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ABSTRACT
The practice of harmonic mixing is a technique used by DJs for the
beat-synchronous and harmonic alignment of two or more pieces
of music. In this paper, we present a new harmonic mixing method
based on psychoacoustic principles. Unlike existing commercial
DJ-mixing software which determine compatible matches between
songs via key estimation and harmonic relationships in the circle
of fifths, our approach is built around the measurement of musical
consonance at the signal level. Given two tracks, we first extract a
set of partials using a sinusoidal model and average this informa-
tion over sixteenth note temporal frames. Then within each frame,
we measure the consonance between all combinations of dyads
according to psychoacoustic models of roughness and pitch com-
monality. By scaling the partials of one track over ± 6 semitones
(in 1/8th semitone steps), we can determine the optimal pitch-shift
which maximises the consonance of the resulting mix. Results of
a listening test show that the most consonant alignments generated
by our method were preferred to those suggested by an existing
commercial DJ-mixing system.

1. INTRODUCTION

The digital era of DJ-mixing has opened up DJing to a huge range
of users, and also enabled new technical possibilities in music cre-
ation and remixing. The industry leading DJ-software tools (e.g.,
Native Instruments Traktor Pro 21, djay Pro2 and Mixed in Key3)
now offer users of all technical abilities the opportunity to rapidly
and easily create DJ mixes out of their personal music collections,
or those stored online. Central to these DJ-software tools is the
ability to robustly identify tempo and beat locations, which, when
combined with high quality audio time-stretching, allow for auto-
matic “beat-matching” (i.e. temporal synchronisation) of music.

∗ MD is financed by National Funds through the FCT - Fundação para a
Ciência e a Tecnologia within post-doctoral grant SFRH/BPD/88722/2012.
† BS is supported by BMBF 01 GQ 1004B (Bernstein Center for Com-

putational Neuroscience Munich).
1http://www.native-instruments.com/en/products/

traktor/dj-software/traktor-pro-2/
2http://www.algoriddim.com/djay-mac
3http://www.mixedinkey.com/

In addition to leveraging knowledge of the beat structure, these
tools also extract harmonic information – typically in the form of
an estimated key. Knowing the key of different pieces of music
allows users to engage in so-called “harmonic mixing” where the
aim is not only to align music in time, but also in key. Different
pieces of music are deemed to be harmonically compatible if their
keys exactly match or adhere to well-known relationships within
the circle of fifths. When this information is combined with audio
pitch-shifting functionality (i.e., the ability to transpose a piece of
music by some number of semitones independent of its temporal
structure) it provides a powerful means to “force” the harmonic
alignment between two pieces of otherwise incompatible music.

While such a combination of robust music understanding and
high quality music signal processing techniques is certainly effec-
tive within specific musical contexts – in particular for harmoni-
cally and temporally stable house music (and other related genres),
we believe the key-based matching approach has several important
limitations. Putting aside the primary issue that the key estimation
itself might be error-prone, the most critical limitation is that a
global property such as musical key provides no information re-
garding the musical composition which gives rise to that key nor
how this might affect perceptual harmonic compatibility for listen-
ers when two pieces are mixed. Similarly, music matching based
on key alone provides no obvious means for ranking the compati-
bility between several different pieces of the same key. Likewise,
assigning one key for the duration of a piece of music cannot indi-
cate where in time the best possible mixes (or mashups) between
different pieces of music might occur. Even with the ability to
use pitch-shifting to transpose the musical key, it is important to
consider the quantisation effect of only comparing whole semi-
tone shifts. The failure to consider fine-scale tuning could lead to
highly dissonant mistuned mixes between songs which still share
the same key.

