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Abstract. This paper addresses the problem of fitting finite Gaussian Mixture
Model (GMM) with unknown number of components to the univariate aottim
variate data. The typical method for fitting a GMM is Expectation Maximization
(EM) in which many challenges are involved i.e. how to initialize the GMM, how
to restrict the covariance matrix of a component from becoming singuler
setting the number of components in advance. This paper presents lateanu
annealing EM algorithm along with a systematic initialization procedure by us-
ing the principals of stochastic exploration. The experiments have deratats

the robustness of our approach on different datasets.

1 Introduction

Finite mixture models provide a probabilistic tool for médg arbitrarily complex
probability density functions and have been used in a waétdifferent applica-
tions [9], [12,13]. The usual approach for fitting a GMM is EMhich provides the
maximum likelihood (ML) parameter estimate of the modelm€ans can be used for
initializing EM. During EM the estimate may converge to treuhdary of the param-
eter space (singular covariance matrix), causing likelthto approach infinity. When
this occurs, EM should be aborted and restarted with diftergtialization of the pa-
rametersDeterministic Annealing EM (DAEM) algorithm [21] has been proposed for
avoiding the estimate to converge at the boundary of thenpatex estimate but it can
get trapped at saddle points [21].

Broadly speaking there are three main approaches for dstgndgoe number of
components [7]: EM based methods [6], [16], Variational &ign methods [23] and
stochastic methods by using Markov Chain Monte Carlo (MCid&anpling [2], [19].
Variational Bayesian methods avoid overfitting but onlyyide an approximate so-
lution while Stochastic methods are computationally veqgemsive. Moreover there
are two types of EM based methods in which the humber of coeqismeed not to
be fixed in advance: Firstlglivisive where the estimate starts from a single component
which split into multiple components as the algorithm pexte[3,4], [25] and secondly
agglomerative where the estimate starts from a large number of compondnthware
decreased as the algorithm proceeds [7,8]. A variety of visay® been proposed for
spliting or merging GMM components [3], [14], [22], [24,25]



2 Overview of EM algorithm

A GMM with k components is parameterized 8,y = {7, tm, Z‘m}f;L:l where

m, ..., T are mixing coefficients / priors with constraits< =,,, < 1ands* _, =, =
1, B, - .., g are means andy, ..., X are covariance matrices. The log-likelihood
of a datasey,,, = {y"),---,y(™} fora GMM is defined as:
n k ]
‘C(@(k)ayobs) = Z log Z WmN(y(Z)§ Mo,y Em) (1)
i=1 m=1

The parameters are updated by cycling through the E-stephanisl-step [6]. In the

E-step, the expected value of complete data log-likelihisazhlculated using the old
parameters estimate, which is used for maximization in thetdp. It is a common
practice to add a small regularization tenhin all covariance matrics of the GMM at
each update cycle. The EM is terminated when the increasmyiidelihood becomes
very small i.e.£2*

Yo —1<e.

3 Stochastic exploration initialization approach

Many nature inspired algorithms exist for solving discrepéimization problems [11].
It is a well known fact that humans by nature are social arsmal person who is
alone will tend to find other people and will stay in a commuyriftpossible. Not only
humans but animals also exhibit such behavior [10]. Gives ttow consider a scenario
where an individual is alone at a location. Seeking somesnmportant due to the
above mentioned reasons. If there is no heuristic aboutieusnding then with equal
probability it will start to look in any direction. Suppodeet there are many individuals
like this at a place, what will happen when one comes in ictéya with someone
else? Most probably its search pace will decrease, sinicglii a group provides more
stability. Now they also have a heuristic about the searnaction.

Surprisingly it is not difficult to import the proposed appoh for initializing a
GMM. Now each observation will act like an individual so wdlwiace a Gaussian at
each observation. In the begining the covariance matriaigahal, with small equal
positive value) in the diagonal. The prior value of each component iat this stage
wheren is the total number of observations. After this the next sgepxploration
phase. The exploration is done by slightly expanding eaafpoment and then testing
that whether it has sufficient overlap with one of its neigiringy Gaussians. The rate
of expansion of each Gaussian is inversely propotionastpribr value. For expanding
a Gaussian, we add exploration terms in the standard davig@t) of each eigenvector
of its covariance matrix. The magnitude of each exploratégsm is proportional to its
corresponding.

Once two Gaussians have sufficient overlap we can merge farmdetecting over-
lap between two components we define the coeffic@nWhen two Gaussians are
multiplied then the resulting density is again a Gaussiannwitiplied with this co-
efficient [17] i.e.J\/’(uQ,Z‘Q) X N(;LR,ER) = CQRN(/,Ls,ZS) WhETECQR =
N(po; pr, Xg + Xr). TheC has a property that as we expand the Gaussians via
exploration, it keeps on increasing and then at a certaint fiostarts to decrease. As



theC passes its peak value, which is detected as its value desrigethe next iteration,
we merge the two Gaussians as in [25].

