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Abstract

This report discusses the learning of robot motion via non-linear dynamical systems
and Gaussian Mixture Models while optimizing the trade-off between global stability
and accurate reproduction. Contrary to related work, the approach used in this
thesis seeks to guarantee the stability via Contraction Theory. This point of view
allows the use of results in robust control theory and switched linear systems for the
analysis of the global stability of the dynamical system. Furthermore, a modification
of existing approaches to learn a globally stable system and an approach to locally
stabilize an already learned system are proposed. Both approaches are based on
Contraction Theory and are compared to existing methods.

Zusammenfassung

Diese Arbeit behandelt das Lernen von stabilen dynamischen Systemen über eine
Gauss’sche Mischverteilung. Im Gegensatz zu bisherigen Arbeiten wird die Sta-
bilität des Systems mit Hilfe der Contraction Theory untersucht. Ergebnisse aus
der robusten Regulung und der Stabilität von schaltenden Systemen können so
übernommen werden. Um die Stabilität des dynamischen Systems zu garantieren
und gleichzeitig die Bewegung des gelernten Systems möglichst wenig zu beein-
flussen, wird eine Anpassung der bereits bestehenden Methode an die Bewegung
vorgeschlagen. Darüber hinaus wird ein Regler, der lokale Stabilität in der Nähe
des Ruhepunkts garantiert, entworfen. Beide Ansätze basieren auf Contraction The-
ory und werden mit bereits bestehenden Methoden verglichen.
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Chapter 1

Introduction

Programming by Demonstration provides a useful tool to teach a robot i.e. a point-
to-point motion. Instead of having to explicitly program the robot, the user has to
provide several demonstrations of the task. To be of use in a dynamic environment,
the learned trajectory should then reproduce accurately the motion while being
robust to perturbations and adaptable to changes in the environment, i.e. a moved
target or obstacles. Representing a motion via a dynamical system ẋ = f(x) yields
an interesting approach to face these challenges [JIS02, SKS00, SL13b, PHAS09].

To encode the main features of the demonstrations, different probabilistic approaches
such as Gaussian Mixture Models, Hidden Markov Models, Gaussian Processes and
Support-Vector-Machines may be used to estimate a dynamical system of the form
ẋ = f̂(x) [CDS+10, KKB15, RW06, SS04].

At the latest, if the dynamics of the system are non-linear, stability of the system
becomes an important issue to guarantee the correct convergence of the motion, as
spurious attractors might cause problems. To guarantee that i.e. a robot arm guided
by the estimated dynamical system actually reaches the target of the motion, it is
therefore necessary to consider the stability properties of f̂ (see section 1.1).

A good reproduction of the motion via a dynamical system requires hence that the
estimated system f̂ is stable, while being as close to the demonstrations as possible.
This Master’s thesis addresses the problem of finding a good trade-off between ac-
curacy and stability when using a Gaussian Mixture Model to encode the motion.

Previous approaches considered the stability problem with respect to Lyapunov
Theory. Throughout this report, we investigate on the stability when considering
Contraction Theory instead. In chapter 5, we show the equivalence of the sufficient
condition for global asymptotic stability in [KZB11a] with respect to Lyapunov
and Contraction Theory. Results from robust control and switched linear systems
are used to modify the approach in [KZB11a]. Additionally, we develop a simple
control law that guarantees local stability of the target without influencing the over-
all motion. Simulation results of the proposed approaches for a set of handwriting
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motions are given and compared to existing methods.

1.1 Related Work

Learning stable systems

In [KZB10], a method is proposed that guarantees asymptotic convergence of trajec-
tories that remain within the demonstration area to the target. Gaussian Mixture
Regression is used. In [KZB11a], Khansari-Zadeh and Billard propose the Stable Es-
timator of Dynamical Systems (SEDS) that guarantees global asymptotic stability
of an arbitray dynamical system of the form

ẋ =
K∑

k=1

hk(x)(Akx+ bk)

where x ∈ R
n, Ak ∈ R

n×n, bk ∈ R
n and hk ∈ [0, 1] such that

∑K

k=1 h
k = 1. The

differential equation represents i.e. a robot motion. The parameters of the system
result from a Gaussian Mixture Model learned via a set of demonstrations of the
motion. To ensure the stability of the system, the authors formulate an optimization
problem that on the one hand maximizes the likelihood of the demonstrations given
the parameters of the learned model and that on the other hand searches to satisfy
the following stability constraints:

• Ensuring bk = −Akx∗ guarantees that there exists an equilibrium point x∗.

• Ensuring that all Ak are negative definite corresponds to guaranteeing the
stability in the sense of Lyapunov.

The approach is based on the use of a quadratic Lyapunov-function of the form
V (x) = 1

2
(x− x∗)T (x− x∗) and provides inherent global stability of the motion.

In some cases, the form of the Lyapunov-function can limit the accuracy of the
reproduction of the demonstrated data. Neumann et al. address this problem in
[NLS13]. They propose a neural learning approach to (i) learn a Lyapunov Candi-
date that is well suited for the demonstrated motion and (ii) use this candidate to
learn the stable motion.
In [KZB14], Khansari-Zadeh and Billard propose to learn a suitable Lyapunov-
Candidate via a parametrization as weighted sum of asymmetric quadratic functions.
The approach is called SEDS II. A stabilizing command is defined by the means of
this function to guarantee global convergence to the equilibrium. This command
forces the system to follow the negative gradient of the Lyapunov-function.
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Finding a suitable contraction metric

To prove that a dynamical system is stable in the sense of contraction it is nec-
essary to prove the existence of a contraction metric. The theory is presented in
detail in chapter 2. Finding such a metric is a difficult problem that requires expe-
rience. However, in [RdBS11], an algorithm is proposed that can provide sufficient
conditions for the existence of a such a metric. In [APS08], a numerical approach
originally used to find a Lyapunov-function is proposed in the context of finding a
contraction metric.

As results from robust control and switched linear systems may be applied to the
stability problem addressed in this report, the remainder of this section presents
related work in these fields.

Consider systems of the form:

ẋ = Ax, A ∈ A, A ⊂ R
n×n

The set A is the convex hull of matrices

A =
K∑

k=1

γkAk

with
∑K

k=1 γ
k = 1 and γk > 0 and the vertex matrics {A1...AK}.

In [Zah03], Zahreddine analyses the stability of a convex hull of matrices in the
context of interval dynamical systems, hence linear systems where the uncertainties
in the state matrix can be modeled by intervals. The convex hull A is stable if
each matrix that is an element of A has only eigenvalues with negative real parts.
Zahreddine shows that a sufficient condition for the stability of the convex hull is
the existence of a matrix measure µ, such that µ(Ak) < 0 for any k = 1...K.

Pastravanu and Matcovschi consider linear systems with parametric uncertainty
[PM09]. The systems are of the form ẋ = Ax where A is fixed but taken from the
convex hull of matrices A.
Given a vector norm ||...|| and a corresponding matrix measure µ||...||, one of their
main results is the equivalence of the two following statements:

• The vertices of A satisfy: µ||...||(A
k) < 0 ∀k = 1...K

• The function V (x) = ||x|| is a common Lyapunov-function for the uncertain
system.

