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Abstract. This paper addresses the problem of fitting finite Gaussian Mixture
Model (GMM) with unknown number of components to the univariate and multi-
variate data. The typical method for fitting a GMM is Expectation Maximization
(EM) in which many challenges are involved i.e. how to initialize the GMM, how
to restrict the covariance matrix of a component from becoming singularand
setting the number of components in advance. This paper presents a simulated
annealing EM algorithm along with a systematic initialization procedure by us-
ing the principals of stochastic exploration. The experiments have demonstrated
the robustness of our approach on different datasets.

1 Introduction

Finite mixture models provide a probabilistic tool for modeling arbitrarily complex
probability density functions and have been used in a variety of different applica-
tions [9], [12,13]. The usual approach for fitting a GMM is EM,which provides the
maximum likelihood (ML) parameter estimate of the model. K-means can be used for
initializing EM. During EM the estimate may converge to the boundary of the param-
eter space (singular covariance matrix), causing likelihood to approach infinity. When
this occurs, EM should be aborted and restarted with different initialization of the pa-
rameters.Deterministic Annealing EM (DAEM) algorithm [21] has been proposed for
avoiding the estimate to converge at the boundary of the parameter estimate but it can
get trapped at saddle points [21].

Broadly speaking there are three main approaches for estimating the number of
components [7]: EM based methods [6], [16], Variational Bayesian methods [23] and
stochastic methods by using Markov Chain Monte Carlo (MCMC)sampling [2], [19].
Variational Bayesian methods avoid overfitting but only provide an approximate so-
lution while Stochastic methods are computationally very expensive. Moreover there
are two types of EM based methods in which the number of components need not to
be fixed in advance: Firstlydivisive where the estimate starts from a single component
which split into multiple components as the algorithm proceeds [3,4], [25] and secondly
agglomerative where the estimate starts from a large number of components which are
decreased as the algorithm proceeds [7,8]. A variety of wayshave been proposed for
spliting or merging GMM components [3], [14], [22], [24,25].



2 Overview of EM algorithm

A GMM with k components is parameterized byΘ(k) = {πm,µm,Σm}km=1 where
π1, . . . , πk are mixing coefficients / priors with constraints0 < πm < 1 and∑

k
m=1 πm =

1, µ1, . . . ,µk are means andΣ1, . . . ,Σk are covariance matrices. The log-likelihood
of a datasetyobs = {y(1), · · · , y(n)} for a GMM is defined as:

L(Θ(k), yobs) =
n
∑

i=1

log

k
∑

m=1

πmN (y(i);µm,Σm) (1)

The parameters are updated by cycling through the E-step andthe M-step [6]. In the
E-step, the expected value of complete data log-likelihoodis calculated using the old
parameters estimate, which is used for maximization in the M-step. It is a common
practice to add a small regularization termλI in all covariance matrics of the GMM at
each update cycle. The EM is terminated when the increase in log-likelihood becomes
very small i.e.Lt+1

Lt − 1 < ǫ.

3 Stochastic exploration initialization approach

Many nature inspired algorithms exist for solving discreteoptimization problems [11].
It is a well known fact that humans by nature are social animals. A person who is
alone will tend to find other people and will stay in a community, if possible. Not only
humans but animals also exhibit such behavior [10]. Given this, now consider a scenario
where an individual is alone at a location. Seeking someone is important due to the
above mentioned reasons. If there is no heuristic about the surrounding then with equal
probability it will start to look in any direction. Suppose that there are many individuals
like this at a place, what will happen when one comes in interaction with someone
else? Most probably its search pace will decrease, since living in a group provides more
stability. Now they also have a heuristic about the search direction.

Surprisingly it is not difficult to import the proposed approach for initializing a
GMM. Now each observation will act like an individual so we will place a Gaussian at
each observation. In the begining the covariance matrix is diagonal, with small equal
positive valueδ in the diagonal. The prior value of each component is1

n
at this stage

wheren is the total number of observations. After this the next stepis exploration
phase. The exploration is done by slightly expanding each component and then testing
that whether it has sufficient overlap with one of its neighbouring Gaussians. The rate
of expansion of each Gaussian is inversely propotional to its prior value. For expanding
a Gaussian, we add exploration terms in the standard deviation (σ) of each eigenvector
of its covariance matrix. The magnitude of each explorationterm is proportional to its
correspondingσ.

Once two Gaussians have sufficient overlap we can merge them.For detecting over-
lap between two components we define the coefficientC. When two Gaussians are
multiplied then the resulting density is again a Gaussian but multiplied with this co-
efficient [17] i.e.N (µQ,ΣQ) × N (µR,ΣR) = CQRN (µS ,ΣS) where CQR =
N (µQ;µR,ΣQ + ΣR). The C has a property that as we expand the Gaussians via
exploration, it keeps on increasing and then at a certain point it starts to decrease. As



theC passes its peak value, which is detected as its value decreases in the next iteration,
we merge the two Gaussians as in [25].