The exploration and merging cycles continue until the congod count reaches a
predifined valuek,, ., Wherek,,q, > koptimai- Since in the begining of the algorithm
k = n, this can pose significant computation load. An elegant wayound the com-
putational load is to sample (without replacemént),. observations from the dataset
and use them for initialization whekg;,,; < n. So now for the Stochastic Exploration
initialization approach the algorithmic complexity wilkld(k2,,,.,) instead ofO(n?).

4 Component-Wise Simulated Annealing EM for Mixtures

The proposed CSAERalgorithm is the combination of Component-Wise EM for Mix-

tures (CEM) and simulated annealing algorithm. As mentioned by [5] €&M? is a
serial decomposition of optimization problem with a cooatewise maximization. It
goes through E-step and then applies M-step to update oelyomponent at a time.
For simulated annealing we have a temperature parametérich is gradually de-
creased to zero. The temperature value defines the prapaibiteking annealing step.
The initial value of temperature is set to a small value akérigalue of temperature can
completly disturb the discovered GMM. During annealingdt®ns the responsibility
(contribution of the component for generating the data poiijtis calculated as:

(Trq-N’(yi? Hq Zf‘q))dsq

k
l Xl:# TN (s e, Z) + (g N (yis g, 2q)) 4
=1, q

Yq,i =

where0 < @, < 1. The amount of annealing, is inversely proportional to the
weight of a componeni and is calculated as, = 4. The annealing induces the
fuzziness in the membership of the components with no amgeghax(®) = 1) for
the component with highest weight and highest annedlinig (¢)) for the component
with lowest weight.

When CSAEM converges (after annealing iterations) then we genertitecapos-
sible (k — 1) component GMMs and switch to the one which yield highestlilikod
value. CSAEM and components merging are repeatedly applied until thepooents
countk reaches,,;, (usually one). The parameteé(k) of all the models generated
after applying CSAEM are stored as candidate GMMs.

We remove a component if nm,, < a(d+1) with o = 2. As mentioned by [16], a
component requires the support of at leastl observations for avoiding the covariance
matrix to become singular i.ex,,, > (d + 1). For a large value fok,, ..., many or all
components can get removed simultaneously with general MNjith the CEM, if
a component dies, its weight is immediately distributed aghather components, thus
increasing the survival probability of the other composent

For model selection we have usktixture Minimum Discription Length (MMDL)
criterion [7]. It is similar to theBayesian Information Criterion (BIC) [20] but it has an
additional term for representing skewness. It is defined as:

k
- - N(k N(1
CwvoL (@(k)> k’) = —L(Ow),y) + # logn + % Z log(mm)
m=1

whereN (k) is the number of free parameters it @omponent GMM.
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Fig. 1:Initialization results of sythetic datasets with stochastic exploration approach
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Fig. 2: (a) Result of 50 Monte Carlo simulations on synthetic Datass#towing mean MMDL
value (of 50 experiments) for components, with vertical bars depictamgard deviation in each
value. (b) Same as (a) but for Data8eGMM just before (c) and after (d) annealing step.

5 Experiments

We used following parameter valudS;,..« = 150 (kstare = 250 for Sythetic Dataset
2) , kmaz = 15,kmin = 1, Annealing Iterations 400,7 = 0.05,e = 107°, \ =
maz(10~4, min(D > 0)) whereD is an x n matrix with D(Q, R) = [[y(@ — y(® |,

5.1 Resultsof Stochastic exploration initialization approach

Figure 1 shows the results of stochastic exploration agbroa the synthetic dataset (sec-
tion 5.2 : Dataset 1). The first column contains the highlyrfitted £ = n component
GMM while the second column contains the simplified= %,,,, component GMM
obtained by stochastic exploration. The third column cimistthe MMDL value for the
GMMs formed during transition from the = n component GMM to thé& = k4.
component GMM. The initialization approach consistenggmases the MMDL value
and thus improves the model representation while decrgdbi& number of compo-
nents. The same behaviour can be observed in the last coluruh wontains the
MMDL value for the GMMs formed during transition from thke= k..., component
GMM to thek = k., cOmponent GMM.