This result provides the direct link from the stability of a convex hull of matrices to
common Lyapunov-functions.
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Note that the authors of both articles make the assumption that the uncertainties
of the linear dynamical system are time-invariant. Once A is chosen from A, it
remains constant.

Switched linear systems are systems of the form

ẋ(t) = Aix(t), t ∈ R
+, i ∈ I

where I is an index set for the different discrete switching modes of the system.
Given an arbitrary switching signal, it is possible to obtain a diverging system al-
though, independently, each linear system is exponentially stable. An interesting
problem is hence to guarantee the stability of the switched system under arbitrary
switching signals. In [LA09], a survey on the stability problem of switched linear
systems is given.

A sufficient condition for stability is the existence of a common quadratic Lyapunov
function for the set of linear systems [LA09]. In [DM99], Dayawansa and Martin
prove the converse theorem: In the case of a linear switched system that is globally
uniformly exponentially stable and if the set of state matrices is compact, a common
Lyapunov-function for the system always exists. However, it is possible that a
Lyapunov-function that is also quadratic cannot be found.
The search for a common quadratic Lyapunov-function can be done numerically
as the conditions for its existence can be formulated as Linear Matrix Inequali-
ties [LT04]. To find algebraic conditions for the existence of a common Lyapunov-
function is a difficult problem. At the moment, necessary conditions for a switched
system of more than 2 modes seem to only have been derived for a second order
linear time-invariant switched systems [SN00].

In [RLdB11], Russo et al. investigate on the contraction of a class of switched
systems.
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Chapter 2

Mathematical Preliminaries

Throughout the report, we will make use of the concept of the measure of a matrix.
This chapter gives an introduction to this topic and provides the link to the negative
definiteness of a matrix and its use in the analysis of differential equations.

2.1 Definiteness and measure of a matrix

Hurwitz-Stability of a matrix

A matrix A ∈ R
n×n is called Hurwitz if the real parts of all eigenvalues are strictly

negative [NS10].

Definiteness of a matrix

A symmetric matrix A ∈ R
n×n is called negative definite if and only if one of the

following equivalent statements is true [KK00, KZB11b]:

• xTAx < 0 holds for any non-zero vector x ∈ R
n.

• The eigenvalues of A are strictly negative.

• Sylvester’s Criterion is satisfied.

The matrix is positive definite if xTAx > 0. If it holds that xTAx ≤ 0 or xTAx ≥ 0
the matrix is said to be negative (positive) semi-definite.

Sylvester’s Criterion states that a symmetric matrix in R
n×n is negative definite if

the determinant of the ith leading principal minors is negative if i = 1..n is odd and
positive if i is even. For positive definiteness the ith leading principal minors need
to be positive for all i = 1..n. The leading principal minors are the n quadratic
upper left parts of the matrix A.
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The criteria used to show definiteness of a matrix are defined for symmetric matrices.
If the matrix is non-symmetric, it is negative (positive) definite if the symmetric

part of the matrix

Asym =
1

2

(
A+ AT

)
(2.1)

is negative (positive) definite.

Matrix Measure

Given is a vector norm on C
n and the induced matrix norm ||...||i corresponding to

the vector norm.

Definition 1 [Vid93, p.22] Let ||...||i be an induced matrix norm on C
n×n. Then

the corresponding matrix measure is the function µ(...) : Cn×n → R defined by

µ(A) = lim
ǫ→0+

||I + ǫA||i − 1

ǫ
(2.2)

In the following, the matrix measures associated to the Euclidean norm, the l1 -norm
and the l∞ -norm are given:

µ2(A) = max
i

(

λi

{
A+ AT

2

})

(2.3)

µ1(A) = max
j

(

ajj +
∑

i 6=j

|aij|

)

(2.4)

µ∞(A) = max
i

(

aii +
∑

j 6=i

|aij|

)

(2.5)

Note that the statements µ2(A) < 0 and A is negative definite are hence equivalent.

Theorem 1 [Des09, p.31] Given is an induced matrix norm ||...||i and the corre-
sponding matrix measure µ(.). Useful properties of µ(.) are:

1. −||A||i ≤ µ(A) ≤ ||A||i, ∀A ∈ C
n×n

2. µ(αA) = αµ(A), ∀A ∈ C
n×n, α ≥ 0

3. µ(A+B) ≤ µ(A) + µ(B), ∀A,B ∈ C
n×n

4. If λ is an eigenvalue of A ∈ C
n×n, then −µ(−A) ≤ Re {λ} ≤ µ(A)

5. For any nonsingular matrix N and any vector norm ||...||, with the induced
matrix measure µ, ||Nx|| defines another vector norm and its induced matrix
measure µN is given by µN(A) = µ(NAN−1).
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Using a matrix measure instead of a matrix norm has the advantage, that it can
obtain negative values and it is sign-sensitive.

Given a set of matrices S = {µ(A1), µ(A2), ..., µ(AK)}

µ(S) = max{µ(A1), µ(A2), ..., µ(AK)} (2.6)

where µ is a matrix measure associated to a vector norm in Euclidean space and
common for all Ak in S, µ(S) shall be called the induced matrix set measure

[XS11].
According to property 4 of Theorem 1, the eigenvalues of a matrix provide a lower
bound for its measure. Theorem 2 states that a measure that achieves the lower
bound can always be found:

Theorem 2 [Zah03] Let N be the set of all vector norms on C
n. For any ρ ∈ N , the

corresponding matrix measure is denoted by µρ. Then, for any matrix in A ∈ C
n×n,

we have
max
1≤j≤n

Re {λj(A)} = inf
ρ∈N

µρ(A) (2.7)

The proof of this theorem given in [Zah03] is based on the following simplified idea:
If J is the Jordan form of A, then there is an invertible matrix N such that
J = NAN−1. If A is diagonalizable, J is a matrix where the only non-zero entries
are its eigenvalues on the diagonal. As J is a symmetric matrix, µ2(J) = µN

2 (A)
yields exactly the maximal eigenvalue of A and achieves hence the lower bound for
all matrix measures of A.

By definition, the measure µ2(.) achieves the lower bound for any symmetric matrix.
In fact, this holds for the entire class of normal matrices [S0̈6]. The measures µ1(.)
and µ∞(.) may yield sharper bounds than µ2(.) for a given matrix F as the following
example illustrates:

F =

[
−1 0.1
10 −12

]

The matrix is Hurwitz-stable, but not negative definite as µ2(F ) ≈ 1.93. The matrix
measure associated to l∞-norm yields µ∞ = −0.9.
Note that in order to achieve the lower bound of µ1 or µ∞ one must search for a
transformation that yields a diagonally dominant matrix with small or even negative
diagonal elements. Optimally this results in a diagonalization, similar to the case of
µ2.
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Differential Equations Solution Estimates

The concept of matrix measures can provide a bound for the solution of a differential
equation.

