
Self-Optimisation of a Fuzzy Controller with B-Spline ModelsJianwei Zhang and Khac Van LeFaculty of Technology,University of Bielefeld,33501 Bielefeld, GermanyPhone: ++49-(0)521-106-2951Fax: ++49-(0)521-106-2962Email: zhang@techfak.uni-bielefeld.deAbstractWe propose a self-optimisation approach for designing fuzzy controllers. B-spline basis functions ofdi�erent orders are regarded as a class of membership functions (MFs) with some special properties. Theseproperties lead to several interesting conclusions about fuzzy controllers if such membership functions areemployed to specify the linguistic terms of the input variables. By appropriately designing the rule base,Cn-continuity of the output can be achieved (n is the order of the B-spline basis functions). This type offuzzy controllers are applied in function approximation. Using the gradient descent technique, such a fuzzycontroller can be optimised automatically.1 IntroductionThis paper will �rst briey introduce the principle of constructing fuzzy controllers with B-spline models, thendiscuss the problem of automatical optimisation of such type of controllers.Although fuzzy logic control (FLC) has been successfully applied to a wide range of control problemsand has demonstrated some advantages, [TAS94, YLZ94], one obstacle to the wide acceptance for industrialapplications is, as pointed out in [DHP95], that \it is still not clear how membership functions, defuzzi�cationprocedures, ..., contribute, either in combination or as stand-alone factors, to the performance of the FLC".Part of these issues can be addressed by comparing B-spline models with a fuzzy logic controller. In ourprevious work [ZRH94] and [ZK96], we compared splines and a fuzzy controller with SISO (single-input-single-output) and MISO (multi-input-single-output) structures; periodical non-uniform B-spline basis functions areinterpreted as membership functions. In this paper, we concentrate on the self-optimisation for functionapproximation using a fuzzy controller constructed by the B-spline models.2 Principle of Constructing Fuzzy Controllers with B-Splines2.1 B-Spline Basis Functions vs. Membership FunctionsWe consider the membership functions which are used in the context of specifying linguistic terms (\values"or \labels") of input variables of a fuzzy controller. In the following, basis functions of Non-Uniform B-Splines(NUBS) are summarised and compared with the membership functions. We also use B-functions for the NUBSbasis functions.Given a sequence of ordered parameters: (x0; x1; x2; : : : ; xm; xm+1; : : : ; xm+n), the normalised B-functionsNi;n of order n are de�ned as:Ni;n(x) =8><>:�1 for xi � x < xi+10 otherwise if n = 1x�xixi+n�1�xiNi;n�1(x) + xi+n�xxi+n�xi+1Ni+1;n�1(x) if n > 1 with i = 0; 1; : : : ;m:One important property of the B-functions is the \paritition of unity", i.e. Pni=0Ni;n(x) = 1.The B-functions are employed to specify the MFs. Visually, the selection of n, the order of the B-functionsdetermines the following factors of the fuzzy sets for modelling the linguistic terms, Table 1.
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It is assumed that linguistic terms are to be usedto cover [x0; xm], the universe of an input variablex of a fuzzy controller. They are referred as reallinguistic terms. In order to maintain the \par-tition of unity", some more B-functions shouldbe added at the both ends of [x0; xm]. They arecalled marginal B-functions, de�ning the virtuallinguistic terms. Real and virtual linguistic termsare denoted as Ai in Fig. 1.� In case of order 2, no marginal B-functionis needed, Fig. 1(a).� In case of order 3, two marginal B-functionsare needed, one for the left end and anotherfor the right end, Fig. 1(b).� In case of order 4, if the two B-functionsN�2;4 and Nm�2;4 are regarded as the reallinguistic terms, two marginal B-functionsare needed, one for the left end and theother one for the right end, Fig. 1(c).� If higher order n is used, more marginal B-functions are needed.
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In the following section, it can be seen that additional rules shouldbe generated for dealing with virtual linguistic terms. Therefore,linguistic terms should be selected appropriately in order to use theleast number of marginal B-functions.2.3 Core and Marginal RulesWe de�ne the core rules as linguistic rules which use real linguisticterms. If virtual linguistic terms appear in the premise, in order tomaintain the output continuity at both ends of the universe of x, ad-ditional rules are needed to deal with the cases. Since these rules usethe virtual linguistic terms which are de�ned by MFs neighbouringthe ends of the universe of each variable, they are called marginalrules. The output value of each marginal rule is just selected as theoutput value of the \nearest" core rule, i.e. the rule using the directadjacent linguistic terms in its premise (Fig. 2).