5.2 Results of CSAEM 2

Experiment with Synthetic dataset
Dataset 1: 1000 samples were drawn from the four component bivariate GMNh wit

p —4 2 —1
m o =my=m3 =03,m4 =0.1, p1 = p2 = [74} B3 = [2} s M = [76]

_[1 05 _[6 —2 _[2 =1 _[o12s o
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Fig. 3: The value ofi (1 —m;)? (left) and i log(m;) (right) during the annealing iterations of
i=1 i=1

CSAEM?. Vertical dashed lines depict the instances when annealing was applied.
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Fig. 4: Results of CSAEM on (a) Acidity, (b) Enzyme and (c) Iris datasets. In (a-b), data is
encoded in histograms while (c) contains the projection of data on the twondtkishighest
variances

This GMM has also been used by [8], [24] and [14]. It providehallenging scenario
of overlaping components with two components having a commean. We performed
a Monte Carlo (MC) simulation of 50 experiments. The resaitessshown in Figure 2a.
In all experiments our algorithm identified the right foungoonent GMM.

Dataset 2: 800 samples were drawn from the two componéttdimensional GMM
with 7 = g = 0.5, 1 = [O,...,O]T7[J,2 = [27...,2]T,21 = 35 = 1. The GMM
contain high dimensional fused components. Figure 2b aottia result of 50 MC ex-
periments and every time our approach correctly identifiedtvo component GMM.
Effect of annealing: The effect of annealing during CSAEMan be observed in Fig-
ure 2(c-d). The annealing increases the coverage and teusuthival probability of
the weak components while the components with high prianeslare unaffected by
annealing. Another interesting property of annealing fgicted in Figure 3. The max-

imum value ofy = f; log(w;) IS attained when,; = 1. Similarly the minimum value of
=1

g = zkj (+ —m;)? Is attained whenm; = L. It can be observed in Figure 3 that there is a

sharp decrease in the valuegfnd a sharp increase in the valuefoafter annealing
cycleﬁ (Dataset 1). Thus annealing has a tendency of rigdistiy the values of more
equally.

Experiment with Real datasets

Now we consider Acidity and Enzyme datasets having skewedgjans. They have
been extensively studied by [18] and their optimal numbecafponents are three
and four respectively [18,15]. We performed a Monte Cartowdation of 50 experi-
ments and in all the experiments CSAERetected the same three and four component
GMMs as shown in Figure 4(a-b). Then we also considered a kmelvn relatively
higher (four) dimensional Iris dataset [1]. The datasettaios three classes with 50
samples for each class. Again we performed a Monte Carlolation of 50 experi-
ments and with hundred percent success rate detected #eedbmponent GMM as
shown in Figure 4(c).

Comparison with similar EM approaches. [7,8] has presented similar EM based ap-
proaches where the components count starts fgm. and are brought down t,,;,, .



Table 1:Percentage frequency of choosihglusters for 50 experiments by our approach and
the approaches presented by Figueiredo et al. (1999,2002).

k Our method Figueiredo et al. (2002) Figueiredo et al. (1999)
3 0 0 1
4 47 1 17
5 13 16
6 14 7
7 10 4
8 8 2
9 2 2
2 1

cocococow

1

15

Table 2:Percentage frequency of choosihg,: = 4 clusters for 100 experiments by our ap-
proach with random initialization and stochastic exploration initialization.

kmax Randominitialization Our initialization
6 62 88

7 84 93
8 91 95
9 93 97

These algorithms explicitly target the components with fmer values for switching
to a(k — 1) component GMM and thus often fail when there is a componetft vary
low prior value. Our approach increases the survival pritibpalf the weak compo-
nents and hence overcomes this problem. Now we performedéeM@arlo simulation
of 50 experiments. 710 samples were drawn from the four compicbivariate GMM:

_10 _20 _40 _ 1 _J1 _[3 _ 3
77177177"277177@:77177"477171—"17 ol H2= |4| ' H3= | _3
8 2 1.9 2 —1.5

mz[g],zl:zﬁl,zg:[l.g 2],22:[71‘5 20]

All algorithms used same&, ..., kmin, € and A values. Although the components are
quite well separated from each other, the approaches pegsen{7,8] performed very
poorly while our algorithm outperformed these methods asbeaseen in Table 1.

Robustness against kmax: Ch00SiNGky,q > koptimas Provides robustness against
initialization issues but it can be underestimated. Now &gt the performance of our
approach with relatively smaller values &f, .. for the simulated dataset with a weak
component. For comparison, the initial,,, component GMM is obtained with two
methods: the random initialization procedure presentdeigneiredo et al. (2002) and
our initialization procedure. The results are summaripethible 2. We can see that our
initialization has high frequency of detecting right numbé&components, even when
starting with relatively smallek,,, ...

6 Conclusion

We have proposed a novel nature inspired initializationreggh for fitting a GMM.

It utilizes search strategy where each component lookggardarby component. Two
components are merged when they have high overlap. CSAEMpplied when the
components count reachgs,,... A component is annihilated if it becomes too weak.
(k — 1) components GMM is obtained by selecting the one which yigldkest like-
lihood value. MMDL criterion is used to select the optimal aeb complexity. Our
approach has shown promising results on challenging stedind real datasets.
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