To attempt to address these limitations of key-based harmonic
mixing, we propose a new approach based on the analysis of con-
sonance. We base our approach on the well-established psychoa-
coustic principles of sensory consonance and harmony as defined
by Ernst Terhardt [1, 2], where our goal is to discover the optimal,
consonance-maximising alignment between two music excerpts.
To this end, we first extract a set of frequencies and amplitudes
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Figure 1: An overview of the proposed approach for consonance-
based mixing.

using a sinusoidal model and average this information over short
temporal frames. We fix the partials of one excerpt, and apply a
logarithmic scaling to the partials of the other over a range of one
full octave in 1/8th semitone steps. Through an exhaustive search
we can identify the frequency shift which maximises the conso-
nance between the two excerpts and then apply the appropriate
pitch-shifting factor prior to mixing the two excerpts together. A
graphical overview of our approach is given in Figure 1.

Searching across a wide frequency range in small steps allows
both for a large number of possible harmonic alignments and the
ability to compensate for differences in tuning. In comparison with
an existing commercial DJ-mixing system, we demonstrate our ap-
proach is able to provide more consonant mixes which are also
considered more pleasant by musically trained listeners.

The remainder of this paper is structured as follows. In Section
2 we review existing approaches for the measurement of conso-
nance based on roughness and pitch commonality. In Section 3 we
describe our approach for consonance-based music mixing driven
by these models. We then address the evaluation of our approach
in Section 4 via a listening test. Finally, in Section 5 we present
conclusions and areas for future work.

2. CONSONANCE MODELS

In this section, we present the theoretical approaches for the com-
putational estimation of consonance that will form the core of the
overall implementation described in Section 3 for estimating the

most consonant combination of two tracks. To avoid misunder-
standings due to ambiguous terminology, we define consonance
by means of Terhardt’s psychoacoustic model [1, 2], which is di-
vided into two categories: The first, sensory consonance combines
roughness (and fluctuations, standing for slow beatings and there-
fore equated with roughness throughout), sharpness and tonalness.
The second, harmony is mostly built upon Terhardt’s virtual pitch
theory and inherits root relationship and pitch commonality. We
take these categories as the basis for our approach. To estimate
the degree of sensory consonance, we use a modified version of
Hutchinson & Knopoff’s [3] roughness model. For calculating the
pitch commonality of a combination of sonorities, we propose a
model that combines Parncutt & Strasburger’s [4] pitch categorisa-
tion procedure with Hofmann-Engl’s [5] virtual pitch model. Both
models take a sequence of sinusoids, expressed as frequencies, fi,
and amplitudes, Mi, as input.

2.1. Roughness Model

As stated above, the category of sensory consonance can be di-
vided into three parts: roughness, tonalness and sharpness. While
sharpness is closely connected to timbral properties of musical au-
dio, we do not attempt to model or modify this aspect since it can
be considered independent of the interaction of two pieces of mu-
sic, which is the object of our investigation in this paper.

Parncutt & Strasburger [4] discuss the strong relationship be-
tween roughness and tonalness as a sufficient reason to only anal-
yse one of the two properties. The fact that roughness has been
more extensively explored than tonalness and that most sensory
consonance models build exclusively upon it motivates the use of
roughness as our sole descriptor for sensory consonance in this
work. For each of the partials of a spectrum, the roughness that is
evoked by the co-occurrence with other partials is computed, then
weighted by the dyads’ amplitudes and finally summed for every
sinusoid.

The basic structure of this procedure is a modified version of
Hutchinson & Knopoff’s [6] roughness model for complex sonori-
ties that builds on the roughness curve for pure tone sonorities pro-
posed by Plomp & Levelt [7]. A function that approximates the
graph estimated by Plomp & Levelt is proposed by Parncutt [8]:

g(y) =

{
(exp(1) y

0.25
exp(− y

0.25
))2 y < 1.2

0 otherwise (1)

where g(y) is the degree of roughness of a dyad and y the fre-
quency interval between two partials (fi and fj) expressed in the
critical bandwidth (CBW) of the mean frequency f̄ , such that:

y =
|fj − fi|
CBW(f̄)

(2)

and
f̄ =

fi + fj
2

. (3)

Hutchinson & Knopoff’s formula for the calculation of the
critical bandwidth is often the subject of criticism (see, for exam-
ple [8, 9]). Parncutt [8] states that better results can be obtained by
using Moore & Glasberg’s [10] equation for the equivalent rectan-
gular bandwidth (ERB):