The exploration and merging cycles continue until the component count reaches a
predifined valuekmax wherekmax ≫ koptimal. Since in the begining of the algorithm
k = n, this can pose significant computation load. An elegant way to bound the com-
putational load is to sample (without replacement)kstart observations from the dataset
and use them for initialization wherekstart < n. So now for the Stochastic Exploration
initialization approach the algorithmic complexity will beO(k2start) instead ofO(n2).

4 Component-Wise Simulated Annealing EM for Mixtures

The proposed CSAEM2 algorithm is the combination of Component-Wise EM for Mix-
tures (CEM2) and simulated annealing algorithm. As mentioned by [5] that CEM2 is a
serial decomposition of optimization problem with a coordinatewise maximization. It
goes through E-step and then applies M-step to update only one component at a time.
For simulated annealing we have a temperature parameterτ which is gradually de-
creased to zero. The temperature value defines the probability of taking annealing step.
The initial value of temperature is set to a small value as higher value of temperature can
completly disturb the discovered GMM. During annealing iterations the responsibility
(contribution of the componentq, for generating the data pointi) is calculated as:

γq,i =

(

πqN (yi;µq, Σq)
)Φq

k
∑

l=1,l 6=q

πlN (yi;µl, Σl) + (πqN (yi;µq, Σq))
Φq

where0 ≤ Φq ≤ 1. The amount of annealingΦq is inversely proportional to the
weight of a componentq and is calculated asΦq =

πq

max(π)
. The annealing induces the

fuzziness in the membership of the components with no annealing (max(Φ) = 1) for
the component with highest weight and highest annealing(min(Φ)) for the component
with lowest weight.

When CSAEM2 converges (after annealing iterations) then we generate all the pos-
sible (k − 1) component GMMs and switch to the one which yield highest likelihood
value. CSAEM2 and components merging are repeatedly applied until the components
countk reacheskmin (usually one). The parameterŝΘ(k) of all the models generated
after applying CSAEM2 are stored as candidate GMMs.

We remove a componentm if nπm < α(d+1) with α = 2. As mentioned by [16], a
component requires the support of at leastd+1 observations for avoiding the covariance
matrix to become singular i.e.nπm ≥ (d+ 1). For a large value forkmax, many or all
components can get removed simultaneously with general EM [8]. With the CEM2, if
a component dies, its weight is immediately distributed among other components, thus
increasing the survival probability of the other components.

For model selection we have usedMixture Minimum Discription Length (MMDL)
criterion [7]. It is similar to theBayesian Information Criterion (BIC) [20] but it has an
additional term for representing skewness. It is defined as:

CMMDL
(

Θ̂(k), k
)

= −L(Θ̂(k), y) +
N(k)

2
log n+

N(1)

2

k
∑

m=1

log(πm)

whereN(k) is the number of free parameters in ak component GMM.
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Fig. 1: Initialization results of sythetic datasets with stochastic exploration approach
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Fig. 2: (a) Result of 50 Monte Carlo simulations on synthetic Dataset1 showing mean MMDL
value (of 50 experiments) for components, with vertical bars depicting standard deviation in each
value. (b) Same as (a) but for Dataset2. GMM just before (c) and after (d) annealing step.

5 Experiments

We used following parameter values:kstart = 150 (kstart = 250 for Sythetic Dataset
2) , kmax = 15, kmin = 1, Annealing Iterations= 400, τ = 0.05, ǫ = 10−5, λ =

max(10−4,min(D > 0)) whereD is an×n matrix withD(Q,R) = ‖y(Q) − y(R)‖
2
.

5.1 Results of Stochastic exploration initialization approach

Figure 1 shows the results of stochastic exploration approach on the synthetic dataset (sec-
tion 5.2 : Dataset 1). The first column contains the highly overfitted k = n component
GMM while the second column contains the simplifiedk = kmax component GMM
obtained by stochastic exploration. The third column contains the MMDL value for the
GMMs formed during transition from thek = n component GMM to thek = kmax

component GMM. The initialization approach consistently decreases the MMDL value
and thus improves the model representation while decreasing the number of compo-
nents. The same behaviour can be observed in the last column which contains the
MMDL value for the GMMs formed during transition from thek = kstart component
GMM to thek = kmax component GMM.