2.4 The General MISO ControllersSince MIMO rule base is normally divided into several MISO rule bases, we need only to consider the MISOcase. Generally, rules with q conjunctive terms in the premise are given in the following form:fRule(i1; i2; : : : ; iq): IF (x1 is Ni1;n1 (x1)) and (x2 is Ni2;n2 (x2)) and : : : and (xq is Niq;nq (xq)) THEN y is yi1i2 :::iqgUnder the following conditions:� B-functions as MFs for inputs and fuzzy-singletons as MFs for outputs,� \product" as fuzzy-conjunctions, and� \center average" defuzzi�cation method,the output y of a MISO fuzzy controller is:y = m1+n1�1Xi1=�n1+1 � � � mq+nq�1Xiq=�nq+1 yi1i2:::iq qYj=1 �Nij ;nj (xj) (1)This is called a general NUBS hypersurface, which possesses the following features:� If the B-functions of order n1; n2; : : : ; nq are employed to specify the linguistic terms of the input variablesx1; x2; : : : ; xq, it can be guaranteed that the output variable y is (nj�2) times continuously di�erentiablewith respect to the input variable xj; j = 1; : : : ; q.� If the input space is partitioned enough �ne, the interpolation with B-spline hypersurface can reach agiven precision.If the order of the B-functions and the number of linguistic terms used in the premise are chosen, theoutput of the fuzzy controller can be exibly adapted to anticipated values by adjusting the positions of thefuzzy-singletons (control vertices) of the core rules.3 Application in Function ApproximationIf the pure B-spline interpolation is employed for function approximation, a straightforward computationmodel can be applied which has to mainly solve tridiagonal matrices. Such a procedure is generously used inCAD/CAM areas. For realising adaptive control system, we propose a self-optimisation approach to �nd theappropriate control vertices iteratively.3.1 Self-Optimisation of Control VerticesThe optimisation procedure is based on the gradient descent approach (See [Jan93] and [WWLT95]). An errorfunction is de�ned as: E = 12(Expected V alue �Controller Output)2In each optimisation step, the control vertices are modi�ed with:�yi = (Expected V alue� Controller Output) �Ni;n3.2 Examples3.2.1 A One-Input-One-Output ControllerA function y = sin(2�x) is assumed to be approximated with a fuzzy controller. Fig. 3 depicts the mapping ofthe input x to the output y, where x is covered with B-functions of order 3 and fuzzy-singletons are de�ned ony. The initial positions of the fuzzy-singletons are arbitrarily chosen, e.g. as zero, see Fig. 3(a). The outputcurve and the fuzzy-singletons after the self-optimisation process are illustrated in Fig. 3(b).Fig. 4(a){(c) show several intermediate steps during the optimisation. The approximation error is shown inFig. 4(d).
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ERROR(d) approx. errorFigure 4: Self-optimisation of positions of the fuzzy-singletons de�ned on the output3.2.2 A 2D ExampleA 2D example is implemented to approximate the function z = sin(2�x) � cos(�y), with �1 � x � 1 and0 < y < 1. Fig. 5 (a) and (b) show the MFs de�ning the real and virtual linguistic terms of x and y. Thecontrol surface in several intermediate steps of the optimisation can be seen in Fig. 6. Fig. 7 shows the�nal results after the optimisation process terminates: Fig. 7(a) depicts the automatically generated controlvertices, Fig. 7(b) depicts the convergence of the approximation error.
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-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4(b) variable yFigure 5: B-functions as MFs for the input variables4 ConclusionsWe propose an approach for constructing a fuzzy controller to approximate a sequence of points of a knownfunction. The advantages with B-Spline fuzzy controllers can be summarised as followings: a). transparencyof the interpolation process using fuzzy-controllers; b). smoothness of the output and c). no information lossafter the defuzzi�cation.Although the proposed self-optimisation approach is a kind of supervised learning methods, we can easilyextend the concept to the usage for unsupervised learning based on this controller structure. If no trainingdata available, an evaluation function can be designed to represent the goal of the controller, the control
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