ERB(f̄) = 6.23(10−3f̄)2 + 93.39(10−3f̄) + 28.52 (4)

and hence we substitute CBW(f̄) with ERB(f̄) in eqn (2). The
roughness values g(y) for every dyad are then weighted by the
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dyad’s amplitudes (Mi and Mj) to obtain a value of the overall
roughness D of a complex sonority with N partials:

D =

∑N
i=1

∑N
j=i+1 MiMjgij∑N
i=1 M

2
i

. (5)

2.2. Pitch Commonality Model

As opposed to sensory consonance, which can be applied to any ar-
bitrary sound, the second category of Terhardt’s consonance model
[1, 2] is largely specified on musical sounds. This is why the
incorporation of an aspect based on harmony should be of crit-
ical importance in a system that aligns music according to con-
sonance. However, the analysis of audio with a harmonic model
of consonance is currently under-explored in the literature. Exist-
ing consonance-based tools for music typically focus on roughness
alone [11, 12]. Relevant approaches which include harmonic anal-
ysis perform note extraction, categorisation in the octave-ranged
chromagram and, as a consequence of this, key detection, but the
psychoacoustic aspect of harmony is rarely applied. One of our
main aims in this work is therefore to use the existing theoretical
background to develop a model that estimates the consonance in
terms of root relationship and pitch commonality and eventually
to combine this with a roughness model.

The fundament of the approach lies in harmonic patterns in the
spectrum. The extraction of these patterns is taken from the pre-
processing stage of the pitch categorisation procedure of Parncutt
& Strasburger’s [4] tonalness model.

For a given set of partials, the audibilities of pitch categories
in semitone intervals are produced. Since this corresponds directly
to the notes of the chromatic scale, the degree of audibility for
different pitch categories can be attributed to a chord. Hofmann-
Engl’s [5] virtual pitch model then will be used to compute the
“Hofmann-Engl pitch sets” of these chords which will be com-
pared for their commonality.

2.2.1. Pitch Categorisation

The first step of Parncutt & Strasburger’s algorithm is the calcula-
tion of the pure-tone height, Hp(fi), for every frequency peak, fi,
in the spectrum using the analytic formula by Moore & Glasberg
[10] that expresses the critical band rate in ERB:

Hp(fi) = H1 loge(
fi + f1

fi + f2
) +H0. (6)

As parameters, Moore & Glasberg propose H1 = 11.17 erb, H0 =
43.0 erb, f1 = 312 Hz and f2 = 14675 Hz. They also estimate the
auditory level ΥL of each pure tone with the frequency fi that is
defined as its dB level above the threshold in quiet LTH , which
Terhardt [13] formulates as:

LTH = 3.64fi
−0.8−6.5 exp (−0.6(fi − 3.3)2)+10−3fi

4. (7)

Then, the partial masking level ml(fi, fj) which is the degree of
how much every pure-tone in the sonority with the frequency fi
is masked by an adjacent pure-tone with its specific frequency fj
and auditory level ΥL(fj) is estimated as

ml(fi, fj) = ΥL(fj)− km|Hp(fj)−Hp(fi)| (8)

where km can take values between 12 and 18 dB (chosen value:
12 dB). The partial masking level is specified in dB. The overall
masking level, ML(fi), of every-pure tone is obtained by adding
up its partial masking levels, which are converted first to ampli-
tudes and then, after the addition, back to dB levels:

ML(fi) = max(0, (20 log10

∑
P 6=P ′

10(ml(fi,fj)/20))). (9)

In the case of a pure-tone with frequency fi that is not masked,
ml(fi, fj) will take a large negative value. This negative value for
ML(fi) is avoided by use of the the max operator when compar-
ing the calculated value to zero.

The decision not to analyse pure-tone components in frequency,
but in pitch categories is due to the need to extract harmonic pat-
terns. The pitch categories, P , are defined by their centre frequen-
cies in Hz:

P (fi) = 12 log2(
fi

440
) + 57 (10)

where the standard pitch of 440 Hz (musical note A4) is repre-
sented by pitch category 57.