Given is a differential equation ẋ = A(t)x(t), t ≥ 0 where x ∈ R
n and A(t) is

continuous. With µ(...) being the measure associated to a vector norm ||...|| on
Euclidean space, we have that [Vid93, p.47]:

||x(t)|| ≤ ||x(t0)||e
∫
t

0
µ(A(τ))dτ (2.8)
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Chapter 3

Stability of Dynamical Systems

This chapter provides an introduction to the Theory of Lyapunov and Contraction
Theory. Additionally, a comparison is given.
Throughout this chapter, consider the following differential equation:

ẋ = f(x, t) (3.1)

where x ∈ R
n and f is a continuous, non-linear vector function.

Definition 2 [Vid93, p.3] A vector x∗ ∈ R is called an equilibrium of the system
in 3.1 if

f(x∗, t) = 0 ∀t > 0 (3.2)

3.1 Lyapunov Theory

In this section we will assume without loss of generality that the equilibrium con-
sidered is at the origin, hence x∗ = 0.

Stability in the sense of Lyapunov characterizes the equilibrium by the behavior of
the dynamical system close to it. If, for instance, any trajectory of the system that
starts within a ball around the equilibrium, will never leave this ball, the equilibrium
is said to be stable.

Definition 3 [Vid93, p.136] The equilibrium x∗ is stable if for each ǫ > 0 and
each t0 ∈ R+ there exists a δ(ǫ, t0) such that

||x(t0)|| < δ(ǫ, t0)⇒ ||x(t)|| < ǫ ∀t ≥ t0 (3.3)

The equilibrium is said to be uniformly stable if for each ǫ > 0 there exists a δ(ǫ)
such that

||x(t0)|| < δ(ǫ), t0 ≥ 0⇒ ||x(t)|| < ǫ ∀t ≥ t0 (3.4)

x(t) is the solution of 3.1 corresponding to the initial condition x(t0).
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As we will discuss time-invariant systems throughout this report, the following no-
tions are only given in the uniform version. If the equilibrium is not only stable, but
the trajectories in a close area converge to it, the equilibrium is called asymptoti-
cally stable. To classify the rate of convergence the notion of exponential stability
is introduced. Exponential stability implies asymptotic stability and is a stronger
property.

If the system 3.1 only has a single equilibrium, it may be possible that the stability
properties do not only hold locally in an area close to x∗, but also globally, for any
initial condition in R

n.

Definition 4 [Vid93, p.143] The equilibrium x∗ is globally uniformly asymp-

totically stable if it is uniformly stable and for each pair of positive numbers M, ǫ

with M arbitrarily large and ǫ arbitrarily small there exists a finite number T (M, ǫ)
such that

||x(t0)|| < M, t0 ≥ 0⇒ ||x(t)|| < ǫ, ∀t, t0 ≥ 0 (3.5)

The equilibrium x∗ is globally exponentially stable if there exist constants a, b >
0 such that

||x(t0 + t)|| ≤ a||x(t0)||exp(−bt) ∀t, t0 ≥ 0 (3.6)

Lyapunov’s Direct Method

In order to characterize the stability of an equilibrium, Lyapunov’s direct method can
be used. Only the method to verify global asymptotic stability for a time-invariant
system ẋ = f(x) shall be presented here.

Definition 5 A continuous function V is said to be radially unbounded if V (x∗) = 0
and there exists a continuous function α with α(r)→∞ as r →∞ such that

α(||x||) ≤ V (x) ∀t ≥ 0, ∀x ∈ R
n (3.7)

see [Vid93, p.148]

Theorem 3 The equilibrium x∗ of ẋ = f(x) is globally (uniformly) asymptotically
stable if there exists a continuous, continuously differentiable and radially unbounded
Lyapunov-function V such that

1. V (x) > 0 ∀x ∈ R
n, ∀x 6= x∗

2. V̇ (x) < 0 ∀x ∈ R
n, ∀x 6= x∗

3. V (x∗) = 0, V̇ (x∗) = 0

see [Vid93, p.173] and [KZB11a]
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V can be considered as a function that provides a bound for the energy of the sys-
tem. If the energy of the system is continuously decreasing following any trajectory
towards the equilibrium, the equilibrium is stable [Vid93, p.157].

Finding such a Lyapunov-function is not easy. Typical choices are

• V (x) = 1
2
xTx

• V (x) = xTPx where P is a positive definite matrix

Such Lyapunov-functions are called quadratic.

In the case of a linear time-invariant system ẋ = Ax, global exponential stability of
the equilibrium holds if one of the following statements is true:

Theorem 4 [Vid93, p. 199] Given a matrix A ∈ R
n×n, the following three state-

ments are equivalent:

1. A is a Hurwitz-matrix.

2. There exists some positive definite matrix Q ∈ R
n×n such that the Lyapunov

Matrix Equation

ATP + PA = −Q (3.8)

has a corresponding unique solution for P and this P is positive definite and
real symmetric.

3. For every positive definite matrix Q ∈ R
n×n, 3.8 has a unique solution for P

and this solution is positive definite.

The corresponding Lyapunov-function is then V (x) = xTPx.

3.2 Contraction Theory

Contraction Theory proposed by Slotine et al. in [LS98] provides a different approach
to the analysis of the behavior of non-linear dynamical systems. It is based on
the idea that if moving along a trajectory of the contracting system, the (virtual)
distance to its neighboring trajectories decreases.

Considering the system 3.1, Slotine et al. define a virtual displacement δx, which is
an infinitesimal displacement at fixed time between two trajectories and derive the
following relation:

δẋ =
∂f(x, t)

∂x
δx (3.9)

Defining the distance between two neighboring system trajectories as ||δx|| = δxT δx,
its derivative is then bounded by
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d

dt
(δxT δx) = 2 δxT δẋ = 2 δxT ∂f

∂x
δx ≤ 2 λmax δxT δx (3.10)

where λmax is the largest eigenvalue of the symmetric part of the Jacobian.
If λmax(x, t) is uniformly strictly negative, one can then conclude that ||δx|| con-
verges exponentially to zero and hence the neighboring trajectories converge towards
each other as

||δx|| ≤ ||δx0|| e
∫
t

0
λmax(x,t)dt (3.11)

Essential for Contraction Theory is the generalization by applying a differential
coordinate transformation via a square matrix Θ(x, t):

δz = Θ(x, t)δx (3.12)

Definition 6 [LS98, p.8] Given the system equations ẋ = f(x, t), a region of the
state space is called a contraction region with respect to a uniformly positive
definite metric M(x, t) = ΘTΘ, if equivalently the Generalized Jacobian

F (x, t) =

(

Θ̇ + Θ
∂f(x, t)

∂x

)

Θ−1 (3.13)

is uniformly negative definite or

∂f

∂x

T

M +M
∂f

∂x
+ Ṁ � −βMM (3.14)

with constant βM > 0 in that region.

Theorem 5 [LS98, p.8] Given the system equations ẋ = f(x, t), any trajectory,
which starts in a ball of constant radius with respect to the metric M(x,t), centered
at a given trajectory and contained at all times in a contraction region with respect
to M(x,t), remains in that ball and converges exponentially to this trajectory.
Furthermore global exponential convergence to the given trajectory is guaranteed if
the whole state space is a contraction region with respect to the metric M(x,t).