5.2 Results of CSAEM2

Experiment with Synthetic dataset
Dataset 1: 1000 samples were drawn from the four component bivariate GMM with

π1 = π2 = π3 = 0.3, π4 = 0.1,µ1 = µ2 =

[

−4
−4

]

µ3 =

[

2
2

]

,µ4 =

[

−1
−6

]

Σ1 =

[

1 0.5
0.5 1

]

,Σ2 =

[

6 −2
−2 6

]

,Σ3 =

[

2 −1
−1 2

]

Σ4 =

[

0.125 0
0 0.125

]
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log(πi) (right) during the annealing iterations of

CSAEM2. Vertical dashed lines depict the instances when annealing was applied.
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Fig. 4: Results of CSAEM2 on (a) Acidity, (b) Enzyme and (c) Iris datasets. In (a-b), data is
encoded in histograms while (c) contains the projection of data on the two axiswith highest
variances

This GMM has also been used by [8], [24] and [14]. It provides achallenging scenario
of overlaping components with two components having a common mean. We performed
a Monte Carlo (MC) simulation of 50 experiments. The resultsare shown in Figure 2a.
In all experiments our algorithm identified the right four component GMM.
Dataset 2: 800 samples were drawn from the two component10 dimensional GMM
with π1 = π2 = 0.5,µ1 = [0, . . . , 0]⊤,µ2 = [2, . . . , 2]⊤,Σ1 = Σ2 = I. The GMM
contain high dimensional fused components. Figure 2b contain the result of 50 MC ex-
periments and every time our approach correctly identified the two component GMM.
Effect of annealing: The effect of annealing during CSAEM2 can be observed in Fig-
ure 2(c-d). The annealing increases the coverage and thus the survival probability of
the weak components while the components with high prior values are unaffected by
annealing. Another interesting property of annealing is depicted in Figure 3. The max-

imum value off =
k
∑

i=1

log(πi) is attained whenπi = 1
k
. Similarly the minimum value of

g =
k
∑

i=1
( 1
k
− πi)

2 is attained whenπi = 1
k
. It can be observed in Figure 3 that there is a

sharp decrease in the value ofg and a sharp increase in the value off after annealing
cycles (Dataset 1). Thus annealing has a tendency of redistributing the values ofπ more
equally.
Experiment with Real datasets
Now we consider Acidity and Enzyme datasets having skewed gaussians. They have
been extensively studied by [18] and their optimal number ofcomponents are three
and four respectively [18,15]. We performed a Monte Carlo simulation of 50 experi-
ments and in all the experiments CSAEM2 detected the same three and four component
GMMs as shown in Figure 4(a-b). Then we also considered a wellknown relatively
higher (four) dimensional Iris dataset [1]. The dataset contains three classes with 50
samples for each class. Again we performed a Monte Carlo simulation of 50 experi-
ments and with hundred percent success rate detected the three component GMM as
shown in Figure 4(c).
Comparison with similar EM approaches: [7,8] has presented similar EM based ap-
proaches where the components count starts fromkmax and are brought down tokmin.



Table 1:Percentage frequency of choosingk clusters for 50 experiments by our approach and
the approaches presented by Figueiredo et al. (1999,2002).

k Our method Figueiredo et al. (2002) Figueiredo et al. (1999)
3 0 0 1
4 47 1 17
5 3 13 16
6 0 14 7
7 0 10 4
8 0 8 2
9 0 2 2
10 0 2 1

Table 2:Percentage frequency of choosingkopt = 4 clusters for 100 experiments by our ap-
proach with random initialization and stochastic exploration initialization.

kmax Random initialization Our initialization
6 62 88
7 84 93
8 91 95
9 93 97

These algorithms explicitly target the components with lowprior values for switching
to a(k − 1) component GMM and thus often fail when there is a component with very
low prior value. Our approach increases the survival probability of the weak compo-
nents and hence overcomes this problem. Now we performed a Monte Carlo simulation
of 50 experiments. 710 samples were drawn from the four component bivariate GMM:

π1 =
10

71
, π2 =

20

71
, π3 =

40

71
, π4 =

1

71
,µ1 =

[

1
0

]

,µ2 =

[

3
4

]

,µ3 =

[

3
−3

]

µ4 =

[

8
8

]

,Σ1 = Σ4 = I,Σ3 =

[

2 1.9
1.9 2

]

,Σ2 =

[

2 −1.5
−1.5 2

]

All algorithms used samekmax, kmin, ǫ andλ values. Although the components are
quite well separated from each other, the approaches presented in [7,8] performed very
poorly while our algorithm outperformed these methods as can be seen in Table 1.

Robustness against kmax: Choosingkmax ≫ koptimal provides robustness against
initialization issues but it can be underestimated. Now we test the performance of our
approach with relatively smaller values ofkmax for the simulated dataset with a weak
component. For comparison, the initialkmax component GMM is obtained with two
methods: the random initialization procedure presented inFigueiredo et al. (2002) and
our initialization procedure. The results are summarized in Table 2. We can see that our
initialization has high frequency of detecting right number of components, even when
starting with relatively smallerkmax.

6 Conclusion

We have proposed a novel nature inspired initialization approach for fitting a GMM.
It utilizes search strategy where each component looks for its nearby component. Two
components are merged when they have high overlap. CSAEM2 is applied when the
components count reacheskmax. A component is annihilated if it becomes too weak.
(k − 1) components GMM is obtained by selecting the one which yieldshighest like-
lihood value. MMDL criterion is used to select the optimal model complexity. Our
approach has shown promising results on challenging simulated and real datasets.
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