Following this procedure for each component, we can now
obtain its audible level AL(P ) (in dB) by subtracting its overall
masking level from its auditory level ΥL(f):

AL(P ) = max(0, (ΥL(P )−ML(P ))). (11)

To incorporate the saturation of each pure-tone with increasing
audible level, Parncutt & Strasburger [4] estimate the audibility
Ap(P ) for each pure-tone component:

Ap(P ) = 1− exp(
−AL(P )

AL0
). (12)

where they follow Hesse [14] who sets AL0 = 15.
Once every pure-tone component has been assigned to its cor-

responding pitch category and its audibility estimated, a template
is used to detect partials of harmonic complex tones shifted over
the spectrum in a step size of one semitone, i.e., one pitch category.
One pattern’s element is given by the formula:

Pn = P1 + b12 log2(n) + 0.5c (13)

where P1 represents the pitch category of the lowest element (cor-
responding to the fundamental frequency) and Pn the pitch cate-
gory of the nth harmonic.

Whenever there is a match between the template and the spec-
trum for each semitone-shift, a complex-tone audibility Ac(P1) is
assigned to the template’s fundamental. To take the lower audibil-
ity of higher harmonics into account, they are weighted by their
harmonic number, n:

Ac(P1) =
1

kT

(∑
n

√
Ap(Pn)

n

)2

. (14)

Parncutt & Strasburger [4] set the free parameter kT = 3. To
estimate the audibility, A(P ), of a component which considers
both the spectral- and complex-tone audibility of every category,
the overall maximum is taken as the general audibility, as Terhardt
et al. [13] state that only either a pure or a complex tone can be
perceived at once:

A(P ) = max(Ap(P ), Ac(P )). (15)
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2.2.2. Pitch-Set Commonality

The resulting set of pitch categories can be understood as a chord
with each pitch category’s note sounding according to its audibil-
ity. With the focus on music, we set a limit of the three notes of
the sonority with the highest audibility as the triad – which is seen
as the most important chord in Western culture [15]. On this basis
we expect it to give a meaningful representation of the harmonic
structure.

To compare two chords according to their pitch-commonality,
Hofmann-Engl proposes to estimate their similarity by the aid of
the pitch-sets that are produced by his virtual pitch model [16].
The obtained triad is first inserted into a table similar to the one
Terhardt uses to analyse a chord for its root note (see [2]), with
the exception that Hofmann-Engl’s table contains one additional
subharmonic. The notes are ordered from low to high along with
their corresponding different subharmonics. A major difference to
Terhardt’s model is the introduction of two weights w1 and w2 to
estimate the strength βnote for a specific note to be the root of the
chord with Q = 3 tones for all 12 notes of an octave:

βnote =

∑Q
q=1 w1,note w2,q

Q
(16)

where the result is a set of 12 strengths of notes, or so-called
“Hofmann-Engl pitches” [16]. The fusion weight, w1,note, is
based on note similarity and gives the subharmonics more impact
in decreasing order. This implies that the unison and the octave
have the highest weight, then the fifth, the major third and so on.
The maximum value of w1,note is c = 6 Hh (Helmholtz, unit set by
Hofmann-Engl). The fusion weight is decreased by the variable b,
which is b = 1 Hh for the fifth, b = 2 Hh for the major third, b =
3 Hh for the minor seventh, b = 4 Hh for the major second and b =
5 Hh for the major seventh. All other intervals take the value b = 6
and are therefore weighted zero, according to the formula:

w1,note =
c2 − b2

c
. (17)

The weight according to pitch order, w2, adds more impor-
tance to lower notes, assuming that a lower note is more likely
to be perceived as the root of the chord than a higher one and is
calculated as:

w2,q =

√
1

q
(18)

where q represents the position of the note in the chord. For the
comparison between two sonorities (e.g. from different tracks), the
Pearson correlation rset1set2 is calculated for the pair of Hofmann-
Engl pitch sets, as Hofmann-Engl [16] proposes to determine
chord similarity and therefore consonance, C, in the sense of har-
mony as:

C = rset1set2 . (19)

3. CONSONANCE-BASED MIXING

Based on the models of roughness and pitch commonality pre-
sented in the previous section, we now describe our approach for
consonance-based mixing between two pieces of music.