Negative definiteness of the Generalized Jacobian F is equivalent to µ2(F ) < 0 (see
chapter 2). In fact, these results hold for other matrix measures,too.
If an invertible matrix Θ(x, t) exists such that M(x, t) = ΘTΘ is positive definite
and such that the Generalized Jacobian F satisfies

∃c > 0, µ(F (x, t)) ≤ −c, ∀t ≥ t0 (3.15)

where µ(.) is a matrix measure associated to a vector norm in Euclidean space, the
system ẋ = f(x, t) is contracting [LS98, RdBS11].
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3.2.1 Partial Contraction

Slotine and Wang propose the concept of Partial Contraction as a generalization of
Contraction:

Theorem 6 [WS05] Consider a non-linear system of the form

ẋ = f(x, x, t) (3.16)

and assume that the auxiliary system

ẏ = f(y, x, t) (3.17)

is contracting with respect to y. If a particular solution of the auxiliary system
verifies a smooth specific property, then all trajectories of the original x-system verify
this property exponentially. The original system is said to be partially contracting.

Such a smooth specific property could be for instance an equilibrium. If the equi-
librium of the auxiliary system is stable in the sense of contraction, this equilibrium
is exponentially stable in the original system, too.

3.3 Comparison of Contraction Theory and Lya-

punov Theory

Lyapunov Theory characterizes the behavior of the system with respect to its equi-
libria whereas Contraction Theory does not require the explicit knowledge of an
equilibrium. A contraction region in R

n even might not contain an equilibrium and
all trajectories do in this case converge towards one trajectory, i.e. a limit cycle,
instead of an equilibrium. In [JF10], Jouffroy and Fossen state that Contraction
leads to an incremental form of stability which is a stronger property than stability
with respect to the origin.

However, if a system is globally contracting and autonomous, all trajectories con-
verge exponentially towards a unique equilibrium and the corresponding Lyapunov-
function can be chosen as V (x) = f(x)TM(x, t)f(x) [LS98, APS08].

Note that in the linear time-invariant case where the system is defined as ẋ = Ax,
the Lyapunov Matrix Equation 3.8 corresponds exactly to equation 3.14 where
Ṁ(x, t) = 0. Hence, it is equivalent to prove stability of the equilibrium via the
contraction metric M = ΘTΘ or the quadratic Lyapunov-function V = xTMx

[APS08].
Using the induced matrix measure shows this correspondence in yet again another
light: If a matrix measure µ||...|| that is induced by a vector norm ||...|| on R

n can
be found such that

µ||...||(A) < 0 (3.18)

the linear system is stable and a Lyapunov-function can be chosen as V (x) = ||x||
[Vid78].
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Chapter 4

Dynamical Systems for

Reproduction of a motion

Throughout this report, we will only consider motion learning via a Gaussian Mix-
ture Model and reproduction via a dynamical systems approach. Hence, this chapter
provides a short introduction to this topic.
Teaching a robot a point-to-point motion via a Gaussian Mixture Model consists of
the steps [Cal09, p.41]:

• Produce a demonstration data set of N data points x with D dimensions

• Encode the data set in a Gaussian Mixture Model (GMM)

• Reproduce the motion through Gaussian Mixture Regression (GMR)

Gaussian Mixture Model

Given is the data set of N data points x with D dimensions. We will consider the
case where a data vector xi consists of the position xi and the current velocity ẋi at
position xi.

We will first assume a Gaussian Mixture Model with the number of Gaussian func-
tions K and the set S of all parameters of the K Gaussian functions: mean µk,
covariance Σk and the priors πk of each Gaussian function.

The probability distribution of position x and velocity ẋ can then be described as
[KZB11a]:

P (x, ẋ;S) =
K∑

k=1

P (k)P (x, ẋ|k) (4.1)

where P (x, ẋ|k) = N (x, ẋ;µk,Σk) .
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To learn the parameters in S of the Gaussian Mixture Model, it is common to use
the Expectation-Maximization Algorithm [Cal09, p.47-49].
Choosing an appropriate number of Gaussian components K can be done i.e. via
the BIC Criterion [Cal09, p.61]:

SBIC = −L+
np

2
log(N)

where L =
∑N

i=1 log(P (xi)) is the log-likelihood of the model, np the number of
parameters of the GMM and N the number of demonstration data points.

Gaussian Mixture Regression

To derive the dynamical system ẋ = f(x) , note the following notation for mean
and covariance:

µk =

(
µk
ξ

µk

ξ̇

)

& Σk =

(

Σk
ξ Σk

ξ̇ξ

Σk

ξξ̇
Σk

ξ̇

)

The posterior mean estimate P (ẋ|x) yields a non-linear dynamical system [KZB11a]:

ẋ =
K∑

k=1

hk(x)(Akx+ bk) (4.2)

where

Ak = Σk
ẋx(Σ

k
x)
−1 (4.3)

bk = µk
ẋ − Akµk

x (4.4)

hk(ξ) =
P (k)P (x|k)

∑K

i=1 P (i)P (x|i)
(4.5)

Equation 4.2 hence extends the motion described by the Gaussian Mixture Model
from the demonstration area to the entire state space.
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Chapter 5

Global Stability of Gaussian

Mixture Regression

This chapter analyzes the stability in the sense of contraction of the non linear
dynamical system, obtained by Gaussian Mixture Regression when reproducing a
learned skill.

5.1 A sufficient condition

Recall equation 4.2, which describes the non-linear time-invariant dynamical system
by:

ξ̇ =
K∑

k=1

hk(x)(Akx+ bk) (5.1)

In [KZB11a], Khansari-Zadeh and Billard have proven that a Lyapunov-function
V (x) = xTx exists and hence asymptotic stability in the sense of Lyapunov is
guaranteed if

(

Ak
)T

+ Ak ≺ 0 ∀k = 1..K

This can be extended to the use of quadratic Lyapunov-functions of the form V (x) =
xTPx where P is a positive definite, real symmetric matrix. Similar to the proof in
[KZB11a], it can be shown that if a matrix P can be found such that

(

Ak
)T

P + PAk ≺ 0 ∀k = 1..K (5.2)

holds, the equilibrium is asymptotically stable. Note that this result corresponds to
the Lyapunov Matrix Equation in equation 3.8.
Hence, V represents a common Lyapunov-function for the set of linear systems
Akx+ bk where the equilibrium x∗ is such that Akx∗ + bk = 0 for all k = 1..K.
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The Jacobian of the system in 5.1 is given as

JGMR(x) =
K
∑

k=1

hk(x)Ak +
∂hk(x)

∂x
(Akx+ bk) (5.3)

The concept of Partial Contraction, see section 3.2.1, leads to the auxiliary dynam-
ical system:

ẏ =
K
∑

k=1

hk(x)(Aky + bk) (5.4)

where y is the auxiliary state variable. As stated in Theorem 6, if the auxiliary sys-
tem is globally contracting and has an equilibrium, the trajectories of the original
system will also exponentially converge to the equilibrium and hence global expo-
nential stability is ensured.

The Jacobian of the auxiliary system is:

JAux =
K
∑

k=1

hk(x)Ak (5.5)

Note that, as 0 ≤ hk(x) ≤ 1 and
∑K

k=1 h
k(x) = 1, the auxiliary Jacobian corre-

sponds to the convex hull of matrices described by the vertex matrices Ak.

