29 

Coefficient Value Standard Error T-Test P-Value 

ASC1 0 fixed - - 

ASC2 1.45 0.394 3.68 0.000 

βred 0.083 0.0116 7.11 0.000 

βrs 1.64 0.354 4.61 0.000 

βs 1.3 0.41 3.17 0.000 

Number of observations 261 

Null log-likelihood -180.91 

Final log-likelihood -104.245 

Likelihood ratio test 153.33 

Rho-squared  0.424 

Adjusted rho-squared 0.402 

 30 
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From the table it can concluded that 𝛽𝑟𝑒𝑑 is the most influential parameter. The positive 1 

sign of this factor means that as the end of red phase of the straight-through signal nears, bicyclists 2 

are more likely to select the bicycle turn. Moreover, faster bicyclists are expected to choose the 3 

pedestrian turn, possibly because they are less patient. The value of 𝛽𝑟𝑠 implies that if the 4 

pedestrian crosswalk signal is green upon arrival, the probability of choosing the pedestrian turn 5 

is higher than the bicycle turn.  6 

Regarding the vehicle lane model, as discussed earlier, the sample size is too small to provide 7 

enough variation among the selected variables. This issue can be observed better when the 8 

parameters are estimated: 9 

 10 

TABLE 4 Estimation Results for the Vehicle Lane Model 11 

 12 

Coefficient Value Standard Error T-Test P-Value 

ASC2 -3.94 5.91 -0.67 0.51 

ASC3 0 fixed - - 

βcc -0.429 0.198 -2.17 0.03 

βph 0.748 0.99 0.76 0.45 

βred 0.103 0.0371 2.77 0.01 

βrs 1.43 0.932 1.53 0.13 

βs 0.85 0.995 0.85 0.39 

βst 3.94 5.79 0.68 0.5 

Number of observations 54 

Null log-likelihood -37.43 

Final log-likelihood -17.49 

Likelihood ratio test 39.887 

Rho-squared  0.533 

Adjusted rho-squared 0.346 

 13 

All parameters except 𝛽𝑟𝑒𝑑  and 𝛽𝑐𝑐are statistically insignificant. Therefore, the estimation 14 

procedure of the vehicle lane model is terminated and this model will not be discussed further.  15 

 16 

Model Validation 17 
Two types of validation are performed: first a face validity by computing the “adjusted percentage 18 

of right” value as presented by (27):  19 

 20 


n i

y

n
iniP

N
PR )(

100
 21 

 22 

Where 𝑃𝑛(𝑖) is the probability of choosing alternative i for person n, and 𝑦𝑖𝑛 is 1 if the 23 

highest predicted probability by the model corresponds to the chosen alternative, and 0 otherwise. 24 

This adjusted statistic reflects the value of log likelihood function better and is more sensitive to 25 

(8) 
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low values of probabilities for the chosen alternative. The bicycle lane model predicts 219 out of 1 

261 correctly which means a 𝑃𝑅̅̅ ̅̅  value of 71.1.  2 

Second type of validation is analyzing the accuracy of the model on an independent dataset 3 

at both aggregate and disaggregate levels, which is also known as external validation. Six hours of 4 

video data from the same intersection but from another day with similar conditions (weather, 5 

weekday, traffic, etc.) is collected and analyzed with the same approach. In total 200 bicyclists are 6 

recorded, 164 of them rode in bicycle lane. The external validation is performed at both the 7 

aggregate and disaggregate level. At aggregate level, the choice distribution of the model is 8 

compared with the actual choice distribution of the empirical data. At disaggregate level, the choice 9 

distribution is compared for each path separately. More specifically, the accuracy of prediction for 10 

each path is checked with individuals who have chosen that specific path. The following table 11 

summarizes the results of the external validation: 12 

 13 

TABLE 5 External Validation of the Bicycle Lane Model 14 

 15 

Path 
Empirical Data Aggregate Disaggregate 

Total  Percentage Number Percentage Correct  Percentage 

Bicycle turn 62 37.8% 53 32.3% 46 74.2% 

Pedestrian 

turn 
102 62.2% 111 67.7% 95 93.1% 

Total 164 100% - - 141 85.9% 

 16 

CONCLUSION 17 
This study presented an MNL model to predict the path selection of left-turning bicyclists at  18 

signalized intersections. As a case study, video data was collected at a busy intersection in Munich, 19 

Germany and data extraction was performed manually to create a revealed preference dataset. 20 

Discrete choice analysis was employed to develop the MNL model, which is successful in 21 

accurately predicting the choice behavior of the bicyclists riding in bicycle lane. The predicted 22 

path selection ratio is only 5.5% different from the empirical data. However, due to the small 23 

portion of bicyclists that ride in the vehicle lane, it was not possible to estimate a consistent model. 24 

Nevertheless, from the bicycle lane model it can be concluded that 𝑋𝑟𝑒𝑑 is the most influential 25 

variable. Another key finding of this research indicates that bicyclists who are riding faster than 26 

the average of a segment, are more likely to select the pedestrian turn. Moreover, external 27 

validation denotes that the model correctly predicts the selected path almost 86% of the times. 28 

With further studies, the impact of gender and helmet use as well as infrastructural factors such as 29 

signal cycle time and crossing distances can be investigated. The nature of the observation zone 30 

that has been considered in this study easily suits the route decision algorithms on the existing 31 

traffic simulation tools. The integration of the presented choice model into an existing microscopic 32 

traffic flow simulation tool and its deployment will be presented in a future work.  33 

 34 
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