3.1. Data Collection and Pre-Processing

We first explain the necessary pre-processing steps which allow
the subsequent measurement of consonance between two pieces
of music. For the purpose of this paper, which represents our first
investigation into consonance-based mixing, we make several sim-
plifications concerning the properties of the musical audio we in-
tend to mix.

Given that our motivation is to compare our approach to key-
based matching methods in DJ-mixing software (see Section 4),
we currently only consider electronic music (e.g. house music)
which is both harmonically stable and typically has a fixed tempo.
From a collection of recent electronic music we manually anno-
tated the tempo and beat locations and extracted a set of musical
excerpts, each lasting precisely 16 beats (i.e., 4 complete bars).

In order to focus entirely on the issue of harmonic alignment
without the need to address temporal alignment, we force the tempo
of each excerpt to be exactly 120 beats per minute. For this beat
quantisation process, we use the open source pitch-shifting and
time-stretching utility, Rubberband4, to implement any necessary
tempo changes. Accordingly, our database of musical excerpts
consists of a set of 8 s (i.e., 500 ms per beat) mono .wav files sam-
pled at 44.1 kHz.

To provide an initial set of frequencies and amplitudes, we
use a sinusoidal model, namely the “Spectral Modeling Synthesis
Tools” Python software package by Serra5, with which we extract
sinusoids using the default window size and hop sizes of 4096 and
256 samples respectively. In order to focus on the harmonic struc-
ture present in the musical input, we extract the partials with the
highest amplitude under 5 kHz. Through informal experimenta-
tion, we set I = 20 partials as we found this was able to provide a
sufficient harmonic representation for our consonance-based mix-
ing application. However, we intend to explore the effect of this
parameter in future work.

For our chosen genre of electronic music, we can assume that
the harmonic structure remains largely constant over the duration
of each 1/16th note (i.e., 125 ms). Therefore, to strike a balance
between temporal resolution and computational complexity, we
summarise the frequencies and amplitudes by taking the frame-
wise median over the duration of each 1/16th note. Thus, for each
excerpt we obtain a set of frequencies and amplitudes, fγ,i and
Mγ,i, where i indicates the partial number (up to I = 20) and γ
each 1/16th note frame (up to Γ = 64).

3.2. Consonance-Based Alignment

For two input musical excerpts, T 1 and T 2 with corresponding
frequencies and amplitudes f 1

γ,i,M
1
γ,i and f 2

γ,i,M
2
γ,i respectively,

we seek to find the optimal consonance-based alignment between
them. To this end, we fix all information regarding T 1 and modify
T 2.

Our approach centres on the calculation of consonance as a
function of a frequency shift, s, and is based on the hypothesis that
under some frequency shift applied to T 2 the consonance between
T 1 and T 2 will be maximised, and this, in turn, will lead to the
optimal mix between the two excerpts.

In total we create S = 97 shifts which cover the range of
± 6 semitones in 1/8th semitone steps (i.e., 48 downward and 48
upward shifts around a single “no shift” option). We scale the

4https://bitbucket.org/breakfastquay/rubberband
5https://github.com/MTG/sms-tools
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Figure 2: (upper plot) Frequency scaling applied to the partials of
one track (solid lines) compared to the fixed partials of the other
(dotted lines) for a single temporal frame. (lower plot) The cor-
responding roughness as function of frequency scaling over that
frame.

frequencies of the partials f 2
γ,i as follows:

f 2
γ,i[s] = 2log2(f2

γ,i)+
s−48
96 s = 0, . . . , S − 1. (20)

For each 1/16th note temporal frame, γ, and per shift, s, we
then merge the corresponding frequencies and amplitudes between
both tracks (as shown in Figure 2) such that:

fγ [s] =
[
f 1
γ f 2

γ [s]
]