Note that Partial Contraction and the existence of a unique, globally stable equilib-
rium x∗ imply Contraction of the system 5.1. The inverse is not necessarily true.

As the auxiliary system provides a simpler expression of the Jacobian, we will ana-
lyze the auxiliary system in the following sections.

To analyze the contraction of the auxiliary system, one has to show whether a
contraction metric Θ and a matrix measure µ exist that guarantee that the matrix
measure of the Generalized Jacobian F is uniformly negative:

µ(F ) = µ
(

(Θ̇ + ΘJAux)Θ
−1

)

< 0, ∀t > 0, ∀y ∈ R
n

To simplify this problem we will restrict ourselves to a contraction metric that is
constant, such that the Generalized Jacobian becomes F = ΘJAuxΘ

−1. Additionally,
using the matrix measure properties 2, 3 and 5 in Theorem 1, chapter 2, we obtain:

µ(F ) = µΘ(JAux) ≤
K
∑

k=1

hk(x)µΘ(Ak) (5.6)
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The results in equations 5.2 and 5.6 can be used equivalently as both ensure the
stability of the linear subsystems in equation 5.1 (see section 3.3). Sufficient condi-
tions for global exponential stability of the system in equation 5.1 are given in the
following theorem.

Theorem 7 Given the system in 5.1 with a unique equilibrium x∗ such that

Akx∗ + bk = 0 (5.7)

and considering the set of vertex matrices

S = {A1, A2, ...AK}, Ak ∈ R
n×n (5.8)

the system’s trajectories globally uniformly exponentially converge to x∗ if there is
an invertible matrix Θ such that equivalently the Lyapunov-function V (x) = (x −
x∗)TP (x− x∗) with a matrix P = ΘTΘ satisfies

(

Ak
)T

P + PAk ≺ 0 ∀k = 1..K (5.9)

or the matrix set measure µΘ(S) associated to the vector norm ||.||Θ satisfies

µΘ(S) = max{µΘ(A1), µΘ(A2), ..., µΘ(AK)} < 0 (5.10)

This result also corresponds to the statement in example 2.2 in [WS05, p.4].

5.2 Discussion

The condition in equation 5.10 requires Hurwitz-stability of all vertex matrices:

Lemma 1 Let λk
j be the jth eigenvalue of Ak ∈ R

n×n. If for any k = 1...K and any
j = 1..n there is

Re {λk
j} ≥ 0 (5.11)

a common matrix measure as in equation 5.10 or a common Lyapunov-function as
in equation 5.9 does not exist.

Proof: see matrix measure property 4 in Theorem 1, chapter 2.1

Note that Hurwitz-stability of all modes is a necessary condition for the stability
under arbitrary switching in the case of linear switched systems, too [LA09].

The proof in [KZB11a] is sufficient to show global asymptotic stability of the equi-
librium. The equivalence of Contraction Theory and Lyapunov Theory in Theorem
7 shows that, in fact, if the system is globally asymptotically stable, this implies the
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stronger property of exponential convergence.

If we consider the system in equation 5.1 as a switched linear system with infinitely
many modes where the state matrices describe a convex hull, the results in [DM99]
lead to the conjecture that in the case of the system 5.1 global asymptotic stability
generally implies exponential stability.

Additionally, regarding the system as a set of linear systems leads to the require-
ment of a common unique equilibrium for all linear subsystems to guarantee global
asymptotic stability.

Even when considering the system as a switched linear system, the conditions in
Theorem 7 are conservative. Surprisingly, the common Lyapunov-function for a sta-
ble linear switched system might not be quadratic [DM99]. The switching rule hk(x)
is not arbitrary but state dependent and might hence stabilize the system even if
some vertex matrices are not Hurwitz. However, the switching rule is unknown as
it depends on the parameters of the Gaussian Mixture Model.

Global stability of the system 5.1 might hence be ensured without a stabilizer and
quadratic Lyapunov function or constant contraction metric respectively, but the
search for such a function or metric remains an open problem.
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Chapter 6

Solution Design

To ensure the stability of the system 4.2 with respect to an equilibrium, the solution
approach needs to satisfy the following two conditions:

1. Existence of an equilibrium x∗ at the target of the motion

2. (Global) Asymptotic stability of x∗

If bk = −Akx∗ holds in equation 4.2, then there is an equilibrium in x∗ with f(x∗) = 0
and condition 1 is satisfied. The system’s equations then become

ẋ =
K
∑

k=1

hk(x)Ak(x− x∗) (6.1)

Requiring the existence of an equilibrium is not sufficient to guarantee that the mo-
tion is asymptotically stable at the target. As can be seen in figures 6.1 and 6.2,
over all stability properties may even become worse compared to the unconstrained
system. The system’s trajectories in figure 6.2 diverge in case of the slightest per-
turbation.

In order to guarantee the second condition, too, we investigate on three different
approaches:

• The first approach seeks to achieve global exponential stability by adding a
control matrix to the learned system. This approach did not provide satisfac-
tory results as the control matrix strongly modifies the motion.

• The second approach proposes a modification of the Stable Estimator of Dy-
namical Systems (SEDS) proposed by Khansari-Zadeh and Billard in [KZB11a]
and hence achieves global exponential stability, too.

• The third approach ensures local stability with respect to the equilibrium. A
stabilizer becomes active in a region close to the target or after a certain time
has passed.
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Figure 6.1: Unstable Gaussian Mixture Regression: Demonstrations of the motion
(red-dashed lines) and streamlines (blue) of the dynamical system learned with
Expectation-Maximization. The target (black) is not stable.
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Figure 6.2: Unstable constraint Gaussian Mixture Regression: Demonstrations of
the motion (red-dashed lines) and streamlines (blue) of the dynamical system learned
with Expectation-Maximization and optimized under the constraint of an equilib-
rium at the target (black). In case of slight perturbations, the system’s trajectories
may converge to a spurious attractor.
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6.1 Trial: Additive Control Matrix

Similar to the approach in [KZB11a], the parameters of the Gaussian Mixture Model
are first learned by applying the Expectation-Maximization and then again opti-
mized under the constraint bk = −Akx∗ to ensure f(x∗) = 0.

According to Theorem 7 the system is partially contracting if the set of K linear
systems

sk(x) = (Akx+ bk) = Ak(x− x∗) (6.2)

is contracting in a common metric M(x, t) = ΘTΘ. As the systems are linear, the
K Jacobians simply correspond to Ak. With M being a constant metric, the Gen-
eralized Jacobians are formulated as F k = ΘAkΘ−1. If it can be shown, that there
exists a matrix Θ and a measure µ for whom the measure of the set of Generalized
Jacobians is negative, the system is partially contracting. In general, a common
metric for all k = 1..K will not exist.

Our first approach proposes therefore to choose a subset of Ak that will be modified
with a constant control matrix Uk such that a common metric for all K subsystems
can be found.

ẋ =
K
∑

k=1

hk(x)
(

(Ak + Uk)(x− x∗)
)

(6.3)

How to choose the control matrix Uk

The control matrix Uk should guarantee global stability without strongly affecting
the reproduction of the motion. Choosing the elements of Uk via the matrix measure
associated to the Euclidean norm is a difficult problem since this means modifying
the eigenvalues of the symmetric part. Using the matrix measures associated to the
norms l1 or the l∞ provides simpler expressions (see equations 2.3 - 2.5).