(21)

and
Mγ [s] =

[
M 1
γ M 2

γ [s]
]
. (22)

We then calculate the roughness, Dγ [s] according to eqn (5) in
Section 2.1 with the merged partials and amplitudes as input. Then,
to calculate the overall roughness, D̄[s], as a function of frequency
shift, s, we average the roughness values Dγ [s] across the tempo-
ral frames:

D̄[s] =
1

Γ

Γ−1∑
γ=0

Dγ [s], (23)

for which a graphical example is shown in Figure 3.
Having calculated the roughness across all possible frequency

shifts, we now turn our focus towards the measurement of pitch
commonality as described in Section 2.2. Due both to the high
computational demands of the pitch commonality model, and the
rounding which occurs to due to the allocation of discrete pitch cat-
egories, we do not calculate the harmonic consonance as a function
of all possible frequency shifts. Instead we extract all local min-
ima from D̄[s], label these frequency shifts, s∗, and then proceed
with this subset. In this way we use the harmonic consonance, C,
as a means to filter and rank the set of possible alignments (i.e.,
minima) arising from the roughness model.

While the calculation of Dγ [s] relies on the merged set of fre-
quencies and amplitudes from eqns (21) and (22), the harmonic
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Figure 3: Visualisation of roughness,Dγ [s], over 64 frames for the
full range of pitch-shifts. Darker regions indicate lower roughness.
The subplot on the right shows the the average roughness curve,
D̄[s] as a function of pitch-shift, where the roughness minima point
to the left.

consonance compares two individually calculated Hoffman-Engl
pitch sets. To this end, we calculate eqns. (6) to (16) indepen-
dently for f 1

γ and f 2
γ [s∗] to create set1

γ and set2
γ [s∗] and hence

Cγ [s∗] from eqn (19). The overall harmonic consonance C̄[s∗]
can then be calculated by averaging across the temporal frames:

C̄[s∗] =
1

Γ

Γ−1∑
γ=0

Cγ [s∗]. (24)

Since no prior method exists for combining the roughness and
harmonic consonance we adopt a simple approach to equally weight
their contributions to give an overall measure of consonance based
on roughness and pitch commonality:

ρ[s∗] = D̂[s∗] + Ĉ[s∗] (25)

where D̂[s∗] corresponds to the raw roughness values D̄[s∗] which
have been inverted (to reflect sensory consonance as opposed to
roughness) and then normalised to the range [0,1], and Ĉ[s∗] sim-
ilarly represents the [0,1] normalised version of C̄[s∗]. The overall
consonance ρ[s∗] takes values that range from 0 (minimum conso-
nance) to 2 (maximum consonance), as shown in Figure 4. The
maximum score of 2 is achieved only if the roughness and har-
monic consonance detect the same pitch-shift index as most con-
sonant.

3.3. Post-Processing

The final stage of the consonance-based mixing is to physically im-
plement the mix between tracks T 1 and T 2 under the consonance-
maximising pitch shift, i.e., arg maxs∗(ρ[s∗]). As in Section 3.1,
we again use the Rubberband utility to undertake the pitch-shifting
on T 2. To avoid loudness differences between the two tracks prior
to mixing, we normalise each audio excerpt to a reference loudness
level using the Replay Gain method [17].
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Figure 4: Values of consonance from the sensory consonance
model, D̂[s∗], the harmonic consonance, Ĉ[s∗], and the result-
ing overall consonance, ρ[s∗]. Pitch shift index -1 (i.e., -0.125
semitones) holds the highest consonance value and is the system’s
choice for the most consonant shift.

4. EVALUATION

4.1. Listening Test

For the objective evaluation of our consonance-based mixing ap-
proach, we conducted a listening test. In this test we asked mu-
sically trained participants to rate short mixes created according
to different outputs of our system, as well as those derived from
the DJ-mixing software Traktor from Native Instruments, for their
consonance and pleasantness. In total we created five conditions
which are summarised as follows:

• A No Shift: we made no attempt to harmonically align
the excerpts, instead simply aligned them in time by beat-
matching.