For the matrix measure associated to the l1-norm

µ1(A) = max
j

(

ajj +
∑

i 6=j

|aij|

)

we propose a procedure in Algorithm 1 to determine U such that µ1(A + U) < 0.
Note that replacing A by its transpose AT allows the use of Algorithm 1 for µ∞(.)
instead of µ1(.).

Using Algorithm 1 does not yet take advantage of the generalization of Contraction
Theory via a differential coordinate transformation Θ.
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Algorithm 1 Choose a control matrix U such that measure µ1(A+ U) < 0

Require: D // dimension of state space
Require: A // a matrix A ∈ R

D×D

Require: p // a parameter p > 1
U ← Matrix of zeros in R

D×D

for d = 1 to D do

diagonal ← d-th diagonal element of Ak

c←
∑D

i=1 |a
k
ij| − |diagonal|

if diagonal > 0 and |diagonal| < c then

u← − diagonal − p ∗ c
else if diagonal > 0 and |diagonal| > c then

u← − 2 ∗ diagonal
else if diagonal < 0 and |diagonal| < c then

u← − c

else

u← 0 // no need to modify the (d, d)th element of A
end if

U(d, d)← u

end for

return U

Search for a suitable metric M = ΘTΘ

To find a constant matrix Θ such that µ1(ΘAkΘ) < 0 holds for all k ∈ 1..K, we first
investigate on finding a metric for a single matrix A.
The Graphical Approach proposed by Russo et al. in [RdBS11] provides a proce-
dure to check if sufficient conditions for the existence of such a diagonal constant
coordinate transformation matrix Θ are satisfied.
We investigated on applying this procedure simultaneously for the set of linear sys-
tems. The conditions become too restrictive in this case.
In [APS08], a numerical approach to finding a contraction metric is proposed. We
applied the approach to find a contraction metric that allows the largest possible
symmetric uncertainties for a given matrix A. The resultant uncertainty inter-
vals were very small and in general only included one of the vertex matrices in
S = {A1, A2, ...AK}.

Searching for a suitable contraction metric then led to the method proposed in the
next section.
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6.2 SEDS via a suitable Contraction Metric

As in the previous approach, bk = −Akξ∗ is set as an optimization constraint to
ensure the existence of the equilibrium ξ∗, similar to [KZB11a].
To guarantee global stability the authors in [KZB11a] set the additional optimization
constraint µ2(A

k) < 0. At each iteration of the optimization, Sylvester’s criterion is
used to verify negative definiteness. The symmetric part of the matrices Ak is

Bk = Ak + (Ak)T

The constraints C according to Sylvester’s criterion correspond to the sign of the
determinants of the principal minors in Bk:

C(k−1)d+c : (−1)
c+1det(Bk

1:c,1:c) < 0 ∀c ∈ 1..d, ∀k ∈ 1..K (6.4)

Details can be found in the Technical Report in [KZB11b].

Given a coordinate transformation matrix Θ, we propose a modification of the like-
lihood optimization constraint such that µ2(ΘAkΘ−1) < 0. Thus, the symmetric
part becomes

(Bk)modified = ΘAkΘ−1 + (ΘAkΘ−1)T

and we have to satisfy the constraints in 6.4 for (Bk)modified. As solving the like-
lihood optimization problem requires the derivative of the constraints with respect
to the optimization parameters, the modified derivatives are given below:

The stability constraints do not depend on the priors πk and the means µk. Hence,
as in the original approach, the derivative of C disappears:

∂C(k−1)d+c

∂πk
= 0 ∀c ∈ 1..d, ∀k ∈ 1..K (6.5)

∂C(k−1)d+c

∂µk
= 0 ∀c ∈ 1..d, ∀k ∈ 1..K, ∀i ∈ 1..2d (6.6)

As the matrix Ak is determined via Ak = Σk

ξ̇ξ
(Σk

ξ )
−1, the derivative of C with respect

to Σk does not disappear. To guarantee the positive definiteness of the covariance
matrices Σk, a change of variables is proposed in [KZB11b] where Lk = Chol(Σk)
are the lower 2d× 2d triangle matrices obtained by the Cholesky decomposition of
Σk. Hence, the derivatives are formulated with respect to the ij−th element of Lk:

∂C(k−1)d+c

∂Lk
ij

= (−1)c+1tr
(

adj
(

(B1:c,1:c)modified

)

(X1:c,1:c)modified

)

(6.7)

where the 2d× 2d Xmodified is defined by:



30 CHAPTER 6. SOLUTION DESIGN

Φ = 0ij
(

Lk
)T

+ Lk
(

0ij
)T

(6.8)

Ψ =
(

−AkΦξ + Φξ̇ξ

)

(Σξ)
−1 (6.9)

Xmodified = ΘΨΘ−1 +
(

ΘΨΘ−1
)T

(6.10)

The matrix 0ij is a 2d× 2d matrix of zeros, where only the ij−th component is 1.

Note that in our approach we only consider the likelihood optimization from [KZB11a].

How to learn the coordinate transformation Θ

The modification proposed above requires a coordinate transformation matrix Θ.
We will use results in [Zah03], see Theorem 2, to learn Θ via a test matrix T .

This test matrix T can be the center of the state matrices Ak:

T1 =
1

K

K
∑

k=1

Ak (6.11)

Given the auxiliary Jacobian J(x) =
∑K

k=1 h
k(x)Ak and N position data points

{x1...xN} in the demonstration area, T can also be chosen as the center of the
auxiliary Jacobians obtained at position xn:

T2 =
1

N

N
∑

n=1

(
K∑

k=1

hk(xn)A
k

)

(6.12)

The choice of the test matrix described above is inspired by representing the set of
matrices by a single matrix (T + ∆T ) where ∆T represents uncertainties [Zah03].
If it holds that

µ(∆T ) < −µ(T ) & µ(T ) < 0

we can conclude via the matrix measure property 3 in Theorem 1 that

µ(T +∆T ) < 0

The coordinate transformation matrix is chosen as the invertible matrix Θ such that
V = ΘTΘ−1 is the Jordan form of T . The Jordan Tranformation can be defined
for real matrices, too [GLR06]. To avoid complex entries in Θ we hence use the
real Jordan form. Choosing Θ via the Jordan form is based on Theorem 2 and its
proof in chapter 2. Hence, the measure µΘ

2 (T ) should be close to its lower bound.
If additionally, µΘ

2 (T ) < 0, µ(∆T ) may be positive while the system is still stable.

If T has at least one positive eigenvalue, it is hence calculated once more, but
by taking into account only the Ak (or Jaux(x) respectively) that have negative
eigenvalues. However, the measure µΘ

2 (T ) might still be positive and the contraction
metric ΘTΘ is not necessarily a good choice for the system.
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6.3 Local Stabilizer

Similar to the concept of Control Lyapunov functions (see [KZB14]), it is possible
to stabilize a system via a Control Contraction Metric [MS14]. To guarantee lo-
cal stability of the equilibrium, we hence propose an additive feedback control law
that is active only within a ball close to the target of the motion. We abandon
the search for a suitable differential coordinate transformation and the contraction
metric M(x, t) will be the identity matrix.

If the upper condition bk = −Akx∗ for the existence of an equilibrium holds, this is
equivalent to

K
∑

k=1

hk(x) bk = −
K
∑

k=1

hk(x)Akx∗ ∀x ∈ R
n

The control law is then derived as follows:
Given is an equilibrium x∗ and the system:

ẋ =
K
∑

k=1

hk(x)(Akx+ bk) =
K
∑

k=1

hk(x)Akx+
K
∑

k=1

hk(x)bk

If at each time step, we choose a square matrix U i ∈ R
n×n such that

µ1

(

U i +
K∑

k=1

hk(xi)A
k

)

< 0

the auxiliary system with control in equation 6.13 is contracting and the original
system is hence exponentially stable.

ẏ =
K∑

k=1

hk(x)Aky +
K∑

k=1

hk(x)bk

︸ ︷︷ ︸

System

+ω

(

Uy −
K∑

k=1

hk(x)bk

)

︸ ︷︷ ︸

Control

(6.13)

We determine U at each time step via the procedure given in algorithm 1. As input
we set A←

∑K

k=1 h
k(xi)A

k.

To activate the control law, we will use a sigmoid function ω(xi, a, c).

ω(xi, a, c) =
1

1 + e−a(xi+c)

ω smoothly activates the control law as soon as a predefined distance to x∗, hence
a ball around the equilibrium, has been reached or a certain time limit has passed.
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Chapter 7

Simulation Results

This chapter gives the results of an experimental evaluation of the proposed ap-
proaches. Simulations have been conducted with MATLAB.
The demonstration data set consists of 20 different 2-D hand writing motions pro-
vided by the LASA laboratory and was downloaded together with the sourcecode
for the SEDS approaches from:

http://lasa.epfl.ch/sourcecode/

Each model is obtained by three or four demonstrations of the model and hence we
simulated and compared the reproduction for three (or four respectively) starting
points corresponding to each demonstration. The sampling time of the demonstra-
tions is 0.02s.
As the demonstration data set and the simulation data set are of different length,
we use Dynamic Time Warping to measure the performance in terms of accuracy
of the different approaches. Dynamic Time Warping allows to eliminate timing
differences of two time series by a non-linear alignment of the data. The algorithm
was originally proposed in the context of speech recognition (see [SC78]).
As a measure for the similarity of motion trajectories it has already been used i.e.
in the context of gesture recognition to cope with uncertainties that arise when
the gestures are performed by different users (see [SL13a]). The motion data is
multidimensional and hence we use the MD-DTW algorithm given in [San12].

7.1 Simulation Results for Trial: Additive Con-

trol Matrix

This section gives the exemplary simulation results for three motions using the
additive control matrix proposed in section 6.1 to guarantee global contraction of
the system. The results indicate that while according to the streamlines in figure
7.1 the system is globally stable, the simulated motion in figure 7.2 differs from the
demonstration data.
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Figure 7.1: Additive Control Matrix, Trial: The streamlines (blue) of the models
obtained from demonstrations (red-dashed lines) indicate that for any starting point
in Rn the motion will converge to the target (black asterisk).
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Figure 7.2: Additive Control Matrix, Trial: Although the simulated motion (con-
tinuous lines) reaches the target (black asterisk), it does not correctly reproduce the
demonstration data (red-dashed lines).

7.2 Simulation Results for Modified SEDS and

Local Stabilizer

This section gives a more extensive evaluation of the performance of the modified
SEDS and the Local Stabilizer approach in terms of accuracy and training time. We
give a comparison of existing approaches (SEDS and SEDS II [KZB11a, KZB14])
and our propositions (Local Stabilizer and Modification of SEDS by considering a
contraction metric learned via the test matrices T1 or T2 ). As in general the perfor-
mance of SEDS II strongly depends on the chosen form of the Control Lyapunov-
function we opted for a Lyapunov-function of zero asymmetric components, hence
the quadratic function V (x) = xTPx (CLF0) and a Lyapunov-function with three
asymmetric components (CLF3), which should be adaptable to more complex mo-
tions.

As all the six approaches depend on the random initialization of the Expectation-
Maximization Algorithm, we ran the different approaches 15 times for each motion.
The number of Gaussian Components is determined via the BIC-criterion where in-
stead of awaiting the minimal BIC we set a threshold on the decrease of the BIC as
otherwise experiments yielded more Gaussian components than suitable (see Discus-
sion, chapter 8). We hence obtained 300 dynamical systems learned with Gaussian
Mixture Regression.

During our experiments, the simulated trajectories of the SEDS II approach with
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three asymmetric components often began to jitter. This may be due to similar
numerical issues as already described in [KZB14]. We hence set the time steps of
the simulation to 0.002s as suggested in [KZB14] and additionally eased the con-
vergence criteria for this approach by checking the distance to the target instead of
the velocity. However, we were not able to remove this error for all the motions and
hence do not consider the motions ”Khamesh” and ”WShape” for our experiments.

Considering the globally stable SEDS approaches we could not verify the stability
for two of the 300 dynamical systems as crossing trajectories and extreme accelera-
tions were observed: one case concerned the original SEDS approach for the motion
”NShape”, another one concerned the modified SEDS for the motion ”Line” where
the metric was learned from test matrix T1. Similar to above, this may be due to
a numerical error. The approaches derived in the previous section hold under the
assumption of a continuous system and hence the application of discrete time steps
may cause problems.
As the Local Stabilizer only guarantees global convergence to the target after a
certain time has passed, it may yield strange trajectories if the Gaussian Mixture
Regression is not well parametrized. This was observed for 5 of the 15 initializations
for the motion ”Sshape” (see figures 7.3 and 7.4). We removed the corresponding
initializations and therefore only considered simulation results based on an accept-
able parametrization of Gaussian Mixture Regression.

The final simulation data set consists of 18 handwriting motions yielding ten differ-
ent models each.
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Figure 7.3: Bad initialization for Local Stabilizer: Three Gaussian components
are used. Contrary to the demonstrations (red-dashed lines), two of the simulated
trajectories (blue, brown continuous lines) yield cyclic behavior before the stabilizer
is activated. Only the yellow simulation trajectory directly converges to the target
(black asterisk).
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Figure 7.4: Good initialization for Local Stabilizer: Based on four Gaussian compo-
nents, the simulated trajectories (continuous lines) yield a behavior similar to the
demonstrated trajectories (red-dashed lines).

As both the measured Dynamic Time Warping distances and the measured train-
ing time are not normally distributed, we consider the median instead of the mean
to measure the typical performance. To indicate the maximal and minimal devi-
ation from the typical performance, we provide the location of the 10%− and the
90%−quantile via the black error bars.