• B Key Match (Traktor): we ran the key detection algorithm
inside Traktor on each excerpt individually to determine the
smallest pitch shift required to enable a harmonically com-
patible match based on the circle of fifths.6

• C Dissonant: we pitch-shifted according to the highest rough-
ness from the roughness model without considering har-
mony in terms of pitch commonality.

• D Consonant (Sensory): we pitch-shifted according to low-
est roughness from the roughness model without consider-
ing harmony.

• E Consonant (Sensory + Harmony): we pitch-shifted ac-
cording to the result of the proposed combination of both
models of roughness and pitch commonality.

Using a set of 20 excerpts (each 8 s in duration) as described
in Section 3.1 we calculated the pitch-shifts required for all pos-
sible combinations between excerpts. From this complete set, we

6http://www.djprince.no/site/camelot_easymix_
system.aspx

extracted a subset of 10 mixes (each made from different source
excerpts) for which each of the 5 conditions yielded a unique pitch-
shift. In total this gave a set of 50 musical stimuli for use in our
experiment. The corresponding pitch-shifts for each mix for each
of these stimuli and conditions are shown in Figure 5. Sound ex-
amples of some stimuli used in the listening test are available at
the following website7.

In total we recruited 28 participants whose musical training
was determined by them being: music students, practicing musi-
cians, or active in DJing. When listening to each mix, the partic-
ipants were asked to rate two properties: first, how consonant the
mixes sounded, and second they were asked to rate pleasantness of
the mixes.

Both conditions were rated on a discrete six-point scale using
a custom patch developed in Max/MSP. The order of the 50 stimuli
was randomised for each participant. After every sound example,
the ratings had to be entered before proceeding to the next exam-
ple. To guarantee familiarity with the experimental procedure and
stimuli, a training phase preceded the main experiment. This was
also used to ensure all participants understood the concept of con-
sonance and to set the playback volume to a comfortable level.

While the main goal was to assess the ability of our method
to measure consonance, the pleasantness question was included to
take into account the fact that musical consonance cannot be triv-
ially equated with pleasantness of the sound [18], and furthermore
to ensure that the definition of musical consonance was not con-
fused with personal taste.

Regarding our hypotheses on the proposed conditions, we ex-
pected condition C (Dissonant) to be the least consonant, followed
by A (No Shift). However, without any harmonic alignment, its
behaviour was not predictable. Of the remaining conditions which
attempted to find a good harmonic alignment, we expected the fol-
lowing order of consonance: B (Traktor) followed by D Conso-
nant (Sensory) and finally our proposed combination E Consonant
(Sensory + Harmony) the most consonant.

While the results of the sensory model have been explored in
existing work [19, 11, 20], this experiment is, to the best of our
knowledge, the first listener assessment of a combined roughness
and harmonic model.

4.2. Results

Inspection of Figure 6, which shows the average ratings per ex-
cerpt across all conditions and criteria, reveals a wide range of
ratings with some mixes considered very high in terms of conso-
nance and pleasantness, while others were rated very low. In fact,
the ratings across the two criteria of consonance and pleasantness
were very strongly related with a correlation coefficient of .94.
This supports our underlying assumption that a high level of con-
sonance can be seen as a major factor for creating a good sounding
mix.

By looking at the difference between different conditions in
Figure 6 we can observe that in 8 of 10 cases (mixes), condition D
(Consonant (Sensory)) - was rated more consonant than condition
A (No Shift) and condition C (Dissonant). Regarding pleasant-
ness, this was the case for every mix. The two mixes that showed
the unexpected result of D being rated less consonant than B were
mixes 2 and 3. Both had the lowest average ratings for consonance
for all conditions (1.74, respectively 1.89, overall average 2.43).
This might suggest that either one or both of the individual input

7http://telecom.inescporto.pt/~mdavies/dafx15/
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Figure 5: Comparison of suggested pitch shifts under each condi-
tion for the listening experiment, where pitch-shifts are expressed
in semitones. Note, the “No Shift” condition is always zero.
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Figure 6: Average ratings from participants of the listening exper-
iment for consonance (upper plot) and pleasantness (lower plot).
The error bars indicate the 95% confidence intervals. The shading
to indicate the different conditions is as per Figure 5.

tracks (prior to mixing) already contained dissonant sounds and
was therefore always understood as dissonant by the participants,
no matter what it was mixed with.

Comparing conditions D with E shows that the addition of the
harmonic model, in general, did not improve the consonance or
pleasantness ratings. In fact, the harmonic approach (E) was only
rated more consonant once and more pleasant twice. However, it
was still preferred over A and C for consonance eight times and
in terms of pleasantness nine times. Therefore, our simple linear
combination of roughness and pitch commonality does not seem
obligatory to maximise the consonance. The inclusion of the har-
monic model did appear to provide good alternative pitch-shifts,
and hence expand the range of “good” harmonic alignments (see
Figure 5).

Perhaps the most interesting result found in the listening test
was the fact that both developed models (D and E) were rated more
consonant than the mixes from condition B (Key Match Traktor)
in 8 of 10 cases. These results were even better for pleasantness,
where D was always preferred over B. These observations support
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No Shift

1.6 2.0 2.4 2.8 3.2
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Figure 7: Summary of multiple comparisons between conditions
(with the Bonferroni correction) for consonance and pleasantness
ratings. Error bars without overlap indicate statistically signifi-
cant differences in the mean.
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Figure 8: Scatter plot of roughness versus consonance ratings for
the stimuli of conditions C and D.

the hypothesis that a consonance-based system can produce better
harmonic alignments than those using the key detection method of
Traktor aligned using the circle of fifths.

In addition to making direct observation of the ratings across
conditions and mixes from Figure 6, we also conducted a statisti-
cal test to determine if these differences were significant. To this
end, we performed a multiple comparison of means test which in-
cluded the Bonferroni correction to adjust for variance between
mixes. The mean ratings per condition with error bars are shown in
Figure 7. For both consonance and pleasantness, condition D was
rated significantly higher than conditions A, B and C (p < .0001
comparing D to A – the highest rated among the three), however
there was no significant difference between D and E. As shown
in Figure 7 condition B is among the lowest rated and has no sig-
nificant difference even from C which we expected to be rated
lowest. A possible explanation for this may be the failure of the
key induction algorithm in Traktor to cope with such short mu-
sic excerpts (each just 8 s in duration). We intend to explore this
result and conduct comparisons with other key-based DJ-mixing
software systems in future work.

The fact that roughness seems to have a major effect on the
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rating of consonance (and hence pleasantness) motivates a closer
investigation into their relationship. To this end, the roughness val-
ues of all mixes for conditions C and D, which represent the global
extrema of the calculated roughness curves, were compared with
their associated consonance ratings, as shown in shown in Figure
8. From the scatter plot we can observe a strong negative correla-
tion (with coefficient of −.75) between the two. This relationship
further supports the idea that roughness provides a meaningful per-
ceptual scale for harmonic alignment of music signals.

5. CONCLUSIONS

In this paper we have presented a new method for harmonic mixing
targeted towards addressing some of the limitations of commercial
key-based DJ-mixing systems. Our approach centres on the use
of psychoacoustic models of roughness and pitch commonality to
identify an optimal harmonic alignment between different pieces
of music across a wide range of possible pitch-shifts. Via a listen-
ing experiment with musically trained participants we were able
to demonstrate that, within the context of the musical stimuli used,
mixes based on roughness were considered significantly more con-
sonant than those aligned according to musical key. Furthermore,
the inclusion of the harmonic consonance model provided alterna-
tive pitch-shifts which were also significantly more pleasant than
those of a commercial system.

In terms of future work, we intend to further explore how to
weight the contribution of the roughness and harmonic consonance
models. We also plan to extend the model to allow it to search
across the temporal dimension of music to identify the most con-
sonant temporal alignment between two musical excerpts. To this
end, we will investigate more computationally efficient solutions
to enable real-time interactive consonance-based music mixing, as
well as experimentation with different musical genres.
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