According to figure 7.5, the globally stable SEDS approaches do not differ signifi-
cantly from one-another. While the original SEDS approach performs slightly better
regarding the median, it may sometimes produce worse results than the modified
SEDS approaches as is indicated by the 90%−quantile.
The approaches ensuring stablity via a stabilizer perform better than the globally
stable approaches. Yet the Local Stabilizer does not achieve the same performance
as the SEDS II approaches using a Control Lyapunov-function. Using a Control
Lyapunov-function with zero asymmetric quadratic components may produce worse
results compared to the use of a Control Lyapunov-function with three asymmetric
quadratic components. However, the median yields quite similar performance, as
most of the motions we consider are suitable for the use of quadratic Lyapunov-
functions.

The median and the 10%− and the 90%−quantiles of the training time are shown
in figure 7.6 for the six approaches.
The training time for the stabilization approaches mainly consists of the computa-
tion time of the E-M-Algorithm. For the SEDS II approach, obtaining the Control-
Lyapunov-function may be time-consuming, especially in the case of three asym-
metric quadratic components. The different SEDS approaches require the com-
putation of the constraint likelihood-optimization problem additionally to the E-M-
Algorithm. Changing the contraction metric and hence the optimization constraints
does not seem to influence the training time.
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Figure 7.5: Median MD-DTW distance of the six approaches for 18 hand-writing
motions. The blue bars indicate the median, the black lower and upper error bar
the 10%− and the 90%−quantile respectively.
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Figure 7.6: Median Training Time in seconds of the six approaches for 18 hand-
writing motions. The blue bars indicate the median, the black lower and upper
error bar the 10%− and the 90%−quantile respectively.
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We observed that the performance of the approaches differs significantly considering
different motions. We hence give the exemplary results for three motions, ”JShape”,
”Bump” and ”SharpC” in the following.

The median Dynamic Time Warping distance for the motion ”JShape” is given in
figure 7.7. The model is learned with two Gaussian components. In the case of this
motion, the stabilization approaches, Local Stabilizer and SEDS II, perform worse
than the approaches that yield global stability. As can be seen in the in figures 7.8b,
d and f, one of the simulated trajectories slightly drifts away from the demonstra-
tion area. Note the different behavior of Local Stabilizer in figure 7.8b and SEDS
II approach in figure 7.8d in the area close to the target.

The median Dynamic Time Warping distance for the motion ”Bump” learned with
four Gaussian components is given in figure 7.9. All approaches, except the modified
SEDS approach where a metric is learned from the matrix T1, equation 6.11, yield
acceptable performance. The corresponding motion in figure 7.10c does not follow
the curvature of the motion.

Figure 7.11 shows the performance in terms of accuracy for the motion ”SharpC”
learned with three Gaussian components. While using a suitable Contraction Metric
yields better performance than the original SEDS approach (see figures 7.12a, c,
e), the stabilization approaches Local Stabilizer and SEDS II still outperform the
globally stable dynamical systems.
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Motion JShape

Figure 7.7: Median MD-DTW distance of the six approaches for the motion
”JShape”. The blue bars indicate the median, the black lower and upper error
bar the 10%− and the 90%− quantile respectively.
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Figure 7.8: Simulation (continuous lines) and demonstrations (red-dashed lines) for
the motion ”JShape”.
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Figure 7.9: Median MD-DTW distance of the six approaches for the motion ”Bump”.
The blue bars indicate the median, the black lower and upper error bar the 10%−
and the 90%−quantile respectively.
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Figure 7.10: Simulation (continuous lines) and demonstrations (red-dashed lines)
for the motion ”Bump”.
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Figure 7.11: Median MD-DTW distance of the six approaches for the motion ”Sharp
C”. The blue bars indicate the median, the black lower and upper error bar the
10%− and the 90%− quantile respectively.
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Figure 7.12: Simulation (continuous lines) and demonstrations (red-dashed lines)
for the motion ”SharpC”.
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Chapter 8

Discussion

The Stabilization approaches, Local Stabilizer and SEDS II, yield better perfor-
mance than SEDS and modified SEDS both in terms of accuracy and training time
(see figures 7.5 and 7.6). These approaches use primarily the unstable dynamical
system to reproduce the motion. As we do not consider perturbations or obstacles
the stabilizer only intervenes when the motion is near the target (Local Stabilizer)
or when the motion is not following the negative gradient of the Lyapunov-function
(SEDS II). Note that if the Lyapunov-function is well-chosen in SEDS II, the stabi-
lizer should only intervene very little in the demonstration area.
On the other hand, in the case of SEDS and modified SEDS, the model is inherently
stable and the trade-off between accuracy and stability becomes noticeable.

The stabilization approaches are also very sensitive to the number of Gaussian com-
ponents and can only be as good as the Gaussian Mixture Regression. As the
results in figures 7.7 and 7.8 suggest, the SEDS approaches are able to compensate
this problem. Additionally, in the case of the SEDS approaches, a smaller number
of Gaussian components is desirable as it leads to a smaller number of optimization
constraints.

The results for the motion ”SharpC” in figure 7.11 and 7.12 show the limits of using
a quadratic Lyapunov-function V (x) = xTPx. While using a suitable constant con-
traction metric can improve the performance, the globally stable models still cannot
keep up with the unconstrained approaches. Our approach proposed in section 6.2
to learn a contraction metric may yield good results as in the case of the motion
”SharpC”, but can also fail as in the case of the motion ”Bump” when using T1 to
learn the metric (figure 7.10c).

The modification of SEDS maintains the advantageous property of inherent global
stability while being in some cases more adapted to the motion. However, the prop-
erty of SEDS, that the sum of two SEDS systems is globally stable, too, does not
hold for the modification anymore. Additionally, the approach still faces the limita-
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tions given by the requirement of quadratic stability.

According to the results in section 7.1, adding a control matrix to the dynamical
system in equation 5.1 has a negative effect on the reproduction behavior. Therefore
we opted to only locally stabilize the system by the means of an additive control ma-
trix. While the Local Stabilizer gives a simple and general expression to guarantee
convergence, its comparison with the SEDS II approaches show that the influence
of the control matrix is still noticeable. To face this problem, the radius of the ball
around the equilibrium can be decreased. However, in this case a sufficient number
of Gaussian components is required to guarantee that all trajectories determined by
Gaussian Mixture Regression reach this ball.
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Chapter 9

Conclusion and future work

Throughout this work, we have shown that searching to achieve global stability for
the system in 4.2 yields similar results via both Contraction Theory and Lyapunov
Theory. The existence of a constant contraction metric implies the existence of a
quadratic Lyapunov-function.
However, Contraction Theory provides different tools to analyze the stability of a
system. This allowed to state that the stability problem in 4.2 corresponds to typical
problems in switched linear systems and uncertain systems and to use the results
for an approach to learn a contraction metric.
Additionally, we propose a stabilizer that forces the motion to reach the target
without changing significantly the over-all motion.

Further work will consider an experimental evaluation on real robots.
Approaches in the theory of uncertain or switched systems that yield the existence
of a higher-order Lyapunov-Candidate or Contraction Metric and an improvement
of the time clock that is used in case of perturbations for the Local Stabilizer by
using a more robust approach require further investigation, too.
Other regression techniques mentioned in the introduction such as i.e. Gaussian
Processes can be advantageous compared to Gaussian Mixture Regression, especially
in terms of accuracy. Therefore, further work will also consider the stability of those
methods by the means of Contraction Theory.
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